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Abstract

Datacenter clouds (e.g., Microsoft’s Azure, Google’s App Engine, and Amazon’s EC2) are

emerging as a popular infrastructure for computing and storage due to their high scalability and

elasticity. More and more companies and organizations shift their services (e.g., online social net-

works, Dropbox file hosting) to clouds to avoid large capital expenditures. Cloud systems employ

virtualization technology to provide resources in physical machines (PMs) in the form of virtual

machines (VMs). Users create VMs deployed on the cloud and each VM consumes resources (e.g.,

CPU, memory and bandwidth) from its host PM. Cloud providers supply services by signing Service

Level Agreement (SLA) with cloud customers that serves as both the blueprint and the warranty for

cloud computing. Under-provisioning of resources leads to SLA violations while over-provisioning of

resources leads to resource underutilization and then revenue decrease for the cloud providers. Thus,

a formidable challenge is effective management of virtual resource to maximize energy efficiency and

resource utilization while satisfying the SLA.

This proposal is devoted to tackle this challenge by addressing three fundamental and es-

sential issues: i) initial VM allocation, ii) VM migration for load balance, and iii) proactive VM

migration for long-term load balance. Accordingly, this proposal consists of three innovative com-

ponents:

(1) Initial Complementary VM Consolidation. Previous resource provisioning strategies ei-

ther allocate physical resources to virtual machines (VMs) based on static VM resource demands or

dynamically handle the variations in VM resource requirements through live VM migrations. How-

ever, the former fail to maximize energy efficiency and resource utilization while the latter produce

high migration overhead. To handle these problems, we propose an initial VM allocation mechanis-

m that consolidates complementary VMs with spatial/temporal-awareness. Complementary VMs

are the VMs whose total demand of each resource dimension (in the spatial space) nearly reaches
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their host’s capacity during VM lifetime period (in the temporal space). Based on our observation

of the existence of VM resource utilization patterns, the mechanism predicts the lifetime resource

utilization patterns of short-term VMs or periodical resource utilization patterns of long-term VMs.

Based on the predicted patterns, it coordinates the requirements of different resources and consoli-

dates complementary VMs in the same physical machine (PM). This mechanism reduces the number

of PMs needed to provide VM service hence increases energy efficiency and resource utilization and

also reduces the number of VM migrations and SLA violations.

(2) Resource Intensity Aware VM Migration for Load Balance. The unique features of

clouds pose formidable challenges to achieving effective and efficient load balancing. First, VMs in

clouds use different resources (e.g., CPU, bandwidth, memory) to serve a variety of services (e.g.,

high performance computing, web services, file services), resulting in different overutilized resources

in different PMs. Also, the overutilized resources in a PM may vary over time due to the time-

varying heterogenous service requests. Second, there is intensive network communication between

VMs. However, previous load balancing methods statically assign equal or predefined weights to

different resources, which leads to degraded performance in terms of speed and cost to achieve

load balance. Also, they do not strive to minimize the VM communications between PMs. This

proposed mechanism dynamically assigns different weights to different resources according to their

usage intensity in the PM, which significantly reduces the time and cost to achieve load balance and

avoids future load imbalance. It also tries to keep frequently communicating VMs in the same PM

to reduce bandwidth cost, and migrate VMs to PMs with minimum VM performance degradation.

(3) Proactive VM Migration for Long-Term Load Balance. Previous reactive load balancing

algorithms migrate VMs upon the occurrence of load imbalance, while previous proactive load bal-

ancing algorithms predict PM overload to conduct VM migration. However, both methods cannot

maintain long-term load balance and produce high overhead and delay due to migration VM selec-

tion and destination PM selection. To overcome these problems, we propose a proactive Markov

Decision Process (MDP)-based load balancing algorithm. We handle the challenges of allying MDP

in virtual resource management in cloud datacenters, which allows a PM to proactively find an

optimal action to transit to a lightly loaded state that will maintain for a longer period of time. We

also apply the MDP to determine destination PMs to achieve long-term PM load balance state. Our

algorithm reduces the numbers of SLA violations by long-term load balance maintenance, and also

reduces the load balancing overhead (e.g., CPU time, energy) and delay by quickly identifying VMs
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and destination PMs to migrate.

Finally, we conducted extensive experiments to evaluate the proposed three mechanisms. i)

We conducted simulation experiments based on two real traces and real-world testbed experiments to

show that the initial complementary VM consolidation mechanism significantly reduces the number

of PMs used, SLA violations and VM migrations of the previous resource provisioning strategies.

ii) We conducted trace-driven simulation and real-world testbed experiments to show that RIAL

outperforms other load balancing approaches in regards to the number of VM migrations, VM

performance degradation and VM communication cost. iii) We conducted trace-driven experiments

to show that the MDP-based load balancing algorithm outperforms previous reactive and proactive

load balancing algorithms in terms of SLA violation, load balancing efficiency and long-term load

balance maintenance.
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Chapter 1

Introduction

Cloud computing is a new emerging IT service, which provides various services under one

roof. Services such as storage, computing and web hosting, which used to be provided by different

providers, are now provided by a single provider [1, 2, 4]. Many businesses move their services to

clouds due to their high scalability and flexible “pay as you go” service model, in which a cloud

customer only pays for used resources. Such elasticity of the service model brings about cost saving

for businesses [26] by eliminating the need of developing, maintaining and scaling a large private

infrastructure. Cloud systems, such as Amazon EC2, Google App Engine, and Microsoft Azure,

employ virtualization technology to provide resources in physical machines (PMs) in the form of

virtual machines (VMs). Users create VMs deployed on the cloud on demand. Each VM runs its

own operating system and consumes resources (e.g., CPU, memory and bandwidth) from its host

PM.

Cloud providers supply services by signing Service Level Agreement (SLA) with cloud cus-

tomers that serves as both the blueprint and the warranty for cloud computing. Under-provisioning

of resources leads to SLA violations while over-provisioning of resources leads to resource underuti-

lization and then revenue decrease for the cloud providers. The scale of modern cloud datacenters

has been growing and current cloud datacenters contain tens to hundreds of thousands of comput-

ing and storage devices running complex applications. Energy consumption thus becomes critical

concerns. Therefore, a formidable challenge is effective management of virtual resource to maximize

energy efficiency and resource utilization while satisfying the SLA.

This project is devoted to tackle this challenge by addressing three fundamental and essential
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issues: i) initial VM allocation, ii) VM migration for load balance, and iii) proactive VM migration

for long-term load balance. Initial VM allocation methods allocate PM physical resources to VMs

when they are created. When a PM is overloaded, VM migration methods select VMs in the

overloaded PM to migrate to underloaded PMs to release its load. Proactive VM migration methods

migrate out VMs from a PM before it is about to be overloaded to keep it lightly loaded. By

addressing these issues, we expect to avoid resource over-provisioning and under-provisioning in the

cloud, and thus improve the profit of cloud providers, the application Quality of Service (QoS) of

cloud users and green computing.

1.1 Problem Statement

1.1.1 Initial VM allocation.

Previous VM allocation strategies can be classified to two categories: static methods and

dynamic methods [51]. Static VM allocation methods [7, 9, 39, 46, 62] allocate physical resources

to VMs only once based on static VM peak resource demands, which can be reduced to a bin-

packing problem. However, reserving VM peak resource requirement for the entire execution time

cannot fully utilize resources as cloud applications consume varying amount of resources in different

phases. In order to fully utilize cloud resources, dynamic VM allocation methods [5,25,45,48,49,58]

have been proposed, which first consolidate VMs using a simple bin-packing heuristic and then

handle the variations in VM resource requirements through live VM migrations [58]. However,

VM migration generates high migration overhead and also degrades the VM performance [52]. In

addition, all previous VM allocation strategies only consider resource demands at one or each time

point. Therefore, they fail to coordinate the resource requirements in different resource dimensions

(in the spatial space) for a period of time (in the temporal space); that is, they are spatial/temporal-

unaware, which fails to continuously fully utilize different resources.

1.1.2 VM migration for load balance.

Clouds currently perform load balancing by migrating VMs from heavily loaded PMs to

lightly loaded PMs so that the utilizations of PMs’ resources (defined as the ratio between actual
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requested resource amount and the resource capacity) are below a threshold. Previously proposed

load balancing methods [5, 25, 45, 48, 57] combine the utilizations of different resources in selecting

VMs to migrate and finding the most suitable destination PMs. They predefine a weight (or give

equal weight) for each resource, calculate the weighted product of different resource utilizations to

represent the load of PMs and the weighted product of owned amount of each resource to represent

the capacity of PMs. They then migrate VMs from the most heavily loaded PMs to the most lightly

loaded PMs. However, predetermined or equal resource weight cannot adapt to the heterogeneous

resource intensities (i.e., degree of resource demand) among PMs and time-varying resource intensity

in one PM. Also, previous load balancing methods do not consider the communication between VMs

and VM performance (i.e., response time) degradation due to migration. There may be intensive

network communication between two VMs, so separating such two VMs to two different PMs would

increase the network bandwidth consumption. Moving a VM to a distant PM would lead to high VM

performance degradation. Therefore, the previous methods are not efficient for cloud tasks where

VM communication is intensive and delayed VM response time is highly undesirable.

1.1.3 Proactive VM migration for long-term load balance.

Many load balancing methods [5,16,41,45,48,56] have been proposed that reactively perform

VM migration upon the occurrence of load imbalance or when a PM’s resource utilization reaches

a threshold. However, these methods only consider the current state of the system. Fixing a load

imbalance problem upon its occurrence not only generates a delay to achieve load balance but

also cannot guarantee the subsequent long-term load balance state, which may lead to resource

deficiency to cloud customers hence SLA violations. Also, the process of selecting migration VMs

and destination PMs is complex and generates high delay and overhead. Recently, a number of

proactive load balancing methods [11, 12, 14, 20, 42, 43] have been proposed to predict VM resource

demand within a short time for sufficient resources provision or load balancing. In this method, a

PM can predict whether it will be overloaded by predicting its VMs’ resource demands, and moves

out VMs when necessary. However, this method has the following problems. First, a PM does not

know which VMs to migrate out. Additional operations of identifying VMs to migrate bring about

additional delay and overhead. Second, it cannot maintain long-term load balance because it only

achieves load balance at the predicted time spot. Third, it needs to build a Markov chain model and

calculate the transition probability matrix for each individual VM in the system, which generates

3



prohibitive overhead especially in a system with a large number of VMs. What’s more, both reactive

and proactive methods select the destination PMs simply based on their current available resources

without considering their subsequent load status.

1.2 Research Approaches

In this project, we propose novel techniques to handle these issues inherent in managing vir-

tual resources to achieve the efficient utilization of resources in cloud datacenters while ensuring the

SLA requirements. As shown in Figure 1.1, we propose three mechanisms: i) initial complementary

VM consolidation, ii) resource intensity aware VM migration for load balance, and iii) proactive VM

migration for long-term load balance.

Proactive VM 
migration for long-
term load balance

Initial 
complementary VM 

consolidation

Resource intensity 
aware

VM migration for 
load balance

initial stage current stage future stage

Optimizing Virtual Resource Management in Cloud Datacenters

Figure 1.1: Optimizing Virtual Resource Management.

(1) Initial Complementary VM Consolidation. Previous VM allocation methods either al-

locate VMs based on VM peak resource requirement which cannot fully utilize resources or

rely on VM migrations which generate high overhead. This proposed mechanism predicts VM

resource utilization patterns and consolidates complementary VMs, whose total demand of

each resource dimension (in the spatial space) nearly reaches their host PM’s capacity during

VM lifetime period (in the temporal space). This mechanism maximizes energy efficiency and

resource utilization while reducing migration overhead compared to the previous VM allocation

mechanisms.

(2) Resource Intensity Aware VM Migration for Load Balance. Unlike the previous VM

migration methods that statically assign equal or predefined weights to different resources, this

proposed mechanism dynamically assigns different weights to different resources according to

their usage intensity in the PM, which significantly reduces the time and cost to achieve load
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balance and avoids future load imbalance. It also tries to keep frequently communicating VMs

in the same PM to reduce bandwidth cost, and migrate VMs to PMs with minimum VM

performance degradation.

(3) Proactive VM Migration for Long-Term Load Balance. Previous VM migration meth-

ods cannot maintain long-term load balance and produce high overhead and delay. We propose

a Markov Decision Process (MDP)-based load balancing mechanism, which proactively and

directly provides guidance on migration VM selection and destination PMs selection for long-

term load balance.

The research is innovative because it proposes enhanced techniques to optimize virtual re-

source management in cloud datacenters, which help fully utilize cloud resources while upholding

SLAs, thus improving the profit of cloud providers, the application QoS for cloud users and green

computing. This research will blend formal development, analysis, implementation, deploymen-

t, experimentations, and evaluation of the mechanisms. Success of this research will advance our

understanding of inherent problems that prohibit efficient resource utilization in current cloud data-

centers, promote new techniques, and ultimately contribute to building cost-effective infrastructures

as a service (IaaS) for cloud services. Both the distributed system and cyberinfrastructure com-

munities that require highly efficient use of geographically distributed resources may also find our

proposed mechanisms quite useful. Finally, there will be significant opportunities for technology

transfer to industrial research partners.

1.3 Contributions

We summarize our expected contributions of the dissertation proposal below:

• We propose an initial complementary VM consolidation mechanism that consolidates com-

plementary VMs with spatial/temporal-awareness. Complementary VMs are the VMs whose

total demand of each resource dimension (in the spatial space) nearly reaches their host’s ca-

pacity during VM lifetime period (in the temporal space). Based on our observation of the

existence of VM resource utilization patterns, the mechanism predicts the lifetime resource

utilization patterns of short-term VMs or periodical resource utilization patterns of long-term

VMs. Based on the predicted patterns, it coordinates the requirements of different resources
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and consolidates complementary VMs in the same physical machine (PM). This mechanism

reduces the number of PMs needed to provide VM service hence increases energy efficiency

and resource utilization and also reduces the number of VM migrations and SLA violations.

• We propose a resource intensity aware VM migration mechanism for load balance that dynam-

ically assigns different weights to different resources according to their usage intensity in the

PM, which significantly reduces the time and cost to achieve load balance and avoids future

load imbalance. It also tries to keep frequently communicating VMs in the same PM to reduce

bandwidth cost, and migrate VMs to PMs with minimum VM performance degradation.

• We propose a proactive MDP-based load balancing algorithm. We handle the challenges of

allying MDP in virtual resource management in cloud datacenters, which allows a PM to

proactively find an optimal action to transit to a lightly loaded state that will maintain for

a longer period of time. We also apply the MDP to determine destination PMs to achieve

long-term PM load balance state. Our algorithm reduces the numbers of SLA violations by

long-term load balance maintenance, and also reduces the load balancing overhead (e.g., CPU

time, energy) and delay by quickly identifying VMs and destination PMs to migrate.

1.4 Dissertation Organization

The rest of this proposed is structured as follows. Chapter 2 introduces the related works.

Chapter 3 details of the proposed initial complementary VM consolidation mechanism. Chapter 4

presents RIAL, economical and deadline-driven video flow scheduling system. Chapter 5 introduces

RIAL, a Resource Intensity Aware Load balancing method. Finally, Chapter 6 concludes this dis-

sertation with remarks on our future work.
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Chapter 2

Related Work

2.1 Initial VM Allocation

Recently, many static and dynamic VM allocation strategies have been proposed [51]. Static

provisioning [7,9,39,46,62] allocates physical resources to VMs only once based on static VM resource

demands. For example, Srikantaiah et al. [46] proposed to use Euclidean distance between VM

resource demands and residual capacity as a metric for consolidation. However, static provisioning

cannot fully utilize resources because of time-varying resource demands of VMs. To fully utilize cloud

resources, dynamic provisioning [5,25,45,48,49,58] first consolidates VMs using a simple bin-packing

heuristic and handles the variations in VM resource requirements through live VM migrations, which

however results in high migration overhead. Sandpiper [58] uses the product of CPU, network and

memory load to represent the load of a VM and a PM, and migrates the most loaded VM from

an overloaded PM to the least loaded PM. TOPSIS [48] determines the ideal solution consisting

of resource utilizations, and migrates the VM with the shortest Euclidean distance with the ideal

solution to the PM with the longest Euclidean distance with the ideal solution. Arzuaga et al. [5]

selects the VM that yields the greatest improvement of the server load imbalance metric to migrate.

Khanna et al. [25] proposed to select the VM with the lowest utilization from the overloaded PM

and migrate it to the PM that has the least residual capacity big enough to hold this VM. Verma

et al. [49] applied a first-fit decreasing heuristic to optimize VM placement to minimize power
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consumption and maximize performance. These strategies consider the current state of resource

demand and available capacity at a time point rather than the trend state during a time period

for VM migration, which is insufficient for maintaining a continuous load balanced state. Our idea

of consolidating complementary VMs for a certain time period can help these migration strategies

maintain the load balanced state for a longer time period.

Some works [12,43,55,61] predict resource demands for VM migration to avoid SLA violation

in the future. Bobroff et al. [12] proposed an algorithm to predict VM resource requirement based

on the recent history of resource demands in order to allocate minimum resources to VMs such

that the overall SLA violations will not be more than p-percentile. Shen et al. [43] proposed an

online resource demand prediction model for proactive VM migration to avoid PM overload. Our

mechanism is different from these two methods in several aspects. First, our mechanism predicts

the resource demand patterns during a certain time, while these two methods predict resource

demands at one time point, which cannot help retain a continuous load balanced state. Second,

these prediction methods are used for VM migration during VM running, while our mechanism is for

initial allocation, and hence reduces VM migration overhead. Third, these two methods use historical

record of a running VM to predict its future demand, while our mechanism predicts a VM’s resource

utilization pattern in initial VM allocation based on profiles of previous VMs executing similar job

tasks. All previous VM allocation strategies consider the current or future state of resource demand

and available capacity at a time point rather than during a time period, which is insufficient for

maintaining a continuous load balanced state. Though our work focuses on initial VM allocation

rather than subsequent VM migration, our idea of consolidating complementary VMs for a certain

time period can help the migration strategies maintain the load balanced state for a longer time

period.

Recently, some works focus on allocating network bandwidth resources to tenant VMs [7,29,

39,60]. Oktopus [7] provides static bandwidth reservations throughout the network. Popa et al. [39]

proposed a set of properties to navigate the tradeoff space of requirements-payment proportionality

and minimum guarantees when sharing cloud network bandwidth. PROTEUS et al. [60] provides

bandwidth provisioning using predicted bandwidth utilization profile. Lin et al. [29] propose and an

economical and deadline-driven video flow scheduling system called EcoFlow to transmit videos in

the order of their deadline tightness to reduce bandwidth cost. Different from these works, we focus

on consolidating VMs that have demands on multi-resources rather than a single resource.
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2.2 VM Migration for Load Balance

Many load balancing methods have been proposed to deal with the PM overload problem

using VM migration [5, 25, 45, 48, 57]. Sandpiper [57] tries to move load from the most overloaded

servers to the most underloaded servers. It defines volume for VMs and PMs: volume=(1/(1-

ucpu))*(1/(1-unet))*(1/(1-umem)), where u is resource utilization. It also defines a volume-to-size

ratio (VSR) for each VM: VSR=volume/size, where size is the memory footprint of the VM. It

then migrates the VM with the maximum VSR to the PM with the least volume. TOPSIS [48]

predetermines weights for different criteria (e.g., CPU, memory, bandwidth, PM temperature). To

select VMs to migrate (or select destination PM), it first forms a weighted normalized decision matrix

with the utilizations of VMs of a PM (or PMs) with respect to each criterion. It then determines the

ideal solution by using the maximum utilization for the benefit criteria and the minimum utilization

for the cost criteria. Khanna et al. [25] treated different resources equally. They proposed to select

the VM with the lowest product of resource utilizations from the overloaded PM and migrate it to

the PM that has the least residual capacity big enough to hold this VM. Arzuaga et al. [5] used

predetermined resource weights to calculate the product of weighted utilizations of different resources

of a PM or a VM as its load. It then chooses the VM with the highest load from an overloaded PM

to migrate to a selected PM that yields the greatest improvement of the system imbalance metric.

Tang et al. [47] proposed a load balancing algorithm that strives to maximize the total satisfied

application demand and balance the load across PMs. They define load-memory ratio of an instance

as its CPU load divided by its memory consumption to measure its resource utilization. However,

all previous methods statically assume equal or predefined weights for different resources, which may

not be correct due to the different time-varying demands on different resources in each PM. RIAL

is distinguished from these methods in that it dynamically determines the resource weight based on

the demand on the resource in each PM, which leads to fast and constant convergence to the load

balanced state.

Some works deal with load balancing on one resource such as storage [24] and bandwidth

[7, 39, 60]. Hsiao et al. [24] proposed a load balancing algorithm for distributed file systems in

clouds by moving file chunks from overloaded servers to lightly loaded servers. Oktopus [7] provides

static reservations throughout the network to implement bandwidth guarantees. Popa et al. [39]

navigated the tradeoff space of requirements-payment proportionality, resource minimum guarantee
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and system utilization when sharing cloud network bandwidth. Xie et al. [60] proposed PROTEUS

for bandwidth provisioning using predicted bandwidth utilization profile in order to increase the

system bandwidth utilization and reduce the cost to the tenants. However, by focusing on only one

resource, these approaches cannot be directly used for PM load balancing where VMs use different

types of resources.

Many other works for resource management in clouds deal with scheduling incoming work-

load requests or initial placement of VMs with the concern of cost and energy efficiency [28,33,34,44].

Lin et al. [28] proposed an algorithm to achieve dynamic right-sizing in datacenters in order to save

energy. It uses a prediction window of future arrivals to decide when to turn off an idle server.

Maguluri et al. [33] focused on resource allocation that balances the load among servers to achieve

throughput optimization. Meng et al. [34] used traffic patterns among VMs to determine VM

placement in order to improve network scalability. Shrivastava et al. [44] proposed AppAware that

considers inter-VM dependencies and the underlying network topology to place VMs with intensive

mutual communication in the same PM to reduce network traffic. Shen et al. [43] proposed an online

resource demand prediction method to achieve adaptive resource allocation.

2.3 Proactive VM Migration for Long-term Load Balance

In recent years, many load balancing methods have been proposed to avoid overloaded

PMs in the clouds [5, 16, 41, 45, 48, 56]. These algorithms perform VM migration when a PM’s

resource utilization reaches a threshold. After migration VMs are selected, these methods select their

destination PMs simply based on their available resources at the decision time without considering

their subsequent load status. Many methods [11,12,14,20,42,43] predict workloads of PMs or VMs

in order to ensure the sufficient provision for the resource demands or for load balancing. They also

select the destination PMs simply based on their current available resources. However, the migration

VM selection and destination PM selection in the previous reactive and proactive load balancing

algorithms cannot maintain a long-term system load balance state, which otherwise reduces not

only SLA violations (SLAV) but also the overhead and delay caused by load balancing execution.

To overcome these problems, we propose a method that uses MDP to let each PM calculate the

optimal action to perform with the goal of achieving long-term load balance state. Though our

algorithm shares similarity with the previous algorithms in proactive prediction, those algorithms
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focus on predicting VM or PM load, while our algorithm focuses on providing PMs with guidance

on migration VM selection for long-term load balance state maintenance. This work is non-trivial

as it requires well-designed components of MDP to constrain the overhead of MDP creation and

maintenance and ensure the MDP’s stability.
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Chapter 3

Initial Complementary VM

Consolidation

3.1 VM Resource Utilization Pattern Detection

3.1.1 Basic Rationale

Our primary goal in designing the initial VM allocation mechanism is to minimize the

number of PMs used and the number of VM migrations, and maximize resource utilization, while

ensuring SLA guarantees. Figure 3.1 shows a simple 1-dimensional example to explain the idea of

our mechanism. VM1 has a high resource utilization at an early phase but low resource utilization

at a later phase, while VM2 has a low resource utilization at an early phase but a high resource

utilization at a later phase. Our mechanism predicts the VM resource utilization pattern and places

such complementary VMs in the same PM to achieve the goal.

