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Abstract

Granular materials, such as sand, biomass particles, and pharmaceutical pills, are

widespread in nature, industrial systems, and our daily life. Fundamentally, the bulk

mechanical behavior of such materials is governed by the physical and morphological

features of and the interactions among constituent particles at the microscopic scale. From a

modeling standpoint, the particle-based discrete element method (DEM) has emerged as

the most prevalent numerical tool to model and study the behavior of granular materials

and the systems they form. A critical step towards an accurate and predictive DEM model

is to incorporate those physical and morphological features (e.g., particle size, shape, and

deformability) pertaining to the constituent particles.

The main objective of this dissertation is to approach an accurate characterization and

modeling of the grading- and shape-dependent behavior of granular materials by developing

DEM models that incorporate realistic physical and morphological features of granular

particles. Revolving around this objective, three studies are presented: image-based particle

reconstruction and morphology characterization, grading and shape-dependent shearing

behavior of rigid-particle systems, and granular flow of deformable irregular particles.

The first study presents a machine learning and level-set based framework to re-

construct granular particles and to characterize particle morphology from X-ray computed

tomography (X-ray CT) imaging of realistic granular materials. Images containing detailed

microstructure information of a granular material are obtained using the X-ray CT tech-

nique. Approaches such as the watershed method in two dimensions (2D) and the combined

machine learning and level set method in three dimensions (3D) are then utilized and
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implemented to segment X-ray CT images and to numerically reconstruct individual particles

in the granular material. Based on the realistic particle shapes, particle morphology is

characterized by descriptors including aspect ratio, roundness, circularity (2D) or sphericity

(3D). The particle shapes or morphology provide important constraints to develop DEM

models with particle physical and morphological features conforming to the specific granular

material of interest.

In the second study, DEM models incorporated with realistic particle sizes and shapes

are developed and applied to study the shearing behavior of sandy soils. The particle

sizes and shapes are obtained from realistic samples of JSC-1A Martian regolith simulant.

Irregular-shape particles are represented by rigid clumps based on the domain overlapping

filling method. The effects of particle shape irregularity on the shearing behavior of granular

materials are investigated through direct shear tests, along with the comparisons from

spherical particles with or without rolling resistance. The micro-mechanisms of shape

irregularity contributing to the shear resistance are identified.

The last study investigates the effects of particle deformability (e.g., compression,

deflection or torsion), together with particle sizes and shapes, on the granular flow of

flexible granular materials. A bonded-sphere DEM model is implemented with the capability

of embodying various particle sizes and irregular shapes, as well as capturing particle

deformability. This approach is then applied to simulate and study the behavior of flexible

granular materials in cyclic compression and hopper flow tests. The effects of particle size,

shape and deformability on the bulk mechanical behavior are investigated on the basis of the

DEM simulation results. The importance of particle deformability to the DEM simulations of

flexible granular materials is demonstrated.
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Chapter 1

Introduction

1.1 General background

Granular materials, such as sand, biomass particles, and pharmaceutical pills, are

widespread in nature, industrial systems, and our daily life. A few examples of granular

materials can be seen in Figure 1.1. Many engineering problems and applications involve the

handling and processing of granular materials, such as the construction of a foundation on

granular soil deposit, slope reinforcement, biomass comminution and pelletization, granular

hopper flow, just to name a few. To understand and accurately predict the bulk mechanical

behavior of granular materials is a challenging but essential endeavor to design and improve

the handling methods of these problems.

(a) Mojave Mars simulant (b) Pinewood chips (c) Pharmaceutical pills

Figure 1.1: Examples of granular materials.

1



The solid phase of granular materials is composed of discrete particles of various

sizes and complex-irregular shapes. The motions of and interactions among these constituent

particles at the microscopic scale, as an assembly, forms the bulk mechanical behavior of

granular materials. Therefore, the behavior of such materials is fundamentally governed

by physical and morphological features, such as particle size, shape, interparticle friction,

stiffness, and flexibility, etc., pertaining to the constituent particles. Due to the discrete

and complex nature of granular materials, a general theoretical description of their bulk

mechanical behavior remains unavailable. The particle-based discrete element method

(DEM) (Cundall and Strack, 1979), from the modeling standpoint, has emerged as the most

prevalent numerical tool to model granular materials and to understand their bulk behavior

from the micro-mechanics among the constituent particles.

In order to approach accurate modeling of granular materials based on DEM, it is

critical to precisely incorporate the particle physical and morphological features into the

DEM model. With regard to the particle morphology features, two of the most salient impact

factors are the particle sizes (i.e., grading) (Bui et al., 2005; Igwe et al., 2007; Vangla and

Latha, 2015) and the particle shapes (Santamarina and Cho, 2004; Cho et al., 2006; Rousé

et al., 2008) as observed from laboratory experiments. To study or predict the behavior of

granular materials, it is necessary to take into account the effects of particle grading and

shape irregularity. This dissertation will thus focus on capturing and understanding the

grading- and shape-dependent behavior of granular materials from the micro-mechanics

among the constituent particles based on DEM.

1.2 Scope & objectives

The research efforts of incorporating different particle sizes and irregular shapes into

a DEM model and investigating their effects on the bulk mechanical behavior of granular

materials have been on the rise recently. Although different particle sizes and different types

of non-spherical particle shapes have been implemented in previous studies (Sitharam and
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Nimbkar, 2000; Wood and Maeda, 2008; Ding et al., 2014; Liu et al., 2014b; Li et al., 2014;

Dai et al., 2015; Zhou et al., 2016; Estrada, 2016; Garcia et al., 2009; Torskaya et al., 2014),

most of them were artificially created for research purposes and may not necessarily reflect

the sizes and shapes of realistic particles of a specific granular material. The questions then

arise as: (1) how to accurately characterize the particle sizes and shapes of a realistic granular

material; (2) how to effectively incorporate realistic particle sizes and shapes into a DEM model;

and (3) how do the particle sizes and shapes, together with other physical properties such as

particle flexibility, affect the bulk behavior of this specific granular material?

By addressing these questions, the main objective of this dissertation is to approach

an accurate characterization and modeling of the grading- and shape-dependent behavior of

granular materials by developing DEM models that incorporate realistic physical and mor-

phological features of granular particles. Revolving around this objective, three main studies

will be conducted: (1) image-based particle reconstruction and morphology characterization

(see Chapter 3), (2) grading and shape-dependent shearing behavior of rigid-particle systems

(see Chapter 4), and (3) granular flow of deformable irregular particles (see Chapter 5 and

Chapter 6). The specific tasks include:

1. An extensive literature review of current approaches for characterizing particle sizes

and shapes based on imaging techniques, and representing irregular-shape and de-

formable particles in DEM models.

2. Development of a framework to reconstruct particle shapes from realistic samples of

granular materials based on imaging techniques.

3. Quantitative characterization and analysis of particle morphology using different shape

descriptors, including aspect ratio, roundness, circularity (2D) or sphericity (3D).

4. Development of DEM models with the incorporation of realistic particle sizes and

shapes.

5. To investigate the effects of particle size, shape, along with the particle deformability,
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on the behavior of granular materials in different situations including direct shear,

cyclic compression, and hopper flow tests.

6. To study the capability of using the rolling resistance model to compensate for the

effects of particle shape irregularity.

7. To identify the importance of particle deformability to the DEM simulations of flexible

granular materials.

1.3 Dissertation organization

This dissertation is organized into seven chapters. The introduction is presented

in Chapter 1, followed by Chapter 2 that presents the DEM basics and review. The main

chapters (3, 4, 5 and 6) are self-contained studies with literature reviews on its own related

research topics and have been or will be published in technical journals. The summary of

these main chapters is listed as following:

Chapter 3 presents a machine learning and level set based framework to segment X-

ray computed tomography (X-ray CT) images and numerically reconstruct individual particles

of a granular material. The proposed framework is applied to reconstruct three-dimension

realistic particle shapes of the Mojave Mars Simulant soil, and quantitative morphology

analyses are also performed.

Chapter 4 studies the grading and shape-dependent sharing behavior of rigid-particle

systems. X-ray CT technique is exploited to obtain particle imaging of the JSC-1A Martian

regolith simulant, from which particle sizes and shapes are characterized and used to

develop numerical clump (e.g., rigid particle) based DEM models. The effects of particle

shape irregularity on the shearing behavior are investigated through direct shear simulations

with comparisons from spherical particles with or without rolling resistance.

Chapter 5 conducts the DEM modeling of complex-shape, deformable particles with

a case study of flexible pinewood chips. A bonded-sphere DEM model is implemented with

the capability of embodying various particle sizes, irregular shapes, and capturing particle
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deformability. The mechanical behavior of bulk pinewood chips in cyclic compression test is

studied.

Chapter 6 applies the previous bonded-sphere DEM model to a practical problem,

granular hopper flow tests. Different simulation scenarios, including spherical particles,

rigid-irregular particles, and deformable-irregular particle of different shapes and stiffness,

are considered. The effects of particle size, shape, as well as particle deformability, on the

hopper flow behavior are investigated.

As a conclusion of this dissertation, Chapter 7 summarizes the main findings of

this dissertation, discusses the limitations of the current work, and outlines the possible

directions of future research.
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Chapter 2

Discrete element method basics and

review

This chapter presents a brief introduction and review of the discrete element method

(DEM). The intention is to introduce the main components and basic computational workflow

of a DEM model, providing necessary background information to the research presented in

this dissertation.

2.1 Overview

DEM is a particle-based numerical model that is particularly suitable for describing

the mechanical behavior of bulk granular materials. It was first proposed by Cundall and

Strack (1979) for the analysis of geotechnical materials. Since then, DEM has been applied

to model all kinds of granular materials and to simulate the problems ranging from solids

handling to powder flowing in a variety of different engineering branches (Cleary, 2009;

Tijskens et al., 2003; O’Sullivan, 2011). In DEM, all individual particles in the bulk granular

material are explicitly modeled and a DEM model directly captures the interactions between

particles and tracks the motions of each particle. The bulk behavior of a granular material is

6



presented as an assembly of the actions (i.e., the interactions and motions) of all constituent

particles.

As a particle-based numerical model, DEM exhibits several advantages compared to

the classical continuum theory-based numerical models. First, it bypasses the phenomeno-

logical constitutive models for describing the bulk behavior of a granular material within

a representative volume (Andrade and Avila, 2012; Andrade et al., 2012a; Guo and Zhao,

2016). Second, it is straightforward for the DEM to simulate the problems involving large

deformation or material failure, such as granular flow, penetration, or strain localization

(Chen, 2011). The major drawback of DEM is also obvious. As DEM tracks the interactions

and motions of all particles, DEM simulations are quite computationally expensive, which

makes it difficult to scale up (Liu and Hrenya, 2014; Berger and Hrenya, 2014). Nevertheless,

with the advent of computer hardware and parallel capabilities, the DEM has become an

increasingly powerful numerical tool that can provide valuable information of and shed lights

upon the microscopic behavior of granular materials, which is often difficult or impossible to

obtain from classical continuum-based numerical models or from physical experiments.

2.2 Key components of DEM

2.2.1 Basic elements

In general, there are two types of basic elements in a DEM model: particles and

boundaries. The basic elements are assumed to be rigid but can have overlaps with each

other. A particle is a body that has a closed surface. It may be represented by a simple

geometry (e.g., sphere or ellipsoid) or a composition of several simple geometries that

make up the body surface (see further discussions in Section 2.3). A review on the particle

geometric representations can be found in (Zhong et al., 2016). Particles have mass and

their motion (i.e., position, velocity, and acceleration) is always tracked during a DEM

simulation. Boundaries are also referred to as walls in the DEM literature. They may as

well be represented by simple geometries (e.g., triangles) or their combinations, but they
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do not necessarily have closed surfaces. Boundaries do not have mass and their position

and velocity are usually prescribed to provide the desired constraints to the particles in the

model.

2.2.2 Contacts and contact models

Contacts describe the interactions between basic elements. Contact occurs when the

surfaces of two basic elements overlap with each other (to model collisions), or when the

surfaces are within a specified distance (to model long-range bond or cohesion). Detecting

the contacts between basic elements is a mathematical geometry problem and is one of the

most time-consuming parts of a DEM simulation. One important task associated with contact

detection is to characterize the contact geometric features, which are needed by a contact

model to calculate the contact forces and moments. The contact features may include the

overlapping (or indentation) distance, relative shear displacement, contact point, contact

branch vectors, and so on.

Contact models are used to calculate the contact forces and moments between the

two elements in contact. Commonly used contact models include the linear elastic model

(Cundall and Strack, 1979), the rolling resistance model (Jiang et al., 2005), the Hertz-

Mindlin model (Hertz, 1882; Mindlin, 1953; Di Renzo and Di Maio, 2005), and the linear

parallel bond model (Potyondy and Cundall, 2004). The formulation of these contact models

will be presented in Section 2.4.

2.2.3 Newton-Euler equations of motion

In DEM, the motion of a particle can be described by the Newton-Euler equations

of motion. For any arbitrarily-shaped particle, the Newton-Euler equations of motion are
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written as

ma = F (2.1)

I� + ! × L = M (2.2)

where m is the mass of the particle; I is the inertia tensor of the particle; a and � are

the translational and rotational acceleration; F and M are the overall external forces and

moments acting on the particle; ! is the vector of the angular velocities about the principal

axes. Herein, the variable in bold-symbol indicates a vector or a tensor. For spherical

particles, the Newton-Euler equations of motion reduce to

ma = F (2.3)

I� = M (2.4)

In order to resolve the motion of each particle, all the forces and moments acting on

the particle need to be evaluated and summed, which may include gravity, damping, contact

forces and moments, and prescribed external forces and moments. Herein, the damping

refers to the global damping, which is sometimes (artificially) introduced in a DEM model

to facilitate energy dissipation and enhance a quasi-static simulation (Chung, 2006; Itasca

Consulting Group, Inc, 2014). There is another type of damping called local damping, which

is usually incorporated into a contact model as dash-pot forces to account for the realistic

energy dissipation due to particle interactions.

2.2.4 Time integration

To fully resolve the particle motion (e.g., the position and velocity) governed by

Equation 2.1 and Equation 2.2 involves the time integration scheme, where the second-

order Velocity Verlet algorithm (Verlet, 1967) is commonly adopted. For spherical particles,

suppose that the current state is indexed by time t and the time increment to the next state
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is Δt, Velocity Verlet algorithm first calculates the particle velocities at time t+Δt∕2 by

v
t+Δt∕2 = v

t + a
tΔt∕2 (2.5)

!
t+Δt∕2 = !

t + �
tΔt∕2 (2.6)

where v and ! are translational and angular velocities, respectively. The superscripts (e.g., t

and Δt∕2) indicate the time indexes. Then, the position and orientation of the particle at

time t+Δt are calculated as

x
t+Δt = x

t + v
t+Δt∕2Δt (2.7)

�
t+Δt = �

t + !
t+Δt∕2Δt (2.8)

where x is the vector of position and � is the vector of orientation. Correspondingly, the

translational velocity and angular velocity at time t + Δt are updated by

v
t+Δt = v

t+Δt∕2 + a
t+Δt∕2Δt∕2 (2.9)

!
t+Δt = !

t+Δt∕2 + �
t+Δt∕2Δt∕2 (2.10)

For non-spherical particles, the original Newton-Euler equations of motion cannot be

simplified, and the calculation of the orientations and angular velocity will be much more

complicated. A more detailed discussion on the time integration for non-spherical particles

will not be included here but can be found in the work of Chung (2006) and the PFC user

manual (Itasca Consulting Group, Inc, 2014).

2.2.5 Critical timestep

The time integration based on the second-order Velocity Verlet algorithm is numeri-

cally stable only when the time increment being used is less than a threshold value, i.e. the

critical timestep (Otsubo et al., 2017). If a time increment greater than the critical timestep

10



is used, particles may move too much in one increment, which will result in spuriously

infinite overlapping (i.e., abnormally large contact forces).

A summary and empirical assessment of different approaches to estimate the critical

timestep for DEM simulations can be found in Otsubo et al. (2017). Basically, there are two

categories of approaches to estimate the critical timestep: the oscillation period of a single

degree of freedom system (SDOF) based approaches (Cundall and Strack, 1979; Hart et al.,

1988), and the Rayleigh wave speed based approaches (Thornton, 2000; Li et al., 2005b).

The former approaches consider the DEM system to be consist of rigid bodies connected by

springs, while the latter ones consider the particles themselves to be springs.

In the category of the SDOF-based approaches, Cundall and Strack (1979) proposed

the following expression to estimate the critical timestep Δtcrit

Δtcrit = min(
√
m∕ktran,

√
Ii∕k

rot
i
) (2.11)

where m is the mass of the particle; Ii is the moment of inertia of the particle; ktran and krot
i

represent the translational and rotational stiffness, and the subscript i indicates the index of

principal components.

In the category of the Rayleigh wave speed based approaches, Li et al. (2005b)

proposed that

Δtcrit =
�R

√
�∕G

0.1631� + 0.8766
(2.12)

where R is the average particle radius; � is the particle density; G the particle shear modulus;

and � the Poisson’s ratio of the particle.

2.2.6 Computational workflow

DEM-based numerical simulations require cyclic calculations. Figure 2.1 shows the

workflow and calculations that are involved in one typical cycle of a DEM simulation.

The workflow and calculations for one DEM cycle can be summarized as follows:
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Contact behavior

𝛿" , Δ𝛿% , 𝒏, 𝒕: → 𝓕

𝛿"
Δ𝛿%

Kinematics

𝓐:→ 𝛥𝓧

t

n

𝛿"

Contact detection

𝛿" , Δ𝛿% , 𝒏, 𝒕

Δ𝛿%

𝑭

Motion

𝓕:→ 𝓐

Figure 2.1: The workflow and calculations that are involved in one typical cycle of a DEM

simulation.  ,  and  indicate the general forces, accelerations, and positions of a particle.

1. At the current state, the positions and velocities of all particles are known: based on

the geometries of all particles, identify the inter-particle contacts and evaluate contact

features;

2. Calculate the external forces and moments of all particles, while the contact forces

and moments are calculated based on selected contact models and the corresponding

contact features;

3. Calculate the motion (i.e., the accelerations) of all particles;

4. Update the positions and velocities of all particles following the selected time integra-

tion scheme.

2.3 Particle representation

There are basically two groups of methods to represent an irregular particle in DEM

(Zhong et al., 2016): single-particle method and composite-particle method.

2.3.1 Single-particle method

The single-particle method utilizes closed geometries to represent particle shapes.

Many single-particle-based DEM models have been proposed and developed with the adop-

tion of some specific closed geometries, such as cylinder (Feng et al., 2017b), polyhedron
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(or polygon in 2D) (Nassauer et al., 2013; D’Addetta et al., 2002), ellipsoid (or ellipse in

2D) (Lin and Ng, 1997; Ting et al., 1993), superquadrics (Williams and Pentland, 1992;

Podlozhnyuk et al., 2017), Non-Uniform Rational Basis Spline (NURBS) (Andrade et al.,

2012a), as well as their combinations (e.g., poly-ellipsoid (Peters et al., 2009; Zhang et al.,

2018a)).

Each of these methods has its own advantages and limitations. The application of the

cylinder-based or ellipsoid-based DEM models is limited, due to the particular particle shapes

they can represent. The superquadric can be considered as an extension of the ellipsoid and

can be used for modeling of spheres, ellipsoids, cylinder-like and box(dice)-like particles by

varying the shape parameters. It is more flexible by being able to model larger variations

of particle shapes, but also more computationally expensive than the ellipsoid-based DEM

models. The polyhedron- (or polygon in 2D) based DEM model is able to replicate arbitrary

particle shapes. The accuracy of the shape represented by polyhedron depends on the number

of faces in a polyhedron, whereas a large number of faces would hinder the computational

efficiency. Moreover, polyhedron can rarely replicate a smooth particle shape. The NURBS

based granular element method, developed by Andrade et al. (2012a), is advantageous

to replicate general and smooth particle shapes, whereas it is computationally expensive

compared to the polyhedron-based DEM.

Recently, Kawamoto et al. (2016) developed another novel type of single-particle-

based DEM, which utilizes the level set (LS) method to represent particles. The LS-DEM

seamlessly utilizes the level set data of realistic particle shapes characterized from X-ray

computational tomography and is computationally efficient. One issue with the LS-DEM

is high memory consumption, which somewhat limits its application on large particulate

systems.

2.3.2 Composite-particle method

In a composite-particle method, a particle is represented by compositions of simple

geometries (usually spheres in 3D or circles in 2D (Das, 2007; Shi et al., 2015)). This group
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of methods is advantageous to implementation for that the contact detection and resolution

algorithms for the simple geometries can be effortlessly exploited. It should be noted that

the accuracy of particle shape represented by compositions of simple geometries depends

on the amount of the simple geometries, and a large number of simple geometries would

lead to great computational expense though. Nonetheless, the composite-particle method

(especially with spheres as the base elements) is currently the most prevalent method to

model irregular particles and is supported in most commercial or open-source DEM packages

such as PFC (Itasca Consulting Group, Inc, 2014) and LIGGGHTS (Kloss et al., 2012).

There are three options to represent a composite particle (Shi et al., 2015): the

domain overlapping filling method, the domain non-overlapping filling method, and the

boundary filling method, as shown in Figure 2.2 with discs being used as the base elements,

for instance. The composite particle generated by domain overlapping filling requires

the least number of particles and is, therefore, the most computationally efficient. The

domain non-overlapping filling method can be promoted to model physics-based particle

deformation (e.g., compression, deflection or distortion) or breakage. The boundary filling

method, depending on the size of filling elements, could provide a better representation of

surface roughness.

(a) Domain overlapping filling (b) Boundary filling (c) Domain non-overlapping filling

Figure 2.2: A schematic illustration of the three options to represent a composite particle

with discs (modified after Shi et al. (2015)).
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2.4 Contact models

A DEM contact model is normally comprised of springs, dash-pots, and sliders to

describe the force-displacement behavior at the contact, where the springs account for normal

and tangential forces, the dash-pots account for local damping, and the sliders account for

shear failure. The formulation of contact models that will be used in this dissertation is

presented in this section.

2.4.1 Linear elastic model

A linear elastic model generally consists of two elastic springs, two dash-pots, and a

slider, as shown schematically in Figure 2.3.

Dash-pot

Sphere 𝑖 Sphere 𝑗

Spring

SpringDash-pot

Slider

Tangential force

Normal force

Figure 2.3: Schematic diagram of linear elastic model (adopted from (Chung, 2006)).

The contact forces F are calculated from two parts: the normal force F n and the

shear (or tangential) force F s

F = F n + F s = Fnnn + Fsns (2.13)

where nn and ns are the unit vectors denoting the direction of the normal and the shear

force, respectively; Fn and Fs are the magnitudes of corresponding contact forces. Assuming

the relative displacement increment at the contact during a timestep Δt is given by its

components Δ�n (compression as a positive) and Δ�s, the contact law for a simple linear
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model with local damping updates the contact forces through (Cundall and Strack, 1979;

Itasca Consulting Group, Inc, 2014)

Fn = F 0
n
+ knΔ�n − �n

√
m̄kn�̇n (2.14)

Fs = min(F 0
s
+ ksΔ�s − �s

√
m̄ks�̇s, �cFn) (2.15)

where F 0
n

and F 0
s

are the normal and the shear forces at the beginning of the current timestep,

respectively; kn and ks are the corresponding stiffness; �n and �s are the corresponding

damping coefficients; �̇n and �̇s are the relative normal and shear velocity; �c is the contact

friction coefficient; and m̄ = mimj∕(mi+mj) is the effective mass of particles i and j associated

with the contact, while m̄ = mi for the case of particle-boundary contact.

2.4.2 Rolling resistance model

The rolling resistance model is built upon the linear elastic model by adding a term

of rolling resistance moment to the contact moment. The formulation to calculate the

additional rolling resistance moment can be written as Iwashita and Oda (1998); Jiang et al.

(2005); Itasca Consulting Group, Inc (2014)

M = min(M0 + krΔ�b, �rR̄Fn) (2.16)

where M0 is the contact moment at the beginning of the current timestep; Δ�b is the relative

bending-rotation increment; �r is the rolling resistance coefficient; kr is the rolling resistance

stiffness defined as:

kr = ksR̄
2 (2.17)

where R̄ is the contact effective radius defined as R̄ = RiRj∕(Ri + Rj), in which Ri and Rj

are the radii of the contact particles. If one side of the contact is a wall, the corresponding

radius Rj → ∞.

This model uses a simplified formulation for the rolling kinematics, and the particle
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size effects on the rolling resistance are implicitly incorporated in the rolling stiffness term.

The interested reader is referred to Luding (2008); Wang et al. (2015) for examples of

improved and more advanced rolling resistance models.

2.4.3 Hertz-Mindlin model

The Hertz-Mindlin model is a complete frictional contact model based upon the Hertz

theory (Hertz, 1882) for contact normal forces and the Mindlin theory (Mindlin, 1953) for

contact tangential forces. It takes into account the stiffness variation due to the change of

contact areas during the collision of two elastic spheres.

Similar to the linear elastic model, the Hertz-Mindlin model also consists of two

springs, two dash-pots, and a slider. There are, however, two major differences. First,

the normal and shear stiffness in the Hertz-Mindlin model are functions of the contact

overlapping distance. Second, the normal contact force in the Hertz-Mindlin model is

calculated via the cumulative overlapping distance, while the linear elastic model uses

either the cumulative or incremental overlapping distance. To update the contact forces, the

Hertz-Mindlin model follows

Fn = kn�n − �n
√
m̄kn�̇n (2.18)

Fs = min(F 0
s
+ ksΔ�s − �s

√
m̄ks�̇s, �cFn) (2.19)

where �n is the cumulative overlapping distance, while kn and ks are calculated as (Di Renzo

and Di Maio, 2005):

kn =
4

3
Ē

√
R̄�n (2.20)

ks = 8Ḡ

√
R̄�n (2.21)
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in which

1

Ē
=

(1 − �2
i
)

Ei
+

(1 − �2
j
)

Ej
(2.22)

1

Ḡ
=

2(2 − �i)(1 + �i)

Ei
+

2(2 − �j)(1 + �j)

Ej
(2.23)

where Ē and Ḡ are the effective Young’s modulus and shear modulus of the particles in

contact; Ei is the Young’s modulus and �i is the Poisson’s ratio of the ith particle.

2.4.4 Linear parallel bond model

The linear parallel bond model describes the contact behavior of two bonded particles,

as shown schematically in Figure 2.4.
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"

Figure 2.4: Sketch of bonded particles and rheological components of the bond behavior.

Symbols in the figure will be explained in the text.

In the linear parallel bond model, the bond between two spheres is assumed to be

a cylinder of finite radius and thickness. Each point in the bond is imposed by two linear

elastic springs providing normal and shear resistances, respectively. The overall bonding

force and moment are the integral of the normal and shear stresses at a cross-section of the
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bond, which can be calculated as (Potyondy and Cundall, 2004)

ΔF b
n
= kb

n
AΔ�n (2.24)

ΔF b
s
= kb

s
AΔ�s (2.25)

ΔMb
n
= kb

s
JΔ�n (2.26)

ΔMb
s
= kb

n
IΔ�s (2.27)

where F b
n
, F b

s
, Mb

n
and Mb

s
are the bond normal force, shear force, twisting moment, and

swinging moment, respectively; �n, �s, �n, and �s are the relative normal displacement, shear

displacement, twisting rotation, and swinging rotation between the two bonded spheres,

respectively; A, I , and J are the area, moment of inertia, and polar moment of inertia

of the bond (i.e., the circular cross-section with radius Rb), respectively; and Δ indicates

the increment of each variable in each time step. It should be pointed out that, while the

damping is not included in the current formulation, damping terms similar to those in the

linear elastic model can be incorporated in a straightforward manner.

