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Abstract

Cloud computing is an emerging technology in distributed computing, and it has proved to

be an effective infrastructure to provide services to users. Cloud is developing day by day and faces

many challenges. One of challenges is to build cost-effective data management system that can ensure

high data availability while maintaining consistency. Another challenge in cloud is efficient resource

allocation which ensures high resource utilization and high SLO availability. Scheduling, referring

to a set of policies to control the order of the work to be performed by a computer system, for high

throughput is another challenge. In this dissertation, we study how to manage data and improve

data availability while reducing cost (i.e., consistency maintenance cost and storage cost); how to

efficiently manage the resource for processing jobs and increase the resource utilization with high

SLO availability; how to design an efficient scheduling algorithm which provides high throughput,

low overhead while satisfying the demands on completion time of jobs.

Replication is a common approach to enhance data availability in cloud storage systems.

Previously proposed replication schemes cannot effectively handle both correlated and non-correlated

machine failures while increasing the data availability with the limited resource. The schemes for

correlated machine failures must create a constant number of replicas for each data object, which

neglects diverse data popularities and cannot utilize the resource to maximize the expected data

availability. Also, the previous schemes neglect the consistency maintenance cost and the storage

cost caused by replication. It is critical for cloud providers to maximize data availability hence

minimize SLA (Service Level Agreement) violations while minimize cost caused by replication in

order to maximize the revenue. In this dissertation, we build a nonlinear programming model to

maximize data availability in both types of failures and minimize the cost caused by replication.

Based on the model’s solution for the replication degree of each data object, we propose a low-cost

multi-failure resilient replication scheme (MRR). MRR can effectively handle both correlated and
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non-correlated machine failures, considers data popularities to enhance data availability, and also

tries to minimize consistency maintenance and storage cost.

In current cloud, providers still need to reserve resources to allow users to scale on demand.

The capacity offered by cloud offerings is in the form of pre-defined virtual machine (VM) configu-

rations. This incurs resource wastage and results in low resource utilization when the users actually

consume much less resource than the VM capacity. Existing works either reallocate the unused

resources with no Service Level Objectives (SLOs) for availability1 or consider SLOs to reallocate

the unused resources for long-running service jobs. This approach increases the allocated resource

whenever it detects that SLO is violated in order to achieve SLO in the long term, neglecting the

frequent fluctuations of jobs’ resource requirements in real-time application especially for short-term

jobs that require fast responses and decision making for resource allocation. Thus, this approach

cannot fully utilize the resources to process data because they cannot quickly adjust the resource

allocation strategy dealing with the fluctuations of jobs’ resource requirements. What’s more, the

previous opportunistic based resource allocation approach aims at providing long-term availability

SLOs with good QoS for long-running jobs, which ensures that the jobs can be finished within weeks

or months by providing slighted degraded resources with moderate availability guarantees, but it

ignores deadline constraints in defining Quality of Service (QoS) for short-lived jobs requiring online

responses in real-time application, thus it cannot truly guarantee the QoS and long-term availability

SLOs. To overcome the drawbacks of previous works, we adequately consider the fluctuations of

unused resource caused by bursts of jobs’ resource demands, and present a cooperative opportunistic

resource provisioning (CORP) scheme to dynamically allocate the resource to jobs. CORP leverages

complementarity of jobs’ requirements on different resource types and utilizes the job packing to

reduce the resource wastage and increase the resource utilization.

An increasing number of large-scale data analytics frameworks move towards larger degrees

of parallelism aiming at high throughput. Scheduling that assigns tasks to workers and preemption

that suspends low-priority tasks and runs high-priority tasks are two important functions in such

frameworks. There are many existing works on scheduling and preemption in literature to provide

high throughput. However, previous works do not substantially consider dependency in increasing

throughput in scheduling or preemption. Considering dependency is crucial to increase the overall

1Availability refers to the probability of an allocated resource being remain operational and accessible during the
validity of the contract [34].
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throughput. Besides, extensive task evictions for preemption increase context switches, which may

decrease the throughput. To address the above problems, we propose an efficient scheduling system

Dependency-aware Scheduling and Preemption (DSP) to achieve high throughput in scheduling and

preemption. First, we build a mathematical model to minimize the makespan with the consideration

of task dependency, and derive the target workers for tasks which can minimize the makespan;

second, we utilize task dependency information to determine tasks’ priorities for preemption; finally,

we present a probabilistic based preemption to reduce the numerous preemptions, while satisfying

the demands on completion time of jobs.

We conduct trace driven simulations on a real-cluster and real-world experiments on Amazon

S3/EC2 to demonstrate the efficiency and effectiveness of our proposed system in comparison with

other systems. The experimental results show the superior performance of our proposed system.

In the future, we will further consider data update frequency to reduce consistency maintenance

cost, and we will consider the effects of node joining and node leaving. Also we will consider energy

consumption of machines and design an optimal replication scheme to improve data availability

while saving power. For resource allocation, we will consider using the greedy approach for deep

learning to reduce the computation overhead caused by the deep neural network. Also, we will

additionally consider the heterogeneity of jobs (i.e., short jobs and long jobs), and use a hybrid

resource allocation strategy to provide SLO availability customization for different job types while

increasing the resource utilization. For scheduling, we will aim to handle scheduling tasks with

partial dependency, worker failures in scheduling and make our DSP fully distributed to increase its

scalability. Finally, we plan to use different workloads and real-world experiment to fully test the

performance of our methods and make our preliminary system design more mature.
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Chapter 1

Introduction

As an emerging technology in distributed computing, cloud computing has proved to be an

effective infrastructure to provide services to users. Cloud is comprised of a collection of virtual

machines including both computational and storage facility. Cloud is developing day by day and

faces many challenges. One of challenges is to build cost-effective data management system ensuring

high data availability while maintaining consistency [15]. Another challenge in cloud is efficient

resource allocation which ensures high resource utilization [123]. Scheduling jobs (especially parallel

jobs) with constraints for high throughput is another challenge [14] in cloud. To address these

challenges, in this dissertation, we aim to study how to manage data and improve data availability

while reducing cost (i.e., consistency maintenance cost and storage cost); how to efficiently manage

the resource for processing jobs and increase the resource utilization; how to design an efficient

scheduling algorithm which provides high throughput, low overhead while satisfying the demands

on completion time of jobs. Below we briefly introduce how the three problems come out.

Datacenter storage systems (e.g., Hadoop Distributed File System (HDFS) [111], RAM-

Cloud [87], Google File System (GFS) [55] and Windows Azure [33]) are an important component

of cloud datacenters, especially for data-intensive services in this big data era. It is critical for cloud

providers to reduce the violations of Service Level Agreements (SLAs) for tenants to provide high

quality-of-service and avoid the associated penalties. For example, a typical SLA required from

services that use Amazon Dynamo storage system is that 99.9% of the read and write requests ex-

ecute within 300ms [46]. Therefore, a storage system must guarantee data availability for different

applications to comply to SLAs, which however is a non-trivial task. In many cloud services such
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as Amazon, Google App Engine and Windows Azure, the server failure probability is in the range

of [1%, 10%] and the corresponding data availability is in the range of [99.9%, 99.99%] [99].

Data availability is usually influenced by data loss, which is typically caused by machine

failures including correlated and non-correlated machine failures coexisting in storage systems. The

former means multiple nodes fail (nearly) simultaneously, while the latter means nodes fail indi-

vidually. Correlated machine failures often occur in large-scale storage systems [58, 86, 139] due to

common failure causes (e.g., cluster power outages, workload-triggered software bug manifestation-

s, Denial-of-Service attacks). For example, in cluster power outages [35, 44, 53], a non-negligible

percentage (0.5%-1%) of nodes [35,111] do not come back to life after power is restored [42]. Corre-

lated machine failures cause significant data loss [42], which have been documented by Yahoo! [111],

LinkedIn [35] and Facebook [30]. Non-correlated machine failures [139] are caused by reasons such

as different hardware/software compositions and configurations, and varying network access ability.

Measurements of over 10,000 file systems on desktop computers at Microsoft [27] demonstrate ma-

chines experience disk head crashes hence permanent data-loss failures in a temporally uncorrelated

fashion. Non-correlated failures can be classified into uniform and nonuniform machine failures, in

which machines fail with the same and different probabilities (possibly due to the same or different

computer configurations), respectively.

Many cloud providers offer resources for leasing with elastic under infrastructure as a service

(IaaS) paradigm. Although the elastic and on-demand nature of cloud computing can help cloud

users meet their dynamic and fluctuating demands with minimal management overhead, the users

are still allocated the resource more than their demands on the amount of resources for processing

their jobs, resulting in resource wastage [51, 109]. Also, the elasticity proposed by cloud computing

does not really come for free. Providers have to reserve resources to allow users to scale on demand,

and cope with workload variations. In practical scenarios, at any point in time, cloud providers

impose a resource ceiling for each user to bound the maximum amount of resources that the user

will be granted. Users usually get a small ceiling by default [34]. It is wasteful to provision enough

capacity to guarantee that all users can be granted their ceilings all the time [34]. This is because for

most applications, the average resource requirement is much lower than the peak [100]. Figure 1.1

shows an example of temporally unused resources in which the resources, such as CPU and memory

(MEM in short), are idle (unused) and thus are wasted. Normal cloud approaches on resource

allocation cannot be directly applied to dealing with real-time job processing for achieving high

2
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Figure 1.1: Resource wastes in terms of different types of temporarily unused resource.

resource utilization and low SLO violation rate because they either allocate the resource based on

reservation or demand-based resource allocation and cannot fully utilize the resource all the time [34]

and cannot well meet the requirements of real-time application (e.g., time-varying user demand on

resource).

An increasing number of large scale analytic frameworks move towards high degree of par-

allelism aiming at providing high throughput. For example, MapReduce is a framework designed to

process a large amount of data in the parallel manner on a cluster of computing nodes. In such a

framework, each job is partitioned to tasks and run on the cluster servers in parallel. Task scheduling

and preemption are two important functions for high job performance [73, 90, 130]. Job scheduling

is the process of assigning jobs to worker machines in a manner to optimize the job performance.

Usually, a user or a system submits jobs to the scheduler, which divides each job into tasks and for-

wards tasks to workers for processing. A job usually consists of hundreds or thousands of concurrent

tasks [89]. Job completion time is determined by the completion time of the tail task. Placing a task

on a contended machine extends the completion time of the task. Therefore, the tasks of each job

should be scheduled to appropriate workers so that the job completion time can be reduced. Each

worker has a waiting queue which is used for queuing tasks when a worker is allocated to more tasks

than it can run concurrently. In a preemption method, the priorities of tasks are determined, and

each worker chooses a high-priority task in its waiting queue to preempt its low-priority running

task. The priorities are determined based on factors such as task’s remaining time and waiting time

to serve different performance objectives (e.g., high throughput, short job completion times).

Dependency usually exists among tasks of a job. That means, a task cannot start running

3



until its precedent tasks complete.1 Many previous works have been proposed to detect the depen-

dency between tasks [57,82,118,121,138]. However, previous scheduling algorithms and preemption

algorithms do not coherently consider dependency and utilize the dependency information to in-

crease throughput in scheduling or preemption by prioritizing tasks that will subsequently enable

the execution of more dependent tasks. Previous scheduling algorithms [4,16,17,19,20,23,40,90,91,

96, 120, 122, 125, 126, 135] to increase throughput can be roughly classified into two categories. The

works [16, 91, 122, 126, 135] focus on increasing the throughput by utilizing the data locality, that

is, placing tasks on or close to machines that store the input data to reduce transmission overhead.

However, the above works do not consider task dependency, which is a main factor to consider in

scheduling for high throughput. Assigning tasks with the dependency relation at the same time

leads to resource wastes since dependent tasks cannot run until their precedent tasks complete. The

work [57] aims to maximize the throughput by fully utilizing the server resources. It packs tasks

to machines based on the alignment score (the weighted dot product value between the vector of a

machine’s available resources and the task’s peak usage of resources). Though this paper mentions

task dependency, it does not provide a method to substantially consider dependency in scheduling.

To simply consider dependency in scheduling, the scheduler can first schedule runnable tasks, and

leave the dependent tasks to the next scheduling. However, the precedent tasks may complete a

certain time period before the next scheduling, then the server resources during this time period

cannot be fully utilized. Also, if at next scheduling time t1, there will be three idle slots, then

assigning a task with three dependent tasks rather than a task with zero or four dependent tasks

at scheduling time t0 can more fully utilize resources. Only considering currently runnable tasks

in scheduling without considering the dependent tasks in a global view may not be able to fully

increase the throughput. Thus, it cannot fully utilize task dependency information to increase the

throughput by judiciously determining tasks’ execution order so that more tasks have chance to start

executing after a selected task finishes execution. Figure 1.2 shows the diverse dependency relations

among tasks. Tasks T2-T5 cannot start executing until task T1 finishes its execution. Similarly, this

applies to tasks T6 and T15: tasks T7-T14 and T16-T19 cannot start executing until T6 and T15 finish

their executions, respectively. In Figure 1.2, task T6 has more dependent tasks than tasks T1 and

1In this paper, we do not consider job dependency (i.e., cross-job dependency) [98] and focus on task dependency
in which a dependent task cannot start running until its precedent tasks complete, though partial dependency exists
in some scenarios. Also, we do not consider the scenario that tasks dynamically add new tasks and extend the
task-dependency graph because it is not a common occurrence in cloud computing.
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Figure 1.2: Diverse dependency relations among tasks.

T15
2. Execuitng T6 at first can increase the chance that more dependent tasks can start executing

after the precedent task T6 finish its execution, which helps increase the throughput.

1.1 Problem Statement

1.1.1 Efficient Data Management for High Data Availability

Replication is a common approach to reduce data loss and enhance data availability. The

consideration of data popularity in replication is also important to maximize the expected data avail-

ability3. Due to highly skewed data popularity distributions [18], popular data with considerably

higher request frequency generates heavier load on the nodes, which may lead to data unavailability

at a time. On the other hand, unpopular data with few requests wastes the resources for stor-

ing and maintaining replicas. Thus, an effective replication scheme must consider the diverse data

popularities to use the limited resources (e.g., memory) [65] to increase expected data availability.

Though creating more replicas for a data object leads to higher data availability, it comes

with higher consistency maintenance cost [28, 133] and storage cost [114]. In consistency mainte-

nance, when a data is updated, an update is sent to its replica nodes. In addition to the number

of replicas, the consistency maintenance cost and storage cost are also affected by the geographic

distance and storage mediums (e.g., disk, SSD, EBS), respectively. To reduce the cost, we need to

minimize the number of replicas, limit the geographic distance of replica nodes and replicate the

2For simplicity, the subscript of the symbol T only indicates the task number, which is different from the meaning
explained in Table 4.1. We assume the task dependencies are known a priori [12,52], though sometimes dependencies
cannot be easily discovered ahead of time.

3We use a service-centric availability metric: the proportion of all successful service requests over all requests [139].
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Figure 1.3: Achieving an optimal tradeoff among data availability, storage cost and consistency
maintenance cost.

additional replicas beyond the required storage of applications to less expensive storage mediums

while still provide SLA guarantee. Therefore, effective replication methods must maximize expected

data availability (by considering both correlated and non-correlated machine failures and data pop-

ularity) and minimize the cost caused by replication (i.e., consistency maintenance cost and storage

cost) [81,133].

Random replication, as a popular replication scheme, has been widely used in datacenter

storage systems including HDFS, RAMCloud, GFS and Windows Azure. These systems partition

each data object into chunks (i.e., partitions), each of which is replicated to a constant number of ran-

domly selected nodes on different racks. Though random replication can handle non-correlated ma-

chine failures, it cannot handle correlated machine failures well because data loss occurs if any combi-

nation of a certain number of nodes experience failures simultaneously [42]. Previously proposed data

replication methods cannot effectively handle both correlated and non-correlated machine failures

and utilize the limited resource to increase the data availability simultaneously [42, 53, 79, 86, 139].

Although many methods have been proposed to improve data availability [13,28,53,67,86,139], they

do not concurrently consider the data popularities and the cost caused by replication to increase

expected data availability and decrease cost.

As shown in Figure 1.3, a key problem here is how to achieve an optimal tradeoff between

increasing data availability and reducing cost caused by replication with the ultimate goal of SLA

compliance and revenue maximization for cloud service providers.
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1.1.2 Efficient Multi-Resource Allocation for High Resource Utilization

Many previous works [103, 109] try to increase resource utilization by predicting users’ de-

mand on the resource for their jobs. However their approaches are either reservation-based or

demand-based resource allocation, which cannot fully utilize the resource all the time. The work [108]

presents CloudScale to automate fine-grained elastic resource scaling for multi-tenant cloud com-

puting infrastructures. CloudScale uses online resource demand prediction and prediction error

handling to achieve adaptive resource allocation. Specifically, the model uses a fast Fourier trans-

form (FFT) to identify repeating patterns (called signatures) to estimate future resource demands

(if no repeating patterns is found, it adopts a discrete-time Markov chain to predict the resource

demand in the near future), then the prediction error correction module performs online adaptive

padding that adds a dynamically determined cushion value to the predicted resource demand to

avoid under-estimation errors. However, the method in the work [108] is demand-based resource al-

location which cannot fully utilize the resource because users typically get a small ceiling of resource

from the resource providers. Another work [43] proposes a reservation-based scheduling consisting

of two main processes: reservation and planning. Reservation process determines a job’s resource

needs and temporal requirements, and translates the job’s completion service level agreements (S-

LA) into a service level objective (SLO) over predictable resource allocations, which is done ahead

of job’s execution. Planning process constructs a temporal assignment of cluster resources to jobs

such that each job’s RDL (reservation definition language which provides a uniform and abstrac-

t representation of all the jobs’s needs) expression is satisfied. However, resource reservation can

lead to resource underutilization as users do not necessarily understand complex physical resource

requirements of jobs [48]. The work [48] presents Quasar, a cluster management system, to increase

resource utilization while providing consistently high application performance. First, Quasar lets

users communicate the performance constraints of the application in terms of throughput and/or

latency, depending on the application type, and it determines the amount of the available resources

needed to meet performance constraints based on users’ expression of performance constraints. Sec-

ond, Quasar relies on classification techniques to quickly and accurately determine the impact of

the amount of resources (scale-out and scale-up), type of resources, and interference on performance

for each workload. Third, Quasar performs resource allocation and assignment jointly. The clas-

sification results are used to determine the right amount and specific set of resources assigned to
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Figure 1.4: Allocate resource to jobs by leveraging complementarity of jobs’ requirements on different
resource types to increase resource utilization.

the workload. However, Quasar requires users to communicate performance constraints for each

workload and it is still on-demand based resource allocation, and thus the resource cannot be fully

utilized all the time because of the temporarily unused resource [34].

Most users can accept weaker promises. If all the users’ loads do not peak at the same time,

the cloud provider can benefit from statistical multiplexing to provision fewer resources than the

sum of all users’ ceilings [84], thereby fully utilizing the resource. A common approach of increasing

resource utilization is to offer this temporarily-unused capacity in an opportunistic approach, in

which the SLOs are not guaranteed [83]. The lack of SLOs restricts the applications that can

benefit from these reclaimable resources. In order to achieve both high resource utilization and low

SLO violation rate, some works [34, 83] and the product [3] present methods of offering resources

opportunistically. The work [83] presents reusing unused cloud resources by offering leases in an

opportunistic and preemptible way with no SLOs. Although the approach in the work [83] can

increase the cloud utilization to some extent, they do not ensure SLOs, which affects the QoS

because the resource can be preempted at any time. The product Amazon EC2 Spot Instances [3]

offers opportunistic resources. The approach can increase the resource utilization, however, the

offered resources have no SLOs, affecting QoS when the allocated resource for processing jobs is

preempted. Although a recent work [34] presents the opportunistic approach to achieve long-term

SLOs, the method cannot be applied to the application of processing short-lived jobs for achieving

high resource utilization and low SLO violation rate. This is because i) it assumes that resource

utilization pattern exists in training data of resource utilization of the jobs. Though this assumption

may be true for long-lived jobs, it usually does not hold true for short-lived jobs (such as short-lived
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queries in the applications of Internet-of-Things and online data processing that typically run for

seconds or minutes [77,78,127]), in spite of the fact that short-lived jobs occupy most of the jobs in

the cloud [47]; ii) it may result in resource fragmentation and thus lead to low resource utilization

because it neglects jobs’ resource intensity and may allocate much more resources to the jobs when it

allocates multiple types of resources to users’ jobs;4 iii) it fails to adequately consider the fluctuations

of unused resource caused by bursts of jobs’ resource demands, and thus cannot well meet the

requirement of time-varying user demand on resource when users’ demand on resource for data

processing changes frequently. In this paper, we aim to design a resource provisioning scheme for

short-lived jobs in cloud with high resource utilization while achieving low SLO violation rate. The

key challenges include: (1) how to accurately predict the amount of temporarily-unused resources

of short-lived jobs with resource fluctuations? (2) how to more fully utilize the temporarily-unused

resources by considering diverse resource intensities of jobs? (3) how to allocate the resource to

short-live jobs to satisfy their time constraints.

1.1.3 Scheduling Parallel Jobs with constraints for High Throughput

Several existing works [19,22,40,59] focus on task preemption with the objective of maximiz-

ing throughput. The works in [19,40, 59] choose the tasks that have the shortest remaining time to

preempt, and the work in [22] further considers the waiting time to prevent task starvation, in which

the task waits for a very long time due to the lower priority. However, none of the works considers

utilizing the task dependency to increase the throughput5. Also, when the priority is too fine-grained

in the priority space, there will be many preemptions. This leads to many context switchings and

may reduce throughput. On the other hand, when the priority is too coarse-grained in the priority

space, there will be long waiting time for the waiting tasks, leading to resource starvation. However,

none of previous preemption works consider the tradeoff among the preemption overhead, through-

put and the task waiting time while satisfy the demands on completion time of jobs. Therefore,

scheduling jobs (especially parallel jobs) with constraints (e.g., dependency constraints) achieving

high throughput and low overhead is still a problem [14] in cloud.
4The method in the work [34] does not consider how to leverage complementarity of jobs’ requirements on different

resource types because different intensive jobs (e.g., CPU intensive and Mem intensive) have different demands on
different resource types, and it can easily result in resource fragmentation when we use the method in [34] to allocate
multiple resource types to jobs with different resource intensities in terms of VMs.

5MapReduce Application Master implicitly considers dependency by first requesting resources for map tasks and
then for reduce tasks, however it does not substantially utilize dependency to increase throughput in scheduling or
preemption.
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1.2 Research Approach

According to the discussion of the challenges in Section 1.1, the cloud providers need an

efficient and cost-effective replication strategy to ensure high data availability, an efficient resource

allocation strategy to allocate resource to jobs that can achieve high resource utilization, an efficient

scheduling algorithm that can provide high throughput, low overhead while satisfying the demands on

completion time of jobs. In this dissertation, we propose a low-cost multi-failure resilient replication

scheme to ensure high data availability while reducing the cost (i.e., consistency maintenance cost and

storage cost); we present a cooperative opportunistic resource provisioning strategy to dynamically

allocate the resource to jobs for achieving high resource utilization; we present an efficient scheduling

algorithm dependency-aware scheduling and preemption to achieve high throughput, low overhead

while satisfying the demands on completion time of jobs. We briefly describe our solution for each

problem below.

1.2.1 Low-Cost Multi-Failure Resilient Replication Scheme for High Data

Availability in Cloud

To handle both correlated and non-correlated machine failures and improve data availability,

we propose a low-cost multi-failure resilient replication scheme (MRR), which targets the application

of distributed data-intensive services and storage system. MRR is more advantageous than previous

replication schemes (e.g., Random Replication, Copyset Replication [42]) in that it can handle both

correlated and non-correlated machine failures, and also jointly considers data popularity and the

cost caused by replication. The steps of MRR are as follows:

(1) MRR builds a nonlinear programming model that aims to maximize expected data availability

(in both types of failures) with the consideration of popularities and reduce the cost caused

by replication. MRR creates more replicas for more popular data objects, and vice versa.

To reduce storage cost, MRR stores data objects with lower priority (i.e., from lower priori-

ty applications and with larger sizes) to less expensive storage media, and vice versa. MRR

then uses Lagrange multipliers to derive a solution: the replication degree (i.e., the number of

replicas) of each data object.