The initial VM allocation mechanism must consider resource demands across every resource

dimension such as CPU, memory and bandwidth. Consolidating complementary VMs in a multi-

dimensional space is a non-trivial task. For example, we should avoid placing VMs that intensively

use the same resource in a PM, which otherwise prevents the PM from accepting other VMs due

to lack of this resource. Placing VMs that intensively use different resources (e.g., a high-CPU-

utilization VM and a high-memory-utilization VM) in a PM can fully utilize PM multi-dimensional

resources while increases the number of VMs that can reside in one PM. Figure 3.2 demonstrates
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Figure 3.1: Consolidating complementary VMs in one PM.

an example in a 2-dimensional resource space. In Figure 3.2(a), VM1 and VM2 have high memory

utilizations and they use up the memory resource of the host PM. Though this PM still has spare

CPU resource, it cannot host any more VMs due to the shortage of memory. In Figure 3.2(b), by

consolidating VM3 and high-CPU-utilization VM4 with VM1, the CPU and memory resources of

this PM are fully utilized. This example implies that when initially allocating a VM, it is desirable

to choose the PM that makes the load sum point move towards the top right corner of the PM in

the figure; that is, the resource in each dimension tends to be equally fully utilized.
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Figure 3.2: Consolidating complementary VMs to fully utilize multi-dimensional resources in a PM.

In the following sections, we first conduct a measurement study on VM resource utilizations

for both short-term and long-term applications to verify the existence of utilization patterns (Section

3.1.2). Second, we discuss how to detect the patterns of a group of VMs running the same job (e.g.,

WordCount) (Section 3.1.3). Third, we present how to coordinate the resource requirements of

different dimensions of the VMs based on predicted utilization patterns to consolidate complementary

VMs (Section 3.2.1).

13



0

50

100

0 50 100

VM1 VM2 VM3

CP
U
 

ut
ili
za
tio

n 
(%

)

0

50

100

0 50 100
Time (sec)

VM1 VM2 VM3

CP
U
 

ut
ili
za
tio

n 
(%

)

0

50

100

0 50 100

VM1 VM2 VM3

CP
U
 

ut
ili
za
tio

n 
(%

)

(a) CPU utilization

2.0
3.5
5.0
6.5

0 50 100

VM1 VM2 VM3

M
em

or
y 

ut
ili
za
tio

n 
(G
B)

2.0
3.5
5.0
6.5

0 50 100

VM1 VM2 VM3

M
em

or
y 

ut
ili
za
tio

n 
(G
B)

2.0
3.5
5.0
6.5

0 50 100
Time (sec)

VM1 VM2 VM3

M
em

or
y 

ut
ili
za
tio

n 
(G
B)

(b) Memory utilization

Figure 3.3: VM resource utilization for TeraSort on three datasets.
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Figure 3.4: VM resource utilization for TestDFSIO write.

3.1.2 Profiling VM Resource Demands

In order to predict the resource demand profiles of cloud VMs, we conducted a measurement

study on VM resource utilizations. Workload arrives at the virtual cluster of a tenant in the form of

jobs. Usually all tasks in a job execute the same program with the same options. Also, application

user activities have daily patterns. Thus, different VMs running the same job tend to have similar

resource utilization patterns. To confirm this, we conducted a measurement study on both short-

term jobs and long-term jobs.

3.1.2.1 Utilization Patterns of VMs for Short-Term Jobs

MapReduce jobs represent an important class of applications in cloud datacenters. We pro-

file the CPU and memory utilization patterns of typical MapReduce jobs. We conducted the profiling
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Figure 3.5: VM resource utilization for TestDFSIO read.
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Figure 3.6: VM resource utilization from Google Cluster trace.

experiments on our cluster consisting of 15 machines (3.4GHz Intel(R) i7 CPU, 8GB memory) run-

ning Ubuntu 12.04. We constructed a virtual cluster of a tenant with 11 VMs; each VM instance

runs Hadoop 1.0.4. We recorded the CPU and memory utilization of each VM every 1 second.

We used Teragen to randomly generate 1G data, then ran TeraSort to sort the data in

the virtual cluster. Figures 3.3(a) and 3.3(b) display the resource utilization results of three VMs

for different generated datasets. Figure 3.4 displays the resource utilizations of two VMs running

TestDFSIO write, which generates 10 output files with each file having 0.1GB. Figure 3.5 displays

the resource utilizations of two VMs running TestDFSIO read, that reads 10 input files generated by

TestDFSIO write. From the figures, we can find that the VMs collaboratively running the same job

have similar resource utilization patterns. The VMs running the same job on different datasets also

have similar resource utilization patterns. We repeatedly ran each experiment several times and got

similar resource utilization patterns for the VMs, which indicates that VMs running the same job
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task at different times also have similar resource utilization patterns.

3.1.2.2 Utilization Patterns of VMs for Long-Term Jobs

To study the utilization patterns of VMs for long-term jobs, we used publicly available

Google Cluster trace [21] and the PlanetLab trace [13]. The Google Cluster trace records resource

usage on a cluster of about 11000 machines from May 2011 for 29 days. The PlanetLab trace contains

the CPU utilization of each VM in PlanetLab every 5 minutes for 24 hours in 10 random days in

March and April 2011. In the Google Cluster trace, we analyzed 700 VMs and found that different

VMs running the same job tend to have similar utilization patterns. Also, for a long-term VM,

daily periodical patterns can be observed from the VM trace. We randomly chose two VMs running

the same job as an example to show our observations. Figure 3.6(a) shows the CPU utilizations of

two VMs every five minutes during three days and Figure 3.6(b) shows their memory utilizations.

We see that both CPU and memory resource demands exhibit periodicity approximately every 24

hours. Also, the two VMs exhibit similar resource utilization patterns since they collaboratively ran

the same job. In the PlanetLab trace, we analyzed 900 VMs and also found that they exhibit daily

periodical patterns. Figure 3.7 shows the CPU utilization of a randomly selected VM to show their

periodical patterns.
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Figure 3.7: VM resource utilization from PlanetLab trace.

3.1.3 VM Resource Utilization Pattern Detection

The previous section shows the existence of similar resource utilization patterns of VMs

running the same job. Given the resource requirement pattern of VMs in an application, we can

potentially derive some complicated functions (e.g., high-order polynomials) to precisely model the

changing requirement over time. However, such smooth functions significantly complicate the pro-

cess of VM allocation due to the complexity of model formulation. Also, very accurate pattern
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Figure 3.8: Time-varying resource utilization classification.

modeling of an individual VM cannot represent the general patterns of a group of VMs for similar

applications. To achieve a balance between modeling simplicity and modeling precision, we choose to

model the resource requirement as simple pulse functions introduced in [60] as shown in Figure 3.8.

These four models sufficiently capture the resource demands of the applications. An actual VM

resource demand that is much more complicated usually exhibits a pattern which is a combination

of these simple types.

Next, we introduce how to detect the resource utilization pattern for a VM. The cloud

records the resource utilizations of the VMs of a tenant. If the job on a VM is a short-term job (e.g.,

MapReduce job), the cloud records the entire lifetime of the job. If the job on a VM is a long-term

job (e.g. Web server VM), the cloud records several periods that show a regular periodical pattern.

From the log, the cloud can obtain the resource utilization of VMs of a tenant running the same

application. When a tenant issues a VM request to the cloud, based on the resource utilization

pattern of previous VMs from this tenant running the same application, the cloud can estimate the

resource utilization pattern of this requested VM.

Let Di(t)=(D1
i (t), .., D

d
i (t)) be the actual d dimension resource demands of VM i at time

t. Given the resource demands of a set of VMs running the same job from a tenant, denoted by

Di(t) (t=T0, ..., T0+T, i=1, 2, ..., N), our pattern detection algorithm finds a pattern P(t)=(P 1(t), ..,
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Algorithm 1 VM resource demand pattern detection.

1: Input: Di(t): Resource demands of a set of VMs
2: Output: P(t): VM resource demand pattern
3: /* Find the maximum demand at each time */
4: E(tj) = maxi∈N{Di(tj)} for each time tj
5: /* Smooth the maximum resource demand series */
6: E(tj) ← LowPassFilter(E(tj)) for each time tj
7: /* Use sliding window W to derive pattern */
8: P(tj) = maxtj∈[tj ,tj+W ]{E(tj)} for each time tj
9: /* Round the resource demand values */

10: P(tj) ← Round(P(tj)) for each time tj
11: return P(t) (t = T0, ..., T0 + T )

P d(t)) (t=T0, ..., T0 + T ) to cover the future resource demand profile of a requested VM from the

tenant.
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Figure 3.9: Pattern detection using the PlanetLab trace.

Algorithm 1 shows how to generate the resource demand pattern for a requested VM. The

algorithm first finds the maximum demand E(t) among the set of Di(t) (i = 1, 2, ..., N) at each

time t (Line 4). Then, it passes E(t) through a low pass filter (Line 6) to remove high frequency

components to smooth E(t). The algorithm then utilizes a sliding window of size W to find the

envelop of E(t) (Line 8). Finally, it rounds the demand values (Line 10).
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Figure 3.10: Pattern detection using the Google Cluster trace.
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To evaluate the accuracy of our pattern detection algorithm, we conducted an experiment

on predicting VM resource request pattern based on resource utilization records of a group of VMs

running the same application from the PlanetLab trace and the Google Cluster trace. We randomly

selected 700 jobs and predicted the CPU utilization of a VM in each job during 24 hours. Specifically,

in the PlanetLab trace, we used the CPU utilizations of three VMs of a job on March 3rd, 6th and

9th in 2011 to predict the CPU utilization of a VM and compared it with the actual utilization of

a VM of the job on March 22nd, 2011. In the Google Cluster trace, we used the CPU and memory

utilizations of two VMs of a job on May 1st and 2nd in 2011 to predict the CPU and memory

utilizations of a VM and compared them with the real utilizations of a VM of the job on May 3rd,

2011.

Figure 3.9(a) displays the actual VM CPU utilization and the predicted pattern generated by

our pattern detection algorithm using the PlanetLab trace. Figure 3.10(a) and Figure Figure 3.10(b)

display the actual VM CPU and memory utilizations and the predicted pattern using the Google

Cluster trace. We see that the pattern can capture the utilization most of the time except for a

few burst peaks. Most of these burst peaks are only slightly greater than the pattern cap and are

single bursts. This means that the resources provisioned according to the pattern can ensure the

SLA guarantees most of the time, i.e., before and after the burst points.
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Figure 3.11: CDF of # of missed captures using the Google Clusster trace.

When the real VM CPU request from the trace is greater than the predicted value, we

say that a missed capture occurs. Figure 3.9(b) and Figure 3.11 show the cumulated distributed

function (CDF) of the number of missed captures from our 700 predictions using the PlanetLab

trace and the Google Cluster trace, respectively. The three curves in the figure correspond to the

pattern detection algorithm with different window sizes. We see that up to 90% of the detected

patterns have missed captures fewer than 25 during the 24 hours in PlanetLab trace, and up to 90%

of the detected patterns have missed captures fewer than 10 in Google Cluster trace. We also see
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that the patterns generated by a bigger window size generates fewer missed captures compared to a

small window size because a larger window size leads to more resource provisioning. As the previous

dynamic provisioning strategies, VM migration upon SLA violation is a solution for these missed

captures. Our initial VM allocation mechanism helps reduce a large number of VM migrations in

the previous dynamic provisioning strategies.

3.2 Initial VM allocation Mechanism

3.2.1 Initial VM Allocation Policy Based on Resource Efficiency

The goal of our initial VM allocation mechanism is to place all VMs in as few hosts as

possible, ensuring that the aggregated demand of VMs placed in a host does not exceed its capacity

across each resource dimension. We consider the VM consolidation as a classical d-dimensional vector

bin-packing problem [17], where the hosts are conceived as bins and the VMs as objects that need to

be packed into the bins. This problem is an NP-hard problem [17]. We then use a dimension-aware

heuristic algorithm to solve this problem, which takes advantage of cross dimensional complimentary

requirements for different resources as illustrated in Figures 3.1 and 3.2 in Section 3.1.2.

Each host j is characterized by a d-dimensional vector to represent its capacities Hj =

(H1
j , H

2
j , ...,H

d
j ). Each dimension represents the host’s capacity corresponding to a different resource

such as CPU, memory, and disk bandwidth. Recall that Di(t) = (D1
i (t), D

2
i (t), .., D

d
i (t)) denotes the

actual resource demands of VM i. We define the fractional VM demand vector of VM i on PM j as

Fij(t) = (F 1
ij(t), F

2
ij(t), ...F

d
ij(t)) = (

D1
i (t)

H1
j

,
D2

i (t)

H2
j

, ..,
Dd

i (t)

Hd
j

). (3.1)

The resource utilization of PM j with N VMs on resource k at time t is calculated by Ukj (t) =

1
Hk

j

∑N
i=1D

k
i (t).

In order to measure whether a PM has available resource for a VM in a future period of time,

we define the normalized residual resource capacity of a host as Rj(t) = (R1
j (t), R

2
j (t), ..., R

d
j (t)), in

which

Rkj (t) = 1− Ukj (t) = 1− 1

Hk
j

N∑
i=1

Dk
i (t). (3.2)

When a VM is allocated to a PM, the VM’s fractional VM demand F kij and the PM’s

normalized residual resource capacity Rkj must satisfy the capacity constraint below at each time t
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Algorithm 2 Pseudocode for initial VM allocation.

1: Input: Pi(t): Predicted resource demands
Rj(t): Residual resource capacity of candidates

2: Output: Allocated host of the VM
3: M=Double.MAX VALUE //initialize the distance
4: for j = 1 to m do
5: if CheckValid(P(t),Rj(t))==false then
6: continue
7: else
8: for k = 1 to d do
9: Ek

j = Ek
j + 1

T ·Hk
j

∫ T0+T
T0

Pk(t)dt

10: Mj+ = {wk(1− Ek
j )}2

11: end for
12: if Mj<M then
13: M=Mj

14: AllocatedHost=host j
15: end for
16: return AllocatedHost
17:
18: function CheckValid(P(t),Rj(t)):
19: for k = 1 to d do
20: for t = T0 to T0 + T do
21: if Fk

ij(t) > Rk
j (t) (Eq.(3.3)==false)

22: return false
23: end for
24: end for
25: return true

and for each resource k:

F kij(t) ≤ Rkj (t), t = T0, ..., T0 + T, k = 1, 2..., d. (3.3)

in order to guarantee that the host has available resource to host the VM resource request for the

time period [T0, T0 + T ].

For each resource k, we hope that a PM j’s Ukj (t) at each time t is close to 1, that is, its each

resource is fully utilized. To jointly measure a PM’s resource utilization across different resources

at each time, we define the resource efficiency during time period [T0, T0 + T ] as the ratio of the

aggregated resource demand over the total resource capacity:

Ekj =
1

T ·Hk
j

∫ T0+T

T0

N∑
i=1

Dk
i (t)dt. (3.4)

We use a norm-based greedy algorithm [36] to capture the distance between the average

resource demand vector and the capacity vector of a PM (e.g., the top right corner of the rectangle
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in the 2-dimensional space):

Mj =

d∑
k=1

{wk(1− Ekj )}2, (3.5)

where wk is the assigned weight to resource k, which can be determined by resource insensitive aware

algorithms [15]. For simplicity, we can make all weights the same and set wk = 1. This distance

metric coordinately measures the closeness of each resource’s utilization to 1.

To identify the PM from a group PMs to allocate a requested VM i, our initial VM allocation

mechanism first identifies the PMs that do not violate the capacity constraint of Equ. (3.3). It then

places the VM i to a PM that minimizes the distance Mj , that is, this VM can more fully utilize

each resource in this PM.

Algorithm 2 shows the pseudocode for our initial VM allocation mechanism. This mechanism

refers to the resource demand pattern Pi(t) from the library that approximately predicts the resource

demands of VMs from the same tenant for the same job. Based on Pi(t) and the host capacity vector

Hj , we can derive predicted Fij(t). For each candidate host, we first check whether it has enough

resource for hosting the VM at each time t = T0, ..., T0 + T for each resource by comparing Fij(t)

and Rj(t) (Line 5 and Lines 18-25) in order to ensure that F kij(t) ≤ Rkj (t) (Eq.(3.3)) during the VM

lifetime or periodical interval [T0, T0 +T ]. If the host has sufficient residual resource capacity to host

this VM, then we calculate the resource efficiency (Lines 8-11) after allocating this VM during time

period [T0, T0 + T ] using Eq. (3.4). Finally, we choose the PM that leads to the minimum distance

based on resource efficiency (Lines 12-16). It means this VM can make this PM most fully utilize its

different resources among the PM candidates. In this way, the complementary VMs are allocated to

the same PM, thus fully utilizing its different resources.
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Figure 3.12: Placing VM to PM1 and PM2.
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3.2.2 Enhanced Initial VM Allocation Mechanisms

3.2.2.1 Basic Rationale

In the previous section, the VM allocation mechanism tries to maximize the resource effi-

ciency during the monitoring time period based on Equ. (3.4). However, Ekj is the average utilization

of PM j during the monitoring time period, and it cannot reflect the deviation of the resource uti-

lization during this period. For example, the time period consists of epochs t1 and t2. A PM with

a resource usage of 10 units at epoch t1 and a usage of 20 units at epoch t2 has the same resource

efficiency as a PM with usages of 15 units at both t1 and t2. Let’s say we are selecting a PM for

hosting a VM from two candidates. The VM demands 10 unites of resource at epoch t1 and 20

units of resource at epoch t2. The first PM’s available capacity is 100 units and 20 units for the two

epochs, respectively. The second PM’s total capacity is 60 for both epochs. Both candidate PMs

have the same resource efficiency. If we choose the first PM, the capacity is used up at epoch t2.

It cannot host more VMs though it has available capacity at epoch t1. Choosing the second PM is

preferred as it can still host extra VMs after accepting the VM.

Figure 3.12 shows another example. We need to select a PM from PM1 and PM2 for a

VM with resource utilization indicated in Figure 3.12(a). Figure 3.12(b) and Figure 3.12(c) show

the resource utilization of PM1 and PM2 after allocating the VM to them, respectively. They have

the same average resource efficiency during T after the VM allocation. Then, PM1 and PM2 are

equivalent selection options according to Algorithm 2. However, we can see that PM2 is a better

option because PM2 still has available resource for hosting more VMs, while allocating the VM to

PM1 will use up its resource for a small period of time and hence make it unable to host more VMs.

In other words, allocating the VM to PM1 is not a clever choice as it will lead to resource wastage

in PM1. In order to solve this problem and further improve resource utilization efficiency, we can

further consider the deviation during different epochs to distinguish the above two PMs instead of

only calculating the average Ekj . In this example, since PM1 has less deviation between different

epochs after hosting the VM, it will be selected as the destination PM to host the VM. In the

following, we will introduce three methods to improve the initial VM allocation mechanism.

3.2.2.2 Utilization Variation Based Mechanism

In order to further distinguish PMs, we should measure other metrics instead of only calcu-
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lating the average Ekj . We can exam the utilization variation of the estimated utilization curve of a

PM j after accepting the VM. We define the variance of a PM j with residual resource Rkj (ti) as

σ2 =

∑N
i=1[Rkj (ti)−Rkj (ti)]

N
(3.6)

where Rkj (ti) is the residual type-k resource at time ti, and Rkj (ti) is the average residual type-k

resource. σ2 is the utilization variation, which measures how far a set of numbers is spread out.

A variance of zero indicates that all the values are identical. A small variance indicates that the

data points tend to be very close to the mean and hence close to each other, while a high variance

indicates that the data points are very spread out around the mean and dispersed from each other.

We can select PMs that will have identical resource utilization between time epochs after accepting

the VM based on the utilization variation of the resulting utilization of the PM.

Algorithm 3 Pseudocode for the utilization variation based VM allocation mechanism.

1: Input: Pi(t): Predicted resource demands
Rj(t): Residual resource capacity of candidates

2: Output: Allocated host of the VM
3: V ar=Double.MAX VALUE //utilization variation
4: for j = 1 to m do
5: if CheckValid(P(t),Rj(t))==false then
6: continue
7: else
8: for k = 1 to d do

9: σ2 =

∑N
i=1[(R

k
j (ti)−Pk(ti))−Rk

j (ti)−Pk(ti)]

N

10: V arj = V arj + σ2

11: end for
12: if V arj<V ar then
13: V ar=V arj
14: AllocatedHost=host j
15: end for
16: return AllocatedHost

Algorithm 3 shows the pseudocode for the utilization variation based VM allocation mech-

anism. Similar to Algorithm 2, this mechanism refers to the resource demand pattern Pi(t) of VM

i and the residual resource capacity Rj(t) of candidate PM j. For each candidate host, the algo-

rithm first checks whether it has enough resource for hosting the VM for each resource by calling

CheckValid(P(t),Rj(t)) (Lines 5-7). If the host has sufficient residual resource capacity to host this

VM, then we calculate the utilization variation of the utilization curve after allocating this VM

during time period [T0, T0 + T ] using Eq. (3.6) (Line 9). Finally, we choose the PM that leads to

the minimum utilization variation (Lines 12-14). It means this VM can make this PM have similar

resource utilization between time epochs, and hence have the potential to host more VMs in the
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future and fully utilizes its resources.

3.2.2.3 Correlation Coefficient Based Mechanism

The utilization variation based algorithm ensures that the PM resource utilization does not

spread out around the mean. However, it cannot fully reflect the complementariness of the VM

utilization and PM utilization during the time period. In the example shown in Figure 3.13, we

need to select a PM from two PMs to allocate a VM. The utilizations of the VM and PMs are shown

in Figure 3.13(a) and Figure 3.13(b), respectively. Figure 3.13(c) shows the resource utilization after

allocating the VM to each PM. Both curves have the same utilization variation value, so the two PMs

are equivalent in PM selection since selecting either one will result in the same utilization variation

according to Algorithm 3. However, PM1 is a better choice because it is more complementary to

the VM, and will result in a more flat resource utilization, which enables to allocation more VMs in

the PM. In order to further take advantage of such complementariness between VMs to be allocated

and PMs, we further propose a correlation coefficient based initial VM allocation mechanism.
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Figure 3.13: Placing VM to PM1 and PM2.

The statistical correlation coefficient (denoted by cr) for a VM with predicted resource

demands P(t) and a PM j with residual resource capacity R(t) are calculated by

cr =

∑N
i=1(P k(ti)− P k(ti))(R

k
j (ti)−Rkj (ti))√∑N

i=1(P k(ti)− P k(ti))2 ·
∑N
i=1(Rkj (ti)−Rkj (ti))2

(3.7)

where P k(ti) is predicted type-k resource demand at time ti and Rkj (ti) is residual type-k resource

at time ti, P k(ti) and Rkj (ti) are the average value and N is the total number of time periods of

measurement. The correlation coefficient illustrates a quantitative measure of the correlation (i.e.,

statistical relationships) between the two utilization traces. It ranges from -1 to 1. A correlation

25



coefficient closer to 1 means that the two traces are more similar, a correlation coefficient closer to

-1 indicates a more perfect negative correlation, that is, the two traces are opposite to each other

in terms of magnitude, and a correlation coefficient closer to 0 means less relationship between

the two traces. For example, if VM1 has 100% and 0% utilization while VM2 has 0% and 100%

utilization in the first and second halves of time period T , then VM1 and VM2 have a -1 correlation

coefficient. Therefore, for a VM, we aim to find a PM that has a correlation coefficient most

close to -1 (i.e., the smallest correlation coefficient) with the VM as the destination PM to allocate

this VM. Accordingly, we propose to select PMs based on the correlation coefficient of the VM

utilization and PM utilization. As the VMs consume multiple types of resources, the algorithm

first calculates the correlation coefficient for each resource and then calculates the average of all

the correlation coefficients of different resources. The algorithm finds the PM that has the smallest

average correlation coefficient (i.e., most close to -1) with the VM to be allocated as the VM’s host.

A PM with the smallest average correlation coefficient with the VM means that this VM allocation

will result in resource utilization that does not fluctuate severely and hence has higher probability

to accommodate more VMs.

Algorithm 4 Pseudocode for the correlation coefficient based VM allocation mechanism.