The bonded-sphere model is also capable of modeling the particle breakage behavior.

As an example of a common bond breakage criterion, it can be assumed that a bond would

break if the maximum normal or shear stress at the bond exceeds the corresponding normal

or shear strength. In the linear parallel bond model, both the normal force and swinging

moment contribute to the normal stress, while both the shear force and twisting moment

contribute to the shear stress. In this regard, the bond breakage criterion can be written as

�b
max

=
F b
n

A
+
Mb

s
Rb

I
< �b

Y ,n
(2.28)

�b
max

=
F b
s

A
+
Mb

n
Rb

J
< �b

Y ,s
(2.29)

where �b
Y ,n

and �b
Y ,s

are the normal and shear strength, respectively.
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2.5 Model calibration

As most of the contact parameters in a DEM model are difficult if not impossible to

be measured directly from physical tests, a calibration process is often needed to obtain the

contact parameters for a specific material of interest. There are some researches available

on the procedures to calibrate contact parameters for a DEM model (Plassiard et al., 2009;

Chehreghani et al., 2017; Coetzee, 2017). Usually, the calibration process is accomplished

by performing parametric studies on each of contact parameters and selecting values of the

contact parameters with which the DEM simulation can reproduce the benchmark matrices

of laboratory experiments. Commonly used laboratory experiments for calibration of DEM

parameters include compression test, direct and ring shear test, and angle of repose test.

Descriptions of these tests can be found in (Schulze, 2008; Coetzee, 2017).

There are some challenges and problems associated with the model calibration. First,

to obtain reasonable and realistic contact parameters via calibration, it is necessary that

the setup and procedures in the DEM models are to the most extent similar to those in the

laboratory experiments. However, in order to get the DEM simulations performed within

affordable computational resources, adjustments or tolerances in the particle size, shape

or testing speed may exist in a DEM model. As a result, the calibrated contact parameters

may deviate from their actual values to some degree. In addition, the contact features and

contact models are usually quite simple and conceptual compared to the actual complex

contact behavior. The physical meaning of the contact parameters may be lost due to the use

of conceptualized contact features and contact models. Lastly, as pointed out in (Coetzee,

2017), the solution of contact parameters might not be unique since all contact parameters

may affect the results of a DEM simulation in a complex and highly nonlinear manner. There

is no guarantee that the contact parameters for a material calibrated for one experiment will

be workable for another. In this regard, it would be necessary to perform the calibration

with one experiment and validate the calibration results via another.
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2.6 Summary

A brief review of DEM has been presented in this chapter. A general DEM model

involves the following components: basic elements, contacts and contact models, Newton-

Euler equations of motion, time integration (i.e., the Velocity Verlet algorithm). Timestep is

a critical parameter affecting the numerical stability of DEM simulations and the approaches

to estimating the critical timestep have been discussed. The general computational workflow

of DEM simulations has also been described.

The single-particle methods and composite-particle methods are two basic groups

of methods to represent an irregular particle in DEM. Their corresponding advantages and

limitations have been discussed. Later in this dissertation, the composite-particle method

will be employed following the domain overlapping and domain non-overlapping filling

schemes. The former scheme considers rigid particles (see Chapter 4), while the latter one

provides particles the ability to deform or break (see Chapter 5 and Chapter 6).

This chapter also presented the formulations of four commonly used contact models:

linear elastic model, rolling resistance model, Hertz-Mindlin model, and linear parallel bond

model. While the linear elastic model is a simplistic model, it can still reproduce the most

characteristic behaviors of a material when properly calibrated(Zhao et al., 2018a). The

Hertz-Mindlin model has a similar form as the linear elastic model but takes into account the

stiffness variation at different particle overlapping distances. The rolling resistance model

can be applied on spheres to replicate the effects of particle shape irregularity (comparisons

will be reported in Chapter 4). The linear parallel bond model is used to characterize the

contacts between base particles, which are bonded together to form a deformable-irregular

particle (the model will be used in the studies presented in Chapter 5 and Chapter 6).

As most of the contact parameters are difficult if not impossible to be measured

directly from physical tests, a calibration process is often needed to obtain the contact

parameters. The general approach for model calibration, as well as the challenges and

problems associated with the calibration, has been also discussed in this chapter.
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Chapter 3

Reconstructing granular particles

from X-ray computed tomography

using the TWS machine learning tool

and the level set method

X-ray computed tomography (CT) has emerged as the most prevalent technique to

obtain three-dimension morphological information of granular geomaterial. A key challenge

in using the X-ray CT technique is to faithfully reconstruct particle morphology based on

the discretized pixel information of CT images. In this work, a novel framework based on

the machine learning technique and the level set method is proposed to segment CT images

and reconstruct particles of granular geomaterials. Within this framework, a feature-based

machine learning technique termed Trainable Weka Segmentation (TWS) is utilized for CT

image segmentation, i.e., to classify material phases and to segregate particles in contact.

This is a fundamentally different approach in that it predicts segmentation results based

This chapter is accepted to be published in: Z. Lai and Q. Chen. Reconstructing granular particles from X-ray

computed tomography using the TWS machine learning tool and the level set method. Acta Geotechnica.
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on a trained classifier model that implicitly includes image features and regression func-

tions. Subsequently, an edge-based level set method is applied to approach an accurate

characterization of the particle shape. The proposed framework is applied to reconstruct

three-dimension realistic particle shapes of the Mojave Mars Simulant. Quantitative accuracy

analysis shows that the proposed framework exhibits superior performance over the conven-

tional watershed-based method in terms of both the pixel-based classification accuracy and

the particle-based segmentation accuracy. Using the reconstructed realistic particles, particle

size distribution is obtained and validated against experiment sieve analysis. Quantitative

morphology analysis can also be performed, showing promising potentials of the proposed

framework in characterizing granular geomaterials.

3.1 Introduction

The study of particle morphological features of granular geomaterials, including their

form, sphericity, roundness, and roughness, has been a subject of interest in the geotechnical

engineering and geomechanics community for decades. These morphological features can

help researchers and engineers understand the forming, weathering and aging process

of geomaterials (Gilkes and Suddhiprakarn, 1979; Papoulis et al., 2004). They are also

among the fundamental and the most salient factors that govern the material’s macroscopic

properties and engineering behavior, such as compressibility, shear strength, and critical state

parameters (Santamarina and Cho, 2004; Guo and Su, 2007; Tsomokos and Georgiannou,

2010; Stark et al., 2014; Zheng et al., 2017). Moreover, the understanding of the link

between particle morphology and its engineering behavior is of importance to design and

optimize innovative geomaterials, such as bio-improved and bio-cemented granular soils

(Tagliaferri et al., 2011; Cheng et al., 2013; DeJong et al., 2013; Dadda et al., 2017; Gleaton

et al., 2018).

Experimental techniques commonly used to obtain the morphological features of

granular geomaterials include photography (Zheng et al., 2017), scanning electron mi-
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croscopy (Cox and Budhu, 2008), and X-ray computed tomography (CT) (Desrues et al.,

2010). The first two techniques provide two-dimension (2D) morphological information (i.e.,

2D images) that can be used to approximate or infer three-dimension (3D) morphological

features, e.g., through a virtual 3D surface method (Mollon and Zhao, 2013b) or through

enhancing the illusion of the depth of 2D images (Zheng and Hryciw, 2017b). The X-ray

CT, on the other hand, can be used to directly obtain 3D morphological information, and

therefore, has been the most prevalent technique in recent years (Matsushima et al., 2009;

Garboczi, 2011; Andò et al., 2013; Hashemi et al., 2014; Vlahinić et al., 2014; Viggiani et al.,

2015; Zhou et al., 2018). The particle-level morphological information can be integrated

into numerical methods, such as the discrete element method (DEM) (Cundall and Strack,

1979), to develop more realistic and predictive numerical models for granular geomaterials

(Matsushima et al., 2009; Andrade et al., 2012c; Zheng and Hryciw, 2017a; Lai and Chen,

2017).

3.1.1 Motivation of the proposed framework

Reconstructing particle morphology from discretized pixel information of X-ray CT

images poses three main challenges. The first challenge is to classify pixel in a raw CT image

into different material constituents or phases (e.g., soil particles, voids). Thresholding is a

commonly used method for such a purpose in image processing, which has been successfully

applied to separate objects from the background (Bruchon et al., 2013). The performance

and effectiveness of the thresholding method, however, is greatly complicated by various

factors, such as the nonstationary and correlated noise, ambient illumination, busyness of

gray levels within the object and its background, inadequate contrast, and object size not

commensurate with the scene (Sezgin and Sankur, 2004). Granular geomaterial is typically

a composition of various minerals, organic matters, fluids, and internal voids. Each of the

constituents has its intrinsic X-ray attenuation, leading to a large variance of pixel intensity

in raw CT images (Ketcham and Carlson, 2001). In addition, the perturbation of tomography

environment, the practical scanning procedure and the limitation of CT optical apparatus
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could bring in significant noises that further aggravate the intensity variance (Sleutel et al.,

2008). As such, there is oftentimes no clear demarcation between the pixel intensity of

different phases in geomaterials, which makes phase classification using the thresholding

method very challenging. Some more advanced energy-based techniques for constituents

classification, such as the graph cut and the region-based level set algorithms, are sensitive

to the selection of weights on the various terms in the energy functional (Al-Kofahi et al.,

2010). These weights are usually tuned beforehand by the developer via trial and error, and

can only achieve reasonable results for certain types of images.

The second challenge is to accurately identify particle boundaries and segregate par-

ticles in contact. Several well-known methods for object segregation include the watershed

method (Matsushima et al., 2009), the concave curvature segmentation method (Hobson

et al., 2009; Wang et al., 2012), the edge detection method (Gao and Chae, 2010; Vlahinić

et al., 2014), and the region growing method (Hashemi et al., 2014). Each of these methods

has its strengths and limitations, and sometimes, several methods are used in combination to

achieve better performance. The watershed method is perhaps the most widely used method

but has the over-segmentation issue (Meijering, 2012). Its performance, to a great extent,

depends on well-defined markers that are typically difficult to determine. The concave

curvature segmentation method examines the curvature of the shape boundary and draws

segmenting split line through the split points with a concave curvature, thus to split the

contacting particles at the point of contact (Hobson et al., 2009). This method requires a

prior shape information and might not be applicable to particles with concave surfaces as it

would mistakenly split a particle if a concave surface is detected. The edge detection-based

method utilizes some filters, such as the difference of Gaussian or the Laplacian of Gaussian,

to identify object boundaries. These filters alone usually do not produce definitive object

boundaries, but may provide useful cues to be used in subsequent algorithms, such as the

edge-based level set method (Gao and Chae, 2010; Vlahinić et al., 2014). The edge-based

level set method depends upon well-defined edge indicator, and its performance is sensitive

to the initialization and model parameters.
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The last challenge is to approach an accurate characterization of the particle shape

based on the discretized pixel matrix of CT images. The marching cubes (MC) method

proposed by Lorensen and Cline (1987) is a popular isosurface algorithm to reconstruct

particle surface. However, in most literature, the MC method operates on binarized images

for surface reconstruction and the reconstructed surfaces generally have artificial stair steps

(Zhao and Wang, 2016). Hence, some smoothing manipulations are necessary to remove

the jagged stair steps (Gibson, 1998). A more accurate approach is to utilize the edge-based

level set method, which is capable of achieving a sub-pixel accuracy of the object boundary

(Liu et al., 2016). As aforementioned, the edge-based level set method suffers from the edge

indicator, initialization, and model parameter issues when handling image segmentation.

In this paper, a novel framework is developed to identify and reconstruct realistic

3D particle shapes from discretized pixel information of X-ray CT images. The proposed

framework takes a fundamentally different approach compared to previous works in that a

trainable machine learning technique is innovatively integrated with the edge-based level set

method. The machine learning technique is utilized to segment raw CT images of granular

geomaterials, i.e., to classify different constituents and to segregate particles in contact. In

the machine learning process, the segmentation algorithms are not explicitly programmed.

Instead, the method predicts segmentation results based on the weighted combination of

various image features at different image scales (Jaccard, 2015). The image features and

regression functions are implicitly encoded in the classifier model and are determined through

a training process. The machine learning-based method, with well-trained classifier model

(e.g. the feature weights and regression functions), can provide logical and knowledge-based

image segmentation results comparable to experienced engineers or to human’s recognition

and perception. It has already brought in some successful applications of image segmentation

in the biology and medical areas (Sommer and Gerlich, 2013; Avendi et al., 2016). Once the

raw images are segmented, edge indicators can be evaluated from the processed images. A 3D

edge-based level set method is then developed to approach an accurate shape representation

of real particles.
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3.2 Overview of the framework

Figure 3.1 shows a schematic illustration of the proposed framework. In this figure,

key components of the methodology are shown in the top row and the expected outputs are

listed in the bottom row. The framework starts with a specimen of granular soil scanned

using an X-ray CT scanner to produce a set of 3D raw CT images. A machine learning tool

termed Trainable Weka Segmentation (TWS) is then utilized to classify image pixels and

segment particles in contact. The outputs of the TWS-based segmentation are probability

maps showing the probability of the pixels belonging to a specified class (e.g., solid or void).

Using the probability maps as inputs, a 3D edge-based level set method is implemented to

capture particle boundaries and reconstruct realistic particles. These particles can be used

for subsequent analysis such as characterizing shapes or particle size distributions. In the

following sections, the TWS-based segmentation, the level set method and the particle shape

analysis will be presented in details.

Granular soil Probability maps

Level set reconstruction Shape analysis

Raw CT images

TWS segmentation

Realistic particles Shape descriptors

X-ray CT scan
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Figure 3.1: Schematic illustration of the proposed framework. The top row includes key

components of the methodology and the bottom row includes the expected outputs. TWS

stands for Trainable Weka Segmentation.

3.3 Image segmentation by the TWS machine learning tool

In this section, the Trainable Weka Segmentation (TWS) (Arganda-Carreras et al.,

2017) is introduced for image segmentation. TWS is a pixel-based image classification and

segmentation tool, where each pixel in an image is treated as an individual object that
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possesses a vector of image features. A combination of image features is then used to classify

a pixel into different classes. The basic idea of the machine learning-based approach is to

regress the weights of different image features through a training process using manual

annotations of image features. The result of the training process is a trained classifier model

that can be applied to segment other similar image data.

TWS leverages the state-of-the-art machine learning algorithms provided in the data

mining and machine learning toolkit Waikato Environment for Knowledge Analysis (Weka)

(Hall et al., 2009). TWS acts as a bridge between the image processing and machine learning

toolkit, where it extracts the features of an image (e.g., an X-ray CT image) and converts

them into the format that is expected by the Weka toolkit. By default, TWS uses random

forest (RF) as the machine learning algorithm. In a recent study by Fernández-Delgado

et al. (2014), RF is shown to yield best overall performance and is recommended for new

problems involving machine learning.

3.3.1 Decision tree and random forest

Random forest is built on an ensemble of decision trees. Decision trees are a non-

parametric supervised learning method used for classification and regression. The goal is to

create a flowchart-like structure that predicts the outcome of a target object (e.g., an X-ray

image pixel) by learning simple decision rules inferred from the data features (e.g., various

image features).

Figure 3.2 shows an example of a decision tree. In this example, there are 100 objects

taken as training inputs, where each object possesses 3 features. 40 of the 100 objects are

labeled as the foreground objects and 60 of them are labeled as the background objects. At

the first level of division, the 100 objects are split into two groups based on the value of

their second feature. The selection of a feature for the division is based on the information

entropy theory (Quinlan, 1986), and the feature that achieves the most information gain

after the division will be selected. According to the test results on the second feature, the

100 objects are classified into two groups. For instance, 10 of the 40 foreground objects fall
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into the first group as their second feature is smaller than 0.5, while 30 of them fall into

the second group as their second feature is greater than 0.5. The second and third level of

division follows the same strategy. Eventually, the 100 objects are classified into 8 groups.

For each of the 8 groups, if the foreground objects are dominating that group, it is considered

as a foreground group and vice versa. The decision tree is constructed during the training

process to determine the division parameters.

Once the decision tree is constructed, it can be used to predict the outcome of a new

object. A new object will go through the branches of the decision tree following values of

its features, eventually falling into an end group. The label of that group is the predicted

outcome of the new object.

100 objects : {40,60}

3 features: 𝑓( ,𝑓) , 𝑓*

{10,50} {30,10}

𝑓* < 0.6

Yes

NoYes

No

{8,10} {2,40} {25,5} {5,5}

{1,1} {7,9} {2,35} {0,5} {8,4} {17,1} {5,3} {0,2}

𝑓( < 0.3 𝑓( < 0.3

𝑓* < 0.6 𝑓* < 0.6 𝑓* < 0.6

𝑓) < 0.5

Yes Yes

Yes

Yes Yes No

No

No

No No

Figure 3.2: Example of a decision tree with 3 levels of division. The features and division

parameters are determined during the training process.

A single decision tree has the issue of over-fitting and is sensitive to the input

data. Random forest is an ensemble of decision trees that can mitigate such disadvantages.

Assuming that a training sample contains N objects and each object has M features, a

decision tree can be constructed using a random subset of the N objects with a random

subset of the M features. By repeating this process, one can obtain a set of decision trees.

29



The prediction of a new object is based on the overall votes of all decision trees. Figure 3.3

shows an example of the random forest and its prediction strategy.

New object

Majority vote
Possibility 2/3

Figure 3.3: Example of a random forest consisting of 3 decision trees (modified from (Jaccard,

2015)).

3.3.2 Image features

When applying the random forest algorithm to segmenting X-ray CT images, the

objects are image pixels and the features are image features determined by the user. In

this section, selected image features for segmentation are presented. Table 3.1 summarizes

various image features grouped by their purpose that can be included in a classifier model.

In this table, the noise reduction aims to mitigate the negative impact of intensity noises,

e.g., those resulting from the CT scanning system. The texture filter is used to extract texture

information. The edge indicator is used to detect object boundaries. Membrane detector is

specialized in identifying membrane-like structures of a certain size and thickness.

Table 3.1: Various image features and the corresponding purpose in the classifier model.

Image features Purpose

Gaussian blur, Bilateral filter, Anisotropic diffusion, Kuwahara, Lipschitz Noise reduction
Minimum, Maximum, Median, Variance, Entropy, Structure tensor Texture filter
Laplacian, Hessian, Sobel filter, Difference of Gaussian, Gabor Edge indicator
Membrane projection Membrane detector
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A detailed explanation of different image features can be found in Arganda-Carreras

et al. (2017). Five of the image features from Table 3.1 are selected for this study, and they

are briefly explained in this section.

Gaussian blur convolves an image with a Gaussian kernel distribution. It mitigates the noise

and smooths the image. The standard deviation controls the shape of the Gaussian

kernel, and a larger standard deviation increases the blur effect. Performing Gaussian

blur with n different standard deviations results in a vector of n Gaussian blur features.

Sobel filter is to approximate the gradient of an image using a finite difference scheme. In

practice, the Sobel filter is usually applied after a prior Gaussian blur. n Gaussian blur

gives a vector of n Sobel filter features.

Hessian calculates the second derivatives of an image and results in a Hessian matrix at

each pixel. The module, trace, determinant, first eigenvalue, second eigenvalue, orien-

tation, Gamma-normalized square eigenvalue difference, and the square of Gamma-

normalized eigenvalue difference will be used as Hessian features. A prior Gaussian

blur is also applied before the Hessian operation. n Gaussian blur gives a vector of 8n

Hessian features.

Difference of Gaussians calculates two Gaussian blur images from the original image and

subtracts one from the other. Performing Difference of Gaussians with n different

standard deviations gives a vector of n(n−1)∕2 difference of Gaussians (DoGs) features.

Membrane projection first convolves an image with a set of hardcoded matrix kernel. The

original matrix kernel is in n × n size, with the middle m columns set as 1s, and the

remaining elements set as 0s. Then, the matrix kernel is rotated by 6 degrees up to a

total rotation of 180 degrees, giving 30 kernels. The sum, mean, standard deviation,

median, maximum and minimum of the 30 images are taken as the membrane projec-

tions features. The membrane-like structures in an image stand out after membrane

projections.
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An illustration of combining various images features into a classifier model is shown

in Figure 3.4. It should be noted that including more image features does not necessarily

yield better segmentation results as more features require more training inputs to achieve

a desirable classifier. Also, more image features in the classifier mean increased computa-

tional expenses. It is found in this work that these five image features yield satisfactory

segmentation results.

Input
raw image

Sobel filter

Hessian

Gaussian
blur

DoGs

Other
features

∙ ∙ ∙

Features
combination

Classifier

Probability map
of solid phase

Figure 3.4: An illustration of combining various images features into the classifier model in

machine learning-based image segmentation process.

3.3.3 Implementation of TWS for X-CT image segmentation

In this work, the process of using TWS to segment X-CT images are implemented

in MATLAB. TWS is available as a plugin of Fiji (https://fiji.sc/). To be able to invoke Fiji

and TWS methods in MATLAB, it is necessary to first install the Fiji-MATLAB interface MIJ

(available from http://bigwww.epfl.ch/sage/soft/mij/). After installing the MIJ and adding

the corresponding path into the MATLAB working path, the methods of TWS can be imported

and invoked using MATLAB scripts. The interested reader is referred to the TWS user manual

(available as the supplementary document of (Arganda-Carreras et al., 2017)) for more

details of the TWS methods.

The workflow of the machine learning-based image segmentation is summarized in
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Figure 3.5. The workflow consists of two main components: training classifier and applying

classifier. In the training process, the raw X-CT images and their corresponding manually

labeled images are required as inputs. The output is a trained classifier, where the parameters

in each decision tree are obtained. By applying the trained classifier to new X-CT images,

the labels of each pixel in the new images can be predicted.

Input X-CT images

for training

Input manually

labeled images

Select training pixels

Gather training features

Train TWS model

Trained classifier
Input X-CT images

for segmentation

Apply classifier

Probability map

Training classifier

Applying classifier

Figure 3.5: The workflow of the X-CT image segmentation via TWS machine learning

technique.

To manually label an image, the values of each pixel are set to either 1 or 0, indicating

whether it belongs to the constituent the labeled image represents. An example set of input

images is shown in Figure 3.6. In this example, the image is intended to be classified into

two phases (e.g., the solid phase and void phase as it is the case of this work). Two labeled

images are required with one for the solid phase and one for the void phase. For the labeled

image of the solid phase, the solid pixels are set to 1s, while the remaining pixels are set

to 0s. To facilitate the training process and to reduce the workload of manual labeling, the

TWS allows subset pixels of the raw image to be labeled and used as training inputs. After

input of raw and labeled images, training features are gathered and the classifier is trained.
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(a) (b) (c)

Figure 3.6: An example set of input images for training classifier: (a) raw image, (b) the

labeled image of the solid phase, and (c) the labeled image of the void phase. The pixels

rendered by red and green color in the labeled images (b) and (c) are set to 1s, whereas the

pixels rendered by the black-white pattern are set to 0s.

After the classifier is trained, the subsequent process is to apply the trained classifier

to segment new CT images. TWS provides two types of results, i.e., a label matrix and a

probability map. A label matrix consists of integer values for all pixels in the image, i.e., 1s

indicating the pixels belong to the constituent the label matrix represents, and 0s indicating

otherwise. A probability map is a map of probability values indicating the likelihood of a

pixel belonging to a particular constituent and will be adopted in this work. Edge indicators

will be evaluated based on the probability map and will be used for the subsequent level

set method. Also, it is worth noting that though only two constituents (solid and void) are

considered in this work, the implemented TWS technique is applicable to segment multiple

classes of constituents.

3.4 The level set method for shape characterization and recon-

struction

The probability maps from machine learning-based image segmentation are used

as inputs for particle shape characterization and reconstruction using the level set method

(Osher and Sethian, 1988). In this work, the edge-based level set method is adopted. The

original formulation proposed by Li et al. (2005a, 2010) is applied to 3D particles, and a
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new scaling coefficient is introduced to the edge indicator function. It should be noted that a

3D version of the Li et al. (2005a) formulation has also been previously implemented by Sun

et al. (2011a,b), where the authors proposed a semi-implicit integration scheme and used

the level sets to determine the 3D medial axes of pore microstructures.

3.4.1 Energy functional

The shape (or boundary) of a particle can be characterized by a closed surface in

3D (or a contour in 2D). The level set method aims to capture this closed surface using an

auxiliary function termed the level set function, where the closed surface is defined as the

zero level set, written as

Γ = {(x, y, z) ∈ Ω|�(x, y, z) = 0} (3.1)

where � is the level set function; (x, y, z) are the spatial coordinates; Ω is the domain of

interest and Γ is the closed surface (i.e., the boundary of the particle). Conventionally, the

level set function � is assumed to take positive values inside the region delimited by Γ and

negative values outside.

When applying the level set method to identify the particle boundary, the level set

function � is evolved by minimizing an appropriate energy functional, denoted as  (�). In

this work, the following formulation proposed by Li et al. (2010) is adopted

 (�) = �(�) + �(�) + �(�) (3.2)

where (�) is the distance regularization term; (�) and (�) are the external energy

related to the surface curvature and the inner volume, respectively; � > 0, � > 0 and � ∈ R

are the weighting coefficients. A positive � value drives the surface Γ inwards, while a
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negative value drives Γ outwards. The energy terms are given by

(�) =
1

2 ∫Ω

(‖∇�‖ − 1)2dΩ (3.3)

(�) =∫Ω

g(I)�(�)‖∇�‖dΩ (3.4)

(�) =∫Ω

g(I)H(−�)dΩ (3.5)

where H is the Heaviside function; � is the Dirac delta function; ‖⋅‖ is the Euclidean norm;

g(I) is the edge indicator function defined by

g(I) ∶=
1

1 + c‖∇I‖2 (3.6)

where I is the image matrix, and ∇ is the gradient operator. In this work, a scaling coefficient

c is introduced to the conventional formulation of the edge indicator. In practice, it is found

that this coefficient c can singularize the edge indicator (as shown in Figure 3.7), thus

stabilize and facilitate the convergence of level set evolution.
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Figure 3.7: A demonstration of the edge indicator with different scaling coefficients: (a) c=1,

(b) c=10, and (c) c=100. The histograms indicate the distribution of the edge indicator

values, and the inset represents the corresponding edge indicator image.

3.4.2 Solution of the level set function

Solutions of the level set function can be obtained by minimizing the energy func-

tional  (�) in Equation 3.2 with respect to �, which leads to the associated Euler-Lagrange
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equation for � (Aubert and Kornprobst, 2006). Parameterizing the descent direction by an

artificial time, the solution of the level set function � can be obtained using (Li et al., 2005a,

2010)

)�

)t
= −

�
��

= −

(
�
�
��

+ �
�
��

+ �
�
��

)
(3.7)

where �[⋅]∕�� denotes the functional derivative of [⋅] with respect to �. The functional

derivative of each term in  with respect to � is evaluated as

�
��

=∇ ⋅ ∇� − ∇ ⋅

(
∇�

‖∇�‖
)

(3.8)

�
��

=�(�)

[
∇g(I) ⋅

∇�

‖∇�‖ + g(I) ⋅ ∇

(
∇�

‖∇�‖
)]

(3.9)

�
��

=g(I)�(�) (3.10)

To solve the minimization problem defined by Equation 3.7, a forward discretization

scheme in time is implemented such that

�t+1 = �t − Δt

(
�
�
��

+ �
�
��

+ �
�
��

)|||||t
(3.11)

where �t+1 and �t are the level set function � evaluated at the timestep t+1 and t, respectively;

Δt is the timestep. As illustrated in Figure 3.8, the evolution of the level set function � starts

with a given initial value �0 and stops when the energy functional arrives at a stationary

state, which corresponds to the surface Γ represented by � matching the particle shape

boundary.