(2) Based on the solution, MRR partitions all nodes to different groups with each group responsible
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for replicating all data objects with the same replication degree. Then, MRR partitions nodes

in a group into different sets [42]; each set consisting of nodes from different datacenters within

a certain geographic distance. The replicas of a chunk are stored in the nodes in one set, so data

loss occurs only if these nodes experience failures simultaneously. Each data chunk is replicated

to the corresponding storage medium based on its priority. MRR reduces the frequency of data

loss by reducing the number of sets in a group, i.e., the probability that all nodes in a set fail.

1.2.2 Cooperative Opportunistic Resource Management for High Re-

source Utilization

In order to provide a resource provisioning strategy for processing short-lived jobs with

high resource utilization and low SLO violation rate, we present a deep learning based cooperative

opportunistic resource provisioning (CORP) scheme to dynamically allocate the resource to jobs for

achieving high resource utilization. The key steps of CORP are as follows:

(1) CORP uses the deep learning method to accurately predict the amount of temporarily-unused

resource of each short-lived job, and it offers an opportunistic approach to reallocate predicted

unused resources (with low SLO violation rate) in order to increase the resource utilization.

(2) CORP also considers the fluctuations of the amount of the unused resource caused by the peak

and valley of jobs’ resource demands. It first predicts the fluctuations of the amount of the

unused resource using HMM, then adjusts the predicted amount for the peak and valley of the

amount of the unused resource, and dynamically allocates the corrected amount of resource to

jobs. CORP thus can adapt well to the requirement of time-varying user demand on resources.

(3) CORP uses a job packing strategy by leveraging complementary jobs’ requirements on different

resource types (e.g., CPU, MEM) and allocates such jobs to the same VM to fully utilize

unused resource, which reduces the resource fragmentation and further increases the resource

utilization (see Figure 1.4).
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Figure 1.5: Deep neural networks.

1.2.3 Dependency-aware Scheduling and Preemption for High Through-

put

To handle the problems in the previous scheduling and preemption methods, we propose

Dependency-aware Scheduling and Preemption (DSP) to increase throughput and reduce overhead

while satisfying the demands on complement jobs for scheduling jobs with constraints (e.g., depen-

dency constraints, etc.). DSP includes the following key steps.

(1) DSP utilizes considers dependency and assigns tasks to workers so that independent tasks can

run in parallel. To minimize the makespan, DSP builds a mathematical model, which can

increase the throughput. Based on the model, the target workers and starting times for all

tasks can be derived.

(2) DSP utilizes task dependency information to determine task priority. Specifically, DSP con-

siders different dependency graphs, and assigns higher priority to tasks on which more tasks

depend, ultimately, this approach increases the throughput by increasing the chance that more

dependent tasks can start executing after the precedent tasks finish execution. Also, in pre-

emption, DSP chooses a waiting task to preempt a running task considering the dependency

between them to avoid dependency violation and increase throughput.

(3) Based on the derived task priority, DSP uses a probabilistic based preemption (PP) which

selectively chooses waiting tasks with top priorities to preempt running tasks to reduce the time

overhead (i.e., context switching) caused by preemption and hence increase the throughput.
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1.3 Contributions

We summarize our expected contributions of the dissertation below:

• We build a nonlinear programming model that aims to maximize expected data availability

(in both correlated and non-correlated machine failures) with the consideration of popularities

and reduce the cost caused by replication. More replicas are created for more popular data

objects, and vice versa. To reduce storage cost, data objects with lower priority (i.e., from

lower priority applications and with larger sizes) are stored to less expensive storage mediums,

and vice versa. We then use Lagrange multipliers to derive a solution: the replication degree

(i.e., the number of replicas) of each data object. Based on the solution, we propose MRR

to handle both correlated and non-correlated machine failures. MRR partitions all nodes to

different groups with each group responsible for replicating all data objects with the same

replication degree. Then, MRR partitions nodes in a group into different sets [42]; each

set consisting of nodes from different datacenters within a certain geographic distance. The

replicas of a chunk are stored in the nodes in one set, so data loss occurs only if these nodes

experience failures simultaneously. Each data chunk is replicated to the corresponding storage

medium based on its priority. MRR reduces the frequency of data loss by reducing the number

of sets in a group, i.e., the probability that all nodes in a set fail.

• We propose a deep learning based cooperative opportunistic resource provisioning (CORP)

scheme which offers the temporarily-unused resource in an opportunistic approach (i.e., The

allocated unused resource can be preempted and reallocated to other new arriving jobs with a

certain probability.) and increases the resource utilization. Moreover, CORP uses a resource

packing strategy by leveraging complementarity of jobs’ requirements on different resource

types (e.g., CPU, MEM, etc.) and allocates resource to jobs (packing jobs to VMs), which

reduces the resource fragmentation and further increase the resource utilization (see Figure

1.4). In addition, CORP adequately considers the fluctuations of unused resource caused by

bursts of jobs’ resource demands, it first predicts the fluctuations of unused resource using

HMM, then it isolates peak and valley states of unused resource with error correction, and

dynamically allocates the resource to jobs utilizing the unused resource. CORP thus can well

meet the requirement of time-varying user demand on resources and increase the resource
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utilization while reducing SLO violations.

• We propose a Dependency-aware Scheduling and Preemption (DSP), which consists of the

following components: (i) DSP considers task dependency and assigns tasks to workers so that

independent tasks can run in parallel. To minimize the makespan, a mathematical model is

presented, which can increase the throughput. Based on the model, the target workers and

starting times for all tasks can be derived; (ii) DSP utilizes task dependency information to

determine task priority. Specifically, DSP considers different dependency graphs, and assigns

higher priority to tasks on which more tasks depend, ultimately, this approach increases the

throughput by increasing the chance that more dependent tasks can start executing after the

precedent tasks finish execution. Also, DSP chooses a waiting task to preempt a running task

considering the dependency between them to avoid dependency violation and increase through-

put; (iii) Based on the derived task priority, DSP provides a probabilistic based preemption

(PP) which selectively chooses waiting tasks with top priorities to preempt running tasks to

reduce the time overhead (i.e., context switching) caused by preemption and hence increase

the throughput.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 details the design

of the low-cost multi-failure resilient replication scheme for high data availability in cloud storage.

Chapter 3 describes the design of the CORP: cooperative opportunistic resource provisioning for

short-lived jobs in cloud systems. Chapter 4 presents the design of the dependency-aware scheduling

and preemption system. Chapter 5 reviews the related works. Finally, Chapter 6 concludes this

dissertation with remarks on our future work.
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Chapter 2

A Low-Cost Multi-Failure Resilient

Replication Scheme for High Data

Availability in Cloud Storage

In this chapter, we introduce our low-cost multi-failure resilient replication scheme (MRR)

for high data availability in cloud storage. We first introduce the nonlinear integer programming

(NLIP) model for MRR, which aims to maximize the expected data availability in both correlated

and non-correlated machine failures. Then, we detail the design of our proposed MRR. Numerical

results from trace parameters and experiments from real-world Amazon S3 show that MRR achieves

high data availability, low data loss probability and low consistency maintenance cost and storage

cost compared to previous replication schemes.

2.1 Nonlinear Integer Programming Model for MRR

A cloud storage system usually serves multiple applications simultaneously. Without loss of

generality, we assume there are n applications in the cloud storage, and each application has m data

objects [28]. Each data object belonging to an application is split into M partitions [28,131] and the

data object is lost if any of its partitions is lost [42]. Replication degree of a data object represents

the number of replicas of the data object. We use Dij to denote the jth data object belonging to
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application i (denoted by ai). Let dij be the replication degree of Dij . The replicas of a partition

of a data object are placed in a set of dij different nodes. Suppose there are N servers in the cloud.

For easy reference, Table 2.1 shows the main notations of MRR in this dissertation. For analytical

tractability, we assume that a physical node (i.e., a server) belongs to a rack, a room, a datacenter, a

country and a continent. To easily identify the geographic location of a physical node, each physical

node has a label in the form of “continent-country-datacenter-room-rack-server” [28,29].

Table 2.1: Notations in MRR

N Total number of nodes Cths Upper bound of Cs
T One epoch duration ϕij Popularity function of Dij

p Probability of a server failure ψij Priority function of Dij

Dij The jth data in app. i Ki Space capacity for app. i
sij The size of Dij rij Probability of requesting Dij

dij Replication degree of Dij vij Number of visits to Dij / epoch
M Number of chunks of each data Csij Dij ’s storage space price
Pf Probability of data loss puni Probability of data loss in
P̄r Expected request failure uniform machine failures
S Scatter width pcor Probability of data loss in
Cc Consistency maint. cost correlated machine failures
Cs Total storage cost pnon Probability of data loss in non-
n Number of data objects uniform machine failures
Cthc Upper bound for Cc P thr Upper bound of P̄r

Problem Statement: Given data object request probabilities, data object sizes, space

constraints for different applications, and thresholds for request failure probability, consistency main-

tenance cost and storage cost, what is the optimal replication degree for each data object, so that

the request failure probability, consistency maintenance cost and storage cost are minimized in both

correlated and non-correlated machine failures? Then, how to assign the chunk replicas of data

objects to the nodes to achieve the objectives?

Our goal is to maximize the data availability in both correlated and non-correlated machine

failures while reducing the costs (consistency maintenance cost and storage cost) caused by repli-

cation, and eventually build an effective and low-cost replication scheme for high data availability.

In the following, Section 2.1.1 explains data availability maximization. We calculate the expected

probability of data loss in correlated and non-correlated (uniform and nonuniform) machine failures,

and finally calculate the expected probability of data loss in a cloud system with both types of

failures. Section 2.1.2 explains the consistency maintenance cost minimization, and Section 2.1.3

explains the storage cost minimization. Section 2.1.4 formulates the problem by combining these
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sub-problems and also gives an approach to obtain the solution.

2.1.1 Data Availability Maximization

We maximize data availability by considering both machine failure probability and data

object request probability (i.e., popularity). We minimize the data loss probability in both correlated

and non-correlated machine failures. Different data objects may have different popularities, and then

have different demands on the number of replicas to ensure data availability.

2.1.1.1 Correlated Machine Failures

To reduce data loss in correlated machine failures, we adopt the fault-tolerant set (FTS)

concept from [42], which is a distinct set of servers holding all copies of a given partition. Each FTS

is a single unit of failure. That is, when an FTS fails, at least one data object is lost. For correlated

machine failures, the probability of data loss increases as the number of FTSs increases because the

probability that the failed servers constitute at least one FTS increases (It is more likely that the

failed servers include at least one FTSs). So we minimize the probability of data loss by minimizing

the number of FTSs.

To this end, we can statically assign each server to a single FTS, and constrain the replicas

of a partition to a randomly selected preassigned FTS. That is, we first place the primary replica

(i.e., original copy) on a randomly selected server, and then place the secondary replicas on all the

nodes in this server’s FTS. However, this will lead to load imbalance problem in which some servers

become overloaded while some servers are underloaded due to data storage. On the other hand,

random replication that randomly chooses a replica holder has a higher probability of data loss

because almost every new replicated partition creates a distinct FTS. To achieve a tradeoff, we use

the approach in Copyset Replication [42], which assigns a server to a limited number of FTSs rather

than a single FTS. Due to the overlap of FTSs, after the primary replica is stored in a randomly

selected server, the FTS options that can store the secondary replicas are those that hold the server.

The servers in these sets are options that can be used to store the secondary replicas. The number

of these servers is called scatter width (denoted by S). For example, if the FTSs that hold server 1

are {1,2,3}, {1,4,5}, then when the primary replica is stored at server 1, the secondary replica can

be randomly placed either on servers 2 and 3 or 4 and 5. In this case the scatter width equals to 4.

The probability of correlated machine failures equals the ratio of the number of FTSs over
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the maximum number of sets:

#FTSs

max{#sets}
(2.1)

To reduce the probability of data loss, Copyset Replication makes the replication scheme

satisfy two conditions below:

• Condition 1: The FTSs overlap with each other by at most one server.

• Condition 2: The FTSs cover all the servers equally.

Copyset Replication uses the Balanced Incomplete Block Design (BIBD)-based method for

any scatter width to create FTSs that satisfy both condition 1 and condition 2 and minimize the

number of FTSs.1

We define a pair (X,A), where X is a set of servers in the system (i.e., X = {1, 2, ..., N}),

and A is a collection of all FTSs in the system. Let N,R and λ be positive integers such that

N > R ≥ 2, BIBD for (N,R, λ) satisfies the following properties:

• Each FTS contains exactly R servers.

• Each pair of servers is contained in exactly λ FTSs.

When λ = 1, the BIBD provides an optimal design for minimizing the number of FTSs for scatter

width S = N − 1. In this case, condition 1 ensures that each FTS increases the scatter width for

its servers by exactly R − 1 compared to the case when λ = 0. Copyset Replication creates S
R−1

N
R

FTSs. Then, the failure probability in correlated machine failures equals:

pcor =
S

R−1
N
R(

N
R

) (2.2)

In random replication, the number of FTSs created is [42]:

 #FTSs = N
(
S

R−1

)
, S < N

2

#FTSs ≈
(
N
R

)
, S ≈ N

(2.3)

Based on Equs. (2.1), (2.3), we can calculate the probability of correlated machine failures in random

replication.

1In implementation, Copyset Replication uses random permutation to create FTSs.
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Table 2.2: An example for BIBD-based method for (12, 3, 1).

0 1 2 3 4 5 6 7 8 9 10 11
B1 1 1 1 0 0 0 0 0 0 0 0 0
B2 0 0 0 1 1 0 0 0 0 0 1 0
B3 0 0 0 0 0 0 1 1 1 0 0 0
B4 0 0 0 0 0 0 0 0 0 1 1 1
B5 1 0 0 1 0 0 0 0 1 0 0 0
B6 0 1 0 0 1 0 0 1 0 0 0 0
B7 0 0 1 0 0 1 0 0 0 0 0 1
B8 0 0 0 0 0 1 1 0 0 1 0 0

We give an example to illustrate the process of generating FTSs. Consider a storage system

with N = 12 servers, the size of FTS R = 3, and the scatter width S = 4. Using the BIBD-

based method, the following solution of FTSs is created to achieve less number of FTSs. Using the

BIBD-based method illustrated in Table 2.2, the following solution of FTSs is created.

B1 = {0, 1, 2}, B2 = {3, 4, 10}, B3 = {6, 7, 8}, B4 = {9, 10, 11},

B5 = {0, 3, 8}, B6 = {1, 4, 7}, B7 = {2, 5, 11}, B8 = {5, 6, 9}.

For random replication, the number of FTSs is 72. Hence, the probability of data loss caused

by correlated machine failures is:

#FTSs/

(
N

R

)
= 72/

(
12

3

)
= 0.327

However, for BIBD-based method from Copyset Replication, the number of FTSs is 8, and the

probability of data loss caused by correlated machine failures is much smaller:

#FTSs/

(
N

R

)
= 8/

(
12

3

)
= 0.036

There are many methods that can be used for constructing BIBDs, but no single method

can create optimal BIBDs for any combination of N and R [64,101]. Copyset Replication combines

BIBD and random permutations to generate a non-optimal design that can accommodate any scatter

width. By relaxing the constraint for the number of overlapping nodes λ from an exact number to at

most the exact number, the probability of successfully generating FTSs increases. Since the scatter

width should be much smaller than the number of nodes, MRR is likely to generate FTSs with at most

one overlapping node [42]. MRR tries to minimize the replication degrees of data objects in order to
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limit the consistency maintenance cost and storage cost, the replication degrees should be not large

or vary greatly. Smaller replication degrees generate smaller R values. Although sometimes it is not

possible to generate the optimal BIBDs, BIBDs can be used as a useful benchmark to measure how

close MRR is to the optimal scheme for specific values of scatter width [42].

2.1.1.2 Uniform Machine Failures

In the scenario of uniform machine failures, the failures of machines are statistically inde-

pendent of each other. Each machine has the same probability to fail, denoted by p (0 < p < 1).

The data object is lost if any chunk (partition) of the data object is lost, and a chunk is lost only

if all the replicas of the chunk are lost. Hence, the expected probability of data loss in the uniform

machine failure is:

puni =

∑n
i=1

∑m
j=1M · pdij

m · n
(2.4)

where M is the number of partitions (chunks) for each data object, n is the number of applications,

and m is the number of data objects in each application.

We introduce a method to evaluate a data object’s popularity below. Different types of

applications are always featured by the popular time periods of data objects. For example, the

videos in social network applications are usually popular for 3 months [105–107], while the news in

a news website usually is popular for several days. We rank the applications based on their types

and use bai to denote the rank; a higher bai means that the application has longer popular time

periods of data objects. Assume time is split into epochs (a fixed period of time). To avoid creating

and deleting replicas for data objects that are popular for a short time period, we consider both

its application rank (bai) and its expected visit frequency, i.e., the number of visits in an epoch

(vij) [18,21,28,37], to determine the popularity function of a data object (ϕ(·)):

ϕij(·) = α · bai + β · vij (2.5)

where α and β are the weights for the two factors.

Let rij be the probability of requesting dataDij . For single-object requests,
∑n
i=1

∑m
j=1 rij =

1 after normalization. The request probability of a data object is the same as that of each partition

of this data object. The request probability is proportional to the popularity of the data object
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(ϕ(·)).

rij = k1 · ϕij(·) (2.6)

where k1 is a certain coefficient.

The popularity of a data object at epoch t is ϕtij(·). Then, the popularity of the data object

at epoch t+ 1 can be calculated based on ϕtij(·):

ϕt+1
ij (bt+1

ai , vt+1
ij ) = ϕtij(b

t
ai , v

t
ij) + ϕtij((b

t+1
ai − b

t
ai), (v

t+1
ij − v

t
ij)) (2.7)

Hence, the request probability at epoch t+ 1 can be estimated at epoch t based on Formulas (2.5),

(2.6) and (2.7). The cloud can create or delete the replicas at epoch t for epoch t+ 1 according to

the calculated replication degree based on the estimated request probability rij at epoch t.

2.1.1.3 Nonuniform Machine Failures

Machines in a storage system may experience nonuniform failure rates due to different

hardware/software compositions and configurations. Assume replicas of each data object are placed

on machines with no concern for individual machine failures. Let p1, ..., pN be the failure probabilities

of N servers in the cloud, respectively. Based on the work in [139], the expected data object failure

probability is the same as that on uniform failure machines with per-machine failure probability

equaling
∑N
i=1 pi
N . We use pnon to denote the expected probability of data loss in nonuniform machine

failures. Then,

pnon = (

n∑
i=1

m∑
j=1

M · (
N∑
k=1

pk/N)dij )/(m · n) (2.8)

2.1.1.4 Availability Maximization Problem Formulation

In a cloud system with the co-existence of correlated and non-correlated (uniform and

nonuniform) machine failures, the data will be lost if any type of failures occurs. Recall that

pcor (Formula (2.2)), puni (Formula (2.4)) and pnon (Formula (2.8)) are the probabilities of a data

object loss caused by correlated machine failures, uniform machine failures, and nonuniform ma-

chine failures (at epoch t), respectively. Hence, the probability of data loss caused by correlated and

21



non-correlated machine failures is

Pf = w1 · pcor + w2 · puni + w3 · pnon (

3∑
i=1

wi = 1) (2.9)

where w1, w2, and w3 are the probabilities of the occurrence of each type of machine failures, re-

spectively.

We maximize the data availability by minimizing the expected request failure probability

with the consideration that different data objects have different popularities. To achieve this goal,

we present a nonlinear programming model with multiple constraints to determine the replication

degree of each data object.

Given the data object popularities and data object sizes, our goal is to find the optimal

replication degree of each data object such that the expected request failure probability (denoted

by P̄r) can be minimized. Each application purchases a certain storage space in public clouds.

Also, in private clouds, different applications may be assigned different storage spaces based on their

priorities. Thus, the storage space constraint for each application is necessary and important due to

the limited precious storage mediums. Thus, we formalize our problem as the following constrained

optimization problem:

min P̄r =

n∑
i=1

m∑
j=1

rij ·M · (Pf )dij

s.t.

m∑
j=1

sij · dij ≤ Ki (i = 1, ..., n)

(2.10)

where Ki (i = 1, ..., n) is the total space capacity for application i, and sij is the size of data object

Dij .
∑m
j=1 sij ·dij is the total storage consumption of all the data objects belonging to application i.

The optimization objective is to minimize the expected request failure probability and the constraint

is to ensure that the storage consumption of an application does not exceed its space capacity.

2.1.2 Consistency Maintenance Cost Minimization

In this section, we formulate the problem of minimizing consistency maintenance cost caused

by data replication. We use Cc to denote the total consistency maintenance cost of all replicas in the

cloud storage system. We first introduce how to calculate Cc. Previous work [68] indicates that the
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data object write overhead is linear with the number of data object replicas. Then, the consistency

maintenance cost of a partition can be approximated as the product of the number of replicas of

the partition and the average communication cost parameter (denoted by δcom) [28], i.e., dij · δcom.

Hence, the total consistency maintenance cost of all data objects is

Cc =

n∑
i=1

m∑
j=1

(M · dij) · δcom (2.11)

The fixed average communication cost (δcom) can be calculated as in [128]:

δcom = E[
∑
i,j

su · dis(Si, Sj) · σ] (2.12)

where su is the average update message size, dis(Si, Sj) is the geographic distance between the

server of the original copy Si and a replica server Sj , and σ is the average communication cost per

unit of distance. We adopt the method in [28] to calculate the geographic distance between servers.

We present the details of this method below.

This method uses a 6-bit number to represent the distance between servers. Each bit

corresponds to the location part of a server, i.e., continent, country, datacenter, room, rack and

server. Starting with the most significant bit (i.e., the leftmost bit), each location part of both

servers are compared one by one to compute the geo-similarity between them. The corresponding

bit is set to 1 if the location parts are equivalent, otherwise it is set to 0. Once a bit is set to 0, all less

significant bits are automatically set to 0. For example, suppose Si and Sj are two arbitrary servers,

and the distance between them is represented as 111000 (as shown below). Then, it indicates that

Si and Sj are in the same datacenter but not in the same room.

continent country datacenter room rack server

1 1 1 0 0 0

The geographic distance is obtained by applying a binary “NOT” operation to the geo-similarity.

That is,

111000 = 000111 = 7 (decimal)
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Thus, the optimization problem for consistency maintenance cost can be formulated as follows:

min Cc =

n∑
i=1

m∑
j=1

(M · dij) · δcom

s.t.

m∑
j=1

sij · dij ≤ Ki (i = 1, ..., n)

(2.13)

2.1.3 Storage Cost Minimization

Different applications require different storage mediums (e.g., disk, SSD, EBS) to store data.

Different mediums have different costs per unit size. For example, in the Amazon web cloud service,

the prices for EBS and SSD are $0.044 and $0.070 per hour, respectively. After satisfying the appli-

cations’ storage requirements on different storage mediums, we need to decide the storage mediums

for their additional replicas for enhanced data availability. Different applications have different S-

LAs with different associated penalties. The applications with higher SLA violation penalties should

have higher priorities to meet their SLA requirements in order to reduce the associated penalties.

Therefore, the additional replicas of data objects of higher-priority applications should be stored in

a faster storage medium. On the other hand, in order to save storage cost, the additional replicas

of data objects of lower-priority applications should be stored in a lower and less expensive storage

medium. We use bpi to denote the priority of application i; higher bpi means higher priority. Since

faster storage mediums are more costly, for data objects of high priority applications, we hope to

store more data partitions in faster storage mediums in order to satisfy more requests per unit time

hence increase data availability [28]. As a result, to determine the storage medium used for stor-

ing additional replicas, we define a priority function ψ(·) of a data object based on its application

priority and its size:

ψij(·) = γ · bpi + η/sij (2.14)

where γ and η are the weights for application priority and the size of the data object. The size of the

data object can be changed due to write operation. The priority values are classified to a number of

levels, and each level corresponds to a storage medium. Thus, the unit storage cost of a data object

equals the unit cost of its mapped storage medium, denoted by csij , which is proportional to the
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priority value of a data object (ψij(·)).

csij = k2 · ψij(·) (2.15)

where k2 is a certain coefficient.