1: Input: Pi(t): Predicted resource demands
Rj(t): Residual resource capacity of candidates

2: Output: Allocated host of the VM
3: Cor=Double.MAX VALUE
4: for j = 1 to m do
5: if CheckValid(P(t),Rj(t))==false then
6: continue
7: else
8: Avgj=0 //average correlation coefficient
9: for k = 1 to d do

10: cr =
∑N

i=1(P
k(ti)−Pk(ti))(R

k(ti)−Rk(ti))√∑N
i=1(P

k(ti)−Pk(ti))2·
∑N

i=1(R
k(ti)−Rk(ti))2

11: Avgj = Avgj + cr
N

12: end for
13: if Avgj<Cor then
14: Cor=Avgj
15: AllocatedHost=host j
16: end for
17: return AllocatedHost

Algorithm 4 shows the pseudocode for the correlation coefficient based VM allocation mech-

anism. Similar to Algorithm 2, this mechanism refers to the resource demand pattern Pi(t) and the

residual resource capacity of candidates Rj(t). The algorithm first checks whether the candidate

host has enough resource (Lines 5-7). It then calculates the correlation coefficient of the VM uti-

lization and the residual resource capacity of the candidates for each type of resource based on Equ.

26



(3.7) (Line 10). It averages the correlation coefficient across different types of resource (Line 11).

Specifically, the algorithm calculates the average Avgj of the correlation coefficient values that are

obtained from the utilization trace of each resource, and then selects the PM that has the smallest

Avgj (Lines 13-15). It means that this PM is the most complimentary to the VM across different

resource, and allocating the VM to this PM can make this PM have similar resource utilization

between time epochs during time period T . In this way, the algorithm is actually allocating com-

plementary VMs (e.g., the VM is complementary with the existing VMs in the PM) to the same

PM. As a result, the PM will have similar resource utilization between time epochs, and hence has

potential to host more VMs in the future and fully utilizes its resources (i.e., more accommodating).
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Figure 3.14: Placing VMs vs. placing the VM group to PM.

3.2.2.4 VM Group Based Mechanism

Rather than considering one VM, in this section, we try to place complementary VMs

together by combining complementary VMs into a group first and then assigning the whole group

to a PM. Compared to allocating VMs individually, combining complementary VMs into a group

first for allocation has the advantage of extensively exploring the complementariness of the VMs and

maximally consolidating complementary VMs, and hence can reduce the number of PMs needed.

For example, suppose we allocate three VMs in the sequence of VM1, VM2 and VM3, as shown in

Figure 3.14(a). Since the allocation result depends on the allocating order of the VMs, Algorithm 4

will end up with placing VM1 and VM2 together as shown in Figure 3.14(b). However, VM3 is more

complementary than VM2 to VM1. Placing VM3 and VM1 togather is more preferred because it

will result in similar resource utilization between time epochs in the PM, and hence make the PM

more accommodating to other VMs. If we group complementary VMs together and then do the
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allocation, we can place VM1 and VM3 in one PM as shown in Figure 3.14(c) and hence make the

PM more accommodating.

A question in grouping complementary VMs is which VM we should start with. In online

VM allocation algorithms, it is difficult to find a PM to place a VM with high resource utiliza-

tion variations, especially when such VMs are allocated later with less residual resources in PMs.

Therefore, we give higher priorities to the VMs with higher utilization variation to start with in VM

grouping, so that they will have more chances in finding complementary VMs. Specifically, in order

to group complementary VMs together, we first sort the VMs based on the utilization variation in

descending order. Then, we start from the first VM for VM grouping.

We can combine arbitrary number of VMs into one group, as long as the group resource

demand does not exceed the PM resource capacity. We define the group resource demand as the

combined resource demands of each type of resource of the VMs in the group. There is a tradeoff

between the number of VMs that are selected to form a group and the complexity of the algorithm.

In order to demonstrate the effectiveness of the VM group based mechanism and also achieve time

efficiency of the mechanism, we combine two VMs in a group without the loss of generosity. The

procedure of combining VMs to groups is as follows. For each VM, we select the VM that is most

complementary to it, and then combine these two VMs. For example, we calculate the correlation

coefficients of this VM with all remaining VMs and select the one with the smallest correlation

coefficient value. After that, we denote the VM groups as Gn(n = 1, 2, ...), and sort the groups

based on the group resource demand. Similar to the predicted resource demand pattern Pi(t) of

a VM, the group resource demand is a d-dimension vector with each dimension representing its

demands in one resource type. Suppose a group Gn comprises of m VMs, the combined resource

demand of this group is:

PGn(t) = (

m∑
i=1

P 1
i (t),

m∑
i=1

P 2
i (t), ...,

m∑
i=1

P di (t)) (3.8)

where P ki (t) is the type-k resource utilization of VM i, and
∑m
i=1 P

k
i (t) is the combined type-k

resource demands of the m VMs in the group. The group resource demand can be calculated by

SGn
=

d∑
k=1

{
wk

1

T

∫ T0+T

T0

[

m∑
i=1

P ki (t)]dt

}2

, (3.9)
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where 1
T

∫ T0+T

T0
[
∑m
i=1 P

k
i (t)]dt is the demand of type-k resource of group Gn, and wk is the weight

associated to type-k resource as in Equ. (3.5).

The reason for sorting the groups is that it is more difficult to find destination PMs to

allocate the groups with large group resource demands, especially if such a group is allocated later

after many other VM groups with few PM options left. Similar as the first-fit decreasing algorithm [6]

that allocates large demand VM first, this algorithm can lead to fewer PMs used by allocating the

groups with larger group resource demands first.

Similarly, we define the residual resource capacity of a PM based on the normalized residual

resource capacity of the PM Rj(t) = (R1
j (t), R

2
j (t), ..., R

d
j (t)). The residual resource capacity of

PM j is a positive scalar value representing the magnitude of the resource utilization in multiple

dimensions, which can be calculated by

Sj =

d∑
k=1

{wk
1

T

∫ T0+T

T0

Rki (t)dt}2, (3.10)

where 1
T

∫ T0+T

T0
Rki (t)dt is the residual resource capacity of type-k resource in the PM j; wk is the

assigned weight to resource k (the same with Equ. (3.5)).

Algorithm 5 shows the pseudocode for the VM group based allocation mechanism, that is

used to derive the decisions of assigning VM groups to PMs, based on the residual resource capacities

of PMs and group resource demands of VM groups. Given a list of VMs LVM with their predicted

resource demands Pi(t), and a list of PMs LPM with their residual resource capacitiesRj(t) (Line 1),

the algorithm sorts the VMs based on their utilization variations calculated by Equ. (3.6) (Line 3).

For each VM in the list LVM , the algorithm finds a VM that is the most complementary to the

first VM (Lines 6-10), combines them into a group (Line 11), and then adds to the group list LG

(Line 12). The algorithm computes and sorts the groups based on their group resource demands and

sort the PMs based on their residual resource capacities (Line 13), and then allocates the group with

the biggest group resource demand to a feasible PM with the smallest residual resource capacity

(Line 15). If a feasible PM cannot be found, the algorithm returns false (Lines 16-17), otherwise, it

returns the VM-to-PM mapping after all the groups are allocated to the PMs (Line 18).
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Algorithm 5 Pseudocode for the VM group based allocation mechanism.

1: Input: LV M : list of VMs with predicted resource demands Pi(t)
LPM : list of PMs with residual resource capacities Rj(t)

2: Output: VM to PM mapping
3: Arrays.sort(LV M )
4: LG = new Array()
5: while LV M not empty do
6: VM1=LV M .remove() // Removed VM from list
7: for VM2 in LV M

8: Compute correlation coefficient of VM1 and VM2
9: VM2=VM that has lowest correlation coefficient with VM1

10: Remove VM2 from LV M

11: Create group G that comprises VM1 and VM2
12: LG.add(G)
13: Compute group resource demands and residual resource capacities based on Equ. (3.9) and (3.10)
14: while LG not empty do
15: The biggest group G → the smallest feasible PM
16: if cannot find feasible PM then
17: return False
18: return VM to PM mapping

3.3 Trace-Driven Simulation Performance Evaluation

In this section, we conducted the simulation experiments to evaluate the performance of our

proposed complementary VM allocation mechanism (denoted by CompVM) using VM utilization

trace from PlanetLab [13] and Google Cluster [21]. We used workload records of three days from

the trace to generate VM resource request patterns and then executed CompVM for the fourth

day’s resource requests. The window size was set to 15 in the pattern detection in CompVM.

We compared CompVM with Wrasse [40] and CloudScale [43], which are dynamic VM allocation

methods. All three methods first conduct initial VM allocation and then periodically execute VM

migration by migrating VMs from overloaded PMs to first-fit PMs every 5 minutes. In the initial

VM allocation, Wrasse and CloudScale place each VM to the first-fit PM based on the expected VM

resource demands. In migration, CloudScale first predicts future demands and then migrates VMs

to achieve load balance in a future time point.

In the default setup, we configured the PMs in the system with capacities of 1.5GHz CPU

and 1536 MB memory and configured VMs with capacities of 0.5GHz CPU and 512 MB memory.

With our experiment settings, the bandwidth consumption did not overload PMs due to their high

network bandwidth capacities, so we focus on CPU and memory utilization. Unless otherwise

specified, the number of VMs was set to 2000 and each VM’s workload is twice of its original

workload in the trace. We measured the following metrics after the simulation was run for 24 hours

to report.

30



• The number of PMs used. This metric measures the energy efficiency of VM allocation mech-

anisms.

• The number of SLA violations. This is the number of occurrences that a VM cannot receive

the required amount of resource from its host PM.

• Average number of SLA violations. This is the average number of SLA violations per PM. It

reflects the effect of consolidating VMs into relatively fewer PMs.

• The number of VM migrations. This metric presents the cost of the allocation mechanisms

that required satisfying VM demands and avoiding SLA violations.

3.3.1 Performance with Varying Workload

Figure 3.15 and Figure 3.16 show the performance of the three methods under different VM

workloads using the PlanetLab trace and Google Cluster trace, respectively. We varied the workload

of the VMs through increasing the original workload in the trace by 1.5, 2 and 2.5 times.

0

100

200

300

400

500

1 1.5 2 2.5

N
um

be
r 
of
 P
M
s

Load (x original load in trace)

CompVM Wrasse CloudScale

(a) The number of PMs used

0
100
200
300

1 1.5 2 2.5
Load (x original load in trace)

CompVM Wrasse
CloudScale

Nu
m
be

r o
f 

SL
A 
vio

lat
io
ns

0.0

0.5

1.0

1 1.5 2 2.5
Load (x original load in trace)

CompVM Wrasse
CloudScale

Av
er
ag
e #

 o
f 

SL
A 
vio

lat
io
ns

SLAandRatioLoadPlanetLab

(b) Total/average # of SLA violations

0

200

400

600

800

1 1.5 2 2.5

N
um

be
r 
of
 V
M
 

m
ig
ra
ti
on

s

Load (x original load in trace)

CompVM
Wrasse
CloudScale

(c) The number of VM migrations

0
50
100
150

0 20000 40000 60000 80000
Time (sec)

CompVM Wrasse
CloudScale

Nu
m
be

r o
f 

SL
A 
vio

lat
io
ns

0
50

100
150
200

0 20000 40000 60000 80000
Time (sec)

CompVM Wrasse
CloudScale

Nu
m
be

r o
f 

VM
 m

igr
at
io
ns

MigrationSLAvsTime1000VMx2PlanetLab

(d) # of SLA violations and migrations

Figure 3.15: Performance under different workloads using the PlanetLab Trace.

Figure 3.15(a) and Figure 3.16(a) show the total number of PMs used, which follows

CompVM< CloudScale=Wrasse. CloudScale and Wrasse aim to avoid overloading each PM in initial

VM placement and subsequent VM migration at each time point. This may result in some PMs that
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fully utilize one resource but under-utilize other resources, failing to fully utilize all resources. In

contrast, in initial VM placement, CompVM consolidates complementary VMs in different resource

dimensions, thus fully utilizing each resource in each PM. Since it considers the resource periodical

utilization patterns during a certain time period, it reduces the VM migrations and constrains the

number of PMs used. Both figures also show that as the workload increases, the number of PMs

of CompVM increases, while those of Wrasse and CloudScale remain the same. This is because as

the actual workload increases, CompVM’s predicted resource demands increase in initial VM place-

ment, while CloudScale and Wrasse still allocate VM according to the labeled VM capacities. The

result further confirms that CompVM uses PM resources based on actual usage, while CloudScale

and Wrasse under-utilize some resources by provisioning PM resources more than needed. As a

result, CompVM needs much fewer PMs than CloudScale and Wrasse, hence achieves higher energy

efficiency.
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Figure 3.16: Performance under different workloads using the Google Cluster Trace.

Figure 3.15(b) and Figure 3.16(b) show the total number of SLA violations and the average

number of SLA violations. We see that with the PlanetLab trace, when the workload is low, all

three methods can provide service without violating SLAs. Both figures show that as the workload

increases, both metric results increase and they exhibit CompVM<CloudScale<Wrasse. CompVM

has fewer SLA violations because its predicted patterns can capture the time-varying VM resource
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demands and hence guarantee the resource provisioning. CloudScale has fewer SLA violations than

Wrasse since CloudScale iteratively predicts VM resource demands and proactively migrates VMs

before SLA violations occur. These results illustrate that CompVM maintains a smaller average

number of SLA violations per PM even though it uses fewer PMs than CloudScale and Wrasse,

which confirms CompVM’s higher performance in energy efficiency and SLA guarantees.

Figure 3.15(c) and Figure 3.16(c) show the total number of VM migrations in the three

methods. Since the workload in the PlanetLab trace is relatively low compared to the Google

Trace trace, when the workload is low, there are no SLA violations hence no VM migrations. Both

figures show that as the workload increases, the number of VM migrations increases due to the

increase of SLA violations as shown in Figure 3.15(b) and Figure 3.16(b). CompVM always triggers

significantly fewer VM migrations than CloudScale and Wrasse due to its much fewer SLA violations.

This experimental result confirms the effectiveness of CompVM in reducing VM migrations.

Figure 3.15(d) and Figure 3.16(d) show the accumulated number of SLA violations and

VM migrations over time, respectively. In Figure 3.15(d), as the workload is low relative to PM

capacity initially in the PlanetLab trace, all three methods have similar number VM violations and

migrations at the early stage of simulation. As time goes on, due to the awareness of future resource

demand pattern of the VMs during initial VM allocation, CompVM produces fewer VM violations

and migrations than Wrasse and CloudScale during the experiment.

In the Google Cluster trace, the workload is high relative to PM capacity initially. Therefore,

in Figure 3.16(d), due to the unawareness of future VM resource demands, the initial VM placement

of Wrasse and CloudScale leads to around 60 VM migrations to guarantee enough resource provi-

sioning. In contrast, CompVM generates 0 SLA violations and 0 migrations until at 6000s when the

workload becomes higher. We also observe that when the workload is high relative to PM capacity,

most of the migrations are caused by inappropriate initial VM placement. Therefore, our initial VM

allocation mechanism is significant in helping greatly reduce the SLA violations and VM migrations.

3.3.2 Performance with Varying Number of VMs

Figure 3.17 and Figure 3.18 present the performance of the three methods when the number

of VMs was varied from 1000 to 3000 using the PlanetLab trace and the Google Cluster trace,

respectively.

Figure 3.17(a) and Figure 3.18(a) show the total number of PMs used to provide service for
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Figure 3.17: Performance with different number of VMs using the PlanetLab Trace.

the corresponding number of VMs. We see the result follows CompVM<CloudScale=Wrasse due to

the same reasons as in Figure 3.15(a) and Figure 3.16(a). Also, as the number of VMs increases,

the number of PMs used increases in each method since more PMs are needed to host more VMs.

These experimental results confirm the advantage of CompVM in reducing the number of PMs used

hence achieving higher energy efficiency.

Figure 3.17(b) and Figure 3.18(b) show the number of SLA violations and the average

number of SLA violations per PM. We see both metric results follow CompVM< CloudScale<Wrasse

due to the same reasons in Figure 3.15(b) and Figure 3.16(b). Also, as the number of VMs increases,

both metric values in each method increase since more resource demands from more VMs lead to

more SLA violations.

Figure 3.17(c) and Figure 3.18(c) show the total number of VM migrations in the three

methods. As the number of VMs increases, the number of VM migrations increases due to the

increase of SLA violations. CompVM always triggers significantly fewer VM migrations than Cloud-

Scale and Wrasse due to its much fewer SLA violations as shown in Figure 3.17(b) and Figure

3.18(b). CloudScale has slightly more migrations than Wrasse because it triggers VM migrations

upon a predicted SLA violation, which may not actually occur. These experimental results confirm

the effectiveness of CompVM in reducing VM migrations.
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Figure 3.18: Performance with different number of VMs using the Google Cluster Trace.

Figure 3.17(d) and Figure 3.18(d) show the number of migrations and SLA violations over

time. The figures show similar trends of the three method as those shown in Figure 3.15(d) and

Figure 3.16(d) due to the same reasons.

3.3.3 Performance of Enhancement Mechanisms

We implemented the improved initial VM allocation mechanisms described in Section 3.2.2,

and then compared them with CompVM, the original heuristic algorithm based on the average re-

source efficiency. We denote the utilization variation based mechanism as CompVM-Var (Algorithm

3), denote the correlation coefficient based mechanism as CompVM-Cor (Algorithm 4), and denote

the VM group based mechanism as CompVM-Grp (Algorithm 5).

Figure 3.19 compares the performance of the improved initial VM allocation mechanisms

with CompVM using the PlanetLab trace. Figure 3.19(a) and Figure 3.19(b) show the total number

of PMs used, with varying workloads and varying number of VMs, respectively. In both figures,

the number of PMs follows CompVM-Grp≈CompVM-Cor<CompVM-Var<CompVM. CompVM-

Var consolidates VMs to PMs based on the variation of resource utilization of PM after accommo-

dating the VM. Compared to CompVM that is based on the average resource efficiency, CompVM-

Var reduces the number of used PMs due to the reason that CompVM-Var tries to improve resource
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Figure 3.19: The number of PMs used with PlanetLab trace.

utilization by ensuring that the PM resource utilization does not spread out around the mean,

and hence is able to consolidate more VMs, which leads to fewer PMs needed to host the VMs.

CompVM-Cor further reduces the number of used PMs because the correlation coefficient based

method ensures that the selected PM has the most complementary resource utilization to the VM

and hence results in a high resource utilization during every time epoch, thus enabling a PM to host

more VMs. CompVM-Grp has similar number of PMs to CompVM-Cor since both of them rely on

correlation coefficient when selecting PMs for VMs.

Compared to CompVM-Cor, CompVM-Grp has a slightly fewer PMs because it considers

a group of VMs rather than a single VM when assigning the VMs to the PMs. Combining comple-

mentary VMs into groups before allocating them to PMs has the advantage of extensively exploring

the complementariness of the VMs and maximally consolidating complementary VMs, and hence

enables a PM to host more VMs, which further reduces the total number of PMs needed to host all

VMs. We also see that Figure 3.19(a) shows that as the workload increases, the number of PMs of all

methods increases. This is because as the actual workload increases, the predicted resource demands

increase in initial VM placement. Figure 3.19(b) shows that as the number of VMs increases, the

number of PMs used increases in each method since more PMs are needed to host more VMs. These

experimental results confirm the effectiveness of the improved initial VM allocation mechanisms in

reducing the number of used PMs.

Similarly, Figure 3.20 compares the performance of the improved initial VM allocation

mechanisms with CompVM using the Google Cluster trace. Figure 3.20(a) and Figure 3.20(b) show

the total number of PMs used, with varying workloads and varying number of VMs, respectively.

We see that the number of PMs follows CompVM-Grp≈CompVM-Cor<CompVM-Var<CompVM,

which is consistent with previous result using the PlanetLab trace due to the same reasons mentioned
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Figure 3.20: The number of PMs used with Google Cluster trace.

before. Using the Google Cluster trace, the improved initial VM allocation mechanisms do not reduce

as many PMs as using the PlanetLab trace in the previous experiment. This is because the resource

utilization from the Google Cluster trace does not fluctuate as severely as the resource utilization

in the PlanetLab trace, hence the average resource efficiency mechanism performs well in guiding

initial VM allocation. These experimental results again confirm effectiveness of the improved initial

VM allocation mechanisms. The results also indicate that these mechanisms are more effective when

the resource utilizations exhibit greater fluctuation.

3.4 Real-World Testbed Experiments

We deployed a real-world testbed to conduct experiments to validate the performance of

CompVM in comparison with Wrasse and CloudScale. The testbed consists of 7 PMs (2.00GHz

Intel(R) Core(TM)2 CPU, 2GB memory, 60GB HDD) and an NFS (Network File System) server

with storage capacity of 80GB. We implemented CompVM, Wrasse and CloudScale in Java using

the XenAPI library [59] running in a management PM (3.00GHz Intel(R) Core(TM)2 CPU, 4GB

memory). We used the VM template of XenServer to create VMs (1VCPU, 256MB memory, 8.0G-

B virtual disk, running Debian Squeeze 6.0) in the cluster. We used publicly available workload

generator lookbusy [31] to generate VM workloads.

Figure 3.21 shows the number of PMs used to provide the service of different number of

VMs. Since Wrasse and CloudScale are unable to predict workload at the beginning, they both

use the maximum request resource of the VMs for allocation and hence have similar results. We

also monitored the number of SLA violations during the experiment period, and found that were no

SLA violations in all three methods during the experiment. These experimental results confirm that
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Figure 3.21: # of PMs in testbed.

CompVM is able to provide service with fewer number of PMs than Wrasse and CloudScale while

ensures SLA guarantees.

Table 3.1: VM allocation mapping.

PM CompVM Wrasse CloudScale
PM1 VM1, VM2 VM1, VM2 VM1, VM2
PM2 VM3, VM4, VM5 VM3, VM4 VM3, VM4
PM3 - VM5 VM5

We then deployed a virtual cluster with 5 VMs collaboratively running the WordCount

Hadoop benchmark job. We first conducted a profiling run of such MapReduce job and used the

collected resource utilization to generate patterns for initial VM allocation in CompVM. The 5 VMs

were initially allocated to different PMs by different methods. The initial VM to PM mapping is

shown in Table 3.1. We see that CompVM uses fewer PMs than Wrasse and CloudScale. During the

experiment, no SLA violations were detected in all three methods. Figure 3.22(a) shows the median,

10th percentile and 90th percentile of the job completion time in ten experiments. We see that

though CompVM uses few PMs, it has a similar completion time as Wrasse and CloudScale. This

result verifies the advantage of CmpaVM in requiring fewer PMs without sacrificing the performance

quality of the VMs.
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Figure 3.22: Performance of running WordCount job on the real-world testbed.
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Figure 3.22(b) shows the median, 10th and 90th percentiles of the percent of missed captures

of CompVM during the experiment. We see that CompVM produces very few missed captures

relative to the total number of predictions at each time point, which verifies the effectiveness of

CompVM in resource demand pattern detection. We also see that the percent of missed captures of

CPU and its variance are relatively larger than those of memory. This is due to the reason that the

memory utilizations of the VMs exhibit more obvious patterns and hence are easier to be captured

in pattern detection.
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Chapter 4

Resource Intensity Aware VM

Migration for Load Balance

4.1 Objectives and Problem Statement

4.1.1 Notations and Final Objective

We consider a scenario in which a total of N PMs serve as a resource pool in the cloud.

Let Pi denote PM i (i = 1, 2, ..., N), and ni be the number of VMs hosted by Pi, denoted by Vij

(j = 0, 1, ..., ni). Let Cik (k ∈ K) denote the capacity (total amount) of type-k resource owned by

Pi, where K is the set of resources.

Let Lijk(t) denote the type-k resource requested by Vij in Pi at time t. It is a time vary-

ing function. To avoid small transient spikes of Lijk(t) measurements that trigger needless VM

migrations, we use the average of Lijk(t) during time period ∆t, denoted by Lijk.

Lijk =
1

∆t

∫ t

t−∆t

Lijk(t)dt (4.1)

∆t is an adaptive value depending on how fine grained we want to monitor the resource demands.