Solving the level set function also requires the evaluation of spatial derivatives

in Equation 3.8, Equation 3.9 and Equation 3.10, in particular, the evaluation of ∇� =

[∇x�,∇y�,∇z�]. In this work, a finite difference scheme is implemented to discretize the
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Figure 3.8: An illustration of the level set function evolution: (a) the initial level set values,

(b) the final level set values, and (c) the particle shape captured by the zero level set. In

(c), the blue dashed line indicates the initial shape, and the red solid line indicates the final

captured particle shape.

spatial derivatives, which yields

∇x�(i, j, k) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�(2, j, k) − �(1, j, k), if i = 1

[�(i + 1, j, k) − �(i − 1, j, k)] ∕2, if i = 2, 3, ..., Ni − 1

�(Ni, j, k) − �(Ni − 1, j, k), if i = Ni

(3.12)

∇y�(i, j, k) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�(i, 2, k) − �(i, 1, k), if j = 1

[�(i, j + 1, k) − �(i, j − 1, k)] ∕2, if j = 2, 3, ..., Nj − 1

�(i,Nj , k) − �(i,Nj − 1, k), if j = Nj

(3.13)

∇z�(i, j, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�(i, j, 2) − �(i, j, 1), if k = 1

[�(i, j, k + 1) − �(i, j, k − 1)] ∕2, if k = 2, 3, ..., Nk − 1

�(i, j,Nk) − �(i, j,Nk − 1), if k = Nk

(3.14)

where i, j, and k indicate the pixel index for each dimension in the image matrix; Ni, Nj

and Nk are the dimension sizes, i.e., the total number of pixels in that dimension.

The Dirac delta function �(�) in Equation 3.9 and Equation 3.10 is approximated by
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the following regularized function ��(�) as

��(�) =

⎧⎪⎨⎪⎩

1

2�

[
1 + cos(

��

�
)
]
, if |�| ≤ �

0, if |�| > �
(3.15)

where � is the regularization coefficient; |⋅| indicates the absolution value. The regularized

��(�) will converge to �(�) as � approaches 0.

By minimizing the energy functional, the zeroth isosurface of the level set function

eventually approximates the surface of a particle. The marching cubes method can be used

to reconstruct the zeroth isosurface from the level set matrix, which returns a triangle mesh

representing the particle surface.

3.5 Particle morphology descriptors

Once particles are reconstructed using the level set method, various quantitative

descriptors can be calculated to characterize the particle morphology. The three commonly

used descriptors are the aspect ratio, sphericity, and roundness. The definition and calculation

of these descriptors are presented in this section while results of morphology analysis on the

granular soil of interest will be presented in Section 3.6.

3.5.1 Aspect ratio

The aspect ratio of a particle is the ratio of its sizes in different dimensions. It

characterizes the elongation extent of a particle. A 3D particle possesses two independent

aspect ratios. Standard practice assigns L to the longest dimension, with I being the longest

dimension perpendicular to L and S being perpendicular to both L and I . The aspect ratios

are calculated as the ratios between L, I and S. However, as pointed out by Blott and

Pye (2008), such definitions cannot give an appropriate description of certain shapes (e.g.,

cubes). An alternative is to use the Feret diameters to characterize the size of a particle along

specific dimensions (Ersoy and Waller, 1995; Hentschel and Page, 2003). There are infinite
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sets of Feret diameters for a given geometric shape. In this work, the three Feret diameters

corresponding to the three principal axes are adopted. With the three Feret diameters

denoted as D1, D2, and D3, the aspect ratios are calculated as

a21 =
D2

D1

(3.16)

a31 =
D3

D1

(3.17)

where a21 is the aspect ratio of the medium Feret diameter (D2) to the major Feret diameter

(D1); a31 is the aspect ratio of the minor Feret diameter (D3) to the major Feret diameter

(D1). To evaluate the Feret diameters, the moment of inertia tensor is firstly calculated. A

rotation matrix is obtained by converting the moment of inertia tensor to a diagonal matrix.

The rotation matrix defines the directions of the principal axes of the particle. Then, the

particle is rotated by multiplying the rotation matrix, so that the principal axes of the particle

are aligned with the Cartesian coordinate axes. Finally, the range of the coordinates of all the

vertexes on the particle surface would be the Feret diameters in each direction, respectively.

3.5.2 Sphericity

The sphericity describes the degree to which a 3D particle shape resembles a mathe-

matically perfect sphere. This work adopts the 3D sphericity definition proposed by Wadell

(1933)

S =
(36�V 2

p
)1∕3

Ap
(3.18)

where S is the sphericity; Vp and Ap are the volume and surface area of the given particle,

respectively.

3.5.3 Roundness

The definition or calculation of roundness is subjected to the most controversy. Most

authors have accepted that roundness should refer to the relative sharpness of corners
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and edges of a particle rather than to the degree to which the overall outline of a particle

approaches circularity (or sphericity in three dimensions). Wadell (1933) first defined the

2D roundness as the average ratio of the curvature radius of all corners to the radius of the

largest inscribed circle of a particle. Following the same logic, Zhou et al. (2018) defined the

3D roundness, which is adopted in this work.

R =
Σg(k)|kmax|−1

NRins

(3.19)

where R denotes the roundness; N is the total number of acceptable corners; Rins is the

radius of the maximum inscribed sphere of the particle; kmax is the maximum curvature at a

corner; and g(k) is a function indicates whether a corner is acceptable or not, defined as

g(k) =

⎧
⎪⎨⎪⎩

1 if |kmax|−1 < Rins

0 if |kmax|−1 ≥ Rins

(3.20)

In this work, the radius of the maximum inscribed sphere Rins is approximated by

the minimum radial distance of all vertexes on the particle surface to the particle centroid.

The practical approach proposed by Colombo et al. (2006) is adopted to evaluate the local

principal curvatures at the corners of a particle. The interested reader is referred to (Colombo

et al., 2006; Zhou et al., 2018) for more details about the calculation.

3.6 Results and discussions

In this section, the proposed framework is applied to characterize and reconstruct

3D irregularly-shaped particles from X-ray CT images of a particular granular material, the

Mojave Mars Simulant (MMS). MMS is a Martian regolith simulant developed using a basalt

mined in the western Mojave Desert and is among the suite of test rocks and soils that

were used in the development of the 2007-2008 Phoenix Scout and the 2009 Mars Science

Laboratory missions (Peters et al., 2008). The type of MMS used in this study has particle
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sizes mainly ranging from 1 mm to 2 mm. The MMS sample is placed in a cylindrical

container of 30 mm in diameter and 114 mm in length. An MILabs U-CT system with a

resolution of 60 microns is used to obtain the raw CT image data, which yields a total of

500×500×1900 3D pixels data. To visualize the raw CT image data, the pixels are grouped

into 1,900 slices, each being an image of 500×500 pixels. Selected images from the middle

are used to demonstrate the proposed framework.

3.6.1 Results by the proposed framework

To begin with, the classifier in the machine learning method is determined through

a training process. In this process, TWS takes a raw X-ray CT image and two training

images with labeled pixels as inputs, shown in Figure 3.9. It should be pointed out that the

performance of TWS depends on the quality of the training images. One can repeatedly

amend the training images until satisfied with the classification results. The settings for TWS

used in this study are summarized in Table 3.2.

(a) (b) (c)

Figure 3.9: Raw and training X-ray CT images: (a) the raw image, (b) the first training image

with labeled solid phase (solid pixels are highlighted in red), and (c) the second training

image with labeled void phase (void pixels are highlighted in green).

The next process is to apply the trained classifier to the remaining raw X-ray CT

images. For batch processing, this process is implemented in MATLAB through the Fiji-

MATLAB interface MIJ, as described in Section 3.3. Figure 3.10 shows an example of the
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Table 3.2: Settings for TWS used in the present study.

Entry/Feature Parameter Value

Gaussian blur Standard deviation 1, 2, 4, 8, 16

Sobel filter Standard deviation 1, 2, 4, 8, 16

Hessian Standard deviation 1, 2, 4, 8, 16

Difference of Gaussian Standard deviation 1, 2, 4, 8, 16

Membrane parameters Thickness 1

Patch size 19

Random forest No. of decision trees 200

No. of random features per tree 2

raw and TWS-processed images. As shown in Figure 3.10b, the TWS-processed images are

valued by the probability indicating the likelihood of a pixel belonging to a designated phase

(i.e., the solid phase in this study). The probability map will then be used as inputs for

level set-based shape reconstruction. The performance of level set method relies heavily on

well-defined edge indicators. In practice, it is found that, by applying a prior TWS process,

the resultant probability map can provide better edge indicators than the raw X-ray CT image.

The corresponding edge indicator map of the example CT image is shown in Figure 3.10c.
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Figure 3.10: Example of (a) the raw X-ray CT image, (b) the probability map, and (b)

the corresponding edge indicator calculated based on the processed image. The scaling

coefficient for the edge indicator is c = 100.

Table 3.3 summarizes the level-set parameters used in this study. The energy coef-

ficients �, � and �, and the regularization coefficient � are selected following the previous
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application and recommendation by Li et al. (2010). The scaling coefficient c in the edge

indicator equation Equation 3.6 is chosen such that the edge indicator values are scaled

between 0 and 1. To obtain the initial level set for a particle to be reconstructed, one option

is to adopt the "erosion and labeling" morphological image processing method, where pixels

with the same label after the erosion process are considered to belong to the same particle

and could be used as the initial level set. However, it is found that this option cannot provide

good results for images with complex features as those of MMS considered in this work.

Thus, the other option is to label a cuboid inside a particle manually. The cuboid is taken as

the initial level set and gradually expands towards the particle boundary as level set evolves.

An illustration of the surface evolution of one particle by the edge-based level set method is

shown in Figure 3.11. The final 3D surface indicates the surface of the reconstructed particle.

Table 3.3: Level-set parameters used in the present study.

Δt � � � � c

1 0.2 5.0 1.5 0.5 100

Figure 3.11: An illustration of the surface evolution of one particle by the edge-based level

set method at the 100th, 200th, 300th, 400th, and 500th iterations. The 2D image, colored

by the probability values evaluated by the TWS method, shows the part of the CT image

containing the target particle to be constructed. The final 3D surface indicates the surface of

the reconstructed particle.

The level-set process is applied to all particles in the processed CT images. In this

work, the particle shape is represented and visualized using the surface triangle mesh, which

is built upon the level-set matrices using the marching cubes method (Lorensen and Cline,

1987). There are other methods to represent a complex geometry, such as the orthogonal
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decomposition, Fourier descriptor (Luerkens et al., 1982), and the non-uniform rational

basis spline (Andrade et al., 2012c). Figure 3.12 presents one layer of the reconstructed 3D

particles and the zoom-in view of several particles. It can be seen that particles of different

sizes are successfully reconstructed. Some of the particles are relatively round, whereas

others exhibit pretty sharp edges. The roughness of the particle surface is also well preserved,

and some concave pits are captured on the particle surface. Quantitative shape and size

analysis on the reconstructed particles will be presented in the following sections.

(a) (b)

Figure 3.12: Showcases of (a) one layer of the reconstructed 3D particles, and (b) zoom-in

views of several particles. Particles in (a) are rendered with different colors for better

visualization.

3.6.2 Accuracy analysis and validation

To evaluate the performance of the proposed framework, accuracy analysis is con-

ducted in this section. The same analysis is also conducted for a watershed-based method as

a comparison. As an additional validation, the size distribution of the reconstructed particles

is compared to that obtained from a laboratory sieve analysis.

3.6.2.1 Definitions of accuracy

Before defining the accuracy, a reference solution of image segmentation is required.

In this work, a manually labeled image is taken as the reference solution (i.e., the ground

truth). To manually label the image, the particle boundary is carefully traced using the
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magnetic lasso tool in Adobe Photoshop. After that, the region inside the boundary is colored

using the paint bucket tool. This process is repeated until all particles are identified and

painted in different colors. It should be pointed out that the manually labeled particle shape

might still deviate slightly from its real shape due to human error. Such deviation, however,

is only a couple of pixels and would be acceptable considering that the particle sizes are of

25 pixels on average in each dimension.

This study considers two types of accuracy: pixel-based classification accuracy and

particle-based segmentation accuracy. The pixel-based classification accuracy indicates the

possibility that a pixel is classified into the correct phase (i.e., solid phase and void phase in

this work). To quantify it, the pixel accuracy index and random accuracy index proposed by

(Arganda-Carreras et al., 2015) are adopted. In particular, the joint probability pij is first

defined as the probability that a randomly chosen pixel belongs to phase i in S and phase

j in T , where S denotes the predicted classification and T denotes the reference solution.

Then, the pixel accuracy index Vpixel and the random accuracy index Vrand are calculated as

Vpixel = pii (3.21)

Vrand =
Σijp

2
ij

�Σks
2
k
+ (1 − �)Σkt

2
k

(3.22)

where si = Σjpij and tj = Σipij , which is the probability of a randomly selected pixel

belonging to phase i or j, respectively; � is a parameter indicating the weights of split and

merge errors. By definition, Vpixel indicates how many pixels are correctly classified. Vrand

quantifies the probability that two randomly chosen pixels belong to the same phase in

both predicted classification S and reference T . Vrand should be close to one if S and T

are similar. It should be noted that other indices have also been proposed and used for

accuracy or error analysis. For instance, Semnani and Borja (2017) used three measures to

compare a simulated image with the true image: variograms, pixel-wise error histograms

and visual comparisons, where continuous variables (i.e., gray values) are used as opposed

to categorical variables (i.e., individual phases) adopted in the current study.
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To evaluate the particle-based segmentation accuracy, the number of correctly identi-

fied particles are counted. As a particle consists of hundreds of pixels, in this study, a particle

is considered to be correctly identified if more than 90% of its pixels are correctly predicted

and grouped to the same particle. The 10% tolerance is set to account for the slight errors

in manually labeling a particle and the acceptable tolerance in the reconstructed particle

shapes. It is worth noting that, for the accuracy analysis, we are focusing on just one slice

of the CT images as a demonstration. The particle shape reconstructed using the proposed

framework is indeed three-dimensional, but only a cross-section of the shape is extracted

and compared to the reference solution.

3.6.2.2 Compare with the watershed-based method

Watershed (Vincent and Soille, 1991) is a common tool for image segmentation.

Segmentation by the watershed method requires meaningful local extrema to initiate the

watershed and an appropriate threshold to stop the watershed. Otherwise, the watershed

process can result in serious over-segmentation. Some variants of the original watershed

method have been proposed, aiming to mitigate the over-segmentation issue (Matsushima

et al., 2009; Zheng and Hryciw, 2016). The particular implementation of watershed method

used in this work for the comparison is the interactive H-watershed (Lombardot, 2017),

which is available as a plugin in Fiji. The interactive H-watershed consists of a threshold

process to classify phases and a watershed process to segment objects. In the watershed

process, it employs the so-called H-extrema as the local extrema to initiate the watershed,

where the H-extrema are known to be robust to noise. The interactive H-watershed also

provides an interactive way to explore local extrema and threshold, updating the resulting

watershed on the fly.

The pixel-based classification accuracy of the interactive H-watershed is controlled

by the threshold parameter. Histograms of pixel values for the raw CT image and the

corresponding TWS-processed image are plotted in Figure 3.13. Two peaks are observed

in the histogram of the raw CT image (Figure 3.13a), corresponding to the void phase
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and the solid phase, respectively. The distribution of pixel intensity can be approximated

by two normal distributions, and it can be seen in Figure 3.13a that the two distributions

representing the void phase and the solid phase would have large areas of overlap. In this

case, it becomes critical to determine a single threshold to classify the void phase and solid

phase. A small change in the threshold value would result in significant changes in the

resulting fraction of the void phase and the solid phase.

In the proposed TWS-based segmentation, the material phases are determined using

both the pixel intensity values and various image features (e.g., those listed in Table 3.1).

After the TWS process, each pixel is given a probability value indicating its likelihood to

be a designated phase (e.g., the solid phase). The histogram of probability values of the

corresponding TWS-processed image is shown in Figure 3.13b. It is observed that the two

peaks representing the void and solid phases are more separated apart. Such a profile

indicates that most of the pixels can be classified with great confidence, leaving only a small

portion of the pixels (i.e., those with probability values around 0.5) with lower confidence.
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(a) Raw CT image
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(b) TWS processed image

Figure 3.13: Histograms of (a) a raw CT image, and (b) the corresponding TWS processed

image.

To illustrate the influence of the assumed threshold values, different threshold values

are applied and the accuracy of the interactive H-watershed is summarized in Table 3.4.

In TWS, pixels with a probability value greater than 0.5 (i.e., voted as the solid phase in

the random forest process) are classified as the solid phase. With a reasonable choice of
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a threshold value, the interactive H-watershed method can achieve a good performance

that is comparable with the TWS. However, as it will be shown later, a reasonable choice

of threshold values does not assure good particle segmentation. A significant limitation

with the thresholding is that it cannot resolve the noises existed in the void phase or solid

phase. TWS, on the other hand, has shown to be much more effective when applied to

low-resolution images with noise (Madra et al., 2014).

Table 3.4: Pixel-based classification accuracy: interactive H-watershed vs. TWS-LS.

Method Vpixel Vrand

TWS-LS 0.86 0.76

Interactive H-watershed

Threshold = 0.3 0.85 0.75

Threshold = 0.4 0.89 0.81

Threshold = 0.5 0.84 0.74

For the second type of accuracy, i.e., the particle-based segmentation accuracy, the

interactive H-watershed mainly relies on the parameter called the H-extrema seed. Large

seed values can help suppress local extreme used to initialize the watershed, thus minimizing

the over-segmentation issue. However, an optimal choice of the seed parameter is problem

dependent. The performances of the interactive H-watershed with different H-extrema seeds

are investigated in this study. Table 3.5 summarizes the number of correctly segmented

particles using the interactive H-watershed and the proposed TWS-LS method. For the

interactive H-watershed, the number of correct particles significantly depends on the choice

of the seed parameter. With regard to the particle-based segmentation accuracy, the TWS-LS

shows superior performance. It is worth noting that, even if the TWS-LS cannot correctly

reconstruct all the particles (i.e., reaching 100% accuracy), there will be statistically enough

particles for the purpose of morphology characterization and particle size distribution

calculations.

To visualize the particle-based segmentation accuracy, the correctly and incorrectly

segmented particles are shown in Figure 3.14. In these figures, the incorrect particles are

plotted as hollow shapes. For TWS-LS, most of the incorrect particles are the particles
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Table 3.5: Particle-based segmentation accuracy: interactive H-watershed vs. TWS-LS.

Method Correct particles Percent

TWS-LS 234 77.7%

Interactive H-watershed

Seed = 20 188 62.5 %

Seed = 25 163 54.2 %

Seed = 30 144 47.8 %

of smaller sizes. As aforementioned, this is partially due to the relatively insufficient CT

resolution to resolve fine particles. For the interactive H-watershed, the incorrect particles

have a wide size range, most of which are results from the issue of over-segmentation.

(a) Ground truth (b) TWS-LS (c) Interactive H-watershed

Figure 3.14: Visual comparison of segmentation accuracy of the interactive H-watershed and

the proposed TWS-LS method. Incorrectly identified particles are plotted as hollow shapes.

3.6.2.3 Validation with laboratory sieve analysis

In the laboratory sieve analysis, the following sieves in the Unified Soil Classification

System are used: No. 4, 10, 20, 40, 60, 100, and 200. Based on the extracted particle

shapes from CT image analysis, the particle sizes can be estimated as the diameter of their

equivalent sphere (e.g. a sphere of the same volume). The particle-size distribution (PSD)

curves obtained from the lab and the proposed TWS-LS framework are shown in Figure 3.15.

A reasonably good agreement is shown between the two curves. The PSD obtained from the

proposed framework is slightly shifted to the left. Also, there is some discrepancy observed in
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particle sizes smaller than 0.5 mm. Those smaller particles are missing in the PSD obtained

from the X-ray CT images as the resolution of the X-ray CT scanner cannot capture those

very fine particles.
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Figure 3.15: Particle size distribution.

3.6.3 Particle morphology analysis

Having the particles fully reconstructed in 3D, quantitative morphology analyses are

conducted using the morphology descriptor defined in Section 3.5. Figure 3.16 showcases

the calculated morphology of several example 3D particles. Among these examples, the

top-left particle is more elongated in one direction, corresponding to smaller values of

aspect ratio (a21 and a31). By comparison, the bottom-right particle has similar size in each

direction, which results in larger values aspect ratio. It is also observed that the particles

with more angular corners have smaller values of sphericity (S) and roundness (R), as is the

case for the three particles in the bottom row.

To provide a statistical description of the particle morphology, the histogram of

the aspect ratio, sphericity, and roundness from the reconstructed particles are plotted in

Figure 3.17. It is found that these descriptors can be roughly approximated by normal

distributions. In this regard, their mean values and standard deviations are summarized in

Table 3.6. As a comparison, the mean sphericity and roundness of the Leighton Buzzard sand

are reported to be about 0.92 and 0.65 (Zhou et al., 2018). Leighton Buzzard sand is an
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Figure 3.16: Morphology of several example 3D particles.

English sand commonly used for academic research. It can be seen that the MMS particles,

made from crashes of Saddleback Basalt, is more irregular than the Leighton Buzzard sand.

Table 3.6: Statistics of the morphology descriptors of MMS soil particles.

Descriptors Mean Standard

Aspect ratio a21 0.78 0.11

Aspect ratio a31 0.61 0.11

Sphericity S 0.84 0.04

Roundness R 0.64 0.05

To classify the roundness grades of the MMS sample, the cumulative distribution

of the roundness values by volume is displayed in Figure 3.18. The Powers classification

(Powers, 1953) of roundness is also shown. Results indicate that there are about 4% well-

rounded particles, 95% rounded particles, and less than 1% subrounded particles, following

the roundness grade table of Powers (1953). The detailed morphology analysis presented in

this section is not possible without the reconstructed particles using the proposed framework

and the analysis can provide important insights into the microscopic features of the granular

material.
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Figure 3.17: Histogram and fitted distribution of the morphology descriptors of MMS soil

particles: (a) aspect ratio a21, (b) aspect ratio a31, (c) sphericity and (d) roundness.
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3.7 Summary

In this work, a novel machine learning and level set-based framework is proposed to

segment X-ray CT images of granular geomaterials and to reconstruct realistic 3D particle

shapes. X-ray CT images of the Mojave Martian simulant (MMS) show that the intensity of

various constituents exhibit significant variance and there is no clear demarcation between

the solid and the void phases, making it particularly challenging for conventional binarization-

watershed-based methods.

To address this challenge, a feature-based machine learning technique termed the

Trainable Weka Segmentation (TWS) is implemented and utilized to segment X-ray CT

images. This is a fundamentally different approach in that it predicts segmentation results

based on a trained classifier model that implicitly includes image features and regression

functions. Probability maps indicating the likelihood of pixels belonging to a particular phase

are obtained from the segmentation process, in which the original intensity contrast feature

is to the most extent preserved. Compared to the intensity values of a raw CT image, it

is found that the probability values exhibit much less variance and have a more distinct

demarcation between different material phases. The probability map provides excellent edge

indicators that can be used as the basis for the subsequent edge-based level set method.

Using the segmented X-ray CT images (i.e., probability maps), a 3D edge-based

level set method is implemented to approach an accurate shape representation of real parti-

cles. Realistic 3D particles of the MMS are successfully reconstructed from raw CT images.

Quantitative accuracy analyses are performed for the proposed framework and a conven-

tional watershed method. The analyses show that the proposed framework has superior

performance in both pixel-based classification accuracy and particle-based segmentation

accuracy. The particle size distribution using the reconstructed particles are also validated

and compared well with results from a lab sieve analysis. In addition, the morphological

features, e.g., sphericity, roundness, and roughness, of real particle shapes are well captured.
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Quantitative particle morphology analyses are performed to provide more insights into the

morphological features of the granular material.

The machine learning technique has shown great potentials in segmenting CT images

of geomaterials with complex constituents. Future work will expand the capability and

application of machine learning-based particle identification. An immediate step would be

to promote the current 2D TWS into the 3D regime, where image features from the third

dimension are included in the segmentation process synchronously. Another interesting and

important issue would be the effect of the quantity and quality of the training sets on the

accuracy of the segmentation results. It is also noticed that there are several competing

machine learning-based image segmentation algorithms. It would be interesting to explore

alternative methods and compare their performances when applied to granular geomaterials.

Finally, the closed surface reconstructed by the edge-based level set method can be readily

used for shape analysis and in a subsequent numerical model (e.g., the discrete element

model) development.
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Chapter 4

Characterization and discrete

element simulation of grading- and

shape-dependent behavior of JSC-1A

Martian regolith simulant

Granular regolith simulants have been extensively used in the preparation of space

missions to test rovers and scientific instruments. In this work, the physical and mechanical

properties of the JSC-1A Martian regolith simulant (MRS) are characterized using con-

ventional and advanced laboratory techniques. Particle images are obtained using X-ray

computed tomography, from which particle shapes are characterized through a series of

imaging processing techniques and are further used to generate irregularly-shaped numerical

particles. The characterized particle size distribution and irregularly-shaped numerical

particles are incorporated into a discrete element model to simulate grading and shape-

dependent behavior of the JSC-1A MRS. The developed discrete element model is calibrated

This chapter is published in: Z. Lai and Q. Chen. Characterization and discrete element simulation of grading

and shape-dependent behavior of JSC-1A Martian regolith simulant. Granular Matter, 19 (4):69, 2017.
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and validated against laboratory direct shear tests. Simulations without the consideration of

particle shapes and simulations with a rolling resistance contact model are also performed

to investigate the effect of particle shapes on the behavior of the JSC-1A MRS.

4.1 Introduction

Martian regolith simulant (MRS) is an analogue developed using terrestrial soils

based on the current understanding of real Martian regolith. It provides a preview of the

physical environment an exploration rover may encounter in a space exploration mission.

The understanding of regolith properties and the ability to predict regolith behavior would

help guide the design of rovers, minimize the risk of sinkage and slippage during rover

maneuver, and provide constraints for geomorphological modeling Iagnemma et al. (2005);

Sullivan et al. (2011); Ding et al. (2011). Moreover, a thorough understanding of regolith

properties are needed to develop new regolith-based materials for functional building blocks

for future infrastructure needs on Mars Carranza et al. (2006); Sen et al. (2010); Wan

et al. (2016); Moses and Bushnell (2016). There has been continuous research to develop

different MRS for various applications. Table 4.1 summarizes a non-exclusive list of currently

developed MRS worldwide that are suitable for physical and mechanical experiments.

MRS consists mostly of irregularly-shaped particles of various sizes. To accurately

model and predict their behavior, it is important to realize that the information pertaining to

such material behavior is fundamentally encoded at the grain scale Tu et al. (2009); Chen

et al. (2011); Andrade et al. (2012a). In the context of mechanical responses, two of the

most salient factors are the particle size distribution (i.e., grading) and particle shapes. The

micromechanics-based discrete element method (DEM) Cundall and Strack (1979) is ideally

suited to capture those salient features of granular materials from a fundamental level.

