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ABSTRACT 
 

The heart is a complex mechanical and electrical environment and small changes 

at the cellular and subcellular scale can have profound impacts at the tissue, organ, and 

organ system levels. The goal of this research is to better understand structure-function 

relationships at these cellular and subcellular levels of the cardiac environment. This 

improved understanding may prove increasingly important as medicine begins shifting 

toward engineered replacement tissues and organs. Specifically, we work towards this 

goal by presenting a framework to automatically create finite element models of cells 

based on optical images. This framework can be customized to model the effects of 

subcellular structure and organization on mechanical and electrophysiological properties 

at the cellular level and has the potential for extension to the tissue level and beyond. 

In part one of this work, we present a novel algorithm is presented that can 

generate physiologically relevant distributions of myofibrils within adult cardiomyocytes 

from confocal microscopy images. This is achieved by modelling these distributions as 

directed acyclic graphs, assigning a cost to each node based on observations of cardiac 

structure and function, and determining to minimum-cost flow through the network. This 

resulting flow represents the optimal distribution of myofibrils within the cell. In part 

two, these generated geometries are used as inputs to a finite element model (FEM) to 

determine the role the myofibrillar organization plays in the axal and transverse 

mechanics of the whole cell. The cardiomyocytes are modeled as a composite of fiber 

trusses within an elastic solid matrix. The behavior of the model is validated by 
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comparison to data from combined Atomic Force Microscopy (AFM) and Carbon Fiber 

manipulation. Recommendations for extending the FEM framework are also explored. 

A secondary goal, discussed in part three of this work, is to make computational 

models and simulation tools more accessible to novice learners. Doing so allows active 

learning of complicated course materials to take place. Working towards this goal, we 

present CellSpark: a simulation tool developed for teaching cellular electrophysiology 

and modelling to undergraduate bioengineering students. We discuss the details of its 

implementation and implications for improved student learning outcomes when used as 

part of a discovery learning assignment.  
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CHAPTER ONE 

INTRODUCTION AND SPECIFIC AIMS 

1.1 Motivation 

My long-term research goal is to improve the understanding of how changes in 

cardiovascular structure at the cellular and subcellular can impact the mechanical and 

electrical function at the tissue level. In pursuit of this, the objective of this dissertation is 

to develop a framework through which to model the unique electromechanical properties 

of cardiac cells and tissues. To this end, the research developed methods to observe, 

measure, and estimate information about the geometry, mechanics, and electrical 

characteristics of cells at the tissue, cellular, and subcellular level and incorporate this 

data into a Finite Element Modelling (FEM) multi-physics package to build useful 

models with varying levels of complexity. The research employs various microscopy and 

image processing techniques to observe and measure geometries at the cellular and tissue 

levels, but electromechanical function is inherently linked to the subcellular structure as 

well. Novel computational methods were employed to estimate geometries at this scale 

that are below the practical resolution of the microscopy. Validation of these models was 

by performed by comparison to experimental cell mechanics methods. The framework 

developed allows a simple method to create cardiac cellular models that can be used to 

assess the effects of subcellular structure changes on the cellular and tissue level 

properties. Additionally, the models can be used to see how tissue level structural 

changes affect electromechanical function in environments which are difficult to study in 

vivo and difficult to recreate in vitro, such as the post-infarct heart.  
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Following myocardial infarction, damaged cardiac tissue undergoes remodeling in 

an attempt to repair and strengthen the heart. As a part of this remodeling process, 

myocytes change size and shape, and there is an infiltration of fibroblasts into the 

myocardial space1. This drastic change in the tissue structure leads to changes in the 

electrical and mechanical function, the extent of which are not fully understood.2–4 

Because of the difficultly of studying this environment in vivo or adequately recreating it 

in tissue culture, the long term goal of this project is to develop a computational platform 

to model the mechanics of this, and other unique cardiac environments at the tissue level 

scale.  

My long-term educational goals are to increase undergraduate bioengineering 

students’ exposure to topics in computer science, electrical engineering, and engineering 

design to improve breadth of knowledge and sense of engineering identity. 

 
1.2 Specific Aims 

1.2.1 Aim 1: Algorithmic Estimation of Myofibril Distributions in Adult Cardiomyocytes 

The goal of this aim is to create a novel algorithmic method to estimate myofibrils 

in adult cardiomyocytes based on confocal images of the cell. This is achieved by 

modelling these distributions as directed acyclic graphs, assigning a cost to each node 

based on observations of cardiac structure and function, and determining to minimum-

cost flow through the network using the Network Simplex algorithm. This resulting flow 

represents the optimal distribution of myofibrils within the cell. 
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1.2.2 Aim 2: Finite Element Modeling to Understand the Role of Subcellular Structures 

on Whole-Cell Behavior 

The goal of this aim is to use the geometries generated in aim 1 as inputs to a 

finite element model (FEM) to determine the role the myofibrillar organization plays in 

the axial and transverse mechanics of the whole cell. The cardiomyocytes are modeled in 

COMSOL Multiphysics as a composite of fiber trusses within an elastic solid matrix. The 

behavior of the model is validated by comparison to data from combined Atomic Force 

Microscopy (AFM) and Carbon Fiber manipulation.  

1.2.3 Aim 3: Single-Cell Electrophysiological Models as Tools in Engineering Education 

The goal of this aim is to develop and implement CellSpark: a simulation tool 

developed for teaching cellular electrophysiology and modelling to undergraduate 

bioengineering students. We discuss the details of its implementation and implications for 

improved student learning outcomes when used as part of a discovery learning 

assignment. This software makes these computational more accessible to novice learners 

and allows active learning of these complicated course materials to take place 

 

1.3 Significance 

Two of the grand challenges of engineering, as identified by the National 

Academy of Engineering, are to engineer better medicines and to engineer the tools of 

scientific discovery. As technology and computing advances, a powerful tool is at our 

disposal as engineers to help make the transition from benchtop to bedside much faster 

through the use of computational biology. This work will help to develop a computational 
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framework, one of these tools of scientific discovery that will help bridge gaps in 

knowledge between cardiac properties at the single cell and tissue levels, 2D to 3D levels, 

and in vitro and in vivo levels. This framework makes it possible to predict mechanical 

and electrical behavior of tissue constructs, of vital importance for tissue and organ 

engineering technologies.  

 Medicine is progressively moving to smaller scales, with treatments shifting from 

systemic macroscale approaches to targeted, cellular and molecular ones. At this small 

scale, not only is observation and assessment more difficult, but the effects of changes at 

the higher, macroscopic levels is not as well studied or understood. Development of this 

computational platform and its use to assess the impact of the small scale structural and 

functional changes will allow future research endeavors to progress faster, and with less 

time and capital investment than traditional in vitro preliminary testing. This 

multidisciplinary research also allows for improved collaboration between computer 

scientists, who possess these powerful computational tools but lack the background to 

even realize the extent of problems they could be solving, and bioengineers – especially 

those still early in their training – who often have a reluctance to expand outside their 

comfort zones into the realms of computing and simulation. The educational goals of this 

proposal seek to start bridging this gap, to help bioengineering undergraduates become 

well rounded and confident engineers. 
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1.4 Background 

Anatomy and Physiology: 

At the cellular level, cardiac tissue is composed of specialized muscle cells 

referred to as cardiomyocytes. Cardiac muscle, while possessing qualities similar to both 

skeletal muscle (striations due to bands of actin and myosin) and smooth muscle 

(involuntary activation), it has two main characteristics which make it both structurally 

and electrophysiologically unique within the body: t-tubules and intercalated discs.5 

T-tubules are the primary structures responsible for excitation-contraction 

coupling. As the cell is excited following an electrical stimulus, a wave of depolarization 

travels across the membrane and into t-tubules. Here, the depolarization causes voltage 

gated calcium ion channels to open allowing extracellular Ca2+ to diffuse into the cell and 

initiate a positive feedback loop to release additional Ca2+ stored in the sarcoplasmic 

reticulum into the cytoplasm.6 Cytoplasmic calcium, when in sufficient quantities binds 

to the Troponin C, exposing the active site of actin. With actin now exposed, the classical 

“sliding filament” model of contraction between the actin and myosin filaments takes 

place, contracting the entire muscle. Following contraction, ATP binding releases the 

calcium from Troponin-C and ion pumps restore the previous levels of cytoplasmic 

calcium, thus repolarizing the cell.7 
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Figure 1.1: Mechanism of Excitation-Contraction coupling of cardiomyocytes.6 
  

Intercalated discs are the “glue” which hold the heart together – at least 

electrically and mechanically. These discs are the site of connection between adjacent 

cardiomyocytes and allows them to form a functional syncytium.5 Discs are composed of 

three parts: actin anchor points (fascia adherens) which allow internal stresses to be 

transferred to the sarcomeres of the adjacent cell, intermediate filament anchor points 

(desmosomes) which physically attach the cells together and let external stresses be 

transferred between them, and gap junctions which allow intersarcoplasmic ion flow and 

enable action potential propagation down the syncytium.  
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Figure 1.2: Intercalated disc composition and mechanism of mechanical coupling.7    

Pathology: 

 Abnormal electromechanical behavior of the heart can be generally be broken 

down into two main problems: pathology of the conduction circuit itself and necrosis or 

other tissue damage with results in mechanical failure of the functional syncytium. The 

former cause usually manifests as one of several arrhythmias, interrupting the normal 

cardiac cycle.8 Common arrhythmias can include extra beats, which are usually fairly 

benign, tachycardias (elevated pacing) and fibrillation, the fast irregular pacing which 

leads to both stroke and heart failure.8 

 The latter cause, damage to the cardiomyocytes themselves, can be caused by a 

number of things including trauma, chronic or prolonged ischemia, and myocardial 

infarction. The resulting damage can cause mechanical weakening of the heart muscle, 

reduced circulatory capacity, arrhythmias, and enlarging/remodeling of the heart – in 

general an overall loss of proper mechanical performance.9 
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CHAPTER TWO 

ALGORITHMIC ESTIMATION OF MYOFIBRIL DISTRIBUTIONS IN ADULT 

CARDIOMYOCYTES 

 
Cellular mechanics are often simplified to basic constitutive models, such as 

elastic1–3 or poroelastic4 solids. While these models can often predict mechanical 

properties or behavior of normal cells relatively accurately, they do not account for 

cytoskeletal structure. Since cellular architecture is constantly remodeling5, whether the 

result of pathology or changes in the needs of the organism, these models are insufficient 

to predict properties and behaviors during or after remodeling and may be insufficient at 

different levels of model complexity. 

Cytoskeletal organization itself is difficult to measure, especially at the tissue 

level and above, where imaging techniques do not have sufficient resolution to visualize 

subcellular components. To solve this problem, we are interested in instead using cellular 

images as an input and using computational methods to create models of cytoskeletal 

architecture that can then improve cellular and tissue mechanics models. 

In this chapter, we present one such technique to estimate likely distributions of 

myofibrils in cardiomyocytes by approximating the scenario as a thick non-crossing paths 

problem. We present an approximate solution by representing the cell volume as a 

directed acyclic graph and computing the minimum cost-flow through the network. The 

collection of paths that results approximates the distribution of myofibrils within the cell.  
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2.1 Literature Review 

 
 
2.1.1 Myocyte Structure and Function 

 Cardiomyocytes are the cell that acts as the building block of cardiac tissue, 

accounting for nearly 75% of healthy myocardium6. Compared to other cells present in 

the heart, such as cardiac fibroblasts, myocytes are large and they account for this volume 

despite only being 30-40% of the cells present5,7. Myocytes are roughly cylindrical, about 

100 um long, with diameters in the range of 10-25 um, though branching and other non-

cylindrical shapes can be observed. Myocytes contain the same cytoskeletal elements as 

other mammalian cells (F-actin, microtubules)8,9 with the notable addition of bundles of 

myofibrils, the primary contractile organelles10. 

 

Figure 2.1: Structure of striated muscle. The myocyte is essentially a bundle of smaller 
contractile fibers called myofibrils.23 
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Myofibrils are chains of sarcomeres, the smallest contractile unit of striated 

muscle. Each sarcomere consists of two groups of actin filaments bound to Z-disks at 

opposite ends of the sarcomere.8 Between each pair of actin filaments is a myosin 

filament, which bridges the gap (called the H-zone) and attaches to both Z-disks through 

the giant protein titin. Each side of the Z-disk contains a mirror image of these filament 

attachments, which is how the sarcomeres are chained together into a myofibril. The 

prevailing theory of muscle contraction, the sliding filament theory, posits that the 

interweaved actin and myosin filaments slide past each as ATP hydrolysis of the myosin 

causes reversible binding of the myosin heads to the actin filaments.4 

2.1.2 Myofibril Distribution 

 As myofibrils are the contractile element of the myocyte, their distributions within 

the cell dictate the overall contractility of the cell. The mechanisms that determine these 

distributions have been extensively studied. There has also been interest in modeling 

these distributions for reasons similar to our own, but most of these models11–13 are based 

upon reaction kinetics of the contractile subunits. In this way they are more accurately 

modelling the formation and development of muscles. 

 At least one image-based approach to automatic modelling these distributions in 

myocytes has been attempted14 by segmenting out individual A-bands from high 

resolution phase contrast images of striated muscle and developing a path growing 

algorithm to chain them together into myofibrils. Though successful, this approach is 

limited to high resolution images and a two-dimensional image which make it non-ideal 

as an approach for our goal of extending our model to the tissue and organ level. 
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2.1.3 Packing Problems 

 This question of determining a specific organization of subcellular components 

within the finite volume of the cell is a member of a broader class of problems in 

mathematics known as packing problems.  

In the simplest form the question of their distribution within the cellular volume is 

given by the Pencil-Packing Problem15. A three-dimensional grid of voxels, some of 

which are occupied with obstacles, is packed with “pencils” – unions of adjacent voxels 

that form an axis-parallel strip. Only one pencil can be packed into a given voxel and 

cannot be packed into voxels occupied by obstacles. The length of the pencils can be 

fixed or variable. In this simplification, myofibrils are assumed to have a square cross-

sectional area equal to one voxel by one voxel, and bending is restricted. The other 

limitation is that myofibrils can only be oriented along the major cartesian directions.  

The next logical extension of the problem is to remove the bending restriction and 

add endpoints in the domain that should be connected to each other. The problem can 

now be considered a member of a separate class: shortest path problems16. The simplest 

of these problems seeks to find the shortest path between two points in a polygonal 

domain which also contains obstacles. This problem can be extended to the non-crossing 

paths problem by finding a collection of paths between multiple sets of points such that 

the paths do not intersect each other or the obstacles and that the distribution of paths is 

optimized in some way. In this problem specifically, the paths are “thick” since the 

myofibrillar cross section is non-zero. Thick non-crossing paths problems, where thick 
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paths are defined as the Minkowski sum of a curve and a disk, are common in other 

disciplines such as integrated circuit design and air traffic management.17,18  

2.1.4 Nodes, Networks, and Flows 

 Our proposed approach to solving the thick non-crossing path problem of 

myofibril distribution within cardiomyocytes is by representing the internal volume of the 

cell as a graph. A graph is a collection of objects and the interconnections among them. 

The objects in the graph are typically called vertices or nodes and the connections 

between nodes are called edges or arcs. Both the nodes and edges can be described by 

any number of characteristics (such as coordinate position) but at minimum are described 

by their node/edge relationships.19  

 All edges connect two nodes, but this connection can be either undirected, where 

information can move between nodes in either direction, or directed where it is only 

possible in one direction. Directed graphs are commonly abbreviated to digraphs. The 

other important characteristic of graphs is cyclicity. A cyclic graph is one where one can 

trace from a specific node along edges to other nodes and eventually arrive back at the 

starting node. An acylic graph is one where this tracing is not possible. Cyclicity is 

independent of direction and in this work we will specifically model the cellular volume 

with graphs that are both acyclic and directed – so called Directed Acyclic Graphs or 

DAGs.19 
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Figure 2.2: A Directed Acyclic Graph (DAG). Nodes are represented by the blue circles 
and the edges are represented as arrows.24 

   

 A flow graph is a specific digraph whose edges represent the coefficients of 

algebraic or differential equations of the nodes and a flow network is a specific flow 

graph whose edges represent gains or losses of flow. In more concrete terms, each edge 

of the flow network has a capacity for the amount of flow it is capable of receiving and 

every node in the network must conserve flow – that is the flow into and out of the 

network must be equal – with the exception of sources and sinks, where flow originates 

and terminates, respectively. The most common problem associated with flow networks 

are ones in which the maximum flow through the network is determined. This has 

applications in transportation, logistics, and communications. If an additional cost 

constraint is placed on edges, analogous to a resistance to flow, then another class of 

Minimum-Cost Maximum-Flow problems is created. These types of problems allow the 

resulting node disjoint paths through the network to be optimized by not only 
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connectivity (like a Maximum-Flow problem) but also by any additional quality, such as, 

in our case, position.20 

2.1.5 The Primal-Simplex Algorithm 

Minimum-Cost Maximum-Flow problems are NP-hard but, as linear programs, 

are solvable by multiple different optimization algorithms, including the Primal Simplex 

Algorithm. Let the Minimum-Cost Flow problem is linearized as:  

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴     𝑧𝑧 = 𝒄𝒄𝒄𝒄 

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑴𝑴𝒄𝒄𝒔𝒔 𝒔𝒔𝒕𝒕    𝑨𝑨𝒄𝒄 = 𝒔𝒔 

                          𝟎𝟎 ≤ 𝒄𝒄 ≤ 𝒔𝒔 

where A is the (sparse) incidence matrix defining permissible edges, b is a vector giving 

the demand of each node, c is a matrix defining the cost of each edge, and u is capacity 

constraint, defining the maximum permissible flow on each edge (in our formulation, this 

is equal to 1 for every permissible edge.) 

Then the solution can be found by first computing the basic solutions of the form: 

 𝒄𝒄𝐵𝐵 = 𝑩𝑩−1[𝒔𝒔 − 𝑵𝑵1𝒔𝒔1]. 

where B is the basis vector and N1 is a matrix containing the columns of A associated 

with the non-basis variable set n1 such that:  

𝑩𝑩𝒄𝒄𝐵𝐵 + 𝑵𝑵0𝒄𝒄0 + 𝑵𝑵1𝒄𝒄1 = 𝒔𝒔. 

Next, the algorithm optimizes a solution by iteratively solving the computation   

𝒚𝒚𝑘𝑘 = 𝑩𝑩−1𝒂𝒂𝑘𝑘 = 𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑗𝑗 

where pi and pj are the columns of B-1 describing the paths from the source to nodes i and 

j respectively, and ak is the column of A for the entering node. 20 
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2.2 Methods 

2.2.1 Image processing 

The images provided for use in this study were of primary ventricular cardiac 

myocytes obtained from female Sprague Dawley rats. The myocytes were fixed using 4% 

paraformaldehyde, permeabilized with Triton-X, and fluorescently stained with 

phalloidin and DAPI to visualize actin and the nuclei, respectively. Cells were imaged 

using an Olympus PLAPON60XO 60x oil immersion objective (NA=1.42) on an 

Olympus IX81 inverted microscope with a DSU spinning confocal disc and a Hamamatsu 

ImagEM CCD camera (Hamamatsu Photonics K.K., Hamamatsu City, Japan). 

Additionally, three images of Human ventricular myocytes, obtained using the same 

protocol on comparable equipment were included as a comparison. 

The red, green, and blue channels of each image were imported into MATLAB 

r2016b (The MathWorks Inc., Natick, MA, USA) as separate 3-D grayscale matrices. 

The empty green channel was discarded and each of the red and blue matrices was 

converted to a binary (black-and-white) matrix using an empirically determined 15% 

intensity threshold. The matrices were rescaled using bicubic interpolation such that each 

element of the matrix represented a 1µm x 1µm x 1µm cellular volume. 

After being rescaled, the centroid and major axis of the cell was determined by 

finding Q1, Q2 (centroid) and Q3 of the (x,y,z) coordinates of the red channel binary 

volume matrix. Both matrices were rotated using nearest-neighbor interpolation about the 

centroid such that the major axis of the cell was aligned with the y-axis (second 

dimension of the matrix.) 
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“Holes” in the interior of the binary volume were filled and surface artifacts 

introduced by the thresholding, rescaling, and registration processes were mitigated by 

smoothing using a gaussian filter with size 3 pixels and standard deviation 1 pixel 

followed by image dilation with a spherical structuring element of radius 1 pixel. The 

membrane surface was captured by extracting the 1% isosurface using the marching-

cubes algorithm21 from the red channel matrix and exporting it as a stereolithography 

(STL) file containing vertices and normal vectors of triangular faces which define the 

surface. The same method was used to determine the nuclei surfaces using the blue 

channel matrix. 

2.2.2 Generation of Representative Myofibrils: A Subcellular Min-Cost Flow Problem 

In this section, we describe a novel algorithmic technique to estimate the fiber 

geometries, based on the geometric information known about the cell membrane and 

nuclei. We make the following assumptions about myofibril distribution within a 

myocyte:  

1) The cell membrane mainly serves to contain all the myofibrils, so the space 
between the membrane and the outermost fibers is minimal. 
  

2) The main function of the cardiomyocyte is mechanical contraction, so 
myofibrils are efficiently packed within the cell and excess sarcoplasmic 
space is minimal.  
 

3) For a combination of the previous reasons, fibers will terminate at or close to 
the cell membrane, and the average fiber length will be maximized.  
 

4) Muscle tissue in general, and cardiac tissue specifically, is transversely 
isotropic so deviations in fiber direction from the major axis of the cell will be 
minimal.  
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As these assumptions are all linear in nature (maximizing or minimizing some 

constraint), the problem of fiber distribution can be modeled and solved as a linear 

program. Here, we represent the cellular volume as a directed acyclic graph and solve for 

the optimal fiber distribution by determining the Minimum-Cost Flow. 

Let N denote a set of nodes located on a regularly spaced grid with spacing s fully 

contained within and completely filling the membrane isosurface extracted in the 

previous section. Let E denote a set of all edges between members of N and their 

orthogonally and diagonally adjacent neighbors. Each edge, Eij, has a length, lij of 1 (for 

orthogonally adjacent nodes) or √2 (for diagonally adjacent nodes). dij, the distance from 

the membrane isosurface, is calculated by averaging the Euclidean distance transform of 

the voxels nearest the nodes Ni and Nj in the binary representation of the intracellular 

space. This transform assigns each voxel a number representing the distance from that 

voxel to the nearest non-zero voxel. If the spacing between nodes is an integer, then Ni 

and Nj will each represent exactly one voxel.  

Each edge is assigned a cost, cij, given by:  

𝑐𝑐𝑖𝑖𝑗𝑗 = 𝑓𝑓(𝑑𝑑𝑖𝑖𝑗𝑗, 𝑙𝑙𝑖𝑖𝑗𝑗) 

where the weighting function, f, allows customization of which assumptions are 

prioritized. In our implementation, f was empirically chosen to be given by:  

𝑓𝑓�𝑑𝑑𝑖𝑖𝑗𝑗, 𝑙𝑙𝑖𝑖𝑗𝑗� =  
3
2
∙ 𝑑𝑑𝑖𝑖𝑗𝑗 ∙ 𝑙𝑙𝑖𝑖𝑗𝑗 

Another possible simple weighting function is given by: 

𝑓𝑓�𝑑𝑑𝑖𝑖𝑗𝑗 , 𝑙𝑙𝑖𝑖𝑗𝑗� =  𝛼𝛼 ∙ 𝑑𝑑𝑖𝑖𝑗𝑗 + 𝛽𝛽 ∙ 𝑙𝑙𝑖𝑖𝑗𝑗 
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In this form, the length and distance assumptions can be independently prioritized using 

the weighting parameters α and β, respectively. 