The priority value of a data object at epoch t is ψtij(·). Hence, the priority value of the data

object at epoch t+ 1 can be estimated based on the priority value at epoch t:

ψt+1
ij (bt+1

pi , st+1
ij ) = ψtij(b

t
pi , s

t
ij) + ψtij((b

t+1
pi − b

t
pi), (s

t+1
ij − s

t
ij)) (2.16)

Hence, the unit storage cost of a data object at epoch t+ 1 can be estimated at epoch t based on

Formulas (2.14), (2.15) and (2.16). The cloud can determine the storage mediums for data objects

at epoch t for epoch t+ 1 based on the estimated unit storage cost at epoch t.

The storage cost of a data object is related to its storage medium, its size and the number

of its replicas. Different storage mediums have different unit costs, and different data objects have

different sizes and replication degrees. We minimize storage cost by minimizing the expected cost for

storage mediums. We examine expected storage cost minimization by determining the replication

degree for each data object. To achieve this goal, we present a nonlinear programming approach

with multiple constraints that can be used to obtain a policy.

Given the applications of data objects and the data object sizes, our goal is to find the

optimal replication degree for each data object that minimizes storage cost. Hence, we formalize

our problem as the following constrained optimization problem:

min Cs =

n∑
i=1

m∑
j=1

(sij · dij · csij · T )

s.t.

m∑
j=1

sij · dij ≤ Ki (i = 1, ..., n)

(2.17)

where T is the time duration of an epoch.

2.1.4 Problem Formulation and Solution

We consider additional three threshold constraints for request failure probability (P thr ),

consistency maintenance cost (Cthc ) and storage cost (Cths ). The probability of expected request
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failure must be no larger than a threshold P thr . This constraint is used to ensure that the expected

request failure probability is not beyond a threshold, which serves the goal of achieving high data

availability. The constraint on the consistency maintenance cost is to ensure that the consistency

maintenance cost in one epoch is no larger than a threshold, Cthc . The storage cost in one epoch

is no more than threshold Cths . The constraints on both consistency maintenance cost and storage

cost are to ensure that the cost caused by replication is at a low level, which makes the system

more efficient and economical. By combining Formulas (2.10), (2.13) and (2.17) and the additional

constraints, we can build a nonlinear programming model (NLP) for the global optimization problem

as follows:

min {P̄r + Cc + Cs} =

n∑
i=1

m∑
j=1

(rij ·M · (Pf )dij )

+

n∑
i=1

m∑
j=1

(M · dij) · δcom +

n∑
i=1

m∑
j=1

(sij · dij · csij · T )

(2.18)

s.t.

m∑
j=1

sij · dij ≤ Ki (i = 1, ..., n) (2.19)

n∑
i=1

m∑
j=1

rij ·M · (Pf )dij ≤ P thr (2.20)

n∑
i=1

m∑
j=1

(M · dij) · δcom ≤ Cthc (2.21)

n∑
i=1

m∑
j=1

(sij · dij · csij · T ) ≤ Cths (2.22)

The objective is to minimize the request failure probability, the consistency maintenance cost and

storage cost. The optimization constraints are used to ensure that the space capacity of data objects

belonging to each application is not exceeded, the probability of expected request failure is no more

than a threshold P thr , the consistency maintenance cost is no more than threshold Cthc , and the
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storage cost in one epoch is no more than threshold Cths .

Theorem 3.1. The relaxed NLIP optimization model is convex.

Proof Inequs. (2.19), (2.21), (2.22) are linear inequalities, and they define convex regions.

The exponential function P
dij
f in Inequ. (2.20) is convex, and the sum (i.e.,

∑n
i=1

∑m
j=1 rij ·m·(Pf )dij )

of convex functions is a convex function. Thus, the constraint (2.20) defines a convex set. All the

constraints define convex regions, and the intersection of convex sets is a convex set. Thus, the region

of the optimization problem is convex. Hence the relaxed NLIP optimization model is convex.

Therefore, Theorem 3.1 holds.

We then solve this optimization problem. For analytical tractability, we first relax the prob-

lem to a real-number optimization problem in which d11, ..., d1m, ..., dn1, ..., dnm are real numbers,

and derive the solution for the real-number optimization problem. Then, we use integer rounding

to get the solution for practical use. Specifically, we adopt the approach from [139] to round each

dij to its nearest integer while all dij ’s smaller than 1 are rounded to 1. By relaxing the problem

to real-number optimization problem, the optimal solution should always use up all the available

storage space (i.e., Ki) for each application [139].2 Thus, we have

m∑
j=1

sij · dij = Ki (i = 1, ..., n) (2.23)

where Ki is the space capacity for application i. For the real-number optimization problem, we use

Lagrange multipliers to derive the solution. Since there are n+ 3 constraints, we use the multipliers

λ1, λ2, ..., λn+3 to combine the constraints and the optimization goal together into the Lagrangian

2The storage cost may increase as storage space increases, but it also depends on the storage media for storing the
data, thus the claim that the space constraint holds at equality does not contradict the main hypothesis (cost-effective)
of the proposed approach.
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function

Λ(d11, ..., d1m, ..., dn1, ..., dnm, λ1, λ2, ..., λn+3)

=

n∑
i=1

(

m∑
j=1

rij ·M · (Pf )dij +

m∑
j=1

(M · dij) · δcom

+

m∑
j=1

(sij · dij · csij · T ) + λi(

m∑
j=1

sij · dij −Ki))

+ λn+1(

n∑
i=1

m∑
j=1

rij ·M · (Pf )dij − P thr )

+ λn+2(

n∑
i=1

m∑
j=1

(M · dij) · δcom − Cthc )

+ λn+3(

n∑
i=1

m∑
j=1

(sij · dij · csij · T )− Cths )

(2.24)

where Ki =
∑m
j=1 sij · dij . The critical values of Λ is achieved only if its gradient is zero. Based on

Theorem 3.1, the NLP optimization problem is convex. Thus, the gap between the relaxed problem

and its dual problem is zero [24]. Also, the object function of the NLP model is derivable, thus the

gradients of λ exist. We can get the solution for the optimization problem based on the Lagrange

dual solution. Considering that the popularities and importance of data objects usually do not

change much within a short period of time, we can choose larger value for T to avoid computation

overhead, and also use IPOPT [8, 124] (a software library for large scale nonlinear optimization) to

solve the large-scale nonlinear optimization problem, which make MRR more practical.

2.2 The MRR Replication Scheme

In Section 2.1.4, we calculate the optimal replication degree of each data object so that

the request failure probability, consistency maintenance cost and storage cost are minimized in a

cloud system with both correlated and non-correlated machine failures. The next problem is how to

assign the replicas to nodes, which is of importance for increasing the data availability [58]. Recall

that in Section 2.1.1, we introduced BIBD-based file replication in Copyset Replication that can

handle correlated machine failures. Though the BIBD-based method can be used for replication to

handle correlated machine failures, it requires a constant replication degree and cannot be used for

replicating data with various replication degrees of different data objects. Our proposed MRR can
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deal with the problems. We present the details of MRR below.

Algorithm 1: Pseudocode of the MRR algorithm.

1 Compute the replication degree for each data object using the NLP model (Section
2.1.4)

2 Rank the replication degrees in ascending order d1, ..., dl
3 for i← 1 to l do
4 Group data objects with di together (Di)
5 Use BIBD-based method to generate FTSs; each FTS has nodes from different

datacenters but within a certain geographic distance
6 Store each chunk’s replicas of data objects with di to all nodes in an FTS with di

7 return

Algorithm 1 shows the pseudocode of the MRR replication algorithm. For particular and

arbitrary i and j, the replication degree dij of data Dij can be obtained from the NLP optimization

model in Section 2.1.4. To reduce data loss in both correlated and non-correlated machine failures,

MRR first ranks these replication degrees in ascending order (i.e., d1, d2, ..., dl). For a given replica-

tion degree di (i = 1, 2, ..., l), MRR first groups the data objects with replication degree di together

(denoted by Di), and counts the number of data objects with replication degree di (denoted by Nr
Di

).

To handle the problem of varying replication degrees, MRR partitions all nodes to l groups and then

conducts Copyset Replication [42] to assign chunks with replication degree di to the ith node group

(i = 1, 2, ..., l). For load balance, the number of nodes in each group is proportional to the number

of replicas that will be stored in the group. Accordingly, MRR assigns |N · NrDi
·di∑l

i=1N
r
Di
·di
| nodes to

data group Di. MRR then uses the BIBD-based method to generate FTSs for each group of nodes.

Specifically, MRR determines λ in Section 2.1.1.1 based on the load balancing requirement and then

uses the BIBD-based method for (N,R, λ), where N is the number of the nodes in a node group and

R is the replication degree of the group (di). The nodes in each FTS are required to be from different

datacenters and within a certain geographic distance between each other. Distributing replicas over

different datacenters can avoid data loss due to machine failures (e.g., caused by power outages) for

data reliability [1]. Limiting the distances between replica nodes for a data chunk constrains the

consistency maintenance cost. MRR replicates the chunks of each data object to all nodes in an

FTS.3 Figure 2.1 illustrates an example to show the design of MRR. In the example, d1 = 2, d2 = 3,

and d3 = 4. In the left most block, each FTS contains two chunks of a data object. Each FTS

3Although putting all replicas of a chunk to the nodes in an FTS can bring about the cost of inter-rack transfer
(across oversubscribed switches), it can significantly reduce the probability of data loss caused by correlated machine
failures by using BIBD-based method [42].
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Figure 2.1: Architecture of MRR for cloud storage fault-tolerant sets (FTSs).

overlaps with every other FTS with at most one server. This helps reduce the probability of data

loss in correlated machine failures and balance the load. For those data objects with replication

degree 2, the chunks of a data object will be stored to the nodes in an FTS in the left most block.

In the middle block, each FTS contains three chunks of a data object. In the right most block, each

FTS contains four chunks of a data object.

Recall that each data priority value corresponds to a storage medium. We assume that all

servers have all types of storage mediums, and we need to determine which medium to use for a given

priority on a given server. When replicating a chunk to a node, MRR chooses the storage mediums

for the chunks based on data objects’ priority calculated by Formula (2.14). Data objects with higher

priority values will be stored to faster and more expensive storage mediums (e.g., Memory, SSD),

and data objects with lower priority value will be stored to slower and cheaper storage mediums

(e.g., disk). The constraints (2.19) is to ensure that storage requirements of data objects do not

overfill the servers.

The design of MRR can reduce the probability of data loss in both correlated and non-

correlated machine failures. MRR uses the BIBD-based method to reduce the probability of data

loss in correlated machine failures by minimizing the number of FTSs, and uses the replication

degree determined by NLP (in Section 2.1.4) with multiple constraints to maximize data availability

in correlated and non-correlated machine failures and minimize the cost caused by replication.

2.3 Performance Evaluation

We conducted the numerical analysis based on the parameters in [42] (Table 2.3) derived

from the system statistics from Facebook, HDFS and RAMCloud [11, 30, 35, 42, 87, 111], and also

conducted real-world experiments on Amazon S3. The distributions of file read and write rates in

our analysis and tests follow those of the CTH trace [85], which is provided by Sandia National
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Table 2.3: Parameters from publicly available data [42].

System Chunks per node Cluster size Scatter width
Facebook 10000 1000-5000 10
HDFS 10000 100-10000 200
RAMCloud 8000 100-10000 N-1

Laboratories that records 4-hour read/write log in a parallel file system. In the following, we

introduce our numerical analysis results and real-world experimental results, respectively.

2.3.1 Numerical Analysis Results

We conducted numerical analysis under various scenarios. We compared our proposed repli-

cation scheme MRR with other three replication schemes: Random Replication (RR) [42], Repli-

cation Degree Customization (RDC) [139] and Copyset Replication [42] (Copyset). RR places the

primary replica on a random node (say node i) in the entire system, and places the secondary replicas

on (R-1) nodes around the primary node (i.e., nodes i+1, i+2,...).4 RDC derives replication degree

for each object with the consideration of data object popularity to maximize the expected data

availability for non-correlated machine failures. Copyset splits the nodes into a number of copysets,

and constrains the replicas of every chunk to a single copyset so that it can reduce the frequency

of data loss by minimizing the number of copysets for correlated machine failures. The number

of nodes that fail concurrently in each system was set to 1% of the nodes in the system [42, 99].

Since this rate is the maximum percentage of concurrent failure nodes in real clouds (i.e., worst

case) [35, 44, 53], it is reasonable to see higher probabilities of data loss and lower expected data

availability in our analytical results than the real results in current clouds. The distributions of file

popularity and updates follow those of the CTH trace. We used the normal distribution with mean

of 10 and standard deviation of 1 to generate 10 unit costs for different storage mediums. Compared

to uniform machine failures, nonuniform and correlated machine failures are more realistic due to

different hardware/software compositions and configurations [139]. Thus, we set w1 = 0.4, w2 = 0.2

and w3 = 0.4 in Equ. (2.9), respectively. We randomly generated 6 bit number from reasonable

ranges for each node to represent its location, as explained in Section 2.1.2. Table 4.2 shows the

parameter settings in our analysis unless otherwise specified.

We first calculate the probability of data loss for each method.5 Specifically, we used For-

4RR is based on Facebook’s design, which chooses secondary replica holders from a window of nodes around the
primary node.

5Many datacenter operators prefer to low probability of any incurring data loss at the expense of losing more data
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Figure 2.2: Probability of data loss vs. number of nodes (R = 3 for RR and Copyset).
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Figure 2.3: Probability of data loss vs. number of nodes (R = 2 for RR and Copyset).

mula (2.9) for MRR, Formula (2.2) for Copyset, Formula (2.3) for RR, and Equ. (2.9) with w1 = 0,

w2 = 0.4 and w3 = 0.6 for RDC. Figure 2.2(a), 2.2(b) and 2.2(c) show the relationship between

the probability of data loss and the number of nodes in the Facebook, HDFS and RAMCloud envi-

ronments, respectively. We find that the result approximately follows MRR<Copyset<RDC<RR.

The probability of data loss in Copyset is higher than that in MRR. This is because MRR considers

non-correlated machine failures which are not considered in Copyset. Specifically, MRR considers

the failure probability of individual machines in determining replication degree based on data object

popularity. RDC generates a higher probability of data loss than MRR and Copyset because it ne-

glects reducing the probability of data loss caused by correlated machine failures which often occur

in large-scale storage systems. The probability of data loss in RR is much higher than MRR and

Copyset, and also higher than RDC. This is due to two reasons. First, RR places the copies of a

chunk on a certain number (i.e., R) of different nodes. Any combination of R nodes that fail simul-

taneously would result in data loss in correlated machine failures. Unlike RR, MRR and Copyset

split the nodes into FTSs consisting of a certain number (i.e., R) of nodes, and constrain the copies

of a chunk into a single FTS. Then, they lose data only if all the nodes in an FTS fail simultaneously.

in each event due to high cost of each incident of data loss [42].
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Second, MRR and RDC consider data popularity to increase the expected data availability, which

however is not considered in RR. To further verify MRR’s performance in reducing the probability

of data loss, we changed the value of R from 3 to 2. Figure 2.3 shows the relationship between the

probability of data loss and the number of nodes with R = 2. Figure 2.3 mirrors Figure 2.2 due

to the same reasons. Comparing Figure 2.3 to Figure 2.2, we find that the probability of data loss

decreases as the number of replicas R increases. This is because the more the replicas for a chunk,

the lower the probability that all the machines storing the chunk fail simultaneously, and thus the

lower the probability of the chunk being lost.

We then calculate the availability of requested data object by 1− P̄r, and P̄r is calculated by

Formula (2.10). Figure 2.4(a), 2.4(b) and 2.4(c) show the relationship between the availability of re-

quested data objects and the number of nodes in the Facebook, HDFS and RAMCloud environments,

respectively. We see that in all figures, the result generally follows MRR>Copyset>RDC>RR. The

availability of requested data objects in Copyset is lower than that in MRR due to two reason-

s. First, MRR considers data object popularity when determining the replication degree for each

chunk, which however is not considered in Copyset. By creating more replicas for popular data

objects and less replicas for unpopular data objects, MRR can satisfy the demands of data objects

with different popularities and increase the overall expected availability of requested data object-

s. Second, MRR reduces data loss in both correlated and non-correlated machine failures, while

Copyset only minimizes the data loss in correlated machine failures. The availability of requested

data objects in Copyset is higher than that in RDC. This is due to the reason that RDC cannot

reduce the probability of data loss caused by correlated machine failures and thereby increases the

probability of data loss, which decreases the availability of requested data objects. The availability

of requested data objects in RR is the lowest because RR places the copies of a chunk on a certain

number (i.e., R) of nodes and any combination of R nodes that fail simultaneously would cause data

loss. Also, it does not consider data popularity as RDC, which is important to increase the expected

data availability.

We also varied R from 3 to 2 to better verify the availability of MRR. Figure 2.5 shows the

relationship between the availability of requested data objects and the number of nodes with R = 2.

Figure 2.5 mirrors Figure 2.4 due to the same reasons. Comparing Figure 2.5 with Figure 2.4, we

find that the availability of requested data objects increases as the number of replicas R increases.

This is because the more replicas for a data object, the lower the probability of the data object
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Figure 2.4: Availability of requested data objects vs. number of nodes (R = 3 for RR and Copyset).
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Figure 2.5: Availability of requested data objects vs. number of nodes (R = 2 for RR and Copyset).

being lost, thus the higher the availability of the requested data object.

We then used Formula (2.17) to calculate the storage cost based on the sizes, replication

degrees, and storage medium unit costs of data objects for MRR. For the other three method-

s, we randomly choose storage mediums for data objects and do not minimize the storage cost

with space capacity constraint (
∑n
i=1

∑m
j=1 sij · dij ≤

∑n
i=1Ki) for RDC. Figure 2.6(a), 2.6(b)

and 2.6(c) show the relationship between the storage cost and the number of nodes in the Facebook,

HDFS and RAMCloud environments, respectively. The result in all three figures generally follows

RR≈Copyset>RDC>MRR. The storage cost in RDC is higher than that in MRR. This is because

MRR stores data objects into different storage mediums based on the priority of their applications,

the sizes, and the replication degrees of data objects to minimize the total storage cost. The stor-

age costs in Copyset and RR are higher than RDC and much higher than MRR. RDC reduces the

replicas of unpopular data objects, thus reducing storage cost. Copyset and RR neither consider the

different storage mediums nor reduce the replicas of unpopular data objects to reduce storage cost.

These results indicate the lower storage cost of MRR by considering both the data popularity and

storage medium cost in replication. Therefore, the storage costs in Copyset and RR are higher than
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that in RDC and much higher than that in MRR.
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Figure 2.6: Storage cost vs. number of nodes (R = 3 for RR and Copyset).
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Figure 2.7: Consistency maintenance cost vs. number of nodes (R = 3 for RR and Copyset).

We used Formula (2.13) to calculate the consistency maintenance cost of each method

based on the geographic distance and replication degrees of data objects. Figure 2.7(a), 2.7(b)

and 2.7(c) show the relationship between the consistency maintenance cost and the number of nodes

in the Facebook, HDFS and RAMCloud environments, respectively. In these figures, the results

of Copyset and RR are overlapped and MRR generates the lowest consistency maintenance cost.

The consistency maintenance costs in Copyset and RR are higher than MRR because MRR limits

the geographic distance between the replica nodes of a chunk and the number of replicas, thereby

reducing the consistency maintenance cost. However, Copyset and RR neglect geographic distances.

RDC produces higher consistency maintenance cost than Copyset and RR. RDC neglects geographic

distance and it also generates more replicas for popular data objects. These results indicate MRR

generates much lower consistency maintenance cost than other methods.
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Figure 2.8: Probability of data loss vs. number of nodes on Amazon S3 (R = 3 for RR and Copyset).
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Figure 2.9: Probability of data loss vs. number of nodes on Amazon S3 (R = 2 for RR and Copyset).

2.3.2 Real-world Experimental Results

We conducted experiments on the real-world Amazon S3. We simulated the geo-distributed

storage datacenters using three regions of Amazon S3 in the U.S. In each region, we created the same

number of buckets, each of which simulates a data server. The number of buckets was varied from 5

to 25 with step size of 5 in our test. We distributed 5000 data objects to all the servers in the system.

We used the distributions of read and write rates from the CTH trace data to generate reads and

writes. The requests were generated from servers in Windows Azure eastern region. We consider

the requests targeting each region with latency more than 100ms as failed requests (unavailable data

objects).6 We used the parameters in Table 4.2 except p and N . In this test, N is the total number

of simulated data servers in the system and p follows the actual probability of a server failure in the

real system. We used the actual price of the data access of Amazon S3 to calculate the storage cost.

6Since it is hard to generate permanent failures on Amazon S3 and the network latency is low based on [6], we think
the failure of data request within U.S. is mainly caused by machine failures, and we consider the requests targeting
each region with latency longer than 100ms as failed request, which reflects the availability of data objects.
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Figure 2.10: Availability of requested data objects vs. number of nodes on Amazon S3 (R = 3 for RR and
Copyset).
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Figure 2.11: Availability of requested data objects vs. number of nodes on Amazon S3 (R = 2 for RR and
Copyset).

Figure 2.8(a) and 2.8(b) show the relationship between the probability of data loss and the

number of nodes on Amazon S3 when the scatter width (S) equals to 2 and 4, respectively. We

see that the result approximately follows MRR<RDC<Copyset<RR. Our numerical result shows

that MRR<Copyset<RDC<RR. Both results confirm that MRR generates the lowest probability

of data loss. RDC generates higher probability of data loss than Copyset in the numerical analysis

but generates lower probability of data loss than Copyset in the experiments. This is because RDC

cannot handle correlated machine failures, and the failure rate of correlated machine failures is 1%

in the numerical analysis but our real-world experiment has fewer correlated machine failures. As

a result, RDC generates a relatively higher probability of data loss in the numerical analysis. We

also see that scatter width 2 produces lower probability of data loss than scatter width 4. This is

because a large scatter width increases the number of FTSs and thus increases the probability of

data loss.

To further verify the MRR’s performance in reducing data loss probability, we then decreased
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Figure 2.12: Storage cost and consistency maintenance cost vs. number of nodes on Amazon S3 (R = 3 for
RR and Copyset).

the value of R to 2 in Figure 2.9. Figure 2.9 shows the relationship between the probability of data

loss and the number of nodes on Amazon S3 with R = 2. Figure 2.9 mirrors Figure 2.8 due to

the same reasons. Comparing Figure 2.9 with Figure 2.8, we find that the probability of data loss

decreases as R increases. This is because the larger the number of replicas for a chunk, the lower

the probability that all the machines storing the chunk fail concurrently, and thus the lower the

probability that the chunk is lost.

Figure 2.10(a) and 2.10(b) show the relationship between the availability of requested data

objects and the number of nodes on Amazon S3 when the scatter width equals to 2 and 4, respectively.

We see that the result follows MRR>Copyset>RDC>RR, which is consistent with the result in

Figure 2.4 due to the same reasons. We also see that scatter width 2 produces higher availability

than scatter width 4. This is because a large scatter width increases the number of FTSs and thus

increases the probability of data loss and reduces the data availability. Therefore, it is important to

choose an appropriate scatter width to achieve a tradeoff between load balance and data availability

as mentioned in Section 2.1.1

We also decreased R to 2 in Figure 2.11. Figure 2.11 mirrors Figure 2.10 due to the same

reasons. Comparing Figure 2.11 with Figure 2.10, we find that the availability of requested data

objects increases as R increases due to the similar reasons explained in the comparison of Figure 2.9

and 2.8.

We then regard Copyset as a baseline and calculate the ratio of the storage cost of each

of the other methods over Copyset’s storage cost. Figure 2.12(a) shows the storage cost ratio of

different schemes. We see that the result follows RR≈Copyset>RDC>MRR, which is consistent

with that in Figure 2.6 due to the same reasons. Figure 2.12(b) shows the ratio of the consistency

38



maintenance cost of each method over Copyset’s consistency maintenance cost. We see that the

result follows RDC>RR≈Copyset>MRR, which is consistent with that in Figure 2.7 due to the

same reasons.