In the context of modeling MRS, Hopkins and co-workers Hopkins et al. (2008,

2012) are among the first researchers to develop DEM-based numerical models to simulate

the soil-rover behavior and soil digging in regolith simulant. Non-spherical particle shapes
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are accounted for using polyhedral grains having basic shapes. In Knuth et al. (2012), a

three-dimensional DEM is used to simulate regolith behavior in triaxial tests and interactions

with a rover wheel. The particle shape is found to be a crucial factor in the simulated regolith

behavior, and the use of ellipsoid and poly-ellipsoid particle shapes improved agreement

between simulation and experiment. In a more recent work Johnson et al. (2015), a tri-

sphere particle clump is developed to account for the particle interlocking effects and is used

within a mono-dispersed particle assemblies to simulate MRS. As an alternative approach to

account for particle shape effect, a rolling resistance contact model is integrated into the

DEM model to simulate wheel-soil interaction over rough terrain Smith and Peng (2013).

Although different types of non-spherical or non-disc particle shapes have been used in

previous studies, the effects of realistic particle shapes and particle size distribution have yet

to be included and will be the focus of this work.

In this work, physical and mechanical properties of JSC-1A MRS are characterized

by a series of laboratory tests. Of particular interests are the particle size distribution and

realistic particle shapes. X-ray computed tomography is used to obtain particle images,

from which particle shape data is obtained and used in constructing irregularly-shaped

particles. Grading and shape-dependent DEM model are developed to simulate and predict

the behavior of JSC-1A MRS, which is among the first efforts to incorporate the realistic

particle size distribution and particle shapes into a numerical model to simulate the behavior

of MRS.

4.2 Laboratory tests on JSC-1A Martian regolith simulants

A series of laboratory tests are conducted to characterize the physical and mechanical

properties of JSC-1A MRS. The type of JSC-1A MRS used in this work has particle sizes

smaller than 5 mm and is distributed by Orbital Technologies Corporation. The JSC-1A

MRS is a natural earthen material obtained from volcanic ashes. It approximates, within the

limits of current understanding, the reflectance spectrum, mineralogy, chemical composition,
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particle size, density, porosity, and magnetic properties of the oxidized soil of Mars Allen

et al. (1998). It is well suitable to help understand the mechanical behavior of real Martian

regolith. In addition, as the MRS is actually an earthen material, the framework and findings

from this work could be applied to other earthen soils.

4.2.1 Characterization of physical and mechanical properties

Table 4.2 lists laboratory tests conducted in this study and the corresponding ASTM

standards to characterize the physical and mechanical properties of the JSC-1A MRS.

Table 4.2: Laboratory tests conducted and the corresponding ASTM standards.

Test ASTM standard

Specific gravity ASTM D854-14

Sieve analysis ASTM D422-63

Hydrometer analysis ASTM D422-63

Atterberg limits analysis ASTM D4318-10

USCS soil classification ASTM D2487-11

Direct shear test ASTM D3080-11

The specific gravity of the JSC-1A MRS is measured to be 1.94 ± 0.02. The maximum

particle size of the soil sample is 5 mm, and the mean particle size is 0.41 mm. The particle

size distribution will be detailed and further characterized in a subsequent section. The

coefficient of uniformity Cu and the coefficient of gradation Cc, based on Equation 4.1 and

Equation 4.2, are calculated to be 20.77 and 1.42, respectively.

Cu =
D60

D10

(4.1)

Cc =
(D30)

2

D10 ×D60

(4.2)

where D10, D30, and D60 are the particle diameters corresponding to 10%, 30%, and 60%

finer in the particle size distribution curve, respectively.

Atterberg limit analysis shows that the fine content of the simulant is non-plastic.
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Based on the above information, the JSC-1A MRS is classified as well-graded sand (SW)

following the Unified Soil Classification System (USCS). The bulk unit weight of the simulant

is estimated from specimens of the direct shear test, and its value is evaluated to be 934±30

kg/m3.

4.2.2 Characterization of shear strength

Shear strength parameters of the MRS are characterized through the direct shear

test (ASTM D3080-11). The specimen in the direct shear test is a cylindrical shape with

a diameter of 63.5 mm (i.e. 2.5 inches) and a height of 25.4 mm (i.e. 1.0 inch). During

preparation, the specimen is vibrated and slightly compacted with a pestle to remove the

potential cavity and to improve the sample homogeneity. The specimen is firstly consolidated

with specified confining pressure. Three levels of nominal confining stress are considered:

95.8, 191.5, and 383.0 kPa (i.e. 2,000, 4,000 and 8,000 psf). After consolidation, the

specimen is sheared at a rate of 0.254 mm/min by applying a lateral displacement to the

lower part of the shearing cell. For each level of confining stress, three specimens are

prepared and tested. The averaged responses are reported and will be used to calibrate and

validate numerical models.

The stress and normalized shear (lateral) displacement relations are shown in Fig-

ure 4.1a. The normalized shear displacement is the ratio of the lateral displacement of the

lower part of the shear cell to its diameter. The actual contact area between the upper and

lower shearing cell is used in the calculation. From the figure, it can be seen that there is no

notable reduce of the shear stress after the peak value. As shown in Figure 4.1b, at a low or

medium normal stress (i.e., 95.8 and 191.5 kPa), the specimen exhibits a dilative behavior.

This dilative behavior is suppressed under high normal stress (383 kPa). The volumetric

strain starts to decrease after the peak shear stress. This phenomenon may be contributed by

the breakage of the large particles that leads to a reduction in the overall volume.

The maximum friction angle is determined by fitting the test data in the maximum

shear stress vs. normal stress plot, as shown in Figure 4.2a. For the JSC-1A MRS, the
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Figure 4.1: Results of laboratory direct shear test on JSC-1A MRS: (a) shear stress vs.

normalized shear displacement, (b) volumetric strain vs. normalized shear displacement.

maximum friction angle is found to be 41.4◦ ± 2.2◦. There is a very small cohesion strength

of 94 psf, which will be neglected in this study. The phenomenon of small cohesion obseved

in the bulk soil may be a fact of nonlinear failure envelope effects. For the calculation of

dilation angle, the following definition is adopted Simoni and Houlsby (2006)

tan = −
�̇yy

�̇xy
=
dv

du
(4.3)

where �̇yy and �̇xy are the time derivative of the yy (vertical) and xy (shearing) components

of the strain tensor, respectively; dv and du are incremental vertical and shear displacement,

respectively. Figure 4.2b shows the maximum angle of dilation evaluated by Equation 4.3

for all three normal stresses.

4.3 Characterization of particle size distribution

In this section, details on characterization and modeling of particle size distribution

are presented. In the sieve analysis, the following sieves are used: No. 4, 10, 20, 40, 60,

100, and 200. Hydrometer analysis is used to further characterize the size distribution for
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Figure 4.2: Maximum friction and dilation angles evaluated from laboratory direct shear

tests: (a) maximum shear vs. normal stress; (b) maximum dilation angle.

the fraction that is finer than the No. 200 sieve size (0.075 mm). The resulting particle size

distribution curve is shown in Figure 4.3a.
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Figure 4.3: Particle size distribution of JSC-1A MRS: (a) data obtained from sieve and

hydrometer analysis; (b) fitted by a Rosin-Rammler (RR) distribution model with model

parameters D50 = 0.41 mm, � = 0.75.

The particle size distribution data obtained from laboratory tests could be fitted

through distribution models. In this work, the Rosin-Rammler (RR) distribution model is

adopted Rosin and Rammler (1933). A new form of the cumulative distribution function is

proposed in this work that modifies a previous version Allaire and Parent (2003) to use the
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mean particle size as a model parameter. The modified form of the RR model is given as

F (x) = 1 − exp
(
log(0.5)(x∕D50)

�
)

(4.4)

where D50 is the mean particles size; � is an empirical parameter that controls the shape

of the function. Note that we rewrite the formulation of cumulative distribution function

in Equation 4.4 based on the convention formulation Allaire and Parent (2003), to relate

the fist parameter to a more physical-meaningful parameter D50. A smaller � value yields

a wider particle size distribution curve while a larger � value would yield a more narrow

distribution. The fitted RR model to the experiment data of the JSC-1A MRS is shown in

Figure 4.3b and the model parameters D50 = 0.41 mm and � = 0.75.

4.4 Characterization of particle shapes

An equivalent important factor affecting the mechanical behavior of the regolith

simulant is its particle shapes. In this work, an MILabs U-CT system with an optimal

resolution of 100 micron is used to obtain X-ray computed tomography (CT) image data of

individual particles within the regolith simulant specimen. Imaging processing algorithms

are implemented to extract, quantify and characterize particles shape data, which is then

used to develop shape-dependent discrete element models.

4.4.1 X-ray computed tomography imaging and pre-processing

Figure 4.4 shows the regolith simulant, the specimen to be scanned, and a typical

raw image obtained from CT scan.

The raw images obtained from CT scan require a series of pre-processing steps

before they can be used to extract particle shapes. The pre-processing steps include image

enhancement, vessel removal, smooth filtering and inner particle void filling (Soille, 2013).

The image enhancement is to enhance the contrast between the particle pixels

and the background pixels. A contrast limited adaptive histogram equalization (CLAHE)

64



(a) (b) (c)

Figure 4.4: X-ray CT imaging experiment: (a) regolith simulant; (b) specimen to be scanned;

(c) a tyical raw image.

Zuiderveld (1994) is implemented for this purpose. Vessel removal is to remove the column

vessel containing the sample particles. Due to the perturbation of tomography environment

and the limitation of CT optical apparatus, the CT image may contain significant noises.

Therefore, a smooth filtering technique termed the median filter algorithm (Lim, 1990) is

used to reduce the noise pixels. Finally, the inner particle voids, due to either imaging noise

or actual voids within the particle, will be “filled” during pre-processing. The filling step is

justified based on the fact that interactions between particles in the numerical model will be

determined by the outer boundary of each particle only.

The image pre-processing steps can be used in combination to obtain optimal images

for shape extraction. Figure 4.5 shows the pre-processing of a typical raw image. It should be

pointed out that, no matter how advanced algorithms are used, there processed images may

still pose unreasonable pixel values. Manual adjustment may be used to remove unnecessary

pixels and to improve the image quality.

4.4.2 Particle shape identification

Given a processed CT image, particle shapes will be identified and extracted. Three

techniques are used for this purpose: component differentiation, watershed segmentation,

and shape identification.

Component differentiation Component differentiation refers to classifying individual com-
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(a) Raw image (b) Image enhancement (c) Vessel removal

(d) Smooth filtering (e) Filling voids (f) Smooth filtering

Figure 4.5: An illustration of the CT image pre-processing on a typical raw CT image.

66



ponent of a specimen. It is based on the fact that different types of component have

different X-ray attenuation coefficients, which can be further converted to grayscale

images. Clustering algorithms, such as the K-mean clustering algorithm Faber (1994);

Chen et al. (1998), can be applied to distinguish each component type in a sample. A

particular case of the clustering analysis is binarization, where only two components

need to be identified. An example is to identify the solid and void phases within a

specimen, as is the case in this work.

Watershed segmentation The watershed segmentation algorithm Meyer (1994) is com-

monly used to segregate individual particles. Watershed segmentation algorithm

imitates a water flooding process, where water rises from a local minimum altitude and

flows towards the nearest not-flooded minimum altitude. The floods rise from different

local minimum altitude or basin would encounter and form a boundary between each

basin, thus segregate each basin. In application, topographic distance field is computed

from the binary image and used as the altitude in watershed segmentation.

Shape identification Shape identification is used to mark or label the segregated particles.

After watershed segmentation, the particles will be segregated from each other by the

watershed boundaries. Then, every particle pixels inside the same boundary can be

marked and identified as a single particle. The general procedure outlined in Haralock

and Shapiro (1991) is commonly used.

It should be noted that, during the watershed segmentation, the image is required

to be “eroded” by a topographic structure element. The size of the topographic structure

element would impact the segregated particle shapes. If the element size is too small, the

algorithm may not be able to identify two particles that are in touch. On the other hand, if

the element size is too large, the algorithm may miss some smaller particles. In this work, the

size of the topographic structure element is gradually increased. For each size, the watershed

algorithm and shape identification are performed. The resulting image is sent to the next

iteration until reasonable particle shapes are identified. Figure 4.6 illustrates the effects of
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each procedure in the algorithm. For this example, eight iterations are used to obtain the

final image.

(a) After pre-processing (b) Image binarization (c) Watershed of 5th erosion

(d) Watershed of 7th erosion (e) Watershed of 8th erosion (f) Final segments

Figure 4.6: An illustration of particle identification from a pre-processed CT image.

4.4.3 Quantitative description of particle shapes

With particle shapes identified and extracted following techniques described in the

previous section, it is possible to calculate quantitative descriptors of particle shapes within

a specimen. In this work, three shape descriptors are calculated, i.e., the Fourier harmonic

descriptor, the aspect ratio, and the circularity.

Fourier harmonic descriptor When using the Fourier harmonic descriptor, the polar radius

r of a particle is written as a function of the polar angle � through a series of Fourier
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harmonic functions such that (Das, 2007; Mollon and Zhao, 2012)

rN (�) =
Ro

2
+

N∑
n=1

[an cos(n�) + bn sin(n�)] (4.5)

where Ro is the equivalent particle diameter of a spherical or circular particle that has

the same area as the irregular particle; N ≥ 1 is the Fourier series order; an and bn

(with n = 1, 2, 3, ...N) are the Fourier coefficients defined as

an =
1

� ∫
2�

0

[r(�) cos(n�)]d� (4.6)

bn =
1

� ∫
2�

0

[r(�) sin(n�)]d� (4.7)

In this work, Fourier coefficients are evaluated for a total of 297 particle shapes

extracted from CT images. To compare between particles of different sizes, the

coefficients (an, bn) are normalized by the equivalent particle diameter Ro. Furthermore,

a normalized mean amplitude is calculated as the square root of the sum of the

normalized coefficients squared. The normalized amplitude versus the harmonic

number plot is shown in Figure 4.7, where the harmonic number n = 1, 2, 3, ..., N and

N = 15 for this study.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Harmonic number

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
o

rm
al

iz
ed

 m
ea

n
 a

m
p

li
tu

d
e

Figure 4.7: Fourier harmonic descriptor for all particle shapes extracted from CT images.
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Aspect ratio Aspect ratio is defined as the ratio of the short axis to the long axis. For a

circular particle, the aspect ratio would be one. Figure 4.8a shows the aspect ratio

distribution of the particle shapes extracted from CT images. The mean aspect ratio is

about 0.57.

Circularity Circularity describes the degree to which a particle shape is similar to a circle,

and it is a measure of both the particle form and roughness (Olson, 2011). The

circularity of a particle is a dimensionless quantity given as (Olson, 2011)

C =

√
4�A

P 2
(4.8)

where A is the area of the particle; P is the perimeter defined as the total length of the

particle boundary. A higher circularity value means the particle is closer to a perfectly

round and smooth particle. An ellipse with an aspect ratio of 0.57 has a circularity of

about 0.92. Figure 4.8b plots the histogram of the circularities of the scanned specimen.

The mean circularity is about 0.86.
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Figure 4.8: Particle shape descriptors of the extracted particle shapes.

The particle shape descriptors can be used to generate numerical particle assembly

that possesses similar shape properties of a corresponding physical particle assembly or to

quantify the relationship between macroscopic material properties (e.g., shear strength) and
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particle shapes Härtl and Ooi (2011). A more direct approach, as adopted in this work, is to

generate particles with realistic irregular shapes using extracted particle shape data from CT

images. In the next section, a subset of realistic particle shapes extracted from CT image will

be used to illustrate the development of a grading and shape-dependent discrete element

model.

4.5 Discrete element model

In this section, two-dimensional (2D) discrete element model will be developed to

simulate the behavior of the JSC-1A MRS. The model explicitly accounts for particle size

distribution and realistic irregular particle shapes extracted from CT images. Despite the

limitations of a 2D numerical model, the procedure presented for model development is

general. The developed model can capture microscopic behavior between regolith particles

and the responses of the system with reasonable computational time.

4.5.1 Contact models

In a discrete element model, the microscopic interactions between particles are

simplified into contact behavior of two elements. The contact force F c consists of two parts:

the normal force F n and the shear force F s

F c = F n + F s = Fnnn + Fsns (4.9)

where nn and ns are the unit vectors denoting the direction of the normal and the shear

force, respectively; Fn and Fs are the magnitudes of corresponding contact forces. Assuming

the relative displacement increment at the contact during a timestep Δt is given by its

components Δ�n and Δ�s, the contact law for a simple linear model updates the contact
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forces through

Fn = F 0
n
+ knΔ�n (4.10)

Fs = min(F 0
s
+ ksΔ�s, �cFn) (4.11)

M = 0 (4.12)

where F 0
n

and F 0
s

are the normal and the shear force at the beginning of the current

timestep, respectively; kn and ks are the normal and the shear stiffness, respectively; �c is

the microscopic friction coefficient, and M is the contact moment.

In Equation 4.11, an incremental displacement formulation is used to calculate the

tangential force to avoid the “ghost force” issue when the accumulative shear displacement

is too large and needs a long time for relaxation during the simulation. Alternatively, a

modification of the original Cundall and Strack Cundall and Strack (1979) force was proposed

by Brendel and Dippel (1998) and adopted in Alonso-Marroquín and Herrmann (2002),

which “freezes” the shear displacement when the shear force reaches a given threshold.

A more complex contact law may include rolling resistance such as the one proposed

in Iwashita and Oda (1998); Jiang et al. (2005), where a term of rolling resistance moment

is added to the contact moment as

M = min(M0 + krΔ�b, �rR̄Fn) (4.13)

where M0 is the contact moment at the beginning of the current timestep; Δ�b is the relative

bend-rotation increment; �r is the rolling resistance coefficient; kr is the rolling resistance

stiffness defined as:

kr = ksR̄
2 (4.14)

where R̄ is the contact effective radius defined as R̄ = 1∕(
1

R1

+
1

R2

), in which R1 and R2 are

the radii of the contact particles. If one side of the contact is a wall, the corresponding radius

R2 → ∞.

72



It should be noted that the adopted rolling resistance model of Equation 4.13 uses a

simplified formulation for the rolling kinematics, and the particle size effects on the rolling

resistance are implicitly incorporated in the rolling stiffness term. The interested reader is

referred to Luding (2008); Wang et al. (2015) for examples of improved and more advanced

rolling resistance models.

The rolling resistance model can be used to indirectly account for effects of irregular

particle shapes and to improve predictions of a discrete element model with only circular

particles. As a comparison, discrete element models with circular particles and rolling

resistance will also be implemented and compared with the shape-dependent model.

4.5.2 Particle size distribution

In a discrete element simulation, the computational cost is positively correlated to

the number of particles in the model. Though the MRS contains only a small amount of fine

particles (less than 10% by weight), the number of fine particles can be prohibitively large.

When setting up a discrete element model, within the limits of the current computational

resources, it may become necessary to introduce some reasonable approaches to modify

the particle size distribution, so that the total number of particles can be reduced. Two

approaches can be used to reduce the number of particles: up-scaling of particle sizes Kim

et al. (2012); Wang et al. (2014a); Feng et al. (2017a), and modifying the gradation by

trimming fine particles.

For soil samples with a broad range of particle sizes like the MRS, up-scaling of parti-

cle sizes may not be appropriate: a small scaling factor could be insufficient to significantly

reduce the number of particles, and a large scaling factor might result in unrealistically

large particles. With the trimming approach, fine contents are considered to have negligible

contributions to the mechanical strength of the sample, and therefore, they can be “trimmed”

or removed.

Considering the wide range of particle sizes and the powder-like tiny particles in

the MRS, the particle trimming method is adopted to reduce the particle number in this
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work. For the particles that are smaller than 0.425 mm, they are substituted with alternative

particles whose size are equal to 0.425 mm. However, the number of alternative particles

will be recalculated so that the resulting particle packing has the same volume fraction as

the original specimen.

4.5.3 Particle shape representation

Many methods have been proposed and developed to simulate irregularly-shaped

particles, e.g., the disc clump method Das (2007); Shi et al. (2015), the spheropolygon (2D)

and spheropolyhedron (3D) method Dobrohotoff et al. (2012); Alonso-Marroquín and Wang

(2009), the polyhedrons method Mack et al. (2011); Govender et al. (2014), the non-uniform

rational basis splines method Andrade et al. (2012b), the level set method Kawamoto et al.

(2016) and so on. In this work, an irregularly-shaped particle is modeled using a group of

discs called a clump. The most notable advantages of this method are its computational

efficiency and straightforward implementation of contact detection algorithms. There are

three options to represent a clump (Shi et al., 2015): the domain overlapping filling method,

the domain non-overlapping filling method, and the boundary filling method, as shown in

Figure 4.9. The clump generated by domain overlapping filling requires the least number

of particles and is, therefore, the most computationally efficient. The clump created by

the domain non-overlapping filling can also be promoted to a cluster that can capture the

breakage behavior. The boundary filling method, depending on the size of filling elements,

could provide a better representation of surface roughness.

The domain overlapping filling method is adopted in this work. This approach

is also called the Overlapping Discrete Element Cluster (ODEC) method, and the filling

process consists of three main steps (Das, 2007): image matrix parameterization, topological

skeletonization, and optimum overlapping, as illustrated in Figure 4.10. It should be noted

that the irregularly-shaped particles generated by the ODEC method are actually clumps

(those that do not break), but the phrase ODEC is kept in this work as it was originally used

in (Das, 2007).
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(a) Domain overlapping filling (b) Boundary filling (c) Domain non-overlapping filling

Figure 4.9: Schematic illustration of the three options for representing an irregularly-shaped

MRS particle with disc clump method (modified after Shi et al. (2015)).

In the image matrix parameterization, the particle shape is converted to binary image

matrix, with status labels indicating particle pixels and background pixels. The binary images

are collections of binary pixels that signal whether a square area (or a cubic volume in 3D)

is occupied by solid (b = 1) or by void (b = 0). Topological skeletonization, or Medial Axis

Transformation, is used to identifying skeleton of a particle, which is defined as the locus of

centers of all maximally inscribed discs. In optimum overlapping, discs are iteratively added

to the clump. For each iteration, the center of the new discs to be added is searched on the

topological skeleton, and it is assured that the newly added disc can cover the maximum

uncovered area.

(a) Binary image matrix (b) Topological skeleton (c) Optimum overlapping (d) Resultant clump

Figure 4.10: Schematic illustration of particle shape representation with domain overlapping

filling method.

When applying the ODEC algorithm to irregularly-shaped particles (i.e. non-circular

or non-spherical particles), as the number of discs used per clump increases, the percentage

of covered area also increases. Figure 4.11 shows the relation of the percentage coverage

and the number of discs per clump based on CT image data of the MRS. A clump with a
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larger number of discs would have a better representation of the particle shape but with

higher computational cost. In this work, each clump is filled by five discs, corresponding to

an 80% area coverage. Each clump represents an irregularly-shaped particle.

In the following analysis, seven irregular particle shapes are selected and, therefore,

there are seven clump templates used in developing the discrete element model. These seven

shape templates are shown in Figure 4.12. The seven types of particle shapes are imported

into the discrete element model as clump templates. Each generated particle in DEM model

is based on a randomly selected clump template with its size following the particle size

distribution described in the previous subsection.
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Figure 4.11: The percentage coverage as a function of discs number in the domain overlap-

ping filling method. The error bars indicate the variation of the percentage coverage among

different particle shapes when the same number of discs are used.

CT images

DEM particles

Figure 4.12: Seven basic particle shapes used in the DEM model.
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4.6 DEM simulation of direct shear tests

4.6.1 Model details and material parameters

The grading and shape-dependent DEM model is used to simulate direct shear tests

on JSC-1A MRS. PFC2D Itasca Consulting Group, Inc (2014) is used to implement the model

and to perform simulations. The dimension of the soil specimen is 63.5 mm in width and

25.4 mm in height. The porosity of the packing in the DEM model is 0.22, which corresponds

approximately to a porosity of 0.49 in a three-dimension sample following the parabolic

equation recommended by Wang et al. (2014b).

To generate a numerical specimen following the prescribed particle size distribution

with irregularly-shaped particles, the following steps are taken:

1. The particle size distribution (PSD) curve is first divided into a number of bins. In this

work, the number of bins and bin sizes are set based on the number of sieves and sieve

openings used in the laboratory sieve analysis.

2. The area of particles in each bin is calculated based on the total volume of the specimen

and the target porosity.

3. Within each PSD bin, a particle size is randomly generated and the corresponding

particle shape is randomly selected from the list of irregularly-shaped particles, e.g.,

Figure 4.12.

4. The previously generated particle is scaled such that its area equals to the area of an

equivalent disc with the same particle size.

5. The scaled irregularly-shaped particle is then inserted to the specimen at a randomly

selected position.

6. Steps 3 - 5 are repeated for each PSD bin until the total area of the generated particles

matches the target area computed in step 2.

7. The generated specimen is allowed to settle under gravity.
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It is worth noting that, within the limits of the resolution of the X-ray CT system, the

particle shapes at different particle sizes are not directly obtained. Herein, the particle shape

or shape descriptors are assumed to resemble each other at different sizes, known as the

fractal phenomenon of granular material Arasan et al. (2011). Therefore, the same shape

templates are used at different scales in generating the numerical specimen.

PFC2D 5.00
©2016 Itasca Consulting Group, Inc.

Academic Model

63.5 mm

12.7 mm

12.7 mm
0.001 m/s

Figure 4.13: Discrete element model of a direct shear test specimen. Light green lines

represent the shearing cell and different colors are used to indicate particles with different

sizes.

The generated numerical specimen is shown in Figure 4.13. During the preparation

of soil specimen in the laboratory test, the specimen is vibrated and slightly compacted to

remove potential cavity and improve sample homogeneity. In the numerical simulation, for

the same purpose and during the specimen preparation stage, the shearing cell is set to be

frictionless, and the friction coefficient of soil particles is set to be 0.1. The input parameters

for the DEM model are calibrated using one set of laboratory test data corresponding to

a confining stress of 95.8 kPa , following a calibration procedure similar to Belheine et al.

(2009); Plassiard et al. (2009); Behraftar et al. (2017). The calibrated values are summarized

in Table 4.3. Then, the other sets of test data are used to validate simulation results of the

DEM model.

The direct shear test consists of two stages: consolidation and shearing. In the

numerical simulation, the movement of the shearing cell is governed by servo-control mech-

anism Itasca Consulting Group, Inc (2014) to achieve and maintain a specified consolidation

pressure. Three different confining stresses, i.e., 95.8, 191.5 and 383 kPa, are considered.

The time step is set at 2×10−6 s. In the shearing stage, the lower part of the shearing cell
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Table 4.3: Input parameters for the DEM model.

Parameter Value

Width of shear cell w 63.5 (mm)

Height of shear cell ℎ 25.4 (mm)

Packing porosity � 0.22

Density of particles � 1940 (kg/m3)

Contact normal stiffness kn
⋆ 1.5×107 (N/m)

Contact shear stiffness ks
⋆ 1.5×107 (N/m)

Friction coefficient of particles �b
c
⋆ 2.5

Friction coefficient of boundary �w
c
⋆ 2.0

Rolling resistance coefficient �r
⋆⋆ 0.7

⋆ denotes the parameters that need to be calibrated.
⋆⋆ is the rolling resistance coefficient required if using simplified disc

only particles with the rolling resistance contact model to account for

particle shape irregularity.

is moved at a speed of 0.001 m/s. The simulation is stopped when the normalized shear

displacement reaches 12% or the shear stress reaches its peak and significantly decreases.