 

 

To represent our scenario as a flow problem, specific nodes representing the 

termination points of the fibril paths must be identified as either “sources” or “sinks” of 

flow. Following assumption 3, these termination points should 1) lie at or near the 

membrane isosurface and 2) lie at opposite ends of the major axis of the cell. To satisfy 

the first criteria, nodes with fewer than three non-zero neighboring voxels in the binary 

volume representation were eliminated as possible termination points. The second criteria 

required segmentation of the cell volume into sections to determine which nodes occurred 

near the end of the cell. This can be done in a variety of ways. In our case, this was 

achieved by approximating the volume as a set of end-to-end cylinders and only 

considering endpoints which lie the terminal cylinders. 

Figure 2.3: Schematic representing the model. Nodes are shown as white or grey circles 
(grey indicates nodes that are part of a path), and all permissible edges are show as 
arrows. Terminal nodes at one end of the cell are connected to a source node with flow 
+n and terminal nodes at the other are connected to a sink node with flow -n. This flow 
constraint, n, indicates the number of fiber paths (represented by green arrows) to be 
computed. The cost of including each node in a path is given by the weighting function f. 
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 To approximate the cellular volume as cylinders, we represent the volume as a 

point cloud, with each voxel represented as a single point in space. These points are 

grouped into two clusters using the k-means algorithm. For each cluster, the smallest 

cylinder which contains every point is generated. The axis of the cylinder lies along the 

least-squares regression line of the points. The radius is given by the maximum 

perpendicular distance between all the points and the regression line, and the height is 

given by the maximum distance between two points in the direction of the line. The fit of 

each cylinder is scored by dividing the number of points in the cluster by the volume of 

the cylinder. This score is equal to the volume of cell which lies in the cylinder since each 

point represents one unit voxel. This process is repeated with incrementally increasing 

clusters until the set of cylinders with the best fit is found. 

 Once the possible termination nodes have been identified, an additional edge is 

created between each node at one end of the cell and a master source node and each node 

at the other end and a master sink node. The cost of each of these edges can either be zero 

so that each node is equally likely to be included in a path, or some other function which 

allows the probability of each node being included to be further tuned. The source and 

sink nodes are given a demand value of positive and negative n, respectively. This 

demand value, n, represents the number of paths which will be placed within the cell. 

The scenario presented now represents a fully defined flow problem. The 

minimum-cost flow through the network can be linearized in the form described in 

section 2.1.5. To generate our myofibril distributions, we solved this minimum-cost flow 

problem using the Primal Simplex algorithm as implemented in the Mosek Optimization 
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Toolbox (Mosek ApS, Copenhagen, Denmark) iteratively, with the number of paths to be 

placed incrementing until an optimal solution could no longer be found. The output of the 

model is a list of all the node coordinates for each path. The distributions were visualized 

by sweeping a circle along each path and overlaying this over the surface plot of the cell 

volume. 

2.2.3 Validation 

 Performance of the model was measured with two separate criteria. The average 

fiber length was computed as a percentage of the total length of the cell. The percentage 

of cellular volume filled by the fibers was also computed. However, an ideal packing of 

cylinders inside a larger cylinder can never achieve a packing of 100% so in order for this 

metric to better represent the performance of the model, the percentage of volume filled 

relative to an ideal packing was determined. To compute this, each cell was approximated 

as the cylinder with the same length and volume of the cell and containing no nuclei. The 

packing of smaller cylinders, with radius s into this larger cylinder simplifies to a circle 

packing problem – where an integer number of unit circles are packed into a larger 

enclosing circle. Optimal solutions (proven or conjectured) for this problem has been 

found for packings up to 20 unit circles22. As the number of unit circles increases, the 

ratio of the enclosing circle radius to the unit circle radius also increases. An interpolation 

curve of this ratio vs packing density for the first 20 solutions was created and used to 
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roughly approximate the optimal packing density for the radius ratio of each model 

output. 

 
 

Figure 2.4: Optimal packings for the packings of N=2,3,4,5, and 7 unit circles into a 
larger enclosing circle. As the number of unit circles increases, the ratio of the radius of 
the enclosing circle to the ratio of the unit circle increases. For these packings, the 
packing density also increases, but this is not true for all N. The 7 solutions show are 
trivially optimal.22 
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Figure 2.5: Interpolation curve of optimal packing densities for unit circles of radius 
Runit into an enclosing circle of radius Renc, based on the proven or conjectured optimal 
solutions for packing of up 1 – 20 unit circles.  
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2.3 Results 

2.3.1 Image Segmentation and Boundary Extraction 

 Image segmentation and boundary extraction of both the cell membrane and 

nuclei were successful for each sample image. The images of human cells used in this 

study did not contain a full z-stack all the way through the cell, due to their larger size, so 

the tops and bottoms of these cells are “clipped” flat. Additionally, the channel 

containing fluorescence of the nuclei was missing, but extraction of the nuclei was still 

possible from voids in the present channel. Figure 2.6 shows an orthogonal view of the 

extracted isosurfaces from a sample cell (Rat 3). 

  

Figure 2.6: Orthogonal views of isolated membrane and nuclei isosurfaces for a sample 
cell (Rat 3). 
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2.3.2 Myofibril Distributions 

 Myofibril distributions were successfully generated for each cell using the 

algorithm outlined. Figure 2.7 shows a visualization of the cylinder approximation 

method used to identify the termination points for one particular cell (Rat 4). The cell 

geometry, point cloud clusters, and approximating cylinders are shown. 

 

 

  

Figure 2.7: Plots of the extracted membrane and nuclei isosurfaces (top), the k-clusters of 
voxels used in partitioning the cell (middle), and the cylindrical approximation for 
identification of the fiber termination points for a sample cell (Rat 4). 
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Figure 2.8 shows a visualization of the algorithm’s solution for a particular cell 

(Human 3). Overlaid on the membrane isosurface is the set of nodes generated for the cell 

as well as a solution of myofibril paths generated by the algorithm. Source and sink nodes 

(representing termination points of the myofibrils) are shown in purple and yellow 

respectively. 

 

 

Figure 2.8: A visual representation of the node network for a sample cell (Human 3). 
Regular nodes are shown in teal, source nodes in purple, and sink nodes in yellow. A 
collection of minimum-cost flows through the network is shown as a solid edge-paths. 
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Figure 2.9 shows a full visualization of  the algorithm’s solution. The original 

confocal image is the input to the algorithm, and from this membrane and nuclei 

isosurfaces are extracted and the cellular volume is represented by a node network. The 

minimum cost flow through the network is determined and flow represents the paths of 

myofibrils through the cell. These myofibrils are visualized as thick paths with circular 

cross sections.  

 

 

 The sensitivity of the model to fiber thickness was determined by running the 

algorithm on each cell with fiber spacings of both 2 µm and 4 µm. The two solutions for 

Figure 2.9: Visualization of the fiber generation process for a sample cell (Rat 2) showing 
the original confocal image (left), the network flow solution overlaid on the membrane 
and nucleus isosurfaces (middle two), and the visualized myofibrils (right). Fiber spacing 
= 4 µm. 
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a sample cell (Human 2) are shown in figure 2.10, along with the original confocal image 

for comparison. 

 

 

 

 

 

 

 

 

 

Figure 2.10: Comparison of original confocal image (left), visualized fiber distribution 
with spacing of 4 µm (middle), and visualized fiber distribution with spacing of 2 µm for 
a sample cell (Human 2). 
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2.3.3 Validation Metrics 

 Performance of the algorithm for each cell was determined by comparing the 

number of fibers placed in each cell, the average volume filled (as a percentage of “ideal 

packing” – see section 2.2.3 for details) and the average length of the fibers as a 

percentage of the cell length. These metrics, as well as the cellular volume are presented 

below in table 2.1 for both cases of node spacing. 

Table 2.1: Algorithm results for each sample cell and node spacing case 

  Node spacing = 4 µm Node spacing = 2 µm 

Cell Volume 
(µm3) 

No. of 
Fibers 

Volume 
Filled* 

Avg. 
Fiber 

Length 

No. of 
Fibers 

Volume 
Filled* 

Avg. 
Fiber 

Length 
Hum. 1 25,749 13 50.0% 74.0% 105 86.8% 82.7% 

Hum. 2 23,715 14 61.1% 63.5% 82 91.6% 82.1% 

Hum. 3 45,026 24 68.7% 80.4% 111 69.0% 94.5% 

Rat 1 14,188 7 82.2% 87.9% 24 64.28% 92.7% 

Rat 2 27,483 17 86.7% 72.0% 64 73.0% 78.9% 

Rat 3 16,057 7 56.1% 75.3% 34 67.1% 87.2% 

Rat 4 16,662 8 70.9% 78.2% 37 77.3% 86.3% 
 

2.4 Discussion 

 Our results show that the choice of myofibril size is somewhat dependent on the 

cell used. Cells with high aspect ratios (much longer than they are wide) are better filled 

with thinner myofibrils. Because of the small cross-sectional areas, even a few obstacles 

severely limits the number of fibers that can be placed if a larger spacing is used. Filling 

with smaller diameter fibers tends to increase the fiber length score. This is assumed to 
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occur since the thinner fibers are able to penetrate farther to the terminal ends of the cell, 

where the cross-sectional area of the cell decreases. Conversely, the volume filled tends 

to drop with smaller fibers somewhat counterintuitively. While more fibers are being 

placed, the smaller diameters of the fibers means more wasted space between them.  

Looking at figure 2.4 and considering this from the standpoint of circle packing 

this makes sense. As the radius of the fibers is cut in half, approximately 4 times is many 

fibers are packed into the same area, but these four fibers do not take up the same amount 

of space a single fiber that is four times the size. The extra length gained from the smaller 

fibers does not appear to make up for this deficit for most cells. One other consideration 

is that the computational time increases exponentially with the number of fibers placed, 

however this can be mitigated to some degree if there is a good initial estimate of the 

number of fibers, since all iterating through distributions with fewer fibers is not needed. 

The images of human cardiomyocytes used in this study did not capture the 

entirety of the cell’s volume in the z-dimension. Despite this, the algorithm was still 

capable of generating myofibril distributions for these cells, albeit with lower volume fill 

scores. This lower volume filled is likely due to the cells not being very cylindrical, since 

the top and bottoms of the cell are not present, but the volume filled is still scored based 

on ideal packing in a cylindrical cell. Modifying the method of calculating the volume 

filled is one possible method to better capture these cells. The fact that the algorithm is 

still capable of working for these cells is promising that it could be implemented towards 

our larger goal of tissue-based models as tissue slices that are stained and imaged will 

likely contain many cells that are not fully imaged in the z-direction. 
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 As a more general limitation, cells that are very non-cylindrical also require a 

different method to identify termination points for the fibers, since the current method 

also relies on approximating the cell as a set of cylinders. Some potential methods to 

address this include creating a probability distribution of points based on additional cell 

staining, such as for integrins or connexins that indicate focal adhesions and gap 

junctions with other cells (for tissues) or manual segmentation identification of the cell 

termini. While manual identification would be simple in practice for single cells, it is not 

ideal for studies with many cells or if the approach is scaled up for tissue constructs. 

2.5 Conclusions 

 We have demonstrated a novel algorithmic method that allows for rapid 

generation of cellular geometries that can be used in other studies, such as Finite Element 

Analysis. This method is automatic and only based on confocal microscopy images of the 

cells. Since the only inputs to the algorithm are the whole cell and nuclei geometries, the 

method should work successfully independent of image quality, as long as the whole cell 

geometry can segmented. The method can also be optimized to allow more specific 

control over the subcellular organization and study how organization affects other aspects 

of the cell such as mechanics or electrophysiological behavior. Because of the nature of 

the algorithm, generation of cytoskeletal structures could also be performed on custom 

cellular geometries, created in a Computer Assisted Design (CAD) program, for example,  

allowing the algorithm to be used as an unprecedented design tool for future cellular 

engineering studies. 
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CHAPTER THREE 

FINITE ELEMENT MODELLING TO UNDERSTAND THE ROLE OF 

SUBCELLULAR STRUCTURES ON WHOLE-CELL MECHANICS 

 

The cellular models and subcellular geometries identified by the method presented in the 

previous chapter are a useful input for further investigation of the mechanical and 

electrophysiological behavior of single cells. In this chapter we present a framework for using 

these (or other cellular geometries) as inputs for a multiphysics finite element model of the 

mechanical behavior and properties of the cells. This model framework was developed in 

COMSOL Multiphysics and allows fully or semi-automated generation mechanics simulations. 

COMSOL Multiphysics was used as the underlying finite element solver platform upon 

which the model will be built as it offers several advantages over other platforms that make it 

suited for this project. First, is a fully documented Java API which makes integration with 

MATLAB, where the algorithm previously described was developed, simple. Second, COMSOL 

handles the coupling of the underlying physics to each other, which is much more difficult in 

other software packages which are not designed specifically for multiphysics problems. Lastly, 

COMSOL is deployed on the Palmetto Cluster, Clemson University’s supercomputing platform. 

This would allow us to access this computing resource to run complex simulations with only 

minor modification, if the project grows in scale and complexity in the future. 
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3.1 Literature Review 

3.1.1 Cell Mechanics 

 The earliest models of cellular mechanics were of “balloons full of molasses” – 

simple continuum models with no internal structures present.1 While not representative of 

the actual physiological environment of the cell, these models persist in the literature as 

they are easy to understand, provide decent approximations of mechanical properties, and 

are analogous to the macroscopic mechanics that are introduced in most undergraduate 

engineering curricula. On the contrary, structural models of cell mechanics take into 

account these subcellular elements and provide a more realistic model of the mechanical 

behavior, at the expense of computational cost. 

The simplest (yet most persistent in literature2–5) mechanical model that is applied 

to cellular mechanics is the Hertz model6 of elastic contact between spheres or infinite 

half-spaces. This model assumes each material is a linearly elastic, homogenous, and 

isotropic material and contact between them is frictionless, non-plastic, and with 

infinitesimally small strain7. If these assumptions hold, then the contact force can be 

given by: 

𝐹𝐹 =
4
3

𝐸𝐸
(1 − 𝜈𝜈2)

𝑅𝑅
1
2𝛿𝛿

3
2 

where E is the elastic modulus of the sample and ν is the Poisson’s ration, R is the radius 

of the indenting sphere, and δ is the depth of indentation. This approximation is 

particularly useful for analysis of Atomic Force Microscopy3 (AFM) indentation data – a 
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technique commonly used to assess whole cell mechanical properties (described in more 

detail in section 3.1.4).  

3.1.2 Viscoelasticity 

 A notable limitation of the Hertz model when applied to cell mechanics is the 

assumption that biological materials are elastic in nature. In reality, most biological 

materials exhibit some degree of viscoelasticity8,9 – a time-dependent response when 

subjected to stress or strain. While an elastic material experiences a linear increase in 

stress with applied strain (or vice versa) and an equally linearly decrease upon unloading, 

viscoelastic materials experience hysteresis between loading and unloading as well as the 

phenomena of creep and stress-relaxation when subjected to constant stress and strain 

respectively. 

 Several material models of viscoelastic materials have been developed which 

describe the various phenomena associated with viscoelasticity. The Maxwell model 

consists of a perfectly elastic spring in series with a purely viscous damper10 and the 

constitutive equation describing its mechanics is given by: 

𝜎𝜎 +
𝜂𝜂
𝐸𝐸
𝑑𝑑𝜎𝜎
𝑑𝑑𝑑𝑑

= 𝜂𝜂
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

where σ and ε are the stress and strain of the material, η is the viscosity and E is the 

elastic modulus. Because of the series relationship of this model, it predicts stress 

relaxation well. There is an immediate reaction to the application or removal of stress 

(because of the spring element) and a time dependent relaxation due to the dashpot 

element. However, the Maxwell material does not accurately predict creep, since the 
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elastic component ensures a linear increase in strain under constant stress, which is not 

observed in most viscoelastic materials.  

 Arranging the components in parallel instead of series yields the Kelvin-Voigt 

model10. As the inverse arrangement, this model’s constitutive equation is given by: 

𝜎𝜎 = 𝐸𝐸𝑑𝑑 + 𝜂𝜂
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

The Kelvin-Voigt model predicts the creep behavior well but is less accurate in 

accounting for relaxation. 

 The Standard Linear Solid model is the simplest model that accounts for both 

phenomena10 and consists of a spring in parallel with a series combination of spring and 

damper (Maxwell representation) or a spring in series with a parallel combination (Kelvin 

representation). It is more accurate than either of the simpler models but is still incapable 

of predicting the response to all loading conditions since it only accounts for a single time 

constant.  

 

 

 

Figure 3.1: Three models of viscoelastic elements. From left to right: the Maxwell 
model, the Kelvin-Voigt model, and the Standard Linear Solid model (Maxwell 
representation)32 
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 This limitation is overcome in the Generalized Maxwell model10, which extends 

the Maxwell representation of the Standard Linear Solid Model to include as many 

parallel viscous branches as are necessary to fully describe the viscoelastic response of 

the material. While all the viscoelastic models have been applied to cell mechanics8,11–15, 

the Generalized Maxwell model most accurately predicts cellular behavior which often 

exhibit multiple time-dependent rates of relaxation.16 

 

Figure 3.2: The Generalized Maxwell model of viscoelasticity.32 

3.1.3 Structure Based Models 

 As an alternative to the continuum-based models described in the previous 

sections, structural models of cellular mechanics have also been explored. The most 

notable of these model paradigms is based around the concept of tensegrity in which the 

internal structure of the cell is represented by isolated compressive elements connected to 

each other through a series of tensioned elements17–19. The members are either 
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undergoing pure tension or pure compression, so failure of the whole can only occur if 

one of the component elements is broken but otherwise the material experiences 

mechanical stability. This modeling paradigm is particularly interesting for the study of 

cell mechanics because of the implication that the structure can be rapidly remodeled in 

response to applied stress to maintain mechanical stability similar to the remodeling that 

has been observed in cells.19  

 

Figure 3.3: A mechanically stable combination of compressed beams and tensioned 
cables demonstrating the principle of Tensegrity.33 

 Another property of biological materials not accounted for by the simpler 

continuum-based approaches is varying isotropy. While some biological cells and tissues 

are nearly isotropic, others exhibit anisotropy. Muscle tissue specifically exhibits 

transverse isotropy. This means that the properties in one direction (such as along the axis 

of a cylindrical cell) are vastly different than the properties in the transverse directions. 
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This is largely due to the organization of myofibrils as described in section 2.1.2. 

Because of this transverse isotropy, we hypothesize that modeling cardiac cells as a 

composite material of fibers embedded in an elastic continuum could improve the 

accuracy of the model while retaining the benefits of the continuum approach (namely 

computation efficiency.) 

 

Figure 3.4: A unidirectional fiber composite exhibits transverse isotropy.34 

 

 A unidirectional fiber composite is a well understood material composite 

consisting of uniform fibers which are aligned along a single axis. This provides excellent 

tensile strength to the material in the fiber direction. The mechanical properties of the 

material can be approximated in both the axial and transverse directions. For the axial 

direction, it is assumed that the only two components of the composite are the fibers and 

matrix. If the fibers are fixed in the matrix and an axial load is applied, it can be assumed 
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that the strain in the matrix is the same as the strain in the fibers. This iso-strain 

assumption can be represented as: 

𝑑𝑑𝑐𝑐 = 𝑑𝑑𝑚𝑚 = 𝑑𝑑𝑓𝑓 

where εc, εm, and εf are the strain in the composite, matrix, and fiber domains 

respectively. Since the only components are the matrix and fiber domain, all of the 

applied force is translated to one of the two domains, so the force in the composite can be 

given by: 

𝐹𝐹𝑐𝑐 = 𝐹𝐹𝑚𝑚 + 𝐹𝐹𝑓𝑓 

From the definition of stress, we can also represent this as: 

𝜎𝜎𝑐𝑐𝐴𝐴𝑐𝑐 = 𝜎𝜎𝑚𝑚𝐴𝐴𝑚𝑚 + 𝜎𝜎𝑓𝑓𝐴𝐴𝑓𝑓 

where σ is the stress and A is the cross-sectional area of each domain. If the composite 

and fibers are assumed to be uniform along their axes, then the cross-sectional areas and 

volume fractions of the domains are equivalent: 

𝜎𝜎𝑐𝑐 =
𝜎𝜎𝑚𝑚𝐴𝐴𝑚𝑚
𝐴𝐴𝑐𝑐

+
𝜎𝜎𝑓𝑓𝐴𝐴𝑓𝑓
𝐴𝐴𝑐𝑐

= 𝜎𝜎𝑚𝑚
𝑉𝑉𝑚𝑚
𝑉𝑉𝑐𝑐

+ 𝜎𝜎𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

 

From the definition of the elastic modulus, E, and the iso-strain assumption this can be 

rewritten as: 

𝐸𝐸𝑐𝑐𝑑𝑑𝑐𝑐 = 𝐸𝐸𝑚𝑚𝑑𝑑𝑚𝑚
𝑉𝑉𝑚𝑚
𝑉𝑉𝑐𝑐

+ 𝐸𝐸𝑓𝑓𝑑𝑑𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

= 𝐸𝐸𝑚𝑚𝑑𝑑𝑐𝑐
𝑉𝑉𝑚𝑚
𝑉𝑉𝑐𝑐

+ 𝐸𝐸𝑓𝑓𝑑𝑑𝑐𝑐
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

 

Dividing by strain on both sides yields: 

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚
𝑉𝑉𝑚𝑚
𝑉𝑉𝑐𝑐

+ 𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

 

And since the volume and matrix volume fractions must add up to 1: 
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𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚(1 −
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

) + 𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

 

This results in a very good approximation of the axial elastic modulus of the composite 

dependent only on the moduli of the fibers and matrix and the volume of fibers. 

 A similar assumption of the properties in the transverse direction can be made if it 

is assumed that the stress in both domains is the same. The equivalent derivation gives: 

1
𝐸𝐸𝑐𝑐

=
1
𝐸𝐸𝑚𝑚

(1 −
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

) +
1
𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

 

This iso-stress assumption is much weaker than the iso-strain assumption, so this is a 

worse approximation, but is still relatively accurate for low transverse deformations.20 

Soft fiber composites have been used to model muscle mechanics at the tissue level and 

have demonstrated similar properties to muscle.21 

3.1.4 Experimental Cell Mechanics Techniques 

 Measurement of mechanical properties of any material, including cells, requires a 

method of applying either a constant force or displacement and another method of 

recording the other metric. These manipulations and measurements can be applied to one 

small part of the cell, or to the cell as a whole. Common techniques used with cells and 

other biological samples include cantilever techniques like atomic force microscopy22,23, 

flow techniques, bead probing driven optically or magnetically24, micropipette aspiration, 

and cell stretching25. These techniques and others are categorized in figure 3.5.  
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Figure 3.5: Overview of cell mechanics measurement techniques.26 

  

Atomic Force Microscopy (AFM) is specific type of scanning probe microscopy 

used to characterize material properties (force mode) or sample topography (scanning 

mode). During force mode, a tipped cantilever is indented into a sample via a 

piezoelectric motor. As the tip indents the material, it experiences a resisting force which 

causes bending of the cantilever to occur. Simultaneously, a laser is aimed at the back of 

the cantilever, which is usually coated in a reflective material, and reflects into a 
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photodiode array, which indirectly measures the cantilever’s deflection. By calibrating 

the stiffness of the cantilever and the deflection of the laser, the force of indentation can 

be measured and used along with the amount of indentation to approximate the 

mechanical properties of the sample. 