The usage of type-k resource in Pi is the sum of type-k resource requested by its VMs:

Lik =

ni∑
j=1

Lijk (4.2)
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Taking into account the heterogeneity of server capacities, we define the utilization rate of

type-k resource in Pi (denoted by uik) as the ratio between actual requested resource amount of all

VMs in Pi and the capacity of type-k resource of Pi.

uik =
Lik
Cik

. (4.3)

We use Θk to denote the predetermined utilization threshold for the type-k resource in a

PM in the cloud. The final objective of RIAL is to let each Pi maintain uik < Θk for each of its

type-k resource (i.e., lightly loaded status). We call a PM with uik > Θk overloaded PM, and call

this type-k resource overutilized resource.

Cloud customers buy VMs from cloud provider with predefined capabilities. For example,

a small VM instance in Amazon EC2 is specified by 1.7GB of memory, 1 EC2 compute unit, 160G-

B of local instance storage, and a 32-bit platform. We use Cijk to denote label capacity of Vij

corresponding to type-k resource. The utilization of Vij is defined as

uijk =
Lijk
Cijk

(4.4)

In order to deal with heterogeneity, where the VM capacities are not the same, uijk can be defined

in a new way: ûijk =
uijk·Cijk

Cik
or ûijk =

Lijk

Cik
.

Like the load balancing methods in [48, 57], RIAL can use a centralized server(s) to collect

node load information and conduct load balancing. It can also use a decentralized method as in [24]

to conduct the load balancing. In this paper, we focus on how to select VMs and destination PMs

to achieve a fast and constant convergence while minimize the adverse effect of VM migration on

the cloud services.

4.1.2 Reducing VM Communications between PMs

The VMs belonging to the same customer are likely to communicate with each other much

more frequently than with other VMs. Placing VMs with high communication frequency in different

PMs will consume considerable network bandwidth. To save bandwidth consumption and hence

increase cloud service quality, we try to keep VMs with frequent communication in the same PM.

Thus, we try not to select VMs with a high communication rate with local VMs (residing in the
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same PM) to migrate to other PMs. We use Tijpq to denote the communication rate between Vij

and Vpq, and use Tij to denote the communication rate of Vij with local VMs:

Tij =

ni∑
q=1

Tijiq (4.5)

Also, we try to choose the destination PM with the highest communication rate with mi-

gration VM Vij . We denote the communication rate between Vij and PM Pp as

Tijp =

np∑
q=1

Tijpq (4.6)

where np is the number of VMs in Pp.

4.1.3 Reducing VM Performance Degradation

When a VM is being migrated to another PM, its performance (response time) is degrad-

ed [52]. We also aim to minimize the VM performance degradation caused by migrations. We

calculate the performance degradation of VM Vij migrating to PM Pp based on a method intro-

duced in [10,52]:

Dijp = dip ·
∫ t+

Mij
Bip

t

uij(t)dt (4.7)

where t is the time when migration starts, Mij is the amount of memory used by Vij , Bip is the

available network bandwidth,
Mij

Bip
indicates the time to complete the migration, uij(t) is the CPU

utilization of Vij , and dip is the migration distance from Pi to Pp. The distance between PMs

can be determined by the cloud architecture and the number of switches across the communication

path [34,39].

4.1.4 Problem Statement

In a cloud system, we denote the set of all overload PMs by O and the set of all lightly

loaded PMs by L. Given O and L, our objective is to select Vij from Pi ∈ O and then select the

destination Pp ∈ L to migrate Vij to in order to eliminate overloaded PMs and meanwhile minimize

the number of VM migrations, the total communications between the migration VMs and PMs and

the total performance degradation of all migration VMs. We use Si to denote the set of selected
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migration VMs in Pi, and use | · | to represent the size of a set. Then, our problem can be expressed

as:

min |{Vij |Vij ∈ Si, Pi ∈ O}| (4.8)

min
∑

Tijp (4.9)

min
∑

Dijp (4.10)

subject to : uik ≤ Θk, ∀ i, k (4.11)

Our problem of VM migration is a variant of the multiple knapsack problem, which is NP-

complete [32]. A simpler formulation of our problem has been shown to be NP-complete in [34,44].

Our problem differs from them mainly in that it minimizes the number of VM migrations. We can

construct a special instance of our problem that is similar to them and hence prove that our VM

migration problem is NP-complete. We will present a method for solving this problem below.

4.2 The Design of RIAL

Like all previous load balancing methods, RIAL periodically finds overloaded PMs, identifies

the VMs in overloaded PMs to migrate out and identifies the destination PMs to migrate the VMs

to. In RIAL, each PM Pi periodically checks its utilization for each of its type-k (k ∈ K) resources

to see if it is overloaded. We use L and O (L ∪ O = K) to denote the set of resource types in

the PM that are non-overutilized and overutilized, respectively. An overloaded PM triggers VM

migration to migrate its VMs to other PMs until its uik ≤ Θk (k ∈ K). Below, we present the

methods for selecting VMs to migrate and for selecting destination PMs with the objectives listed

in Section 4.1.4.
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4.2.1 Selecting VMs to Migrate

We first introduce a method to determine the weight of each type of resource based on

resource intensity. We aim to find VMs to migrate out of each overloaded Pi to quickly reduce

its workload. If Pi is overutilized in CPU, then we hope to select the VM with the highest CPU

utilization in order to quickly relieve Pi’s load. Since non-overutilized resources do not overload Pi,

we do not need to reduce the utilization of these resources in Pi. Therefore, we also aim to select

the VM with the lowest utilization in non-overutilized resources in order to fully utilize resources.

To jointly consider these two factors, we determine the weight for each type-k resource according to

its overload status in Pi.

To achieve the above mentioned objective, we give overutilized resources relatively higher

weights than non-overutilized resources. Among the non-overutilized resources, we assign lower

weights to the resources that have higher utilizations in order to more fully utilize resources in the

PM. Therefore, the weight for a non-overutilized resource with resource utilization uik is determined

by

wik = 1− uik.

A resource with utilization zero receives a weight of 1. The weight decreases as the utilization

increases. The resource with a utilization closest to the threshold Θk (i.e., uik < Θk and uik ≈ Θk)

receives the lowest weight 1−Θk. Thus, this resource has the lowest probability to be migrate out.

Among the overutilized resources, the resources that have higher utilizations should receive

higher weights than those with relatively lower utilizations. For the overutilized resources that have

similar but different utilization values, we hope to assign much higher weights to the resources with

higher utilizations and assign much lower weights to the resources with lower utilization. That

is, we exaggerate the difference between the weights of resources based on the difference between

their utilization. Thus, we use a power function with a basic form to determine the weight for an

overutilized resource with resource utilization uik:

wik =
1

auαik + b
,

where a and b are constant coefficients, and α is an integer exponent. In order to simplify the above

equation and at the same time meet the design requirements as discussed previously, we let α = 1.
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Figure 4.1: Weight vs. utilization.

To satisfy the monotonically increasing property (i.e., higher utilization receives higher weight), we

set a = −1. Considering that the domain of the function should cover [Θk,1) (i.e., for an overutilized

resource, Θk ≤ uik < 1), so b = 1. As a result, the weight given to a resource can be determined by

wik =


1

1−uik
, if k ∈ O,

1− uik, if k ∈ L.
(4.12)

The weight of resource k (wik) means the priority of migrating this resource out. The function

in Equation 4.12 is shown in Figure 4.1. That is, for an overutilized resource k ∈ O (uik≥Θk), a

higher utilization leads to a higher weight. For a non-overutilized resource k ∈ L (uik<Θk), a higher

utilization leads to a lower weight. Note that wik > 1 for a resource k ∈ O always has a higher

weight than wik < 1 for a resource k ∈ L, which means that overutilized resources always have higher

priority to migrate out than underutilized resources. The figure shows that, determining resource

weight wik based on Equ. (4.12) satisfies all the requirements discussed before. For example, when

uik<Θk, wik=1 − uik is a decreasing function with a constant slope (left red curve) of -1. When

uik ≥ Θk, wik= 1
1−uik

is an increasing function with increasing slopes (right red curve). wik>1 for an

overutilized resource (uik≥Θk) while wik<1 for a non-overutilized resource (uik<Θk). The resource

with a utilization smaller than and close to the threshold has the lowest weight.

We use the Mullti-Criteria Decision Making (MCDM) [54] method to select the VM to

migrate. Basically, the MCDM method calculates the weighted distances of all the candidates from

the ideal solution, and selects the one with shortest distance. Recall that uijk is the type-k resource

utilization rate of VM Vij . Using the MCDM method, we establish a |K| × ni decision matrix Di

for PM Pi with ni VMs as
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Di =


ui11 · · · uini1

...
. . .

...

ui1|K| · · · uini|K|

 (4.13)

in which each row represents one type of resource and each column represents each VM in

Pi. In the case of heterogenous VM types, we use the normalized VM utilizations and simply replace

uijk with ûijk in Equ. (4.13).

We then normalize the decision matrix:

Xi =


xi11 · · · xini1

...
. . .

...

xi1|K| · · · xini|K|

 (4.14)

where

xijk =
uijk√∑ni

j=1 u
2
ijk

(4.15)

Next, we determine the ideal migration VM (denoted by RVM ) which has the highest usage

of overutilized resources and has the lowest usage of non-overloaded resources. That is,

RV M = {ri1, ..., ri|K|} = {(max
j
xijk|k ∈ O), (min

j
xijk|k ∈ L)}; (4.16)

for each type-k resource, if it is overutilized, its rik is the largest element from (xi1k · · ·xijk · · ·xinik)

in Xi; otherwise, rk is the smallest element.

As indicated in Section 4.1.2, we also hope to select the VM with the lowest communication

rate to other VMs in the same PM (i.e., Tij) in order to reduce subsequent VM communication

cost after migration. Therefore, we set the ideal value of Tij to 0. We then calculate the Euclidean

distance of each candidate Vij in Pi with the ideal VM and ideal Tij .

lij =

√√√√ |K|∑
k=1

[wik(xijk − rik)]2 + [wtTij ]2, (4.17)

where wt is the weight of the communication rate and it can be adaptively adjusted based on the

tradeoff between the convergence speed/cost and the network bandwidth cost for VM communica-

tion. The migration VM is the VM with the shortest Euclidean distance (lij), i.e., the most similar

resource utilizations as the ideal VM. After selecting a VM Vij , RIAL checks if Vij ’s uijk(k ∈ K)
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is in RVM . If so, RIAL replaces Vij ’s uijk in RVM with the updated value. RIAL then continues

to choose the VM with the second shortest lij . Using the above method, RIAL keeps selecting

migration VMs from Pi until Pi is no longer overloaded.

4.2.2 Selecting Destination PMs

When selecting destination PMs to migrate the selected VMs from Pi, we consider resource

intensity, VM communication rate and performance degradation as indicated in Section 4.1. We

use J to denote the set of lightly loaded PMs. We also use the MCDM method for destination PM

selection. We build the |K| × |J | decision matrix D′ as

D′ =


u11 · · · u|J|1

...
. . .

...

u1|K| · · · u|J||K|

 (4.18)

in which each row represents one type of resource and each column represents each lightly

loaded PM.

We then normalize the decision matrix:

X ′ =


x′11 · · · x′|J|1

...
. . .

...

x′1|K| · · · x′|J||K|

 (4.19)

where

x′jk =
ujk√∑|J|
j=1 u

2
jk

(4.20)

Recall that the weight of type-k resource (wik) represents the priority of migrating this

resource out from overloaded PM Pi. Hence, it also indicates the priority of considering available

resource in selecting destination PMs. Therefore, we also use these weights for different resources

in candidate PMs in order to find the most suitable destination PMs that will not be overloaded by

hosting the migration VMs. We represent the ideal destination PM as

R′PM = {r′1, ..., r′k, ..., r′|K|} = {min
j
x′jk|k ∈ K}. (4.21)
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consisting of the lowest utilization of each resource from the candidate PMs.

When choosing destination PMs, we also hope that the VMs in the selected destination

PM Pp have higher communication rate with the migration VM Vij (i.e., Tijp) in order to reduce

network bandwidth consumption. Thus, we set the ideal Tijp to be the maximum communication

rate between Vij and all candidate PMs, Tmax = maxTijp (p ∈ J). Further, the performance

degradation of the migrated VMs should be minimized.

By considering the above three factors, we calculate the Euclidean distance of each candidate

PM Pp from the ideal PM.

lp,ij =

√√√√ |K|∑
k=1

[wik(x′pk − r′k)]2 + [wt(Tijp − Tmax)]2 + [wdDijp]2 (4.22)

where wd is the weight of performance degradation consideration that can be adaptively adjusted

like wt. We then select the PM with the lowest lp,ij value as the migration destination of selected

VMs. If the selected PM does not have sufficient available resources to hold all VMs, the PM with

the second lowest lp,ij is selected using the same method as selecting migration VMs. This process is

repeated until the selected PMs can hold all selected migration VMs of Pi. Note that the magnitudes

of wt and wd should be properly determined based on the practical requirements of the cloud on the

tradeoff of the number of VM migrations, bandwidth cost and VM performance degradation. Higher

wt and wd lead to more VM migrations, while lower wt generates higher bandwidth cost for VM

communications and lower wd generates higher VM performance degradation. How to determine

these magnitudes for an optimal tradeoff is left as our future work.

4.2.3 Parameter Determination

Our load balancing algorithm selects VMs to be migrated out from each overloaded PM and

selects the destination PM to host each migrated VM in order to quickly reach the load balanced state

in the system (i.e., quick convergence). Equ. (4.17) is used to select VMs that should be migrated

out from an overloaded PM considering the weights for resources (wik) and for communication

cost (wt). Equ. (4.22) is used to select the destination PM considering the weights for resources

(wik), for communication cost (wt) and for performance degradation due to migration (wd). The

values of these weight parameters have a direct impact on the performance of our proposed load

balancing algorithm. In this section, we present how to determine these parameters to achieve better

performance.
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As indicated in Equ. (4.17), in order to calculate the Euclidean distance of candidate

VM Vij when selecting a VM to migrate, we must determine wik and wt. Recall that wik is

determined by Formula 4.12. Then, we must first determine the value of wt before we calculate

the Euclidean distance The importance of considering the communication cost (wt) should not

overtake the importance of relieving overutilized resources (wik), which is the primary objective of

our load balancing algorithm. A high wt may lead to the failure of mitigating the load of overloaded

resources, while a low wt may lead to the unawareness of the communication rate in migration VM

selection. Thus, in load balancing, we give the highest priority to offloading the excess load in an

overloaded PM, and paying as much attention as possible to communication rates between VMs in

order to maximize the VM communications within a PM.

Therefore, we determine wt so that one of the VMs that are the most similar to the ideal

VM without considering the communication cost is selected and at the same time wt is maximized.

Suppose Vis is the selected VM in the VM selection algorithm without considering the communication

rate of the VMs (i.e., wt = 0 in Equ. (4.17)):

Vis = arg min
Vij

lVij
(4.23)

and

lVij
=

√√√√ |K|∑
k=1

[wik(xijk − rik)]2 (4.24)

A VM Vij is regarded as one of the most similar VMs to the ideal VM, if

lVim ≤ lVis + δv, (4.25)

where δv is a positive constant. By selecting a similar VM rather than the most similar VM without

considering the communication cost (i.e., Vis), we slightly sacrifice the priority of offloading the

excess load to reducing communication cost. The value of δv determines the extent of the sacrifice.

We denote the set of VMs that satisfy Equ. (4.25) as Sv. With our determined wt, the VM in Sv

that can maximally reduce the communication cost will be selected to migrate out. In the following,

we explain how to determine the value of wt based on δv and wik for the aforementioned objective.

The problem of finding the maximum wt with the constrain of δv can be expressed as follows.

Given the normalized decision matrix Xi of Pi and the ideal migration VM RVM , the problem is to
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maximize wt, subject to:

lim ≤ lij , ∀ Vim ∈ Sv, Vij /∈ Sv (4.26)

where lim and lij are calculated by Equ. (4.17). It means that Vim will always be selected to

migrate out even with the maximized wt. It is to ensure that the selected VM without considering

the communication rate (Equ. (4.25)) will not change when taking into account the communication

rate (Equ. (4.26)).

In order to solve this problem, we can combine Equ. (4.17) and Equ. (4.26), and then derive

Equ. (4.27) below:

|K|∑
k=1

w2
ik[(ximk − rik)2 − (xijk − rik)2] ≤ w2

t (T
2
ij − T 2

im) (4.27)

Since xijk is known, we can find xisk and hence ximk based on Equ. (4.23) and Equ. (4.25). Since Tij

and Tim are also known, we can solve Equ. (4.27). Equ. (4.27) can be solved based on the values of

T 2
ij−T 2

im and (ximk−rik)2−(xijk−rik)2, which can be either positive or negative. We ignore useless

constraints of these two values that are derived from the condition in Equ. (4.27). For example, if

T 2
ij −T 2

im > and (ximk− rik)2− (xijk− rik)2 < 0, we derive that wt is greater than a negative value,

which is always true and thus useless. Then, we derived that when (ximk − rik)2 − (xijk − rik)2 < 0

and T 2
ij − T 2

im < 0,

wt ≤

√√√√∑|K|
k=1 w

2
ik[(ximk − rik)2 − (xijk − rik)2]

T 2
ij − T 2

im

(4.28)

Finally, we solve Equ. (4.28) and select the maximum value for wt.

Solving Equ. (4.28) involves complicated calculations including determining weights for

resources based on Equ. (4.12), finding Vis based on Equ. (4.23) and solving Equ. (4.27). In the

following, we try to simplify the process of determining wt. Since we consider mitigating the load

of the overutilized resources and at the same time maximizing the VM communications within a

PM (by selecting the VM that has minimal communications with the co-locating VMs to migrate

out), we can further loose Equ. (4.28) to simplify the process of wt determination. Specifically, we

only consider the most sensitive weight, which is defined as the minimum weight of the overutilized

resources:

wm = min{wk|k ∈ O}. (4.29)
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Because wm is the minimum weight of the overutilized resources, by ensuring that wt does

not overtake wm, we can satisfy the condition that wt does not overtake all the weights of the

overutilized resources with a high probability. We then determine wt based on wm in order to

prevent wt from overtaking the minimum weight of the overloaded resources. We aim to maximize

wt while guaranteeing that the most similar VM should be selected. To simplify the process, we

can only consider the VM that is the most similar to the ideal VM and the VM that is the second

similar. Because every VM together with the VM that is the most similar to the ideal VM can

specify a range for the value of wt, and the constraints placed on wt by other VMs are relatively

looser compared to the second similar VM. Suppose there is only one resource overutilized, and the

weight is wm; the VM (VM0) which is the most similar to the ideal VM has normalized utilization

x0 and communication rate T0; the VM (VM1) which is the second similar has utilization x1 and

communication rate T1. We use a linear function l = wmx + wtT to represent Equ. (4.17). Then,

the above problem can be expressed as: to maximize wt, subject to

wmx0 + wtT0 ≤ wmx1 + wtT1, x0, x1, T0, T1 > 0. (4.30)

Finally, we can find the maximum wt as

wt = −x0 − x1

T0 − T1
wm (4.31)

In order to further make the determination of wt easier, we derive a constant weight. As

a rule of thumb, wt is greater than 1, which is the maximal weight for a non-overutilized resource,

because considering communication rate is more important than considering the non-overutilized

resources. Also, weight wt should be lower than the weight of overutilized resources, because mit-

igating the load on overload resources has the highest priority. That is, wt <
1

1−Θk
based on Equ.

(4.12). For example, for a threshold Θk = 0.75, the weight for communication rate wt < 4. Then,

wt can be set to constant 3, which is the maximum value that satisfies < 4. In our experiment in

Section 4.3, with Θk = 0.75, we set a constant to wt, i.e., wt = 3.

Next, we discuss how to determine the weight for communication cost (wt) and for perfor-

mance degradation due to migration (wd) in Equ. (4.22) for the destination PM for a migrated VM.

Different from VM selection, here, we need to determine two parameters. However, a formulated

51



problem can only be used for optimizing one object. We then combine wt and wd to one optimization

object. Then, similar to what has been discussed before, we can derive both wt and wd together for

PM selection by altering the object function of the aforementioned problem for VM selection. That

is, we place equal importance on the two weights since both weights are important (i.e., wd = wt)

and try to maximize wd. Suppose Ps is the selected destination PM in PM selection algorithm

without considering the communication rate or performance degradation of the VMs (i.e., wt = 0

and wd = 0 in Equ. (4.22)):

Ps = arg min
Pp

lPp
(4.32)

and

lPp =

√√√√ |K|∑
k=1

[wik(x′pk − r′k)]2 (4.33)

A PM Pp is regarded as one of the most similar PMs to the ideal PM, if

lPm
≤ lPs

+ δp, (4.34)

where δp is a positive constant. Similarly, δp represents the extent of the sacrifice of the priority of

offloading overloaded resource to reducing communication cost and performance degradation due to

VM migrations. We denote the set of PMs that satisfy Equ. (4.34) as Sp. Then, the problem can

be transformed to maximize wt, subject to:

lm,ij ≤ lp,ij , ∀ Pm ∈ Sp, Pp /∈ Sp (4.35)

Similarly, we can derive

wt ≤

√√√√ ∑|K|
k=1 w

2
ik[(x′mk − r′k)2 − (x′pk − r′k)2]

[(Tijp − Tmax)2 − (Timp − Tmax)2] + (D2
ijp −D2

imp)
(4.36)

For more simplified wt and wd, we adopt wt = 3 and wd = 3 as the constant values for these

weights. Similar as previous, for a threshold Θk = 0.75, the weight for communication rate wt < 4,

the weight for performance degradation wd < 4. Then, both wt and wd can be set to constant 3.

We will show the experiment results with varying wt and wd in Section 4.3.
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Figure 4.2: VM and PM selection process.

4.2.4 Performance Comparison Analysis

Compared to Sandpiper [57] and TOPSIS [48], RIAL produces fewer migrations. Because

RIAL determines the resource weight based on resource intensity, it can quickly relieve overloaded

PMs by migrating out fewer VMs with high usage of high-intensity resources. Also, the migration

VMs have low usage of low-intensity resources, which helps fully utilize resources and avoids over-

loading other PMs. In addition, the migration destination has a lower probability of being overloaded

subsequently as it has sufficient capacity to handle the high-intensity resources. Finally, RIAL leads

to fewer VM migrations in a long term.

We use an example with 3 PMs (PM0, PM1, PM2) to demonstrate the advantage of RI-

AL. In practice, the overloaded threshold should be close to 1. To make the example simple with

few VMs, we set the threshold to 0.5, and only consider the CPU and memory resources. We

assume that PM0 has 4 VMs (VM0, VM1, VM2, VM3) with the same capacity and PM0’s ca-

pacity is four times of the VM’s. PMs have the same capacity. As in [48], the weight of CPU

and memory in TOPSIS is 9 and 4, respectively. Figure 4.2 shows the CPU and memory utiliza-

tions of the 4 VMs, VM0(0.2,0.9), VM1(0.9,0.4), VM2(0.75,0.75), VM3(0.1,0.75) and the 3 PMs,

PM0(0.49,0.7), PM1(0.3,0.15), PM2(0.1,0.32). PM0 is overloaded in memory resource usage since

0.7>0.5.

Sandpiper attempts to migrate the VM with maximum VSR=volume/size, where volume=

(1/(1− ucpu)) ∗ (1/(1− unet)) ∗ (1/(1− umem)). Based on this formula, we draw two dash curves in

Figure 4.2 to indicate the points whose VSR equals to 5 and 16, respectively. We see that among

the 4 VMs, VM1 located beyond the curve of VSR=16 has the highest VSR. Therefore, Sandpiper

selects VM1 to migrate out of PM1. TOPSIS first determines its ideal VM (T* in Figure 4.2)

with the maximum CPU and memory utilizations from the 4 candidate VMs (i.e., (0.9, 0.9)), then

compares the weighted distances of the 4 VMs to the ideal VM, and finally chooses VM2 that has
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Figure 4.3: Advantage of RIAL in reducing migrations.

the shortest distance. In RIAL, according to Equ. (4.16), the CPU and memory utilizations of the

ideal VM (R* in Figure 4.2) are 0.1 and 0.9. Base on Equ. (4.12), the weights for memory and CPU

are 3.33 and 0.51, respectively. Unlike TOPSIS, RIAL gives a weight to CPU smaller than memory,

since CPU is not so intensively used as memory. RIAL finally chooses VM0 which has the shortest

weighted distance to the ideal VM.