4.6.2 Results and discussion

Figure 4.14a shows the shear stress and shear displacement behavior of the MRS

in the direct shear test. The results from the developed discrete element model match

reasonably well with the experimental data, and the peak shear stress can be perfectly

captured. The shear stress from DEM model exhibits a more significant decrease in the

post-peak stage compared to the laboratory experiment. The post-peak difference between

the DEM and experiment results, as being previously observed in Wang et al. (2014a);

Feng et al. (2017a), may come from the particle breakage effect that is not included in

the DEM model. In addition, the simplification of a 3D problem into a 2D DEM model

also contributes to the differences. Nevertheless, the DEM simulation predicts a maximum

macroscopic friction angle of 40◦, which matches very well with the value obtained from lab

test (41.4◦±2.2◦).

As a comparison, two additional cases of DEM simulations are performed. The first

case uses the same input parameters for the linear contact law and the same gradation but
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Figure 4.14: Grading and shape-dependent DEM simulations of direct shear test: stress

response and comparison with laboratory test.

with simple disc-shaped particles, i.e., no consideration of particle shapes. The second case

also uses disc-shaped particles but incorporates the rolling resistance model of Equation 4.13.

Figure 4.15 shows stress responses of DEM simulation with disc-shaped particles.

For such a case, the maximum macroscopic friction angle is 27.2◦, and the corresponding

friction coefficient is about 40% less than the value obtained with shape-dependent DEM

simulations. This comparison shows that the particle shape irregularity makes a significant

contribution to the shear strength of this material.

Figure 4.16 plots the stress responses of disc-shaped particles with the rolling resis-

tance model of Equation 4.13. In this case, a rolling resistance coefficient �r of 0.7 is required

to achieve the same shear strength predicted using the shape-dependent DEM model.

Figure 4.17 shows the formation and evolution of shear band (characterized by

particle rotations) for all three cases of DEM simulations. Two main distinct effects of particle

shape irregularity on the shear band can be observed: (1) the particle shape irregularity tends

to resist or inhibit the shear band formation; and (2) the particle shape irregularity could

induce additional shear band in a direction other than the common horizontal direction.

Previous study Härtl and Ooi (2011) has found that particle shape irregularity could

increase the coordination number and increase the mobilized particle contact friction, leading

to a larger macroscopic friction angle. A similar phenomenon is captured by the grading and

80



0 2 4 6 8 10 12 14

Normalized shear displacement (%)

0

100

200

300

400

500

600

S
h
ea

r 
st

re
ss

 (
k
P

a)

Lab   95.8 kPa

Lab 191.5 kPa

Lab 383.0 kPa

DEM   95.8 kPa

DEM 191.5 kPa

DEM 383.0 kPa

(a) Stress displacement behavior

0 100 200 300 400 500
Normal stress at failure (kPa)

0

100

200

300

400

500

S
h
e
a
r 

s
tr

e
s
s
 a

t 
fa

ilu
re

 (
k
P

a
) Lab

DEM

R
2
 = 1.00

Slope = tan(27.2°)

(b) Normal and shear stress at failure

Figure 4.15: DEM simulations of direct shear test with disc-shaped particles and a linear

contact model: stress response and comparison with laboratory test.
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Figure 4.16: DEM simulations of direct shear test with disc-shaped particles and a rolling

resistance contact model: stress response and comparison with laboratory test.
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PFC2D 5.00
©2016 Itasca Consulting Group, Inc.

Academic Model

(a) Irregular particles, 3%

PFC2D 5.00
©2016 Itasca Consulting Group, Inc.

Academic Model

(b) Irregular particles, 6%

PFC2D 5.00
©2016 Itasca Consulting Group, Inc.

Academic Model

(c) Irregular particles, 9%
PFC2D 5.00

©2016 Itasca Consulting Group, Inc.

Academic Model

(d) Disc particles, 3%

PFC2D 5.00
©2016 Itasca Consulting Group, Inc.

Academic Model

(e) Disc particles, 6%

PFC2D 5.00
©2016 Itasca Consulting Group, Inc.

Academic Model

(f) Disc particles, 9%

(g) Discs with rolling resistance, 3%(h) Discs with rolling resistance, 6%(i) Discs with rolling resistance, 9%

Figure 4.17: Shear band in numerical DST at 3%, 6% and 9% shearing displacement with

normal stress 95.8 kPa. The color indicates the rotation of the particle. The unit of the color

bar is in degree with a counterclockwise rotation being positive.

shape-dependent DEM model developed in this work. Here, the coordination number can

be directly related to the total contact number in the model, since the particle number in

DEM specimens are the same. Figure 4.18 shows the polar histogram of the contact force

directions in the specimens at peak shear stress state with a normal stress of 95.8 kPa. It can

be observed that the specimen with irregularly-shaped particles possesses the largest number

of contacts. It is also interesting to note the anisotropic nature of the contact network for

three different cases, which could affect the macroscopic material response. For instance, the

dependence of elastic constants on the contact network has been reported and quantified in

Alonso-Marroquin et al. (2005). The contact forces directed close to horizontal give a higher

shearing resistance in the direct shear test. The contact force directions cluster around 30◦

for the specimen with irregularly-shaped particles and the specimen with discs and rolling

resistance. The contact force directions cluster around 45◦ for the specimen with disc-shaped

particles and no rolling resistance. Results of the mobilized contact friction in each specimen
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are shown in Figure 4.19. Consistent with the previous study (Härtl and Ooi, 2011), the

specimen with irregularly-shaped particles possesses the largest percentage of mobilized

particle contact friction that is greater than the macroscopic friction (tan 40◦).

0

30

60
90

120

150

180

210

240
270

300

330

(a) Irregular particles

0

30

60
90

120

150

180

210

240
270

300

330

(b) Disc particles

0

30

60
90

120

150

180

210

240
270

300

330

(c) Discs with rolling resistance

Figure 4.18: Polar histogram of the contact direction at peak shear stress with a normal

stress of 95.8 kPa.
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(a) Irregular particle
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(b) Disc particles
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(c) Discs with rolling resistance

Figure 4.19: Cumulative frequency of mobilized contact friction coefficient for all contacts

at peak shear stress with a normal stress of 95.8 kPa. The red dashed line indicates the

mobilized contact friction corresponding to tan 40◦, where 40◦ is the maximum macroscopic

friction angle obtained from DEM simulations with irregular particles.

4.7 Conclusions

In this work, the physical and mechanical properties of JSC-1A MRS are characterized

by a series of laboratory tests. The properties characterized include specific gravity, particle

size, particle size distribution, particle shapes and shear strength. X-ray computed tomogra-

phy is used to obtain particle images, upon which particle shape data are characterized by a

series of imaging processing techniques and are further used to generated irregularly-shaped
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numerical particles through the domain overlapping filling method. A grading and shape-

dependent DEM model is then developed, calibrated and validated against direct shear tests

on JSC-1A MRS. In summary, it is found that

1. The JSC-1A MRS used in this study can be characterized as well-graded sand (SW)

following the Unified Soil Classification System with a specific gravity of 1.94 ± 0.02.

2. The calibrated grading and shape-dependent DEM model can capture the behavior of

the regolith simulant in a direct shear test, in particular, the peak shear strength and

the maximum friction angle.

3. The particle shape effect accounts for approximately 40% of the shear resistance of the

JSC-1A MRS. The irregular particles would increase the mobilized contact friction and

the number of particle contacts within the assembly when compared with an assembly

with the same number of disc-shaped particles.

4. The additional shear resistance resulting from irregular particle shape effect cannot

be fully replicated by solely increasing the micro friction between particles but can be

captured through a calibration of rolling resistance contact model.

The laboratory characterization and numerical model developed in this work provide

insights into the mechanical behavior of JSC-1A MRS from a fundamental level. The

calibrated grading and shape-dependent model can be a useful tool for simulating and

predicting regolith behavior in a complex environment such as microgravity and low pressure,

which will be explored in future studies.
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Chapter 5

Discrete element modeling of

deformable pinewood chips in cyclic

loading test

The design of efficient lignocellulosic biomass feedstock systems is challenging, as

current laboratory characterization and design methods were developed primarily for fine

powders with relatively low compressibility. The discrete element method (DEM) is gaining

prominence as an alternative method for modeling the bulk flow and transport of particulate

materials in hoppers and feeders. However, prior DEM simulations investigating the flow of

wood chips modeled the particles as simple rigid geometries such as spheres, rods or blocks,

and neglected the effects of particle deformability and irregular shapes. As a consequence,

those simplified DEM models may not provide enough key diagnosis to help improve the

design of biomass feeding and handling equipment. This work presents a bonded-sphere

DEM approach for characterizing the mechanical behavior of bulk flexible, deformable

pinewood chips in a cyclic stress loading test. Clustered spheres that can bend and twist via

A similar form of this chapter has been submitted at the time of writing: Y. Xia, Z. Lai, T. Westover, J. Klinger,

H. Huang, and Q. Chen. Discrete element modeling of deformable pinewood chips in cyclic loading test.
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elastic bonds are used to model irregular-shape particles in real pinewood chip samples. An

axial compression tester, which contains 0.06 million bonded-sphere particles (1.35 million

spheres) in a quarter cylinder, is simulated with a domain size similar to the experiments.

With careful calibration, the simulations have delivered the bulk densities and the bulk

moduli of elasticity that are in good agreement with those measured in the corresponding

experiments. However, it is also been found challenging for the present DEM model to

accurately predict the overall stress-strain behavior of bulk pinewood chips, especially the

large sustained plastic deformation during unloading. Additional numerical tests have

shown that the adjustment in certain contact parameters (e.g. bond stiffness) can lead

to profound solution improvement, but meanwhile will induce extra challenges such as

increased computing time. Future work will include an elasto-plastic particle bond model to

enhance the simulation fidelity.

5.1 Introduction

Loblolly pine forest residues are a low-cost source of biomass for conversion into

biofuel or biochemical (Office, 2016). Research efforts on instrumented laboratory charac-

terization of bulk mechanical and rheological properties of wood chips have been on the rise

recently (Stasiak et al., 2015; Hernandez et al., 2017), in part because of a growing need

for the design of more efficient and durable feedstock systems in biorefinery (e.g. grinder,

hopper and feeder). However, a number of limitations have been observed in the current

experimental approaches for measuring the required material properties and designing

equipment to robustly handle biomass, including residues (Westover and Hartley, 2018).

In general, the current quantitative methods to design equipment to handle particulate

materials were originally devised for powder materials that are relatively incompressible,

and that are handled at consolidation pressures larger than about 2 kPa. In many cases, the

processes that handle lignocellulosic biomass for biofuels applications do not meet these

criteria, and hence often result in various handling problems (Barletta and Poletto, 2013;
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Hernandez et al., 2017). For a limited range of applications, the purely empirical methods

may be used to successfully design equipment by performing laboratory tests using condi-

tions that are similar to those expected in industrial operations. However, a direct extension

of those empirical methods to a wider range of conditions is unlikely practical due to the

large number of variables, especially when many of the variables are nonlinearly related.

The limitations found in the current experimental and empirical methods indicate that

these methods alone do not suffice to satisfy the requirements in biomass characterization.

Biomass particles such as processed pinewood chips usually exhibit 1) a wide range of sizes

and 2) high complexity of shapes, and are often subject to large deformation and breakage

in biomass feedstock refinery and transport processes. Figure 5.1 displays representative

loblolly pine forest residues that have been hammer-milled with a 25 mm screen. The shapes

of individual particles are mostly irregular, with a wide range of sizes from a few millimeters

to approximately a centimeter. It is well established that particle shape and size distributions

are salient factors that can significantly affect the bulk behavior of particulate materials

(Höhner et al., 2012). Another factor is that pine chips are relatively soft and can deform

considerably even at low stress loading. Predicting the behavior of pinewood chips in feeding

and handling processes requires consideration of the above factors to ensure model fidelity.

Figure 5.1: Loblolly pine forest residues after being hammermilled with a 25 mm screen.

Originally introduced by Cundall and Strack (1979), the discrete element method

(DEM) refers to a class of computational models that are widely used for the predictive

modeling of the bulk behavior of particulate materials. DEM is similar to molecular dynamics

in that it explicitly tracks the motion and often deformation of each particle in the flow field. A

review on the major DEM models and applications is reported by Zhu et al. (2008). Moreover,
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the recent progress in the DEM comminution modeling of mineral ores is summarized in

Weerasekara et al. (2013), while Horabik and Molenda (2016) have reviewed DEM research

for agricultural granular materials. Most DEM simulations assume spherical, monodisperse

particles because the contact detection and force calculations are simplest and achieve the

best scaling in parallel computing. Rackl et al. (2017) modeled wood chips as mono-sized

spheres in DEM in order to decrease model complexity and reduce simulation time. To

compensate the loss of accuracy for using simple spheres, other work adapted the rolling

friction parameters of the DEM contact law in spheres to partially mimic the particle shape

effects (Wensrich and Katterfeld, 2012). However, the impact of particle shapes and sizes

on the bulk flowability was not further explored. Wood chips have also been modeled

with simple non-spherical shapes, such as polyhedron (either ideal or round-edged) and

superellipsoids (Cleary and Sawley, 2002; Coetzee, 2017; Ma et al., 2017). For example,

Scherer et al. (2016) modeled wood chips as single-body polyhedral particles in a rotary

drum. However, their studies did very limited investigation of the impact of particle shape

and size on simulation results. To approximate particles with more complex and irregular

shapes, two DEM models: the multi-sphere model (Abbaspour-Fard, 2004; Kruggel-Emden

et al., 2008) and bonded-sphere model (Zhong et al., 2016) are most often used, as shown

in Figure 5.2. In the multi-sphere model, many spheres are “glued together” to approximate

a rigid, unbreakable particle. Although the model was also applied for modeling certain

kind of wood chips (Maione et al., 2015), it is apparently not suitable in our case, since it

does not consider particle deformability – a factor that significantly affects the bulk flow

behavior of pinewood chips (e.g. see Figure 5.3). An alternative model, namely the bonded-

sphere model, which was initially devised for modeling fracture initiation and evolution

across mineral grains in rock (Cho et al., 2007), can also be used to approximate individual

complex-shape particles. In the bonded-sphere model, a particle shape is approximated

with a cluster of spheres where each sphere is connected to neighboring spheres with beam

like bonds that can be elastically deformed and broken. By adjusting the size and masses

of the sphere clusters, the size, shape and mass distributions of pinewood particles can be
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modeled. The bonded-sphere model is so far the most robust and scalable model in DEM

for simulating particulate systems consisting of arbitrarily shaped and deformable particles,

despite some known weaknesses when compared with certain specialized models such as

the sphero-cylindrical flexible fibre model (Guo et al., 2013, 2015, 2018) for bendable crop

stems (Lenaerts et al., 2014; Langston et al., 2015; Leblicq et al., 2016b,a).

Figure 5.2: Illustration of the multi-sphere model (left) and the bonded-sphere model (right).
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Figure 5.3: DEM hopper simulation examples that used multi-sphere particles and bonded-

sphere particles, respectively.

Our literature survey, however, has also unveiled a wide scientific gap in the DEM

modeling of biomass particulate systems. Most earlier works have focused on the bulk

rheological behavior of those particulate materials (Oevermann et al., 2009; Höhner et al.,

2012; Kruggel-Emden et al., 2012; Höhner et al., 2015; Maione et al., 2015; Schott et al.,

2016; Scherer et al., 2016; Maione et al., 2017), but disregarded the impact of external

loading on their bulk mechanical properties (e.g. bulk elasticity) and consequently on their
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bulk flowability. As of yet, it is unclear what improvements can be made in modeling the

mechanical behavior of biomass materials such as wood chips, during hopper flow, auger

feeder and grinding operations if particle deformability is considered. Indeed, a quantitative

characterization of the bulk mechanical properties of wood particulate materials under

external stress loading conditions is a relatively untouched area in DEM modeling. The

primary goal of this work is to narrow the aforementioned scientific gap through DEM

simulations of bulk wood chips in cyclic compression tests. The particular type of wood chips

considered in this work is loblolly pinewood forest residues, as those featured in Figure 5.1.

Six DEM clustered-sphere particle shape templates were created to approximately match

the particle size and shape distributions of laboratory samples. To account for particle

deformability, the bonded-sphere model is employed to model the individual pinewood

particles – a major contribution of this work. Numerical compression tests are performed

to assess the bulk mechanical properties of pinewood particles under compression. An

equivalent laboratory experiment is conducted in this work as a reference for calibrating

the DEM model and validating the simulation results. Since there are very few similar

simulations in existing literature, this work presents a new insight into the discussed aspects.

The developed workflow and methodology can be easily extended to other woody samples

as well as other materials with similar physical features such as miscanthus. Follow-on

numerical experiments of hopper flow with the calibrated DEM models are planned in the

future.

The rest of the paper is organized as follows. Section 5.2 briefly describes the

formulation of the bonded-sphere DEM model. Section 5.3 discusses the particle shape

conceptualization with the bonded-sphere model. Section 5.4 presents the detailed setup of

the compression test in DEM simulations. Section 5.5 reports the simulation results, analysis

and suggestion for further improvement. Lastly, a summary of this work is provided in

Section 5.6.
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5.2 Bonded-sphere DEM model

The concept of DEM is relatively mature and a general formulation of DEM can be

found in Cundall and Strack (1979) as well as Chung (2006). In this section, we will present

a brief description on the DEM model used in this work. It is not intended to elaborate all

aspects of DEM, but rather to provide sufficient background information to present the novel

features of the current bonded-sphere DEM model.

5.2.1 Basic formulation

Within the bonded-sphere DEM model, the motion and deformations of all particles

are tracked by calculating the force and moment. The bulk behavior of the material is

presented as an assembly of the actions (i.e., the interactions and motion) of all constituent

particles. Each particle has two types of motion: translational and rotational, which can

be described by the Newton-Euler equations. As to the base spheres used in this work, the

Newton-Euler equations are written as

m
d2
x

dt2
= F (5.1)

I
d2
�

dt2
= M (5.2)

where m and I are the sphere mass and moment of inertia, respectively; x and � are

the sphere translational and rotational position; F and M are the overall external forces

and moments experienced by the spheres; and bold symbols indicate vectors. In order to

resolve the motion of each sphere, all the forces/moments experienced by each sphere are

first evaluated and summed. A sphere can be subjected to the following typical types of

forces/moments: gravity, damping, contact forces, and prescribed external forces. Herein,

the damping is particularly referred to the global damping, which is sometimes (artificially)

introduced in a DEM model to facilitate energy dissipation and enhance a quasi-static

simulation (Chung, 2006; Itasca Consulting Group, Inc, 2014). There is another type
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of damping called local damping, which is usually incorporated into the contact forces

accounting for the realistic energy dissipation due to collisions. In this work, only the local

damping is considered. For the contact forces, typical contact models would be selected

aimed at the particular material of interest. The contact models used in this work for

modeling deformable pinewood chips will be presented in a subsequent section. Once

the sphere forces/moments are obtained, the sphere motion (i.e., Equation 5.2) is then

numerically integrated with a fixed timestep size. For the time integration, a commonly

adopted approach is the second order Velocity Verlet algorithm (Verlet, 1967). Consequently,

the translational and rotational positions as well as the corresponding velocities of each

sphere are updated. The evaluation of sphere forces/moments (especially for the contact

forces) and the time integration of sphere motion are resolved cyclically at each timestep

through the duration of the DEM simulation.

5.2.2 Particle representation and contact models

As aforementioned, the irregular-shape pinewood chips are represented by clusters

of spheres using the bonded-sphere model (see Figure 5.2). The bonded-sphere model

was initially devised by Potyondy and Cundall (2004) for modeling fracture initiation and

evolution across mineral grains in rock. Note that the “bonded-sphere model” was originally

referred as “bonded-particle model” in (Potyondy and Cundall, 2004). Here in this work, we

will stick to “bonded-sphere model” since spheres are used as the base elements to form an

irregular-shape particle, as well to distinguish the particle within “bonded-particle model”

from actual pinewood particles. In bonded-sphere model, the spheres in a same cluster (i.e.,

particle) are connected with “bonds”, which can be regarded as special contacts that can

carry forces and moments. The bonds connect the spheres as a whole, but also allow them

to have relative displacements when subjected to external forces/moments. The particle

deformation (e.g., bending or deflection) is then replicated from the overall effects of relative

displacements of all the spheres within the cluster (i.e., the particle). In this work, the

contact forces are calculated from two types of contact models: linear parallel bond model

92



(Potyondy and Cundall, 2004) for intra-particle contacts (i.e., the bonds) aiming at capturing

the deformation of particles, and Hertz-Mindlin model (Hertz, 1882; Mindlin, 1953; Di Renzo

and Di Maio, 2005) for inter-particle contacts aiming at capturing the collisions between

particles. The linear parallel bond model is first proposed by Potyondy and Cundall (2004)

to analyze rock mechanics. It is simple, but provides constraints to both relative translational

and rotational displacements between bonded sphere neighbors. The Hertz-Mindlin contact

model is a complete frictional contact model based upon the Hertz theory (Hertz, 1882)

for contact normal forces and the Mindlin theory (Mindlin, 1953) for contact tangential

forces. It takes account of the stiffness variation due to the change of contact areas during

the collision of two elastic spheres. The detail formulations of linear parallel bond model

and Hertz-Mindlin contact model have been discussed in Chapter 2.

5.3 Characterization of pinewood particles

This section presents a numerical conceptualization of real pinewood particles for

DEM simulations. In addition, we will also characterize the mechanical behavior of the

resulting individual DEM particles to gain insights into the mechanical properties of those

particles.

5.3.1 Particle shape conceptualization

In order to achieve the required fidelity of DEM simulations for predicting the me-

chanical properties of pinewood particles, the DEM particles need to adequately approximate

the shapes and mass distributions of targeted physical materials. Chipped loblolly pinewoods

from whole tree debarked chips (pinus taeda) were obtained from TFTX Consulting. The

chips were harvested in the fall of 2017 near Brighton, South Carolina, USA, and were

then ground using a Schutte-Buffalo hammer mill (Circ-U-Flow model 18-7-300) equipped

with a 25 mm screen. After milling, the sample was sieved using a SWECO Vibro Energy

Round Separator (Florence, KY, USA; Model ZS24) equipped with 1 mm and 6 mm sieves
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to remove large and small particles (i.e. only particles that passed through a 6 mm sieve

but did not pass through a 1 mm sieve were used in this study). The sieved samples were

divided using rotary or riffle splitters to ensure uniform sample splitting for subsequent

tests. Two-dimensional size and shape distributions of the material were obtained using an

automated Clemex digital imaging system as described in Hernandez et al. (2017). Though

every pinewood particle has a unique shape, most of them can be approximated by some

representative shapes such as short stick or thin flake, with maximum length ranging roughly

from 5 to 10 mm and maximum width ranging roughly from 1 to 5 mm. This approximation

method served as the basis for our particle conceptualization process as follows. In this

work, a conceptualization of the sieved pinewood particles resulted in a set of 6 types of

irregular-shape DEM particles denoted by A5, A7, B10, B31, C72 and D229, respectively, as

listed in Table 5.1. Each particle type consists of a cluster of base spheres, with all the base

spheres having the same diameter of 1 mm. In the particle type notations, the letters are

used to categorize the particle cross-section shapes, while the numbers are used to indicate

the number of base spheres. Particles in categories A, B, C and D have 1, 3, 5 and 7 rows of

base spheres, respectively, as described in Table 5.1. For example, a B31 particle comprises

of 31 base spheres arranged in three rows, and roughly resembles a flake-shape pinewood

particle that is 2.7 mm in width, 3.5 mm in length, and 1.0 mm in thickness. The simulated

particle size distributions were selected to be approximately the paricle width and length

distributions of the physical pinewood particles, as shown in Figure 5.4. Though we could

enhance the particle resolution by using even smaller base spheres (e.g., 0.5 mm in diameter),

yet the allowable minimum timestep size for a numerically stable DEM simulation would be

reduced by at least 40%, and the total number of spheres would be increased by 5 - 6 times

depending on the packing patterns, resulting in a tremendous increase of computing time by

8 - 10 times for a same DEM simulation problem. Notice that even with the current particle

resolution, over a million base spheres are required to set up a simulation with domain sizes

comparable to that in our laboratory test. This implies a huge computational costs in our

DEM simulations anyhow.
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Table 5.1: Specification of the six DEM particle types in simulations (W/L is short for

width/length).

Type Layer (spheres) Row (spheres) Effective W/L Mass ratio

A5 1 (5) 1 (5) 1.0 / 5.0 [mm] 7.2%

A7 1 (7) 1 (7) 1.0 / 7.0 [mm] 12.0%

B10 1 (10) 1 (3), 2 (4), 3 (3) 2.7 / 3.5 [mm] 6.5%

B31
1 (8) 1 (4), 2 (4)

2 (15) 1 (4), 2 (7), 3 (4) 2.7 / 5.5 [mm] 15.6%
3 (8) 1 (4), 2 (4)

C72
1 (17) 1 (5), 2 (7), 3 (5)
2 (38) 1 (6), 2 (8), 3 (10), 4(8), 5 (6) 3.5 / 8.0 [mm] 25.8%
3 (17) 1 (5), 2 (7), 3 (5)

D229

1 (32) 1 (4), 2 (7), 3(10), 4 (7), 5 (4)
2 (48) 1 (5), 2 (8), 3 (11), 4 (11), 5 (8), 6 (5)
3 (69) 1 (6), 2(9), 3 (12), 4 (15), 5 (12), 6 (9), 7 (6) 5.2 / 13 [mm] 32.9%
4 (48) 1 (5), 2 (8), 3 (11), 4 (11), 5 (8), 6 (5)
5 (32) 1 (4), 2 (7), 3(10), 4 (7), 5 (4)
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Figure 5.4: Width (left panel) and length (right panel) distributions of physical pinewood

particles and DEM particles.
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In addition, we conducted a quick validation of the bonded-sphere model by using

one A5 particle in a cantilever beam benchmark problem, for which an analytical solution

is available for comparison. In this problem, an A5 particle is created with one end sphere

fixed, and the other end sphere subject to a constant force perpendicular to the particle

length direction. In bond parameter setup, kb
n

is equal to 1 × 1012 N/m3, while kb
s

is set large

enough (i.e., 1 × 1012 N/m3) to minimize shear displacement between the spheres. The

eventual deflection of the particle at equilibrium is recorded and compared to that calculated

from the analytical solution. In Figure 5.5, the deflection d of the free-end sphere along the

direction of the force, agrees well with the analytical solution, which reads d = FL3∕3EI ,

where the circular cross-section area moment of inertia I = �∕4(D∕2)4 with D = 0.001 m,

and for the present problem L = 0.004 m and E = 1 × 109 Pa.
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Figure 5.5: Validation of the bonded-sphere DEM model with a cantilever beam bending

problem.