 

Figure 3.6: Schematic representation of AFM method.35 

  

AFM is widely used in measurements of cellular mechanical properties because 

of its prevalence in materials science research and the ease of analyzing the data by 

fitting to the Hertz contact model, as previously discussed. More complex models of 

contact allow relatively good measurements of cellular properties, but the major 

limitations of AFM are that it cannot be used to measure whole cell properties and that it 

can be used to perform measurements normal to or tangent to the cell surface.27 This 

makes it a great tool for measuring transverse and shear properties, but a bad choice for 

axial measurements. 
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Carbon Fiber (CF) manipulation is a relatively new technique in which forces are 

applied and recorded at opposing ends of a cell through carbon fibers mounted to glass 

capillaries.25 This allows the measurement of axial properties of cells like myocytes as 

well as performing contraction studies.25,27,28 Measurement of strains in the cells are 

performed via processing of optical microscopy done simultaneously.29,30This processing 

allows the sarcomere length of cells to be monitored and the resulting signal can be used 

as a feedback mechanism to control the piezoelectric elements that apply forces to the 

carbon fibers. Recently, the combination of the CF technique with other techniques such 

as AFM has been shown to be successful.25 This combination of AFM and CF allows 

simultaneous measurements of both axial and transverse properties of the cell and is the 

experimental setup this chapter will attempt to model. 
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Figure 3.7: A: block diagram of a CF manipulation system29 B: schematic of the 

experimental setup and images of a myocyte being manipulated30 
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3.2 Methods 

Geometry 

The cellular membrane of each cell is represented by an isosurface of triangular 

faces. In the previous chapter, we described the method to generate this isosurface and 

the results were saved as Stereolithography (STL) format files. These STL files were 

imported into COMSOL Multiphysics v5.3 (COMSOL, Inc., Burlington, MA) as meshes 

into a separate 3-dimensional component with minimal boundary detection. This mesh 

sequence was then imported into the primary 3-dimensional component as a geometry 

sequence, utilizing mesh simplification with a relative repair tolerance of 0.01, a defect 

removal factor of 1, and solids not automatically generated from surface objects. Then, 

the sequence was converted to a solid to allow physics to be applied. While STL files can 

be imported as geometry sequences directly, segmenting the process into two distinct 

steps allows the built-in mesh simplification to be utilized, which makes later meshing of 

the model domains as free tetrahedral elements significantly simpler. 

In the previous chapter, a collection of paths representing myofibrils within the 

cellular volume was identified and is represented by a list of node-coordinates. In the 

COMSOL model, each of these paths is given by an open Interpolation Curve, defined by 

the list of node coordinates. By interpolating the path between points rather than simply 

importing the paths as piecewise Bezier polygons, sharp angles which make meshing 

difficult (and which are not physiologically accurate) can be avoided. While these 

Interpolation Curves can be constructed by manually entering each point or semi-

automatically (if the list of points for each curve is stored in a separate text file) the 
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process can be quite time consuming if a large number of myofibrils are being modelled. 

In our case, these interpolation curves were generated automatically using the MATLAB 

Scripting plugin for COMSOL as the paths were generated in the previous chapter.  

In order to apply stretch to our model, one end of the cell must be fixed while the 

other end is subjected to a displacement. Ideally, this displacement will be entirely in one 

cartesian dimension. In our case, the initial image processing steps rotated and rescaled 

the images so that the major axis of the cell would be aligned with the y-axis. If this step 

was not performed in pre-processing, rotation of the entire geometry within COMSOL to 

achieve this orientation is recommended. To create domains that could be fixed and 

subjected to displacement, a rectangular block larger than the cell volume in the x and z 

dimensions and 70-80% of the length of the cell in the y dimension was created roughly 

in the center of the cell. This block was used as a tool in a Partition Objects sequence to 

divide the geometry into three distinct domains. The two resulting domains which lie 

outside the partitioning block are subject to a fixed constraint and a prescribed 

displacement, respectively, and are therefore not subject to any stress or strain. To 

simplify the meshing and reduce the computational load of the model, the sections of the 

interpolation curves which lie in these domains were deleted from the geometry. The 

geometry was finalized by forming a union of all remaining objects.  

Materials 

 Distinct material properties were defined for the cytoplasmic and myofibril 

domains. In reality, these particular structures are nonhomogeneous and viscoelastic. Our 

model will consider them as homogenous (for the sake of computational efficiency) and 
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purely elastic since the transient responses of the cell to mechanical stress are not of 

interest to our investigation. The relevant mechanical properties of each material were 

based on values found in the literature31 and are summarized in Table 3.1. 

 

Table 3.1: Material properties for each component of the COMSOL models generated. 

Material Density (kg/m^3) Young’s Modulus (kPa) Poisson’s Ratio 

Cytoplasm 1.0 2.2 0.49 

Myofibril 12.0 12.0 0.05 
 

Since cytoplasm is primarily composed of water, its density was set to be 1.0 

kg/m^3. This could also be set slightly higher to account for the presence of other cellular 

components, but these were ignored in our model. Being primarily water, the cytoplasm 

is highly viscous, and the elasticity of the cell is primarily due to the cellular membrane. 

To minimize the computational complexity of the model, the decision was made to 

combine these into one elastic continuum with an elastic modulus consistent with the 

literature. If complexity is not a concern, the membrane could instead be modeled as a 

separate thin-shell or membrane domain with its own mechanical properties. 

Physics 

 Two separate physics modules were applied to the model. On the cytoplasm 

domains, Solid Mechanics with linear elastic mechanical properties was applied. A fixed 

constraint was applied to the domain lying in the negative y direction (the major axis of 

the cell is oriented along y) and a prescribed displacement was applied to the domain 
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lying closest to the positive y direction. The displacement was restricted to the y direction 

a parameter was created to vary the amount of stretch applied to the cell.  

 The Truss physics module was applied to all edges representing fibers (note that 

the edges created as a result of the domain partitioning were not subject to this physics.) 

The default straight edge constraint for the trusses was disabled, and the cross section 

area of the trusses elements was set consistent with the node spacing of the geometry 

(circular cross sections with radii of either 2 or 4 µm.) To couple the two physics 

modules to one another, the dependent variable of the truss physics, displacement, was 

changed to the same displacement field of the solid mechanics domains. 

Mesh 

 The geometry was reduced to a single free tetrahedral mesh with normal size 

elements using the default meshing algorithms in COMSOL. This resulted in sufficient 

element density of both the truss elements and solid domains for the current investigation. 

Study and Results 

 A stationary study including geometric nonlinearity (to account for the deforming 

mesh) was performed using a segregated MUMPS solver with COMSOL’s suggested 

settings. A parametric sweep was included to alter the applied stretch. The exact amounts 

of stretch differed for each cell, but each was subject to up to approximately 15% strain. 

 After the study was performed, the results were determined from the solution set 

with a spatial reference frame. At each value of applied stretch, the axial stress in each 

truss element was plotted in 3D along with the deformed mesh (represented as a 

wireframe) and the deformed cellular volume, deformed truss volume, average axial 
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strain in the truss elements, and total y reaction force at the fixed end of the cell were 

computed. 

Assessment and Validation 

 Assessment of the model was performed by comparison to experimental data 

obtained through combined AFM and Carbon Fiber mechanical analysis of isolated 

mouse adult cardiomyocytes25. The main metrics for comparison are total axial force vs 

applied stretch and apparent transverse elastic modulus vs applied stretch. In order to 

compare between different sized cells and account for species differences, the applied 

stretch was normalized by change in sarcomere length. This was measured optically in 

the experimental setup and calculated from the average axial strain in each fiber for the 

model. 

 

Figure 3.8: AFM/Carbon Fiber experimental setup being used to perform 
mechanics measurements on an isolated mouse adult cardiomyocyte.25 
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Apparent elastic modulus was measured experimentally using an AFM cantilever 

with a 5 µm borosilicate glass bead conjugated. Elastic modulus was then calculated by 

fitting the data to the Hertz contact model. This technique was not recreated in the model 

due to the large computational load required to analyze contact mechanics. Additionally, 

there is no direct way to measure the elastic modulus in either the axial or transverse 

directions from our model data. Instead, the moduli were estimated by approximating the 

cell as a unidirectional fiber composite. In this approximation, the transverse elastic 

modulus can be estimated by: 

1
𝐸𝐸𝑐𝑐

=
1
𝐸𝐸𝑚𝑚

(1 −
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

) +
1
𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

 

where Ec, Em, and Ef are the moduli of the cell (composite), matrix, and fibers 

respectively and Vf and Vc are the total volumes of the fibers and cell. Similarly, the 

elastic modulus in the axial direction can be given by: 

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚(1 −
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

) + 𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

 

with the variables representing the same quantities as the transverse direction. It is 

important to note that the axial direction requires assuming an iso-strain state and the 

transverse requires the iso-stress assumption. The makes the estimation of the transverse 

properties slightly less accurate, but still a reasonably good approximation.  
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3.3 Results 

 The resulting COMSOL geometries that were generated for the four sample cells 

used in this study are shown in figure 3.9. The fiber spacing for each cell is 2 µm. Table 

3.2 provides a summary of the details of the geometry including cell volume and number 

of fibers generated for that cell in the algorithm presented in the previous chapter. The 

model degrees of freedom are also listed. These are dependent not only on the complexity 

of the geometry, but also the meshing of the geometry and the physics applied. Lastly the 

computation time needed to perform the stationary study at 7 different values of stretch 

are included. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Rat 1 Rat 2 

Rat 3 Rat 4 

Figure 3.9: Model geometries, generated by the algorithm presented in chapter 2, 
visualized in COMSOL. Fiber node spacing for all geometries shown is 2 µm. 
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Table 3.2: Summary of model complexity for the four COMSOL models generated. 
 

Cell Volume (µm3) # of Fibers Degrees of Freedom Computation Time* 
Rat 1 14,188 24 44,775 9 min 37 sec 
Rat 2 27,483 56 92,505 21 min 6 sec 
Rat 3 16,057 30 80,157 36 min 52 sec 
Rat 4 16,662 37 87,696 22 min 26 sec 

 
*All computations were performed with COMSOL v5.3 on a 64-bit Windows 10 
machine with an AMD A8-7600 Radeon R7, 10 Compute Cores (4C+6G) @ 3.10 GHz 
and 24.0 GB of DDR3 RAM. 
 

Sensitivity of the model to fiber spacing was assessed by performing the study on 

a sample cell (Rat 2) with fiber spacings of both 2 µm and 4 µm. The resulting 

visualization of axial stress in each fiber overlaid on deformation of the solid domains at 

maximum stretch is shown in figure 3.10. Fiber spacing of 4 µm is shown on the left and 

2 µm on the right. As expected, the larger spacing resulted in higher maximum stresses in 

individual fibers. A larger decrease in the cross-sectional area of the cell can also be 

observed in the larger spacing case. 

 Figure 3.11 shows the summary graphs of the axial force vs applied stretch, 

transverse elastic modulus vs applied stretch, and axial elastic modulus vs applied stretch 

for both models. All three metrics were initially higher (at zero stretch) for the model 

with larger fiber spacing and also exhibited a larger increase with increased stretch in this 

model. 
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Figure 3.10: Comparison of fiber thickness on simulation results. Deformed meshes and 
axial stress in the truss elements are shown for a sample cell (Rat 2) with node spacing of 
4 µm (left) and 2 µm (right). Units for both color legends are N/m2. 
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Figure 3.11: Comparison of simulation results between models with fiber spacing of 2 
and 4 µm for a sample cell (Rat 2). Total axial force, transverse elastic modulus, and axial 
elastic modulus are plotted vs applied stretch. 
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 The remaining cells were only modeled with a fiber spacing of 2 µm. The amount 

of applied stretch varied for each cell (based on it’s initial length) in order to achieve a 

similar degree of strain in each cell. Figure 3.12 shows a representative visualization of 

axial stress in each fiber overlaid on solid deformation for a single cell (Rat 3) at each 

value of stretch applied. The colored legend for each is normalized to the highest stretch 

case. It can be observed that axial strain remains relatively low initially as the fibers 

straighten out, with stress increasing rapidly after the fibers are all straight. Some degree 

of necking can also be observed at the higher cases of stretch. 
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Figure 3.12: Deformed mesh and axial stress in the truss elements for a sample cell (Rat 
3) for each applied stretch (0, 1.2, 2.4, 3.6, 4.8, 7.2, 9.6, 12 µm). Units of the color legend 
are N/m2. 
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The model data was compared to experimental data measured on a combined 

Carbon Fiber/AFM setup on isolated mouse adult cardiomyocytes. To account for size 

differences across species, the stretch data was normalized to % change in sarcomere 

length (experimental) or % change in axial strain (model). Figure 3.13 shows each value 

of axial force plotted vs change in sarcomere length for the experimental data. A total of 

19 cells from 4 mice were included. Figure 3.14 shows the same metrics plotted for the 

model data from all 4 rat cardiomyocyte models. 

 Figures 3.15 and 3.16 presents this same data for the experimental setup and 

model, respectively. In these figures, the x-axis data is binned into groups of 1% change 

in sarcomere length/axial strain to show the range of axial forces experienced at each 

percent change in elongation. Because of the small sample size of the model, some bins 

only resulted in a single data point.  
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Figure 3.13: Experimental data of 19 cardiomyocytes (4 mice) stretched on a combination 
carbon fiber/AFM apparatus. Total axial force in the cell is plotted vs sarcomere length 
(as a percentage of resting length).  

Figure 3.14: Simulated data of 4 cardiomyocytes (Rat 1-4). Total axial force in the cell is 
plotted vs axial strain (as a percentage of resting length). This axial strain is analogous to 
a change in sarcomere length.  
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Figure 3.15: Experimental data of 19 cardiomyocytes (4 mice) stretched on a 
combination carbon fiber/AFM apparatus. Total axial force in the cell is plotted vs 
sarcomere length (as a percentage of resting length). The x-axis was grouped into bins of 
1% change in sarcomere length.  

Figure 3.16: Simulated data of 4 cardiomyocytes (Rat 1-4). Total axial force in the cell is 
plotted vs axial strain (as a percentage of resting length). The x-axis was grouped into 
bins of 1% change in sarcomere length.  
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 The second metric assessed through comparison with the experimental data is the 

transverse elastic modulus of the cell. This data is plotted in Figure 3.17, with similar 1% 

binning of the elongation as in the previous analysis. For the experimental setup, this was 

assessed using the AFM with a 5 um borosilicate glass bead attached to the end of the 

AFM cantilever. Resulting indentation data was fit to the Hertz elastic contact model, so 

the data plotted is the apparent elastic modulus of the cell.  

 For the model, transverse elastic modulus was assessed by approximating the cell 

as a unidirectional composite material, so the data plotted in Figure 3.18 is the estimated 

elastic modulus vs elongation, with the same 1% binning. Again, due to the small sample 

size of the model, some bins only contained one data point.  
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Figure 3.17: Experimental data of 19 cardiomyocytes (4 mice) stretched on a 
combination carbon fiber/AFM apparatus. Apparent elastic modulus of the cell is plotted 
vs sarcomere length (as a percentage of resting length). The x-axis was grouped into bins 
of 1% change in sarcomere length 

Figure 3.18: Simulated data of 4 cardiomyocytes (Rat 1-4). Estimated transverse elastic 
modulus on the cell is plotted vs axial strain (as a percentage of resting length). The x-
axis was grouped into bins of 1% change in sarcomere length.  
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3.4 Discussion 

 As expected, larger diameter fibers result in an increase in the axial force and 

elastic moduli of the cell. Consistent with the findings in the previous chapter, larger fiber 

spacing results in an increase in the packing density of the fibers. The elastic moduli 

estimations are especially sensitive to the volume fraction of fibers. Both fiber spacings 

resulted in cell properties of similar magnitude to the experimental data, at least in the 

single cell model where both were analyzed. It can also be observed in figure 3.10 that 

the smaller fiber spacing resulted in noticeably more narrowing of the cell as it was 

stretched, despite an increase in the transverse elastic modulus. It is important to note that 

this cell had a much larger volume and lower aspect ratio than the other cells, which 

resulted in efficient packing despite fiber spacing. As shown in the previous chapter, high 

aspect ratio cells can be packed more efficiently by smaller fibers. Because of this, the 

remainder of the models were only generated with the smaller spacings. 

 Comparison of the model performance to the experimental data shows that most 

measured properties were consistent. In general, the model exhibited lower total axial 

force in the cell and lower mechanical properties. The material properties chosen for the 

model were based on values reported in literature. These properties could be modified to 

so that the performance more closely matches the experimental data. It is also worthwhile 

to note that there was much less variability in the model data (as can be expected with a 

model) but the sample size for the model was also much lower than the experimental data 

(n=4 vs n=19). Perhaps the biggest difference between the experimental and model data 

is the dependence of transverse elastic modulus on applied stretch. A similar increase in 
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modulus was observed as the cells experienced stretch, but the magnitude of the increase 

was much lower in the model. The exact reasons for this are unclear but it is likely due to 

some other physiological mechanisms that are taking place in the experimental data that 

are not captured by the model, such as osmosis. It could also be due to other cytoskeletal 

elements of the cell which are not captured by the model.  

 This limited information about what is occurring in the transverse directions is 

one of the major limitations of the model. Trusses, by design, only experience stresses in 

the axial direction, so they don’t contribute much to the transverse mechanics of the cell. 

In future studies, this limitation might be diminished by also including other cytoskeletal 

elements, such as actin and microtubules which are more directly involved with 

transverse mechanics since they are not isotropic in the cell like myofibrils. Despite the 

limitation of trusses, they also exhibit several advantages. Even though our paths travel 

through all three dimensions, once meshed each individual truss is modeled as a 1D 

element. This substantially reduces the computational load compared to modelling the 

fibers as a 3D solid. Additionally, because they are truss elements, the axial properties are 

easier to calculate than they would be for a different geometry type since the physics are 

already calculated based on their axial direction. If instead they were modelled as 3D 

elements, the physics would be calculated with respect to the x, y, and z directions so an 

extra step of computing the rotated axis that align with the axis of the fiber would be 

necessary to compute the axial properties. Though not performed in this study, applying 

stresses to each individual fiber in the axial direction is also possible using our 

framework. This allows further modelling of cellular contraction to be performed.  
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3.5 Conclusions 

 We have created a semi-automated framework to model the mechanics of single 

cardiomyocytes using COMSOL Multiphysics. It has been demonstrated that modelling 

these cells as composites of a linear elastic solid embedded with fiber trusses provides a 

reasonable approximation of cellular mechanical properties in the transverse and axial 

directions. This basic framework allows for easy extension to account for more 

cytoskeletal elements, contraction and contact mechanics studies, or coupling of 

additional physics such as cellular electrophysiology. By modifying the input geometries, 

such as by changing the optimization parameters of the algorithm presented in the 

previous chapter, rapid analysis of how differing cytoskeletal organization affects the 

mechanical properties of the cell can be performed. This method could also be readily 

adapted to by used on tissue-level geometries as well. We have demonstrated that 

differing fiber spacings results in similar mechanical behavior, so with tuning of the 

model’s material properties computational cost can be saved if necessary when scaling up 

to multicellular geometries without only minimal reductions in performance. 
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CHAPTER FOUR 

SINGLE-CELL ELECTROPHYSIOLOGICAL MODELS AS TOOLS IN 

ENGINEERING EDUCATION 

 

The goal of this aim is to develop, launch, and evaluate a new software, 

CellSpark, which simulates experiments in electrophysiology for use in the course BIOE 

3700 – Bioinstrumentation and Bioimaging. This software is used by the undergraduate 

students enrolled in the course to learn about models of electrophysiology and to develop 

and perform a short electrophysiology experiment. The experiment becomes the basis of 

their midterm lab report, which is a journal style article presenting and discussing the 

findings of their experiment. 

4.1 Introduction and Background 

4.1.1 Models of Electrophysiology  

 The earliest successful attempt at any single-cell electrophysiological modelling 

occurred in 1952, with the publishing of the now famous work by Alan Lloyd Hodgkin 

and Andrew Huxley.1 The Hodgkin-Huxley model, also referred to as the conductance-

based model, was developed primarily by studying the squid giant axon through use of 

the patch clamp technique. While originally developed to describe only the behavior or 

neurons, the model can be generalized to describe any electrically excitable cells 

including cardiomyocytes. 
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Figure 4.1: Circuit diagram of the Hodgkin-Huxley conductance-based model.23 

 
Fundamentally, the conductance-based model represents the cell membrane of an 

electrically excitable cell as the circuit shown in Figure 5.1, with the following elements 

in parallel: 

• A capacitor, representing the membrane capacitance that arises due to the lipid 

bilayer. 

• Nonlinear conductances in series with voltage sources, representing voltage gate 

ion channels and electrochemical gradients which drive ion diffusion (Nernst 

potentials), respectively. 

• Linear conductances in series with voltage sources, representing leakage ion 

channels and their Nernst potentials, respectively. 

• Current sources, representing the ion pumps which facilitate active transport 

against electrochemical gradients. 

Modelling the membrane in this way results in the excitability of any cell being able 

to be fully described by the following four ordinary differential equations: 
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where I represents the total membrane current, α and β represent species specific rate 

constants, and ḡ is the maximum value of the conductance. n, m, and h are positive 

constants less than 1 associated with sodium and potassium channel activation and 

inactivation. The rate constants, which were experimentally determined by Hodgkin and 

Huxley are given by: 

 

 Even more than 60 years later, the Hodgkin-Huxley model is still regarded as one 

of the most complete models of cell excitability. However, due to its nonlinearity, it is 

difficult to study analytically and is computationally costly. For this reason, many have 

sought to build on and simplify the conductance-based model. 

 The most famous simplification of the Hodgkin-Huxley model is the relaxation 

oscillator model of nerve conduction first suggested by Richard FitzHugh in 19612 and 

independently created by Jin-ichi Nagumo et al in 1962.3 Unlike the Hodgkin-Huxley 

model, which describes ion channel dynamics in great detail, the FitzHugh-Nagumo 

(FHN) model is described by only two variables: v, the nonlinear membrane voltage and 

w, a linear recovery variable. The equations of the system are: 
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This results in a good approximation of the Hodgkin-Huxley model while 

ignoring the individual ionic dynamics. As such, the comparative simplicity of the 

FitzHugh-Nagumo model (and derivations of it) makes an ideal choice for many 

computationally efficient modelling applications. 

 Another two-variable model, this one focused directly on the heart, was 

developed with the simplicity of the FitzHugh-Nagumo in mind. In 1996, Rubin Aliev 

and Alexander Paniflov published “A Simple Two-variable model of cardiac excitation.”4 

This modification of the FHN differs from the original in two important aspects: the pulse 

shape and the restitution property of myocardium. Restitution refers to the relationship 

between action potential duration and length of the cardiac cycle. As can be seen in 

Figure 5.2, which is generated by the model, the duration of duration of the action 

potential is substantially shortened as cycle length decreases.  

 

Figure 4.2: Action potential duration at various cardiac cycle frequencies4 
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 More advanced models of cardiac electrophysiology have been published for 

various species including rabbits5,6, guinea pigs, dogs, and humans. One of the most 

comprehensive of these models is the ten Tusscher Noble Noble Paniflov7 (TNNP) model 

published in 2004. This model of human epicardial, endocardial, and cardiac M cells is 

an extension of the Hodgkin-Huxley model in that it recreates ionic currents present 

across the membrane rather than simplifying to an over dynamics problem like the FHN 

model. 

4.1.2 Experiential Education Tools 

Over the past 15 years, educators and industry partners alike have repeatedly 

warned of a growing gap in US competitiveness 8, a declining interest in STEM, and 

lagging innovation 9In order to address this, a considerable effort has been made to 

incorporate more hands-on engineering practice into engineering curricula, with much of 

the push being at the request of industry partners, who warn of graduates unprepared for 

immediate success in the “real world” 10. One specific method used to this end is Design 

Based Learning.  

Design Based Learning (DBL) is a specific type of Problem Based Learning that 

“involves students engaged in the process of developing, building, and evaluating a 

product they have designed.” 11 The general process of DBL is that instructor will 

generally pose an open-ended, loosely defined problem to students. Students the work, 

typically in small groups, to design, build, and test solutions to the problem 11. This 

method allows students to have a hands-on application of what they learn and because 

students work in groups to design unique solutions, DBL encourages teamwork and 
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interpersonal skills, fosters independence from the instructor and allows students to 

reinforce the curricula and develop problem solving and critical thinking skills 12 

While shown to be successful, DBL requires access to time, space, and physical 

resources that make it infeasible in some settings. An alternative approach to traditional 

DBL is the use of simulations as tools for engineering education. Sophisticated computer 

simulations can allow undergraduate engineering students exposure to “real world” 

engineering activities in which they would otherwise not be able to participate 13 or 

simulated activities that would be time or resource intensive to do physically 14 This latter 

example is specifically the situation for electrophysiology – the content area of interest 

for this study. The “gold standard” technique in electrophysiology, the patch clamp, is 

expensive and time intensive to perform, on top of the hours of practice needed to 

develop competency, making it a perfect candidate for replacement with a simulation 

based learning tool. 