2.4 Conclusion

This chapter presents a low-cost multi-failure resilient replication scheme (MRR) for high

data availability in cloud storage. Specifically, the chapter first introduces an NLIP model for MRR,

which formulates a problem that determines the replication degree of each data object so that the

request failure probability, consistency maintenance cost and storage cost are minimized in both

correlated and non-correlated machine failures. Then, the chapter describes the design of MRR

based on the problem solution derived from the NLIP model. Finally, the chapter describes the

numerical analysis and real-word experiments on Amazon S3, which show that MRR outperforms

other replication schemes in different performance metrics.
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Chapter 3

CORP: Cooperative Opportunistic

Resource Provisioning for

Short-Lived Jobs in Cloud Systems

In this chapter, we introduce our cooperative opportunistic resource provisioning scheme

(CORP) for short-lived jobs in cloud systems. We first introduce the background of deep learning.

Next, we describe the cooperative opportunistic resource provisioning problem in clouds. Then, we

present the design of CORP. Experimental results based on a real cluster and Amazon EC2 show

that CORP achieves high resource utilization and low SLO violation rate compared to previous

resource provisioning schemes.

3.1 Background

In this section, we review the background of deep learning. Artificial neural networks

consist of a lot of homogeneous computing units called neurons with multiple inputs and a single

output. These are typically connected in a layer-wise manner with the output of neurons in a layer

connected to all neurons in the next upper layer (see Figure 1.5). Deep neural networks have multiple

layers, which can enable hierarchical feature learning and gives the potential of modeling complex

data with fewer units than a similarly performing shallow network [25]. The output of a neuron
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in a layer, called the activation, is computed as a function of its input. The activation function

associated with all neurons in the network is a predefined non-linear function. Typically, a sigmoid

or hyperbolic tangent is used for activation function. Deep neural networks are typically trained

by back propagation using gradient descent. Stochastic gradient, a variant of gradient descent, is

always used for scalable training in that it requires less cross-machine communication [31].

Compared with other prediction methods, deep learning only needs the raw data for training

without requiring sufficient high quality and truly representative past data being available [72].

Also, compared to other machine learning methods (e.g., Support Vector Machine (SVM), Bayesian

approaches, Decision Trees, etc.), deep learning has better accuracy in many applications [76, 112,

134, 136], and it can more accurately predict the real resource demands with the same given past

data. It achieves high accuracy by multiple training epoches. It reprocesses the training data set each

time until the validation set error converges to a desired value. In addition, deep neural networks

with multiple hidden layers are capable of modeling complex data with greater efficiency and they

are shown to have an advantage over shallow machine methods [39]. Finally, deep learning does not

require the existence of patterns in the historical data, which is required by the methods such as

fast Fourier transform [34, 108]. Deep neural networks has been successfully applied to fields such

as language modeling, vision and automatic speech recognition.

3.2 Cooperative Opportunistic Resource Provisioning Prob-

lem

The physical machines (PMs) are deployed in a cloud system, and their resources are allo-

cated to virtual machines (VMs). The VM capacity comprises of multiple types of resource (e.g.,

CPU, MEM and storage) and their resources are allocated to jobs based on job workloads. In this

dissertation, we consider the problem of allocating allocated but unused resources in VMs to jobs for

achieving high resource utilization and low SLO violation rate. To increase the resource utilization,

the allocated but unused resource can be reallocated to jobs with a certain probability. Also, for

jobs with different resource intensities (e.g., a job with high demand on CPU and a job with a high

demand on MEM), they can be allocated with the unused resources in a VM together to reduce

resource fragmentation in order to further increase resource utilization.

Suppose there are Nv VMs, and l types of resources (e.g., CPU, MEM, storage) in the
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system. We use vi to denote the i-th VM and use Cij to denote the capacity for the type j resource

of VM vi. Assume the time is split into slots, denoted by T = {t1, t2, ...}. Let nt be the number

of jobs submitted at time slot t. Denote rij,t (i ∈ {1, ..., nt}, j ∈ {1, ..., l}) as the amount of the

type j resource allocated to job Ji at time slot t, ruij,t in rij,t, as the amount of unused type j

resource allocated to job Ji at time slot t, dij,t as job Ji’s demand on type j resource at time slot

t. Therefore, rij,t = ruij,t + dij,t. For easy reference, Table 3.1 lists the main notations of CORP in

this dissertation.

Table 3.1: Notations in CORP.

J A set of jobs

Ji The ith job in J

l Number of resource types

Ua,t Utilization of all resources at time t

Np Total number of PMs in the cloud system

Nv Number of VMs in an area of the cloud system

θ Significance level

η Confidence level

Cij Capacity of vi’s type j resource

nt Number of jobs submitted at time t

ruij,t Unused type j resource allocated to Ji at time t

Uj,t System’s utilization of type j resource at time t

wj,t Type j resource wastage ratio at time t

wa,t Overall resource wastage ratio at time t

rij,t Amount of type j resource allocated to Ji at time t

dij,t Ji’s demand on type j resource at time t

h Number of layers in deep neural network

Nn Number of units per layer

Ŷi Predicted Ji’s unused resource using deep neural network

S The set of states in HMM

H Number of states in HMM

V The set of possible observations

M Number of observations

qt The state at time t

A The state transition probability matrix

B The observation probability matrix

π The initial state distribution

O Observation sequence

T The length of observation sequence

γt(i) Probability of being in state Si at time t given the observation sequence O and the model λ

αt(i) Forward variable

βt(i) Backward variable

σ̂ Estimated SD for prediction errors

Pth Probability threshold for prediction error
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Hence, in the system, the resource utilization of type j resource at time slot t is

Uj,t =

∑nt
i=1 dij,t∑nt
i=1 rij,t

(3.1)

The overall resource utilization for all resources at time slot t is

Ua,t =

∑l
j=1(ωj

∑nt
i=1 dij,t)∑l

j=1(ωj
∑nt
i=1 rij,t)

(3.2)

where ωj is the weight for type j resource, and
∑l
j ωj = 1. The reason for setting different weights for

different resource types is that sometimes some resources are more important than other resources.

For example, CPU and MEM are more important than storage because storage is not the bottleneck

resource [34], thus the weights of CPU and MEM are larger than storage. The type j resource

wastage ratio at time slot t is

wj,t =

∑nt
i=1(rij,t − dij,t)∑nt

i=1 rij,t
(3.3)

The overall resource wastage ratio for all resources at time slot t is

wa,t =

∑l
j=1(ωj

∑nt
i=1(rij,t − dij,t))∑l

j=1(ωj
∑nt
i=1 rij,t)

(3.4)

Our objective is to minimize wa,t, which will be shown in our formulated problem below.

3.2.1 Objective

Our problem of the VM resource allocation to jobs can be stated as below.

Problem Statement: Given a certain amount of resources (e.g., CPU, MEM, etc.), re-

source demands of each job, resource capacity constraints of VMs, how to allocate the VM resources

to jobs to achieve high resource utilization while avoiding SLO violations as much as possible?

We denote xik = {0, 1} as a binary variable representing if job Ji is assigned to VM vk. In

order to maximize resource utilization, we convert the problem of maximizing the resource utilization

to minimizing the resource wastage. We present an integer linear programming (ILP) model [70] to

minimize the resource wastage while satisfying the constraints of resource capacities of VMs.

Min{wa,t} (3.5)
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s.t. rij,t ≥ dij,t (∀i ∈ {1, ..., nt}, j ∈ {1, ..., l}) (3.6)

nt∑
i=1

xik · rij,t ≤ Rkj (∀i ∈ {1, ..., nt}, j ∈ {1, ..., l}, k ∈ {1, ..., Nv}) (3.7)

xik ∈ {0, 1} (∀i ∈ {1, ..., nt}, k ∈ {1, ..., Nv}) (3.8)

dij,t ≥ 0 (∀i ∈ {1, ..., nt}, j ∈ {1, ..., l}) (3.9)

where Rkj is the remaining type j resource of VM vk. Constraint (3.6) is to ensure that the allocated

resource meets each job’s demand on each type of resource. Constraint (3.7) is to ensure that the

amount of the allocated resource from each VM does not exceed its capacity of each resource type.

Constraint (3.9) is to ensure that job Ji’s resource demand on type j resource at time slot t is

non-negative. We can use the CPLEX linear program solver [5] to solve this linear optimization

problem.

The ILP optimization problem is an NP-hard problem and has high computational complex-

ity [92]. Therefore, we propose a heuristic method called CORP. Specifically, CORP first accurately

predicts the amount of temporally-unused allocated resource based on the historical data with the

consideration of the non-existence of pattern and fluctuations of the amount of the unused resource.

It then leverages complementarity of jobs’ requirements on different resource types, and utilizes the

packing strategy to allocate the unused resource to other jobs with a certain probability.

3.3 The Design of CORP

In Section 3.2, we describe the cooperative opportunistic resource provisioning problem and

the objective of CORP. In this section, we present the design of CORP. In the following, Section 3.3.1

presents the prediction of the amount of temporally-unused resource and Section 3.3.2 presents the
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unused resource allocation algorithm.

3.3.1 Prediction Process and Resource Preemption

In this dissertation, we use the deep learning together with HMM to accurately predict the

temporally-unused resource with the consideration of the fluctuations of the amount of the unused

resource, and then dynamically allocate the unused resource to users’ jobs. We use L to denote the

size of the window (the prediction horizon). After each time period L, we use the deep learning

technique to make the predictions for the amount of the temporally-unused resource in a time window

∆W = (t, t+ L], where t is the time when the prediction is made. After conducting the analysis of

the Google trace from our system, we chose to make the predictions for a 1 minute window because

short-lived jobs typically run minutes. We then use HMM to predict whether the amount of the

temporally-unused resource will be in the peak or valley at t + L, based on which we adjust the

predicted unused resource (e.g., CPU) by deep learning as the final predicted amount.

As shown in Figure 1.5, deep neural network utilizes multiple hidden layer structure for

hierarchical feature learning. The multiple hidden layers enable the composition of features from

lower layers, giving the potential of modeling complex data with fewer units. Compared with other

machine learning methods, deep learning has the following inherent advantages. First, deep learning

only needs the raw data for training without requiring sufficient high quality and truly representative

past data [72]. Also, deep learning has better accuracy in many applications [112,134,136], so it can

more accurately predict the real resource demands with the same given past data. More importantly,

deep learning does not require that the historical data must have patterns, which is required by the

methods like fast Fourier transform [34,108].

The prediction process of the amount of the unused resource consists of three parts: 1) pre-

dicting the amount of unused resource using deep learning with HMM; 2) Prediction with confidence

intervals; 3) Probabilistic-based resource preemption.

3.3.1.1 Predicting Unused Resource

3.3.1.1.1 Predicting Unused Resource Using Deep Learning

We use CPU as an example to illustrate the prediction of the amount of unused resource

using deep learning. Each input data contains CPU utilization of a job at each slot in last4 slots. To
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build the deep neural network, for each input, there are three steps: feed-forward evaluation, back-

propagation, weight update performed to update the model weights. In the feed-forward evaluation,

the neurons take input data and perform simple operations on the data, and pass the results on to

the up-layer neurons. In the back-propagation, the neurons calculate errors at output units and the

errors are then back-propagated for each neuron in the lower layer of the output layer. In the weight

update step, the errors are used to update the weights. Below, we introduce the details of each step.

Feed-forward evaluation: The output of each neuron i in layer d (called activation and denoted

by gi(d)) is computed as a function of its c inputs from neurons in the lower layer d − 1. Let

wij(d− 1, d) be the weight associated with a connection between neuron j in layer d− 1 and neuron

i in layer d, we have

gi(d) = F ((Σcj=1wij(d− 1, d) · gj(d− 1)) + ei) (3.10)

where ei is a bias term for the neuron. Equ. (3.10) is a sigmoid function, which is a nonlinear

function associated with all neurons in the network, and it is more accurate [71].

Back-propagation: For each neuron i in the output layer, the error terms E are computed using

the following equation:

Ei(dh) = (ti(dh)− gi(dh)) · F ′(gi(dh)) (3.11)

where t(x) is the true value of the output and F ′(x) represents the derivative of F (x). Next, these

error terms are back-propagated for each neuron i in layer d connected to m neurons in layer d+ 1

summed as follows:

Ei(d) = (

m∑
j=1

Ej(d+ 1) · wji(d, d+ 1)) · F ′(gi(d)) (3.12)

Weight updates: The error terms are used to update the weights and biases by using the following

equation:

∆wij(d− 1, d) = µ · Ei(d) · gj(d− 1), ∀j = 1, ..., c (3.13)

where µ represents the learning rate parameter, and c is the number of inputs from neurons in layer

d− 1.

The process of these three steps is repeated for each input until the entire training dataset

has been processed, which constitutes a training epoch. At the end of a training epoch, the model

prediction error is computed as a held-out validation set. Basically, the training continues for
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multiple training epochs, processing the training data set each time, until the validation set error

converges to a low value. Finally, the deep neural network is built.

The deep learning algorithm for predicting the amount of unused resource is comprised of

two parts: training and testing. For training, it first computes the hidden activation. Next, it

computes the reconstructed output from the hidden activation. Then the algorithm computes the

error gradient, and it back-propagates error gradient to update weight. For testing, the algorithm

autoencodes the input and generates the output.

After the training, the deep neural network is built. To predict the unused resource of a job at

time t+L, we input CPU utilization of a job at each slot in last 4 slots to the deep neural network,

and the output is the amount of unused CPU resource of the job. The deep learning algorithm

predicts the amount of unused resources of each job Ji in a time period, denoted by Ŷi = (r̂i1, ..., r̂il),

where r̂ij denotes the predicted amount of unused type j resource of job Ji. The resource usage of

short-lived jobs sometimes fluctuates; it reaches a peak and a valley sometimes [108], which makes

the actual amount of unused resource under fluctuations cannot be accurately predicted. To handle

this problem, CORP then uses the HMM model to predict the peak and valley occurrences of the

unused resource for prediction error correction. We present the details of the HMM model below.

Algorithm 2: Pseudocode for Predicting the Amount of Unused Resource Using Deep
Learning

Input: VMs’ unused resources at each slot within last ∆ slots Rj,ξ = (rj1,ξ, ..., rjl,ξ),
where j ∈ {1, ..., N}, ξ ∈ {t−∆, ..., t− 1}.

Output: The unused resource of each VM R̂j = (r̂j1, ..., r̂jl), j ∈ {1, ..., N}.
1 Fix a number of m hidden units, and a number of h of hidden layers.
2 for i← 1 to Nv do
3 for each Jj in vi do //Training

4 for each training iteration do
5 for each hidden layer do
6 Compute activation gu(d) from input gv(d− 1)

7 Compute error gradient //Equs. (3.11), (3.12)

8 Back-propagate error gradient to update weight
parameters //Equ. (3.13)

9 for each Jj in vi do //Testing

10 Autoencode gi and generate ĝi

11 Calculate vi’s unused resource (R̂j) by subtracting the allocated resource from the
capacity of the VM and adding the unused resource of all jobs in vi.

12 Return (R̂1, ..., R̂N )
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Figure 3.1: Hidden Markov Model with three states: over-provisioning (OP), normal-provisioning
(NP), and under-provisioning (UP).

3.3.1.1.2 Predicting Fluctuations of Unused Resource Using HMM

We use the HMM model to predict the peak and valley occurrences of unused resource. We

use CPU as an example to illustrate the process, and the method can be directly applied to other

resource types. In the HMM model, we define three observation symbols: peak, center and valley.

Peak refers to a sharp increase of the amount of unused resource; center refers to no change or a

moderate change of the amount of unused resource; valley refers to a sharp decrease of the amount

of unused resource. Given a set of historical data, let maxcpu, mcpu and mincpu be the maximum

amount, average amount and minimum amount of unused CPU resource in the historical data,

respectively. We split the interval [mincpu,maxcpu] into 3 subintervals: [mincpu,mincpu+ 1
2 (mcpu−

mincpu)], (mincpu+ 1
2 (mcpu−mincpu),mcpu+ 1

2 (maxcpu−mcpu)), [mcpu+ 1
2 (maxcpu−mcpu),maxcpu].

We call these three parts as peak, center, valley, respectively, which are used to categorize the

observation symbols of the HMM model. The corresponding (hidden) states that determine the

observation symbols are over-provisioning (OP), normal-provisioning (NP), under-provisioning (UP),

respectively (see Figure 3.1).

Denote S = {S1, ..., SH} (H = 3) as the set of states, qt as the state at t, and Q = q1q2...qT

as a state sequence. Let V = {1, ...,M} (M = 3) be the set of possible observation symbols per state,

and O = {O1, ..., OT } (Oi ∈ V, ∀i = 1, ..., T ) be the observation sequence, where M is the number

of observation symbols1 (1, 2, 3 represent “peak”, “center” and “valley” regions, respectively) and T

is the length of observation sequence. To determine the observation symbols, we consider the time

1The number of states H does not necessary equal the possible observation symbols per state M , and the HMM
model in our work is a special case.
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interval between two consecutive observation time slots j and j + 1 (j = 1, ..., T − 1) as a window,

and we divide the window into L− 1 subwindows. Let ∆j be the difference between the maximum

amount of unused resource and the minimum amount of unused resource in the window. If ∆j falls

in [mincpu,mincpu+ 1
2 (mcpu−mincpu)], then we consider the observation symbol at j+1 is valley; if

∆j falls in (mincpu+ 1
2 (mcpu−mincpu),mcpu+ 1

2 (maxcpu−mcpu)), then we consider the observation

symbol at j + 1 is center; otherwise, we consider the observation symbol at j + 1 is peak. Then, the

state transition probability matrix is

A = {aij} (aij = P{qt+1 = Sj |qt = Si}, 1 ≤ i, j ≤ H) (3.14)

where the state transition coefficients have the following properties

aij ≥ 0 (3.15a)

H∑
j=1

aij = 1 (3.15b)

The observation probability matrix B = {bj(k)} is

B = {bj(k)} (bj(k) = P{Ot = k|qt = Sj}, 1 ≤ j ≤ H, 1 ≤ k ≤M) (3.16)

where bj(k) is the probability that the observation symbol is k given the sate at t is Sj . Thus, the

initial state distribution is

π = {πi} (πi = P{q1 = Si}, 1 ≤ i ≤ H) (3.17)

Given the model λ = (A,B, π) and an observation sequence O, our goal is to find the most likely

state sequence. Specifically, we aim to maximize the expected number of correct states for the HMM.

We define γt(i) as the probability of being in state Si at time t, given the observation sequence O

and the model λ:

γt(i) = P{qt = Si|O, λ} (3.18)
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Equ. (3.18) can be simplified with the forward-backward variables as follows:

γt(i) =
αt(i)βt(i)

P (O|λ)
(3.19)

where αt(i) is the forward variable defined as

αt(i) = P (O1O2 · · ·Ot, qt = Si|λ) (3.20)

αt(i) can be solved inductively using Algorithm 3 [94].

Algorithm 3: Pseudocode for solving forward variable αt(i) inductively

1 for i← 1 to H do
2 α1(i) = πibi(O1) //Initialization

3 for t← 1 to T − 1 do //Induction

4 for j ← 1 to H do

5 αt+1(j) = [
∑H
i=1 αt(i)aij ]bj(Ot+1)

6 P (O|λ) =
∑H
i=1 αT (i) //Termination

βt(i) is the backward variable defined as

βt(i) = P (Ot+1Ot+2 · · ·OT |qt = Si, λ) (3.21)

βt(i) can be solved inductively using Algorithm 4 [94].

Algorithm 4: Pseudocode for solving backward variable βt(i) inductively

1 for i← 1 to H do
2 βT (i) = 1 //Initialization

3 for t← T − 1 to 1 do
4 for i← 1 to H do //Induction

5 βt(i) = [
∑H
j=1 aij ]bj(Ot+1)βt+1(j)

By using γt(i), we can solve for the individually most likely state qt at time t, as

qt = argmax0≤i≤M−1[γt(i)], 1 ≤ t ≤ T (3.22)

Equ. (3.22) chooses the most likely state for each t to maximize the expected number of correct states.

In implementation, we use Viterbi algorithm to find the single best state sequence (path), denoted
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by Q∗=q∗1q
∗
2 ...q

∗
L, i.e., maximizing P (Q,O|λ) which is equivalent to maximizing P (Q|O, λ) [94], and

we use the method in [113] to re-estimate the parameters A,B, π in the model.

Based on the work [54], the probability distribution of the next fluctuation observation of

the amount of unused resource can be estimated as

EPT+1(k) =

H∑
j=1

P (qT+1 = Sj |qT = q∗L) · bj(k) (k ∈ {1, ...,M}) (3.23)

We consider the observation symbol which has the highest value of EPT+1(k) as the observation

symbol of the next time T + 1, that is, k|EPT+1(k)=max
M
u=1(EPT+1(u))

.

Given the resource utilization of jobs, CORP uses HMM to predict the fluctuations of the

amount of unused resource (i.e., peak, center, valley symbols) for the next time period. Recall

that we use deep learning to perform predictions for the amount of temporally-unused resource

at the end of each window L, denoted by Ŷj . Then, we use HMM to predict the fluctuations of

the amount of unused resource and adjusts the predicted amount accordingly. We use ût+L to

represent the predicted unused resource with prediction error correction at time t for a future time

t + L. Specifically, if the predicted observation symbol of unused CPU resource falls in the valley,

CORP reduces the predicted amount by ût+L = r̂j1 −min(hcpu −mcpu,mcpu − lcpu) (suppose the

first resource type in Ŷj is CPU), where mcpu is the average value of unused CPU resource in the

historical data, hcpu is the highest amount of unused resource within a period, and lcpu is the lowest

amount of unused resource within a period. If the predicted unused CPU resource falls in the peak,

CORP makes the adjustment by ût+L = r̂j1 +min(hcpu−mcpu,mcpu− lcpu). The reasons for using

min(hcpu −mcpu,mcpu − lcpu) to correct overestimation (or underestimation) errors are as follows.

First, hcpu−mcpu and mcpu− lcpu indicate the deviation between the amount of unused resource in

peak and the average of the unused resource, and the amount of unused resource in valley and the

average of unused resource. The predicted amount may be close to mcpu. Therefore, such adjustment

can make the predicted unused resource closer to the actual amount of unused resource if it is in the

peak or valley. Second, we use min because it is more conservative for ensuring sufficient resource

being able to allocated to jobs.

51



3.3.1.2 Predicting Confidence Intervals

To ensure the accuracy of the prediction, we use a confidence interval for the probability that

the resource will be available. The confidence interval is an estimate of the range of values within

which the true value should lie with a certain confidence level (in the form of probability denoted

by η). The higher the confidence level, the wider the confidence interval, and the more conservative

the predictions. The confidence interval calculation depends on the variance of the prediction errors

and the confidence level η. Let θ = 1− η be the significance level. The confidence interval is

[ût+L − σ̂ · z θ
2
, ût+L + σ̂ · z θ

2
] (3.24)

where ût+L is the forecast for unused resource at time t for a future time t+ L, σ̂ is the estimated

standard deviation (SD) for the prediction errors, and z θ
2

is the value for the 100 · θ2 percentile in

the standard normal distribution.

In order to provide SLOs to users, predictions for a certain amount of time period is required

so that users’ jobs can complete. We generated the predictions for a time window ∆W = (t, t+ L],

where t is the time when the prediction is made, and L is the size of the window (the prediction

horizon), corresponding to the length of the observation sequence T .

After conducting the analysis of the trace from our system, we chose to make the predictions

for a 1 minute window. We performed new predictions at the end of each window. Each one is a

prediction cycle.

Based on a given confidence interval, the predicted amount of unused resource for time t+L

is adjusted by the following equation

ût+L = ût+L − σ̂ · z θ
2

(3.25)

We use the lower bound of the confidence interval in Equ. (3.25) because the underestimation of

the unused resource makes it conservative in reallocating allocated resources, thus avoiding SLO

violations.

Based on the historical data with prediction error samples, we calculate the prediction error

in a time window as follows

δt+τ = ut+τ − ût+L,∀τ ∈ [1, L] (3.26)
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Figure 3.2: Probabilistic-based Resource Preemption with FSM: L represents Locked state, U rep-
resents Unlocked state.

That is, we calculate the prediction error for each time slot in the window τ ∈ [1, L] by subtracting

the predicted unused resource at time t from the actual amount of unused resource at each time slot.