5.3.2 Correlation between base spheres and clustered particles

A bulk sample of pinewood particles is inherently a multiscale system. To simulate

mechanical behavior of such a system, the bonded-sphere DEM model allows us to charac-

terize the system at three length scales successively from bottom to top: 1) the base sphere

scale, 2) the clustered particle scale, and 3) the bulk scale. Because the model’s mechanical

properties of contact (i.e., the Young’s modulus, Poisson’s ratio, friction coefficient and bond
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stiffness) are defined based on the sphere-to-sphere interaction, no analytical correlation or

formula is readily available to link from one scale to another for a system of complex-shape

particles, e.g. from the sphere scale to particle scale, or from the sphere scale to bulk scale.

While the correlation between the sphere scale and bulk scale is to be explored later in

Section 5.5, this section attempts to unveil part of the correlation between the sphere scale

and particle scale by using the C72 and D229 particles as examples, as they possess the most

complex particle shapes out of the six designed particle types. A bulk of simulated pinewood

particles considered in this work contains a large portion of complex-shape particles like

C72 and D229. When subject to axial compression, most of the particles in the bulk are

unlikely to stay bent like the A5 particle in the cantilever beam bending problem as shown

in Figure 5.5. Instead, the majority of the complex-shape particles tend to orient with their

longitudinal direction of shapes being normal to the direction of the bulk compressive force

(or with a tilt of angle larger than 45◦). For example, Figure 5.6 illustrates our observation in

part, where the orientations of the C72 and D229 particles are displayed exclusively out of a

mix of the six types of particles under a 2 kPa compressive stress loading. Thus we suggest

that a more relevant scenario to investigate is when a complex-shape particle is subject to

compressive stress normal to its longitudinal direction of shape.

(a) Type C72 (b) Type D229

Figure 5.6: Orientations of (a) C72 and (b) D229 particles out of the mixed six types of

particles under a bulk compression of 2 kPa.

Now we present a compression test for a C72 particle and a D229 particle, respectively.

As displayed in Figure 5.7, the two particles contain three and five layers of base spheres,

respectively, along the direction of the external force. The spheres in the top layer were
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applied with compressive forces, while the spheres at the bottom layer were fixed. The

compressive force was increased consecutively to provide an equivalent stress (i.e., the

compressive force divided by the particle effective cross-section area) from 0.5 to 1, 2 ... and

eventually 10 kPa, to mimic the range of bulk stress in Section 5.5. For each the compressive

stress, the displacements of the spheres in the top layer were recorded and converted to

equivalent strains (i.e., the displacements divided by the distance between the loading end

and fixed end). Given a range of kb
n

values from 10 to 100 GN/m3 (while the other contact

parameters remained constant), the corresponding stress-strain curves were obtained, as

shown in Figure 5.7. From those curves, it is not hard to conclude with a linear correlation

between kb
n

and particle’s Young’s modulus, Ep, for the C72 and D229 particles. For each

of the kb
n

tested, the compressive strain of the single particles increased linearly with the

external force, indicating that the Ep is constant. For example, when kb
n

is set to 10 GN/m3,

Ep corresponds to 3.74 MPa for the C72 particle and 5.04 MPa for the D229 particle. These

Ep values are much smaller than the Es calculated using an analytical relation for sphere-

to-sphere interaction, (i.e. Es = kb
n
⋅ d = 10 MPa, and d = 0.001 m), and also appear a

few orders of magnitude smaller than the Young’s modulus for tight pinewood blocks in

literature. In general, for a real pinewood chip particle, the Ep is not geometrically constant,

e.g. from surface to interior. Usually, the surface texture of a pinewood chip particle consists

of more loose wood fibers and is thus less dense than the inner part of the particle. Hence

given the same test for a real pinewood chip particle, the Ep to be measured could be low at

the beginning, and become larger with the increase of the external loading. This perspective

suggests possible legitimacy for our DEM model to adopt Ep values that can be much lower

than the Young’s modulus for an actual tight pinewood block. Therefore, considering all

these uncertainties, we recommend that a suitable choice of parameters to be eventually used

in the DEM-based numerical bulk compression test should still rely on bulk scale calibrations.
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Figure 5.7: Compressive stress-strain curves for an individual particle: type C72 (left graph)

and D229 (right graph), respectively, with different bond normal stiffness values, kb
n
.

5.4 Simulation setup

This section describes the two main steps, 1) initial particle packing, and 2) cyclic

stress loading and unloading for setting up DEM simulations of a cyclic axial compression

test using a mix of the complex-shape flexible particles devised in the previous section. The

simulations are designed based on the corresponding laboratory experiment, which is also

conducted as reference for the calibration and validation of the current bonded-sphere DEM

model.

5.4.1 Initial packing

The reference experiment was conducted in a cylindrical container with a radius of

177.8 mm (7 inches). To minimize the computational cost of simulations, we chose to model

only a quarter of the container, with the bottom wall in the z = 0 plane, a 150 mm-radius

cylindrical wall along the z axis, and two virtual symmetry boundaries in the x = 0 plane and

y = 0 plane, respectively. The bottom and cylindrical walls were treated as frictional walls,

while the symmetry boundaries were considered as frictionless walls. Notice that the radius
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of the modeled container is nearly identical to that of the physical tests and is approximately

20 times the mean particle length of 8 mm to minimize the domain size effect in simulations.

Table 5.2 lists the model’s contact parameters used in the present simulations, which are a

result of limited parameter calibration on certain parameters, e.g. the E and kb
n
. We applied

the same set of model parameters to all the base spheres, in order to alleviate the challenge

in DEM model parameter calibration.

Table 5.2: Contact parameters of the DEM base spheres used in simulations.

Parameter Value Unit

Young’s modulus, E 1 × 107 Pa
Poisson’s ratio, � 0.3 -
Coefficient of restitution, e 0.1 -
Particle friction coefficient, � 0.5 -
Wall friction coefficient, �w 0.1 -

Bond normal stiffness, kb
n

1 × 1010 N/m3

Bond shear (tangential) stiffness, kb
s

6 × 108 N/m3

Coefficient of bond radius, cr 1.0 -

In our DEM simulations, the initial particle packing is generated with a “rainfall”

method, as shown in Figure 5.8 (visualized with OVITO Stukowski (2009)). First, packs

of particles were inserted periodically from a region above the container and allowed to

deposit in the container due to gravity. The insertion region is also a cylindrical volume with

a radius of 150 mm and vertical extension from z = 100 to 150 mm. The particle insertion

was stopped when the height of the bulk sample reached well above 100 mm. Then the

system was allowed to relax until the mean velocity of the particles became sufficiently small.

It is important to note that a large friction coefficient of � = 1.0 was used until this point,

in order to enhance the packing porosity. The simulation was then restarted with � = 0.5

and allowed to re-equilibrate with time reset from t = 0. Due to the sudden reduction of

friction, the bulk height of the sample decreased noticeably. Such change also caused a

sudden increase of the system kinetic energy, as shown near t = 0.02 s in Figure 5.9a. Finally,

the particles with positions above z = 100 mm were removed, which caused another slight

increase in the system kinetic energy as seen near t = 0.32 s in Figure 5.9a. The system was
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again allowed to relax until the mean velocity of the particles had sufficiently decreased,

as displayed in Figure 5.9b. The sample obtained in the initial packing contained about

61, 900 particles (i.e. 1, 348, 513 based spheres), corresponding to a porosity of about 60%.

Note that when � = 0.5 was used throughout the whole initial packing process, a lower

porosity of 56.4% was obtained. Such comparison suggests that a large � can be used as a

porosity enhancer during particle insertion for creating a loose initial packing. In fact, the

bulk porosity measured in physical samples is usually very high, and how to create a high

initial packing porosity in DEM simulations is not trivial.

Figure 5.8: Initial particle packing with a “rainfall” method. from left to right: insertion by

“rainfall”, insertion completed; extra particles removed.

In order to enable quick calibration of the material and contact property parameters,

we created a separate simulation setup, denoted as half-size simulation, with the radius and

height of bulk sample reduced by half (see Figure 5.10), while using the same six types

of DEM particles with the same size and mass ratios. The half-size simulation contained

about 8, 080 particles after initial packing, with the number of the base spheres (164, 149)

being roughly one-eighth of that in the full-size simulationn. A comparison of simulation

problem sizes between the full-size and half-size simulations is provided in Table 5.3. The

half-size simulation allows us to identify a suitable set of parameters with a great reduction

of computing time. The parameters identified in half-size simulation were then used in
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Figure 5.9: Time history of (a) the system kinetic energy and (b) the mean velocity magnitude

of base spheres since the reduction of friction coefficient from � = 1.0 to 0.5, until final

equilibrium.

the full-size simulation. By doing so, the domain size effects can be checked as well. The

simulation setup described above was selected to mimic the physical experiments in which

the pinewood particles were slowly poured into a cylindrical vessel with a diameter of

177.8 mm. The particles were poured to a depth of 100 - 120 mm, and were then evenly

distributed using a flat scraper held at approximately 75◦ and moved forward to avoid

causing compressive stress during the top surface smoothing process.

(a)

150 mm

100 mm

(a) Initial packing (c) Unloading(b) Loading

75 mm

50 mm
“Full-size”

“Half-size”

Repeat

(b)

Figure 5.10: Illustration of the cyclic compression test setup for DEM simulations: (a)

laboratory compression tester, and (b) numerical DEM setup.
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Table 5.3: Simulation problem sizes.

Metrics Full-size simulation Half-size simulation

Diameter of base spheres 1 mm 1 mm
Radius of container 150 mm 75 mm
Bulk height of sample 100 mm 50 mm
Number of particles about 61, 900 about 8, 080
Number of base spheres 1, 348, 513 164, 149

Initial packing porosity 60% 61%

5.4.2 Cyclic stress loading and unloading

The initial packing is followed by an axial compression test, as illustrated in Fig-

ure 5.10. The simulations resembled the main procedures of the laboratory experiment. In

the test, six loading & unloading cycles were sequentially operated on the same sample,

with peak compressive stresses of 0.5, 1, 2, 3, 4 and 10 kPa, respectively. For example, the

0.5 kPa stress loading was conducted on the sample from the initial packing, and the 1 kPa

stress loading was conducted on the same sample after the 0.5 kPa stress was unloaded.

At the beginning of the simulation test, a quarter circular surface mesh made of triangular

elements was added inside the container with a position slightly above the sample. This mesh

represents a lid to be pushed downward against the sample to provide the compressive stress.

A servo-control mechanism was applied to the lid mesh with a user-specified target stress

(e.g. 0.5, 1.0 ... 10 kPa) and user-specified maximum velocity (e.g. 0.1 m/s). The compressive

stress being monitored was calculated as an integration of sphere-to-mesh contact forces

divided by the area of the quarter lid. During loading & unloading, an automation algorithm

was used in the servo-control such that 1) when no particles were detected near the mesh,

it moved at the specified maximum velocity; and 2) when particles were detected near the

mesh, the lid velocity was reduced to prevent the lid from moving too much within one time

step and passing over the neighboring particles. When the calculated stress approached close

to the target value, the velocity of the lid was further reduced to allow the stress to reach

the target value smoothly. The transient external force and bulk height data were recorded

and converted to stress-strain relation for calculating bulk moduli of elasticity.
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5.5 Simulation results

In this section, we report DEM simulation results for the axial compression test with

pinewood particles. The simulations were performed with LIGGGHTS Kloss et al. (2012)

(version 4.0.0) on a computing node (36 Intel Xeon E5-2695 v4 CPU cores, 128 GB of RAM,

SUSE Linux).

The reference physical experiments were performed using an Instron automated load

frame (Norwood, MA, USA; model 5967), as shown in Figure 5.10. The maximum speed of

the lid varied during the tests but was always regulated to ensure that the instantaneous stress

approached the target value smoothly. The target stress values were maintained for 1 minute

before being relaxed. Four tests were conducted in order to account for possible discrepancies

in sample splitting and preparation, although results from only two representative tests are

shown here. In DEM simulations of the test, a servo-control mechanism with a higher loading

speed (see Section 5.4.2) is adopted to achieve a balance between computational expenses

and quasi-static state of simulation. It took 360 hours to simulate a physical time span of 20

seconds (10 million time steps), with a timestep size of Δt = 2 microsecond (ms) being used.

Despite the huge computational cost, simulations are found very helpful for experimentation,

as they can unveil more inner details of the test system that the laboratory experiment is

not able to measure. For example, Figure 5.11 shows the simulated porosity contours of

initial packing as well as two typical stress loading states on the lateral cross-section plane at

z = 50 mm and radial cross-section plane at the 45◦ angle for z = 0 - 80 mm. The porosity

distribution in the bulk exhibits strong heterogeneity due to the irregular-shape particles and

distributions, but the mean porosity are still around 60% in these planes of initial packing.

The simulation results are compared with the experimental data obtained from the physical

tests for validation and calibration. The primary metrics that will be discussed as follows

include 1) the bulk stress-strain relations and 2) the bulk density.
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Figure 5.11: Porosity contours on horizontal cross-section plane at z = 50 mm (top) and

vertical cross-section plane at 45◦ angle (bottom).

5.5.1 Bulk stress-strain relations

When bulk pinewood chip particles are subject to a sequence of loading & unloading

cycles with sequentially increased peak loading stresses, the evolution of the bulk mechanical

behavior can be characterized in two phases: Phase 1, bulk plasticity dominant phase in the

beginning lower loading & unloading cycles; and Phase 2, bulk elasticity dominant phase

in the subsequent higher loading & unloading cycles. During Phase 1 when peak loading

stresses are relatively low, the internal structural evolution of the bulk is likely dominated

by the irreversible reduction of porosity due to pore collapse and particle reassembling,

and as a consequence, the bulk is not expected to fully restore its volume (or height in the

present setup) after each unloading. Phase 2 arrives when the peak loading stresses become

sufficiently large in the ensuing cycles (but not yet near the threshold to cause particle

breakage): the mechanical behavior of the bulk is expected to be more elastic, as the room

for the residual porosity to further diminish is much smaller. In the experiments, no breakage
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of pinewood chips is detected in the samples, which warrants the use of loading stress up to

10 kPa.

Figure 5.12 presents a comparison between the simulations and experiments on the

full stress-strain histories of the six loading & unloading cycles. The compressive bulk strain "

is calculated by " = (L0−L∗)∕L0, where L0 is the height of the initial pack (i.e. L0 = 100 mm

in the full-size simulation and 50 mm in the half-size simulation), and L∗ the transient height

of the pack. For clarity, we also plotted each of the cycles individually in Figure 5.13, which

shows that both the simulations and experiments captured bulk plastic deformation to certain

extent in those cycles (e.g. Δ" = 1% to 3%). A number of main observations are discussed as

follows. First, the two experimental curves exhibit a clear difference from the second cycle

to the last, in part due to the inherent difference between the two samples. As shown in

Figure 5.13, the first sample exhibited more plastic deformation than the second one by up

to 1.1% throughout the test. Nevertheless, the shapes of the two experimental data curves

look similar near all the peak stresses, which indicate consistent bulk mechanical properties

between the two samples under compressive stress. Another interesting phenomenon is

when the peak stresses were reached and then maintained, the bulk strain continued to

increase slightly. For example, as can be seen in Figure 5.13f, the two samples underwent a

continued bulk deformation by Δ" = 0.5% when the peak loading stress stayed at 10 kPa.

Such creeping phenomenon was not observed in the simulations with the present DEM

model, which does not incorporate any rate-dependent contact models.

Regarding the DEM simulation results, the domain size effect is observed between

the two simulation curves obtained with the full-size simulation and half-size simulation,

as shown in Figure 5.12a. A closer comparison in Figure 5.13a and Figure 5.13b suggests

that, though the two simulations have similar initial packing porosity, i.e. 60% versus 61%,

more porosity (in terms of percentage) had diminished in the half-size simulation over the

first two cycles, which led to about 1% more bulk plastic deformation. Nevertheless, as

seen in Figure 5.13c, the two simulations of different sizes behaved quite similarly since

the third cycle, despite a pre-existing difference in bulk plastic deformation by 1%. The
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Figure 5.12: Comparison of stress-strain curves for the compression test between (a) experi-

ments and (b) simulations.

stress-strain curves obtained with the full-size simulation have a reasonable agreement with

their experimental counterparts over the first three cycles, where the simulated curves are

bounded by the two experimental data curves (see Figure 5.13a - Figure 5.13c). In addition,

we sampled the stress and strain data in the 89 - 99% range of each peak stress (e.g. 3.56

- 3.96 kPa during the 4 kPa loading) for calculating the transient bulk moduli of elasticity,

and compared the results between the simulations and experiments in Figure 5.14. The

values associated to the full-size simulation are consistently lower than their experimental

counterparts near each peak stress, but yet bounded in a 20% deviation of the experimental

data. The bulk moduli of elasticity in the simulations can be increased with a higher kb
n

value to better match the experimental data. However, a major discrepancy between the

simulations and experiments lies in the unloading regions, where the experimental unloading

curves are significantly steeper than their simulation counterparts. As a result, the physical

samples displayed 1% more bulk plastic deformation than the simulated samples at the

end of the test, as shown in Figure 5.13f. This contrast suggests that even after the six

loadings already conducted, it is highly possible the experimental samples may still contain

an abundance of pore spaces that could shrink during subsequent loadings. However, the

simulated pinewood particles, which were dominated by bulk elasticity other than plasticity

over the last three cycles, exhibited much less plasticity during the unloading processes
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Figure 5.13: Comparison of experiment and simulations on the stress-strain histories in

individual cycles.
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as well as smaller bulk plastic deformation (i.e. Δ" ≤ 1% as shown in Figure 5.13d -

Figure 5.13f). The small strain recovery during relaxation after the applied stress is removed,

even at high stress levels, suggests that plasticity is consistently dominant over elasticity

across the entire range of applied stress. The observed changes in the effective Young’s

modulus and Poisson’s ratio (i.e. the slope of the stress-strain curves during relaxation)

is likely due to changes in effective particle-particle friction coefficients. This observation

indicates that the friction coefficients and other parameters should be considered functions

of the strain or void ratio. This behavior is not unexpected because the impact of surface and

internal moisture are expected to be strong functions of contact pressure and area, which are

dependent upon strain and void ratio. Above all, these findings call for further investigation

for enhanced DEM models to account for the large bulk plastic strain in pinewood particles

after unloading.
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Figure 5.14: Comparison between experiment and simulations on the bulk moduli of

elasticity near the peak loading stresses. The error bars represent a 20% deviation from the

corresponding data.

5.5.2 Bulk density

Measured at initial packing, the bulk densities of the two physical pinewood chip

samples read 169 and 159 kg/m3. The porosities of the physical samples were also measured

and used as references for porosity in the DEM simulations. To keep generality in our

discussion, we first express the bulk density of particulate materials in the following general
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form,

�bulk = �grain�grain = �grain(1 − �void),

where �grain denotes the grain density, �grain the grain volume fraction, and �void the bulk

porosity, respectively. In bonded-sphere DEM simulations, the �void accounts for the void

space between the base spheres only, and can be calculated as

�void = 1 −
Nspheres

4

3
�r3

sphere

1

4
�r2

cylinder
ℎbulk

in a quarter cylindrical container, where Nspheres is the number of base spheres, rcylinder the

container radius, ℎbulk the bulk height, and rsphere the sphere radius. In the simulations,

�void depends on a number of physical constraints such as the particle shapes, particle

size distributions and inter-particle friction coefficient. The bound of �void can be roughly

estimated if those constraints are specified. For example, with random packing, mono-sized

rigid spheres have a statistical lower limit of �void as 36.6%. Recall that our simulated bulk

samples have a �void of 60% from initial packing. In contrast, the �void in the physical

pinewood particle samples could be higher than the simulations, as the porosity may include

not only the macro void between the pinewood particles, but also the micro pore space on

the particle surface and inside the particle internal structures.

In order to obtain the �void in the physical samples, we first measured �grain with a

gas pycnometer, as �void can be calculated from �void = 1− �bulk∕�grain. The �grain measured is

equal to 1398±23 kg/m3, an average of 5 representative splits of the material, with each split

measured three times. This value appears much higher than the density of natural pinewood

blocks, which range from 400 to 460 kg/m3. Nevertheless, �grain values between 1400 and

1600 kg/m3 are often reported for processed wood chips with this technique Redding et al.

(2005); Hehar et al. (2014); Olatunde et al. (2016). Based on the measured �grain, the

calculated �void is equal to 88% and 89% for the physical samples at initial packing, being

much higher than their DEM counterpart. Two possible factors are considered to have
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contributed to the high �void values (or equivalently �grain) in experiments. For the first, the

irregular surface structures of realistic pinewood particles at both the macro and micro scales

are likely to have created more inter-particle voids than it could be numerically possible in

DEM simulations, as the surface of base spheres in our DEM models is assumed smooth. For

the second, as mentioned earlier, it is likely that the pore space in our laboratory samples

also included internal macro and micro pore structures of the pinewood particles as a result

of pressurized open-up and infiltration by the probe gas (e.g. helium). Taking these factors

into account, it is legitimate to interpret the relatively low �void in the DEM simulations as

the void space external to the particles, and reasonable to use a �grain value closer to the

density of natural pinewood block for calculating �bulk in the DEM simulations.
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Figure 5.15: Comparison between experiment and simulations on the bulk density under the

six peak loading stresses. The error bars represent a 10% deviation from the corresponding

data.

Figure 5.15 displays a comparison of the simulation and experimental results on the

bulk density under the six peak compressive stresses in the test. A number of important

observations are as follows. First, the two experimental data sets exhibit clear difference in

the magnitude of the measured densities (which is common for particulate wood materials

in part due to the unavoidable variance between different samples), but much similarity in

their increment when the compressive stresses reached higher. For the DEM simulations,

the calibrated �grain for fitting the experimental data is equal to 410 kg/m3, which is within

the density range for natural pinewood block in our case (400 - 460 kg/m3). We have also
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found that within this range �void is relatively insensitive to the choice of �grain. With the

�grain value chosen for our model, the curves obtained in both the full-size and half-size

simulations are found bounded by the experimental data in a narrow error range of ±10%,

as shown in Figure 5.15, well satisfying our expectation of 80% fidelity for DEM simulations.

Moreover, the two simulation curves appear to well agree with each other under all the six

peak loading stresses. This indicates that �bulk is relatively insensitive to the bulk size in our

DEM simulations, as long as the bulk is sufficiently large. Lastly, it is worth noting that the

�void is 1% higher in the half-size simulation than that in the full-size simulation at initial

packing, which is implied by a smaller initial �bulk in Figure 5.15. We anticipate this effect is

due to the greater impact of wall boundaries in the half-size simulation. When the 0.5 kPa

loading was applied, the additional porosity in the half-size simulation diminished quickly

and reached the values close to the full-size simulation. This corresponds to the greater bulk

plastic strain in the half-size simulation as observed in Figure 5.13a.

5.5.3 Further model calibration

Recall in Section 5.5.1, the bulk moduli of elasticity near the peak loadings obtained

in the simulations are found overall lower than the experiments, as shown in Figure 5.14.

As suggested earlier, a straightforward way to enlarge the bulk moduli of elasticity in the

simulations is to make individual multi-sphere particles less deformable by increasing the

bond normal stiffness kb
n
. In addition, we speculate that an increase in kb

n
may also have

effect on the bulk mechanical behavior during the stress unloading periods, and subsequently

improve our DEM model to better predict the mechanical behavior of bulk pinewood chips.

In order to verify our assumption, we designed two additional simulation tests with the

half-size simulation setup, and specified an kb
n

value equal to 10 GN/m3 in the first test

and 100 GN/m3 in the second test. These two tests were started from the completed initial

packing, but underwent only one stress loading & unloading cycle with a peak stress of 10

kPa, in order to avoid excessive computing time. We did not conduct the full six loading &

unloading cycles here, since even a half-size simulation for completing the full six cycles with
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kb
n
= 10 GN/m3 and Δt = 2 ms requires about 50 hours on our 36-core compute node. To

make the case even more demanding, the second test which uses kb
n
= 100 GN/m3 requires a

Δt as small as 1 ms to ensure numerical stability.
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Figure 5.16: Stress-strain histories obtained by the two single loading & unloading simula-

tions with (a) kb
n
= 10 GN/m3 and (b) kb

n
= 100 GN/m3. The green solid lines are the actual

simulation curves; the green dashed lines are a result of horizontal shift to compare the

slopes near the 10 kPa peak stress with the cyclic experimental test.

The stress-strain relations obtained by the simulation tests are shown in Figure 5.16

as green solid curves, and are compared with the experimental curves of the full six cycles.

The green solid curve in Figure 5.16b appears much more stiff than that in Figure 5.16a,

confirming a much stiffer bulk elasticity of the particles with a 10 times increase of kb
n
.

Meanwhile, the bulk particles in the second test have experienced much less bulk plastic

deformation than the first during stress loading, as they are harder and would not deform

much to allow the porosity to diminish. During stress unloading, the bulk particles in the

second test lost a compressive strain by only 1.5% – much less than the 7% loss of compressive

strain in the first test. In order to better compare the two simulation curves with the last cycle

in the experimental curve, we shifted them horizontally to allow their peak stress locations to

match the experiments, and represented the shifted curves with the green dashed lines. The

dashed curve in Figure 5.16b indicates a significantly improved simulation result that has a

much better agreement with the experimental curve than in Figure 5.16a, especially for the
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stress unloading period. However, as we mentioned earlier, the use of an enlarged kb
n

can not

produce large plastic strains during the loading periods (especially at low loading pressures).

An enlarged kb
n

also implies a smaller Δt required for numerical stability, which would then

make the DEM simulations ever more expensive for these tests. Therefore, a quest for more

realistic elasto-plastic contact models and more cost-effective model calibration methods is

anticipated, and deserves more effort in the future.

5.6 Summary

A bonded-sphere DEM model based simulation approach has been presented for

studying the mechanical behavior of bulk flexible, deformable pinewood chips. Clustered

spheres that can bend and twist via elastic bonds have been used to model irregular particle

shapes and constituent mass distribution sampled from real bulk pinewood chips. With a

careful model calibration, a cyclic stress loading test simulation, which is designed with

the size similar to a corresponding laboratory experiment, has been carried out to predict

the bulk mechanical behavior of pinewood chips. The bulk densities and compressive

moduli of elasticity obtained in the simulations have reached good agreement with the

experimental results. However, it has been found challenging for the present DEM model

to accurately predict the overall stress-strain behavior of bulk pinewood chips, especially

the large sustained plastic deformation during the unloadings. Additional simulation tests

have shown that adjustment in certain contact parameters (e.g. bond normal stiffness) could

help improve the accuracy of the simulations in terms of some mechanical properties, but

meantime would induce additional challenges, such as doubled or even tripled computing

time. An elasto-plastic model based on the works of Luding (2005a,b) will be considered

for further enhancing the fidelity of the DEM simulations in the future. Another potential

opportunity is to allow values of model parameters, such as particle-particle friction, to

depend upon strain or void ratio. Compared with prior DEM works that simulated bulk wood

chip flow with simple rigid spheres, rods or blocks, the present work has demonstrated the
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importance for a DEM model to account for the particle irregular shapes and deformability,

in order to better predict the mechanical behavior of bulk wood chips. It is critical to

understand that DEM models must reproduce the mechanical behavior of real particulate

biomass materials (which are usually relatively soft), in order for the resulting simulations

to be of value to provide key diagnosis for helping improve the design of biomass feeding

and handling equipment. Above all, a better understanding of the mechanical behavior of

the challenging biomass materials will likely require close coupling between instrumented

laboratory and pilot scale tests and multi-scale modeling (Westover et al., 2018).
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Chapter 6

Discrete element modeling the

granular hopper flow of

deformable-irregular particles

For granular materials that are comprised of irregular-shape flexible particles such

as woodchips, corn stover or switchgrass, the particle deformability is exhibiting significant

impact on their bulk flow behavior. To investigate the particle deformability effects, this

work presents a bonded-sphere discrete element modeling (DEM) approach to numerically

simulate the flow behavior of deformable-irregular particles. In this approach, a cluster

of bonded spheres is employed to model an irregular particle and provide it with the

ability to capture particle-wise deformation (e.g., compression, deflection or distortion).