4.1.3 Instructor Motivation 

While many faculty are hesitant to change curricula in order to accommodate 

simulation tools (especially those designed for research or industry use) into their course 

content, it has been demonstrated that these tools can be successfully incorporated into 

courses, showing that students improve their use of these tools and their mastery of 

course content, without requiring a large amount of lecture time. 15 

In a 2012 study, Magana et al16 explored the various learning objectives, both explicit and 

implicit, that professors identified when deciding the use computational simulations in 

their classrooms. This determination was carried out by conducting interviews of 14 
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engineering professors who implemented computational simulations developed by the 

Network for Computational Nanotechnology (NCN) into both graduate and 

undergraduate courses, mostly in the fields of Electrical, Computer, and Material Science 

Engineering. The interviews were analyzed through the theoretical framework of 

phenomenography and identified eight distinct categories of learning objectives, shown 

below in Figure 1.  

 

Figure 4.3: Learning Objectives for using simulations in teaching engineering16  
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This study initiated critical thinking about the implementation of the simulation tool 

in our study and lead to identification of 5 learning objectives to be accomplished using 

the software outlined later which roughly align to categories A-E in Figure 1, and 

additional objective based on the write up portion of the assignment. These learning 

objectives are: 

1) The student should be able to identify and distinguish between various models of 
cell electrophysiology 

2) The student should be able to use simulation tools to design and carry out an 
experiment 

3) The student should be able to critically analyze the results of a simulated 
experiment in the context of the underlying model 

4) The student should be able to critically assess the validity of simulated results 
based on their understanding of the underlying physiology 

5) The student should be able to corroborate or contradict simulated results or their 
own critical analysis through external sources 

6) The student should be able to effectively communicate the results and analysis of 
their experiment  

These identified learning outcomes also roughly align to the requirements of the 

Accreditation Board of Engineering and Technology, Inc.17 criteria 3 a,b,e,g and k, listed 

below and this assignment is routinely used as an artifact to show compliance with these 

criteria. 

Table 4.1: Selected ABET criteria for accredited programs in engineering17 

Criteria  
(a) an ability to apply knowledge of mathematics, science, and engineering 
(b) an ability to design and conduct experiments, as well as to analyze and 

interpret data 
(e) an ability to identify, formulate, and solve engineering problems 
(g) an ability to communicate effectively 
(k) an ability to use the techniques, skills, and modern engineering tools 

necessary for engineering practice. 
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4.1.4 Theoretical Framework 

The theoretical framework chosen for the analysis in this study is the that of 

discovery learning. Discovery learning is a constructivist approach to education similar to 

(and in some applications synonymous with) Problem-Based Learning. While the 

literature presents a very broad range of definitions for discovery learning, Alfieri et al 

suggest the most important quality in defining it is that the learner is not directly given 

the information to be learned and must discover it himself through investigation within 

the confines of a specific task and given material18. 

While its’ effectiveness as an instructional method has been called into question19 

especially among younger learners20 or when pure discovery is relied upon21, recent work 

describing “enhanced discovery learning” in which necessary information and assistance 

needed to complete the task are provided by the instructor has led to renewed advocacy 

of the approach22. 

4.2 Methods 

4.2.1 Software 

 CellSpark is implemented as a MATLAB App. It is compatible with the current 

(at the time of this publication) version R2018a and backwards compatibility has been 

tested back to version R2014a. The full code is included in Appendix B but the software 

hierarchy and some implementation details will be included in this section. 

The main program is contained in CellSpark.m. This serves as the bridge between 

the user interface (CellSpark.fig) and the script that actually runs the simulations 
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(run_simulation.m). CellSpark.m contains the code which initializes the user interface 

objects, defines their callbacks, and updates the user interface as the program is used 

interactively. Four different cell types can be chose: neurons, epicardial cells, endocardial 

cells, and cardiac M cells. Two different models are implemented in run_simulation.m: 

the Hodgkin-Huxley1 model which controls the simulation if neuron is chosen, and the 

ten-Tusscher Noble Noble Paniflov7 (TNNP) model, which controls the simulation if any 

of the three cardiac cells are chosen. Any parameters (for either model) that can be 

controlled by the user are set in the user interface. The default settings for these 

parameters are the published values. Some additional advanced settings can be changed 

in Settings.m, which is the backend for the Settings.fig user interface.  

Once the “Run Simulation” button of the user interface is pressed, 

run_simulation.m is called to begin the numerical estimate. Depending on the cell type 

chosen, initial values for the computed variables are pulled from the user interface (in 

CellSpark.m) or from a separate variables file. Variables for the Hodgkin-Huxley model 

(neuron) are stored in VariablesN.m and variables for the TNNP model (cardiac cells) are 

stored in Variables.m. The non-linear differential equation which describes each model is 

approximated using the forward Euler method. The time step is one of the advanced 

settings that can edited by the user. Each step of the approximation is performed by 

Step.m (TNNP) or StepN.m (Hodgkin-Huxley) and returned to run_simulation.m and 

CellSpark.m (to update the plots in realtime).  
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CellSpark.m CellSpark.fig 

run_simulation.m 

Step.m Variables.m StepN.m VariablesN.m 

Settings.m Settings.fig 

Figure 4.4: Overview of the CellSpark software dependencies. The full code is available 
in Appendix B.  
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Figure 4.5: Screenshot of the CellSpark software interface. The cell type is currently set 
to “Neuron” and the characteristic Hodgkin-Huxley action potential is plotted. Other 
dependent variables that can be plotted include ionic currents, the values of gating 
parameters, and ion concentrations. 
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4.2.2 Study Parameters 

CellSpark was developed for use in the laboratory portion of an undergraduate 

bioengineering course, Bioinstrumentation and Imaging, at a large public research 

institution in the southeastern United States. The course focuses on teaching the basic 

principles of physics, electronics, and physiology necessary to acquire, analyze, and 

interpret signals of biological origin. One third of the course is spent on electronics, one 

third on electrophysiology at the cell-organ levels, and one third on biomedical imaging 

modalities. The corresponding laboratory portion of the course closely follows the lecture 

section and covers the same topics. Enrollment in the course is typically 50-75 students 

per semester and is divided nearly evenly among males and females and among juniors 

and seniors, though class standing is often more skewed to seniors in the fall semester 

and juniors in the spring.  

The course is part of the required curriculum for bioengineering students and is an 

elective for electrical engineering students. The breakdown by major is approximately 

80% bioengineering students with a biomaterials concentration, 15% bioengineering with 

a bioelectrical concentration, and 5% electrical engineering students. All students have 

taken calculus through differential equations, physics II (electricity and magnetism), and 

some form of preparatory electrical engineering course (basic EE for non-majors or DC 

circuit analysis.)   

This study focuses primarily on students’ completion of the midterm lab 

assignment, which constitutes 15% of the final course grade. After brief exposure to the 

basics of cellular electrophysiology in lecture and a short tutorial exercise in lab, students 
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design and simulate an electrophysiology experiment on either a neuron or cardiac cell 

using the CellSpark software. After collecting data from the simulator, students write up 

their findings in a journal style article and present a critical discussion of the results in the 

context of physiology and the mathematical models upon which the simulation are based.  

4.2.3 Assignments 

A short introductory lecture presentation (slides are included in Appendix C.1) 

and tutorial lab exercise (included in Appendix C.2) were developed to introduce students 

to the field of electrophysiology, the mathematical models upon which CellSpark is 

based, and to introduce students to the software interface. The goals of the presentation 

were mainly to review the topics already discussed in lecture about action potentials and 

the ionic currents which initiate them, to familiarize students with the proper terminology 

to use when discussing electrophysiology concepts, and to give some helpful tips about 

what the teaching staff looks for when grading the assignment. The steps of the tutorial 

mainly served to introduce all of the parameters of the model, give an example of an 

“experiment” performed using the software, and to cause students to begin analyzing 

results of the software both quantitatively and qualitatively. 

Two weeks after initial exposure to the software in lab, students had to submit 

their initial hypotheses for approval by the instructor and teaching assistants. Along with 

the hypothesis (generally of the form “if I increase/decrease X, I expect an 

increase/decrease in Y” - which essentially serves as their “plan” for conducting the 

experiment) the students had to give a logical argument to back up the hypothesis. 

Approval of the hypotheses was not based on correctness (or soundness of the argument) 
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but on suitability for testing with the software and for evidence of thinking critically 

about how the two parameters of the hypothesis relate, either in the context of physiology 

or the mathematics of the model. 

Two weeks after having their hypotheses approved, students submitted their full 

lab reports written in the style of a short journal article. (The full assignment prompt and 

guidelines are presented in Appendix C.3.) While students were not forbidden from 

asking for help from the instructor or Teaching Assistants, only 3 students out of 65 

sought additional help in interpreting the results of their experiments. Since the goal of 

this study is individual discovery learning, only explanations of previously taught topics 

were given, with the students encouraged to logically develop their own interpretation of 

the results.  

4.2.4 Data Collection 

Following submission and grading of their midterm lab reports, students were 

invited via email to participate in an anonymous survey about their use of the CellSpark 

software. The survey consisted of seven Likert-type scale questions to determine the ease 

of use of the software, the quality of the presentation and tutorial, the students’ 

understanding of electrophysiology before and after completing the assignment, and 

preference to using the software over a traditional lecture based learning environment. 

The survey also featured a free response question for students to given additional 

comments or suggestions for improving the software. 

The primary method to assess the identified learning outcomes was through 

content analysis of the submitted lab reports. The content of students’ reports (primarily 
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the discussion sections) was analyzed with the intent of finding specific evidence of 1) 

the students’ understanding of the basic process of action potential generation in a cell, 2) 

the students’ ability to identify and interpret key elements of the mathematical models 

which influence their results, 3) the students’ ability to think critically about the 

experiment and not simply rely on explanations given in lecture/lab and 4) the students’ 

ability to find and evaluate external sources in support of or contradiction to their 

reasoning, without specifically being asked to. 

4.3 Results 

Authors Note: Three students were found to have plagiarized the assignment being 
examined in this study. Papers from these students were excluded from the analysis and 
since two of the students unenrolled in the course, they were not asked to complete the 
post assignment survey. It is unknown whether the third student who remained enrolled 
completed the anonymous survey. 
 

4.3.1 Survey Questions 

Students were solicited via email and during lecture to complete an optional 

online assessment concerning their use of the CellSpark software. Of the 141 students 

remaining in the course, 61 students participated in the survey. The survey asked students 

to indicate their level of agreement with 7 statements. The responses were quantized by 

assigning a value of 1-5 and normal distributions of responses were generated. These 

summary of response for each statement are presented below in figure 4.6. 

An additional space was added to the survey for students to give any other comments 

about the software or suggestions to improve it. 16 of the 61 students who completed the 

survey gave a response and these are included here: 
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“I liked the interaction of the software but, coming from someone who was 
relatively new at learning about electrophysiology, I think that a key for what the 
abbreviations for things meant would make it easier to follow” 
 

“I really liked using the software as a learning tool. When I got an interesting 
result for my experiment, it made me look into it more and I actually learned a 
lot.” 
 
“Maybe account for more parameters, like denaturation or membrane 
composition!” 
 
“I think there should be more of a clear way to export data from the graphs” 
 
“Maybe have different colors to better distinguish lines if there are multiple (i.e. 
darker colors for the lighter background)” 
 
“It [would] be cool if it had sound effects, like whooshes and Zaps!” 
  
“It was very user-friendly and helped me to understand how certain parameters 
affect the action potential of different cell types.” 
 
“There seem to be certain values in a relatively normal range that result in 
modelling errors. For example, using a neuron's default values but setting Cm to 
1.1 or 1.7 results in discontinuities.” 
 
“Could you be able to choose the colors you use for the graph? I am colorblind 
and some colors were, therefore, difficult to see and determine the shape of the 
graph. Literally couldn't see the yellow line at all and had to get someone with 
normal color vision to help me.” 
 
“Add the ability to edit line colors to prevent to lines of similar colors being 
adjacent to each other” 
 
“The software was great, clean interface and easy to use, and allowed me to better 
visualize the relationships between depolarization, repolarization, and the flux of 
ions.” 
 
“I thought the software was interesting. I also thought it was pretty intuitive. I 
didn't know about the software beforehand and I appreciated getting to use it.” 
 
“I thought the program was great. I was able to visualize and learn a lot that I 
don’t feel I would have learned simply from lecture.” 
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“Great software! The only thing I would suggest to improve is to add more colors. 
I ran the program for 12 different values, graphing the curves for all values on one 
plot for direct comparison. There were only 6 colors (red-yellow) and then the 
colors repeated. This made the legend show the same color for 2 different values, 
which could be confusing for anyone other than the person who ran the 
simulation, themselves. I would say 20 colors  
would be sufficient.” 

 
“Entering decimal values for variables sometimes caused weird graphs to be 
made, e.g. entering values like 40.111 deg C caused an extra spike to appear on an 
action potential that did not occur at 40 or 41 deg C. This might be due to 
calculator rounding errors.” 
 
“It would be cool to see the code that was used in the program” 
 

 

 

Figure 4.6: Combined responses to survey items (n=61) 

 

4.3.2 Content Analysis – Learning Objectives 

Of the 62 assignments completed by students, 13 of them were randomly selected 

to be used for the content analysis portion of this preliminary study. While there may be 
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overlap with the 61 survey responses, these papers were selected at random and do not 

represent the same set of students. 

Learning Objective 1: The first learning objective identified in the implementation of this 

project was that students be able to identify and distinguish between various models of 

cellular electrophysiology. The specific models implemented in the software are the 

Hodgkin-Huxley model of a neuron and the TNNP model of cardiomyocytes. Of the 13 

reports analyzed so far, 7 chose to perform experiments on cardiac cells and the 

remaining 6 chose neurons.  

Only 1 of the 7 cardiac reports correctly identified that the TNNP model was 

being used, and this student reached out for extra assistance during the preparation of 

their reports and was confused about the distinction at that time. 5 of the students 

incorrectly identified the model as the Hodgkin-Huxley (which doesn’t model cardiac 

cells) and 1 student failed to identify the model as TNNP, but did correctly state that the 

Hodgkin-Huxley only applies to neurons. The last student did not discuss either model in 

their paper. 

However, the 6 students who chose to perform their experiments on neurons were 

all able to correctly identify the model used in their experiments as the Hodgkin-Huxley. 

It is important to note that this model is covered more extensively in the lecture portion of 

the course, whereas the only introduction to the TNNP model was in the short lecture on 

electrophysiology given in lab before introducing the software for the first time.  

Learning Objectives 2 & 3: Since all students were able to complete the assignment, the 

second identified learning objective of students being able to use simulation tools to 
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design and carry out an experiment was completely achieved. However the third 

objective, that students should be able to critically analyze the results of a simulated 

experiment in the context of the underlying model, was not achieved by all students. 

Disregarding the student who made no reference to either model, students’ papers tended 

to fall into one of three categories: 

• Group I: 5 students demonstrated a good understanding of the model and were 
able to assess their results in the context of this understanding (fulfilling the 
objective) 

• Group II: 4 students demonstrated an understanding of the model but only 
partially explained their results in the context of it, or made key errors in the 
analysis 

• Group III: 3 students demonstrated an understanding of the model, but failed to 
discuss their results in the context of it at all 

Learning Objective 4: The alternative approach to discussing the results in the context of 

the mathematical model is to discuss them in the context of what is happening 

physiologically at the cellular and ionic levels. Due to this, it was expected that students 

would primarily take one approach or the other – resulting in three similarly sized groups 

with the opposite trend – so the fourth identified learning objective was that student 

should be able to critically assess the validity of their simulated results based on their 

understanding of the underlying physiology.  

However, all 5 students in Group I, who showed the best understanding of and 

ability to interpret the model also showed the best understanding of what happens at the 

physiological level, with only a few minor incorrect details. In Group II, two of the 

students showed a good understanding of the physiology while the third failed to discuss 

it and the last student had significant mistakes in their understanding. In Group III, only 

one student showed a partial understanding.  
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4.3.3 Content Analysis – The Case of the Black Mamba 

 Here we will highlight one specific case study which demonstrates what we aimed 

to achieve by creating the CellSpark software. In the third semester of the software’s use 

in BIOE 3700 (Fall 2018), one student posed the following hypothesis: 

“I hypothesize that the venom of the Black Mamba snake will increase the 
duration of the action potential of the neuron cell.” 

 
The CellSpark software does not contain an option directly to alter this parameter, but 

this student, through their own outside research found that the primary component of 

Black Mamba venom is dendrotoxin. This student learned that dendrotoxin functions as  

a potassium channel blocker. In order to model this, the student proposed altering the 

maximum potassium conductance. At the time, this was not a changeable parameter in 

the software, but it was added at the student’s request. This example highlights the type 

of active learning that CellSpark was designed to encourage. The student had some 

creative interest, engaged with the mathematical model enough to understand how their 

hypothesis could be tested, and requested a feature be added to the software. Once added, 

the student successfully tested their hypothesis and was able to relate the physiological 

response they observed back to the symptoms of a Black Mamba bite. 

4.4 Discussion 

4.4.1 Implications 

In order for discovery learning to take place, students must begin the assignment 

with relatively little content knowledge of the material being covered or there is nothing 

for them to ‘discover’ by performing the exercise. Responses to survey item S3 showed 

that this criteria was true for the average student, who felt they did not have a strong 
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understanding of electrophysiology prior to using the CellSpark software, though it is 

worthwhile noting this item had the highest variation of the survey, showing that students 

come in with a variety of skill levels. Another key component of a discovery learning 

framework is that students are given only the basic tools required to complete the task so 

that they succeed in discovering the content knowledge through completion of the task. A 

key design criteria of the CellSpark software was that be simple and intuitive to use, as to 

minimize the barrier to entry, while containing enough complexity for meaningful 

scientific inquiry to take place. Affirmative responses to survey items S1, S2 and S5 

indicate that this goal was successfully met, though one of the students expressed a 

desired for more detail in the interface in their free response.  

Survey item S5 assessed the utility of the software for improving student 

understanding of the material (or at least their self-assessment of understanding) and the 

overall affirmative response is promising. Moreover, the affirmative responses to survey 

item S6 show that the exposure to the software also increased students interest in the 

content, though to a lesser extent. Surprisingly, students indicated in survey item S7 that 

they strongly prefer the learning activity to a traditional lecture environment. 

The learning objectives identified for this study can be roughly assigned into a 

hierarchy similar to the one presented by Magana et al or to Bloom’s taxonomy. Because 

of this, it was assumed that learning objective 1 would be the easiest for students to 

achieve, being the lowest in the hierarchy. However, as the results show this was clearly 

not the case as most students failed to correctly identify the model being used. One 

potential implication of this finding is that the timing and setting of content delivery 
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significantly impacts the ability of students to correctly learn the content. The students in 

this study pretty overwhelmingly failed to process the information that was presented 

immediately before introduction of the software/assignment and were unable to recall the 

content when preparing their reports 2-4 weeks later. On the other hand, content which 

was introduced prior to introducing the assignment and then expanded upon in more 

detail at a later date was able to be recalled and correctly related to the assignment. This 

is further evidenced by the fact that all five students who misidentified the model did so 

by choosing the one that was covered in lecture (which presumably they were more 

familiar with.)  

Since the students who make up this class come from primarily two backgrounds 

– bioelectrical engineering and biomaterials engineering – it was expected that two 

different groups of students would emerge from the content analysis:  those explaining 

their results in the context of physiology vs those explaining in the context of the 

mathematical model. As the results indicated, instead the groups consisted of students 

who were successfully able to implement both explanations, those who could partially 

explain one or the other, and those who really failed to show mastery of either 

explanation. Coupled with the survey data which showed most students did not consider 

themselves as having strong prior knowledge but that their knowledge improved after 

intervention, this finding lends strong support to the CellSpark platform as a learning 

tool. The implication of this finding is that the mathematical models are not just 

important research tools in electrophysiology, but are effective for teaching it as well. At 

this point it is unclear whether students developed a better understanding of the 
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physiology based on their understanding of the model or the other way around, but it is 

evident that students with strong understandings of both were able to better think 

critically about the experiments the performed. 

Lastly, as the case study we highlighted shows, a discovery learning task requires 

students to engage with course content in a more active way. It allows students some 

degree of creativity and control over their learning which enhances their perceived 

knowledge and interest gains in the material, as demonstrated by the survey responses. 

Further, students strongly prefer learning difficult concepts, like electrophysiology, 

through experimentation rather than a traditional lecture environment. 

4.4.2 Limitations 

One potential limitation of this study is that content analysis of student reports 

may not be sufficient to measure the impact of the software of development of content 

knowledge as exposure to the content in other portions of the course may also influence 

its mastery. Additionally, as the three students caught plagiarizing on this assignment 

demonstrate, today’s university student has access to many resources, including the work 

of past students so critical insights in their writing, even if presented as original thought, 

may not necessarily demonstrate content mastery. In an expanded follow up study this 

could be addressed by incorporating additional methods of assessing understanding of the 

content such as concept mapping, performance on related exam questions, and individual 

interviews with students about their experience with the assignment. 

Another possible limitation of the current approach is that the students who chose 

to respond to the survey as well as those whose reports were randomly selected for 
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analysis may not give an accurate representation of the overall class population. While 

the survey response concern can’t be easily controlled for (aside from making 

participation a mandatory part of the assignment) the latter can be validated by 

comparing the assignment grades of students whose papers were analyzed to the grades 

of the class as a whole. The assignment was graded by splitting the 65 submitted papers 

into 5 groups 13, with each group being graded by a separate teaching assistant according 

to a uniform rubric (Appendix C). All 65 papers were then read separately by the course 

instructor who adjusted the grades to account for any variance between the teaching 

assistants. The statistical comparison of the analyzed papers to the whole class is 

presented below, showing no statistical difference between the two groups. 

Table 4.2: Statistical analysis of assignment grades (analyzed papers vs all papers) 

 Analyzed papers (n=13) Entire class (n=62) 
Mean score (out of 20) 18.269 18.066 
Standard deviation  1.235 1.706 
2-Tailed T-Test (unequal 
variance) 

p=0.622 

 

4.5 Conclusions 

This pilot study offers clear evidence that the CellSpark application has the 

potential to be a powerful tool for electrophysiology education and demonstrates the 

feasibility of using simulation tools primarily designed for research and a discovery 

learning framework as effective strategies for undergraduate engineering education.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Conclusions 

 The main motivation for this work is a need to increase understanding of the 

structure-function relationships of cells and the impacts those have on cellular and tissue 

level mechanics and electrophysiology. As we move into a new era of medicine, where 

tissues and organs are engineered and grown, having a wide variety of methods at our 

disposal to investigate the properties of those constructs will be vital. This work 

represents a step toward developing those tools. 

 In Chapter 2, we demonstrated a novel, fully automated algorithm to develop 

geometries of cardiomyocytes for use in finite element modelling (FEM) studies. This 

algorithm can be used with confocal images as inputs or with cellular geometries 

designed using CAD tools. We demonstrated the customizability of the algorithm and 

showed that it can estimate subcellular geometries regardless of image resolution.  

 In Chapter 3, we used those geometries to create scalable and customizable FEM 

simulations of single cell mechanics. These simulations, developed automatically, were 

capable of replicating experimental cell mechanics measurements by modeling 

cardiomyocytes as fiber composites, which resulted in low computational complexity. 