3.3.1.3 Probabilistic-based Resource Preemption

We use two states to represent the status of the predicted temporarily-unused resource:

locked and unlocked. One unlocked state indicates that the unused resource can be preempted, and

the locked state indicates that the unused resource cannot be preempted. Let ε denote pre-specified

prediction error tolerance and Pth denote a pre-defined probability threshold. For a predicted

temporarily-unused resource with prediction error δt+L, if δt+L satisfies

Pr(0 ≤ δt+L < ε) ≥ Pth (3.27)

then it can be allocated to a new arriving job and its state is “unlocked”, otherwise, its state is

“locked”.

Figure 3.2 illustrates the probabilistic-based resource preemption using finite state machine

(FSM). The locked state is the start state, and the probability of the prediction error is the input.

If Equ. (3.27) is satisfied, then the unused resource can be allocated to other jobs. Otherwise, the

unused resource should be kept for its allocated job. This is because the prediction accuracy is not

high enough and the actual amount of unused resource may not meet the resource requirements of

other jobs. When the state goes to “unlocked”, the unused resource is allowed to be preempted.

After the current state goes to “unlocked”, if the unused resource can be preempted, then the state

keeps being “unlocked”. Otherwise the state goes back to “locked”, and the unused resource cannot

be preempted.

After predicting the amount of unused resource, CORP can determine if the unused resource
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can be allocated to jobs. CORP uses a resource packing strategy by leveraging complementarity

of jobs’ requirements on different resource types (e.g., CPU, MEM, Storage, etc.) and allocates

resource to jobs (packing jobs to VMs), which can reduce the resource fragmentation and further

increase the resource utilization. The details are illustrated in Section 3.3.2.

Algorithm 5: Pseudocode for Finding Lowest Remaining Volume VM (LRV) Algorithm

Input: The predicted unused resource types of VMs R̂j = (r̂j1, ..., r̂jl), the resource
demands of a job or a job packed with another job, the area Ak where the
job(s) submitted.

Output: The VM with unused resource closest to the demands of job(s)
Di = (di1, ..., dil).

1 Vmin ← E; min← 0; w ← 0 //E is a large positive real

2 for each vj in Ak do

3 if R̂j � Di && Pr(0 ≤ δt+L < ε) ≥ Pth then //∀u ∈ {1, ..., l}, r̂ju ≥ diu
4 w ← w + 1
5 Compute V (j) //Remaining volume of VM vj
6 if V (j) < Vmin then
7 min← j

8 Return min

3.3.2 Resource Allocation Algorithm

CORP periodically predicts the allocated and unused resources in each VM. For newly

arriving jobs, CORP conducts packing to pack complementary jobs, and then allocates unlocked

or unallocated resources to the packed jobs based on their resource demands. The job packing is

used to avoid resource fragmentation and achieve high resource utilization. In the following, we first

present an example to show the complementary job packing, and then explain its algorithm. Then,

we present the resource allocation algorithm that reallocates unlocked predicted unused resources

to newly arriving jobs. Finally, we present an example to show this algorithm.

Figure 3.3 shows an example illustrating how packing strategy decreases the resource frag-

mentation and increases resource utilization. In Figure 3.3(a), job 1 (CPU intensive) and job 2

(storage intensive) are assigned to VM1 and VM2, respectively, which increases the resource frag-

mentation of VMs. However, in Figure 3.3(b), job 1 and job 2 are packed first and then assigned to

VM2, which releases VM1, and thus decreases the resource fragmentation of VMs and increases the

resource utilization.

Each job has a dominant resource, defined as the one that requires the most amount of re-
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Figure 3.3: Allocate the resource of VMs to the jobs w/o and w/ packing strategy.

source. CORP first packs the jobs with complementary dominant resources such that the summation

of the deviation of the two jobs’ resource demands on each resource type is the largest. Given a list

of jobs, CORP fetches each job Ji, and tries to find its complementary job from the list to pack with

Ji. Note that it is possible that job Ji’s complementary job cannot be found from the list. In this

case, the job Ji solely constitutes an entity to be allocated with resources in a VM. To find Ji’s com-

plementary job, CORP calculates its deviation with every other job Jj if Jj has different dominant

resource from Ji. The deviation is calculated by DV (j, i) =
∑l
k=1((djk− djk+dik

2 )2+(dik− djk+dik
2 )2).

Finally, the job with the highest deviation value is the complementary job of Ji.

After the job packing, CORP needs to assign each job entity (packed jobs or a job) to a

VM with unlocked predicted unused resources. Among the VMs with unlocked predicted unused

resources that can satisfy the resource demand of the job entity, we will choose the VM that has

the least remaining resources (called most matched VM) in order to more fully utilize resources.

If predicted unused resources cannot satisfy the resource demand of the job entity, unallocated

resources in a VM will be used for the job entity using the same method. To find the most matched

VM, we introduce a concept called unused resource volume. Suppose the vector of the maximum

capacity of each resource type among all VMs is C′ =< C ′1, C
′
2, . . . , C

′
l >. Assume that the amount

of predicted unused resource of VM j is R̂j = (r̂j1, ..., r̂jl). Then, the unused resource volume of VM

j is calculated by

volumej =

l∑
k=1

r̂jk/C
′
k (3.28)

The VM satisfying the resource demand and has the smallest unallocated volume is the most matched

VM.
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Figure 3.4: Allocate unused resource to (packed) jobs with low resource wastage.

Figure 3.4 shows an example illustrating the process of job packing and how CORP allocates

the predicted unused resource to a job entity. For VMs, the numerical values indicate the capacities

of different resource types. For jobs, the numerical values indicate the resource demands of jobs. Job

3, job 4, job 5 and job 6 are new arriving jobs. The dominant resource of jobs 3 and 6 is CPU, and

the dominant resource of jobs 4 and 5 is storage. CORP first conducts job packing. The resource

demand deviation of job 3 and job 4 is 25, and that of job 3 and job 5 is 16. Since 25 > 16, job 3

and job 4 are packed together. Similarly, job 5 and job 6 are packed together. We denote the job

entities as (job 3, job 4) and (job 5 and job 6). The maximum CPU, MEM and storage of all VMs

among both servers are C′ =< 25, 2, 30 >. If the amount of unlocked predicted unused resource of

VMs 1-4 are as follows: < 5, 0, 20 >, < 10, 1, 10 >, < 20, 2, 30 > and < 10, 1, 8.5 >, respectively,

based on Equ. (3.28), their unused resource volumes are 0.867, 1.233, 2.8, 1.183, respectively. To

allocate resources to entity (job 3, job 4), CORP first checks if the VMs’ predicted unused resources

can satisfy the demands on each type of resource of the entity. Then, CORP chooses the VM that

has the smallest unused resource volume to be allocated to the job entity. In this example, VM1

and VM4 cannot satisfy its resource requirements of the packed job (jobs 3, 4). By comparing

the unused resource volumes of VM2 and VM3, because 1.233 < 2.8, then CORP chooses VM2

rather than VM3 and allocates its temporarily-unused resource to the packed job (job 3 and job

4). Similarly, the predicted unused resource of VM1 cannot satisfy the resource requirements of

the packed job (job 5, job 6). By comparing the unused resource volumes of VM2, VM3 and VM4,

because 1.183 < 1.233 < 2.8, then CORP chooses VM4 and allocates its temporarily-unused resource

to the packed job (job 5 and job 6). The above process of allocating unused resource to jobs also

56



Server0 Server1 Server2 Server3

Server0 Server2 Server1 Server3

Server10 Server11 Server12 Server13Server4 Server5 Server6 Server7 Server8 Server9

Server4 Server6 Server7 Server5 Server8 Server9

 FTS 1  FTS 2

 FTS 3  FTS 4

 FTS 1  FTS 2

 FTS 3  FTS 4

 FTS 1

 FTS 3

 FTS 2

 FTS 4

Replication degree=d1 Replication degree=d2 Replication degree=d3

Server14 Server15 Server16 Server17

Server10 Server14 Server15 Server16 Server11 Server12 Server13 Server17

Server0 Server1

Server2 Server3

Server0 Server2

Server1 Server3

 Area 1

 FTS 2

 FTS 3

 FTS 4

Server0 Server1 Server2 Server3

Server0 Server2 Server1 Server3

 FTS 1  FTS 2

 FTS 3  FTS 4

VM2

Server2 Server3

Server0 Server2 Server1 Server3

 FTS 2

 FTS 3  FTS 4

VM1 VM2

 M1
VMs

VM3 VM4

VM3 VM4

VMs VMs VMs

 M2  M3  M4

 M5
VMs VMs VMs VMs

 M6  M7  M8

 M1
VMs VMs VMs

VMs

 M2  M3

 M4

 M4
VMs VMs VMs

VMs

 M5  M6

 M8

 M1
VMs VMs VMs VMs

 M2  M3  M4

 M5
VMs VMs VMs VMs

 M6  M7  M8

 M1
VMs VMs VMs VMs

 M2  M3  M4

 M5
VMs VMs VMs VMs

 M6  M7  M8

 Area 2

 FTS 1

 Area 1

 M1
VMs VMs VMs VMs

 M2  M3  M4

 M5
VMs VMs VMs VMs

 M6  M7  M8

 M1
VMs VMs VMs VMs

 M2  M3  M4

 M5
VMs VMs VMs VMs

 M6  M7  M8
 Area 2

 M1
VMs VMs

VMs

 M2

 M3

 M3
VMs VMs

VMs

 M4

 M7

 Area 3

CPU

Storage

Mem

 Area 1

 M1
VMs VMs VMs

 M2  M3

 M4
VMs VMs VMs

 M5  M6

 M1
VMs VMs

 M2

 M3
VMs VMs

 M4

 Area 2

 M1
VMs

 M2
VMs

 Area 3

VM1

StorageMemCPU StorageMemCPU

StorageMemCPU StorageMemCPU

VM2

Demand 1 Demand 2

8 9

18
11 11

20

20

30
35

11 11

20

CORPOthers

VM1

StorageMemCPU StorageMemCPU

StorageMemCPU StorageMemCPU

VM2

Demand 1 Demand 2

8 9

18
11 11

20

20

30
35

11 11

20

CORPOthers

 Area 1

 M1
VMs VMs VMs

 M2  M3

 M4
VMs VMs VMs

 M5  M6

 M1
VMs VMs

 M2

 M3
VMs VMs

 M4

 Area 2

 M1
VMs

 M2
VMs

 Area 3

VM1

StorageMemCPU StorageMemCPU

StorageMemCPU StorageMemCPU

VM2

Demand 1 Demand 2

8 9

18
11 11

20

20

30
35

11 11

20

CORPOthers

VM1

StorageMemCPU StorageMemCPU

StorageMemCPU StorageMemCPU

VM2

Demand 1 Demand 2

8 9

18
11 11

20

20

30
35

11 11

20

CORPOthers

 Area 1  Area 2  Area 3

VM

 Area 1

 M1
VMs VMs VMs

 M2  M3

 M4
VMs VMs VMs

 M5  M6

 M1
VMs VMs

 M2

 M3
VMs VMs

 M4

 Area 2

 M1
VMs

 M2
VMs

 Area 3

VM1

StorageMemCPU StorageMemCPU

StorageMemCPU StorageMemCPU

VM2

Demand 1 Demand 2

8 9

18
11 11

20

20

30
35

11 11

20

CORPOthers

 Area 1  Area 2  Area 3

VM VM VMVM VM VM VM

VM Migration

VM VM VM VM

VM Migration

 PM  PM PM

 Area 1

 M1
VMs VMs VMs

 M2  M3

 M4
VMs VMs VMs

 M5  M6

 M1
VMs VMs

 M2

 M3
VMs VMs

 M4

 Area 2

 M1
VMs

 M2
VMs

 Area 3

VM1

StorageMemCPU StorageMemCPU

StorageMemCPU StorageMemCPU

VM2

Demand 1 Demand 2

8 9

18
11 11

20

20

30
35

11 11

20

CORPOthers
 Area 1  Area 2  Area 3

VM

VM VM

VM VM VM VM

VM Migration VM VM VM VM

VM Migration

 PM

 PM PM

VM VM VM VM VMVM

VM Migration

VM VM VM VM

VM Migration

VM

 PM  PM

VM VM VM VM VM

VM Migration

VM

VM1

StorageMemCPU StorageMemCPU

StorageMemCPU StorageMemCPU

VM2

Demand 1 Demand 2

8 9

18
11 11

20

20

30
35

11 11

20

CORPOthers

Figure 3.5: The architecture of CORP system for resource provisioning.

applies to the single job case.

Figure 3.5 shows the design of CORP system for resource provisioning. We deploy the

servers (PMs) in different areas based on the intensity of jobs for processing. In each server, the

server allocates resources to VMs. In each area, users submit their jobs to the system, and CORP

allocates the resources to the jobs based on the predicted amount of unused resources. For a

Algorithm 6: Pseudocode for Job Packing (JP) Algorithm

Input: A job Ji’s resource demand, the area Ak where Ji submitted
Output: A cooperative job Jj packed with Ji.

1 u← 0
2 for each Jj (Jj ∈ J) in Ak do
3 if Jj and Ji have different dominate resource then

4 DV (j, i) =
∑l
K=1((djK − djK+diK

2 )2 + (diK − djK+diK
2 )2)

5 u← u+ 1
6 B(u).elem← DV (j, i)
7 B(u).index← j

8 Sort B(i), ∀i ∈ {1, ..., u} //Descending order based on elem

9 for each B(i) ∈ B do //Travel from beginning to end

10 if JB(i).index ∈ J && JB(i).index is in Ak then
11 Return B(i).index

12 else
13 Return NULL

new arriving job (or packed job), CORP first checks the servers located in the area which has the

smallest geographic distance to the place where the job is submitted. Then CORP checks the unused

resource of the VMs allocated to other jobs to see if there exists some VM that can satisfy the job’s

demands on all types of resources. If there exist some VMs allocated to other jobs can satisfy the

job’s demands on all resources types, CORP chooses the VMs with the probability of the prediction

error being less than ε and greater than or equal to 0 is no less than a threshold Pth from these

VMs and lists them as candidate VMs for running the job. Then CORP chooses a VM from the
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candidate VMs and allocates the unused resource to the job. If no VM allocated to other job(s) can

satisfy both the job’s demands on resources and the condition that the probability of the prediction

error being less than ε and greater than or equal to 0 is no less than Pth, then CORP chooses an

unallocated VM satisfying both these two conditions and allocate it to the job. In order to avoid

resource fragmentation and achieve high resource utilization, CORP uses the following method which

can be divided into two cases, to allocate the resource to a new arriving job.

Algorithm 7: Pseudocode for Cooperative Opportunistic Resource Provisioning

Input: n jobs’ (J = {J1, ..., Jn}) resource demands Di = (di1, ..., dil) (i ∈ {1, ..., n}),
VM’s unused resources at each slot within last ∆ slots

1 Predict unused resource R̂j (j = {1, ..., Nv}) of each VM using Algorithm

2 //R̂j = (r̂j1, ..., r̂jl)
2 Predict the fluctuations of unused resource using HMM
3 if (The observation symbol of the predicted amount of the unused resource is peak or

valley) then
4 Correct the predicted unused resource

5 Group jobs in the same area Ai together //Ai = {A1, ...AΛ}
6 for each Ai ∈ A do
7 for each Jj (Jj ∈ J) in Ai do
8 CPT(Jj)← Call JP (Ji, Ai) //A job packed with Ji

9 min← 0
10 if CPT(Jj) 6= NULL then //Find a cooperative job packed with Ji
11 Di ← Di +DCPT (Ji)

12 min← Call LRV (Di, {Ji, JB(i).index})
13 Allocate vmin’s unused resource to {Ji, JB(i).index}
14 J← J \ {Ji, JB(i).index}
15 else
16 min← Call LRV (Di, Ji)
17 Allocate vmin’s unused resource to Ji
18 J← J \ {Ji}

Case 1: Reallocate a VM’s temporarily-unused resource to a new arriving job.

Case 2: Allocate the resource of an unallocated VM to new arriving job(s).

Algorithm 7 shows the pseudocode of the CORP algorithm for resource provisioning. The

algorithm first predicts the unused resource with historical data based on Algorithm 2 (Line 1). It

then predict how long the unused resource will not be used (Line 2). Then it checks if the unused

resources satisfy the job’s demands. For those VMs whose remaining unused resources can satisfy

the job’s demands and the probability that the available time of the unused resource is greater than

a threshold, CORP chooses a VM whose remaining resource is closest to the demands of the job.
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Table 3.2: Parameter settings.

Parameter Meaning Setting
Np # of servers 30-50
Nv # of VMs 100-400
|J| # of jobs 50-300
l # of resource types 3
h # of layers in deep neural network 4 [80]
Nn # of units per layer 50
H # of states in HMM 3
Pth A Prob. threshold 0.95
θ Significance level 5%-30%
η Confidence level 50%-90%

3.4 Performance Evaluation

In this section, we present our trace-driven experimental results on a large-scale real cluster,

Clemson University’s high-performance computing (HPC) resource [9], and Amazon EC2 [2], respec-

tively. To show the performance of CORP, we compared CORP with RCCR [34], CloudScale [108],

DRA [103] in various scenarios since all these methods share the same objective of maximizing the

resource utilization while avoiding SLO violation.

RCCR uses time series forecasting to predict the fraction of unused resources that will almost

certainly not be required in the future based on historical resource usage patterns and allocates the

unused resource to long-term service jobs in an opportunistic manner. CloudScale employs online

resource demand prediction and prediction error handling to adaptively allocate the resources on

PMs to VMs to achieve high resource utilization. Unlike RCCR, CORP first predicts the amount of

allocated but unused resource using the deep learning technique, in which the accuracy does not rely

on the existence of resource utilization patterns of short-lived jobs. To well meet the requirement of

time-varying job resource demands, CORP additionally considers the fluctuations of unused resource

and uses HMM model to correct prediction errors. Also, CORP leverages complementarity of jobs’

requirements on different resource types and packs jobs with complementary resource requirements

to VMs to reduce the resource fragmentation and further increase the resource utilization. DRA

provides the cloud customer with the abstraction of buying bulk capacity (rather than pre-defined

VM configurations based on the peak demands of the applications). DRA first purchases capacity for

the customers, and then re-distributes the purchased capacity among customer’s VMs based on their

demand. Specifically, DRA considers the share value and the demand value of VMs and allocates the

aggregate amount of capacity purchased by the customers among the VMs in an equitable manner
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taking into account shares and not giving the VMs more than what they demand. DRA presents

two distributed resource allocation algorithms that periodically re-distribute the purchased capacity

among the tenant’s (customer’s) VMs based on their dynamic demand.

In the implementation on the real cluster, we applied for 50 nodes, and we simulated a node

as a PM, and we simulated a logic disk as a VM; in the implementation on Amazon EC2, we applied

for 30 nodes, each node is simulated as a VM. For CORP, we first used the deep learning algorithm

to predict the amount of unused resource of jobs running on the VMs based on the historical resource

usage data from the Google trace. Next, we used the HMM model to predict fluctuations of the

amount of unused resource of jobs, and we adjusted the predicted amount for the peak and valley

of the unused resource. Then, we packed two jobs with complementary dominant resources such

that the summation of the deviation of the two jobs’ resource demands on each resource type is

the largest (see Section 3.3.2). Finally, we chose the VM that has the least remaining resources

that can satisfy the resource demands of job(s) and allocated it to the job(s) (see Section 3.3.2)

(We know the capacity for each type of resource of a VM, and we can know the amount of unused

resources of each VM after we getting the amount of unused resource of jobs and amount of resource

allocated to jobs.). For RCCR, we first used a time series forecasting technique, i.e., Exponential

Smoothing (ETS), to predict the amount of unused resource of VMs. Then we calculated confidence

intervals and chose the lower bound of the confidence interval as the predicted value for a time

window ∆W . Finally, we randomly chose a VM that can satisfy the resource demands of a job

and allocated resource to the job without considering job packing. For CloudScale, we first used the

prediction model developed in [56] and a discrete-time Markov chain to predict the amount of unused

resource of VMs based on historical resource usage data. Then we extracted the burst pattern to

get the padding value and calculated the prediction errors by subtracting the predicted amount of

unused resource from the actual amount of unused resource. Next, we used the adaptive padding

that is based on the recent burstiness of resource usage and recent prediction errors to correct the

prediction errors. Finally, we also randomly chose a VM that can satisfy the resource demands of

the job and allocated the unallocated resource to the job without considering job packing. For DRA,

we simulated the purchased capacity as the total amount of resource of all VMs that are used to be

allocated to jobs. For each VM, we defined two properties: share and demand. We statically set

the share value at the time of VM creation so that the VMs had a mix of high, medium and low

shares that correspond to a ratio of 4:2:1, respectively. We used the run-time software to periodically
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Figure 3.6: Prediction error rate vs. #
of jobs across different methods on a real
cluster.
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Figure 3.7: Prediction accuracy vs. # of
jobs across different methods on a real
cluster.

estimate the amount of unused resource of VMs based on the historical resource usage data. Then,

we redistributed the purchased capacity among different VMs based on their shares and demands.

Finally, we randomly chose a VM that can satisfy the resource demands of the job and allocated

the unallocated resource to the job.

We first deployed our testbed on the real cluster using 50 servers and then conducted

experiments on the real-world Amazon EC2 using 30 servers. The servers in the real cluster are

from HP SL230 servers (E5-2665 CPU, 64GB memory) [9] The servers in Amazon EC2 are from

commercial product HP ProLiant ML110 G5 servers (2660 MIPS CPU, 4GB memory) [37]. In both

experiments, each server is set to have 1GB/s bandwidth and 720GB disk storage capacity. In both

experiments, we used the trace from Google [7] which records the resource requirements and usage

of tasks every 5 minutes, and we transformed the 5-minute trace into 10-second trace and we set the

CPU, memory and storage consumption for each job based on the Google trace [7]. In the trace,

we considered the tasks of jobs in the trace as short-lived jobs, the bandwidth consumption for each

short-lived job is set as 0.02 MB/s [110]. SLO is specified by using a threshold on the response time

of a job, and the threshold is set based on the execution time of a task in the trace. To fully verify

the performances of our method and the other three methods, we varied the number of jobs from

50 to 300 with step size of 50. Table 4.2 shows the parameter settings in our experiment unless

otherwise specified.

3.4.1 Experimental Results on the Real Cluster

We first calculated the prediction error of CPU by subtracting the predicted amount of
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Figure 3.8: Utilizations of different resource types vs. number of jobs of different methods on a real
cluster.

unused resource from the actual amount of unused resource for each job. Then we calculated the

ratio of the correctly predicted jobs (the jobs whose prediction errors are within [0, ε)) to the number

of jobs as the prediction error rate which ranges from 0 to 1. Figure 3.6 shows the relationship

between the prediction error rate and the number of jobs. We see that the prediction error rate

follows CORP<RCCR<CloudScale<DRA. The prediction error rate in RCCR is higher than that in

CORP because CORP takes advantage of deep learning which can detect complex interactions among

features and can learn low-level features from minimally processed raw data. Also, the prediction

accuracy of the deep learning algorithm does not rely on the assumption that the historical data

for prediction has patterns, which can decrease the prediction error rate generated by the data

pattern assumption, and it is suitable for short-lived jobs. Moreover, CORP adequately considers

the fluctuations of the unused resource caused by the bursts of jobs’ resource demands and utilizes

HMM model to correct the prediction errors, which reduces the prediction error rate. However,

RCCR uses a time series forecasting method of which the accuracy relies on the existence of patterns

in resource usage [36, 115], to predict the unused resource for long-running service jobs, which can

increase the error rate when the resource usage does not have patterns. Also, RCCR does not
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Figure 3.9: Resource wastage reduction vs. number of jobs of different methods on a real cluster.

adequately consider the fluctuations of the unused resource of short-lived jobs caused by their bursts

of resource demands, which can increase the error rate, and thus is not suitable for short-lived jobs.

CloudScale generates higher prediction error rate than CORP and RCCR because CloudScale’s

prediction accuracy relies on the assumption of the existence of data patterns in the historical data,

which can increase the error rate caused by the data pattern assumption. Although CloudScale

uses a multi-step Markov prediction to dealing with the prediction when pattern is not found, it

has limited prediction accuracy since the correlation between the resource prediction model and

the actual resource demand becomes weaker. Also, CloudScale does not utilize confidence levels to

make appropriately-conservative predictions and thus reduce the error rate. The prediction error

rate in DRA is higher than all the other methods because DRA does not consider the fluctuations of

unused resource caused by the bursts of jobs’ resource demands, which can increase the prediction

error rate. Also, DRA uses the run-time software to estimate the resource periodically, the accuracy

of which also relies on the existence of patterns in the training data. In addition, DRA does not

utilize confidence levels to make appropriately-conservative predictions and reduce the error rate.