Table 4.1: Number of migrations needed for load balance

Sandpiper TOPSIS RIAL
# selected migration VMs 2 2 1
# of overload destination
PMs after VM migrations

0 1 0

Total # of migrations 2 3 1

Figure 4.3(a) shows the CPU and memory utilizations of PM0 before VM migration and

after migrating VM0, VM1 and VM2 by RIAL, Sandpiper and TOPSIS, respectively. The arrows

in Figure 4.2 indicate the resource utilizations of PM0 after migration in each method, respectively.

We see that neither migrating VM1 (by Sandpiper) nor migrating VM2 (by TOPSIS) can eliminate

memory overload in PM0. Hence, these two methods require another migration. RIAL reduces both

CPU and memory utilizations below the threshold.

For destination PM selection, PM1(0.3,0.15) and PM2(0.1,0.32) are two candidates for the

VM from PM0. Sandpiper selects the PM that has the least volume as the destination, which is

PM2. TOPSIS determines the ideal PM with the least CPU and memory utilization of all candidate

PMs (i.e., (0.15, 0.1)), and selects the one with the shortest weighted distance to the ideal PM,

which is PM2. However, after migrating VM2 to PM2, the memory utilization of PM2 increases to

0.51, higher than the threshold. Then, TOPSIS has to execute another migration and chooses PM1

to migrate VM2 to. RIAL determines the same ideal PM as TOPSIS, but assigns higher weight to
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memory, so it chooses PM1 as the destination that has the shortest weighted distance.

Figure 4.3(b) shows the CPU and memory utilizations of the destination PMs before and

after migrations. TOPSIS overloads the destination PM2 in memory and needs another migration

(VM2→PM1) to relieve its memory load. Though all three methods finally eliminate the memory

overload in PM0, RIAL generates a more balanced state since resource utilizations after balancing are

relatively lower than those in Sandpiper and TOPSIS, which reduces the probability of overloading

PMs, and hence helps maintain the system load balanced state for a longer time period.

Table 4.1 lists the number of selected VMs to relieve overloaded PM0, the number of over-

loaded destination PMs after the VM migrations, and the total number of migrations to achieve the

load balanced state in one load balancing operation. We see that RIAL generates the least number

of migrations due to its advantages mentioned previously.

4.2.5 When to Trigger VM Migration

In today’s cloud datacenter, VMs may generate transient workload spikes in PMs [50], which

are sharp rises in the resource utilization that immediately followed by decreases. A PM may become

overloaded (i.e., uik > Θk) during a spike, and becomes underloaded after the spike. In this case,

simply triggering the VM migration upon the observation that the resource utilization of a PM

exceeds a threshold (i.e., uik > Θk) generates unnecessary VM migration operations and overhead,

and also fail to fully utilize resources. The occurrence of uik > Θk at a certain time does not

necessarily mean that the resource utilization of this PM will continually exceed the threshold for a

certain period of time in the future. Furthermore, Xen live migration is CPU intensive, which may

degrade the performance of both the source and destination PMs. Without sufficient resource, a

VM migration will take a long time to finish, which will increase the service latency of tasks running

on the PMs and may result in SLO violations. Therefore, we need to avoid triggering unnecessary

migrations.
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For this purpose, we specify that a migration is triggered only if the overload status of the

PM (i.e., uik > Θk) will last continuously for at least Ttd time units, where Ttd is the duration

of overload status of the PM from time ti−1 to time ti. The value of Ttd determines the balance

between offloading the overload resource and avoiding migrations due to transient overload status,

and it can be tuned by the cloud provider. We can either set Ttd to a constant time or make Ttd

a function of the VM migration time based on the requirement of guaranteeing SLO. We will first

demonstrate when to trigger VM migration based on Ttd and then discuss how to determine Ttd so

that the number of migrations is minimized without increasing the number of SLO violations.

Suppose the monitoring interval is ∆t time units. That is, a PM checks its resource utiliza-

tion every ∆t time units, i.e., ∆t = ti − ti−1, where ti is current time and ti−1 is the time of last

monitoring. As in [13], we assume that the resource utilization linearly increases from uik(ti−1) to

uik(ti) during time interval ∆ t. As shown in Figure 4.4, suppose a PM detects that its resource

utilization exceeds the threshold (uik(ti) > Θk) at time ti. According to historical record, it has

resource utilization uik(ti−1) at time ti−1. The duration of overload status of the PM, td, can be

calculated by

td =
uik(ti)−Θk

uik(ti)− uik(ti−1)
∆t (4.37)

Then, VM migration will be triggered if and only if td > Ttd .

We then discuss how to determine the value of Ttd with the consideration of the SLO

requirement. In this paper, we define SLO as the requirement that ε (in percentage) of resource

demands of a VM must be satisfied during its lifetime [53]. We use ts to denote the start time of a

VM, and use tv to denote the cumulated time that this VM has experienced resource overload since

ts until last monitoring time ti−1. Considering that the time to complete VM migration is
Mij

Bip
, the

total time that the VM will experience overload before migration is completed equals Ttd +
Mij

Bip
+ tv.

We delay the migration as much as possible by fully taking advantage of SLO that allows 1 − ε

violations. That is, if current time ti is the migration start time of a VM in the PM, the VM should

satisfy:

Ttd +
Mij

Bip
+ tv

ti − ts +
Mij

Bip

= ε (4.38)

Finally, we can get Ttd = ε(ti − ts +
Mij

Bip
)− Mij

Bip
− tv. Therefore, in order to determine Ttd , we need

to record the start time ts of each VM in the PM, and have the variable tv to keep track of the
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cumulated SLO violation time of each VM.

4.2.6 Decentralized Destination PM Selection

Recall that the VM selection is conducted in each PM in a distributed manner, but the

destination PM is selected in a central server because it needs to be chosen from all PMs. The

centralized approach for destination PM selection is not efficient for a large scale cloud datacenter,

because the amount of information required for this algorithm increases and may overburden the

centralized server. In order to relieve the load of the centralized server, we develop a distributed

version of the PM selection algorithm. The topology of a cloud datacenter can be abstracted by a

graph with its nodes indicating PMs and switches and edges indicating physical links that connect

PMs and switches. In this pater, we focus on tree-like topologies [3,22], which are typical topologies

of today’s datacenters. As shown in Figure 4.5, we partition all the nodes in cloud datacenter

into small clusters and each cluster consists of the nodes in one rack. Then, the load balancing is

conducted within each cluster. That is, the VMs are migrated between physically close nodes. This

way, the performance degradation due to VM migration can be reduced.

PM
Rack Rack Rack Rack

1

Cluster Switch Switch
Switch

Figure 4.5: Datacenter network.

Within each cluster, the nodes select the cluster master, who is responsible for selecting PMs

for VM migrations in this cluster. This selected PM should not be overutilized and at the same time

has the least probability to be selected as the destination PM, that is, it has the highest resource

utilization. Unlike the centralized algorithm, in which a centralized server collects the information

required in Equ. (4.22) from all the PMs in the datacenter, in the decentralized algorithm, the

information is sent from every PM to its cluster master. For example, every PM in the cluster

reports its status (i.e., resource utilization, communication rate with other PMs in this cluster)

periodically (i.e., 5 minutes). The VM selection is conducted distributively in each PM. When a

PM detects that it is overloaded, it selects its migration VMs and submits VM migration requests
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to its cluster master. Upon receiving the VM migration requests from the PMs, the cluster master

then determines the ideal destination PM in its cluster, and selects PMs for the migration VMs

based on Equ. (4.22). By limiting the PM selection within a small cluster (as opposed to the whole

datacenter), we can increase the scalability of the PM selection algorithm. We will compare the the

distributed algorithm and the centralized algorithm in Section 4.3.
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Figure 4.6: Total number of VM migrations.

4.3 Performance Evaluation

We used the CloudSim [13] simulator and our deployed small-scale real-world testbed to

evaluate the performance of RIAL in comparison to Sandpiper [57] and TOPSIS [48]. We used the

real workload trace available in CloudSim to generate each VM’s CPU resource consumption [10,37].

To simulate memory and bandwidth usage, as in [44], we generated 5 different groups of (mean, vari-

ance range) for resource utilization, (0.2,0.05),(0.2,0.15),(0.3,0.05),(0.6,0.10),(0.6,0.15), and set each

VM’s memory/bandwidth utilization to a value generated by a randomly chosen group. Each PM

has 1GHz 2-core CPU, 1536MB memory, and 1GB/s network bandwidth. Each VM has 500Hz

CPU, 512MB memory, and 100Mbit/s bandwidth. With our experiment settings, the bandwidth

consumption will not overload PMs due to their high network bandwidth. In CloudSim, we conduct-

ed experiments for two cloud scales. In the small scale experiment, we simulated 250 VMs running

on 100 PMs. In the large scale experiment, we simulated 5000 VMs running on 1000 PMs. We gen-

erated a tree-like topology to connect the PMs, and measured the transmission delay between PMs

based on the number of switches between them [34]. At the beginning of experiments, we randomly

and evenly mapped the VMs to PMs. The overload threshold was set to 0.75. The weights for

different resource are the same for Sandpiper or set to predefined ratio (e.g., 9:4 for CPU:MEM) as
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adopted in their papers. The load balancing algorithm was executed every 5 minutes. As in [44], we

generated a random graph G(n, p = 0.3) to simulate the VM communication topology, where n is

the number of VMs and p is the probability that a VM communicates with another VM. The weight

of each edge was randomly selected from [0,1] to represent the communication rate between two

VMs. Unless otherwise specified, we repeated each test 20 times with a 24 hour trace and recorded

the median, the 90th and 10th percentiles of the results.
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Figure 4.7: Total VM performance degradation.

4.3.1 The Number of Migrations

Figure 4.6(a) and Figure 4.6(b) show the median, 10th percentile and 90th percentile of the

total number of VM migrations by the time t = 8h, 16h, 24h of the three methods in the small-scale

and large-scale tests, respectively. We see that RIAL generates fewer migrations than Sandpiper

and TOPSIS. Since RIAL considers resource intensity of different resources, it migrates fewer VMs

from a PM to relieve its extra load. Also, RIAL proactively avoids overloading the destination PMs

in the future. Thus, it keeps the system in a balanced state for a relatively longer period of time,

resulting in fewer VM migrations than Sandpiper and TOPSIS within the same period of time. We

also see that TOPSIS produces fewer VM migrations than Sandpiper because TOPSIS gives different

weights to different resources while Sandpiper treats different resource equally. Additionally, we see

that the three methods exhibit similar variances due to the initial random VM assignment to PMs.

4.3.2 VM Performance Degradation due to Migrations

We measured the total performance degradation of all migration VMs based on Equ. (4.7).

Figure 4.7(a) and Figure 4.7(b) show the median, 90th and 10th percentiles of the total performance

degradation (Formula (4.7)) in the small-scale and large-scale tests, respectively. We see that the
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Figure 4.8: Total VM communication cost reduction.
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Figure 4.9: Communication cost reduction of RIAL over Sandpiper/TOPSIS.

total performance degradation of RIAL is lower than those of TOPSIS and Sandpiper in both small

and large scale tests. This is caused by the distinguishing features of RIAL. First, RIAL triggers

fewer VM migrations. Second, RIAL tries to minimize performance degradation in destination PM

selection. Third, RIAL chooses VMs with lower utilizations of the non-intensive resources. TOPSIS

generates lower performance degradation than Sandpiper because it generates fewer VM migrations

as shown in Figure 4.6. We also see that in both the small-scale and large-scale tests, the performance

degradation variance of the three methods follows RIAL<TOPSIS<Sandpiper though the difference

is small in the small-scale test.
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Figure 4.10: Performance with varying VM to PM ratio (500 PMs).
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Figure 4.11: Performance with varying VM to PM ratio (1000 PMs).

4.3.3 VM Communication Cost Reduction

The communication cost between a pair of VMs was measured by the product of their

communication rate and transmission delay. We calculated the communication cost reduction by

subtracting the total communication cost observed at a certain time point from the initial total

communication cost of all VMs. Figure 4.8(a) and Figure 4.8(b) show the median, the 90th and

10th percentiles of total communication cost reduction at different time points in the small-scale

and large-scale tests, respectively. We see that RIAL’s migrations reduce much more communication

cost than TOPSIS and Sandpiper, which may even increase the communication cost by migrations

(shown by the negative results). RIAL exhibits smaller variance because RIAL tries to reduce VM

communication rate between PMs caused by VM migration, while the other two methods do not

consider it.

We then directly compare the communication costs after the migrations between different

methods. We measured the communication costs of RIAL (x) and Sandpiper/TOPSIS (y) at the

end of simulation and calculated the reduced rate of communication cost by (y − x)/y. We varied

the number of VMs from 20 to 250 with an increment of 10, and mapped the VMs to 50 PMs.

Each experiment is run for 30 times. As the reduced rates of RIAL over Sandpiper and TOPSIS are

similar, we only show one result to make the figures clear.

Figure 4.9(a) shows the median, 10th percentile and 90th percentile of the reduced rate of

communication cost with different numbers of VMs. We see that a smaller number of VMs lead to

higher reduced rate of communication cost, which implies that RIAL can reduce more communication

cost with fewer VMs relative to PMs. This is due to the fact that fewer VMs lead to fewer overloaded

PMs hence more PM choices for a VM migration, which helps RIAL reduce more communication

costs. Figure 4.9(b) plots the cumulative distribution function (CDF) of all 30*24 experiments versus
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the reduced rate of communication cost. We see that RIAL consistently outperforms Sandpiper and

TOPSIS with lower communication cost in all experiments, and decreases the communication cost

by up to 70%.

4.3.4 Performance of Varying Number of VMs and PMs

We then study the impact of different ratios of the number of VMs to the number of PMs on

performance. Accordingly, we conducted two sets of tests. One test has 500 PMs with the number

of VM varying from 2000 to 3000, and the other test has 1000 PMs with the number of VM varying

from 4000 to 6000.

Figure 4.10(a) and Figure 4.11(a) show the median, 10th percentile and 90th percentile of

the total number of migrations in the two tests, respectively. As the number of VMs increases, the

total load on the cloud increases, resulting in more overloaded PMs and hence more VM migrations.

When the number of VMs is 1000, the resource requests by VMs in the cloud is not intensive and

only a few migrations are needed. When there are more VMs, the result of number of VM migrations

follows RIAL<TOPSIS<Sandpiper, which is consistent with Figure 4.6 due to the same reasons.
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Figure 4.12: Performance of weight determination algorithms with varying VM to PM ratio (1000 PMs).

Figure 4.10(b) and Figure 4.11(b) show the results of the total VM performance degrada-

tion in the two tests, respectively. As the number of VM increases, the performance degradation
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increases in each method, mainly because of more triggered VM migrations. RIAL generates lower

performance degradation than Sandpiper and TOPSIS, especially with a higher number of VMs. We

also see that the relative performance on the median, 10th percentile and 90th percentile between

the three methods is aligned with that in Figure 4.7 due to the same reasons.

Figure 4.10(c) and Figure 4.11(c) show the results of the total communication cost reduction

in the two tests, respectively. When the VM number is small, there is only a few VM migrations,

resulting in small cost reduction and small variance for all methods. As the number of VMs grows,

RIAL achieves a higher cost reduction than Sandpiper and TOPSIS. Also, RIAL has much smaller

variance than Sandpiper and TOPSIS as the error bars indicate. Both Sandpiper and TOPSIS

performs similarly since neither of them considers the VM communications when selecting VMs and

PMs. The relative performance between the three methods is consistent with that in Figure 4.8 due

to the same reasons.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

4000 5000 6000

T
h

e
 n

u
m

b
e

r 
o

f 
m

ig
ra

ti
o

n
s
 (

x
1

0
3
) 

The number of VMs 

RIAL-a

RIAL

(a) The number of VM migrations.

0

0.1

0.2

0.3

0.4

0.5

4000 5000 6000  
  
  
  
  

P
e

rf
o

rm
a

n
c
e

 
d

e
g

ra
d

a
ti

o
n

 

The number of VMs  

RIAL-a

RIAL(x
1

0
6
) 

(b) Performance degradation.

0

50

100

150

200

4000 5000 6000

T
h

e
 n

u
m

b
e

r 
o

f 
 

S
L
O

 v
io

la
ti

o
n

s
 

The number of VMs  

RIAL-a

RIAL

(c) The number of SLO violations.

Figure 4.13: Performance of migration triggering algorithm.

Comparing Figure 4.10 and Figure 4.11, we see that the results in Figure 4.11 have high-

er absolute values than those in Figure 4.10 because the workload and the scale of the cloud are

doubled. We can conclude from Figure 4.10 and Figure 4.11 that RIAL outperforms Sandpiper

and TOPSIS under varying ratios of the number of VMs to PMs in terms of the number of VM

migrations, VM performance degradation and communication cost.

4.3.5 Performance of Weight Determination Algorithms

We study the performance of different weight determination algorithms introduced in Sec-

tion 4.2.3. In the following sections, we adopt the same setting for the large scale (1000 PMs) and

vary the number of VMs from 4000 to 6000 with an increment of 2000 at each step, unless otherwise

specified. We use RIAL-o to denote the optimal weight determination algorithm based on Equ.
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(4.28) and Equ. (4.36), use RIAL-s to denote the simplified algorithm based on Equ. (4.31), and use

RIAL to denote the algorithm with constant weights (i.e., wt = 3, wd = 3). Figure 4.12(a) shows

the number of VM migrations, which follows RIAL-o<RIAL-s<RIAL. This is because RIAL-o guar-

antees that the weights of overutilized resource are not overtaken by the weights for communication

rate and performance degradation, while RIAL-s and RIAL cannot. Therefore, RIAL-o needs fewer

migrations to offload extra load of overutilized resources. RIAL-s outperforms RIAL because RIAL-s

determines wt and wd based on the weights for resources while RIAL uses constant wt and wd, which

may make wt and wd overtake the resource weights. The number of migrations increases with the

number of VMs because more VMs imposes more workload on the same number of PMs (i.e., 1000

PMs). Figure 4.12(b) shows the performance degradation, which follows RIAL-o<RIAL-s<RIAL

because fewer migrations lead to less performance degradation. The performance degradation in-

creases with the number of VMs due to the same reason as Figure 4.12(a). Figure 4.12(c) shows the

communication cost reduction, which follows RIAL-o>RIAL-s>RIAL. This is because the amoun-

t of sacrifice on the priority of offloading the excess load to reducing communication cost follows

RIAL-o<RIAL-s<RIAL in weight determination. The communication cost reduction increases with

the number of VMs due to the same reason mentioned before. We also measured the execution time

of the wight determination algorithms by varying the number of VMs in a PM from 10 to 25 with an

increment of 5 at each step. Figure 4.12(d) shows the execution time of the different algorithms with

different number of VMs in a PM. We see that RIAL-s is faster than RIAL-o due to the simpleness

of Equ. (4.31) compared to Equ. (4.28). We do not present RIAL here because it has zero execution

time (constant complexity). This result confirms the feasibility of RIAL-s as it can achieve similar

performance as RIAL-o while consuming less time.

4.3.6 Performance of Migration Triggering Algorithm

We use RIAL-a to denote RIAL that avoids unnecessary migrations using the migration

triggering policy. We set ε = 0.95 and determine Ttd based on Equ. (4.38). The number of SLO

violations is the number of VMs that have experienced overload status for a duration more than 1-ε

percent of their lifetimes. Figure 4.13(a) shows the number of VM migrations. We see that RIAL-a

triggers a fewer number of VM migrations than RIAL since it avoids unnecessary VM migrations

and meanwhile avoids violating SLO requirements. The number of VM migrations increases as the

number of VMs increases since more VMs aggravate the load in the datacenter. Figure 4.13(b)
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shows the total performance degradation. We see that the total performance degradation of RIAL-a

is lower than RIAL. This is mainly because that RIAL-a avoids unnecessary VM migrations and

triggers fewer VM migrations. The performance degradation increases with the number of VMs

since move VMs generate more workload and hence more VM migrations. Figure 4.13(c) shows

the number of SLO violations. We see that RIAL-a produces a similar number of SLO violations

as RIAL although RIAL-a does not immediately trigger VM migration upon detecting uik > Θk.

Also, the number of SLO violations increases with the number of VMs due to higher workloads on

PMs. This result confirms that triggering VM migration only when the overload status of a PM

lasts continuously for at least Ttd time can improve the performance of RIAL without significantly

affecting SLO.
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Figure 4.14: Performance of decentralized destination PM selection algorithm with varying VM to PM ratio (1000
PMs).

4.3.7 Performance of Decentralized Destination PM Selection

We then compare the performance of decentralized destination PM selection algorithm in-

troduced in Section 4.2.6 with the centralized algorithm. We denote the centralized algorithm as

RIAL, and the decentralized algorithms with cluster size c as RIAL-c, where c was set to 20, 30

and 40, respectively. Figure 4.14(a) shows the execution time of different algorithms. We see that
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the execution time follows RIAL-20<RIAL-30<RIAL-40<RIAL. This is because a cluster with a

smaller number of PMs has a smaller problem size and all cluster masters conduct the destination

PM selection simultaneously. RIAL has a higher time than the others because it must rank all the

PMs based on Equ. (4.22) in the datacenter for PM selection. Figure 4.14(b) shows the number

of VM migrations, which follows RIAL<RIAL-40<RIAL-30<RIAL-20. This is because the selected

destination PM in a smaller cluster is not the ideal destination PM in the system scope with high

probability and is more likely to become overloaded later on, which leads to more VM migrations.

Figure 4.14(c) shows the performance degradation, which follows RIAL<RIAL-40<RIAL-30<RIAL-

20. Although selecting PM nearby (in a smaller cluster) can reduce the distance of migration, but

the large number of VM migrations (as indicated in Figure 4.14(b)) offsets the benefit, resulting

in higher performance degradation. Figure 4.14(d) shows the communication cost reduction, which

follows RIAL-20<RIAL-30<RIAL-40<RIAL due to the reason that a larger cluster has more oppor-

tunities or options for reducing communication cost. The best PM selected within a cluster reduces

less communication cost compared to the best PM selected within the whole datacenter. These

results confirms that the decentralized algorithm does not degrade the performance greatly while

significantly reduces the algorithm execution time.

4.3.8 Real-World Testbed Experiments

For real-world testbed experiments of RIAL, we deployed a cluster with 7 PMs (2.00GHz

Intel(R) Core(TM)2 CPU, 2GB memory, 60GB HDD) and two NFS (Network File System) servers

with a combined capacity of 80GB. We then implemented the various load balancing algorithms

in Python 2.7.2 using the XenAPI library [59] running in a management node (3.00GHz Intel(R)

Core(TM)2 CPU, 4GB memory, running Ubuntu 11.04). We created 15 VMs (1VCPU, 256MB

memory, 8.0GB virtual disk, running Debian Squeeze 6.0) in the cluster; each with Apache2 Web

Server installed. We used the publicly available workload generator lookbusy [31] to generate both

CPU and memory workloads.

The communication delay between two PMs is determined by the number of switches across

the communication paths in the testbed architecture. We created latency between machines such

that all traffic from machine is in the ratio of 1:4:10 to follow the network hierarchical setup [38].

That is, if the communication path between two PMs comes across one switch, two switches, and

three switches, respectively, the latency between VMs in the two PMs was set to be 1, 4 and 10,
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respectively. We run each test for 20 times; each lasts for approximately 60m.
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Figure 4.16: Accumulated # of migrations.