We also demonstrated the sensitivity of the model to myofibril diameter/spacing to show 

the viability of scaling the model to tissue and organ levels. 
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 In Chapter 4, we developed a software simulation tool that implements common 

models of cellular electrophysiology. This tool was designed for use in an undergraduate 

bioengineering course to allow discovery learning of electrophysiology to take place. We 

successfully launched in the software in the course BIOE 3700: Bioinstrumentation and 

Imaging and demonstrated the effectiveness of simulation tools in undergraduate 

engineering education. 

5.2 Recommendations for Future Work 

1. Extend the model to include additional subcellular components. While nuclear 

membranes were segmented in the method presented in Chapter 2, these were excluded 

from the model geometries in Chapter 3 for the sake of computational efficiency. 

Additional subcellular geometries, such as F-actin, microtubules and cell organelles could 

also be included. The model could also be improved by using clues from imaging to 

refine the approach. For example, staining for connexins or integrins could be used to 

develop a more sophisticated method of determining fiber termination points. Some 

preliminary work was also performed that shows the presence of the glycocalyx has a 

significant impact on whole cell mechanics measurements and additional modelling to 

explore this effect could yield interesting insights.  

2. Extend the model to replicate more physical experiments. A contact simulation would 

provide more information about the transverse mechanical properties than our current 

simplifications can provide at the expense of additional computational cost. Contraction 

studies could be performed without much modification of the current framework.  
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3. Incorporate electrophysiology and excitation-contraction coupling into the finite 

element model. As you move from the cell to tissue level in the heart, not only are their 

implications for the mechanics of the tissue, but also the electrophysiology. In our 

additional work, we show that present framework could easily be extended to include 

simple models of cardiac electrophysiology without increasing the computational 

complexity too much. Coupling this electrophysiology to the mechanics by modeling the 

excitation-contraction coupling is the next step towards creating a representative model 

of the cardiac environment.  

4. Model the transient mechanical behavior of cells. The modelling framework as it’s 

currently presented only looks at the steady-state behavior of cells under stretch, but as 

the heart is one of the most dynamic environments in the body, an understanding of the 

transient behavior is also necessary. A minor change to the model to include viscoelastic 

properties to the cell would allow these time-dependent studies to be performed. 

However, this analysis is much more computationally intensive, which is the primary 

reason it was not performed in the current study. A high-throughput computing 

environment, such as Clemson’s Palmetto Cluster, may be necessary to perform these 

simulations. 

5. Extend the model to higher scales of complexity. While the structure-function 

relationships and mechanics of single cells are interesting, our primary goal is to 

determine the implications of these relationships at the tissue and organ level. Extending 

the model to the tissue level is feasible with only minor modification (and an increase in 

computational complexity) and would allow us to work towards this goal. 
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6. Extend the model to additional cell types. With modifications, the approach presented 

here could be applied to other cell types (particularly skeletal and smooth muscle) of 

interest to mechanobiology.  

7. Refine the CellSpark software and create other simulation tools for engineering 

education. While we saw great success with implementing the CellSpark software into 

the curricula, there are still improvements that can be made to the software, mostly with 

the interface and data handling. We would also like to incorporate additional models of 

electrophysiology and different numerical techniques which can help to better illustrate 

some of the difficulties of simulation tools. Documentation of the software should be 

developed to increase its effectiveness as a software tool. Other simulation tools for 

engineering education can also be developed to allow active learning of concepts. Some 

potential concepts that could be explored include fluid dynamics, diffusion and heat 

transfer, and biomechanics.  
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APPENDIX A 

MATLAB CODE FOR GENERATING MYOFIBRIL DISTRIBUTIONS 

A.1: cell6.m 

This file must be manually created for each cell to be analyzed. It points to the 

directory containing images of the cell, assigns an identifier to the cell (the name of the 

file), performs the segmentation of the geometry, and writes the STL files of the cell and 

nuclei meshes. 

%import sequential TIFF images into one stacked matrix, and generate a 
%black and white stack of the images (25% intensity threshold) 
z = 52; 
[im bw] = Import_Confocal_Stack_sep... 
    ('C:\Users\tgharve\OneDrive\Research\Image Processing\Confocal 
Images\typical picture\ACM 3\Isolated Adult 
CM_1.lif_Series017_z','_ch0.tif',z,0.15); 
[nuc nbw] = Import_Confocal_Stack_sep... 
    ('C:\Users\tgharve\OneDrive\Research\Image Processing\Confocal 
Images\typical picture\ACM 3\Isolated Adult 
CM_1.lif_Series017_z','_ch2.tif',z,0.15); 
%estimate the volume and generate a binary matrix(1 inside/0 outside). 
Use 
[a b c] = size(im); 
  
im_scaledxy = imresize(im,0.19); 
nuc_scaledxy = imresize(nuc,0.19); 
  
mrows = size(im_scaledxy,2); %the second dimension is already the right 
size 
mcols = round(0.346*size(im_scaledxy,3)); %we want to rescale the third 
dimension 
  
for i = 1:size(im_scaledxy,1) 
    B(:,:) = im_scaledxy(i,:,:); %make a 2D array with the last two 
dimensions of A1 
    B1 = imresize(B,[mrows,mcols]); 
    im_scaled(i,:,:) = B1; 
end 
  
for i = 1:size(nuc_scaledxy,1) 
    B(:,:) = nuc_scaledxy(i,:,:); %make a 2D array with the last two 
dimensions of A1 
    B1 = imresize(B,[mrows,mcols]); 
    nuc_scaled(i,:,:) = B1; 
end 
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vol_nuc = estimateBinaryVolume_2(nuc_scaled,10,.02); 
vol_nuc = bwareaopen(vol_nuc,100); 
  
mem = estimateBinaryVolume_2(im_scaled,10,.02); 
mem = bwareaopen(mem,200); 
  
vol = mem - vol_nuc; 
  
[im_rot,ang,CoM] = regImage(im_scaled); 
vol_rot = regImage2(vol,-ang,CoM); 
nuc_rot = regImage2(vol_nuc,-ang,CoM); 
mem_rot = regImage2(mem,-ang,CoM); 
  
gauss = fspecial('Gaussian',3,1); 
[a b c] = size(vol_rot); 
for k = 1:c 
    vol_smoothed(:,:,k) = 
imfilter(imfill(vol_rot(:,:,k),'holes'),gauss); 
    nuc_smoothed(:,:,k) = 
imfilter(imfill(nuc_rot(:,:,k),'holes'),gauss); 
end 
  
vol_bound = vol_rot; 
  
%SE = strel('sphere',1); 
%membrane = imdilate(vol_smoothed,SE); 
  
[faces,vertices] = isosurface(vol_smoothed,0.01); 
stlwrite('3D Model Files/cell6.stl',faces,vertices,'mode','ascii'); 
  
%[faces_m,vertices_m] = isosurface(membrane,0.01); 
%stlwrite('3D Model 
Files/membrane6.stl',faces,vertices,'mode','ascii'); 
  
[faces_n, vertices_n] = isosurface(nuc_smoothed,0.01); 
stlwrite('3D Model Files/nucleus6.stl',faces_n, 
vertices_n,'mode','ascii'); 
  
FVc.vertices = vertices; FVc.faces = faces; 
FVn.vertices = vertices_n; FVn.faces = faces_n; 
pc = patch(FVc); 
pn = patch(FVn); 
set(pc, 'facecolor', [0.6 0.4 0.4]); 
set(pc, 'facealpha', 0.6); %translucency 
set(pc, 'linestyle', 'none'); % uncomment to hide mesh 
set(pn, 'facecolor', [0 0 1]); 
set(pn, 'linestyle', 'none'); 
  
axis equal 
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grid off                   % undo by   grid off 
axis vis3d 
  
daspect([1 1 1]); 
%axis xy; 
camlight; 
lighting phong; 
  
hold on 
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A.2: Import_Confocal_Stack_sep.m 
function [A,B]= Import_Confocal_Stack_sep(froot,froot2,n,th) 
if n>9 
    for k = 0:9 
        A(:,:,k+1) = imread(strcat(froot,'00',num2str(k),froot2)); 
        B(:,:,k+1) = im2bw(A(:,:,k+1),th); 
        % ... Do something with image A ... 
    end 
    for k=10:n 
        A(:,:,k+1) = imread(strcat(froot,'0',num2str(k),froot2)); 
        B(:,:,k+1) = im2bw(A(:,:,k+1),th); 
    end 
else 
    for k = 0:n 
        A(:,:,k+1) = imread(strcat(froot,'00',num2str(k),froot2)); 
        B(:,:,k+1) = im2bw(A(:,:,k+1),th); 
    end 
end 
 

A.3: estimateBinaryVolume_2.m 
function [vol] = estimateBinaryVolume_2(im,r,th) 
%imf = imgaussfilt3(im); 
[a,b,z] = size(im); 
for stack=1:1:z 
vol(:,:,stack) = estimateBinaryArea_2(im(:,:,stack),r,th); 
end 
 

 
A.4: estimateBinaryArea_2.m 

function [mask] = estimateBinaryArea_2(im,r,th) 
SE = strel('disk',4); 
mask = im2bw(im,th); 
mask = imdilate(mask,SE); 
mask = imfill(mask,'holes'); 
mask = imerode(mask,SE); 
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A.5: regImage.m  
function [imout2, ang, CenterOfMass] = regImage(im) 
%bw = im2bw(im,.05); 
[a b c] = size(im); 
bw = im(:,:,floor(c/2)); 
[x y] = find(bw); 
CenterOfMass = floor([mean(x) mean(y)]); 
CenterOfImage = floor([a b]./2); 
x1 = prctile(x,25); 
y1 = prctile(y,25); 
x2 = prctile(x,75); 
y2 = prctile(y,75); 
ang = 57.2958*atan((y2-y1)/(x2-x1)); 
for k =1:c 
    imout(:,:,k) = imtranslate(im(:,:,k),CenterOfImage - CenterOfMass); 
    imout2(:,:,k) = imrotate(imout(:,:,k),ang); 
end 
 

A.6: regImage2.m 
function [imout] = regImage2(im, ang, CenterOfMass) 
[a b c] = size(im); 
CenterOfImage = floor([a b]./2); 
for k =1:c 
    temp(:,:,k) = imtranslate(im(:,:,k),CenterOfImage - CenterOfMass); 
    imout(:,:,k) = imrotate(temp(:,:,k),ang); 
end 
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A.7: paths_nosweep.m 

This script initiates the algorithm for a single cell and must be modified to point 

to the particular cell being studied. Additionally this is where the cell spacing parameter 

is specified and where an initial guess of the number of paths to be placed can be 

provided to speed up computation time. This script requires the Mosek Optimization 

Toolbox to be installed and for COMSOL with MATLAB to be running and the functions 

kmeans, stlwrite, and extrude, all of which are available for download on the Mathworks 

User Community File Exchange.   

 
clear 
clc 
close all 
recon = figure; 
addpath 'C:/Program Files/Mosek/7/toolbox/r2013a' 
import com.comsol.model.* 
import com.comsol.model.util.* 
  
model = ModelUtil.create('Model'); 
geom1 = model.geom.create('geom1',3); 
model.geom('geom1').lengthUnit('um'); 
  
cell5 
filename = 'cell5_th'; 
sp = 4; %c3=5 c4=4 c6=4 c7=4 
maxpaths = 2; 
found = true; 
  
  
%break for cylinder fitting 
  
[Vx Vy Vz] = ind2sub(size(vol_bound),find(imfill(vol_bound,'holes'))); 
  
  
flag = true; 
bestscore = 1e20; 
k = 3; 
while flag 
    [lab eng m] = kmeans([Vx'; Vy'; Vz'],k); 
    [f1 f2] = sortrows(m.means',1); 
    for i=1:length(f2) 
        lab2(find(lab==f2(i)))=i; 



 108 

    end 
    for i=1:max(lab) 
        cluster{i} = zeros(size(vol_bound)); 
    end 
    clustered_vol = vol_bound; 
    imfill(clustered_vol,'holes'); 
    clustered_vol(clustered_vol == 1) = -1; 
     
    for i =1:length(lab2) 
        cl = lab2(i); 
        cluster{cl}(Vx(i),Vy(i),Vz(i)) = 1; 
        clustered_vol(Vx(i),Vy(i),Vz(i)) = cl; 
    end 
    for i=1:length(cluster) 
        [cx{i} cy{i} cz{i}] = 
ind2sub(size(cluster{i}),find(cluster{i})); 
    end 
    for i=1:length(cx) 
        col{i} = cx{i}; 
        col{i}(:) = i; 
    end 
     
    for i=1:length(cluster) 
        [ax{i} r{i}] = fitcylinder(cluster{i}); 
    end 
     
    for i=1:length(cluster) 
        %score based on average distance to cylider surface 
        %     D = zeros(a,b,c); 
        %     for x=1:a 
        %         for y=1:b 
        %             for z=1:c 
        %                 if cluster{i}(x,y,z) == 1 
        %                     D(x,y,z) = 
distanceToCylSurf(ax{i},r{i},[x,y,z]); 
        %                 end 
        %             end 
        %         end 
        %     end 
        %     d(i) = mean(nonzeros(D)); 
         
        %score based on volume occupied 
        v(i) = r{i}^2*pi()*norm(ax{i}(:,2)-ax{i}(:,1)) - 
nnz(cluster{i}); 
         
         
    end 
     
    %score = mean(d) 
    score = sum(v) 
     
    if score < bestscore 
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        best.cluster = cluster; 
        best.ax = ax; 
        best.r = r; 
        best.clustered_vol = clustered_vol; 
        %best.d = d; 
        best.v = v; 
        best.cx = cx; 
        best.cy = cy; 
        best.cz = cz; 
        best.col = col; 
        bestscore = score; 
        k = k+1;      
    else 
        flag = false; 
    end 
    %k = k+1; 
end 
  
figure(recon); 
  
%end break for cylinder fitting 
  
while found 
    clear temp; 
     
    [N, demand] = 
generateNodes3(vol_bound,best.clustered_vol,sp,maxpaths); 
    demand2 = scaleDemand(demand); 
    [edges, c] = generateEdges3(N,sp); 
    [from, to, costs, upper] = matrix2ft(edges, c); 
    lower = zeros(size(upper)); 
    G = digraph(c); 
    I = incidence(G); 
    param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_NETWORK_PRIMAL_SIMPLEX'; 
    param.MSK_IPAR_INFEAS_REPORT_AUTO = 'MSK_OFF'; 
    demand_l = zeros(size(demand2)); 
    sol = msklpopt(costs,I,demand2,demand2,lower,upper,param); 
     
    %scatter3(N(:,2),N(:,1),N(:,3),20,N(:,5),'filled') 
     
    temp(:,3) = sol.sol.bas.xx; 
    temp(:,1) = from'; 
    temp(:,2) = to'; 
    [s1 s2] = size(temp); 
    [nNodes s2] = size(N); 
     
    for i = 1:s1 
        if temp(i,2) <= nNodes 
            temp(i,1) = temp(i,1) - nNodes; 
        end 
    end 
    TF = temp(:,2) > nNodes; 
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    temp(TF,:) = []; 
    TF = temp(:,3) == 0; 
    temp(TF,:) = []; 
     
    [s1 s2] = size(temp); 
    count = 1; 
    count2 = 1; 
    for i=1:s1 
        if temp(i,1) ~= 1 && temp(i,2) ~= nNodes 
            temp2(count,:) = temp(i,:); 
            count = count+1; 
        end 
        if temp(i,1) == 1 
            start(count2,:) = temp(i,2); 
            count2 = count2+1; 
        end 
    end 
    [s1 s2] = size(temp); 
    %scatter3(N(:,2),N(:,1),N(:,3),20,N(:,5),'filled') 
    axis equal 
    hold on 
    for k = 1:s1 
    
%plot3([N(temp(k,1),2),N(temp(k,2),2)],[N(temp(k,1),1),N(temp(k,2),1)],
[N(temp(k,1),3),N(temp(k,2),3)],'-k') 
    end 
     
    %     start = N(:,5)'; 
    %     start(start ~= -1) = 0; 
    %     start = find(start); 
    % 
    %     for i = 1:length(start) 
    %         if ~ismember(start(i),temp2(:,1)) 
    %             start(i) = 0; 
    %         end 
    %     end 
    %     start = start(start~=0); 
     
     
    S=digraph(temp2(:,1),temp2(:,2)); 
     
    myo_vol = zeros(size(start)); 
    myo_len = zeros(size(start)); 
    found = strcmp(sol.sol.bas.solsta,'OPTIMAL'); 
    if found 
        maxpaths = maxpaths+1; 
        for i = 1:length(start) 
            paths{i} = shortestpathtree(S,start(i)); 
        end 
    end 
end 
maxpaths = maxpaths - 1; 
disp(strcat(num2str(maxpaths),' myofibrils generated.')); 
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% figure 
count = 1; 
for i = 1:length(paths) 
    asdf = table2array(paths{i}.Edges); 
    [s1 s2] = size(asdf); 
    asdf(s1+1,1) = asdf(s1,2); 
    for k = 1:s1+1 
        asdf(k,3) = N(asdf(k,1),1); 
        asdf(k,4) = N(asdf(k,1),2); 
        asdf(k,5) = N(asdf(k,1),3); 
    end 
     
    q = linspace(0,2*pi,33); 
    base = [(sp/2)*cos(q);(sp/2)*sin(q)]; 
    traj = [asdf(:,3)';asdf(:,4)';asdf(:,5)']; 
    hull_nodes(count,:) = traj(:,1)'; 
    count=count+1; 
    hull_nodes(count,:) = traj(:,size(traj,2))'; 
    count = count+1; 
     
    ic = strcat('ic',num2str(i)); 
     
    num = size(traj,2)-1; 
    model.geom('geom1').feature().create(ic,'InterpolationCurve'); 
    traj_sw = [traj(2,:);traj(1,:);traj(3,:)]; 
    model.geom('geom1').feature(ic).set('table',traj_sw'); 
    points{i} = traj'; 
     
    [X,Y,Z] = extrude(base,traj,1); 
    myo = surf(Y,X,Z); 
    set(myo, 'facecolor',[.8 0 0]); 
    set(myo, 'facealpha', .5); 
    for j = 1:size(traj,2)-1 
        seg_len = sqrt((traj(1,j+1)-traj(1,j))^2 + (traj(2,j+1)-
traj(2,j))^2 + (traj(3,j+1)-traj(3,j))^2); 
        seg_vol = pi*sp^2/4 * seg_len; 
        myo_vol(i) = myo_vol(i) + seg_vol; 
        myo_len(i) = myo_len(i) + seg_len; 
    end 
end 
geom1.feature('fin').name('Form Assembly'); 
geom1.feature('fin').set('action','assembly'); 
geom1.feature('fin').set('imprint',true); 
geom1.feature('fin').set('createpairs',false); 
geom1.run 
model.save(strcat('C:/Users/tgharve/Desktop/COMSOL Models/',filename)); 
  
sv = generateSideView(vol_bound); 
c = size(sv,3); 
for i = 1:c 
    csa(i) = nnz(sv(:,:,i)); 
end 
d_ideal = 2*sqrt((sum(csa)/nnz(csa))/pi); 
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rat = d_ideal/sp; 
f = 0.5919*exp(.0509*rat)-(7.041e+12)*exp(-15.72*rat); 
%fillscore = (sum(myo_vol)/nnz(vol_smoothed))/f * 100; 
fillscore = (sum(myo_vol)/nnz(vol_smoothed)) * 100; 
lengthscore = mean(myo_len)/nnz(csa) * 100; 
  
figure 
hold on 
for i=1:length(best.cluster) 
    q = linspace(0,2*pi,33); 
    base = [best.r{i}*cos(q);best.r{i}*sin(q)]; 
    [X,Y,Z] = extrude(base,best.ax{i},1); 
    cyl{i} = surf(X,Y,Z); 
    %set(cyl{i}, 'facecolor', [0.6 0.4 0.4]); 
    set(cyl{i}, 'facealpha', 0.6); 
end 
axis equal 
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A.8: fitcylinder.m 
function [ax r] = fitcylinder(vol) 
[a b c] = size(vol); 
[Vx Vy Vz] = ind2sub(size(vol),find(vol)); 
MA = Skeleton3D(imfill(vol,'holes')); 
[MAx MAy MAz] = ind2sub(size(vol),find(MA)); 
dist = bwdistsc(~imfill(vol,'holes')); 
% r = max(nonzeros(MA.*dist)); 
%r = ceil(max(nonzeros(dist))); 
  
%[m p s] = best_fit_line(MAx, MAy, MAz); 
[m p s] = best_fit_line(Vx, Vy, Vz); 
  
  
bnd1 = (min(Vx)-m(1))/p(1); 
bnd2 = (max(Vx)-m(1))/p(1); 
  
ax = [m(1)+p(1)*bnd1, m(2)+p(2)*bnd1, m(3)+p(3)*bnd1;... 
      m(1)+p(1)*bnd2, m(2)+p(2)*bnd2, m(3)+p(3)*bnd2]'; 
   
   
  D = zeros(a,b,c); 
   
    for x=1:a 
        for y=1:b 
            for z=1:c 
                if vol(x,y,z) == 1 
                    D(x,y,z) = distanceFromAxis(ax,[x,y,z]); 
                end 
            end 
        end 
    end 
    r = max(nonzeros(D))+1; 
     
    bnd1 = ((min(Vx)-r*sin(acos(p(1))))-m(1))/p(1); 
    bnd2 = ((max(Vx)+r*sin(acos(p(1))))-m(1))/p(1); 
    
    ax = [m(1)+p(1)*bnd1, m(2)+p(2)*bnd1, m(3)+p(3)*bnd1;... 
      m(1)+p(1)*bnd2, m(2)+p(2)*bnd2, m(3)+p(3)*bnd2]'; 
 
  



 114 

A.9: generateNodes3.m 
function [N, demand, cent] = generateNodes3(vol, cl_vol, d, s) 
%given a binary cell volume (rotated so that the long axis of the cell 
is 
%in the x direction) and a distance between nodes (d), this function 
%generates a regular grid of nodes (N) within the volume.  
%Each row of N is a node given by Xcoord, Ycoord, Zcoord, node cost,  
%and node demand (-1 for source, +1 for sink). The function also 
returns a 
%vector containing only the demand for each node.  
  
weights = bwdistsc(imcomplement(vol),[1,1,1]); %each voxel given a 
price based on distance to the outside of the cell 
%weights = weights / max(max(max(weights))); %weights are normalized 
[attach_pos, attach_neg] = findAttachments2(cl_vol); %finds possible 
fibril attachment sites to determine node demand 
  
  
%offset grid so it is approximately centered on the entire volume 
matrix 
[a b c] = size(vol);  
xoffset = mod(a,d)/2;  
yoffset = mod(b,d)/2; 
zoffset = mod(c,d)/2; 
  
%generate a regular grid of nodes over the entire volume matrix 
N1(1,1:3)= [0, b/2, c/2]; 
N1(1,4) = 0; 
N1(1,5) = -s; 
count = 2; 
for i = max(floor(xoffset),1):d:a 
    for j = max(floor(yoffset),1):d:b 
        for k = max(floor(zoffset),1):d:c 
            N1(count,1:3) = [i,j,k]; 
            N1(count,4) = weights(i,j,k); 
            if attach_pos(i,j,k) == 1 %if a node falls in positive 
attachment site, assign it as a sink 
                N1(count,5) = 1; 
            elseif attach_neg(i,j,k) == 1 %if a node falls in a 
negative attachment site, assign it as a source 
                N1(count,5) = -1;  
            else 
                N1(count,5) = 0; 
            end 
            count = count + 1; 
        end 
    end 
end 
  
%delete all nodes that do not fall within the volume 
[s1 s2] = size(N1); 
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count = 2; 
N(1,:) = N1(1,:); 
  
for i=2:s1 
   if vol(N1(i,1),N1(i,2),N1(i,3)) == 1  
   %if N1(i,4) >= d/2 || N1(i,5) ~= 0 
        N(count,1:5) = N1(i,1:5); 
        count = count + 1; 
    end 
end 
[s1 s2] = size(N); 
  
cent = [mean(N(:,1)), mean(N(:,2)), mean(N(:,3))]; 
N1(1,1:3)= [0, cent(2), cent(3)]; 
N(s1+1,1:3) = [a , cent(2), cent(3)]; 
N(s1+1,4) = 0; 
N(s1+1,5) = s; 
  