Figure 3.7 shows the relationship between the prediction accuracy and the number of jobs.

We see that the prediction accuracy follows CORP>RCCR>CloudScale>DRA, which is consistent

with the result in Figure 3.6. The prediction accuracy in CORP is higher than that in RCCR

because CORP utilizes deep learning to predict the unused resource and increase the prediction

accuracy. Also, CORP considers the fluctuations of the unused resource caused by the bursts of

jobs’ resource demands and uses the HMM model to correct the prediction errors, which increases

the prediction accuracy. CloudScale generates lower prediction accuracy than CORP and RCCR

because CloudScale relies on the assumption of the existence of data patterns in the historical data,
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Figure 3.10: Resource utilization vs. S-
LO violation rate on a real cluster.
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Figure 3.11: SLO violation rate vs. con-
fidence levels on a real cluster.

which can increase the error rate caused by the data pattern assumption and thus decrease the

prediction accuracy. The prediction accuracy in DRA is lower than all the other methods because

DRA neglects the fluctuations of unused resource caused by the bursts of jobs’ resource demands,

which can decrease the prediction accuracy by increasing the prediction error rate.

We used Equ. (3.1) to calculate the resource utilization of type j resource. Figure 3.8 shows

the relationship between the resource utilization and the number of jobs. We observe that the

resource utilization follows CORP>RCCR>CloudScale>DRA. The resource utilization in CORP is

higher than that in RCCR because CORP leverages complementarity of jobs’ demands on different

resource types and uses a job packing strategy to reduce the resource fragmentation. Also, CORP

uses deep learning to predict the unused resource, and adequately considers the fluctuations of

short-lived jobs’ unused resource, and uses the HMM model to correct the prediction error, and then

dynamically allocates the resource to jobs to well meet the requirement of time-varying resource

demands and decreases the probability of resource over-provisioning, which is suitable for short-lived

jobs. However, RCCR uses a time series forecasting to predict the unused resource for long-term

service jobs which is not suitable for short-lived jobs, and the prediction accuracy relies on the

existence of patterns in the training data, which can increase the prediction error rate and thus

increase the chance of over-provisioning, decreasing the resource utilization. Also, RCCR does not

adequately consider the fluctuations of the unused resource in short-lived jobs, which can increase

the error rate and thereby increase the probability of over-provisioning. The resource utilizations in

CORP and RCCR are higher than that in CloudScale and DRA. This is because CORP and RCCR

allocate the resource to jobs in an opportunistic approach in which the allocated unused resource can
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Figure 3.12: Overhead of different methods on a real cluster.

be reallocated to other new arriving jobs with a certain probability, which can increase the resource

utilization. DRA has the lowest resource utilization among all the methods because DRA neglects

the fluctuations of the resource which can result in inaccurate prediction of the resource and thus

may lead to over-provisioning. Also it is a demand-based resource allocation and does not utilize

the allocated but unused resource and reallocate it to other jobs to increase the resource utilization.

To test the effects of job packing in increasing resource utilization, we also evaluated the per-

formance of CORPW/oP, a variant of CORP in which job packing is not used. Specifically, we used

Equ. (3.1) to calculate the average resource utilization of CPU, MEM and storage with the number

of jobs varying from 50 to 300, respectively. Figure 3.8(d) shows the average resource utilization of

different resource types in different methods. We see that the average resource utilization follows:

CORP>CORPW/oP>RCCR>CloudScale>DRA. The average resource utilization of CORPW/oP

is lower than CORP and higher than RCCR. This is because both CORPW/oP and CORP allocate

the resource to jobs in an opportunistic approach, which can increase the resource utilization. Also,

CORPW/oP and CORP use deep learning to predict the unused resource and adequately consider

the fluctuations of unused resource by using the HMM model to correct the prediction error, and

thereby decreases the resource over-provisioning. However, CORPW/oP does not leverage comple-

mentarity of jobs’ demands on different resource types and utilize the job packing strategy to reduce

the resource fragmentation, which is considered in CORP. Thus, CORPW/oP has lower average

resource utilization than CORP. Also, the result RCCR>CloudScale>DRA is consistent with that

in Figures 3.8(a)-3.8(c) due to the same reasons.

We regard DRA as a baseline and calculate the ratio of the resource wastage reduction of

each of the other methods. Specifically, we first used Formula (3.3) to calculate the resource wastage
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ratio of the resource type, then we calculate the resource reduction of each method, finally we regard

DRA as a baseline. Figure 3.9 shows the relationship between the resource wastage reduction ratio

of different methods. We see that the result follows CORP>RCCR>CloudScale>DRA, which is

consistent with the result in Figure 3.8. The reasons are similar to that explained in Figure 3.8.

We used Equ. (3.2) to calculate the overall resource utilization (the weighted average of the

utilizations of CPU, MEM and storage). Compared to CPU and MEM, storage is not the bottleneck

resource, hence we set the weights for CPU, MEM and storage as 0.4, 0.4 and 0.2, respectively. We

varied the SLO violation rate by varying the probability threshold Pth and thereby varying the

percentage of jobs that have SLO violation. Specifically, we considered the SLO violation occurs

when a job’s response time exceeds the threshold on its response time (We assume jobs’ response time

is affected by the unavailability of resource for job processing [104].). We recorded the overall resource

utilization when the SLO violation rate (approximately) equals 5%, 10%, 15%, 20%, 25% and 30%.

Figure 3.10 shows the relationship between the overall resource utilization and the SLO violation

rate. We find that the overall resource utilization increases as the SLO violation rate increases.

This is because the larger the SLO violation rate, the lower the probability that the resource over-

provisioning occurs and thus the higher the overall resource utilization. Also, we see that given an

SLO violation rate, the overall resource utilization follows CORP>RCCR>CloudScale>DRA due

to the same reasons in Figure 3.8.

Figure 3.11 shows the relationship between the SLO violation rate and the confidence level

on a real cluster. From Figure 3.11, we find the SLO violation rate decreases as the confidence level

increases. This is because the higher the confidence level, the more conservative the prediction, and

the less the amount of resource that will be allocated to jobs in the risk of SLO violations. Also, we

find that the SLO violation rate follows CORP<RCCA<CloudScale<DRA due to the same reasons

in Figure 3.8. RCCA uses a time-series based forecasting to predict the unused resource with

confidence interval prediction and error correction, which can decrease SLO violation probability.

CloudScale uses a prediction error handling to correct prediction errors and perform online adaptive

padding to avoid overestimation errors. However, DRA does not have a strategy to handle prediction

errors.

We evaluated the overhead of different methods by measuring the latency for allocating

resource to 300 jobs in each method. Figure 3.12 shows the latency of different methods on a real

cluster. In Figure 3.12, we see that the latency of CORP is slightly higher than the other methods.

66



 

0%

10%

20%

30%

40%

50%

50 100 150 200 250 300

C
P

U
 u

ti
liz

at
io

n
 

Number of jobs 

DRA RCCR CloudScale CORP

(a) CPU

 

0%

10%

20%

30%

40%

50%

50 100 150 200 250 300

M
EM

 u
ti

liz
at

io
n

 

Number of jobs 

DRA RCCR CloudScale CORP

(b) Memory

 

0%

5%

10%

15%

20%

25%

50 100 150 200 250 300

St
o

ra
ge

 u
ti

liz
at

io
n

 

Number of jobs 

DRA RCCR CloudScale CORP

(c) Storage

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CPU MEM Storage
A

ve
. r

e
so

u
rc

e
 u

ti
liz

at
io

n
  

Resource types  

CORP CORPW/oP
RCCR CloudScale
DRA

(d) Average

Figure 3.13: Utilizations of different resource types vs. number of jobs of different methods on
Amazon EC2.

This is because CORP uses the deep neural network to predict the amount of unused resource of

jobs. The deep neural network has complex structure with multiple layers, which obtains accuracy

at the expense of computation overhead and thus increases the latency a little [69]. However, the

other methods do not have such complex structure for prediction, thus they have relatively lower

latency.

3.4.2 Experimental Results on Amazon EC2

To further verify the performance of CORP, we also compared CORP with other methods

on Amazon EC2. The servers are from commercial product HP ProLiant ML110 G5 servers (2660

MIPS CPU, 4GB memory) [37]. Each server is set to have 1GB/s bandwidth and 720GB disk storage

capacity.

Figure 3.13 shows the relationship between the resource utilization and the number of jobs on

Amazon EC2. Similarly, we see the resource utilization increases as the number of jobs increases, and

the resource utilization follows CORP>RCCR>CloudScale>DRA due to the same reasons explained

in Figure 3.8. By examining Figures 3.13(a)-3.13(c), we see that the utilizations of CPU and MEM
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Figure 3.14: Resource wastage reduction vs. number of jobs of different methods on Amazon EC2.
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Figure 3.15: Resource utilization vs. S-
LO violation rate on Amazon EC2.
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Figure 3.16: SLO violation rate vs. con-
fidence levels on Amazon EC2.

are higher than storage. This is because the storage is not the bottleneck resource and has more

wastage in allocation compared to CPU and MEM, thereby has lower resource utilization. We also

tested the effects of job packing in increasing resource utilization on Amazon EC2. Figure 3.13(d)

shows the average resource utilization of different resource types. In Figure 3.13(d), we also see

that the average resource utilization follows: CORP>CORPW/oP>RCCR>CloudScale>DRA due

to the same reasons explained in Figure 3.8(d).

We regarded DRA as a baseline and calculated the ratio of the resource wastage reductions

of RCCR, CloudScale and CORP. Specifically, we first used Equ. (3.3) to calculate the resource

wastage ratio of the resource type, then we calculated the resource reduction of each method, finally

we regarded DRA as a baseline. Figure 3.14 shows the relationship between the resource wastage re-

duction ratio of different methods. We see that the result follows CORP>RCCR>CloudScale>DRA,

which is consistent with the results in our experiment on the real cluster in Figure 3.8 due to the

same reasons.
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Figure 3.17: Overhead of different methods on Amazon EC2.

Figure 3.15 shows the relationship between the overall resource utilization and the SLO vio-

lation rate on Amazon EC2. From Figure 3.15, we also find the overall resource utilization increases

as the SLO violation rate increases and given an SLO violation rate, the overall resource utilization

follows CORP>RCCR>CloudSCale>DRA due to the same reasons explained in Figure 3.8.

Figure 3.16 shows the relationship between the SLO violation rate and the confidence level

on Amazon EC2. We also find that given a confidence level, the SLO violation rate decreases as

the confidence level increases and the SLO violation rate follows CORP<RCCA<CloudScale<DRA

due to the same reasons explained in Figure 3.11.

Figure 3.17 shows the overhead of different methods measured by the latency for allocating

resource to 300 jobs on Amazon EC2. Figure 3.17 mirrors Figure 3.12 due to the same reasons.

Comparing Figure 3.17 and Figure 3.12, we see that the latency in Figure 3.17 is relatively higher

than that in Figure 3.12. This is because the communication overhead in Amazon EC2 is relatively

higher than that in the cluster.

Our experimental results based on the real cluster and Amazon EC2 show that CORP

has the best overall performance. This is because CORP explores the potential tradeoff between

the efficiency and computation overhead by using deep learning and HMM to get high prediction

accuracy of unused resource and utilizing job packing together to obtain high resource utilization.

3.5 Conclusion

This chapter presents a cooperative opportunistic resource provisioning scheme (COR-

P) for short-lived jobs, which offers the temporarily-unused resource in an opportunistic manner.
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Specifically, this chapter first introduces the background of deep learning. Next, it introduces the

cooperative opportunistic resource provisioning problem, in which the deep learning algorithm is

used to predict the amount of allocated and unused resources of short-lived jobs without resource

usage patterns and the HMM model is used to predict the fluctuations of amount of unused resource

caused by jobs’ time-varying resource demands so that the prediction error can be corrected. Then,

the chapter describes the design of CORP, which utilizes the job packing strategy to allocate the

unused resource to jobs. Finally, the chapter describes the experimental results based on a real

cluster and Amazon EC2, which show that CORP achieves high resource utilization and provides

high SLO guarantee.
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Chapter 4

Dependency: A Non-negligible

Factor in Scheduling and

Preemption for High Throughput

in Clouds

In this chapter, we introduce our dependency-aware scheduling and preemption strategy

(DSP). We first introduce the system model of the DSP, in which the makespan minimization model

is illustrated. Next, we describe the strategy of dependency-considered task priority determination.

Then we present the probabilistic based preemption approach. Experimental results based on a real

cluster and Amazon EC2 cloud service show that DSP achieves high throughput, low overhead and

job satisfaction compared to existing scheduling and preemption strategies.

4.1 System Model

In a distributed parallel computing system, there are workers and schedulers. Workers are

used to execute tasks, and schedulers are used to assign tasks to workers. We assume a job is split

into m tasks (jobs do not overlap in tasks), and the tasks are allocated to workers. Each worker has
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a buffer queue which is used for queuing tasks when a worker is allocated to more tasks than it can

run concurrently.1

Service time: The time that a task spends executing on a worker machine.

Job response time: The time from when a job is submitted to the scheduler until the tail task of the

job finishes execution.

Makespan: The makespan (or schedule length) is the time when all jobs finish execution.

Throughput : The total number of jobs that complete their executions within the job deadlines per

unit of time.

4.1.1 Dependency-considered Scheduling

We consider a scheduling problem with the objective of scheduling multiple jobs onto mul-

tiple heterogeneous workers to minimize the schedule length (makespan), and thus maximize the

throughput. Task dependency determines the order of tasks’ execution, and a task depending on

another task cannot start executing before the other task completes. Scheduling tasks to workers

without the consideration of dependency incurs dependency violation, which delays tasks’ comple-

tion time and decrease the throughput. By simply considering dependency in scheduling, it cannot

increase the chance that more tasks can start execution after the task that has more dependent

tasks finishes execution. This can also increase the makespan and thus decrease the throughput.

Below, we present an example to explain it. Figure 1.2 illustrates the diverse dependency relation-

s among tasks. Tasks T2-T5 cannot start executing until task T1 finishes its execution. Similarly,

tasks T7-T14 and T16-T19 cannot start executing until T6 and T15 finish their executions, respectively.

Executing the task at first which has more dependent tasks helps increase the throughput. Hence,

dependency consideration is important and necessary in task scheduling, which directly affects the

throughput [118]. Unlike previous works, DSP substantially takes into account task dependency

and fully utilizes task dependency information and judiciously determines tasks’ execution order to

increase throughput. Also, DSP schedules tasks with the consideration of job deadlines neglected in

the work [57], which can increase the throughput. Unlike previous works, DSP takes into account

task dependency and assigns tasks that are independent of each other to different workers (or proces-

sors) so that the tasks can run in parallel, and thus decreases the makespan. DSP fully utilizes task

1Although some cluster schedulers do not support buffer queues, we assume a worker has a buffer queue [32,47,90]
for the purpose of utilizing task dependency information to increase throughput in scheduling and preemption of
cloud-scale computing clusters [32].
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dependency information and judiciously determines tasks’ execution order so that more tasks have

chance to start executing after a selected task finishes execution, also, DSP schedules tasks with the

consideration of job deadlines neglected in the work [57], which can increase the throughput.

Denote LMS as the makespan for all jobs submitted at time t. Suppose h jobs (J =

{J1, ..., Jh}) are submitted at time t. The deadlines on completion time of h jobs are represented

by td1, ..., t
d
h, respectively. Denote tsij as the starting time of task Tij , and teij as the ending time

(completion time) of task Tij . Let Cı = {Tij(1), ..., Tij(|Cı| + 1)} be an arbitrary chain of tasks

belonging to job Ji (i ∈ {1, ..., h}), representing the dependency of the tasks, where |Cı| represents

the length of the chain Cı. All tasks Tij ∈ Cı (i ∈ {1, ..., h}, j ∈ {1, ...,m}) must be processed

Table 4.1: Notations in DSP.

J A set of jobs Cı A chain of tasks
h # of jobs in J |Cı| The length of Cı
Ji The ith job in J g(k) Proc. rate func. of worker k
tdi Job Ji’s deadline lij Task Tij ’s size
Tij The jth task of Ji LMS Makespan
tsij Tij ’s starting time M A set of target workers
teij Tij ’s ending time tij,k Tij ’s Exec. time on worker k
trij Tij ’s rec. time / preemption n Total # of workers
skmem Mem. size of worker k m # of tasks / job
skcpu CPU size of worker k Np

ij # of preemptions for Tij
tremij Tij ’s remaining time P tij Tij ’s priority at time t

sequentially one after another. Task Tij(k + 1) cannot start executing until task Tij(k) finishes

execution, where k ∈ {1, ..., |Cı|}. Denote tsij(k) as the starting time of the kth task on the chain

Cı belonging to job Ji running on a worker machine, and teij(k) as the ending time of the kth task

running on a worker machine. Thus, for a chain Cı of tasks belonging to job Ji, the (k + 1)th

task Tij(k + 1) on Cı cannot start executing until the kth task Tij(k) on Cı finishes its execution,∑
Tij∈Cı

∑|Cı|
k=1 t

s
ij(k+1)− teij(k) ≥ 0. For easy reference, Table 4.1 shows the main notations of DSP

in this dissertation.

Denote xij,k = {0, 1} as an indicator variable representing if task Tij is assigned to worker

k, xij,k = 1 if Tij is assigned to worker k, otherwise xij,k = 0. Define g(k) (k ∈ {1, ..., n}) as a

function of processing rate of the kth worker machine, which is the million instructions per second

(MIPS) speed, and g(k) is related to the CPU size skcpu and memory size skmem of the worker k [45].

The larger the CPU size, the higher the processing rate; the larger the memory size, the higher the
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processing rate. Specifically, the function g(k) is expressed as follows

g(k) = θ1s
k
cpu + θ2s

k
mem

(4.1)

where θ1 and θ2 are the weights for CPU size and memory size, respectively. Denote tij,k as the

time for executing task Tij on worker k without being preempted. Thus, we have

tij,k =
lij
g(k)

(4.2)

where lij is the size of task Tij in terms of Millions of Instructions (MI) [10]. However, suspending a

running task and putting a waiting task to running state consumes a certain amount of time (called

recovery time) due to the context switching. Let trij be the recovery time of a preemption for task

Tij , and Np
ij be the number of preemptions for task Tij . Denote σ as the threshold for the time (i.e.,

0.05s) that an evicted task waits for execution, and we approximately use it as the waiting time of

an evicted task. Let yij,uv,k = 1 if task Tij precedes task Tuv, otherwise yij,uv,k = 0. Since linear

programming (LP) is considered more efficient in solving scheduling problems [60], we formalize our

problem as the following linear optimization problem [70]:

Min{LMS} (4.3)

s.t. tsij +

n∑
k=1

tij,k · xij,k +

n∑
k=1

Np
ij,k · (t

r
ij + σ) · xij,k ≤ LMS

(∀i ∈ {1, ..., h}, j ∈ {1, ...,m}, k ∈ {1, ..., n}) (4.4)

(tsij + tij,k) · xij,k ≤ (tsuv + (1− yij,uv,k) ·M) · xuv,k (∀u ∈ {1, ..., h}, v ∈ {1, ...,m}) (4.5)

tsij +

n∑
k=1

tij,k · xij,k +

n∑
k=1

Np
ij,k · (t

r
ij + σ) · xij,k ≤ tdi (Tij ∈ Cı) (4.6)
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tsij +

n∑
l=1

tij,l · xij,l +

n∑
l=1

Np
ij,l · (t

r
ij + σ) · xij,l ≤ tsiq (q ∈ {1, ...,m}, l ∈ {1, ..., n}) (4.7)

yij,uv,k + yuv,ij,k = 1 (4.8)

yij,uv,k ∈ {0, 1} (4.9)

xij,k ∈ {0, 1} (4.10)

tsij ≥ 0 (4.11)

where M in Formula (4.5) is a very large positive real number.

The constraint (4.4) is to ensure the time consumed by the job completing at last is no

longer than the makespan. The constraint (4.5) is to ensure the execution order between Tij and

Tuv on worker k. The constraint (4.6) is to ensure jobs can finish execution within their specified

deadlines.2 The constraint (4.7) is to ensure the dependency relation between Tij and Tiq, that

is, task Tij precedes task Tiq on worker k. The output of the LP model includes the set M =

{k|xij,k = 1,∀i ∈ {1, ..., h}, j ∈ {1, ...,m}, k ∈ {1, ..., n}} and the starting time of tasks’ executions

tsij (∀i ∈ {1, ..., h}, j ∈ {1, ...,m}). The tasks are assigned to their target workers indicated in the

setM according to their starting times. The target worker for Tij is the kth worker when xij,k = 1.

The set M is a set (multiset) of workers, which represents the target workers for all the tasks Tij

(∀i ∈ {1, ..., h}, j ∈ {1, ...,m}) derived from the LP model. In Inequs. (4.4), (4.6), (4.7), the number

of preemptions is related to the task’s size and priority. We adopt a checkpoint-restart mechanism

from [49] (tasks are restarted from their most recent checkpoints) to compute the optimal number

of checkpointing intervals, and estimate the number of preemptions for each task using historical

data. We use the number of checkpoints as an upper bound for the number of preemptions of a task.

Based on the task duration and average checkpointing cost, we calculate the number of preemptions

for a given task length.

2With the historical data, the execution time of a task can be estimated with a good accuracy [47,62,63]. Although
it is hard to give a high accurate estimation of a task’s execution time, our approach works well with an upper bound
of a task’s execution time.
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The target worker k|xij,k=1 (i ∈ {1, ..., h}, j ∈ {1, ...,m}, k ∈ {1, ..., n}) for task Tij must

be an integer in practice. To make our formulated optimization problem more tractable, we can

first relax the problem to a real-number optimization problem in which k|xij,k=1 can be a real

number, and derive the solution for the real-number optimization problem. Then, we can use integer

rounding to get the solution for practical use. Considering the task scheduling problem in general

is NP-complete [118], we use the CPLEX linear program solver [5] to solve this linear optimization

problem.

Given a set of jobs consisting of tasks, constraints of jobs and tasks (i.e., task precedence

constraints, job completion time constraints), and a number of heterogeneous worker machines,

the output of the problem solution provides the task schedule [tsij , k|xij,k=1] (∀i ∈ {1, ..., h}, j ∈

{1, ...,m}, k ∈ {1, ..., n}), that is, the target worker (denoted by k|xij,k=1) and the starting time

(denoted by tsij) for each task. Then, the minimum makespan (denoted by LMS) can be obtained

from the LP model. Based on the output of the LP model [tsij , k|xij,k=1] the schedulers assign tasks

to their target workers by following the order of their starting times.

4.2 Dependency-considered Task Priority Determination

It has been shown that assigning higher priority to shorter remaining task increases the

throughput. However, this also increases the waiting time of large size tasks. So, it is desired to

consider waiting time to avoid starvation of large size tasks to reduce the average waiting time for

each task. Thus, previous preemption methods define task priority based on task remaining time

and (or) waiting time and always run the task with the highest priority. However, they neglect

dependency in the priority determination in preemption, which is, however, an important factor to

consider in preemption to maximize the throughput. Even if they select the task with the highest

priority among the runnable tasks, the throughput cannot be fully increased. Because choosing a

task with more dependent tasks to run enables more tasks to be runnable next, and a better task

that can more increase the throughput can be selected from more options. In this section, we propose

task priority that considers task dependency to achieve a higher throughput.

Figure 4.1 shows an example illustrating the importance of considering dependency in pre-

emption. In Figure 4.1, there are 7 tasks T1, ..., T7. T2 and T3 depend on T1; T4 and T5 depend on

T2; T6 and T7 depend on T3. DSP assigns higher priority to tasks on which more tasks depend. This
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Figure 4.1: Determining task priority by considering task dependency.

helps increase the throughput by increasing the chance that more tasks can start executing after the

precedent task finishes execution. Without considering task dependency, other methods may assign

priorities to tasks by following: T1<T3<T2<T7<T6<T5<T4. In this case, T1 has the lowest chance to

be executed. But all the other tasks cannot start execution if T1 does not finish execution, and even

worse, deadlock may occur due to the dependency constraints, which can increase tasks’ waiting time

and decrease the throughput. With dependency consideration, task remaining time and waiting time

in priority determination, DSP assigns priorities to tasks by following: T7<T6<T5<T4<T3<T2<T1

or T6<T7<T5<T4<T3<T2<T1, etc.3 Thus, DSP helps increase throughput.