4.3.8.1 The Number of Migrations

Figure 4.15 shows the median, 10th percentile and 90th percentile of the total number of

migrations in different methods. We can see that RIAL triggers fewer VM migrations than the other

two methods to achieve a load balanced state, while TOPSIS generates fewer VM migrations than

Sandpiper. Figure 4.16 shows the accumulated number of migrations over time. We see that before

40m, RIAL generates a similar number of migrations as Sandpiper and TOPSIS, since all methods

begin from a similar load unbalanced state at the beginning of the experiment. After around 40m,

RIAL produces much fewer migrations and after 50m, it produces no migrations and reaches the

load balanced state, while TOPSIS and Sandpiper continue to trigger VM migrations. This result

confirms that RIAL generates fewer migrations and achieves the load balanced state faster due to

its consideration of resource intensity.
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Figure 4.17: Performance degradation.
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Figure 4.18: Communication cost.

4.3.8.2 Performance Degradation

Figure 4.17 shows the median, 10th percentile and 90th percentile of the total VM perfor-

mance degradation of the three methods. We measured the real migration time to replace
Mij

Bip
in
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Formula (4.7) to calculate the performance degradation. The figure shows that the VM performance

degradation of RIAL is lower than those of Sandpiper and TOPSIS since it tries to reduce VM

performance degradation when selecting destination PMs. TOPSIS has a slightly lower VM perfor-

mance degradation than Sandpiper. As in the simulation, the variance of the results also follows

RIAL<TOPSIS<Sandpiper though it is not obvious due to the small scale. These experimental

results confirm the advantage of RIAL with the consideration of VM performance degradation in

load balancing.

4.3.8.3 Communication Cost

We generated a random graph G(n = 15, p = 0.2) to represent the VM communication

topology. Initially, we manually placed intensively communicating VMs in PMs with higher network

delay for testing.

We measured the sum of the communication cost of each pair of communicating VMs at the

initial stage as the base and measured the total communication cost at every 5 minutes during the

experiment. Figure 4.18 shows the normalized communication cost according to the base. We see

that as time goes on, the communication cost of all methods decreases. This is because we initially

placed intensively communicating VMs in PMs with higher network delay and VM migration can

reduce the communication cost. Our method can reduce the communication cost much more and

faster than the other methods, reaching 20% of the base communication cost. TOPSIS and Sandpiper

have similar curves since they neglect VM communication cost in load balancing.
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Chapter 5

Proactive VM Migration for

Long-Term Load Balance

5.1 MDP-based Load Balancing

5.1.1 Goals

The goal of our load balancing algorithm is to reduce SLAV and meanwhile reduce the

load balancing overhead and delay. Usually SLAV comes from two parts: SLA Violation due to

Overutilization (SLAVO) and SLA Violation due to Migrations (SLAVM) [10]. Thus, we need to

guarantee sufficient resource provisioning to cloud VMs and reduce the number of VM migrations. To

achieve the goals, we aim to prevent heavily loaded state for each PM and maintain the load balance

state for a long time. In this way, we not only reduce SLAV but also reduce the times to execute the

load balancing algorithm, hence reduce the number of VM migrations and overhead (energy, CPU

time, etc.) caused by load balancing execution. Also, we aim to design a load balancing algorithm

that generates low overhead and delay itself. Low load balancing delay can reduce the delay for the

system to recover to the load balance state, hence also reduce SLAV. Low load balancing overhead

saves the resources for applications, which increases the revenue of the cloud provider.

69



5.1.2 Low Overhead MDP Creation and Maintenance

To achieve the above-stated goals, we design an MDP model that provides guidance on

migration VM and destination PM selections for long-term load balance state maintenance. An MDP

[23] requires a 4-tuple input (States (S), Actions (A), Transition Probabilities (P), Rewards (R)). An

MDP provides a general framework for finding an optimal action in a stochastic environment, which

maximizes the rewards from the actions so that the outcomes follow the decision maker’s desire.

The overhead of both MDP creation and maintenance (determined by the update frequency) must

be low in order to meet the low load balancing overhead requirement.

Unlike the previous VM load prediction models [11, 14, 20, 42, 43], we directly use the PM

load state as the MDP state, which enables a PM to directly check whether it is heavily loaded or

lightly loaded. The action set A should be a set of VM migrations that a PM in a certain state can

perform. For an MDP, it is required that the set of actions A do not change; otherwise, MDP has

to be updated upon a change. Declaring migration actions based on each individual VMs held by a

PM will lead to the changes of action set A and their associated transition probabilities in the PM.

This is because the VMs held by a PM may change and a PM could hold any VM in the system due

to VM migration, hence the available actions of a PM may change. For example, if PM1 migrates

VM1 to PM2, the action of migrating out VM1 needs to be deleted from PM1’s action set, and it

needs to be added to PM2’s action set. When the resource utilization of VM2 in PM1 changes, the

transition probabilities of the action of migrating out VM2 from PM1 to each transition state needs

to be updated. To solve this problem, we can define the action set A as moving out each individual

VM in the system. This solution however generates a prohibitive cost considering the huge number

of VMs in the system. Also, the resource utilization of each VM dynamically changes, which also

necessitates the frequent updates of the associated transition probabilities.

To achieve a stable and small action set and stable transition probabilities, we novelly define

an action set as the migration of a VM with a specific load state (migration of VM-state in short).

The load state is defined as a combination of the utilizations of different resources such as “CPU-

high, Mem-high”. We will explain the details of VM-state later on. Therefore, all PMs in the cloud

have the same action set A, which includes the migrations of each VM-state. An MDP state has a

transition probability to transit to another state after performing an action. As the total number

of VM-states in the action set does not change regardless of a PM’s actions, the action set A does
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not change. Also, each VM-state itself does not change, so the associated transition probability for

migrating this VM-state does not change. Thus, MDP does not need to update with the migration

of VM-states.

It is required that the transition probabilities in an MDP must be stable. If the MDP

creation approach cannot maintain stable transition probabilities, the MDP then cannot function

well or it needs a very frequent update in order to provide correct guidance. To confirm whether

our MDP is stable, we have conducted an experimental study on real traces. Before we present the

results in Section 5.1.4, we first introduce the definitions of the load states in Section 5.1.3.

5.1.3 Load State of PMs and VMs

In our load balancing algorithm, each PM selects VMs in certain load states to migrate out

in advance when they are about to be overloaded, so that it can maintain its load balance state

for a long time. This algorithm proactively avoids overloading PMs in the cloud and continually

maintains the system in a load balance state in a long term while limits the number of VM migra-

tions. Therefore, a basic function of our algorithm is to determine the load state of PMs and VMs to

represent PM-State and VM-State used in the MDP model. PM-State represents the load state of

a PM in the MDP model, while VM-State is used to identify VMs with certain resource utilization

degrees to migrate in the actions of PMs.

In a cloud environment, there are different types of resources (CPU, memory, I/O and

network). Therefore, the workloads of PMs and VMs are multi-attribute in terms of different types

of resources. In order to generalize our definitions, we use k to denote the number of resource types.

We assume there are N VMs running on M PMs in a cloud. We regard time period as a

series of time intervals (τ) and use ti to denote the specific time at the end of the i-th interval. We

use lkn(ti) to denote the demanded resource amount (i.e., load) of the type-k resource in the n-th

VM at time ti. We use Lkm(ti) and Ckm(ti) to denote the load and capacity of the type-k resource

in the m-th PM at time ti, respectively. Suppose the m-th PM has Nm number of VMs, then

Lkm(ti) =
∑Nm

j=1 l
k
j (ti).

We define the utilization of the type-k resource in the n-th VM at time ti as

ukn(ti) = lkn(ti)/c
k
n(ti), (5.1)
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Figure 5.1: Example of a simple MDP.

where lkn(ti) and ckn(ti) denote the load and assigned resource of the n-th VM at time ti. We define

the utilization of the type-k resource in the m-th PM at time ti as

Ukm(ti) = Lkm(ti)/C
k
m(ti) =

Nm∑
j=1

lkj (ti)/C
k
m(ti). (5.2)

We use T ko to denote the threshold for the utilization of the type-k resource in a PM. The objective

of our load balancing algorithms is to let each PM maintain Ukm(ti) ≤ T ko for each type of resources.

For simplicity, we omit k in the notation unless we need to distinguish different types of resources.

In a PM, for a given resource, based on the resource utilization (i.e., load) of the PM, we

determine the utilization level of this resource in this PM. We use three levels (high, medium and

low) as an example to explain our algorithm in this paper, which can be easily extended to more

levels. Specifically, to perform level determination for type-k resource, we use Equation (5.3), in

which T k1 and T k2 are two thresholds used to distinguish low and medium, and medium and high

levels, respectively. 
Low if Ukm < T k1

Medium if Ukm ≥ T k1 and Ukm < T k2

High if Ukm ≥ T k2

(5.3)

The state determination of VMs is performed in the same manner by changing Ukm in

Equation (5.3) to ukn. If the utilization of at least one resource in a PM reaches the heavily loaded

threshold, this PM is heavily loaded. Only when the utilizations of all resources in a PM do not

reach the heavily loaded threshold, this PM is lightly loaded.

Consider a set of K resources R={r1, r2,....rK} in the cloud system and resource utilization

levels L={High, Medium, Low}. The total number of states of VMs or PMs equals |L||R|; the

Cartesian product of the two sets. The set of states is S=R×L, where×means the combination of
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rk in different resource utilization levels. For example, if we consider two resources, R = {CPU,

Mem}, a PM’s state can be represented by the utilization degree of each resource such as (CPU-high,

Mem-high), (CPU-median, Mem-low), etc. Then, there are 32=9 states for a VM or a PM as shown

in Figure 5.1(a).
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(a) PM-State: high→high
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(b) PM-State: high→med.
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(c) PM-State: high→low
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(d) PM-State: med.→high
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(e) PM-State: med.→med.
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(f) PM-State: med.→low
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(g) PM-State: low→high
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(h) PM-State: low→med.

0.00

0.25

0.50

0.75

1.00

1.25

0.7 0.8
Threshold (T2)

VM-high VM-med
T

ra
n

s
it

io
n

 p
ro

b
a

b
il

it
y

 

0.00

0.25

0.50

0.75

1.00

0.7 0.8 0.9
Threshold (T2) 

VM-high VM-med VM-low

T
ra

n
s
it

io
n

 p
ro

b
a

b
il

it
y

 

(i) PM-State: low→low

Figure 5.2: Probability of state transitions of PM-high using PlanetLab trace.

5.1.4 Trace Study on the Stability of Our MDP

State set S is a set of PM resource utilization levels based on Equation (5.3). As mentioned

before, the transition probabilities of an MDP must be stable. To confirm whether our design of

different MDP components can achieve the MDP stability, in this section, we conduct an experiment,

which shows that the transition probability matrix remains stable even when we slightly change

threshold T ki in Equation (5.3). Therefore, we can properly set approximate T ki to determine the
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resource utilization level in MDP construction.

In Equation (5.3), T k2 is more important than T k1 since T k2 is a threshold to determine

the high utilization level, which determines the heavily loaded state of a PM. Thus, we conducted

experiments with varying T k2 values and kept T k1 =0.3. We used CloudSim [13] for the experiments

and compared the transition probability matrix obtained under varying threshold T k2 values. The

PMs are modeled from commercial product HP ProLiant ML110 G4 servers (1860 MIPS CPU, 4GB

memory) and the VMs are modeled from EC2 micro instance (0.5 EC2 compute unit, 0.633 GB

memory, which is equivalent to 500 MIPS CPU and 613 MB memory). We used two traces in the

experiments: PlanetLab trace [13] and Google Cluster trace [21]. The PlanetLab trace contains the

CPU utilization of VMs in PlanetLab every 5 minutes for 24 hours in 10 random days in March and

April 2011. The Google Cluster trace records resource usage on a cluster of about 11000 machines

from May 2011 for 29 days. As there are a very large number of states when considering multiple

resources, we focus on the CPU resource in the experiments. In each test, we selected x VMs

from the trace and assigned them to a PM, where x was randomly selected from [1, 20]. We then

randomly selected a VM in the PM to migrate out. We measured the PM-State before and after VM

migration based on the thresholds, and the load state of the migrating VM. In each experiment, we

repeated this process for 100,000 times and calculated the transition probabilities for different PM-

state changes when migrating different VM-states (e.g., the number of “high→medium” PM-state

transitions when migrating a medium VM-state).

We repeated the experiment 100 times and calculated the transition probabilities. Figure 5.2

and Figure 5.3 show the transition probabilities of PM state changes when using the PlanetLab trace

and the Google Cluster trace, respectively. The error bars show the 99th and 1st percentiles among

the 100 experiments. Each figure shows the results with different T2 threshold values from 0.7, 0.8

to 0.9. In these figures, VM-high, VM-medium and VM-low represent that the migration VM-state

is high, medium and low, respectively. We use PM-high, PM-medium and PM-low to represent a

PM in the high, medium and low state, respectively. For example, Figure 5.2(c) and Figure 5.3(c)

indicate that a PM-high has a high probability (0.95-1 for PlanetLab trace and 1 for Google Cluster

trace, respectively) to transit to state low when it migrates VM-high. In Figure 5.2(i) and Figure

5.3(i), a PM-low always (near 1 probability) transits to state low when it migrates VM-medium. It

is interesting to see that in Figure 5.2(g) and Figure 5.3(g), the probability that a PM-low transits

to state high when it migrates VM-low is not 0, which means that a PM-low can transit to state high
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(a) PM-State: high→high
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(b) PM-State: high→med.
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(c) PM-State: high→low
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(d) PM-State: med.→high
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(e) PM-State: med.→med.
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(f) PM-State: med.→low
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(g) PM-State: low→high
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(h) PM-State: low→med.

0.00

0.25

0.50

0.75

1.00

1.25

0.7 0.8 0.9
Threshold (T2) 

VM-high VM-med VM-low

T
ra

n
s
it

io
n

 p
ro

b
a

b
il

it
y

 
0.00

0.25

0.50

0.75

1.00

0.7 0.8 0.9
Threshold (T2) 

VM-high VM-med VM-low

T
ra

n
s
it

io
n

 p
ro

b
a

b
il

it
y

 

(i) PM-State: low→low

Figure 5.3: Probability of state transitions of PM-high using Google Cluster trace.

even when it migrates out a VM, due to the fluctuation of workload. We can observe that in each of

these figures, the probabilities are almost the same under varying threshold T2 with different traces.

The error bars indicate that the probabilities derived in different experiments have a very small vari-

ation. Compared to the transition probabilities derived from the PlanetLab trace in Figure 5.2, the

absolute values of the transition probabilities derived from the Google Cluster trace in Figure 5.3 are

slightly different, due to the difference of the workload characteristics of these two trace. We can still

observe that in each of these three figures, the probabilities are similar under varying threshold T2.

The results indicate that slightly varying threshold T2 will not greatly affect the values of

the probability transition matrix. As a result, we can tune the threshold for determining PM states

as expected. In our MDP-based load balancing algorithm, we use T1=0.3 and T2=0.8, which are

reasonable thresholds for the low and high resource utilization levels.
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5.2 Construction of MDP

5.2.1 Overview of The MDP Model

The previous two sections indicate the feasibility of our proposed MDP. Below, we present an

overview of our MDP model in this section, and then present the details of the MDP components in

the following sections. In our MDP-based load balancing algorithm for a cloud system, the resource

utilization degree of a PM is classified to a number of levels. Unless otherwise specified, in this paper,

we use three levels: {high, medium and low} and two resources {CPU, Mem} as an example for the

MDP creation. Our method can be easily extended to more levels and more resources. Specifically,

we define the 4 elements of MDP in our MDP-based load balancing algorithm as follows:

1. S is a finite set of states {(CPU-high, Mem-high), (CPU-medium, Mem-low), ...}, which are

multi-variate classified representation of current resource utilization of a PM (PM-State).

2. A is a set of actions. An action means a migration of VM in a certain state (VM-State) or no

migration. VM-State is represented in the same manner as PM-State.

3. Pa(s, s′)=Pr(st+1=s′|st=s, at=a) is the probability that action a∈A in state s∈S at time t

will lead to state s′∈S at time t+1. The transition probabilities are determined based on the

trace of a given cloud system.

4. Ra(s, s′) is an immediate reward given after transition to state s′ from state s with the tran-

sition probability Pa(s, s′) by taking action a.

Figure 5.1(b) illustrates the transition model of a simple MDP with two states and two

actions. The 3×3 table in Figure 5.1(a) represents all possible PM states. The two circles with s1

and s2 indicate the two states of a PM. The four smaller circles with a1 and a2 mean an action of

migrating out a VM in a certain VM-State or no migration. The fraction number along the arrow

from state si to state sj going through ai means the probability that si will transit to sj after taking

action ai (Pa(si, sj)), and the number along the dashed arrow represents the reward associated with

the state transition from si to sj after taking action ai (Ra(si, sj)). As shown in the figure, for a

PM in state s1 (CPU-high, Mem-high), if it takes action a1, it has a probability of 0.2 to stay in

s1 and receive reward -1, and has a probability of 0.8 to transit to s2 (CPU-high, Mem-med) and

receive reward 6.
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aH aM aL
vH vM vL vH vM vL vH vM vL

bH 0.01 0.13 0.59 0.03 0.65 0.39 0.96 0.22 0.02
bM 0.00 0.02 0.16 0.06 0.21 0.65 0.94 0.77 0.19
bL 0.00 0.00 0.01 0.00 0.00 0.08 0.00 1.00 0.91

Table 5.1: Probabilities with threshold T2 = 0.8.

The transition probability matrix for a given system is obtained by studying the trace infor-

mation of the system. We will show in Section 5.2.2 that the final constructed transition probability

matrix remains stable during a certain period of time, hence does not require frequent recalculation

of the probabilities in the MDP. In the set of states (S), some states mean that the PM is heavily

loaded while others mean the PM is lightly loaded. In the MDP, a PM identifies the action with

the highest expected reward and takes this action to maximize its earned reward, which enables it

to transmit to or remain at the lightly loaded state for a long time.

For this purpose, we design the reward system in the MDP that assigns a positive reward

for transiting to or maintaining at a lightly loaded state and a negative reward for maintaining a

heavily loaded state. In Section 5.2.2, we present our reward system, which encourages a PM to

find the optimal action to perform to attain and maintain a lightly loaded state for a longer time.

As a result, each PM is in a lightly loaded state with high probability in a long term and the total

number of VM migrations in the system is reduced.

5.2.2 Construction and Usage of MDP in a Cloud

In this section, we present the construction of an MDP in a cloud. As indicated earlier, the

MDP needs 4-tuple variables: States S, Actions A, Transition Probabilities P and Rewards R. We

explain each variable in the following.

States (S) and Actions (A): We explained “States” and “Actions” in Section 5.1.3. As

mentioned previously, S=R×L. The action set A consists of (|L||R|)+1 elements and “1” represents

“no action”. In our MDP, no matter if incoming VM changes the state of a PM or the loads of VMs

currently running on a PM change, the state set and action set will not change. The MDP is able to

find an optimal action that achieves load balance state and sustains this state for a longer time period.

Using the state determination method introduced in Section 5.1.3, a PM determines its own

PM-State. It then identifies its position in the MDP and finds the actions it needs to take to transit

to or remain at the lightly loaded state. To migrate out VMs to become or remain lightly loaded, a
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PM needs to determine the VM-State of each of its VM. Then, it chooses VMs in a certain VM-State

to take the actions.

Transition Probabilities (P): For a PM in state si∈S, after it performs action a∈A, it

will transit to another state sj∈S or remain in the same state. We need to determine the probability

of transiting to each of other states after taking each action. The transition probability should be

stable because a change in the transition probability would result in new transition policy if the

change in value is too large.

The cloud uses the information from the trace of the state changes and VM migrations to

determine the transition probability matrix. In the previous load balancing algorithms, a central

server monitors the states of PMs and determines the VM migrations between PMs. We let this

central server keep track of the VM-state of each migrated VM and the PM state changes upon the

VM migration. Based on this information, the central server can calculate the transition probability

from one state to another state upon an action. For example, in the 1-resource environment, for

action a∈A, if the transition high→high occurs 5 times, high→medium occurs 4 times, and high→low

occurs 1 time, then the transition probability in performing action a when in state high is 0.5, 0.4,

0.1 to the high, medium, low state, respectively.

We conduct a similar experiment as in Section 5.1.4. Table 5.1 shows the probabilities of

PM state changes when T2=0.8. bH, bM and bL represent the high, medium and low state before

migration, respectively; aH, aM and aL represent the high, medium and low state after migration,

respectively; and vH, vM and vL represent actions of migrating VM in state high, medium and low

respectively. For a given “state” before migration and specific actions, the sum of the probabilities

that transit to any states (aH, aM and aL) is 1. Notice that a PM in state low has a nearly zero

probability to change to any states when taking action vH (migrating VM in state high). Table 5.1

will be used in our experiments in Section 5.3.

Rewards (R): Rewards are incentives that are given to a PM after performing action a∈A.

By encouraging each PM to maximize its received rewards, the reward system aims to constantly

avoid heavily loaded state for each PM while minimizing the number of VM migrations; that is,

maintain a system load balance state for a long time and minimize load balancing overhead. To

achieve this goal, we need to carefully assign rewards for actions. For example, rewarding a PM for

each migration might result in continuous migrations of a PM, which generates a high overhead.

To achieve the load balance state, each overloaded PM should be encouraged to change to lightly
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loaded PM. Thus, the system rewards heavily loaded PM positively for performing actions that lead

it to a lightly loaded state. Also, PMs should be rewarded to maintain their lightly loaded state.

In order to prevent under-utilization of resources, the reward for maintaining the medium state is

greater than maintaining the low state. We present the details of the reward policies for transiting

from state s to state s′ below. A PM receives a reward when the state of one of its resources is

changed. Note that the rewards are for each type of resources. We consider the following two cases.

1. Reward for a resource utilization transiting from high state to another state (λ):

(a) Positive reward for a transition to a low (c) or medium (b) state.

(b) Negative reward for a transition to a high state (d).

(c) The reward for a transition to a medium state is higher than to a low state (b > c).

2. Reward for performing no action (γ):

(a) Reward for performing no action in a low (c′) or medium state (b′).

(b) Reward for no action in a low state is higher than in a medium state (c′ > b′).

(c) Negative reward for performing no action in a high state (d′).

Let RH be the subset of resources in R of a PM whose resource utilizations are high after

action a. Similarly, we let RL and RM be the resource subsets whose resource utilizations after

action a are low and medium, respectively. Thus, we have,

R = RL ∪RM ∪RH . (5.4)

The first reward is λ, which is the reward for transiting to another state. This reward encourages

each PM to transit each of the resources into a lower loaded state, thus helping to achieve load

balance state. For a PM with R resources, after performing an action a, the reward λ equals:

λ = −
∏
r∈RH

d+
∏

r∈RM

b+
∏
r∈RL

c, ∀r ∈ R, (5.5)

where d, b and c are non-negative reward and d < c < b.

Let’s consider reward for no action γ. This reward encourages PM to maintain a low or

medium state for a longer period of time. When a PM performs no action, it is rewarded for
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performing no action. The reward is dependent on the state of each of the PM’s resources. The

reward γ is calculated as follows and c′ > b′ > d′.

γ = −
∑
r∈RH

d′ +
∑
r∈RM

b′ +
∑
r∈RL

c′, ∀r ∈ R

As a result, the total reward earned by a PM is the sum of the two rewards λ and γ.

Ra(s, s′) = λ+ γ

Each PM needs to find the optimal actions, denoted by π(s) (a∈A) to maximize its earned

rewards, i.e., to reach or remain low or medium state for a long time period. In the next section, we

explain how to obtain action set π(s).