%generate demand vector 
demand = N(:,5)'; 
demand(abs(demand)~=s) = 0; 
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A.10: findAttachments2.m 
 
function [attach_pos, attach_neg] = findAttachments2(clustered_vol) 
[a b c] = size(clustered_vol); 
cl = max(max(max(clustered_vol))); 
attach_pos = zeros(size(clustered_vol)); 
attach_neg = zeros(size(clustered_vol)); 
  
for i = 2:a-1 
    for j = 2:b-1 
        for k = 2:c-1 
            if clustered_vol(i,j,k) == cl && nnz(clustered_vol(i-
1:i+1,j-1:j+1,k-1:k+1)) < 24 
                attach_pos(i,j,k) = 1; 
            elseif clustered_vol(i,j,k) == 1 && nnz(clustered_vol(i-
1:i+1,j-1:j+1,k-1:k+1)) < 24 
                attach_neg(i,j,k) = 1; 
            end 
        end 
    end 
end 
%attach_pos = bwareaopen(attach_pos,15); 
%attach_neg = bwareaopen(attach_neg,15); 
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A.11: scaleDemand.m 
function [scaled_demand] = scaleDemand(demand) 
s1 = length(demand); 
scaled_demand = zeros([1 2*s1]); 
for i = 1:s1 
    if demand(i) < 0 
        scaled_demand(i)= demand(i); 
    end 
    if demand(i) > 0 
        scaled_demand(i+s1) = demand(i); 
    end 
end 
 
 

A.12: generateEdges3.m  

 
function [E, c] = generateEdges3(N,sp) 
[s1 s2] = size(N); 
E = zeros(2*s1); 
c = zeros(2*s1); 
E(1, s1+1) = 999; 
c(1, s1+1) = 0.01; 
E(s1, s1+s1) = 999; 
c(s1, s1+s1) = 0.01; 
  
for i=2:s1-1 
    E(i,i+s1) = 1; 
    c(i,i+s1) = 0.01; 
    if N(i,5) == -1 
        E(1+s1,i) = 1; 
        c(1+s1,i) = 100*(norm(N(i,1:3) - N(1,1:3)))^2; 
    end 
    if N(i,5) == 1 
        E(i+s1,s1) = 1; 
        c(i+s1,s1) = 100*(norm(N(s1,1:3)-N(i,1:3)))^2; 
    end 
         
    for j=2:s1-1  
        if i ~= j 
            d = sqrt((N(i,1)-N(j,1))^2 + (N(i,2)-N(j,2))^2 + (N(i,3)-
N(j,3))^2); 
            if d <= sqrt(3*sp^2) && N(j,1) > N(i,1) 
            %if N(j,1) > N(i,1)  
                E(i+s1,j) = 1; 
                c(i+s1,j) = d^2*(N(i,4) + N(j,4))/2; 
            end 
        end 
    end 
end 
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A13: generateSideView.m 
function [im_sv] = generateSideView(im) 
%[im_rot, ang, CoM] = regImage(im); 
%vol_rot = regImage2(vol, ang, CoM); 
[a b c] = size(im); 
for k = 1:c 
    for i=1:b 
        im_sv(k,:,i) = im(i,:,k)'; 
    end 
end 
 

A14: matrix2ft.m 
function [from, to, costs, upper] = matrix2ft(E,c) 
[a b]=size(E); 
count = 1; 
for i = 1:a 
    for j = 1:b 
        if E(i,j) ~= 0 
            from(count) = i; 
            to(count) = j; 
            upper(count) = E(i,j); 
            costs(count) = c(i,j); 
            count = count+1; 
        end 
    end 
end 
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APPENDIX B 

MATLAB CODE FOR CELLSPARK 

The original CellSpark application files and the MATLAB installer are available for 

download at: http://github.com/tgharve/CellSpark 

B.1: CellSpark.m 
function varargout = CellSpark(varargin) 
global State currents 
% CELLSPARK MATLAB code for CellSpark.fig 
%      CELLSPARK, by itself, creates a new CELLSPARK or raises the 
existing 
%      singleton*. 
% 
%      H = CELLSPARK returns the handle to a new CELLSPARK or the 
handle to 
%      the existing singleton*. 
% 
%      CELLSPARK('CALLBACK',hObject,eventData,handles,...) calls the 
local 
%      function named CALLBACK in CELLSPARK.M with the given input 
arguments. 
% 
%      CELLSPARK('Property','Value',...) creates a new CELLSPARK or 
raises the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before CellSpark_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to CellSpark_OpeningFcn via 
varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 
one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help CellSpark 
  
% Last Modified by GUIDE v2.5 25-Sep-2018 09:32:57 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
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    'gui_Singleton',  gui_Singleton, ... 
    'gui_OpeningFcn', @CellSpark_OpeningFcn, ... 
    'gui_OutputFcn',  @CellSpark_OutputFcn, ... 
    'gui_LayoutFcn',  [] , ... 
    'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before CellSpark is made visible. 
function CellSpark_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to CellSpark (see VARARGIN) 
handles.count = 0; 
handles.labels={}; 
%handles.P = plot(handles.axes1,0,0,'k'); 
xlim([0,600]) 
ylim([-100,80]) 
grid minor 
datacursormode on 
hold on 
setappdata(0,'HT',0.02); 
setappdata(0,'STOPTIME',600); 
setappdata(0,'bcl',1000); 
setappdata(0,'protocol', 'DYNREST'); 
pushbutton3_Callback(hObject,eventdata,handles); 
% Choose default command line output for CellSpark 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes CellSpark wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
% --- Outputs from this function are returned to the command line. 
function varargout = CellSpark_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
% --- Executes during object creation, after setting all properties. 
function axes1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to axes1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: place code in OpeningFcn to populate axes1 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
type = 
find([get(handles.radiobutton1,'Value'),get(handles.radiobutton2,'Value
'),get(handles.radiobutton3,'Value'),get(handles.radiobutton7,'Value')]
); 
switch type 
    case 1 
        Args.type = 'EPI'; 
    case 2 
        Args.type = 'ENDO'; 
    case 3 
        Args.type = 'MCELL'; 
    case 4 
        Args.type = 'NEURON'; 
end 
  
Args.Ko = str2double(get(handles.edit1,'String')); 
Args.Cao = str2double(get(handles.edit2, 'String')); 
Args.Nao = str2double(get(handles.edit3, 'String')); 
Args.Tc = str2double(get(handles.edit4, 'String')); 
Args.Ki = str2double(get(handles.edit5, 'String')); 
Args.Cai = str2double(get(handles.edit6, 'String')); 
Args.Nai = str2double(get(handles.edit7, 'String')); 
Args.Cm = str2double(get(handles.edit8, 'String')); 
Args.Vc = str2double(get(handles.edit13, 'String')); 
Args.Vsr = str2double(get(handles.edit14, 'String')); 
Args.amp = str2double(get(handles.edit9, 'String')); 
Args.dur = str2double(get(handles.edit10, 'String')); 
Args.tbegin = str2double(get(handles.edit11, 'String')); 
Args.ow = get(handles.checkbox1,'Value'); 
Args.HT = getappdata(0,'HT'); 
Args.STOPTIME = getappdata(0,'STOPTIME'); 
Args.bcl = getappdata(0,'bcl'); 
Args.protocol = getappdata(0,'protocol'); 
Args.GNa = str2double(get(handles.edit17 , 'String')); 
Args.GK = str2double(get(handles.edit16 , 'String')); 



 122 

Args.GL = str2double(get(handles.edit15, 'String')); 
  
xlim([0,getappdata(0,'STOPTIME')]); 
[hObject,handles] = run_simulation(Args,hObject,handles); 
guidata(hObject,handles); 
  
  
function edit11_Callback(hObject, eventdata, handles) 
% hObject    handle to edit11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit11 as text 
%        str2double(get(hObject,'String')) returns contents of edit11 
as a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','50'); 
end 
set(hObject,'String',sprintf('%d',round(str2num(get(hObject,'String')))
)); 
  
% --- Executes during object creation, after setting all properties. 
function edit11_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit10_Callback(hObject, eventdata, handles) 
% hObject    handle to edit10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit10 as text 
%        str2double(get(hObject,'String')) returns contents of edit10 
as a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','1'); 
end 
set(hObject,'String',sprintf('%d',round(str2num(get(hObject,'String')))
)); 
  
% --- Executes during object creation, after setting all properties. 
function edit10_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit10 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit9_Callback(hObject, eventdata, handles) 
% hObject    handle to edit9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit9 as text 
%        str2double(get(hObject,'String')) returns contents of edit9 as 
a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','52'); 
end 
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String')))); 
  
% --- Executes during object creation, after setting all properties. 
function edit9_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit8_Callback(hObject, eventdata, handles) 
% hObject    handle to edit8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit8 as text 
%        str2double(get(hObject,'String')) returns contents of edit8 as 
a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','0.185'); 
end 
set(hObject,'String',sprintf('%0.3f',str2num(get(hObject,'String')))); 
  
% --- Executes during object creation, after setting all properties. 
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function edit8_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
function edit7_Callback(hObject, eventdata, handles) 
% hObject    handle to edit7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit7 as text 
%        str2double(get(hObject,'String')) returns contents of edit7 as 
a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','11.6'); 
end 
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String')))); 
  
% --- Executes during object creation, after setting all properties. 
function edit7_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
function edit6_Callback(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit6 as text 
%        str2double(get(hObject,'String')) returns contents of edit6 as 
a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','0.2'); 
end 
set(hObject,'String',sprintf('%0.5f',str2num(get(hObject,'String')))); 
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% --- Executes during object creation, after setting all properties. 
function edit6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit5_Callback(hObject, eventdata, handles) 
% hObject    handle to edit5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit5 as text 
%        str2double(get(hObject,'String')) returns contents of edit5 as 
a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','138.8'); 
end 
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String')))); 
  
% --- Executes during object creation, after setting all properties. 
function edit5_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit13_Callback(hObject, eventdata, handles) 
% hObject    handle to edit13 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit13 as text 
%        str2double(get(hObject,'String')) returns contents of edit13 
as a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','0.0164'); 
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end 
set(hObject,'String',sprintf('%0.4f',str2num(get(hObject,'String')))); 
  
% --- Executes during object creation, after setting all properties. 
function edit13_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit13 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
function edit14_Callback(hObject, eventdata, handles) 
% hObject    handle to edit14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit14 as text 
%        str2double(get(hObject,'String')) returns contents of edit14 
as a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','0.0011'); 
end 
set(hObject,'String',sprintf('%0.4f',str2num(get(hObject,'String')))); 
  
% --- Executes during object creation, after setting all properties. 
function edit14_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as 
a double 
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if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','5.4'); 
end 
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String')))); 
  
  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 as 
a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','2.0'); 
end 
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String')))); 
  
% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 as 
a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','140.0'); 
end 
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String')))); 
  
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit4_Callback(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit4 as text 
%        str2double(get(hObject,'String')) returns contents of edit4 as 
a double 
if isempty(str2num(get(hObject,'String'))) 
    set(hObject,'String','37.0'); 
end 
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String')))); 
  
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on button press in radiobutton1. 
function radiobutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton1 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radiobutton1 
set(handles.edit2,'String','2.0'); 
set(handles.text17,'String','CaSR'); 
set(handles.edit6,'String','0.2'); 
set(handles.text32,'Visible','on'); 
set(handles.edit14,'Visible','on'); 
set(handles.text31,'Visible','on'); 
set(handles.text29,'Visible','on'); 
set(handles.text30,'Visible','on'); 
set(handles.edit13,'Visible','on'); 
set(handles.edit4,'String','37.0'); 
set(handles.text23,'String','mA'); 
set(handles.uibuttongroup4,'Visible','off'); 
setappdata(0,'STOPTIME',600); 
setappdata(0,'HT',.02); 
s={'Nao','Ko','Cao','T','Nai','Ki','CaSR','Cm','Vc','Vsr','Amplitude','
Duration','Start Time'}; 
set(handles.popupmenu2,'String',s); 
s = {'Voltage (mV)','Cai (mM)','INa (mA)','ICaL (mA)','Ito (mA)','IKs 
(mA)',... 
    'IKr (mA)','IK1 (mA)','INaCa (mA)','INaK (mA)','IbNa (mA)','IbCa 
(mA)','Irel (mA)'}; 
set(handles.popupmenu3,'String',s); 
pushbutton2_Callback(hObject,eventdata,handles); 
pushbutton3_Callback(hObject,eventdata, handles);   
  
% --- Executes on button press in radiobutton2. 
function radiobutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radiobutton2 
set(handles.edit2,'String','2.0'); 
set(handles.text17,'String','CaSR'); 
set(handles.edit6,'String','0.2'); 
set(handles.text32,'Visible','on'); 
set(handles.edit14,'Visible','on'); 
set(handles.text31,'Visible','on'); 
set(handles.uibuttongroup4,'Visible','off'); 
set(handles.text29,'Visible','on'); 
set(handles.text30,'Visible','on'); 
set(handles.edit13,'Visible','on'); 
set(handles.edit4,'String','37.0'); 
set(handles.text23,'String','mA'); 
  
setappdata(0,'STOPTIME',600); 
setappdata(0,'HT',.02); 
s={'Nao','Ko','Cao','T','Nai','Ki','CaSR','Cm','Vc','Vsr','Amplitude','
Duration','Start Time'}; 
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set(handles.popupmenu2,'String',s); 
s = {'Voltage (mV)','Cai (mM)','INa (mA)','ICaL (mA)','Ito (mA)','IKs 
(mA)',... 
    'IKr (mA)','IK1 (mA)','INaCa (mA)','INaK (mA)','IbNa (mA)','IbCa 
(mA)','Irel (mA)'}; 
set(handles.popupmenu3,'String',s); 
pushbutton2_Callback(hObject,eventdata,handles); 
pushbutton3_Callback(hObject,eventdata, handles);   
  
% --- Executes on button press in radiobutton3. 
function radiobutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radiobutton3 
set(handles.edit2,'String','2.0'); 
set(handles.text17,'String','CaSR'); 
set(handles.edit6,'String','0.2'); 
set(handles.text32,'Visible','on'); 
set(handles.edit14,'Visible','on'); 
set(handles.text31,'Visible','on'); 
set(handles.uibuttongroup4,'Visible','off'); 
set(handles.text29,'Visible','on'); 
set(handles.text30,'Visible','on'); 
set(handles.edit13,'Visible','on'); 
set(handles.edit4,'String','37.0'); 
set(handles.text23,'String','mA'); 
  
setappdata(0,'STOPTIME',600); 
setappdata(0,'HT',.02); 
s={'Nao','Ko','Cao','T','Nai','Ki','CaSR','Cm','Vc','Vsr','Amplitude','
Duration','Start Time'}; 
set(handles.popupmenu2,'String',s); 
s = {'Voltage (mV)','Cai (mM)','INa (mA)','ICaL (mA)','Ito (mA)','IKs 
(mA)',... 
    'IKr (mA)','IK1 (mA)','INaCa (mA)','INaK (mA)','IbNa (mA)','IbCa 
(mA)','Irel (mA)'}; 
set(handles.popupmenu3,'String',s); 
pushbutton2_Callback(hObject,eventdata,handles); 
pushbutton3_Callback(hObject,eventdata, handles);   
  
% --- Executes during object creation, after setting all properties. 
function uibuttongroup2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to uibuttongroup2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
 
% --- Executes on button press in checkbox1. 
function checkbox1_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
handles.count = 1; 
  
% Hint: get(hObject,'Value') returns toggle state of checkbox1 
  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
cla(handles.axes1); 
handles.labels = {}; 
handles.count = 0; 
legend(handles.axes1,'off'); 
guidata(hObject,handles); 
  
  
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.edit4,'String','37.0'); 
if get(handles.radiobutton7,'Value') == 1 
    set(handles.edit1,'String','4.0'); 
    set(handles.edit2,'String','41.0'); 
    set(handles.edit3,'String','142.0'); 
    set(handles.edit5,'String','120.0'); 
    set(handles.edit7,'String','10.0'); 
    set(handles.edit6,'String','0.00011'); 
    set(handles.edit11,'String','1.0'); 
    set(handles.edit9,'String','15'); 
    set(handles.edit8,'String','1.0'); 
    set(handles.edit17,'String','120'); 
    set(handles.edit16,'String','36'); 
    set(handles.edit15,'String','0.3') 
else 
    set(handles.edit1,'String','5.4'); 
    set(handles.edit2, 'String','2.0'); 
    set(handles.edit3, 'String','140.0'); 
    set(handles.edit4, 'String','37.0'); 
    set(handles.edit5, 'String','138.8'); 
    set(handles.edit6, 'String','0.2'); 
    set(handles.edit7, 'String','11.6'); 
    set(handles.edit8, 'String','0.185'); 
    set(handles.edit13, 'String','0.0164'); 
    set(handles.edit14, 'String','0.0011'); 
    set(handles.edit9, 'String','52'); 
    set(handles.edit10, 'String','1'); 
    set(handles.edit11, 'String','50'); 
end 
  
% --- Executes on selection change in popupmenu1. 
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function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
popupmenu1 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
set(hObject,'String',['Legend 
Parameter';'Ko';'Cao';'Nao';'T';'Ki';'CaSR';'Nai';'Cm';'Vc';'Vsr';'Ampl
itude';'Duration';'Start Time']); 
guidata(hObject,handles); 
  
% --- Executes on selection change in popupmenu2. 
function popupmenu2_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
cla(handles.axes1); 
handles.labels = {}; 
handles.count = 0; 
legend(handles.axes1,'off'); 
guidata(hObject,handles); 
  
% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu2 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
popupmenu2 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu3. 
function popupmenu3_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
cla(handles.axes1); 
handles.labels = {}; 
handles.count = 0; 
legend(handles.axes1,'off'); 
guidata(hObject,handles); 
% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu3 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
popupmenu3 
  
% --- Executes during object creation, after setting all properties. 
function popupmenu3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
advsettings(); 
 
% --- Executes on button press in radiobutton4. 
function radiobutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radiobutton4 
  
zoom off 
pan off 
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datacursormode on 
  
  
% --- Executes on button press in radiobutton5. 
function radiobutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radiobutton5 
  
pan off 
datacursormode off 
zoom on 
  
% --- Executes on button press in radiobutton6. 
function radiobutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radiobutton6 
  
datacursormode off 
zoom off 
pan on 
  
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%reset(handles.axes1); 
xlim(handles.axes1,[0,getappdata(0,'STOPTIME')]) 
ylim(handles.axes1,'auto') 
%grid minor 
datacursormode on 
set(handles.radiobutton4,'Value',1); 
set(handles.radiobutton5,'Value',0); 
set(handles.radiobutton6,'Value',0); 
xlim([0,getappdata(0,'STOPTIME')]); 
  
% --- Executes on button press in radiobutton7. 
function radiobutton7_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radiobutton7 
set(handles.edit1,'String','20.11'); 
set(handles.edit2,'String','44.0'); 
set(handles.edit3,'String','491.0'); 
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set(handles.edit5,'String','400.0'); 
set(handles.edit7,'String','50,0'); 
set(handles.text17,'String','Cai'); 
set(handles.edit6,'String','0.1'); 
set(handles.text32,'Visible','off'); 
set(handles.edit14,'Visible','off'); 
set(handles.text31,'Visible','off'); 
set(handles.text29,'Visible','off'); 
set(handles.text30,'Visible','off'); 
set(handles.edit13,'Visible','off'); 
set(handles.edit9,'String','15'); 
set(handles.text23,'String','uA'); 
set(handles.uibuttongroup4,'Visible','on'); 
set(handles.edit4,'String','37.0'); 
setappdata(0,'STOPTIME',20); 
setappdata(0,'HT',.001); 
pushbutton2_Callback(hObject,eventdata,handles); 
pushbutton3_Callback(hObject,eventdata,handles); 
s={'Nao','Ko','Cao','T','Nai','Ki','Cai','Cm','Amplitude','Duration','S
tart Time','GNa','GK','GL'}; 
set(handles.popupmenu2,'String',s); 
  
s = {'Voltage (mV)','INa (mA)','IK (mA)','Ileak (mA)','m','h','n'}; 
set(handles.popupmenu3,'String',s); 
  
function edit15_Callback(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit15 as text 
%        str2double(get(hObject,'String')) returns contents of edit15 
as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit15_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit16_Callback(hObject, eventdata, handles) 
% hObject    handle to edit16 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of edit16 as text 
%        str2double(get(hObject,'String')) returns contents of edit16 
as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit16_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit16 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function edit17_Callback(hObject, eventdata, handles) 
% hObject    handle to edit17 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit17 as text 
%        str2double(get(hObject,'String')) returns contents of edit17 
as a double 
  
% --- Executes during object creation, after setting all properties. 
function edit17_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit17 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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B.2: settings.m 
function varargout = settings(varargin) 
% settings MATLAB code for settings.fig 
%      settings, by itself, creates a new settings or raises the 
existing 
%      singleton*. 
% 
%      H = settings returns the handle to a new settings or the handle 
to 
%      the existing singleton*. 
% 
%      settings('CALLBACK',hObject,eventData,handles,...) calls the 
local 
%      function named CALLBACK in settings.M with the given input 
arguments. 
% 
%      settings('Property','Value',...) creates a new settings or 
raises the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before settings_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to settings_OpeningFcn via 
varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 
one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help settings 
  
% Last Modified by GUIDE v2.5 23-Aug-2017 10:30:54 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @settings_OpeningFcn, ... 
                   'gui_OutputFcn',  @settings_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
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end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before settings is made visible. 
function settings_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to settings (see VARARGIN) 
  
% Choose default command line output for settings 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes settings wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = settings_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
setappdata(0,'HT',0.2); 
setappdata(0,'STOPTIME',600); 
setappdata(0,'BCL',1000); 
setappdata(0,'protocol', 'DYNREST'); 
set(handles.edit1,'String','0.02'); 
set(handles.edit2,'String','600'); 
set(handles.edit3,'String','1000'); 
set(handles.radiobutton1,'Value',1); 
  
  
  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
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% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
setappdata(0,'HT',str2num(get(handles.edit1,'String'))); 
setappdata(0,'STOPTIME',str2num(get(handles.edit2,'String'))); 
setappdata(0,'bcl',str2num(get(handles.edit3,'String'))); 
if (get(handles.radiobutton1,'Value')) 
    setappdata(0,'protocol','DYNREST'); 
else 
    setappdata(0,'protocol','S1S2REST'); 
end 
delete(handles.figure1); 
  
  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as 
a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
set(hObject,'String',getappdata(0,'HT')); 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 as 
a double 
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% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
set(hObject,'String',getappdata(0,'STOPTIME')); 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 as 
a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
set(hObject,'String',getappdata(0,'bcl')); 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes during object creation, after setting all properties. 
function uibuttongroup1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to uibuttongroup1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
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% --- Executes during object creation, after setting all properties. 
function radiobutton1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to radiobutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
protocol = getappdata(0,'protocol'); 
if isequal(protocol,'DYNREST') 
    set(hObject,'Value',1); 
else 
    set(hObject,'Value',0); 
end 
  
  
% --- Executes during object creation, after setting all properties. 
function radiobutton2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to radiobutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
protocol = getappdata(0,'protocol'); 
if isequal(protocol,'S1S2REST') 
    set(hObject,'Value',1); 
else 
    set(hObject,'Value',0); 
end 
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B.3: run_simulation.m 
function [hObject_new, handles_new] = 
run_simulation(Args,hObject,handles) 
  