Below, we first show an example to indicate the importance of considering different kinds

of dependencies in preemption, and then propose a method to determine task priority in order to

increase the throughput while reducing the average waiting time for each task. If a task has more

dependent tasks, then after the task finishes execution, more tasks become runnable tasks and a

better task can be chosen to more increase the throughput. Similarly, assigning higher priority to

the task that has more dependent tasks can increase the chance that more tasks depending on it can

start executing after the task finishes execution. As shown in Figure 4.2, there are different kinds of

dependencies [93,122]. Although T1 and T6 have the same number of dependent tasks, T6 has higher

priority than T1 for execution because more tasks can be executed soon after T6 finishes execution

and a better option can be chosen from the candidates. Similarly, T11 should have a higher priority

than T6. Task T11 has more dependent tasks compared with the other tasks (e.g., T1, T6). Although

T11 and T6 have the same number of dependent tasks in the first level which is more than T1, T11 has

more dependent tasks in the second level than T6. In this case, executing T11 at first helps increase

the throughput. Thus T11 has higher priority than other tasks from the perspective of considering

3To increase the throughput, DSP utilizes task dependency information to preschedule tasks (including tasks that
are ready to run) [12].
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Figure 4.2: Utilize task dependency to determine task priority.

dependency. Similarly, T6 has higher priority than other tasks (except T11), such as T12 and T13

from the perspective of task dependency consideration.

To increase throughput, we also consider assigning higher priority to a task with less remain-

ing time. Based on the queuing theory, choosing a task with shortest remaining time to preempt

the running task can increase the throughput [38,102]. Thus we take into account tasks’ remaining

time to determine task priority. Since shortest remaining first can easily incur the starvation of tasks

with longer remaining time, we also consider tasks’ waiting time to determine task priority for the

avoidance of starvation to increase the throughput.

The rationale behind our design of task priority determination can be summarized as follows:

The reason for utilizing task dependency to recursively calculate a task’s priority based on its

children’s priorities (see Formula (4.12)) results from deadlock avoidance in operating system design.

Task’s Remaining Time: From the queuing theory, it is known that Shortest-Remaining-Processing-

Time-first (SRPT) minimizes the queuing time [102]. Allowing short remaining time task to preempt

long remaining time task is desirable because forcing long remaining time tasks to wait behind short

remaining tasks generates much lower mean response time than the case in which short remaining

tasks must wait behind long remaining tasks. Based on this, we assign higher priority to those tasks

with short remaining time.

Waiting Time: Although SRPT method has the advantage of minimizing the queuing time in the

worker, it can starve long remaining time tasks. Based on this, we also consider the waiting time of

a task to determine the task’s priority. The priority of a task increases as its waiting time increases.

Denote tremij as the remaining time of task Tij , t
w
ij as the waiting time of task Tij . To

determine the priority of a task Tij , we consider it as a function of its remaining time tremij and

its waiting time twij based on the dependency relations among Tij and its children (i.e., the tasks
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depending on Tij).

Given a particular and arbitrary task Tij , the priority of task Tij at time t is recursively

computed as follows:

P tij =
∑

Tik∈Ci

(γ + 1)Pik (4.12)

where Ci represents a set consisting of Tij ’s children, and γ ∈ (0, 1) is a certain coefficient. For a

given task (e.g., Tij) that has no dependent tasks, the priority of task Tij at time t is computed in

below:

P tij = ω1 ·
1

tremij
+ ω2 · twij (4.13)

where ω1 and ω2 are the weights for the task’s remaining time and waiting time, respectively, and

ω1 +ω2 = 1. The priority of task Tij at time t1 (P t1ij ) can be obtained based on Formulas (4.13) and

(4.12).

4.3 Probabilistic Based Preemption

Traditional preemption methods preempt a running task by simply comparing the priorities

of the waiting task and the running task, and the preemption occurs if the waiting task’s priority is

higher than the running task (see Figure 4.3).

Consider a case that high priority tasks arrive frequently, then the preemption occurs fre-

quently. This incurs much time overhead for context switching and increases the average waiting

time of jobs (especially low priority jobs) and thus may increase job completion time and decrease

the throughput. We use an example to illustrate this case. Suppose the priority of the current

running task T1 is 1.1, when a task (T2) with priority 1.7 arrives, then T2 preempts T1. Soon after

T2 starts running, another task T3 with priority 2 arrives at the waiting queue, then T3 preempts

T2. Such frequent preemptions lead to many context switches, which extends job completion time

and possibly reduces throughput. Since T2 and T3 have close priority, the throughput loss caused

by preemption may offset or may be even higher than the throughput increase caused by running

T3 first. In such case, the preemption is not necessary. On the other hand, if the running task has

much higher priority than all waiting tasks, it may greatly increase the waiting time of the waiting
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Figure 4.3: Preemption decision in different methods.

tasks.

In order to avoid too frequent preemptions and too infrequent preemptions to achieve high

throughput and low waiting time for each task, we propose a probabilistic based preemption method.

It chooses a task among the waiting tasks with the top priority range with the probability equaling

the task’s normalized priority. The normalized priority of a task is defined as the ratio of the reverse

rank of the task’s priority among all the tasks in the queue to the number of tasks in the queue (i.e.,

k−
∑i+f+k−1
j=i+f Ii+f,j

k ). With this method, in the above example, if we consider the priority rank of the

waiting task among all the waiting tasks to choose a task with a higher priority rank, T2 might not

preempt T1 even though T2’s priority is a little higher than T1. Also, if the running task has run for

a too long time, it will be preempted by a high-priority task. As a result, a preemption is unlike to

occur if its time overhead offsets the throughput gains by the preemption. Also, the waiting time of

tasks is reduced.

4.3.0.1 Probabilistic based Preemption

Given a worker machine mi, without loss of generality, suppose there are f running tasks

(Ti, ..., Ti+f−1), and there are k tasks waiting (Ti+f , ..., Ti+f+k−1) in the queue of mi (see Figure

4.4).

Given a task, the task can execute only if the following conditions are satisfied:

• Condition C1: The priority of the waiting task is higher than that of the running task.

• Condition C2: The waiting task does not depend on the running task.

• Condition C3: The rank of the waiting task’s priority among all of the waiting tasks in the queue

is top b(1− δ)kc (based on Theorem 4.1) for each processor.
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Figure 4.4: Preemption for multiple tasks running on multiple processors.

We calculate the priorities of the running tasks Ti, ..., Ti+f−1 and the waiting tasks Ti+f , ...,

Ti+f+k−1 using Formulas (4.12) and (4.13). Define I as an indicator function. For any two tasks Ti

and Tj ,

Iij =

 1, Pi > Pj

0, Pi ≤ Pj
(4.14)

where Pi and Pj are the priorities of task Ti and task Tj .

For a particular and arbitrary running task Ti in worker mi, we check if Condition C3 is

satisfied using the following formula:

∑i+f+k−1
j=i+f Ii+f,j

k
≥ δ (4.15)

where δ is the minimum required ratio between 0 and 1.

To understand how Formula (4.15) works, we give an example to illustrate the process of

selecting a waiting task to preempt the running task. Suppose there are 10 tasks (T1, ..., T10) in the

waiting queue of a worker, and their priorities are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. According to Formula

(4.15), the priority of the waiting task should be greater than or equal to d10δe other waiting tasks.

Also the waiting task should be independent of the running tasks, thus at most b10(1 − δ)c tasks

are allowed for preemption. If δ = 0.5, then at most top 5 priority tasks are allowed for preemption.

Theorem 4.1. Given a server with f processors, if f tasks (Ti, ..., Ti+f−1) are running, and

k tasks (Ti+f , ..., Ti+f+k−1) are waiting in the queue of the server, then at most the top b(1 − δ)kc

priority tasks are allowed for preemption for each processor.

Proof: According to Formula (4.15), at least dδke tasks’ priorities are lower than Pi+f if the

preemption is allowed for the task Ti+f , that is, it allows preemption for at most the top k − dδke
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Algorithm 8: Pseudocode for Probabilistic based Preemption

Input: k tasks Ti+f , ..., Ti+f+k−1 are in the queue of worker mi waiting for the
running task(s) Ti, ..., Ti+f−1. TW = [Ti+f · · ·Ti+f+k−1], TR = [Ti · · ·Ti+f−1],
A = [Pi+f · · ·Pi+f+k−1], B = [Pi · · ·Pi+f−1]

1 Compute the priorities Pi, Pi+1, ..., Pi+f+k−1

2 Sort (A) //Descending order

3 Sort (B) //Ascending order

4 for each i = 1, ..., k do
5 sum[i]← 0

6 for each i = 1, ..., k do
7 for each j = 1, ..., k do
8 Compute Ii,j //Formula (4.14)

9 sum[i]← sum[i] + Ii,j

10 Pre← False; low ← 0; high← 0
11 for each i = 1, ..., k do
12 for each j = 1, ..., f do
13 if TW [i] depends on TR[j] then
14 j ← j + 1

15 else
16 if tw[i] > τ then //The waiting time of task TW [i] is longer than

threshold τ
17 Pre← True; low ← j; high← i
18 break

19 else

20 if sum[i]
k ≥ δ then //Formula (4.15)

21 if B[j] < A[i] then
22 Pre← True; low ← j; high← i
23 break

24 else
25 i← i+ 1

26 if Pre = True then
27 Suspend task TR[low]

28 Run task TR[high]

29 return Pre

82



tasks for each processor. Thus at most the top b(1− δ)kc priority tasks are allowed for preemption.

Therefore, Theorem 4.1 holds.

Algorithm 8 shows the pseudocode for periodically4 selecting waiting tasks to preempt the

running tasks using PP. The algorithm first computes the priorities of all running tasks and waiting

tasks (line 1). It then chooses a waiting task from the top b(1 − δ)kc priority waiting tasks with

the probability equaling its normalized priority (i.e.,
k−

∑i+f+k−1
j=i+f Ii+f,j

k ) (line 10 to line 25). In the

process of selecting waiting tasks to preempt running tasks, the algorithm compares the selected

task with the lowest priority running task and determines if the task should be preempted based

on the conditions C1, C2 and C3 (line 21, line 13, line 20). If all these conditions are satisfied,

then the algorithm suspends the running task and runs the selected waiting task. Otherwise, the

algorithm chooses the second lowest priority running task and determines if the running task should

be preempted based on the conditions C1, C2 and C3, and so on. However, if the waiting time of a

task is longer than the threshold τ (e.g., 0.05s), the algorithm also chooses the task to preempt the

running task no matter the conditions C1 and C3 are satisfied or not (line 16 to line 18).

4.4 Performance Evaluation

In this section, we introduce our experimental results on a large-scale real cluster Palmet-

to [9], which is Clemson University’s primary high-performance computing (HPC) resource , and

Amazon EC2 [2], respectively. To show the performance of our method on throughput or makespan,

we compared DSP with Tetris [57]. Tetris shares the same objective of maximizing the throughput

(or minimize makespan) and speed up job completion as the DSP does. To test our method’s perfor-

mance on preemption, we compared the results of our method and three other methods Amoeba [19],

Natjam [40] and SRPT [22] in various scenarios. Amoeba is preemption based method, which con-

siders task’s requirement on resource as task’s remaining time and chooses the task that consumes

the most resources to be preempted. Natjam tries to utilize different task eviction policies to achieve

low completion time for higher priority jobs. Natjam first classifies jobs into production jobs and

research jobs, and it assigns higher priority to production jobs and lower priority to research jobs.

SRPT attempts to maximize total throughput and minimize average waiting time while balancing

load across available grid resources. All these three methods aim at increasing the throughput,

4To avoid frequent preemptions, DSP waits for a certain period of time so that there are a certain number of tasks
in the waiting queue, and executes Algorithm 8 periodically.
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Table 4.2: Parameter settings in DSP.

Parameter Meaning Setting
n # of servers 30-50
h # of jobs 150-750
m # of tasks / job 100-2000
δ Minimum required ratio 0.35
τ A threshold for waiting time 0.05
θ1 Weight for CPU size 0.5
θ2 Weight for Mem size 0.5
α Weight for waiting time for SRPT 0.5
β Weight for remaining time for SRPT 1
γ A certain coefficient ∈ (0, 1) 0.5
ω1 Weight for task’s remaining time 0.6
ω2 Weight for task’s waiting time 0.4

which is consistent with the objective of DSP. Thus we choose these three methods for comparison

to show the performance of DSP.

Tetris [57]. Tetris aims to maximize the task throughput (or minimize makespan) and

speed up job completion by packing tasks to machines based on their requirements on all the re-

sources. Specifically, when resources on a machine become available, Tetris first selects the set of

tasks whose peak usage of each resource can be accommodated on that machine. Then Tetris com-

putes an alignment score (a weighted dot product between the vector of machine’s available resources

and the task’s peak usage of resources) to the machine on which the set of tasks whose peak usage

of each resource can be accommodated. The task with the highest alignment score is scheduled and

allocated its peak resource demands. This process is repeated recursively until the machine cannot

accommodate any further tasks.

In order to show the shortcomings of Tetris and the advantages of our DSP, we also tested

the performance of two variants of Tetris: TetrisW/oDep and TetrisW/SimDep. TetrisW/oDep

represents the approach that does not consider the dependency relations among different tasks in

assigning tasks to workers. TetrisW/SimDep means the scheduler simply considers task dependency

and schedules tasks to workers, but it does not utilize task dependency to increase the through-

put, that is, the scheduler neglects giving priority to the tasks that have more dependent tasks in

scheduling and preemption which is considered in our method.

Amoeba [19]. Amoeba aims to enable lightweight elasticity by identifying execution points

at which running tasks of over-provisioned jobs can be safely exited, committing their outputs, and

spawning new tasks for the remaining work. Amoeba implements opportunistic allocation of spare
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resources to jobs, and it chooses the tasks that consume the most resources to be preempted. Amoeba

uses a checkpoint/restart mechanism to dynamically change the number of slots assigned to a task,

that is, it assigns available slots to tasks, and reclaims slots from tasks by checkpointing their work

when there is contention. In the experiment, for Amoeba, we chose the task that consumes the most

resource to be preempted. Specifically, we computed the resource consumption by calculating the

weighted sum of each resource.

Natjam [40]. Natjam aims to 1) achieve low completion times for higher priority jobs; 2)

optimize completion times of lower priority jobs by using an on-demand checkpointing technique that

saves the state of a task when it is preempted, so that it can resume where it left off when resources

become available and leveraging smart eviction policies that select which low priority jobs and their

constituent tasks are affected by arriving high priority jobs. Natjam classifies jobs into production

jobs and research jobs. It assigns higher priority to production jobs and lower priority to research

jobs. Natjam uses two task eviction policies (Shortest Remaining Time (SRT), Longest Remaining

Time (LRT)). It tries to minimize the job completion time for both production and research jobs.

In implementation, we combined SRT with LRT to choose task for eviction, and we set the equal

weight for both policies for task eviction.

SRPT [22]. SRPT aims to maximize total throughput and minimize average waiting time

while balancing load across available resources by backfilling jobs locally and dynamically migrating

waiting jobs across nodes to leverage residual resources, while guaranteeing (on a best effort basis)

bounded turn-around and waiting times for all jobs. SRPT gives preference to requests for small

size files or requests with short remaining file size. Specifically, it uses the linear combination of

waiting time and the remaining time for a job (i.e., estimated time for completing the remaining

part of the job) to determine the priority of a job. The jobs are queued based on their priorities. In

the experiment, we set the weight of waiting time α to 0.5 and the weight of remaining time β to 1

to calculate job priority [22].

We first deployed our testbed in a large-scale real cluster located in our university [9]. We

implemented our method and other four methods in our testbed, and evaluated them with 50 servers.

We then conducted experiments on the real-world Amazon EC2. We evaluated DSP and the other

four methods with 30 servers. The servers are from commercial product HP ProLiant ML110 G5

servers (2660 MIPS CPU, 4GB memory) [37]. In both experiments, we used the Hadoop WordCount

trace [61] which comprises of CPU bound MapReduce jobs that calculate the number of occurrences
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Figure 4.5: Analysis of trace data from Hadoop WordCount and Google.

of each word in a text file. We ran MapReduce jobs with input data size 8.2GB. The number of tasks

for each job is given by Hadoop WordCount trace. We first chose 150 jobs that can be divided into

three categories based on the number of tasks of a job: 2000 tasks for large, 1000 tasks for medium,

several hundreds of tasks for small [57] (with equal number of small, medium, and large jobs) to run

on the servers. The dependency relations among tasks are generated based on Google Trace [7]. We

derived the dependency relations based on the starting time and ending time of tasks. Each server

is set to have 1GB/s bandwidth and 720GB disk storage capacity. We set the CPU and memory

consumption for each task based on the Google trace [7], and disk and bandwidth consumption for

each task are set as 0.02MB [66] and 0.02 MB/s [110], respectively. Figure 4.5(a) shows the execution

times of different jobs in Hadoop WordCount. In Figure 4.5(a), we see the execution time of most

jobs is less than 1010 seconds. Figure 4.5(b) shows CPU and Mem consumption of a task in Google

Trace at different times. In Figure 4.5(b), we find that CPU consumption and Mem consumption of

a task vary from 1% to 2.9% and 2.1% to 4.1%, respectively. To fully verify the performances of our

method and the other four methods, we varied the number of jobs from 150 to 750 with step size of

150, and repeated the experiment. Table 4.2 shows the parameter settings in our experiment unless

otherwise specified.

4.4.1 Effectiveness of Dependency Consideration in Scheduling

Figure 4.6(a) shows the relationship between the makespan and the number of jobs on a real

cluster. We see that the makespan increases as the number of jobs increases. This is because with
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Figure 4.6: Performance of various methods on makespan vs. the number of jobs.

a fixed number of workers, the more jobs submitted, the more time the workers require to finish

executing all the jobs. Moreover, we also observe that DSP has the smallest makespan, and the

makespans of TetrisW/oDep (Tetris without considering task dependency), TetrisW/SimDep (Tetris

with simply considering task dependency) and DSP follow DSP<TetrisW/SimDep<TetrisW/oDep.

The reason behind this is that DSP takes into account task dependency and assigns tasks that

are independent of each other to different workers (or processors) so that the tasks can run in

parallel, and thus decreases the makespan. Also, DSP considers job deadlines and assigns tasks to

different workers so that the jobs can finish execution within their deadlines. In addition, DSP uses

an LP model to minimize the makespan by fully utilizing task dependency information. Although

TetrisW/SimDep considers task dependency, it does not consider job deadline constraints, which can

extend job completion time and thus increase the makespan. Also, by simply considering dependency,

TetrisW/SimDep cannot fully utilize task dependency information in terms of determining task

priority for execution. TetrisW/oDep assigns tasks to workers based on the dot product value of

tasks’ resource requirements and the available resources of workers, and it may assign tasks that have

dependency constraints to different workers. This increases the time overhead for data transmission

because the dependent tasks may need to fetch the data (i.e., outputs) of the precedent tasks from

different machines. Thus TetrisW/oDep has the longest makespan. We also tested the performance

of DSP, TetrisW/oDep and TetrisW/SimDep on Amazon EC2 with 30 workers (shown in Figure

4.6(b)), and we observed similar results. Comparing Figure 4.6(b) and Figure 4.6(a), we find that

the makespan in Figure 4.6(b) is larger than that in Figure 4.6(a). This is because the number

of workers for task execution in the real cluster is larger than that of Amazon EC2. Also the real

cluster is a local cluster, and it needs less time for transmission (e.g., data transmission).
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4.4.2 Effectiveness of Dependency Consideration in Preemption

Figure 4.7(a) shows the relationship between the number of disorders (execution order incon-

sistent with task dependency relation) and the number of jobs. We see that the number of disorders

for DSP is always 0 and the result follows DSP<Natjam≈Amoeba<SRPT. In Figure 4.7(a), we find

that the number of disorders for DSP is always 0 and the result follows DSP<Natjam≈Amoeba<SRPT.

The reason behind this is DSP considers the dependencies among tasks when it schedules tasks,

however the other methods do not substantially consider the dependencies among tasks when they

schedule tasks. We also find the number of disorders increases as the number of jobs increas-

es because more jobs increase the likelihood of disorder occurrences. In order to show the ad-

vantages of probabilistic based preemption, we also evaluated the performance of DSPW/oPP, a

variant of DSP in which the PP is not considered. Figure 4.7(b) shows the relationship between

the throughput measured by tasks/ms and the number of jobs. We see that the throughput fol-

lows SRPT<Amoeba≈Natjam<DSPW/oPP<DSP. This is because (1) DSP considers deadline con-

straints for job completion time; (2) DSP considers the dependencies among tasks and schedules

tasks are independent of each other to different workers (processors) to run tasks in parallel so

that it reduces the completion time and thus increases throughput. Also, DSP judiciously utilizes

task dependency information to determine task priority, and assigns higher priority to tasks that

have more dependent tasks, which helps increase the throughput; (3)Unlike the other methods for

preemption, DSP uses the PP to reduce the time overhead caused by preemption and thereby in-

crease the throughput, However, all three other methods do not substantially consider dependency

in scheduling or preemption, and the tasks that depend on other tasks need to wait even for other

tasks to finish, so they produce lower throughput than DSP. Throughput is affected by the remain-

ing time. Amoeba only considers the remaining time to choose tasks, so it has relatively higher

throughput. Natjam also considers task remaining time to choose task for eviction. Moreover, it

takes into account job deadlines for scheduling tasks. Thus it has relatively higher throughput.

SRPT considers task waiting time and remaining time for scheduling, and it gives some weight to

waiting time, so its throughput is not so high as Amoeba or Natjam.

Figure 4.7(c) reveals the relationship between the average waiting time of jobs and the num-

ber of jobs. We see that the average waiting time of jobs approximately follows DSP<DSPW/oPP<

Natjam≈SRPT<Amoeba. This is because DSP utilizes the task dependency information, which
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Figure 4.7: Performance of various evaluation metrics versus the number of tasks across different
methods on a real cluster.

can increase task waiting time, to determine task priority for execution. Also, DSP considers task

waiting time for determining task priority, which reduces the waiting time of low priority tasks and

also can avoid starvation. In addition, DSP uses a probabilistic based approach for preemption (ig-

nored in DSPW/oPP), which can reduce the time overhead caused by preemption and thus reduce

the waiting time of tasks. Therefore DSP has the shortest average waiting time, and DSPW/oPP

comes second. The average waiting times of jobs of Natjam and SRPT are nearly the same, but

relatively shorter than that of Amoeba. This is because Natjam considers job deadlines and it

leverages smart eviction policies to reduce the average waiting time of jobs. SRPT considers task

waiting time to determine task priority for preemption, which can reduce the average waiting time

of jobs. However, Amoeba neither considers task waiting time for determining task priority nor

has deadline constraints for jobs, thus it has relative longer average waiting time of jobs. Figure

4.7(d) shows the relationship between overhead and the number of jobs for scheduling. In Figure

4.7(d), we use the number of preemptions to represent the overhead because the overhead is mainly
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caused by preemption (e.g., context switch). From Figure 4.7(d), we observe that the overhead

follows DSP<DSPW/oPP<Natjam<Amoeba<SRPT. This is because (1) DSP utilizes task depen-

dency information to determine task priority and chooses tasks for running, which can decrease the

probability of preemption because the running task could be preempted only if the waiting task does

not depend on the running task; (2) DSP allows preemptions only for some top priority tasks which

is neglected in DSPW/oPP. However, Natjam, Amoeba and SRPT do not use a probabilistic based

strategy for preemption, which increases the number of preemptions. Thus, Natjam, Amoeba and

SRPT have relative higher overhead than DSP and DSPW/oPP. Also Natjam supports preemption

for only research jobs rather than production jobs. Thus it has relatively lower overhead caused by

preemption than Amoeba and SRPT. Unlike all the other methods, SRPT does not use a checkpoint

technique to reduce the overhead caused by preemption. Therefore, SRPT has the highest overhead

among all the methods.