Optimal Action Determination based on MDP: The goal of the optimal action de-

termination in an MDP is to find an action for each specific state that maximizes the cumulative

function of expected rewards:
∞∑
t=0

Rat(st, st+1),

where t is a sequence number, and at is the action taken at t. The algorithm to calculate this optimal

policy requires the storage for two arrays indexed by state: value V (s), which contains the reward

associated with a state, and policy Π = {π(s1), π(s2), ..., π(si, ...)}, which contains the action for

each state that maximizes the cumulative expected rewards from the state. The algorithm outputs

the optimal policy Π that contains the most suitable action for each state to take that will result in

the maximum value V (s) for the state The algorithm outputs the optimal policy Π that contains

the most suitable action for each state to take that would result in the maximum value V (s) for the

state, and V (s) contains the sum of the rewards to be earned (on average) by following the action

from state s. The optimal policy for an MDP makes a PM attain a lightly loaded state and sustain

for a longer period of time. The algorithm has the following two steps, which are repeated in some

order for all the states until no further changes take place:

π(si) = arg max
a
{
∑
j

(Pa(si, sj)(Ra(si, sj) + V (sj))} (5.6)
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V (si) =
∑
j

Pπ(si)(si, sj)(Rπ(si)(si, sj) + V (sj)) (5.7)

Equation (5.6) obtains the optimal policy. In Equation (5.6), V (sj) is obtained by using

Equation (5.7) for each state. Specifically, in order to determine the optimal policy, we apply the

value-iteration algorithm [8], which is a dynamic algorithm. The aim of this algorithm is to find

the max value V (si) of each state and corresponding action π(si), until it observes convergence in

values for all states in successive iterations. Thus, using this algorithm, we can obtain the action for

each state that can quickly lead to the maximum reward.

Algorithm 6 The value-iteration algorithm.

Inputs: T , a transition probability matrix
R, a reward matrix.

Output: Policy Π
1: V (si)← 0, Vnew(si)← R(si), i = 1, 2, ..., |S|
2: while max|V (si)− Vnew(si)| ≥ e, i = 1, 2, ..., |S| do
3: V ← Vnew

4: for all state i in S do
5: Vnew(si)← R(si) +maxa

∑
j P (si, a, sj)V (sj)

6: π(si)← arg maxa{
∑

j(Pa(si, sj)(R(si, sj) + V (sj))}
7: end for
8: end while
9: return Π

Algorithm 6 shows the pseudo code for the value-iteration algorithm. In the algorithm,

R(si) is calculated by

R(si) =
∑
j

Pπ(si)(si, sj)Rπ(si)(si, sj), (5.8)

where π(si) is the optimal policy to maximize Vnew(si). The algorithm first initializes V (si) and

Vnew(si) (Line 1). It then repeatedly updates V (si) based on Equation (5.7) and Equation (5.6) and

the corresponding optimal policy π(si) (Lines 2-7). When it observes convergence in values for all

states, that is max|V (si) − Vnew(si)| < e (Line 2), it considers that V (si) is close to its maximum

value and the corresponding π(si) is returned (Lines 9).

Analysis. In the following, we introduce a metric that evaluates the performance of an

MDP in terms of the output optimal policy. The metric is called n-step transition probability,

which is the probability that one state transits to another state after taking n actions. Recall that

an MDP’s policy is Π = {π(s1), π(s2), ..., π(si), ..., π(|S|)}, which contains the action for each state

that maximizes the cumulative expected rewards from the state. That is, π(si) is the action that

a PM in state si should choose so that the cumulative expected rewards can be maximized. The
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n-step transition probability can be used to evaluate the policies of an MDP with different reward

systems in order to find the best policy (or the best reward system). For example, suppose Π1 and

Π2 are two policies corresponding to two reward systems. The n-step transition probabilities from

state high to state medium of Π1 and Π2 are 95% and 90%, respectively. We prefer Π1 as it has

higher probability of transiting from state high to state medium, i.e., eliminating overloaded PMs.

For a fixed stationary policy Π, a transition probability matrix P , and a reword ma-

trix R, action a = π(si) is taken when a PM is in state si. The process of state transition

{X1, X2, ..., Xk, ..., Xn} is a Markov chain, in which the transition from Xk = si to Xk+1 = sj

is an one-step transition with probability Pπ(si)(si, si+1) when action π(si) is taken based on Π.

The n-step transition probabilities of this Markov chain can be represented by:

P
(n)
π(si)

(si, sj) = P{Xn = sj | X0 = si}. (5.9)

Note that P
(1)
π(si)

(si, sj) = Pπ(si)(si, sj), where Pπ(si)(si, sj) is the one step transition probability

that can be measured from the trace as introduced in Section 5.1.4. By the Chapman-Kolmogorov

equations [19], we get:

P
(n)
π(si)

(si, sj) =
∑
sk∈S

P
(n−1)
π(si)

(si, sk) · Pπ(sk)(sk, sj), (5.10)

where P
(0)
π(si)

(si, sj) = 1 for j = i and P
(0)
π(si)

(si, sj) = 0 for j 6= i. By applying Equ. (5.10) to an

arbitrary MDP policy, we can estimate the PM resource utilization state in long-term operation,

and also can select the best MDP policy among different policies. Since the transition from state

high to state medium is the most important transition in the MDP-based load balancing algorithm

as it eliminates overloaded PMs, we only evaluate the probability of transiting from state high to

state medium as an example. The MDP policy that has the highest probability is the best policy

because it can elimiate overloaded PMs with the highest probability. For example, given a set of W

policies {Π1,Π2, ...,Πk, ...,ΠW } and n=50. We calculate P
(n)
π(si)

(si, sj) based on Formula (5.10) for

each policy Πk, where si and sj represent PM state high and state medium, respectively. We then

select the policy Πw that has the maximum P
(n)
π(si)

(si, sj) as the best policy.
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5.2.3 A Cloud Profit Oriented Reward System

Recall that the MDP-based load balancing algorithm uses a reward system as one of its

inputs and calculates the optimal policy for PMs that maximizes the cumulative expected rewards.

Reward Ra(s, s′) is an immediate reward given after the transition to state s′ from state s by taking

action a. Different reward systems represent different preferences on PM state transitions from

different actions. In this section, we improve the previous reward system considering its problems

listed below.

1. It only aims to avoid overloaded PMs but is not closely related to the datacenter’s profit,

which is the ultimate goal of the cloud service provider. If the reward system is related to

the datacenter’s profit, the datacenter’s profit can be concurrently maximized when the MDP

tries to maximize the rewards.

2. It does not consider the actual VM migration cost or the power cost of PMs.

3. It only roughly gives guidance on how to set the reward values in terms of the relationship

(e.g., d<c<b) instead of specifying the actual reward value for each state transition by taking

an action, which otherwise can more accurately reflect the reward.

Therefore, we propose a new reward system, called cloud profit oriented reward system, which is

closely related to the cloud profit in the practical scenario. Using such an improved reward system

in the MDP model will improve the actual profit of the datacenter.

Datacenter Profit. The prime motive of any datacenter operator is to make most of

available resources to cash in as much profit as possible. In this section, we derive the formula for

calculating the profit contributed by individual PMs.We denote the profit, the revenue, and the cost

over a unit period of time of a PM at time ti as P , I, and C, respectively. The equation to calculate

profit is

Pm(ti) = Im(ti)− Cm(ti) (5.11)

In the following, we explain how to calculate revenue Im(ti) and cost Cm(ti), respectively.

Revenue Calculation. For each unit of time, a virtual machine VMn contributes E units

to the total revenue of datacenter operator, if the resource requirement dictated in the SLA is

satisfied. On the other hand, if resource requirement is not satisfied for VMn, penalty of Y units is

levied on datacenter operator.
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For the revenue calculation, we assume that if a PM is unable to provision the aggregated

demanded resource by its resident VMs, all VMs suffer from SLA violations. We detect such scenario

by comparing the aggregate VM utilizations for each resource type with pre-defined utilization

threshold for each resource type. Recall that
∑N
n=1Anm is the number of VMs in PMm at time ti.

As a result, the revenue generated by a machine PMm at time ti can be calculated by:

Im(ti) = γ(ti)

N∑
n=1

Anm (5.12)

where γ(ti) is calculated by

γ(ti) =

 E Ukm(ti) ≤ T ko ∀ k (k = 1, 2, ...,K),

−Y Ukm(ti) > T ko ∃ k (k = 1, 2, ...,K)
(5.13)

where T ko is the threshold for type-k resource. Only when the utilization of all resource are smaller

than the corresponding threshold, the revenue is positive; as long as there is one type of resource

utilization greater than its threshold, the revenue is negative.

Cost Calculation. We consider power cost and VM live migration overhead for the cost

calculation of a PM.

Power Cost. Each active PM consumes electricity and the power consumed is proportional to

the CPU utilization level of the PM [18]. Each active PM, even though it is not being utilized, draws

some minimal power called static power (denoted by Cidle). The power consumption increases with

the CPU utilization of the PM and reaches the maximum when the PM has 100% CPU utilization.

As proposed by Fan et al. [18], the power consumption of a PM, say PMm, at time ti follows a linear

model

Cm(ti) = Cidle + α× U cpum (ti) (5.14)

where U cpum (ti) represents the CPU utilization of PMm and α is a calibrated constant, which is

determined by the commercial model of the server. Note that the power model we use is CPU

utilization centric. The power usage of other types of resources such as memory can be assumed to

be constant [35] and considered in Cidle.

Live Migration Overhead. Live migration of a VM consumes resources both on the source

PM from which the VM is being migrated out and on the destination PM to which the VM is
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being migrated to. In our model, the live migration overhead caused by each VM is captured

by extra CPU utilization, which is proportional to a factor β (0<β≤1) as in [30]. The extra CPU

utilizations introduced to both source and destination PMs vary linearly with the memory utilization

of the migrating VM during migration. More specifically, if VMn requiring umemn (ti) at time ti is

being migrated from PMs to PMd, the migration overhead exerted on PMs and PMd (denoted by

∆U cpus,mig(ti) and ∆U cpud,mig(ti)) are calculated by:

∆ U cpus,mig(ti) = (1 + β)umemn (ti) (5.15)

∆ U cpud,mig(ti) = βumemn (ti) (5.16)

Based on Equations (5.14)-(5.16), the total power consumption of PMm by migrating out VMp and

migrating in VMq can be derived. equals:

Cm(ti) = Cidle + α
[
(1 + β)umemp (ti) + β umemq (ti) +

N∑
n=1

Anm
ucpun (ti)c

cpu
n

Ccpum

]
(5.17)

Reward Specification. If a PM, say PMm, migrates out a VM and migrates in a VM,

after obtaining the CPU utilization of PMm, we can apply Equ. (5.14) to derive Cm(ti), and apply

Equ. (5.12) to derive Im(ti). Based on Equ. (5.11) the profit brought by this PM can be calculated.

In our cloud profit oriented reward system, this calculated profit is used to determine the

reward, which is given to a transition from state s to state s′ when taking action a. In the following,

we first discuss the rewards for PM state changes by taking actions of migrating out a VM or no

migration. The resulting policy will be used to guide migration VM selections from PMs. The

rewards for PM state changes by taking actions of migrating in a VM (accepting a VM) and no

migration can be derived similarly, and the corresponding resultant policy will be used to guide

destination PM selection for selected migration VMs.

Suppose PMm is in state s and has CPU utilization U cpum (ti) at time ti. By taking action

a (migrating out a VM in a certain VM-state or no migration), PMm transits to state s′ and has

CPU utilization U cpum (ti+1) at time ti+1. We can calculate the profit from PMm at these two times,

i.e., Pm(ti) and Pm(ti+1), by Equ. (5.11). The corresponding reward equals the change of profits:
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Ra(s, s′) = Pm(ti+1)− Pm(ti) (5.18)

To simplify the calculation of the above equation, let Nm(ti) =
∑N
n=1Anm(ti) in Equ. (5.12).

We consider two cases: i) there is no VM migration at time ti , and ii) one VM is migrated out and

no other VMs are migrated in at time ti.

In case i), we have Nm(ti+1) = Nm(ti). Based on Equ. (5.12), we can derive

∆ Im(ti+1) = Im(ti+1)− Im(ti)

= [γ(ti+1)− γ(ti)]Nm(ti)

= ∆γ(ti+1)Nm(ti)

(5.19)

Based on Equ. (5.17), we have

∆ Cm(ti+1) = Cm(ti+1)− Cm(ti)

= α[U cpum (ti+1)− U cpum (ti)]

= α

N∑
n=1

Anm
ccpun
Ccpum

[ucpun (t+ 1)− ucpun (t)]

(5.20)

In case ii), we have Nm(ti)−Nm(ti+1) = 1. Based on Equ. (5.12), we can derive:

∆ Im(ti+1) = Im(ti+1)− Im(ti) = ∆γ(ti+1)Nm(ti+1)− γ(ti) (5.21)

Suppose VMx is migrated out. Based on Equ. (5.17), we have

∆ Cm(ti+1) = α

N∑
n=1

Anm
ccpun
Ccpum

[ucpun (t+ 1)− ucpun (t)] + α(1 + β)umemx (ti) (5.22)

We estimate Nm(ti) as a constant = Nm = N
M . Finally, based on Equations (5.18)-(5.22),

we can derive:

Ra(s, s′) =

 ∆γ(ti+1)NM − α∆ U cpum (ti+1) no migration,

(∆γ(ti+1)(NM − 1)− γ(ti))− α(∆ U cpum (ti+1) + (1 + β)umemx (ti)) otherwise

(5.23)
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where

∆γ(ti+1) =



0, Ukm(ti) ≤ T ko ∀ k, Ukm(ti+1) ≤ T ko ∀ k

E + Y, Ukm(ti) > T ko ∃ k, Ukm(ti+1) ≤ T ko ∀ k

−E − Y, Ukm(ti) ≤ T ko ∀ k, Ukm(ti+1) > T ko ∃ k

0, Ukm(ti) > T ko ∃ k, Ukm(ti+1) > T ko ∃ k

(5.24)

and

∆U cpum (ti+1) =

N∑
n=1

Anm
ccpun
Ccpum

[ucpun (t+ 1)− ucpun (t)] (5.25)

is the amount difference of CPU utilization of PMm between the PM states s and s′.

Given a PM state s, suppose Uks,L and Uks,U are the lower bound and the upper bound of

type-k resource utilization of this state, respectively. We can estimate the CPU utilization of this

state by U cpus = U cpus,L + 1
2 (U cpus,U − U

cpu
s,L ). Similarly, we can estimate the CPU utilization of this PM

state U cpum (ti+1), and the memory utilization of the migrating VM umemx (ti). Finally, using these

these values, we can determine the reward value based on Equations (5.23)-(5.25).

As mentioned previously, the rewards for PM state changes with actions of migrating VM

in (accepting VM) and no migration can be derived in a similar way. In the above calculation, we

replace the CPU utilization overhead (1+β)umemx (ti) by β umemx (ti), and let Nm(ti)−Nm(ti+1) = −1

since the PM is accepting the migrating VM.

5.2.4 Destination PM Selection

After a PM identifies the VMs to migrate out, the destination PMs need to be determined

to host these migration VMs. In previous methods, a central server identifies the destination PMs

where the identified VMs can migrate to [48, 56, 57]. For example, Sandpiper [57] first defines

volume for PMs as volume= (1/(1− Ucpu)) ∗ (1/(1− Unet)) ∗ (1/(1− Umem)), where U is resource

utilization, and then selects the PM with the least volume as the destination. A PM can be a VM’s

destination PM if placing the VM at the PM does not violate the multidimensional capacities. Then,

the central server identifies and distributes the PM destinations for each heavily loaded PM in the

system. However, though such a method can ensure that the destination PM is not overloaded upon

accepting the migration VM, it cannot ensure that this load balance status can sustain for a long

time.

In order to maintain a long-term load balance states of these destination PMs while fully
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utilizing PM resources, we again develop a similar MDP-based model to determine the destination

PMs. A central server runs the MDP and selects the PMs that are most suitable to accept migration

VMs based on VM-states. We use MDP* to denote the method that uses an MDP model for

determining the migration VMs and uses another MDP model for determining the destination PMs.

Compared to the previous MDP model, MDP* has the same state set S. Its action set A is accepting

a VM in a certain VM-State or not accepting any VM. Recall that by defining such an action set, we

can ensure that A does not change, which is required by MDP. The transition probability Pa(si, sj)

is defined as the probability of PM in state si transiting to state sj after performing action a∈A.

MDP* model uses the information from the trace of state changes when PM accepts VMs to build

the transition probability matrix. The central server keeps track of the resource utilization status of

the PMs when they accept VMs or take no action. The method introduced in Section 5.2.2 is used

for the probability calculation.

The rewards given to a PM after performing action a∈A should encourage PMs to accept

VMs while avoiding heavy state in a long term. Accordingly, the reward system is designed as

follows for the state transition of each resource:

1. Positive reward for a transition to a low/medium state.

2. Negative reward for a transition to a high state.

3. The reward for a transition to a medium state is higher than to a low state.

4. The reward for actions of accepting a VM in different VM-states follows: high>medium>low>no

action.

For a given migration VM, the central server can identify the most appropriate destination PMs

based on the MDP. Better options from these PMs can be further identified based on additional

consideration factors such as VM communication cost and migration distance [16].

5.2.5 An MDP with Extended Action Set

As indicated previously, two MDP models are needed to conduct the MDP-based load

balancing; one MDP model is for selecting migration VMs from PMs to migrate out and the other

MDP model is for selecting destination PMs for hosting the migration VMs. Building two MDP

models brings about a high overhead. More importantly, the policies generated by these two MDP
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Figure 5.4: Performance using the PlanetLab trace.

models may lead to contradiction of actions for a PM because the former MDP model uses the action

set of migrating VMs out of PMs, while the latter MDP model uses the action set of migrating VMs

into PMs. For example, the policy of the former model suggests migrating a VM out of a PM

while the policy of the latter model suggests migrating a VM to the PM. In order to develop

a comprehensive MDP to avoid such conflictions, we extend the action set to cover all possible

migration actions (including migrating out VMs and migrating in VMs) of a PM. We introduce each

component of this comprehensive MDP below.

State. Similar to the previous MDP model, the states are defined as the combination of

different load levels of different types of resources (e.g., CPU-low, Mem-high). We adopt the same

thresholds to distinguish different load levels as in Section 5.1.3 (i.e., T1 = 0.3, T2 = 0.8).

Action. We create a new action set by combining the actions in the two MDP models, i.e.,

actions for migrating out VMs in different VM-states and migrating in VMs in different VM-states.

Unlike the previous MDP models, we now have two types of actions corresponding to every VM

state. That is, migrating out a VM in this state and migrating in a VM in this state. Recall that

there are |L||R| VM states in total in the previous MDP model. Then, the extended action set

consists of 2(|L||R|) + 1 elements and the “1” represents “no action”.

Probability. Since the probabilities are specified with respect to every action (e.g., the
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(a) Cumulative # of VM migrations.
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(b) Total # of VM migrations.

0

5

10

15

20

25

0 10 20 30

C
u

m
u

la
ti

ve
 n

u
m

b
er

 o
f 

o
ve

rl
o

ad
ed

 P
M

s 

Rounds 

MDP
MDP*
Sandpiper
CloudScale

(c) Cumulative # of overloaded PMs.
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(d) Total # of overloaded PMs.

Figure 5.5: Performance using the Google Cluster trace.

probability for a PM state transition when taking an action), we need to combine the probabilities

of migrating VMs out (MDP) and the probabilities of accepting VMs (MDP*).

Reward. The rewards for migrating VM out or no migration are the same as in Sec-

tion 5.2.3. The rewards for migrating VM in can be derived similarly as for migrating VM out.

5.3 Performance Evaluation

In this section, we conducted trace-driven experiments on CloudSim [13] to evaluate the

performance of our proposed MDP-based load balancing algorithm in a two-resource environment

(i.e., CPU and Mem). We used the VM utilization trace from PlanetLab [13] and Google Cluster [21]

to generate VM workload to determine the transition probability matrix in our MDP model. We

implement two versions of our MDP load balancing algorithm, represented by MDP and MDP*.

In order to solely show the advantage of MDP on VM selection, MDP uses our MDP model for

identifying VMs to migrate and adopts the PM selection algorithm as Sandpiper (Section 5.2.4).

MDP* uses our MDP model for both VM selection and destination PM selection. We compared

MDP and MDP* with Sandpiper [56] and CloudScale [43] in terms of the number of VM migrations,

the number of overloaded PMs, and time and resource consumptions. We use Sandpiper to repre-
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sent reactive load balancing algorithms and use CloudScale to represent proactive load balancing

algorithms.

We simulated the cloud datacenter with 100 PMs hosting 1000 VMs. The PMs are modeled

from commercial product HP ProLiant ML110 G4 servers (1860 MIPS CPU, 4GB memory) and

the VMs are modeled from EC2 micro instance (0.5 EC2 compute unit, 0.633 GB memory, which is

equivalent to 500 MIPS CPU and 613 MB memory). The resource utilization trace from PlanetLab

VMs and Google Cluster VMs are used to drive the VM resource utilizations in the simulation. We

repeatedly carried out each experiment for 20 times and reported the results. At the beginning,

the VMs are randomly allocated to the PMs. We used this VM-PM mapping for different load

blanching algorithms in each experiment to have fair comparison. When the simulation is started, the

simulator calculates the resource utilization status of all the PMs in the datacenter every 300 seconds,

and records the number of VM migrations and the number of overloaded PMs (the occurrence of

overloaded PMs) during that period. In each experiment round, each PM conducts load balancing

once and waits for 300 seconds before the next load balancing execution. We used T1=0.3 and

T2=0.8 as the resource utilization thresholds for both CPU and memory usage. Sandpiper and

CloudScale perform VM migrations whenever a PM is detected overloaded (i.e., either CPU or

memory utilization exceeds 0.8) and select the destination PM based on their corresponding PM

selection algorithms. In MDP and MDP*, each PM chooses the action to perform that results in

the maximal expected rewards.

5.3.1 Performance of the Basic MDP

5.3.1.1 The Cumulative Number of Migrations

Figure 5.4 and Figure 5.5 show the performance of MDP, MDP*, Sandpiper and CloudScale

with the PlanetLab trace and Google Cluster trace, respectively. Figure 5.4(a) and Figure 5.5(a)

show the cumulative number of migrations over the rounds. Both results follow MDP*<MDP<

Sandpiper<Clo-udScale. MDP and MDP* outperform Sandpiper and CloudScale because each PM

can find the best actions to perform to keep a long-term load balance state while triggering a

smaller number of VM migrations. Compared to MDP, MDP* further reduces the number of VM

migrations due to the reason that it additionally selects the most suitable destination PMs for VM

migrations based on MDP model, and hence results in a long-term load balance state, which helps
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(b) The number of overloaded PMs.

Figure 5.6: Performance of cloud profit oriented reward system (PlanetLab trace).

0

10

20

30

5 10 20

To
tl

a
l 

n
u

m
b

e
r 

o
f 

m
ig

ra
ti

o
n

s 

Average # of VMs in a PM 

MDP MDP*
MDP-P MDP-P*

(a) The number of VM migrations.

0

10

20

30

5 10 20

To
tl

a
l 

n
u

m
b

e
r 

o
f 

o
ve

rl
o

a
d

e
d

 P
M

s 

Average # of VMs in a PM 

MDP MDP*
MDP-P MDP-P*

(b) The number of overloaded PMs.

Figure 5.7: Performance of cloud profit oriented reward system (Google Cluster trace).

reduce the number of VM migrations. CloudScale generates a larger number of VM migrations

than Sandpiper in each round because CloudScale migrates VMs not only for a correctly predicted

overloaded PM but also for an incorrectly predicted overloaded PM, but Sandpiper only migrates

VMs for occurred overloaded PMs. Figure 5.4(b) and Figure 5.5(b) show the median, the 10th and

90th percentiles of the total number of VM migrations in the experiments. Due to the random

VM to PM mapping at the beginning of simulations, the number of migrations varies in different

simulations. Statistically, MDP* generates fewer VM migrations than MDP, MDP generates fewer

VM migrations than Sandpiper, and Sandpiper generates fewer VM migrations than CloudScale due

to the same reasons mentioned before. These results confirm that MDP and MDP* are advantageous

in maintaining a long-term load balance state and minimizing the number of VM migrations, hence

reducing load balancing overhead. Also, our MDP model is effective in both migration VM selection

and destination PM selection to maintain a long-term load balance state.

5.3.1.2 The Number of Overloaded PMs

Next, we measure the number of overloaded PMs, which indicates the effectiveness of load

balancing algorithms. Figure 5.4(c) and Figure 5.5(c) show the cumulative number of overloaded

92



0

10

20

30

5 10 20
Average # of VMs in a PM 

MDP MDP* MDP-A

T
o

tl
a

l 
n

u
m

b
e

r 
o

f 
 m

ig
ra

ti
o

n
s 

(a) The number of VM migrations.