%clc 
%close all 
  
%External concentrations 
global Ko Cao Nao Vc Vsr Bufc Kbufc Bufsr Kbufsr taufca taug Vmaxup Kup 
R F T RTONF CAPACITANCE ... 
    Gkr pKNa Gto GKs GK1 GNa GbNa KmK KmNa knak GCaL GbCa knaca KmNai 
KmCa ksat n GpCa KpCa GpK ... 
    i_low i_high j_low j_high stimduration stimstrength period currents 
kT Tc type protocol State GK GL VL 
  
  
  
handles.count = handles.count + 1; 
ow = Args.ow; 
type = Args.type; %EPI, ENDO, MCELL, or NEURON 
  
  
%Ko=5.4; 
%Cao=2.0; 
%Nao=140.0; 
if isequal(type,'NEURON') 
    Ko = Args.Ko; 
    Cao = Args.Cao; 
    Nao = Args.Nao; 
     
    Vc = Args.Vc; 
     
    %Constants 
    R=8314.472; 
    F=96485.3415; 
    %Tc = 37; 
    Tc = Args.Tc; 
    T=Tc+273.0; 
    kT = 3^((Tc-37.0)/10); 
    RTONF=(R*T)/F; 
     
    %Conductances 
    %GNa = 120; 
    %GK = 36; 
    %GL = 0.3; 
    VL = -49; 
     
    GNa = Args.GNa; 
    GK = Args.GK; 
    GL = Args.GL; 
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    CAPACITANCE = Args.Cm; 
     
    HT = Args.HT; 
     
    %Initial values of state variables 
     
    Cai_init=Args.Cai; 
    Nai_init=Args.Nai; 
    Ki_init=Args.Ki; 
     
    %V_init=(5/115)*RTONF*(log((Nao/Nai_init))) + (100/115)* 
RTONF*(log((Ko/Ki_init))) + (10/115)*VL; 
    V_init = -62; 
     
    %duration of the simulation 
    STOPTIME = Args.STOPTIME; 
     
    stimduration=Args.dur; 
    stimstrength=-10* Args.amp; 
    tbegin=Args.tbegin; 
    tend=tbegin+stimduration; 
     
    time = 0; 
    step = 0; 
    Istim = 0; 
    Var = VariablesN(V_init, Cai_init,Nai_init,Ki_init); 
    State = 
[0,Var.Volt,Var.Volt2,Var.Cai,Var.Nai,Var.Ki,Var.M,Var.H,Var.N,Var.Itot
]; 
    currents = [0 0 0 0]; 
     
    leg = get(handles.popupmenu2,'Value'); 
     
    switch leg 
        case 1 
            label = [get(handles.edit3,'String'), ' mM']; 
        case 2 
            label = [get(handles.edit1,'String'), ' mM']; 
        case 3 
            label = [get(handles.edit2,'String'), ' mM']; 
        case 4 
            label = [get(handles.edit4,'String') ' ' char(176) 'C']; 
        case 5 
            label = [get(handles.edit7,'String'), ' mM']; 
        case 6 
            label = [get(handles.edit5,'String'), ' mM']; 
        case 7 
            label = [get(handles.edit6,'String'), ' mM']; 
        case 8 
            label = [get(handles.edit8,'String'), ' \muF/cm^{2}']; 
        case 9 
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            label = [get(handles.edit9,'String'), ' mA']; 
        case 10 
            label = [get(handles.edit10,'String'), ' ms']; 
        case 11 
            label = [get(handles.edit11,'String'), ' ms']; 
        case 12 
            label = [get(handles.edit17,'String'), ' mS/cm^{2}']; 
        case 13 
            label = [get(handles.edit16,'String'), ' mS/cm^{2}']; 
        case 14 
            label = [get(handles.edit15,'String'), ' mS/cm^{2}']; 
    end 
     
    if ow == 1 
        genvarname('handles.P',num2str(handles.count)); 
        eval(['handles.P' num2str(handles.count) 
'=plot(handles.axes1,0,0);']); 
        handles.labels{handles.count,1} = label; 
        legend(handles.labels); 
    else 
        cla(handles.axes1); 
        clear handles.labels; 
        handles.labels = {}; 
        handles.P=plot(handles.axes1,0,0); 
        handles.count = 1; 
        handles.labels{handles.count,1} = label; 
        legend(handles.labels); 
    end 
     
    while time<=STOPTIME 
        time = time+HT; 
        if(time>=tbegin && time<=tend) 
             
            Istim=stimstrength; 
        end 
         
        if(time>tend)     
            Istim=0.; 
  
        end 
         
            Var = StepN(Var,HT,time,step,Istim); 
                if(mod(step,10)==0) 
                    State = [State; time, 
Var.Volt,Var.Volt2,Var.Cai,Var.Nai,Var.Ki,Var.M,Var.H,Var.N,Var.Itot]; 
                    if(mod(step,250)==0) 
                         
                        xvals = State(:,1); 
                        yvar = get(handles.popupmenu3,'Value'); 
                        switch yvar 
                            case 1 
                                yvals = State(:,2); %Voltage 
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                            case 2 
                                yvals = currents(:,2); %INa 
                            case 3 
                                yvals = currents(:,3); %IK 
                            case 4 
                                yvals = currents(:,4); %IL 
                            case 5 
                                yvals = State(:,7); %M 
                            case 6 
                                yvals = State(:,8); %H 
                            case 7 
                                yvals = State(:,9); %N 
                        end 
                         
                        if(ow == 0) 
                            set(handles.P,'xdata',xvals,'ydata',yvals); 
                             
                        else 
                            eval(['set(handles.P' 
num2str(handles.count) ',''xdata'',xvals,''ydata'',yvals);']); 
                        end 
                        ylim(handles.axes1,'auto'); 
                        drawnow('update'); 
                        guidata(hObject,handles); 
                    end 
                end 
                 
                step = step+1; 
            end 
            %handles.count = handles.count + 1; 
            handles.State = State; 
             
            %ylim(handles.axes1,'auto'); 
             
        hObject_new = hObject; 
        handles_new = handles; 
         
         
        else 
            protocol = Args.protocol; %DYNREST or S1S2REST 
             
            Ko = Args.Ko; 
            Cao = Args.Cao; 
            Nao = Args.Nao; 
             
            %Intracellular volumes 
             
            %Vc=0.016404; 
            %Vsr=0.001094; 
             
            Vc = Args.Vc; 
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            Vsr = Args.Vsr; 
             
            %Calcium dynamics 
            Bufc=0.15; 
            Kbufc=0.001; 
            Bufsr=10.; 
            Kbufsr=0.3; 
            taufca=kT*2.; 
            taug=kT*2.; 
            Vmaxup=0.000425; 
            Kup=0.00025; 
             
            %Constants 
            R=8314.472; 
            F=96485.3415; 
            %Tc = 37; 
            Tc = Args.Tc; 
            T=Tc+273.0; 
            kT = 3^((T-310)/10); 
            RTONF=(R*T)/F; 
             
            %Cellular capacitance 
            %CAPACITANCE=0.185; 
            CAPACITANCE = Args.Cm; 
             
            %Parameters for currents 
            %Parameters for IKr 
            Gkr=0.096; 
            %Parameters for Iks 
            pKNa=0.03; 
             
            %cell type dependent parameters for Iks and Ito 
            switch type 
                case 'EPI' 
                    Gto = 0.294; 
                    GKs = 0.245; 
                case 'MCELL' 
                    Gto = 0.294; 
                    GKs = 0.062; 
                case 'ENDO' 
                    Gto = 0.073; 
                    GKs = 0.245; 
            end 
             
            %Parameters for Ik1 
            GK1=5.405; 
             
            %Parameters for INa 
            GNa=14.838; 
            %Parameters for IbNa 
            GbNa=0.00029; 
            %Parameters for INaK 
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            KmK=1.0; 
            KmNa=40.0; 
            knak=1.362; 
            %Parameters for ICaL 
            GCaL=0.000175; 
            %Parameters for IbCa 
            GbCa=0.000592; 
            %Parameters for INaCa 
            knaca=1000; 
            KmNai=87.5; 
            KmCa=1.38; 
            ksat=0.1; 
            n=0.35; 
            %Parameters for IpCa 
            GpCa=0.825; 
            KpCa=0.0005; 
            %Parameters for IpK; 
            GpK=0.0146; 
             
            %timestep (ms) 
            %HT =0.02; 
            HT = Args.HT; 
             
            %Initial values of state variables 
             
            CaSR_init=Args.Cai; 
            Nai_init=Args.Nai; 
            Ki_init=Args.Ki; 
             
             
            Cai_init=0.0002; 
            %CaSR_init=0.2; 
            %Nai_init=11.6; 
            %Ki_init=138.3; 
            V_init=RTONF*(log((Ko/Ki_init))); 
             
             
             
            %duration of the simulation 
            %STOPTIME=600; 
            STOPTIME = Args.STOPTIME; 
             
            switch protocol 
                case 'DYNREST' 
                    i_low=0; 
                    i_high=1; 
                    j_low=0; 
                    j_high=1; 
                    stimduration = Args.dur; 
                    %stimduration=1.0; 
                    stimstrength = -1 * Args.amp; 
                    %stimstrength=-52; 
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                    %period=1000; 
                    period = Args.bcl; 
                    sum=period*1000.; 
                    tbegin = Args.tbegin; 
                    %tbegin=50; 
                    tend=tbegin+stimduration; 
                case 'S1S2REST' 
                    i_low=0; 
                    i_high=1; 
                    j_low=0; 
                    j_high=1; 
                    stimduration=Args.dur; 
                    stimstrength=-1* Args.amp; 
                    tbegin=Args.tbegin; 
                    tend=tbegin+stimduration; 
                    counter=1; 
                    dia=5000; 
                    %basicperiod=1000.; 
                    basicperiod = Args.bcl; 
                    basicapd=274; 
                    repeats=10; 
            end 
             
             
            time = 0; 
            step = 0; 
            Istim = 0; 
            Var = Variables(V_init, Cai_init, 
CaSR_init,Nai_init,Ki_init); 
            State = 
[0,Var.Volt,Var.Volt2,Var.Cai,Var.CaSR,Var.Nai,Var.Ki,Var.M,Var.H,Var.J
,Var.Xr1,Var.Xr2,Var.Xs,Var.S,Var.R,Var.D,Var.F,Var.FCa,Var.G,Var.Itot]
; 
            currents = [0 0 0 0 0 0 0 0 0 0 0 0]; 
             
            leg = get(handles.popupmenu2,'Value'); 
             
            switch leg 
                case 1 
                    label = [get(handles.edit3,'String'), ' mM']; 
                case 2 
                    label = [get(handles.edit1,'String'), ' mM']; 
                case 3 
                    label = [get(handles.edit2,'String'), ' mM']; 
                case 4 
                    label = [get(handles.edit4,'String') ' ' char(176) 
'C']; 
                case 5 
                    label = [get(handles.edit7,'String'), ' mM']; 
                case 6 
                    label = [get(handles.edit5,'String'), ' mM']; 
                case 7 
                    label = [get(handles.edit6,'String'), ' mM']; 
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                case 8 
                    label = [get(handles.edit8,'String'), ' 
\muF/cm^{2}']; 
                case 9 
                    label = [get(handles.edit13,'String'), ' 
\mum^{3}']; 
                case 10 
                    label = [get(handles.edit14,'String'), 'mum^{3}']; 
                case 11 
                    label = [get(handles.edit9,'String'), ' mA']; 
                case 12 
                    label = [get(handles.edit10,'String'), ' ms']; 
                case 13 
                    label = [get(handles.edit11,'String'), ' ms']; 
                case 14 
                    label = Args.type; 
            end 
             
            if ow == 1 
                genvarname('handles.P',num2str(handles.count)); 
                eval(['handles.P' num2str(handles.count) 
'=plot(handles.axes1,0,0);']); 
                handles.labels{handles.count,1} = label; 
                legend(handles.labels); 
            else 
                cla(handles.axes1); 
                clear handles.labels; 
                handles.labels = {}; 
                handles.P=plot(handles.axes1,0,0); 
                handles.count = 1; 
                handles.labels{handles.count,1} = label; 
                legend(handles.labels); 
            end 
             
            while time<=STOPTIME 
                time = time+HT; 
                switch protocol 
                    case 'DYNREST' 
                        if(time>sum) 
                            if (period>4000) 
                                period=period-1000; 
                                sum=sum+period*30; 
                            elseif  (period>3000) 
                                period=period-1000; 
                                sum=sum+period*30; 
                            elseif (period>2000) 
                                period=period-1000; 
                                sum=sum+period*30; 
                            elseif (period>1000) 
                                period=period-1000; 
                                sum=sum+period*100; 
                            elseif (period>500) 
                                period=period-250; 
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                                sum=sum+period*100; 
                            elseif(period>400) 
                                period=period-50; 
                                sum=sum+period*100; 
                            elseif(period>300) 
                                period=period-10; 
                                sum=sum+period*100; 
                            elseif(period>250) 
                                period=period-5; 
                                sum=sum+period*100; 
                            elseif(period>50) 
                                period=period-1; 
                                sum=sum+period*100; 
                            else 
                                %disp('Restitution protocol complete') 
                            end 
                        end 
                        if(time>=tbegin && time<=tend) 
                             
                            Istim=stimstrength; 
                        end 
                         
                        if(time>tend) 
                             
                            Istim=0.; 
                            tbegin=tbegin+period; 
                            tend=tbegin+stimduration; 
                        end 
                         
                         
                    case 'S1S2REST' 
                        if(counter<repeats) 
                            if(time>=tbegin && time<=tend) 
                                Istim=stimstrength; 
                            end 
                            if(time>tend) 
                                Istim=0.; 
                                tbegin=tbegin+basicperiod; 
                                tend=tbegin+stimduration; 
                                counter=counter+1; 
                                 
                            elseif(counter==repeats) 
                                if(time>=tbegin && time<=tend) 
                                    Istim=stimstrength; 
                                end 
                                if(time>tend) 
                                    Istim=0.; 
                                    tbegin=tbegin+basicapd+dia; 
                                    tbeginS2=tbegin; 
                                    tend=tbegin+stimduration; 
                                    counter=counter+1; 
                                elseif(counter==repeats+1) 



 151 

                                    if(time>=tbegin && time<=tend) 
                                        Istim=stimstrength; 
                                    end 
                                    if(time>tend) 
                                        Istim=0.; 
                                        tbegin=tbegin+basicperiod; 
                                        tend=tbegin+stimduration; 
                                        counter=0; 
                                    end 
                                    if(dia>1000) 
                                        dia=dia-1000; 
                                    elseif(dia>300) 
                                        dia=dia-100; 
                                    elseif(dia>150) 
                                        dia=dia-5; 
                                    elseif(dia>5) 
                                        dia=dia-1; 
                                    else 
                                        %  disp('Restitution protocol 
complete') 
                                    end 
                                end 
                            end 
                        end 
                end 
                Var = Step(Var,HT,time,step,Istim); 
                if(mod(step,10)==0) 
                    State = [State; time, 
Var.Volt,Var.Volt2,Var.Cai,Var.CaSR,Var.Nai,Var.Ki,Var.M,Var.H,Var.J,Va
r.Xr1,Var.Xr2,Var.Xs,Var.S,Var.R,Var.D,Var.F,Var.FCa,Var.G,Var.Itot]; 
                    if(mod(step,250)==0) 
                         
                        xvals = State(:,1); 
                        yvar = get(handles.popupmenu3,'Value'); 
                        switch yvar 
                            case 1 
                                yvals = State(:,2); %Voltage 
                            case 2 
                                yvals = State(:,4); %Cai 
                            case 3 
                                yvals = currents(:,6); %INa 
                            case 4 
                                yvals = currents(:,9); %ICaL 
                            case 5 
                                yvals = currents(:,5); %Ito 
                            case 6 
                                yvals = currents(:,3); %IKs 
                            case 7 
                                yvals = currents(:,2); %IKr 
                            case 8 
                                yvals = currents(:,4); %IK1 
                            case 9 
                                yvals = currents(:,11); %INaCa 
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                            case 10 
                                yvals = currents(:,8); %INaK 
                            case 11 
                                yvals = currents(:,7); %IbNa 
                            case 12 
                                yvals = currents(:,10); %IbCa 
                            case 13 
                                yvals = currents(:,12); %Irel 
                        end 
                         
                        if(ow == 0) 
                            set(handles.P,'xdata',xvals,'ydata',yvals); 
                             
                        else 
                            eval(['set(handles.P' 
num2str(handles.count) ',''xdata'',xvals,''ydata'',yvals);']); 
                        end 
                        ylim(handles.axes1,'auto'); 
                        drawnow('update'); 
                        guidata(hObject,handles); 
                    end 
                end 
                 
                step = step+1; 
            end 
            %handles.count = handles.count + 1; 
            handles.State = State; 
             
            %ylim(handles.axes1,'auto'); 
             
            hObject_new = hObject; 
            handles_new = handles; 
    end 
     
end 
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B.4: Step.m 
function [Vs] = Step(V,HT,tt,step,Istim) 
global Ko Cao Nao Vc Vsr Bufc Kbufc Bufsr Kbufsr taufca taug Vmaxup Kup 
R F T RTONF CAPACITANCE ... 
    Gkr pKNa type Gto GKs GK1 GNa GbNa KmK KmNa knak GCaL GbCa knaca 
KmNai KmCa ksat n GpCa KpCa GpK ... 
    currents kT 
  
  
inverseVcF2=1/(2*Vc*F); 
inverseVcF=1./(Vc*F); 
Kupsquare=Kup*Kup; 
BufcKbufc=Bufc*Kbufc; 
Kbufcsquare=Kbufc*Kbufc; 
Kbufc2=2*Kbufc; 
BufsrKbufsr=Bufsr*Kbufsr; 
Kbufsrsquare=Kbufsr*Kbufsr; 
Kbufsr2=2*Kbufsr; 
exptaufca=exp(-HT./taufca); 
exptaug=exp(-HT./taug); 
  
  
sm = V.M; 
sh = V.H; 
sj = V.J; 
sxr1 = V.Xr1; 
sxr2 = V.Xr2; 
sxs = V.Xs; 
ss = V.S; 
sr = V.R; 
sd = V.D; 
sf = V.F; 
sfca = V.FCa; 
sg = V.G; 
svolt = V.Volt; 
svolt2 = V.Volt2; 
Cai = V.Cai; 
CaSR = V.CaSR; 
Nai = V.Nai; 
Ki = V.Ki; 
sItot = V.Itot; 
  
%Needed to compute currents 
Ek=RTONF*(log((Ko/Ki))); 
Ena=RTONF*(log((Nao/Nai))); 
Eks=RTONF*(log((Ko+pKNa*Nao)/(Ki+pKNa*Nai))); 
Eca=0.5*RTONF*(log((Cao/Cai))); 
Ak1=0.1/(1.+exp(0.06*(svolt-Ek-200))); 
Bk1=(3.*exp(0.0002*(svolt-Ek+100))+exp(0.1*(svolt-Ek-10)))/(1.+exp(-
0.5*(svolt-Ek))); 
rec_iK1=Ak1/(Ak1+Bk1); 
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rec_iNaK=(1./(1.+0.1245*exp(-0.1*svolt*F/(R*T))+0.0353*exp(-
svolt*F/(R*T)))); 
rec_ipK=1./(1.+exp((25-svolt)/5.98)); 
  
  
%Compute currents 
INa=GNa*sm*sm*sm*sh*sj*(svolt-Ena); 
ICaL=GCaL*sd*sf*sfca*4*svolt*(F*F/(R*T))*(exp(2*svolt*F/(R*T))*Cai-
0.341*Cao)/(exp(2*svolt*F/(R*T))-1.); 
Ito=Gto*sr*ss*(svolt-Ek); 
IKr=Gkr*sqrt(Ko/5.4)*sxr1*sxr2*(svolt-Ek); 
IKs=GKs*sxs*sxs*(svolt-Eks); 
IK1=GK1*rec_iK1*(svolt-Ek); 
INaCa=knaca*(1./(KmNai*KmNai*KmNai+Nao*Nao*Nao))*(1./(KmCa+Cao))*(1./(1
+ksat*exp((n-1)*svolt*F/(R*T))))*(exp(n*svolt*F/(R*T))*Nai*Nai*Nai*Cao-
exp((n-1)*svolt*F/(R*T))*Nao*Nao*Nao*Cai*2.5); 
INaK=knak*(Ko/(Ko+KmK))*(Nai/(Nai+KmNa))*rec_iNaK; 
IpCa=GpCa*Cai/(KpCa+Cai); 
IpK=GpK*rec_ipK*(svolt-Ek); 
IbNa=GbNa*(svolt-Ena); 
IbCa=GbCa*(svolt-Eca); 
  
%Determine total current 
sItot = IKr+IKs+IK1+Ito+INa+IbNa+ICaL+IbCa+INaK+INaCa+IpCa+IpK+Istim; 
  
%update concentrations 
Caisquare=Cai*Cai; 
CaSRsquare=CaSR*CaSR; 
CaCurrent=-(ICaL+IbCa+IpCa-2*INaCa)*inverseVcF2*CAPACITANCE; 
A=0.016464*CaSRsquare/(0.0625+CaSRsquare)+0.008232; 
Irel=A*sd*sg; 
Ileak=0.00008*(CaSR-Cai); 
SERCA=Vmaxup/(1.+(Kupsquare/Caisquare)); 
CaSRCurrent=SERCA-Irel-Ileak; 
CaCSQN=Bufsr*CaSR/(CaSR+Kbufsr); 
dCaSR=HT*(Vc/Vsr)*CaSRCurrent; 
bjsr=Bufsr-CaCSQN-dCaSR-CaSR+Kbufsr; 
cjsr=Kbufsr*(CaCSQN+dCaSR+CaSR); 
CaSR=(sqrt(bjsr*bjsr+4*cjsr)-bjsr)/2; 
CaBuf=Bufc*Cai/(Cai+Kbufc); 
dCai=HT*(CaCurrent-CaSRCurrent); 
bc=Bufc-CaBuf-dCai-Cai+Kbufc; 
cc=Kbufc*(CaBuf+dCai+Cai); 
Cai=(sqrt(bc*bc+4*cc)-bc)/2; 
  
dNai=-(INa+IbNa+3*INaK+3*INaCa)*inverseVcF*CAPACITANCE; 
Nai=Nai+HT*dNai; 
  
dKi=-(Istim+IK1+Ito+IKr+IKs-2*INaK+IpK)*inverseVcF*CAPACITANCE; 
Ki=Ki+HT*dKi; 
  
if mod(step,10)==0 
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    currents = [currents; tt, IKr, IKs, IK1, Ito, INa, IbNa, INaK, 
ICaL, IbCa, INaCa, Irel]; 
end 
     
%compute steady state values and time constants  
AM=1./(1.+exp((-60.-svolt)/5.)); 
BM=0.1/(1.+exp((svolt+35.)/5.))+0.10/(1.+exp((svolt-50.)/200.)); 
TAU_M=(1/kT)*AM*BM; 
M_INF=1./((1.+exp((-56.86-svolt)/9.03))*(1.+exp((-56.86-svolt)/9.03))); 
if (svolt>=-40.) 
     
    AH_1=0.; 
    BH_1=(0.77/(0.13*(1.+exp(-(svolt+10.66)/11.1)))); 
    TAU_H= kT/((AH_1+BH_1)); 
     
else 
     
    AH_2=(0.057*exp(-(svolt+80.)/6.8)); 
    BH_2=(2.7*exp(0.079*svolt)+(3.1e5)*exp(0.3485*svolt)); 
    TAU_H=kT/((AH_2+BH_2)); 
end 
  
H_INF=1./((1.+exp((svolt+71.55)/7.43))*(1.+exp((svolt+71.55)/7.43))); 
  
if(svolt>=-40.) 
     