To further verify the performance of DSP, we also compared DSP with other methods on

the metrics of the overhead, the number of disorders, the throughput and the average waiting time

of jobs on Amazon EC2. Figure 4.8(a) shows the relationship between the number of disorders

for executing tasks and the number of jobs on Amazon EC2. In Figure 4.8(a), we also find the

number of disorders increases as the number of jobs increases, and the number of disorders follows

DSP<Natjam≈Amoeba<SRPT due to the same reasons explained in Figure 4.7(a). Figure 4.8(b)

shows the relationship between the throughput (# of tasks/ms) and the number of jobs on Amazon

EC2. In Figure 4.8(b), we also see the throughput follows SRPT<Amoeba≈Natjam<DSPW/oPP<

DSP. The reasons are the same as that explained in Figure 4.7(b). Figure 4.8(c) shows the relation-

ship between the average waiting time of jobs and the number of jobs on Amazon EC2. From Figure

4.8(c), we also find the average waiting time of jobs roughly follows DSP<DSPW/oPP<Natjam≈

SRPT<Amoeba due to the same reasons explained in Figure 4.7(c). Comparing Figure 4.8(c) with

Figure 4.7(c), we find the average waiting time of jobs in Figure 4.8(c) is longer than that in Figure

4.7(c). The reason is that the number of worker machines in the real cluster environment is larger

than that in Amazon EC2, and tasks have more chances to find idle worker machines. Thus the

average waiting time of jobs in Figure 4.8(c) is relatively longer than that in Figure 4.7(c). Fig-

ure 4.8(d) shows the relationship between the overhead and the number of jobs for scheduling on

Amazon EC2. Similar to Figure 4.7(d), we also see the overhead increases as the number of jobs

increases, and the overhead of these methods follows: DSP<DSPW/oPP<Natjam<Amoeba<SRPT
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Figure 4.8: Performance of various evaluation metrics versus the number of tasks across different
methods on Amazon EC2.

due to the same reasons explained in Figure 4.7(d). Comparing Figure 4.8(d) to Figure 4.7(d), we

find the overhead in Figure 4.8(d) is relatively higher than that in Figure 4.7(d). This is because

the average number of tasks assigned to a worker in the real cluster environment is less than that

of Amazon EC2 due to less workers in Amazon EC2, and preemption is more likely to occur for

workers with more tasks.

4.5 Conclusion

This chapter presents a dependency-aware scheduling and preemption strategy (DSP) that

provides high throughput with less overhead for parallel jobs. Specifically, the chapter first introduces

the system model of DSP in which a makespan minimization model is illustrated. Next, it describes

how to determine task priority with the consideration of dependency (i.e., the dependency-considered

task priority determination strategy). Then, the chapter presents the probabilistic based preemption

approach. Finally, the chapter describes the experimental results based on a real cluster and Amazon
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EC2, which show that DSP achieves high throughput, low overhead and job satisfaction compared

to existing scheduling and preemption strategies.
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Chapter 5

Related Work

In this chapter, we review the related work on each of the proposed research problems in

this dissertation. The related work is split into three main categories. First, we give an overview of

existing works on handling non-correlated or correlated machine failures and existing works aiming

at improving data availability for distributed storage system. Second, we review existing works on

resource allocation (or resource provisioning) aiming at increasing resource utilization. Third, we go

over existing works on job (task) scheduling with the objective of increasing throughput.

5.1 Machine Failures Handling and Data Availability En-

hancement

Many methods have been proposed to handle non-correlated or correlated machine failures.

Zhong et al. [139] assumed independent machines failures, and proposed a model that achieves high

expected service availability under given space constraint, object request popularities, and object

sizes. However, this model does not consider correlated machine failures hence cannot handle such

failures, especially in the scenario of severe machine failures correlations. Nath et al. [86] iden-

tified a set of design principles that system builders can use to tolerate correlated failures. Cidon

et al. proposed Copyset Replication [42] and Tiered Replication [41] to reduce the frequency of

data loss caused by correlated machine failures by limiting the replica nodes of many chunks to a

single copyset. These methods for correlated machine failures do not consider data popularity to
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minimize data loss probability in correlated and non-correlated machine failures. Unlike Copyset

Replication and Tiered Replication, our proposed MRR reduces probability of data loss caused by

both correlated and non-correlated machine failures with considering data popularity, and it derives

diverse replication degrees for data objects with different popularities and thus increases the overall

data object availability by creating more replicas for popular data objects and less for unpopular

data objects. Moreover, MRR replicates data objects with the consideration of reducing consistence

maintenance cost and storage cost, which is critical for cloud providers to maximize the revenue.

Ford et al. [53] analyzed different failure loss scenarios on GFS clusters, and proposed geo-replication

as an effective technique to prevent data loss under large scale concurrent node failures, however

they did not provide a specific strategy for reducing data loss caused by both correlated and non-

correlated machine failures while minimizing cost (e.g., consistency maintenance cost and storage

cost) caused by replication. Thomson et al. [117] presented CalvinFS, a scalable distributed file

system, which horizontally partitions and replicates file system metadata across a shared-nothing

cluster of servers. However, CalvinFS cannot handle both correlated and non-correlated machine

failures while minimizing cost (e.g., consistency maintenance cost and storage cost) caused by repli-

cation. The above previously proposed methods cannot handle both correlated machine failures

and non-correlated machine failures while utilizing the limited resource to increase data availability.

They neglect data popularity existing in current cloud storage system and thus cannot fully utilize

the resource to increase data availability. Also, they do not concurrently consider minimizing the

consistency maintenance cost and storage cost caused by replication, which is important for cloud

providers to maximize the revenue.

High availability has been accepted as an explicit requirement for distributed storage sys-

tems. There is a large body of work on enhancing data availability for distributed storage systems.

Duminuco et al. [50] proposed a framework for data replication based on an ongoing estimation of

the peer failure behavior in a distributed storage system. They tried to estimate the availability of

a machine in a distributed storage system in order to replicate its data and thereby enhance data

availability. Abu-Libdeh et al. [13] presented a replication protocol for datacenter services in order

to provide strong consistency and high availability. A protocol running within shards (a collection

of nodes) ensures linearizable consistency, while the shards interact in order to improve availability.

Rajagopalan et al. [97] proposed Pico Replication (PR), a system-level high availability framework

for middleboxes that operates on individual flows and independently and transparently replicate
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flow-specific state through continuous live migration and output buffering. PR leverages OpenFlow

to provide near instant flow-level failure recovery, by dynamically rerouting a flow’s packets to its

replication target. Ko et al. [67] minimized the effect of run-time server failures on the availability

of intermediate data, and designed a new storage system ISS (Intermediate Storage System) that

treats intermediate data in dataflow programs as a first-class citizen in order to tolerate failures.

Litwin et al. [74] proposed a new high-availability Scalable Distributed Data Structure (SDDS), and

it uses the concept of record grouping and the Reed Salomon codes to provide scalable, distribut-

ed and high-availability files, badly needed by modern application. Bonvin et al. [28] proposed a

self-managed key-value store that dynamically allocates the resources of a data cloud to several

applications in a cost-efficient and fair manner. Their approach offers and dynamically maintains

multiple differentiated availability guarantees to each different application despite of failures. Ford

et al. [53] characterized the availability properties of cloud storage systems based on an extensive

one year study of Google’s main storage infrastructure and presented statistical models that enable

further insight into the impact of multiple design choices, such as data placement and replication

strategies. Zhang et al. [137] presented Mojim to provide the reliability and availability in large-scale

storage systems. Mojim uses a two-tier architecture in which the primary tier contains a mirrored

pair of nodes and the secondary tier contains the secondary backup nodes with weakly consistent

copies of data. Yu et al. [132] used a fixed number of replicas for every data object, and showed that

the assignment of object replicas to machines plays a dramatic role in the availability of multi-object

operations. Bhagwan et al. [26] studied the estimation of machine availability in a distributed sys-

tem and its utilization in guiding replication degree and replica placement. However, most of these

previous works neglect data object popularities when determining the number of replicas for each

object, thus cannot satisfy the demands of popular data objects or fully utilize the limited resource.

Although the works in [18,139] consider object popularities, they do not give a solution for handling

correlated machine failures, which is a key issue in achieving high availability in today’s cloud data-

centers [86]. In addition, they do not consider different storage medium prices (for reducing storage

cost) or geographic distance in selecting nodes to store replicas, both of which affect the total cost

of the storage systems.

Motivated by the problems in the existing works, we propose MRR that can effectively

handle both correlated and non-correlated machine failures and also considers the factors indicated

in the introduction section to maximize data availability and reduce the consistency maintenance
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cost and storage cost.

5.2 Resource Allocation for High Resource Utilization

Resource provisioning with high resource utilization becomes increasingly important in com-

puting and communication systems in recent years. Many works focusing on resource provisioning

try to improve the resource utilization. However their approaches are either based on reservation

or demand-based resource allocation, which cannot fully utilize the resource all the time. Shen

et al. [108] presented CloudScale, a system that automates fine-grained elastic resource scaling for

multi-tenant cloud computing infrastructures. CloudScale uses online resource demand prediction

and prediction error handling to achieve adaptive resource allocation, that is, it uses a hybrid ap-

proach that employs signature-driven and state-driven prediction algorithms to achieve both high

accuracy and low overhead. Specifically, the model uses a fast Fourier transform (FFT) to identify

repeating patterns (called signatures) to estimate future resource demands (if no repeating patterns

is found, it adopts a discrete-time Markov chain to predict the resource demand in the near fu-

ture), then the prediction error correction module performs online adaptive padding that adds a

dynamically determined cushion value to the predicted resource demand to avoid under-estimation

errors. However, the method in the work [108] is demand-based resource allocation which cannot

fully utilize the resource because users typically get a small ceiling of resource from the resource

providers. Also, it uses either the maximum or the 80% of the high-frequency spectrum as padding,

and it raises the cap by the ratio α (α > 1) to correct the underestimate error without decreasing

the cap when it is much higher than the actual demand. Thus it cannot fully utilize the resource.

In addition, it performs long-term conflict prediction, but the prediction is not accurate when no

repeated pattern can be found in the training data because it relies on multi-step Markov prediction

which has limited accuracy. Urgaonkar et al. [119] proposed a method for dynamically provisioning

CPU and network resources in shared hosting platforms. To accurately estimate an application’s re-

source, they presented techniques to profile applications on dedicated nodes and used the profiles to

guide the placement of application components onto shared nodes. Also, they presented techniques

to overbook cluster resources in a controlled fashion such that the platform can provide perfor-

mance guarantees to applications even when overbooked. However, it involves additional adaption

cost such as data migration and buffer pool warmup. Curino et al. [43] proposed a reservation-
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based scheduling, which consists of two main processes: reservation and planning. The process of

reservation determines a job’s resource needs and temporal requirements, and translates the job’s

completion service level agreements (SLA) into a service level objective (SLO) over predictable

resource allocations, which is done ahead of job’s execution. The process of planning involves con-

structing a temporal assignment of cluster resources to jobs such that each job’s RDL (reservation

definition language which provides a uniform and abstract representation of all the jobs’s needs)

expression is satisfied. However, resource reservation can lead to resource underutilization as users

do not necessarily understand complex physical resource requirements of jobs [48]. Delimitrou et

al. [48] presented Quasar, a cluster management system that increases resource utilization while

providing consistently high application performance. First, Quasar allows users to communicate

the performance constraints of the application in terms of throughput and/or latency, depending

on the application type, and it determines the amount of the available resources needed to meet

performance constraints based on users’ expression of performance constraints. Second, Quasar

relies on classification techniques to quickly and accurately determine the impact of the amount

of resources (scale-out and scale-up), type of resources, and interference on performance for each

workload. Third, Quasar performs resource allocation and assignment jointly. The classification re-

sults are used to determine the right amount and specific set of resources assigned to the workload.

However, Quasar requires users to communicate performance constraints for each workload and it

is still on-demand based resource allocation, and thus the resource cannot be fully utilized all the

time because of the temporarily unused resource [34]. Shanmuganathan et al. [103] proposed two

algorithms DBS and BPX to dynamically allocate the capacity among a tenant’s VMs based on

their dynamic demand, shares, reservation, and limit settings. Specifically the tenant transparently

multiplex this purchased capacity dynamically among its VMs. The two algorithms DBS and BPX

periodically re-distribute the purchased capacity among the tenant’s VMs based on their demand,

and other tenant-specified controls such as reservations, limits and priority (or shares). However, the

approach is a demand-based resource allocation in which the capacity will not be fully utilized all the

time due to the allocated unused resource. However, the above works do not focus on reallocating

the allocated unused resources to increase the resource utilization.

To increase resource utilization, some works [34, 83] and the product [3] provide methods

of offering resources opportunistically. Marshall et al. [83] presented reusing unused cloud resources

by offering leases in an opportunistic and preemptible way with no SLOs. Although the method
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proposed in the work [83] can increase the cloud utilization to some degree, they do not ensure

SLOs, which affects the QoS because the resource can be preempted at any time. Also they do

not provide a method to recover from SLO violations when SLO violations occur. Amazon EC2

Spot Instances [3] is a product that offers opportunistic resources. The approach can increase

the resource utilization, but the offered resources have no SLOs, which affects the QoS when the

allocated resource for processing jobs is preempted. Recently, Carvalha et al. [34] showed how to

provide strong, long-term availability SLOs for a portion of the unused resources. The method

in [34] uses time series forecasting with the assumption that the resource usage patterns exist in

training data to predict the unused used resource for long-term service jobs. The SLOs are based

on forecasts of how many resources will remain unused during multi-month periods so users can do

capacity planning for their long-running services. However, this method is not suitable for processing

short-lived jobs because such jobs usually do not exhibit certain resource utilization patterns. Also,

it fails to consider fluctuations of unused resource caused by time-varying resource demands of short-

lived jobs. In addition, the method may result in resource fragmentation and lead to low resource

utilization because they neglect jobs’ resource intensity in multi-resource allocation and may allocate

much more resources to the jobs.

Unlike previous works, we propose a deep learning-based cooperative opportunistic resource

provisioning (CORP) scheme. CORP first predicts the amount of allocated but unused resource

using the deep learning technique, in which the accuracy does not rely on the existence of resource

utilization patterns of short-lived jobs. To well meet the requirement of time-varying job resource

demands, CORP additionally considers the fluctuations of unused resource and uses HMM model to

correct prediction errors. Also, CORP leverages complementarity of jobs’ requirements on different

resource types and packs jobs with complementary resource requirements to VMs to reduce the

resource fragmentation and further increase the resource utilization. Thus our proposed method

CORP can fully utilize the resource while reducing SLO violation rate.

5.3 Scheduling for High Throughput

Many methods have been proposed for job scheduling or task scheduling with the objective

of maximizing throughput. The works [23, 88–90, 95, 126, 135] focus on maximizing the throughput

in scheduling. Previous scheduling algorithms to increase throughput can be roughly classified
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into two categories. The first category [88–90] focuses on scheduling short (sub-second) tasks for

high throughput. The second category [23, 95, 126, 135] focuses on scheduling long-running batch

jobs/tasks. Ousterhout et al. [89] proposed a decentralized load balancing approach (called batching

sampling) that provides near-optimal performance for scheduling highly parallel jobs. Batching

sampling generalizes Mitzenmacher’s “power of two random choices” load balancing technique in

which an incoming task is assigned to the least-loaded of two randomly chosen slaves. Batch sampling

does not relying on shared state, scheduling can be performed by a large number of distributed

schedulers that place tasks in parallel, the distributed architecture increases the throughput. Xin

et al. [129] presented Shark which leverages a novel distributed memory abstraction to provide a

unified engine that can run SQL queries and sophisticated analytics functions (e.g., iterative machine

learning) at scale, and efficiently recovers from failures mid-query. Ousterhout et al. [88] presented

an architecture that supports tiny tasks. It breaks data-parallel jobs in compute clusters into tiny

tasks so that each can complete in hundreds of milliseconds. However, all these works for short

task scheduling neglect utilizing task dependency in scheduling to increase throughput. Zaharia et

al. [135] proposed a delay scheduling: when the job that should be scheduled next according to

fairness cannot launch a local disk, it waits for a small amount of time, letting other jobs launch

tasks instead. The work [135] shows delay scheduling achieves nearly optimal data locality in a

variety of workloads and can increase throughput by up to 2x while preserving fairness. To increase

the throughput, Raicu et al. [95] proposed a “data diffusion” approach that acquires compute and

storage resources dynamically, replicates data in response to demand, and schedules computations

close to data. Wang et al. [126] struck the right balance between data-locality and load-balancing

to maximize throughput. They presented a new queueing architecture and proposed a map task

scheduling algorithm constituted by the Join the Shortest Queue policy together with the MaxWeight

policy [116]. Bar-Noy et al. [23] tried to find a nonpreemptive schedule with batching that maximizes

the throughput of the scheduled jobs. Specifically, it partitions jobs into a certain number of families

(i.e., each family is associated a processing time), and batches and executes the same family jobs

together (on the same machine) in the same time that it takes to execute a single job from that family.

However, all these works for batch jobs/tasks scheduling neglect dependency in scheduling to increase

throughput. Although Grandl et al. [57] proposed a multi-resource cluster scheduler Tetris which

considers task dependency and packs tasks to machines based on the alignment score, it neglects job

deadline constraints which can delay jobs’ completion time and thus decrease the throughput. Also,
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by simply considering task dependency, Tetris cannot fully utilize task dependency information to

increase the throughput by judiciously determining tasks’ execution order so that more tasks have

chance to start executing after a chosen task finishes execution. Unlike previous works, we consider

task dependency and assign tasks that are of independent of each other to different workers (or

processors) so that the independent tasks can run in parallel and thus increase throughput.

There is a large body of preemption works [19, 22, 40, 59] aiming at reducing the waiting

time of high priority tasks. Based on the number of preemptions and context switching overhead,

these existing works can be divided into two categories. The first category [19, 22, 40] tries to

satisfy high priority tasks based on the remaining time, resource consumption, waiting time, etc.

The second category [59] aims at maximizing the throughput with less number of preemptions.

Ananthanarayanan et al. [19] proposed Amoeba which chooses the tasks that consume the most

resources to be preempted. Amoeba uses a checkpoint/restart mechanism to dynamically change

the number of slots assigned to a task. Amoeba finds the safe point to evict a task, hence it does not

save intermediate states. Cho et al. [40] proposed Natjam which uses an on-demand checkpointing

technique that saves the state of a task when it is preempted, so that it can resume where it left off

when resources become available. Natjam classifies jobs into production jobs and research jobs, and

it assigns higher priority to production jobs and lower priority to research jobs. Natjam offers two

types of evictions: job eviction and task eviction. Balasubramanian et al. [22] proposed decentralized

preemptive scheduling strategies aiming at maximizing total throughput and minimizing average

waiting time. It first determines job priority based on the remaining time and the waiting time,

and then it performs preemption based on the determined priorities. However, all these works

suffer from the overhead of context switching, which decreases the throughput. Harchol-Balter et

al. [59] proposed size-based scheduling and preemption. It gives preference (priority) to requests

for small files or requests with short remaining file size so that the throughput can be increased.

However, lowest priority tasks may experience long waiting time in this method, which can decrease

the throughput. Unlike previous works that consider only one or two of the factors, we consider

the combination of the factors (e.g., the number of dependent tasks, task’s remaining time, task’s

waiting time) to determine task priority, which is more fair and can avoid the long waiting time of

low priority tasks.

In our preemptive scheduling approach, not only we consider the dependency relations

among different tasks for scheduling (task assignment) and preemption, but also we consider reducing
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the overhead of extensive number of preemptions for maximizing throughput.
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Chapter 6

Conclusion

Cloud computing is an emerging technology in distributed computing, and it has proved

to be an effective infrastructure to provide services to users. Cloud is developing day by day and

faces many challenges: building cost-effective data management system that can ensure high data

availability while maintaining consistency [15]; efficient resource allocation providing high resource

utilization and high SLO availability [75, 123]; scheduling jobs (tasks) with high throughput [14].

To address these challenges, in this dissertation, we study how to manage data and improve data

availability while reducing cost (i.e., consistency maintenance cost and storage cost); how to effi-

ciently manage the resource for processing jobs and increase the resource utilization with high SLO

availability; how to design an efficient scheduling algorithm which provides high throughput, low

overhead while satisfying the demands on completion time of jobs. We summarize the works in this

dissertation below.

Previous replication schemes for cloud storage systems consider correlated machine failures

or non-correlated machine failures to reduce data loss. However, no previous methods can effectively

handle both types of machine failures, which co-exist in cloud storage systems, and consider data

popularity and fully utilize the limited resource to maximize data availability simultaneously. Al-

so, although data replicas bring about additional cost in storage and consistency maintenance, few

previous schemes aim to simultaneously minimize both costs by considering the replication degrees,

different storage mediums and the geographic distances of the replica nodes. In this dissertation, in

order to increase data availability and reduce cost caused by replication, we formulate an optimiza-

tion problem that determines the replication degree of each data object so that the request failure
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probability, consistency maintenance cost and storage cost are minimized in a cloud storage in both

correlated and non-correlated machine failures. Based on the problem solution, we propose the MRR

scheme that assigns the chunk replicas of data objects to the nodes to handle the aforementioned

problems for the objective. Our numerical analysis and real-word experiments on Amazon S3 show

that MRR outperforms other replication schemes in different performance metrics.

In order to increase the resource utilization and reduce SLO violation rate, we propose

CORP for short-lived jobs, which offers the temporarily-unused resource in an opportunistic manner.

CORP is different from previous works in three aspects. First, using the deep learning technique,

it can more accurately predict the amount of allocated and unused resources of short-lived jobs,

which do not have resource usage patterns. Second, it additionally considers the fluctuations of

unused resource caused by time-varying resource demands of jobs to correct the prediction. Third,

it leverages complementarity of jobs’ requirements on different resource types and packs jobs with

complementary requirements on resources to the same VM to reduce resource fragmentation and

further increase the resource utilization. Experimental results based on a real cluster and Amazon

EC2 show that our method achieves high resource utilization and provides high SLO guarantee.

To provide high throughput with less overhead for parallel jobs, we present DSP, which

takes into account task dependency in task assignment and preemption, and further reduces the

job response time by running tasks that are independent of each other in parallel. To satisfy high

priority jobs without incurring much overhead, we judiciously utilize task dependency information

and jointly consider task remaining time and waiting time for determining task priority, and we

propose a probabilistic based preemption method which can reduce the waiting time of high priority

task and the time overhead while avoiding starvation for low-priority task. We compare our method

with the existing methods under different scenarios using a large-scale real cluster and Amazon EC2

cloud service. Our preliminary results shows that DSP outperforms the existing methods under both

the real cluster and Amazon EC2 cloud service.

In the future, we will further consider data update frequency to reduce consistency main-

tenance cost, and we will consider the effects of node joining, node leaving, and the influence of

changing network connections. Also we will consider energy consumption of machines and design an

optimal replication scheme to improve data availability while saving power. For resource allocation,

we will consider using the greedy approach for deep learning to reduce the computation overhead

caused by the deep neural network. Also, we will additionally consider the heterogeneity of jobs
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(i.e., short jobs and long jobs) existing in current cloud systems. In order to increase the resource

utilization, on the one hand, we will further consider jobs’ complementary requirements on different

resource types (in spatial space), and on the other hand, we will consider jobs’ execution time and

classify jobs into short jobs and long jobs, and pack the complementary jobs with the same job type

and allocate the resource to them. In addition, we will use a hybrid resource allocation strategy

and provide SLO availability customization for different job types. Specifically, we will use the

opportunistic-based resource allocation (ORA) for short jobs with relatively lower SLO availabili-

ty guarantee for achieving high resource utilization, and use the demand-based resource allocation

(DRA) for long jobs with higher SLO availability guarantee for achieving high resource utilization

and low SLO violation rate simultaneously. For scheduling, we will aim to handle scheduling tasks

with partial dependency, worker failures in job (task) scheduling and make our DSP fully distributed

to increase its scalability. Finally, we plan to use different workloads and real-world experiment to

fully test performance of our methods under various scenarios and make our preliminary system

design more mature.
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