With an application of granular flow in a wedge-shaped hopper, the flow characteristics of

deformable-irregular particles are studied. Same simulations while with spherical particles

and rigid-irregular particles are also conducted as a comparison. As observed from the

simulations, the rigid-irregular particles exhibit clogging issues while deformable-irregular

A similar form of this chapter has been submitted at the time of writing: Z. Lai, Y. Xia, H. Huang, T. Westover,

and Q. Chen. Discrete element modeling the granular hopper flow of deformable-irregular particles.
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particles do not as to the same orifice size, which indicates that particle deformation will

reduce the critical bridging width. The quantitative analysis about particle stress, wall

stress and discharge rate shows good agreements with the Walker’s theory and extended

Beverloo’s formula, respectively. Further simulations with various bond stiffness and shape

combinations are also devised and analyzed for the sake of gaining more insights into the

effects of particle size, shape and deformability on granular hopper flow.

6.1 Introduction

Hopper is a type of equipment for material charging and discharging, and is com-

monly used in areas such as civil engineering, food and pharmacy industry, and biorefinery.

Although most hoppers are simple in geometric configurations, the behavior of granular

hopper flow can be complicated under the influence of various factors related to hopper

geometries and flow media properties. The design of hopper flow is a non-trivial task, as

inappropriate designs could result in poor operation performance and even equipment or

functional failures (e.g., clogging and ratholing) (Horabik and Molenda, 2014). Therefore,

great efforts have been and continuously will be made to better understand the granular hop-

per flow in regard to different hopper designs or flow mediums, and from both experimental

and numerical perspectives.

Due to the discrete nature of granular materials, the particle-based discrete element

method (DEM) (Cundall and Strack, 1979) has been emerged as the most prevalent numeri-

cal tool for modeling granular hopper flow and helping understand the bulk flow behavior

from the micromechanics of granular materials. As a popular research topic for nearly two

decades, the DEM-based studies on granular hopper flow can be generally categorized into

three branches. The first branch focuses on the characterization of the intrinsic characteristics

of granular hopper flow, such as the stresses of flow media or hopper wall (Masson and

Martinez, 2000; Goda and Ebert, 2005), the flow pattern (e.g., mass flow vs. funnel flow)

(Ketterhagen et al., 2009; Zhang et al., 2018b), the flow dynamics or fluctuations (Zhu
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et al., 2006; Mollon and Zhao, 2013a; Kobyłka et al., 2017), and the segregation behavior

(Ketterhagen et al., 2008; Yu and Saxén, 2014). The second branch puts emphasis on the

effects of hopper aspect impact factors on the flow behavior, such as the hopper shape effects

(Balevičius et al., 2011), or the orifice shape effects (Wan et al., 2018). The last branch

dedicates to a more realistic modeling (e.g., more realistic sizes and shapes) of the particles,

as well as the effects of particle-scale material properties on the flow behavior (Masson and

Martinez, 2000; Cleary and Sawley, 2002; Balevičius et al., 2008; González-Montellano

et al., 2011; Höhner et al., 2012; Liu et al., 2014a; Xu et al., 2015; Zhao et al., 2018b).

For example, to gain insights into the sensitivity of granular hopper flow to the micro-

scopic contact parameters, parametric studies on the contact stiffness (Masson and Martinez,

2000), particle-particle contact friction (Masson and Martinez, 2000; Balevičius et al., 2008),

particle-wall contact friction (Yu and Saxén, 2011) were conducted. For incorporating more

realistic particles in DEM, super-quadrics (Cleary and Sawley, 2002), clumps of overlapping

spheres (González-Montellano et al., 2011; Höhner et al., 2012), or ellipsoids (Liu et al.,

2014a) have been employed and the effects of particle shapes on flow behavior have been

studied. It should be noted, however, that by using either spheres, super-quadrics, clumps

or ellipsoids to model particles, these DEM simulations considered particles as rigid bodies

without any particle-wise deformation (e.g., compression, deflection or distortion). Thus,

although the granular hopper flow in different scenarios has been extensively studied via

DEM, the observations and conclusions from these studies suit a type of “rigid” particles, and

may not be applicable to flexible, deformable particles.

The granular hopper flow of flexible, deformable particles can be widely seen in

biomass logistics and biorefinery process (Westover et al., 2015, 2018; Ilic et al., 2018), while

the effects of particle deformability on their flow behavior have been a relatively unexplored

area. As to the granular materials consisting of stiff particles, such as sands, grains or tablets,

the constituent particles exhibit negligible particle-wise deformation in regular scenarios of

applications. For this type of materials, the particle size and shape are well-known to be

the two most salient factors affecting their flowability (Cleary and Sawley, 2002; Lai and
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Chen, 2017). However, for flexible granular materials, such as woodchips, corn stover and

switchgrass, their constituent particles may present great deformability (e.g., compression,

deflection or distortion) even with a low external load (Mani et al., 2003; Wu et al., 2011;

Stasiak et al., 2015). In addition to the particle size and shape, the particle deformability is

another important factor that should not be ignored when studying the flowability of this

type of materials. To approach a reliable modeling and prediction of the flow behavior of

granular materials consisting of flexible particles, it is necessary to incorporate not only the

particle size and shape, but also the particle deformability into the DEM model.

The primary goal of this work is to come up with a DEM approach to model granular

hopper flow with the capability of embodying different particle sizes and irregular shapes,

and more importantly, capturing particle deformability. For this purpose, the bonded-sphere

model is employed to represent deformable-irregular particles in DEM. The loblolly pine

woodchips are taken as a reference example for conceptualizing irregular shape templates

and calibrating the contact parameters used in the DEM model. As a major contribution, the

flow characteristics of deformable-irregular particles in a wedge-shaped hopper are studied

with comparisons from spherical particles and rigid-particles. Particularly, the packing

porosity, flow pattern, particle and wall stresses, and discharge profiles are analyzed. The

particle and wall stresses are also compared with the Walker’s theory and the discharge

rate are benchmarked against the extended Beverloo’s formula, both of which exhibit good

agreements, respectively. To further explore the effects of particle shape and deformability,

parametric studies on the particle bond stiffness and shape combinations are performed

and analyzed as well. Although rather a simple hopper flow system (i.e., wedge-shaped

and only two shape templates) is being considered, the present study achieves to model

and capture the effects of particle deformability as a first step. The differences in the flow

behaviors between deformable-irregular particles and rigid-irregular particles demonstrate

the importance of taking into account the effects of particle deformability. The methodology

and workflow presented in this study can be conveniently extended to model more complex-

shaped hoppers with particles of wider variations in size, shape and deformability.
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6.2 Bonded-sphere DEM model

In this section, we will present the formulation of bonded-sphere model for the

representation of deformable-irregular particles in DEM. The DEM basics and the adopted

inter-particle contact model will also be briefly described for the sake of completeness.

6.2.1 Bonded-sphere model for deformable particles

In recent years, DEM models accounting for deformable-irregular particles have

been developed and applied to investigate the packing (Langston et al., 2015), compression

(Leblicq et al., 2016b,a) and shear flows (Guo et al., 2015) of flexible fiber, or the separation

of grain-straw mixture (Lenaerts et al., 2014). The prevalent approach of representing

deformable-irregular particles in DEM is to employ the bonded-particle model, which is

initially devised by Potyondy and Cundall (2004) to model fracture initiation and evolution

across mineral grains in rock. In bonded-particle model, a deformable-irregular particle is

represented by a cluster of base elements, which can be spheres (Guo et al., 2015), cylinders

(Potyondy and Cundall, 2004; Lenaerts et al., 2014) or sphero-cylinders (Langston et al.,

2015). The basic elements are connected by bonds (or joints), on which contact models are

imposed to transit forces and moments. In this work, we will simply use spheres as the base

elements to form deformable-irregular particles. To distinguish the usages of “particle” in

different phrases, we will use “bonded-sphere model” when referring to “bonded-particle

model” hereafter.

Figure 6.1 shows the sketch of bonded-sphere model and the rheological components

of bond behavior. The spheres within a same particle are connected with bonds, which can

be regarded as special contacts that can carry forces and moments. The bonds connect the

spheres as a cluster, and also allow them to have relative displacements when the cluster is

subject to external loads. Particle deformation is then reproduced from the overall effects of

relative displacements of the spheres within the cluster (i.e., the particle). To describe the

bond behavior (i.e, the interaction between two bonded spheres), the linear parallel bond
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model (Potyondy and Cundall, 2004) is adopted. It is simple, but provides restrictions to both

the relatively translational and rotational displacements of the bonded two spheres. There

are also other more complicated bond models, such as rolling resistance model (Jiang et al.,

2014, 2015a,b), elasto-plastic model (Guo et al., 2018) or visco-elasto-plastic constitutive

model (Fleissner et al., 2007), to accommodate the modeling demands for specific materials.

The simple linear bond model is adopted for simplicity as the focus of this study is on granular

hopper flow, while the extension with more complicated bond models is straightforward.
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Figure 6.1: Sketch of bonded-sphere model and rheological components of bond behavior.

In linear parallel bond model, the bond between two spheres is assumed to be a

cylinder of finite radius and thickness. Each point in the bond is imposed by two linear elastic

springs providing normal and shear resistances, respectively. The overall bonding force and

moment are the integral of the normal and shear stresses (compression as a positive) at a

cross-section of the bond, which be can calculated as (Potyondy and Cundall, 2004)

ΔF b
n
= kb

n
AΔ�n (6.1)

ΔF b
s
= kb

s
AΔ�s (6.2)

ΔMb
n
= kb

s
JΔ�n (6.3)

ΔMb
s
= kb

n
IΔ�s (6.4)

where F b
n
, F b

s
, Mb

n
and Mb

s
are the bond normal force and shear force, twisting moment and

swinging moment, respectively; �n, �s, �n and �s are the relative normal displacement, shear

displacement, twisting rotation and swinging rotation between the two bonded spheres,
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respectively; A, I , and J are the area, moment of inertia and polar moment of inertia of

the bond (i.e., the bond cross-section with radius Rb), respectively; and Δ indicates the

increment of each variable at each time step.

The bonded-sphere model is also capable of modeling particle breakage behavior.

For a common type of bond breakage criterion, it is assumed that a bond would break

if the normal or shear stress at any point exceeds the corresponding strength. For linear

parallel bond model, both the normal force and swinging moment contribute to the normal

stress, and both the shear force and twisting moment contribute to the shear stress. As a

consequence, the bond breakage criterion can be given as

�b
max

=
F b
n

A
+
Mb

s
Rb

I
< �b

Y ,n
(6.5)

�b
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=
F b
s

A
+
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n
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J
< �b
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(6.6)

where �b
Y ,n

and �b
Y ,s

are the normal and shear strength, respectively.

6.2.2 DEM basics and contact models

DEM directly tracks the motion (e.g., position, velocity and acceleration) of all

particles. Each particle has two types of motion: translational and rotational, which can be

described by the Newton-Euler equations of motion. A numerical simulation based on DEM

requires cyclic calculations, in which the motion of particles and the interaction between

particles are fully resolved. To begin with, the contacts between particles are identified

and contact features are evaluated. The contact forces/moments are then calculated based

on the selected contact models and corresponding contact features associated with each

contact. After that, all the forces/moments subjected by each particle are summed and cast

into the Newton-Euler equations to calculate the particle accelerations. Lastly, the velocity

and position of each particle are time integrated, where the second-order Velocity Verlet

algorithm (Verlet, 1967) is commonly adopted. The details of DEM formulation and cyclic
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calculations will not be presented herein, but can be found in (Cundall and Strack, 1979;

Chung, 2006; Itasca Consulting Group, Inc, 2014).

A key component of DEM cycles is to calculate the contact forces. This work adopts

the bonded-sphere model to represent particles, which brings in two types of contacts: intra-

particle contacts (i.e., contact between spheres within the same particle) and inter-particle

contacts (i.e., contact between spheres from different particles). For intra-particle contacts,

their contact forces are calculated based on the linear parallel bond model described in

Section 6.2.1. For inter-particle contacts, this work adopts the Hertz-Mindlin contact model.

Hertz-Mindlin contact model is a complete frictional contact model based upon the Hertz

theory (Hertz, 1882) for contact normal forces and the Mindlin theory (Mindlin, 1953)

for contact tangential forces. It takes account of the stiffness variation due to the change

of contact areas during the collision of two elastic spheres. Normally, the Hertz-Mindlin

contact model can be characterized by four parameters: Young’s modulus E, Poisson’s ratio

�, coefficient of restitution e, and the coefficient of friction �. The detailed formulation of the

Hertz-Mindlin contact model is referred to (Mindlin, 1953; Di Renzo and Di Maio, 2005).

6.3 Numerical setup of granular hopper flow

This section elaborates the numerical setup of the granular hopper flow tests from

the following aspects. The material of interest (i.e., the loblolly pine woodchips) is first

discussed with focuses on the particle shapes and contact parameters. Then, the hopper

geometries and testing procedures are described, followed by a description of all the different

simulation scenarios considered in this work. The customized version of LIGGGHTS 4.0.0

(Kloss et al., 2012) is adopted as the DEM code for setting up the hopper flow simulations.

The method to obtain field properties such as packing porosity and particle stresses from

LIGGGHTS outputs is presented to the last.
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6.3.1 Material and contact parameters

The materials being referenced in this work are the loblolly pine woodchips, which are

commonly used as biomass sources for conversion into biofuel or biochemical in biorefinery.

Figure 6.2 shows a sample of loblolly woodchips. It is observed that the woodchip samples

mainly consist of fiber-shaped and plate-shaped particles. In the present DEM model, the

fiber-shaped and plate-shaped woodchips are generalized into two shape templates: fiber

and plate (see Figure 6.2). The fiber template is built from five non-overlapping spheres in

one row, and the plate template is built from ten non-overlapping spheres in three rows. The

spheres have a radius of 1 mm and are bonded with their neighboring spheres. Though the

woodchips samples are exhibiting more complex shapes in reality, this work conceptualize

these complex-shape woodchip samples into just two shape templates for simplicity in order

to reduce the computational expenses.

Woodchips 

(mean size ~3 mm)

DEM: fiber & plate

(sphere size 1 mm)

Figure 6.2: Two conceptualized shape templates of woodchips for DEM simulations.

As most of the contact parameters are difficult or impossible to be directly measured,

a calibrate process is needed to obtain the contact parameters for the selected woodchip

samples. For this purpose, both experimental and numerical compression tests on the

woodchip samples are performed, and the stress-strain relation and bulk densities are

used as the benchmark metrics for calibration. There are several excellent reviews in the

literature discussing the procedures and challenges of calibrating contact parameters for

a DEM model (Plassiard et al., 2009; Chehreghani et al., 2017; Coetzee, 2017). Usually,

the calibration process is accomplished by performing parametric studies on each contact

parameters. To make this work more focused on granular hopper flow, we will not present
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the calibration details herein. The final material properties and calibrated contact parameters

of the woodchip samples are listed in Table 6.1.

Table 6.1: Material properties and contact parameters of the woodchip samples and hopper

wall.

Parameter Symbol Value Unit

Density �s 430 kg/m3

Sphere radius R 0.5 mm
Young’s modulus E 10 MPa
Poisson’s ratio � 0.3 -
Coefficient of restitution e 0.1 -
Coefficient of friction � 0.5 -

Bond radius Rb 0.5 mm

Bond normal stiffness kb
n

10 GN/m3

Bond shear stiffness kb
s

0.6 GN/m3

Wall Young’s modulus Ew 1.0 GPa
Wall friction �w 0.5 -
Timestep Δt 2.0 �s

6.3.2 Hopper flow setup

This work studies a wedge-shaped hopper, with the hopper half-angle � being 30◦

in particular. A sketch of the hopper is shown in Figure 6.3. In the corresponding DEM

simulations, two surface meshes comprised of triangular elements are used to model the

hopper walls. To minimize the computational cost, only a thin cross-section of the hopper is

considered with a depth of ty = 0.01 m in the y-direction, and a periodic boundary condition

is prescribed for the domain boundaries in the y-direction. The initial particle packing is

created following a rainfall method (Härtl and Ooi, 2008). In particular, a given number (or

mass) of particles are repeatedly inserted in a region above the hopper. The particles are

then allowed to fall down into the hopper under the gravity. Once the hopper is filled up to a

target height (e.g. 0.18 m in this example problem), the particle insertion is stopped. Then,

the particles in the hopper are allowed to sit for a while until the particle packing reaches

equilibrium. A criterion of equilibrium is to monitor whether the maximum sphere velocity

among all the inserted particles has decreased below a small value, e.g. 5 mm/s as specified

in this work. Once the equilibrium is reached, the extra particles that are above the target
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height are removed. Lastly, the particle packing is allowed to equilibrate again, in case that

the action of particle removal induces disturbance to the packing.

(a)

h0

ty

α

Measure sphere

y
z

x

(b)

Figure 6.3: Sketch of the wedge-shaped hopper: (a) laboratory hopper flow tester (Westover

et al., 2015), and (b) numerical DEM setup. For the example problem considered in this

work, the following specifications are used: ℎ0=0.18 m, �=30◦, and ty=0.01 m.

For the discharging process, we follow a testing procedure similar to the laboratory

experiments reported in (Westover et al., 2015), which is designed to measure the critical

arching width of biomass materials under self-weight loading or extra surcharge compression

by using an adjustable wedge-shaped hopper. To begin with, the hopper walls are gradually

raised along their tangential direction at a speed of 0.1 m/min. The size of the hopper orifice

is thus gradually enlarged in time. The material critical arching width is then approximated

as the minimum orifice size at which particles can continuously flow out of the hopper. As it

will be presented later, the particles in most simulation scenarios present a critical arching

width smaller than 0.01 m. To facilitate a valid comparison of the discharge rate at steady

state between different simulation scenarios, the walls are fixed when the orifice size reaches

0.01 m in width. Thus, the orifice width will be maintained at 0.01 m and the discharging

will arrive at a steady state with constant discharge rates afterwards. The simulation ends

when the hopper depletes of all particles or gets clogged.

126



6.3.3 Simulation scenarios

To demonstrate the impact of particle deformability and shape irregularity on granu-

lar hopper flow, the different simulation scenarios summarized in Table 6.2 are considered

in this study. The first three scenarios consider different types of particles: scenario I – spher-

ical particles, scenario II – rigid-irregular particles, and scenario III – deformable-irregular

particles. Herein, the rigid-irregular particles are represented by clumps, i.e., collections of

spheres (or other simple geometries such as ellipsoids) but with just rigid connections be-

tween the spheres (Lu and McDowell, 2007). In scenario II, the rigid-irregular particles have

the same sphere configurations as the deformable-irregular particles shown in Figure 6.2, but

consider no particle-wise deformation. These three scenarios indicate an increasing accuracy

in describing particles in DEM that, on the top of scenario I for spherical particles, scenario II

includes the shape irregularity and scenario III further incorporate the particle deformability.

Table 6.2: Simulation scenarios. E is the particle Young’s modulus, and when a different

particle Young’s modulus is used, the bond normal and shear stiffness are also scaled by the

same factor.

Scenarios Description

I Spherical particles of radius 0.5 mm, E=1e7 Pa
II Rigid-irregular particles, fiber 85%, plate 15%, E=1e7 Pa
III Deformable-irregular particles, fiber 85%, plate 15%, E=1e7 Pa
E-1 Deformable-irregular particles, fiber 85%, plate 15%, E=1e6 Pa
E-2 Deformable-irregular particles, fiber 85%, plate 15%, E=1e8 Pa
S-1 Deformable-irregular particles, fiber 15%, plate 85%, E=1e7 Pa
S-2 Deformable-irregular particles, fiber 30%, plate 70%, E=1e7 Pa
S-3 Deformable-irregular particles, fiber 50%, plate 50%, E=1e7 Pa
S-4 Deformable-irregular particles, fiber 70%, plate 30%, E=1e7 Pa

For deformable particles, their deformation can occur as a cause of not only external

loading, but also their intrinsic properties such as particle stiffness and particle shape. For

example, the fiber-shaped particles are easier to deflect than the plate-shaped particles under

the same external loading. To gain a further insight into the particle deformability effects,

two additional types of simulations that consider different particle stiffness or particle shapes

are conducted. In scenario E-1 and E-2, particles are specified with different Young’s modulus
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(the bond normal and tangential stiffness are also scaled by the same factor). In scenarios

S-1, S-2, S-3 and S-4, the hopper is initially charged with different ratio combinations of

fiber-shaped and plate-shaped particles. Except for the differences summarized in Table 6.2,

all simulations in different simulation scenarios takes the same charging and discharging

procedures. As the fabric of particle packing may also affect the hopper flow behavior, each

simulation scenario is carried out with five different realizations of initial packing to achieve

statistically consistent results.

6.3.4 Field property post-processing

To obtain the continuum-sense properties of the flow media, such as porosity and

Cauchy stress, which are not directly available from LIGGGHTS, a specific post-processing

method is developed in this study. In particular, a virtual measure sphere is created, with

its center located at the position of interest, and radius being five times the radius of base

spheres, as sketched in Figure 6.3. The measure sphere would contain about 400∼600

base spheres, which are deemed to be sufficient for a representative element volume (RVE)

(Mollon and Zhao, 2013a; Guo and Zhao, 2014). The field properties (e.g., the porosity or

Cauchy stress) at the position of interest are then integrated from all spheres in the measure

sphere (i.e., the RVE). To evaluate the porosity, the number of base spheres in the RVE is

counted. The solid volume fraction in the RVE is then calculated as the volume of all base

spheres in the RVE divided by the volume of the RVE, and the porosity is one minus the

solid volume fraction. It should be pointed out that, in the current approach, the volume of

contact overlapping is not excluded when calculating the solid volume of all base spheres.

However, the volume of contact overlapping is negligible considering the low compressive

pressure in the current hopper flow system. To evaluate the Cauchy stress, the virial stress of

each atom is first computed in LIGGGHTS. The Cauchy stress in the RVE is then calculated

as the summation of the virial stress of all base spheres in the RVE divided by the volume of

the RVE.
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6.4 Results and discussion

This section reports the results and discussion about the hopper flow behavior in

different scenarios. We will first describe the flow characteristics (e.g., packing porosity, flow

pattern, and particle velocity) for the scenarios where different types of particles are used

to demonstrate the effects and importance of particle deformability. Then, we will probe

the particle stress and wall stress to achieve a better understanding of the stress distribution

and evolution of the hopper system during discharging. Following is a more quantitative

analysis about the particle stress and wall stress, as well as the discharge rate, which will be

compared with classical solutions: Walker’s theory and extended Beverloo’s formula. Finally,

we will put together the results of discharge profiles in the scenarios of different particle

stiffness and shape combinations, to further explore the effects of particle size, shape and

deformability on granular hopper flow.

6.4.1 Flow characteristics

The results of flow characteristics presented in this subsection were obtained from

the first three scenarios described in Table 6.2: scenario I – spherical particles, scenario II –

rigid-irregular particles, and scenario III – deformable-irregular particles. For these three

scenarios, the results of five realizations exhibited quite similar flow characteristics with

no significant deviations within the five different realizations. Thus, only one realization

selected at random was used to prepare the following results.

To begin with, we display the field porosity of the initial particle packing in Figure 6.4

for these three scenarios. As it can be observed, the packing of spherical particles exhibits the

lowest average porosity with a value of about 0.4, which is fairly close to the statistical lower

limit 0.37 for a random packing with mono-size, smooth and rigid spheres. By including

the shape irregularity into the particles, the packing porosity for rigid-irregular particles

increases to 0.61. If particle deformability is further incorporated, the packing porosity only

increases to 0.51, as it is in the scenario of deformable-irregular particles. It can be seen
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that the particle deformability accounts for a porosity decrease by about 10%, based on the

comparison between deformable-irregular particles and rigid-irregular particles. Overall,

among the three types of particles, the packing of deformable-irregular particles presents the

medium average porosity and middle level of spatial variations in the porosity field.

0.36

0.38

0.4

0.42

0.44

(a) Spherical particles

0.57

0.59

0.61

0.63

0.65

(b) Rigid-irregular particles
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0.49
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0.53

0.55

(c) Deformable-irregular particles

Figure 6.4: Field porosity of the initial particle packing: (a) scenario I – spherical particles,

(b) scenario II – rigid-irregular particles, and (c) scenario III – deformable-irregular particles.

Recalling the testing procedures described in Section 6.3.2, the hopper walls are first

raised up gradually, and then fixed when orifice width reaches 0.01 m. From the simulation

results, it was observed that the hopper system in scenario I (i.e., spherical particles) and

scenario III (i.e., deformable-irregular particles) displayed continuous discharging until it

depleted of all particles. While in scenario II with rigid-irregular particles, the clogging issue

happened right when the hopper walls stopped moving. The discharge profile over time will

be further analyzed in subsequent sections. Herein, we first present and compare the flow

pattern of the particles in these three scenarios. To visualize the flow pattern, the particles

are colored in layers. Snapshots of the hopper flow system during discharging are taken

when the percent discharge reaches 30%, 50%, 70%, and 90%, as displayed in Figure 6.5.

Compared to the scenario where spherical particles are used, two main characteristics are

observed in the scenario of deformable-irregular particles. First, the top surface of particle

packing is concave in the middle part for deformable-irregular particles, while it is protruding

for spherical particles. Second, the lateral shoulders of the packing surface are not exactly

leveled during the discharging, but rather seesawing downwards with one side lower than
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the other side alternately (e.g., the surface profiles at 70% and 90% discharge shown in

Figure 6.5b).

(a) Spherical particles

(b) Deformable-irregular particles

Figure 6.5: Snapshots showcasing the flow patterns when the percent discharge is at 30%,

50%, 70%, and 90%. Top row for spherical particles, and bottom row for deformable-

irregular particles.

Similarly, the eventual flow pattern of rigid-irregular particles at clogging is displayed

in Figure 6.6a. In this scenario, during the period when the hopper walls were raising up,

particles near hopper orifice were being pushed out due to the raise of hopper wall, which

accounted for about 12% of discharging. But when the walls stopped moving, the particles

immediately reached equilibrium and formed stable arches, which can be reflected from the

arch-shaped force chains shown in Figure 6.6b. Since then, no more particles could flow

out due to the arching effects. In the work of Walker (1966), it is proposed that the critical

arching (or bridging) width of a granular material is proportional to its shear strength. As

rigid particles cannot deform, they exhibit more sturdy interlocking fabrics leading in a

higher shear strength. The simulations and analyses imply that rigid particles exhibit a larger

critical arching width than deformable particles of the same shape. The potential of clogging

for a granular material in hopper flow will be overestimated by a DEM simulation if particle

deformability is not considered in the model.
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(a) Flow pattern (b) Force chains

Figure 6.6: The eventual flow pattern (a) and force chains (b) in the hopper flow with

rigid-irregular particles, at t = 10 s after the stable clogging issue happened.