AJ_1=0.; 
BJ_1=(0.6*exp((0.057)*svolt)/(1.+exp(-0.1*(svolt+32.)))); 
TAU_J= kT/((AJ_1+BJ_1)); 
  
else 
     
    AJ_2=(((-2.5428e4)*exp(0.2444*svolt)-(6.948e-6)*exp(-
0.04391*svolt))*(svolt+37.78))/(1.+exp(0.311*(svolt+79.23))); 
    BJ_2=(0.02424*exp(-0.01052*svolt)/(1.+exp(-0.1378*(svolt+40.14)))); 
    TAU_J= kT/((AJ_2+BJ_2)); 
end 
  
J_INF=H_INF; 
  
Xr1_INF=1./(1.+exp((-26.-svolt)/7.)); 
axr1=450./(1.+exp((-45.-svolt)/10.)); 
bxr1=6./(1.+exp((svolt-(-30.))/11.5)); 
TAU_Xr1=(1/kT)*axr1*bxr1; 
Xr2_INF=1./(1.+exp((svolt-(-88.))/24.)); 
axr2=3./(1.+exp((-60.-svolt)/20.)); 
bxr2=1.12/(1.+exp((svolt-60.)/20.)); 
TAU_Xr2=(1/kT)*axr2*bxr2; 
  
Xs_INF=1./(1.+exp((-5.-svolt)/14.)); 
Axs=1100./(sqrt(1.+exp((-10.-svolt)/6))); 
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Bxs=1./(1.+exp((svolt-60.)/20.)); 
TAU_Xs=(1/kT)*Axs*Bxs; 
     
switch type 
    case 'EPI' 
    R_INF=1./(1.+exp((20-svolt)/6.)); 
    S_INF=1./(1.+exp((svolt+20)/5.)); 
    TAU_R=(1/kT)*(9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8); 
    TAU_S=(1/kT)*(85.*exp(-
(svolt+45.)*(svolt+45.)/320.)+5./(1.+exp((svolt-20.)/5.))+3.); 
    case 'ENDO' 
    R_INF=1./(1.+exp((20-svolt)/6.)); 
    S_INF=1./(1.+exp((svolt+28)/5.)); 
    TAU_R=(1/kT)*(9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8); 
    TAU_S=(1/kT)*(1000.*exp(-(svolt+67)*(svolt+67)/1000.)+8.); 
    case 'MCELL' 
    R_INF=1./(1.+exp((20-svolt)/6.)); 
    S_INF=1./(1.+exp((svolt+20)/5.)); 
    TAU_R=(1/kT)*(9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8); 
    TAU_S=(1/kT)*(85.*exp(-
(svolt+45.)*(svolt+45.)/320.)+5./(1.+exp((svolt-20.)/5.))+3.); 
end 
  
D_INF=1./(1.+exp((-5-svolt)/7.5)); 
Ad=1.4/(1.+exp((-35-svolt)/13))+0.25; 
Bd=1.4/(1.+exp((svolt+5)/5)); 
Cd=1./(1.+exp((50-svolt)/20)); 
TAU_D=(1/kT)*(Ad*Bd+Cd); 
F_INF=1./(1.+exp((svolt+20)/7)); 
TAU_F=(1/kT)*1125*exp(-(svolt+27)*(svolt+27)/300)+80+165/(1.+exp((25-
svolt)/10)); 
  
  
FCa_INF=(1./(1.+power((Cai/0.000325),8))+0.1/(1.+exp((Cai-
0.0005)/0.0001))+0.20/(1.+exp((Cai-0.00075)/0.0008))+0.23 )/1.46; 
if(Cai<0.00035) 
    G_INF=1./(1.+power((Cai/0.00035),6)); 
else 
    G_INF=1./(1.+power((Cai/0.00035),16)); 
end 
  
%Update gates 
sm = M_INF-(M_INF-sm)*exp(-HT/TAU_M); 
sh = H_INF-(H_INF-sh)*exp(-HT/TAU_H); 
sj = J_INF-(J_INF-sj)*exp(-HT/TAU_J); 
sxr1 = Xr1_INF-(Xr1_INF-sxr1)*exp(-HT/TAU_Xr1); 
sxr2 = Xr2_INF-(Xr2_INF-sxr2)*exp(-HT/TAU_Xr2); 
sxs = Xs_INF-(Xs_INF-sxs)*exp(-HT/TAU_Xs); 
ss= S_INF-(S_INF-ss)*exp(-HT/TAU_S); 
sr= R_INF-(R_INF-sr)*exp(-HT/TAU_R); 
sd = D_INF-(D_INF-sd)*exp(-HT/TAU_D); 
sf =F_INF-(F_INF-sf)*exp(-HT/TAU_F); 
fcaold=sfca; 
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sfca =FCa_INF-(FCa_INF-sfca)*exptaufca; 
if(sfca>fcaold && (svolt)>-37) 
    sfca=fcaold; 
end 
gold=sg; 
sg =G_INF-(G_INF-sg)*exptaug; 
if(sg>gold && (svolt)>-37) 
    sg=gold; 
end 
%update voltage 
svolt= svolt + HT*(-sItot); 
  
Vs.M = sm; 
Vs.H = sh; 
Vs.J = sj; 
Vs.Xr1 = sxr1; 
Vs.Xr2 = sxr2; 
Vs.Xs = sxs; 
Vs.S = ss; 
Vs.R = sr; 
Vs.D = sd; 
Vs.F = sf; 
Vs.FCa = sfca; 
Vs.G = sg; 
Vs.Volt = svolt; 
Vs.Volt2 = svolt2; 
Vs.Cai = Cai; 
Vs.CaSR = CaSR; 
Vs.Nai = Nai; 
Vs.Ki = Ki; 
Vs.Itot = sItot; 
  
end 
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B.5: StepN.m 
function [Vs] = StepN(V,HT,tt,step,Istim) 
global Ko Cao Nao Vc R F T RTONF CAPACITANCE ... 
     type GNa GK GL VL ... 
    currents kT 
  
sm = V.M; 
sh = V.H; 
sn = V.N; 
svolt = V.Volt;       
svolt2 = V.Volt2; 
Cai = V.Cai; 
Nai = V.Nai; 
Ki = V.Ki; 
sItot = V.Itot; 
  
%Needed to compute currents 
Ek=RTONF*(log((Ko/Ki))); 
Ena=RTONF*(log((Nao/Nai))); 
  
  
%Compute currents 
INa=GNa*sm*sm*sm*sh*(svolt-Ena); 
IK=GK*sn*sn*sn*sn*(svolt-Ek); 
IL=GL*(svolt-VL); 
  
%Determine total current 
sItot = INa + IK + IL + Istim; 
  
%update concentrations 
% dNai=-(INa)*inverseVcF*CAPACITANCE; 
% Nai=Nai+HT*dNai; 
%  
% dKi=-(Istim + IK)*inverseVcF*CAPACITANCE; 
% Ki=Ki+HT*dKi; 
  
if mod(step,10)==0 
    currents = [currents; tt, INa, IK, IL]; 
end 
     
%compute steady state values and time constants  
VCa = 0.03335*T*(log(Cao/Cai)-12.995); 
AM=-0.1*kT*(35+svolt+VCa)/(exp(-0.1*(35*svolt+VCa))-1); 
BM=4*exp(-(svolt+VCa+60)/18)*kT; 
TAU_M=1/(AM+BM); 
M_INF=AM/(AM+BM); 
AH=0.07*kT*exp(-0.05*(svolt+VCa+60)); 
BH=kT/(1+exp(-0.1*(svolt+VCa+30))); 
TAU_H=1/(AH+BH); 
H_INF=AH/(AH+BH); 
AN=kT*(-0.01*(svolt+VCa+50))/(exp(-0.1*(svolt+VCa+50))-1); 
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BN=kT*0.125*exp(-0.0125*(svolt+VCa+60)); 
TAU_N=1/(AN+BN); 
N_INF=AN/(AN+BN); 
  
%Update gates 
%sm = M_INF-(M_INF-sm)*exp(-HT/TAU_M); 
%sh = H_INF-(H_INF-sh)*exp(-HT/TAU_H); 
%sn = N_INF-(N_INF-sh)*exp(-HT/TAU_N); 
  
sm = sm + HT*(AM*(1-sm)-BM*sm);  
sh = sh + HT*(AH*(1-sh)-BH*sh); 
sn = sn + HT*(AN*(1-sn)-BN*sn); 
%update voltage 
svolt2 = svolt; 
svolt= svolt - (HT/CAPACITANCE)*(sItot); 
  
Vs.M = sm; 
Vs.H = sh; 
Vs.N = sn; 
Vs.Volt = svolt; 
Vs.Volt2 = svolt2; 
Vs.Cai = Cai; 
Vs.Nai = Nai; 
Vs.Ki = Ki; 
Vs.Itot = sItot; 
  
end 
 
  



 160 

B.6: Variables.m 
function [V] =  Variables(V_init, Cai_init, CaSR_init, Nai_init, 
Ki_init) 
V.Volt=V_init; 
V.Volt2=V_init; 
V.Cai=Cai_init; 
V.CaSR=CaSR_init; 
V.Nai=Nai_init; 
V.Ki=Ki_init; 
V.M= 0.; 
V.H= 0.75; 
V.J= 0.75; 
V.Xr1= 0.; 
V.Xr2= 1.; 
V.Xs= 0.; 
V.R= 0.; 
V.S= 1.; 
V.D= 0.; 
V.F= 1.; 
V.FCa= 1.; 
V.G= 1.; 
V.Itot = 0; 
end 
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B.7: VariablesN.m 
function [V] =  VariablesN(V_init, Cai_init, Nai_init, Ki_init) 
  
global Cao T kT 
  
V.Volt=V_init; 
V.Volt2=V_init; 
V.Cai=Cai_init; 
V.Nai=Nai_init; 
V.Ki=Ki_init; 
  
VCa = 0.03335*T*(log(Cao/Cai_init)-12.995); 
  
AM=-0.1*kT*(35+V_init+VCa)/(exp(-0.1*(35*V_init+VCa))-1); 
BM=4*exp(-(V_init+VCa+60)/18)*kT; 
TAU_M=1/(AM+BM); 
M_INF=AM/(AM+BM); 
AH=0.07*kT*exp(-0.05*(V_init+VCa+60)); 
BH=kT/(1+exp(-0.1*(V_init+VCa+30))); 
TAU_H=1/(AH+BH); 
H_INF=AH/(AH+BH); 
AN=kT*(-0.01*(V_init+VCa+50))/(exp(-0.1*(V_init+VCa+50))-1); 
BN=kT*0.125*exp(-0.0125*(V_init+VCa+60)); 
TAU_N=1/(AN+BN); 
N_INF=AN/(AN+BN); 
  
V.M= M_INF; 
V.H= H_INF; 
V.N= N_INF; 
V.Itot = 0; 
end 
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APPENDIX C 

CELLSPARK RELATED COURSE MATERIALS 
 

C.1: Electrophysiology Lecture Slides 

Slide 1 

Electrophysiology
Lab 4

 

 

Slide 2 

What is electrophysiology?
“As yet we know nothing of  what goes to create or evoke the active spark of  life.”

– Bram Stroker, The Jewel of  Seven Stars

De viribus electricitatis in motu musculari – Luigi Galvani, 1780

Not so fast, 
my friend!
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Slide 3 

Electrically excitable cells

 

 

Slide 4 

Action potential

 

 

Slide 5 

Hodgkin-Huxley Model
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Slide 6 

Cardiac Action Potential

• Depolarization
• Fast Na+ channels

• Plateau 
• Slow Ca++ channels

• Slow to open
• Slow to close

• After depolarization, permeability 
to K+ decreases

• Ca++ is pumped in – excitation-
contraction coupling

• Repolarization
• Slow K+ channels

 

 

Slide 7 

Tusscher-Noble-Noble-Panfilov (TNNP) Model

 

 

Slide 8 

 

 



 165 

Slide 9 

Midterm Lab Report

• Design and carry out an electrophysiology experiment that can be 
completed in CellSpark.

• Write up your findings in a journal article style lab report
• Introduction, Methods, Results, Discussion, References
• May include 1-2 figures
• 4 pages max

• Submit your hypothesis to be approved for your pre-lab next week!
• Due October 20, 2017 by 11:55pm
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C.2: Laboratory Tutorial Exercise 

Lab #4: Electrophysiology 
The goal of this lab is to show you some basic cell electrophysiology techniques. In 
addition, you should learn how electrically excitable cells response to electrically stimuli 
so that you can interpret electrophysiological measurements. 
 

Part 1: Patch Clamp vs. Microelectrode Array 
We will visit the lab with the patch clamp and microelectrode array (MEA) set ups. 
 
1. Why are both the patch clamp and MEA set ups in metal cages? 
 
 
 
 
 
2. What are some advantages and disadvantages of doing patch clamp vs. using an MEA 
to measure cellular electrical responses? 
 
 
 
 
 
 

Part 2: Electrically Excitable Cell Simulation 
 
In this part of the lab, you’ll be using CellSpark, a simulation software, to do a couple 
patch clamp type experiments virtually. Real patch clamp experiments are long and take 
many hours/days of practice to master the techniques. 
In the software, the membrane of a neuron is modeled as the Hodgkin-Huxley circuit 
model below: 



 167 

 
 
 In this simulation environment, you can interrogate a single cell in a manner similar to a 
real patch experiment (without all the noise, though). You can also change many of the 
cell and environment parameters to see the effect on the electrical response. 
 
1. Start Matlab R2017a and click the “CellSpark” icon under apps to launch the software. 
 
2. Under “Cell Type”, select “Neuron” and run the simulation leaving all other parameters 
at the default values. 
 
3. Using the cursor, determine the peak amplitude of the action potential. ________ mV 
 
3. Now let’s add sodium to the outside bath. Increase the box labeled “Nao” to 200 mM. 
What do you notice happens when you add the sodium? 
 
 
 
 
 
 
4. Why do you suppose this happens? (Hint: What’s the Nernst potential for sodium with 
the original values and with your new increased external concentration?)  
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5. Now, decrease the external concentration to 100 mM (below the original value). 
Explain what you observe. 
 
 
 
 
 
 
 
 
 
6. Set the simulation back to the default values by pressing the “Default Parameters” 
button and clear the axes by pressing the “Clear Axes” button.    
 
 
 
 
 
 
 
7. Run the simulation again. Now change the Stimulus Amplitude to 5 µA, and run the 
simulation again. What do you notice about this membrane response? Would you 
consider this an action potential? 
 
 
 
 
 
 
8. Next we will look at a model of a different electrically excitable cell, a ventricular 
myocyte. The model for this cell is much more complicated and includes many more ionic 
currents. Change the “Cell Type” to “Endocardial Cell”. 
 
9. Run the simulation. Using the cursor, measure the peak amplitude and duration of the 
action potential and sketch the shape of the membrane response below. How does it 
differ from the neuron action potential? 
  

Amplitude: __________ mV  Duration: ____________ ms 
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10. Change the dependent variable of the axes to “ICaL (mA)” and run the simulation 
again. You should see the current through the L-Type Calcium channels plotted. How 
does this compare to the plot of membrane response? Explain what you observe. 
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C.3: Midterm Lab Assignment Prompt 

Midterm Lab Assignment 
 
Design your own Patch-Clamp cell experiment! The write-up is due by 11:55pm on the 
date indicated by the syllabus; turn it in on time or get a 0! (this is worth 15% of your final 
grade) Submit it on the TurnItIn link on Blackboard before the due date.  
 
You can use either the axon or cardiomyocyte model. You can start now but finish later 
(just download the simulation installers from blackboard onto a computer.)  
 
Ideas:  
What effect does capacitance have on how susceptible myocytes are to excitation?  
What’s the effect of any of the ion concentrations on either of the model cells?  
What effect does temperature have on the action potential duration in neurons? 
 
Pick a good set of parameter values to test over and make sure you record your results! 
You should pretend you are running a real experiment (think about controls and 
validation for your theory for what happens).  
 
The write-ups should be in the form of a short journal publication (~2-3 pages) and have 
the following: Tell me what you are planning and what your hypothesis is (Introduction 
and Background), then explain what you did (Methods), then what happened (Results) 
and then why you think it happened (Discussion). You may include one or two figures and 
have a maximum of 4 pages total. Please remember to cite all references you use in a 
bibliography. The Reference Section does not count in your page limit. Use either Times 
New Roman font size 12pt or Ariel/Helvetica font size 11pm with 1 in margins. For 
convenience, a template is included on Blackboard.  
 
Note: references papers and journals are good references. Websites (especially 
Wikipedia) are NOT appropriate references. See template for bibliography format.  
 
As an example a good hypothesis would be:  
Increasing external sodium concentration increases the peak of the action potential.  
You are NOT allowed to pick this hypothesis. This is the experiment you ran in lab today. 
If you use this hypothesis you will get a 0. 
 
Your hypothesis must be submitted in writing or via email to Dr. Dean or a TA before the 
start of lab next week. This counts as your pre-lab grade for lab #5. 
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C.4: Midterm Lab Assignment Grading Rubric 

 
 Excellent (5 point) Very Good (4 point) Good (3 point) Fair (2 point) Poor (1 point) 

Content • Presents a well-
thought hypothesis 
with sufficient details 
of reasoning behind it 

• Presents both 
qualitative and 
quantitative results 
with well-laid out 
summary graphs of 
the relevant quantities 
being measured    

• Uses Hodgkin-
Huxley and/or correct 
scientific theory to 
explain resulting 
trends 

• Presents a hypothesis 
with explanation of 
reasoning behind it 

• Presents some data 
with calculated or 
summarized results 

• Presents detailed 
methods section 

• Uses some HH model 
and other scientific 
theory to explain 
reasoning 

• Presents a hypothesis 
with some 
background 

• Presents some data 
with graphs of raw 
data  

• Methods section 
contains relevant 
details 

 

• Presents a hypothesis; 
with very little details 
of reasoning behind 
hypothesis 

• Few scattered results 
• Missing details in 

methods section 
 

• Lacks a central 
hypothesis 

• Lacks any organized 
quantitative data and 
results 

Organization / 
Structure 

• Has a distinct 
structure of 
Introduction, Body 
(Development of 
theme), and 
Conclusion 

• Sentences are 
coherent  

• Transitions between 
paragraphs and 
sentences are smooth 
and logical 

• Has a distinct 
structure of 
Introduction, Body 
(Development of 
theme), and 
Conclusion 

• Sentences are 
coherent 

• A few of the 
transitions between 
paragraphs and 
sentences are jumpy 

• Has a distinct 
structure of 
Introduction, Body 
(Development of 
theme), and 
Conclusion 

• A few sentences are 
incoherent or hard to 
follow 

• Most of the 
transitions between 
paragraphs and 
sentences are jumpy 

• Has some structure of 
Introduction, Body 
(Development of 
theme), and 
Conclusion 

• Many sentences are 
incoherent or hard to 
follow 

• Most of the 
transitions between 
paragraphs and 
sentences are jumpy 

• Has no structure of 
Introduction, Body 
(Development of 
theme), and 
Conclusion 

 

Discussion and 
Reasoning 

• All statements are 
accurate and concise 

• Opinions (theories) 
and facts (physical 
evidence) are clearly 
distinguished 

• Proper citation of 
literature (source of 
information 

 

• All statements are 
accurate and concise 

• Opinions (theories) 
and facts (physical 
evidence) are 
somewhat mixed up 

• Proper citation of 
literature (source of 
information 

• All statements are 
accurate and concise 

• Opinions (theories) 
and facts (physical 
evidence) are not 
distinguished 

• Some missing citation 
of literature (source 
of information 

• Some statements are 
inaccurate and long-
winded 

• Opinions (theories) 
and facts (physical 
evidence) are not 
distinguished 

• Poor citation of 
literature (source of 
information 

• Most statements are 
inaccurate  

• Opinions (theories) 
and facts (physical 
evidence) are not 
distinguished 

• No citation of 
literature (source of 
information 

Mechanics / Style 
(one select page is 
graded) 

• No Grammatical error 
• Proper syntax 
• No spelling error / 

typographical error 
 

• No Grammatical error 
• Proper syntax 
• A few (2 -3) spelling 

errors / typographical 
errors 

 

• A few (2-3) 
Grammatical errors 

• Some awkward 
syntax 

• Several (4-7) spelling 
errors / typographical 
errors 

 

• Several (4-7) 
Grammatical errors 

• Some awkward 
syntax 

• Several (4-7) spelling 
errors / typographical 
errors 

 

• Many (>7) 
Grammatical errors 

• No control of syntax 
• Many (>7) spelling 

errors / typographical 
errors 
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APPENDIX D 

CELLSPARK SURVEY AND IRB DOCUMENTS 

D.1: CellSpark Survey 
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D.2: Informed Consent Document 

Information about Being in a Research Study 
Clemson University 

 
Impact on Simulation Software on Learning Electrophysiology 

 
Description of the Study and Your Part in It 
 
Dr. Delphine Dean and Tyler Harvey are inviting you to take part in a research study. Dr. 
Delphine Dean is an Associate Professor at Clemson University. Tyler Harvey is a 
student at Clemson University, running this study with the help of Dr. Delphine Dean. 
The purpose of this research is to assess the effectiveness of a software package which 
simulates experiments on cells for teaching undergraduate students concepts in 
electrophysiology (the electrical activity of cells) as well as assessing the software's 
usefulness for teaching students to design and conduct scientific experiments. 
 
Your part in the study will be to identify your level of agreement with seven statements 
concerning your use of the software, create a concept map of your understanding of 
electrophysiology by dragging and dropping concepts and relationships onto a chart, and 
give any additional opinion or feedback on the software. 
 
It will take you about 20 minutes to be in this study. 
 
Risks and Discomforts 
 
We do not know of any risks or discomforts to you in this research study.  
 
Possible Benefits 
 
We do not know of any way you would benefit directly from taking part in this study. 
However, this research may help us to better understand the role of simulation software 
for engineering education and may help improve curriculum for students who take this 
course in the future. 
 
Protection of Privacy and Confidentiality 
 
No personally identifiable information will be collected in this study or will be known by 
any member of the research team. 
 
Choosing to Be in the Study 
 
You do not have to be in this study. You may choose not to take part and you may choose 
to stop taking part at any time. You will not be punished in any way if you decide not to 
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be in the study or to stop taking part in the study. If you decide not to take part or to stop 
taking part in this study, it will not affect your grade in any way. 
 
Contact Information 
 
If you have any questions or concerns about this study or if any problems arise, please 
contact Dr. Delphine Dean at Clemson University at 864-656-2611. 
 
If you have any questions or concerns about your rights in this research study, please 
contact the Clemson University Office of Research Compliance (ORC) at 864-656-0636 
or irb@clemson.edu. If you are outside of the Upstate South Carolina area, please use the 
ORC’s toll-free number, 866-297-3071. 
 
 
Clicking on the "agree" button indicates that:  
 
• You have read the above information 
• You voluntarily agree to participate 
• You are at least 18 years of age 
 
You may print a copy of this informational letter for your files.  
  

mailto:irb@clemson.edu
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D.3: Participant Recruitment Prompt 

Recruitment Script - Email 
Subject: Optional Assessment 
BIOE 3700 Students, 
Now that you have completed and submitted your midterm lab report, we would like you 
to complete a short survey concerning the software you used to complete the assignment, 
CellSpark, and a short activity to gauge your understanding of cell electrophysiology.  
 
Participation in the study is completely optional and anonymous. Your choice to 
participate will not affect your grade in any way. 
The activity is designed to take less than 20 minutes to complete. 
If you would like to participate please visit the following link and read through the 
informed consent document. If you understand and agree to participate, you can continue 
through to complete the activity. You may choose to stop participating at any time by 
closing the webpage. 
Link: <link to online assessment will be included here> 
Thank you, 
Tyler Harvey 
Dr. Dean 
 

Recruitment Script – In person 
Now that you have finished your midterm lab reports, you all should have received an 
email about participating in a survey and short activity related to the assignment. This is a 
study designed to help us improve the simulation software and understand whether it was 
effective in helping meet the objectives of the course. Participation is completely optional 
and anonymous, and does not affect your grade in any way. 
 
If you would like to participate, please refer to the email for how to access and complete 
the assessment. 
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