0

10

20

30

40

5 10 20
Average # of VMs in a PM 

MDP MDP* MDP-A

T
o

tl
a

l 
n

u
m

b
e

r 
o

f 
 o

v
e

rl
o

a
d

e
d

 P
M

s 

(b) The number of overloaded PMs.

Figure 5.8: Performance of MDP-A (Google Cluster trace).

PMs over rounds. MDP and MDP* generate a smaller number of overloaded PMs in each round than

CloudScale and Sandpiper. This is because the MDP algorithm incentivizes the PMs to perform

optimal VM migration actions to maintain a system load balance state for a longer time. MDP*

outperforms MDP with fewer overloaded PMs since it further uses the MDP model for the destination

PM selection to maintain a long-term load balance state. CloudScale produces fewer overloaded

PMs than Sandpiper because its predicted overloaded PMs migrate VMs out before they become

overloaded, while Sandpiper conducts VM migrations upon the PM overload occurrence. Figure

5.4(d) and Figure 5.5(d) show the median, the 10th and 90th percentiles of the total number of

overloaded PMs in the experiments. The results follow MDP*<MDP<CloudScale<Sandpiper due

to the same reasons indicated previously.

5.3.1.3 The Number of VM Migrations

We then increased the VM’s workload to 1.5, 2 and 2.5 times of its original workload in the

trace to study the performance under various workloads. For each workload level, we repeated the

simulation for 20 times. Figure 5.9 and Figure 5.10 show the experimental results with the PlanetLab

trace and Google Cluster trace, respectively. Figure 5.9(a) and Figure 5.10(a) show the median, the

10th and 90th percentiles of the number of VM migrations of the four methods under different

workload ratios. The number of VM migrations increases as the workload ratio increases. Within

each workload ratio, the number of VM migrations follows MDP*<MDP<Sandpiper<CloudScale,

which is consistent with the results in Figure 5.4(b) and Figure 5.5(b) due to the same reasons as

explained before. Figure 5.9(b) and Figure 5.10(b) show the median, the 10th and 90th percentiles

of the number of overloaded PMs of the four methods with different workload ratios. The number of

overloaded PMs increases with workload ratio, and follows MDP*<MDP<CloudScale<Sandpiper
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Figure 5.9: Performance of basic MDP and MDP* with increasing workload ratio (PlanetLab trace).
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Figure 5.10: Performance of basic MDP and MDP* with increasing workload ratio (Google Cluster trace).

within each workload ratio. The results are consistent with Figure 5.4(d) and Figure 5.5(d) due to

the same reasons. Thus, MDP and MDP* perform better then Sandpiper and CloudScale in terms

of the number of VM migrations and the number of overloaded PMs in different workloads.

5.3.2 Performance of the MDP with the Cloud Profit Oriented Reward

System

We then study the performance of the MDP using the cloud profit oriented reward system

introduced in Section 5.2.3. We denote the MDP with this improved reward system as MDP-P and

denote MDP* with the improved reward system as MDP-P*, and compare them with MDP and

MDP*. As the improved reward system needs the average number of VMs in a PM as indicated in

Equ. (5.12), we increased the average number of VMs in a PM from 5 to 20 to study the performance.

When computing the rewards, we set α = 1, β = 1, E = 10 for unit revenue and Y = 10 for penalty.

For each average number of VMs, we apply Algorithm 6 to find the optimal policies. For each

optimal policy, we applied it to CloudSim and repeated the simulation for 20 times.
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Figure 5.11: Convergence speed of basic MDP and MDP with cloud profit oriented reward system.
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Figure 5.12: Comparison of CPU time consumption by calculating different reward systems.

5.3.2.1 The Number of VM Migrations

Figure 5.6 and Figure 5.7 show the experimental results with the PlanetLab trace and

Google Cluster trace, respectively. Figure 5.6(a) and Figure 5.7(a) show the median, the 10th and

90th percentiles of the number of VM migrations of the four methods with different average num-

ber of VMs per PM. The number of VM migrations follows MDP-P<MDP and MDP-P*<MDP*.

Compared to MDP, MDP-P reduces the number of VM migrations because MDP-P more focuses on

the memory resource utilization of the migrating VM than the CPU resource utilization. For exam-

ple, MDP uses Equ. (5.5) to construct the reward system, which does not explicitly reflect memory

utilization of the migrating VMs. MDP-P relies on Equ. (5.18), which incorporates Equ. (5.15) and

Equ. (5.16) to explicitly consider memory utilization of the migrating VM. Therefore, the reward

system in MDP-P discourages migrating a VM with heavy memory resource utilization, a portion

of the VM migrations in MDP are prevented. For example, when the cost of migrating a VM with

intensive memory utilization surpasses the penalty of violating the SLA of this VM, this VM will not

be migrate out. As a result, MDP-P produces fewer VM migrations. The result of MDP-P*<MDP*

is caused by the same reasons. The number of VM migrations increases with the average number of
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VMs because the workload in the PMs increases.

Figure 5.6(b) and Figure 5.7(b) show the median, the 10th and 90th percentiles of the

number of overloaded PMs of the four methods with different average number of VMs per PM. When

the average number is 5, MDP has a smaller number of overload PMs than MDP-P. The reason is that

the cost for violating SLA is relatively smaller as Equ. (5.12) indicates, i.e., violating SLA leads to a

relatively smaller loss of revenue, than the cost of migration VMs. As a result, the MDP-P model tries

to reduce the number of VM migrations at the cost of sacrificing SLA guarantees. When the average

number is 10 and 20, MDP-P achieves a smaller number of overload PMs than MDP because violating

SLA becomes more expensive and even a small number of the PMs in an overloaded status will lose

a high amount of revenue. The relationship of MDP* and MDP-P* stays similar as the relationship

of MDP and MDP-P due to the same reasons. The number of overloaded PMs increases with the

average number of VMs because the workload of a PM increases with the number of VMs in the PM.
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(b) Memory state transition probabilities
of MDP.
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(c) CPU state transition probabilities of
MDP-P.
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(d) Memory state transition probabilities
of MDP-P.

Figure 5.13: n-step transition probabilities of MDP and MDP-P (n=50).

5.3.2.2 Algorithm Convergence Time

We then test the convergence time of the value-iteration algorithm using the PlanetLab trace

and Google Cluster trace. We keep track of the values for the states (i.e., Equ. (5.7) in Algorithm
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6) in each iteration. Figure 5.11(a) shows the calculated values in each iteration for a PM in the

CPU-medium and Mem-low state, using PlanetLab trace and Google Cluster trace. Although the

calculated values converge at around 6 iterations, we still show them in the consequent iterations

in order to provide a comprehensive results. In the curves, we see that the value varies at the

beginning and gradually converges to a steady value after several rounds of iterations. Both MDP

and MDP-P converge in around 4 iterations under Google Cluster trace, and converge in around 6

iterations under PlanetLab trace. MDP and MDP-P have the same convergence time with either

Google Cluster trace or PlanetLab trace. The convergence time with different traces is different

because their state transition probabilities are different. This result shows that the convergence

time of MDP and MDP-P is short. Also, compared to MDP, MDP-P does not compromise the

convergence time. It also indicates that the number of iterations depends on the traces, i.e., on the

transition probabilities.

Figure 5.11(b) shows the number of iterations needed to reach convergence of the algorithm,

using PlanetLab trace and Google Cluster trace, respectively. We also varied the parameters such

as α, β, γ and average number of VMs in a PM in the reward system. Specifically, we randomly

picked values in the range [1,10] for α, β, γ, and randomly picked values in the range [5,20] for

the average number of VMs per PM. Our experimental results show that the number of iterations

stays the same as Figure 5.11(b) under various parameter settings (we do not show the results in

the figure due to space limit). The reason is that the number of iterations depends on the transition

probabilities. The value (i.e., V (s) in Equ. (5.7)) for each PM state is determined by the transition

probabilities. This result again confirms that the convergence time of both MDP and MDP-P is

short. Also, MDP-P does not compromise the convergence time of MDP.

5.3.2.3 Computation Complexity of Reward Systems

In order to evaluate the computing complexities for determining the rewards, we measure

the CPU time consumption for calculating different reward systems. We use MDP and MDP-P to

denote their used reward system. MDP uses the reward system introduced in Section 5.2.2 and

MDP-P uses the reward system introduced in Section 5.2.3. Recall that the number of states equals

LK , where L is the number of load levels and K is the number of resource types. Since rewards are

given to each state transition by taking an action, the number of states has a direct impact on the

time to construct a reward system. We first set the number of resource types K = 2, and increased
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the number of load levels from 2 to 6. We repeated each test 20 times and recorded the median, the

90th and 10th percentiles of the results.

Figure 5.12(a) shows the CPU time in the logarithmic scale with increasing number of load

levels. We see that the CPU time of both reward systems increase with the number of load levels.

The reason is that the number of times for calculating rewards (i.e., LK × (LK + 1)×LK) increases

with the number of load levels L. MDP consumes more CPU time than MDP-P and its CPU

time increases more rapidly than MDP-P, because it involves more computations. Recall that the

rewards of MDP are calculated based on Equ. (5.5), and the rewards of MDP-P are calculated based

on Equ. (5.23). Thus, MDP checks the state changes (i.e., states before and after the action) of

each type of resources, while MDP-P only checks whether there is overloaded resource (i.e., whether

the PM is overloaded). We then set the number of load levels L = 3, and increased the number

of resource types from 2 to 5. We repeated each test 20 times and recorded the results. Figure

5.12(b) shows the CPU time in the logarithmic scale with increasing number of resource types. We

see similar trend as in Figure 5.12(a) due to the same reasons. Compared to previous results in

Figure 5.12(a), the CPU time of both systems increases much faster because the number of times

LK × (LK + 1)× LK polynomially increases with the number of load levels L, while exponentially

increases with the number of resource types K. Note that although CPU time in this experiment is

higher than the CPU time to achieve load balance, which will be presented in Figure 5.15, it dose

not degrade the performance of MDP because the procedure of calculating the reward system is

executed offline only once.

5.3.3 Performance of the MDP with Extended Action Set

We then study the performance of the MDP with extended action set denoted by MDP-A.

Similar as previous experiments, we increased the average number of VMs in a PM from 5 to 20.

For each average number of VMs, we applied the optimal policies corresponding to each algorithms

(i.e., MDP, MDP* and MDP-A) to CloudSim and repeated the simulation for 20 times. Figure 5.8

presents the experimental results with the Google Cluster trace. Figure 5.8(a) shows the number

of VM migrations of the algorithms. The number follows MDP-A<MDP*<MDP. MDP-A reduces

the number of VM migrations because MDP-A considers both migrating VM out and accepting

VM in the same MDP model and hence produces an optimal policy that avoids any conflicts of

the actions as in MDP*. As a result, MDP-A tends to avoid unnecessary VM migrations. Figure
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5.8(b) shows the number of overloaded PMs. The number follows MDP-A<MDP*<MDP because

MDP-A reduces the number of overloaded PMs since PMs conduct actions according to a policy

that is produced by one MDP model. In this case, the PMs are able to avoid being overloaded due

to action conflicts (e.g., they migrate VMs out according to one MDP model and at the same time

accept VMs according to the other MDP model).

5.3.4 Comparison of Different MDP Models

5.3.4.1 n-Step Transition Probability

In order to investigate the capability of the MDP-based load balancing algorithms in avoiding

overloaded PMs, we apply the output policy Π from Algorithm 6 to Equ. (5.10) to calculate the

n-step transition probabilities of state changes (e.g., from CPU-high and memory-low to CPU-low

and memory-low) and actions (e.g., migrating out a VM in VM state CPU-medium, memory-low).

We compare the performances of MDP, MDP-P and MDP-A. In this experiment, we set n = 50.

Since we conduct the MDP-based load balancing algorithm in a two-resource environment (i.e., CPU

and Mem, K = 2) with L = 3 load levels for each resource, there are LK = 9 PM states in total.

The result of Equ. (5.10) is a 9 × 9 matrix indicating the probabilities of state transitions after

50 rounds. We further calculate the probabilities for state transitions with respect to each type of

resources. For example, suppose if we use (H,M)→(M,L) to represent the probability of transition

from state (CPU-high, Mem-medium) to state (CPU-medium, Mem-low), the probability for CPU

changing from high to low can be obtained by 1
3

∑
x

∑
y(H,x) → (L, y), where x, y ∈ {H,M,L}.

Similarly, we can calculate the probabilities for PM memory utilization transitions. Figure 5.13

shows the n-step transition probabilities with respect to CPU and memory of MDP and MDP-P,

respectively. We see that both MDP and MDP-P algorithms achieve high probabilities for resource

states (of both CPU and memory) transiting from high to other states. This result confirms that

both algorithms are able to eliminate resource utilization overloads with high probabilities in the

long run (i.e., 50 rounds). The probabilities for CPU and memory are different because the one step

transition probabilities (i.e., Pa(s, s′)) for different resources collected from the trace are different.

Figure 5.14 shows the n-step transition probabilities of MDP-A. We see that MDP-A achieves high

probabilities for resource states (of both CPU and memory) transiting from any states (e.g., low,

medium and high) to medium states. This is because this algorithm encourages PMs in high state to
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offload their workloads by migrating VMs out, and simultaneously motivates PMs in low or medium

states increase their workloads by accepting migration VMs from other PMs. Compared to Figure

5.13, MDP-A has relatively higher probabilities for resource states transiting to medium states,

because MDP-A considers both migrating VM out and accepting VM in the same MDP model and

hence produces an optimal policy that avoids any conflicts of the actions.
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(a) CPU state transition probabilities by
MDP-A.
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(b) Memory state transition probabilities
by MDP-A.

Figure 5.14: n-step transition probabilities of MDP-A (n=50).

5.3.4.2 CPU Time for Load Balancing

The CPU time consumption for load balancing consists of the maintenance time spent on

system monitoring, the time identifying VMs to migrate, the time to determine destination PMs

for VMs and the time for VM migrations. The maintenance time refers to the CPU time spent on

checking whether there are overloaded PMs and determining whether VM migration is necessary in

each round. MDP-P differs from MDP only in using a different reward system, while MDP-A differs

from MDP* only in applying one MDP model to select VMs and PMs by using an extended action

set, the CPU time consumption for load balancing and the time breakdowns of MDP-P and MDP-A

are similar to MDP and MDP*, respectively. In the figures, we present the results of MDP-P togeth-

er with MDP, and MDP-A together with MDP*. Figure 5.15(a) shows the median, the 10th and

90th percentiles of the CPU time consumption to achieve load balance in the four methods under

different VM/PM ratios with 100 PMs. We see that the CPU time increases as the ratio increases

for all four methods. As the ratio increases, the system needs more CPU resource to predict and

monitor the workload status of more VMs. For each VM/PM ratio, the CPU time consumption

follows MDP*<MDP<Sandpiper<CloudScale. CloudScale consumes more CPU time than the oth-

er methods due to two reasons. First, CloudScale needs to predict the load of each VM and hence
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Server CPU uti. 0% 20% 40% 60% 80% 100%

HP ProLiant G4 (W) 86 92.6 99.5 106 112 117

Table 5.2: Power consumption for different CPU utilizations.

needs more CPU time. Second, CloudScale has relatively more VM migrations, which consumes

more VM migration CPU time. MDP consumes less time than Sandpiper since it can quickly make

VM migration decisions and has a smaller number of VM migrations. MDP* consumes the least

CPU time since it can quickly select both migration VMs and destination PMs.

In order to give a thorough comparison between the four methods, we broke down the CPU

time to different parts as shown in Figure 5.15(b), Figure 5.15(c) and Figure 5.15(d) corresponding

to three VM/PM ratios. MDP and MDP* consume the least maintenance time that is used to

determine whether VM migrations are needed. In MDP and MDP*, each PM only needs to refer to

the optimal policy Π and hence they require less CPU time. Sandpiper consumes more CPU time in

maintenance than MDP and MDP* since it needs to calculate the volume [56] of each PM to check

the load status of the PMs. CloudScale consumes much more CPU time since it needs to predict

the workload status of each VM and also predict the PM workload status to determine whether VM

migrations are needed.
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(b) CPU time breakdown (ratio=2.5).
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(c) CPU time breakdown (ratio=3).
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(d) CPU time breakdown (ratio=3.5).

Figure 5.15: Comparison of CPU time consumption by different methods to achieve load balance.

The time to identify VMs to migrate refers to the CPU time needed to determine which
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VMs to migrate when a PM is overloaded. MDP and MDP* refer to the optimal policy Π and

quickly select VM to migrate in each round, and hence need little CPU time, while Sandpiper needs

a relatively long CPU time to calculate the volume-to-size (VSR) ratio of each VM. Sandpiper

consumes slightly less CPU time than CloudScale because Sandpiper does not need to predict each

VM workload and it selects fewer VMs than CloudScale due to fewer VM migrations. The time

to determine destination PMs is the CPU time for determining destination PMs where the selected

VMs migrate to. MDP* quickly selects destination PMs by referring to the optimal policy Π derived

from the MDP model and hence needs the least CPU time. MDP and Sandpiper use the same PM

selection algorithm, so their CPU time is dominated by the number of VMs that need to migrate.

MDP consumes a slightly less CPU time than Sandpiper due to fewer VM migrations. CloudScale

uses a greedy algorithm to find the least loaded destination PM and hence consumes less CPU time

than MDP and Sandpiper. The VM migration time depends on the number of VM migrations and

it follows MDP*<MDP<Sandpiper<CloudScale.

5.3.4.3 Memory Consumption

Figure 5.16 shows the median, the 10th and 90th percentiles of the memory utilization

of the four methods when the VM/PM ratio equals 3. We see that MDP, MDP* and Sandpiper

consume similar amount of memory resource. In the figures, we present the results of MDP-P

together with MDP, and MDP-A together with MDP*, due to the same reason mentioned before.

CloudScale consumes much more memory since it needs to store a 40×40 probability transition

matrix as indicated in [20] for each VM for workload prediction and it also has a higher number of

VM migrations.
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Figure 5.16: Memory consumption (ratio=3).
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Figure 5.17: Energy consumption in algorithms.
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5.3.4.4 Energy Consumption

We then compare energy consumption of the four different load balancing algorithms. En-

ergy consumption by PMs in datacenters is mostly determined by the CPU, memory, disk storage,

power supplies and cooling systems [27], and the work in [10] gave the total energy consumption

amount based on the CPU utilization. The configuration and power consumption characteristics of

our used servers, HP ProLiant ML110 G4 (Intel Xeon 3040, 2 cores×1860 MHz, 4 GB), is shown in

Table 5.2 [10]. Using this table, we calculate and compare the energy consumption of different algo-

rithms. We ran each experiment for one hour and measured the total energy consumption of different

algorithms. Figure 5.17 shows the median, the 10th and 90th percentiles of the total amount of the

energy consumption among total 10 experiments. In the figures, we present the results of MDP-P to-

gether with MDP, and MDP-A together with MDP*, due to the same reason mentioned before. The

idle energy consumption is measured when the PM is idle and stays at its lowest power state, which

has a value about 2.2kWh. The energy consumption follows MDP*<MDP <Sandpiper<CloudScale

for three reasons. First, MDP* and MDP can maintain the system in a long-term load balance state

and hence free the PMs from busily calculating (i.e., determining VMs to migrate and selecting

destination PMs). Second, MDP* and MDP reduce the number of VM migrations and hence avoid

additional energy consumption of the system. Third, MDP* and MDP can more quickly select

migration VMs and destination PMs, hence consume less CPU time than the other two algorithms.

The result that MDP* consumes less energy than MDP verifies the effectiveness of our MDP-base

algorithm in destination PM selection.
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Chapter 6

Conclusions and Future Work

In this proposal, we propose three mechanisms to tackle the challenges in effective manage-

ment of virtual resource to maximize energy efficiency and resource utilization while satisfying the

SLA in cloud datacenters. Specifically, the three mechanisms are: i) initial VM allocation, ii) VM

migration for load balance, and iii) proactive VM migration for long-term load balance. Accordingly,

this proposal consists of three innovative components:

(1) Initial Complementary VM Consolidation. Previous resource provisioning strategies ei-

ther allocate physical resources to virtual machines (VMs) based on static VM resource demands or

dynamically handle the variations in VM resource requirements through live VM migrations. How-

ever, the former fail to maximize energy efficiency and resource utilization while the latter produce

high migration overhead. To handle these problems, we propose an initial VM allocation mechanis-

m that consolidates complementary VMs with spatial/temporal-awareness. Complementary VMs

are the VMs whose total demand of each resource dimension (in the spatial space) nearly reaches

their host’s capacity during VM lifetime period (in the temporal space). Based on our observation

of the existence of VM resource utilization patterns, the mechanism predicts the lifetime resource

utilization patterns of short-term VMs or periodical resource utilization patterns of long-term VMs.

Based on the predicted patterns, it coordinates the requirements of different resources and consoli-

dates complementary VMs in the same physical machine (PM). This mechanism reduces the number

of PMs needed to provide VM service hence increases energy efficiency and resource utilization and

also reduces the number of VM migrations and SLA violations.

(2) Resource Intensity Aware VM Migration for Load Balance. The unique features of
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clouds pose formidable challenges to achieving effective and efficient load balancing. First, VMs in

clouds use different resources (e.g., CPU, bandwidth, memory) to serve a variety of services (e.g.,

high performance computing, web services, file services), resulting in different overutilized resources

in different PMs. Also, the overutilized resources in a PM may vary over time due to the time-

varying heterogenous service requests. Second, there is intensive network communication between

VMs. However, previous load balancing methods statically assign equal or predefined weights to

different resources, which leads to degraded performance in terms of speed and cost to achieve

load balance. Also, they do not strive to minimize the VM communications between PMs. This

proposed mechanism dynamically assigns different weights to different resources according to their

usage intensity in the PM, which significantly reduces the time and cost to achieve load balance and

avoids future load imbalance. It also tries to keep frequently communicating VMs in the same PM

to reduce bandwidth cost, and migrate VMs to PMs with minimum VM performance degradation.

(3) Proactive VM Migration for Long-Term Load Balance. Previous reactive load balancing

algorithms migrate VMs upon the occurrence of load imbalance, while previous proactive load bal-

ancing algorithms predict PM overload to conduct VM migration. However, both methods cannot

maintain long-term load balance and produce high overhead and delay due to migration VM selec-

tion and destination PM selection. To overcome these problems, we propose a proactive Markov

Decision Process (MDP)-based load balancing algorithm. We handle the challenges of allying MDP

in virtual resource management in cloud datacenters, which allows a PM to proactively find an

optimal action to transit to a lightly loaded state that will maintain for a longer period of time. We

also apply the MDP to determine destination PMs to achieve long-term PM load balance state. Our

algorithm reduces the numbers of SLA violations by long-term load balance maintenance, and also

reduces the load balancing overhead (e.g., CPU time, energy) and delay by quickly identifying VMs

and destination PMs to migrate.

Finally, we conducted extensive experiments to evaluate the proposed three mechanisms. i)

We conducted simulation experiments based on two real traces and real-world testbed experiments to

show that the initial complementary VM consolidation mechanism significantly reduces the number

of PMs used, SLA violations and VM migrations of the previous resource provisioning strategies.

ii) We conducted trace-driven simulation and real-world testbed experiments to show that RIAL

outperforms other load balancing approaches in regards to the number of VM migrations, VM

performance degradation and VM communication cost. iii) We conducted trace-driven experiments
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to show that the MDP-based load balancing algorithm outperforms previous reactive and proactive

load balancing algorithms in terms of SLA violation, load balancing efficiency and long-term load

balance maintenance.

The future work will be three folds. First, for Initial complementary VM consolidation,

we will explore how to enhance the pattern detection method to catch peak bursts and how to

complement VMs with peak bursts in resource consumption. Second, for resource intensity aware

VM migration for load balance, we will study how to globally map migration VMs and destination

PMs in the system to enhance the effectiveness and efficiency of load balancing. We will also measure

the overhead of RIAL and explore methods to achieve an optimal tradeoff between overhead and

effectiveness. Third, for proactive VM migration for long-term load balance, we aim to make our

algorithm fully distributed to increase its scalability.
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