Figure 6.7 compares the vertical velocity filed between the spherical particles and

deformable-irregular particles at the state of 60% discharge. Overall, the deformable-

irregular particles exhibit smaller vertical velocities than the spherical particles. In addition,

the spherical particles in most ares of the hopper are mobilized with considerable large

velocities. By contrast, the deformable-irregular particles that possess a velocity larger than

average are more concentrated in the center and orifice areas of the hopper. As illustrated

in (Lai and Chen, 2017), the particle irregularity, by enhancing the particle interlocking

behaviors, can increase the mobilized friction and coordinate number, thus resulting in more

kinetic energy dissipation. Compared to the spherical particles, the deformable-irregular

particles would dissipate great larger amounts of kinetic energy through contact friction

and collision damping, which results in the smaller vertical velocity. The velocity field and

microscopic mechanisms in behind provide us an essential understanding and interpretation

to help correlate hopper discharge rate with particles properties.

6.4.2 Particle and wall stresses

The particle stress and wall stress in granular hopper flow are important metrics for

the design of hopper geometry or operation conditions. To get a better understanding of the
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Figure 6.7: The distribution of the vertical velocity (m/s) of particles at 60% discharge: (a)

spherical particles, and (b) deformable-irregular particles.

stress distribution and evolution during discharging, the particle stress and wall stress will

be probed in this subsection with a focus on deformable-irregular particles only. Figure 6.8

shows the particle stress distribution in the scenario of deformable-irregular particles. In

the initial packing, the horizontal and vertical stresses of the particles present an increasing

gradient from top to bottom (see Figure 6.8a and Figure 6.8b). Since there is no shear stress

on vertical planes, the vertical stress at any level is equivalent to self-weight of overhead

particles, and the horizontal stress equals the corresponding vertical stress multiplied by a

constant related to particle friction. An exception occurs in orifice vicinity where there is a

slight decrease in both the vertical and horizontal stresses. This phenomenon is a result of

the arching effects due to the convergent hopper walls (Walker, 1966; Nedderman, 1992).

Immediately after the discharge is initiated, the particles exhibit large variations in the

vertical and horizontal stresses. Most of the particles would transit from active state at which

the vertical stress is the major principal stress, to passive state at which the horizontal stress

turns into the major principal stress (Nedderman, 1992). As a consequence, the particles at

hopper center are subject to horizontal stresses that are larger than the vertical counterparts.

The contours of horizontal stress present arch-like profiles (see Figure 6.8c). As to the

particles in orifice vicinity, they get little pressure due to the outflow of particles. There are

also some particles near wall that present relatively large vertical stress, which may be due to
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the wall friction and stagnant effects. In addition, the stress profiles also present significant

fluctuations with a clear spectrum-like pattern, as it can be observed in Figure 6.8d. Such

phenomenon in DEM simulations was consistent with laboratory experimental observations,

which might be the outcome of decompression waves that propagate upwards at a much

higher speed than the flow itself (Baxter et al., 1989).
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Figure 6.8: The distribution of the horizontal and vertical stresses (Pa) of particles at initial

state and 60% discharge for scenario III – deformable-irregular particles.

Figure 6.9a shows the normal and shear stresses of the hopper wall at a certain

location during the entire discharging process. The location being probed is about 0.035 m

high from the orifice. Temporal fluctuations are clearly observed in the normal and shear

stress profiles over time. The average of the stresses over time (e.g., from 10 s to 20 s),

however, is asymptotically stable, which indicates a rather steady discharging. In order to
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trace the correlation between the normal and shear stresses, the mobilized wall friction that

defined as the ratio of shear stress to normal stress is plotted in Figure 6.9b. The mobilized

wall friction over time averages out to about 0.47, which is almost equal to the specified wall

friction coefficient 0.5. As a comparison, the average mobilized wall friction of spherical

particles is only about 0.29 though the same wall friction is specified. The results indicate

that about 40% of the wall friction cannot not mobilized without the consideration of shape

irregularity effects.
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Figure 6.9: Results of (a) the normal and shear stresses of the hopper wall, and (b) the

mobilized wall friction over the entire simulation for scenario I – deformable-irregular

particles. The solid line in (b) indicates the average mobilized wall friction.

6.4.3 Simulations vs classical theories

To demonstrate the reliability of present DEM model, the particle stress, wall stress,

and discharge rate from DEM simulations will be compared to their corresponding analytic

or empirical solutions available in literature. In particular, we adopt the analytic solution

developed by Walker (1966) as a benchmark for the vertical stress of particles at hopper

center, and normal stress of hopper walls. As to the discharge rate, the popular empirical

solution, Beverloo’s formula (Beverloo et al., 1961; Nedderman, 1992), is adopted. The

formulations of Walker’s solution and Beverloo’s formula are briefly described in Section A

and Section B, respectively. Table 6.3 summaries the parameters of the Walker’s solution

and Beverloo’s formula that will be used in the later calculations. In this table, the bulk

friction angle � of the particles is obtained from additional angle of repose tests, and the wall
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friction angle �w is estimated from the mobilized wall friction in the hopper flow simulations.

The stagnant angle �d is assumed to have the same value as the wall friction angle. The

Beverloo’s parameters C and � are determined based on their empirical values as well as the

simulation fittings. For detailed descriptions about these parameter, see the appendices.

Table 6.3: Parameters used in the Walker’s solution (e.g., Equation 6.8) to calculate particle

stress and wall stress, and in the extended Beverloo’s formula (e.g., Equation 6.16) to

calculate the discharge rate.

ℎ0 (m) �b (kg/m3) � � �w D C � �d

Spherical particles 0.18 258 30◦ 18◦ 16◦ 1 0.62 1.5 16◦

Deformable-irregular particles 0.18 209 30◦ 42◦ 26◦ 1 0.58 3.7 42◦

We first present the comparison results for the scenario of spherical particles. Fig-

ure 6.10 shows the particle stress and wall stress obtained from the Walker’s solution and

DEM simulations for spherical particles. The stresses are calculated at the very beginning

when the hopper walls just start to raise up. At this time, the particle packing transit from

active state to passive state where the Walker’s theory applies. As it can be observed, the

particle stress and wall stress present similar profiles with an clear trend of increasing and

then decreasing from top to bottom. There are some fluctuations existing in the stress profiles

of DEM simulations, but not in the Walker’s solution. Such fluctuations are not numerical

artifacts but the facts of discrete nature and dynamic responses of granular hopper flow

(Cleary and Sawley, 2002; Mollon and Zhao, 2013a). Overall, both the simulated particle

stress and wall stress for the scenario of spherical particles exhibit perfect agreements with

the corresponding Walker’s solution.

Similarly, the particle stress and wall stress for the scenario of deformable-irregular

particles are shown in Figure 6.11. The stress profiles for deformable-irregular particles

exhibit quite a similar pattern as spherical particles. However, at the regions with height to

head ratio around 0.2-0.4, both the simulated particle stress and wall stress are slightly higher

than the counterparts of Walker’s solution. A possible reason may lie in the hopper charging

process. To charge the hopper, the particles are rain-falling into the hopper from a certain
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(b) Normal stress along the wall

Figure 6.10: The vertical stress of the particles along the vertical cutline through hopper

center (a), and normal stress along the hopper wall (b), for the model with spherical

particles.

height. The particle kinetic energy would prestress the particles when they collide with each

other or the hopper walls, and the prestress remains as a fact of particle interlocking. In

addition to the hydrostatic pressure due to self-weight, the extra prestresses due to collision

and interlocking makes the particles exhibit higher stresses than the analytical results

predicted by Walker’s solution. This phenomenon could be even severer for deformable-

irregular particles as they exhibit stronger particle interlocking than spherical particles.

Nevertheless, the simulated particle stress and wall stress exhibit reasonable consistency

with the Walker’s solution. The results suggest that the Walker’s theory can still be used to

approach a reliable estimation of the particle stress or wall stress in the granular hopper flow

of deformable-irregular particles.

The results of discharge rate obtained from DEM simulations and extended Beverloo’s

formula are presented in Figure 6.12. Recalling the testing procedures, the hopper walls are

gradually raising up during the first 6 s. In this stage, the discharge rate keeps increasing

due to the increasing orifice size (i.e., from 0 to 0.01 m). Afterwards, the hopper walls are

stopped moving and the orifice width is fixed at 0.01 m. During this period, the hopper

maintains a constant discharge rate most of the time, except for the short period close

to the end of discharging in which discharge rate starts to decrease. For both scenarios
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(b) Normal stress along the wall

Figure 6.11: Results of (a) the vertical stress of the particles along the vertical cutline through

hopper center, and (b) the normal stress of hopper wall, for scenarios III – deformable-

irregular particles.

(spherical particles or deformable-irregular particles), the simulated discharge rate matches

very well with the empirical results predicted by the extended Beverloo’s formula. It should

be pointed out that, though the parameters C and � in the Beverloo’s formula are fitted from

DEM simulation, they are consistent with the suggested values reported in (Beverloo et al.,

1961; Nedderman, 1992). By comparing the values of C and � for deformable-irregular

particles and spherical particles, we can identify the effects of shape irregularity on the

discharge rate from two aspects. First, the shape irregularity would contribute to a granular

material exhibiting a higher bulk fraction, leading to larger values of parameter C. Second, it

increases empty annulus effect and thus leads to larger values of parameter �. A quantitative

correlation between shape irregularity and Beverloo’s parameters would be of great value to

industrial hopper design and merits more detailed study in future.

6.4.4 Effects of particle stiffness

Particle stiffness has a direct effect on the extent of particle deformation. In order to

gain more insights into the effects of particle stiffness on granular hopper flow, we conducted

more simulations regarding the deformable-irregular particles with different stiffness (i.e.,

E=1e7, 1e8 and 1e9), as summary in Table 6.2. At this time, only the results of packing
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Figure 6.12: The discharge rate from DEM simulations and extended Beverloo’s formula for

both models: (a) spherical particles, and (b) deformable-irregular particles.

porosity and discharge profile are presented. Figure 6.13 shows the average porosity of initial

packing packing for deformable-irregular particles with different stiffness, along with the

porosity of spherical and rigid-irregular particles for comparison purpose. For deformable-

irregular particles with different stiffness, their packing porosity all falls between the porosity

of spherical particles and rigid-irregular particles. Moreover, the porosity of deformable-

irregular particles exhibits a linear increasing trend as the stiffness turns higher. In fact, the

particles exhibit greater potentials to form stable arches, thus leading to more voids in the

packing. If the particle stiffness got extremely high, a deformable particle (i.e., the bonded

spheres) would behave as a rigid one that exhibits little particle-wise deformation; and if the

stiffness turned extremely low, the bonded spheres would behavior as independent spheres

with rather weak constraints in between. On the whole, the deformable-irregular particles

can be regarded as an intermediate state between spherical particles and rigid-irregular

particles.

Figure 6.14 shows the results of discharge profile for scenarios of: deformable-

irregular particles with different particle stiffness, spherical particles and rigid-irregular

particles. As mentioned before, clogging issues happened in the scenarios of rigid-irregular

particles, as it can be observed from the eventually unchangeable percent discharge in

Figure 6.14e. For the scenarios of deformable-irregular particles with different particle
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Figure 6.13: The packing porosity of deformable-irregular particles with different particle

stiffness, with comparison from spherical particles and rigid-irregular particles. The x-labels

E = 1e6, 1e7 or 1e8 indicate the particle Young’s modulus of deformable-irregular particles.

stiffness, the five different realizations present pretty consistent discharge profiles (see

Figure 6.14a – Figure 6.14c). A weak trend that higher particle stiffness results in slightly

greater variations in the discharge profiles between each realization is also observed though.

By comparing the discharge profiles of deformable-irregular particles with different particle

stiffness, it is found that the time needed for full discharge increases as the particle stiffness

gets higher. That is to say, the discharge rate of granular hopper flow is negatively correlated

to the particle stiffness for deformable-irregular particles.

6.4.5 Effects of particle size and shape

Lastly, we will discuss about the effects of particle size and shape on granular hopper

flow on the premise of deformable-irregular particles. The simulation scenarios regarding

different combinations of shape templates have been described in Table 6.2. Again, we

will place the focuses on the packing porosity and discharge profiles. Figure 6.15 plots the

porosity of particle packing with different particle combinations. It is observed that, the

packing porosity decreases as the corresponding particle packing contains more fiber-shaped

particles. In another word, more fiber-shaped particles consisting in the packing makes

the packing denser. Actually, the fiber-shaped particles get smaller bending stiffness (i.e.,

moment of inertia). They would exhibit greater deflection under the same external loading,
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Figure 6.14: The discharge profiles in different simulation scenarios: (a-c) deformable-

irregular particles with different particle stiffness, i.e., E=1e6, 1e7 and 1e8, respectively, (d)

spherical particles, and (d) rigid-irregular particles.

and thus it becomes more difficult for them to form wide-range arch structures to support

the pore spaces. The collapse of the pore voids leads to a denser packing.

The discharge profiles for deformable-irregular particles with different shape com-

binations are gathered in Figure 6.16. The effects of shape combinations on the discharge

profile can be classified into two types, depending on whether the fiber-shaped particles

or the plate-shaped particles are dominating the packing (e.g., have a mass ratio greater

than 50%). First, if the plate-shaped particles are dominating the packing like the scenarios

of Figure 6.16(a-c), more plate-shaped particles in the packing would lead to a greater

tendency of clogging. This phenomenon can be partially interpreted by the fact that the

plate-shaped particles have a greater geometric size than the fiber-shaped particles, more

plate-shaped particles would require a relative larger orifice size to maintain a continuous

outflow. Second, if the fiber-shaped particles are dominating the packing, to increase the

fraction of fiber-shaped particles would result in a reduced discharge rate, which is supported

by the observation in Figure 6.16(c-e) that the model with higher fraction of fiber-shaped
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Figure 6.15: The packing porosity of deformable-irregular particles with different fractions

of fiber-shaped and plate-shapes particles.

particles requires a longer time for full discharge. This phenomenon could be essentially

related to the particle kinetic energy and dissipation. The fiber-shaped particles have larger

aspect ratio, which would greatly increase the particle inter-locking, which leads to more

energy dissipation and thus hinders the discharging. The observations and conclusions on

the basis of these scenarios shed partial light on the effects of particle size and shape on

granular hopper flow, although these scenarios only involved limited variants of particle size

and shape.

6.5 Conclusions

In this work, the irregular shape and particle-wise deformation of a flexible particle

was able to be captured in DEM with employment of the bonded-sphere model. Based on

the bonded-sphere DEM approach, the flow behaviors of deformable-irregular particles in a

wedge-shaped hopper have been studied. Three sets of simulation scenarios have been con-

sidered: 1) spherical particles vs. rigid-irregular particles vs. deformable-irregular particles,

2) deformable-irregular particles of different particle stiffness, and 3) deformable-irregular

particles of different shape combinations. On the basis of these simulations, qualitative as

well as quantitative analyses have been performed for the hopper flow characteristics, includ-
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Figure 6.16: The discharge profiles of deformable-irregular particles with different fractions

of fiber-shaped and plate-shapes particles.

ing packing porosity, flow pattern, particle velocity, particle and wall stress, and discharge

profiles. The main findings of this work are concluded as follows:

1. Compared to rigid-irregular particles, deformable-irregular particles show lower pack-

ing porosity and smaller critical arching width. Without the consideration of particle

deformability, the potential of clogging for a granular material in hopper flow will be

overestimated by a DEM simulation.

2. The particle stress and wall stress for deformable-irregular particles exhibit significant

temporal and spatial fluctuations, but find themselves in reasonable agreement with

the Walker’s solution. The discharge rate can be well fitted by the extended Beverloo’s

formula, while the correlation between particle properties (e.g., size, shape and

deformability) and Beverloo’s parameters merits further study.

3. On the premise of deformable-irregular particles, stiffer particles would result in higher

packing porosity, and smaller discharge rate. The flow behavior of stiffer particles show
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larger variations among different simulation realizations, indicating greater sensitivity

to the particle fabrics.

4. For packings of fiber-shaped and plate-shape particles, the porosity is decreasing

with the increasing ratio of fiber-shaped particles. More plate-shaped particles would

contribution to higher potential of clogging, while more fiber-shaped particles would

result in smaller discharge rate.

The present work, by considering deformable-irregular particles, sheds partial light

on the effects of particle size, shape and deformability on granular hopper flow. The

importance of taking into account the particle deformability in hopper flow simulations

regarding flexible granular materials has been demonstrated. Preliminary investigations

of the particle size and shape effects on discharge rate have been made but merit further

quantitative analyses. Future work will be to polish the current DEM model by including a

wider range of sizes and a greater variety of shapes, and to approach quantitative relations

between discharge rate and particle properties that are suitable to flexible granular materials.

Appendix A Particle and wall stress: Walker’s theory

To calculate the particle stress or wall stress during discharging, Walker (1966)

developed an analytic solution based on the slice element method. According to (Walker,

1966), the average vertical stress �̄v of the particles, and the normal stress �n of hopper wall

at any height ℎ, can be calculated as

�̄v =
�bgℎ

� − 1

[
1 −

(
ℎ

ℎ0

)�−1
]

(6.7)

�n = D�̄v
1 + sin� cos 2�

1 − sin� cos 2(� + �)
(6.8)
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in which

� =
1

2

[
�w + arcsin

(
sin�w

sin�

)]
(6.9)

� =
D sin� sin 2(� + �)

tan �[1 − sin� cos 2(� + �)]
(6.10)

where ℎ0 is the initial filled height; �b is the bulk density; g is the acceleration; � is the

hopper half-angle; � is the angle of internal friction of the bulk material; �w is the angle of

internal friction between the bulk material and the hopper; D is the stress distribution factor,

which may take unity for simplicity (Walker, 1966).

Appendix B Discharge rate: extended Beverloo’s formula

Based on the experimental results of various materials and hopper geometries,

Beverloo et al. (1961) proposed an empirical formula predicting the discharge rate WB of

granular hopper flow, that

WB = C�b
√
g(D0 − �d)

2.5 (6.11)

where C is a unit-less coefficient that depends on the particle friction and wall friction, D0

is the diameter of the orifice, � is a shape factor accounting for the particle shape effects,

and d is the particle diameter. The friction relevant parameter C normally takes a value in

the range from 0.58 (for high-friction particles) to 0.64 (for exceptionally smooth particles)

(Nedderman, 1992). The shape factor � is about 1.4 for spherical particles, and may take

larger values for angular particles (e.g., 2.9 for sand) (Beverloo et al., 1961; Nedderman,

1992).

Beverloo’s formula is also applicable to non-circular orifices, such as square, rectangle

or triangle, by taking the modified form Nedderman (1992)

WB =
4C

�
�bA

′
√
gD′

ℎ
(6.12)
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where A′ and D′
ℎ

are the effective area and effective hydraulic diameter of the orifice after

the removal of empty annulus. For the example of a b × l rectangle orifice, the A′ and D′
ℎ

are

calculated as

A′ = (b − �d)(l − �d) (6.13)

D′
ℎ
=

A′

(b + l − 2�d)∕2
(6.14)

As pointed out by Nedderman (1992), the Beverloo’s formula is applicable only for

bunkers or hoppers with funnel flow behavior. In the case of mass flow, the effect of the

hopper half-angle � becomes important. Thus, Nedderman (1992) proposed to extend the

Beverloo’s formula with a mass flow coefficient F (�, �d), such that

W = WBF (�, �d) (6.15)

in which

F (�, �d) =

⎧
⎪⎨⎪⎩

(tan � tan�d)
−0.35, if � < 90◦ − �d

1, otherwise

(6.16)

where W is the modified outflow rate, and �d is the angle between the stagnant zone

boundary and the horizontal. The condition � < 90◦ − �d can be regarded as a mass flow

criterion.
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Chapter 7

Conclusions and recommendations

7.1 Summary of conclusions

In this dissertation, discrete element modeling of the grading- and shape-dependent

behavior of granular materials has been performed. A framework to reconstruct granular par-

ticles from X-ray computed tomography (X-ray CT) using the Trainable Weka Seg- mentation

(TWS) machine learning tool and the level set method has been proposed (Chapter 3). DEM

models have been developed with the consideration of particle size, shape and deformability.

The behavior of granular materials in representative problems, i.e., direct shear (Chapter 4),

cyclic compression (Chapter 5) and hopper flow (Chapter 6), are simulated and studied.

Special attentions have been paid to study the effects of particle size, shape and deformability

on the bulk mechanical behavior of granular materials. The key features and findings for the

main chapters (chapters 3 to 6) are summarized as follows:

Chapter 3, reconstructing granular particles from X-ray computed tomography using

the TWS machine learning tool and the level set method:

A novel machine learning and level set-based framework is proposed to segment

X-ray CT images of granular geomaterials and to reconstruct realistic 3D particle shapes. In

particular, a feature-based machine learning technique termed the Trainable Weka Segmen-

tation is implemented and utilized to segment X-ray CT images. The resultant probability
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map is then used as the basis for the subsequent 3D edge-based level set method to approach

an accurate shape representation of real particles. Realistic 3D particles of the Mojave

Mars simulant regolith are successfully reconstructed from raw CT images. Quantitative

accuracy analyses are performed for the proposed framework and a conventional watershed

method. The analyses show that the proposed framework has superior performance in both

pixel-based classification accuracy and particle-based segmentation accuracy. The particle

size distribution using the reconstructed particles are also validated and compared well with

results from a lab sieve analysis. In addition, the morphological features, e.g., sphericity,

roundness, and roughness, of real particle shapes are well captured. Quantitative particle

morphology analyses are performed to provide more insights into the morphological features

of the granular material.

Chapter 4, characterization and discrete element simulation of grading- and shape-

dependent behavior of JSC-1A Martian regolith simulant:

The physical and mechanical properties of JSC-1A Martian regolith simulant (MRS)

are characterized, including specific gravity, particle sizes, particle shapes and shear strength.

X-ray CT technique is used to obtain particle images, upon which particle shape data are

characterized by a series of imaging processing techniques and are further used to generated

irregularly-shaped numerical particles through the domain overlapping filling method. DEM

simulations of the direct shear test have been conducted by using irregular particles, spherical

particles with or without rolling resistance. It is found that the calibrated grading and shape-

dependent DEM model can well capture the behavior of the regolith simulant in a direct

shear test, in particular, the peak shear strength and the maximum friction angle. The

particle shape effect accounts for approximately 40% of the shear resistance of the JSC-1A

MRS. The irregular particles would increase the mobilized contact friction and the number

of particle contacts within the assembly when compared with an assembly with the same

number of disc-shaped particles. The additional shear resistance caused by the irregular
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particle shape effect cannot be fully replicated by solely increasing the micro-friction between

particles but can be captured through a calibration of rolling resistance contact model.

Chapter 5, discrete element modeling of deformable pinewood chips in cyclic loading

test:

A bonded-sphere DEM model based simulation approach has been presented for

studying the mechanical behavior of bulk flexible, deformable pinewood chips. Clustered

spheres that can bend and twist via elastic bonds have been used to model irregular-

shape pinewood particles. Based on the bonded-sphere DEM model, simulations of cyclic

compression tests have been conducted to predict the bulk mechanical properties of pinewood

chips. With careful calibration, the bulk densities and compressive moduli of elasticity

obtained in the simulations have reached good agreements with the experimental results.

However, it has been found challenging for the present DEM model to accurately predict the

overall stress-strain behavior of bulk pinewood chips, especially the large sustained plastic

deformation during the unloadings. Compared with most past DEM works that simulated

the bulk flow of woodchips with simple rigid spheres, rods or blocks, the present work has

demonstrated the importance for a DEM model to account for the particle irregular shapes

and deformability, in order to better predict the mechanical behavior of bulk woodchips.

The simulation results provide valuable information to help improve the design of biomass

feeding and handling equipment.

Chapter 6, discrete element modeling the granular hopper flow of deformable-

irregular particles:

The granular hopper flow with deformable-irregular particles under different sim-

ulation conditions (e.g., different particle stiffness and shape combinations) is simulated

and the flow characteristics are studied based on the bonded-sphere DEM model. The

same hopper flow simulation while using spherical particles or rigid-irregular particles are

also conducted as comparisons. The simulation results indicate that deformable-irregular

particles exhibit similar flow characteristics to those that are typically observed in laboratory
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experiments or DEM simulations of general granular materials. Compared to rigid-irregular

particles, deformable-irregular particles show lower packing porosity and smaller critical

arching width. The particle stress and wall stress for deformable-irregular particles exhibit

significant temporal and spatial fluctuations but find themselves in reasonable agreement

with the Walker’s solution. The discharge rate can be well fitted by the extended Beverloo’s

formula. On the premise of deformable-irregular particles, stiffer particles would result in

a higher packing porosity and a smaller discharge rate. For packings of fiber-shaped and

plate-shaped particles, the porosity is decreasing with the increasing ratio of fiber-shaped

particles. More plate-shaped particles would contribute to a higher potential of clogging,

while more fiber-shaped particles would result in a smaller discharge rate. These simulation

results, by considering deformable-irregular particles, shed lights on the effects of particle

size, shape and deformability on the granular hopper flow and would be of useful reference

for industrial hopper design.

7.2 Recommendations for future research

There are several possible improvements to the studies presented in this dissertation.

As shown in Chapter 3, the machine learning technique exhibits great potentials in segment-

ing CT images of geomaterials with complex constituents. The current work applied machine

learning technique to process 2D images. An immediate step would be to promote the

current 2D machine learning approach into the 3D regime, where image features from the

third dimension are included in the segmentation process synchronously. It is also noticed

that there are several competing machine learning-based image segmentation algorithms.

It would be interesting to explore alternative methods and compare their performances

when applied to granular geomaterials. As an initial study, Chapter 4 performed the DEM

modeling of Martian soil simulant in 2D. Compared to 3D simulations, the 2D simulations

require much less computational expenses, while they could still capture most of the typical
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characteristics and mechanisms in shearing granular materials. An improvement would be

to directly perform the 3D DEM simulations following the same workflow.

By employing the bonded-sphere model, the irregular shape and particle-wise defor-

mation of a flexible particle such as a pine woodchip can be captured by the DEM simulations

conducted in Chapter 5 and Chapter 6. However, it was observed from laboratory experi-

ments that the pinewood chip samples exhibited large sustained plastic deformation after

unloading, which may due to continuously pore collapse during loading. This phenomenon

was not well captured by the current DEM model. One way to promote the modeling fidelity

is to employ smaller particles in order to create more complex-shape particles that can

maintain a highly porous meanwhile quasi-stable DEM specimen. One that other hand,

elasto-plastic models such as the works of Luding (2005a,b) could be incorporated to help

sustain large plastic deformation after unloading. To promote the merits of hopper flow sim-

ulation results in Chapter 6 to industrial hopper design, further work is required to approach

quantitative relations between the particle characteristics (e.g., size, shape or stiffness) and

the discharge rate. In this regard, the particle size and shape should be quantified and more

parametric studies by varying grading, shape and particle stiffness would be involved.

Lastly, as DEM based numerical simulations are highly-computationally intensive, it

becomes a great challenge to achieve a balance between model complexity and computational

expenses and to scale the DEM simulations up to pilot-scale production applications. To

approach this challenge, one direction is to simplify the DEM model by just accounting for

the most sensitive physical properties of particles (e.g., the size, shape, and deformability).

This is, however, not possible without better understandings of the effects of the various

particle physical and morphological properties on granular flow behaviors. Another direction

is to couple with large-scale continuum methods such as finite element method or material

point method through multiscale frameworks. The research outcomes of addressing this

challenge would also help enhance the modeling fidelity of the DEM simulations performed

in this work and promote their merits to engineering and industrial systems.
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