
Clemson University
TigerPrints

All Dissertations Dissertations

12-2018

Computational Approaches to Understanding
Structure-Function Relationships at the
Intersection of Cellular Organization, Mechanics,
and Electrophysiology
Tyler George Harvey
Clemson University, tgharve@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Harvey, Tyler George, "Computational Approaches to Understanding Structure-Function Relationships at the Intersection of Cellular
Organization, Mechanics, and Electrophysiology" (2018). All Dissertations. 2249.
https://tigerprints.clemson.edu/all_dissertations/2249

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2249?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

COMPUTATIONAL APPROACHES TO UNDERSTANDING STRUCTURE-
FUNCTION RELATIONSHIPS AT THE INTERSECTION OF CELLULAR

ORGANIZATION, MECHANICS, AND ELECTROPHYSIOLOGY

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Bioengineering

by
Tyler George Harvey

December 2018

Accepted by:
Dr. Delphine Dean, Committee Chair

Dr. Bruce Z. Gao
Dr. Jiro Nagatomi

Dr. William Richardson

 ii

ABSTRACT

The heart is a complex mechanical and electrical environment and small changes

at the cellular and subcellular scale can have profound impacts at the tissue, organ, and

organ system levels. The goal of this research is to better understand structure-function

relationships at these cellular and subcellular levels of the cardiac environment. This

improved understanding may prove increasingly important as medicine begins shifting

toward engineered replacement tissues and organs. Specifically, we work towards this

goal by presenting a framework to automatically create finite element models of cells

based on optical images. This framework can be customized to model the effects of

subcellular structure and organization on mechanical and electrophysiological properties

at the cellular level and has the potential for extension to the tissue level and beyond.

In part one of this work, we present a novel algorithm is presented that can

generate physiologically relevant distributions of myofibrils within adult cardiomyocytes

from confocal microscopy images. This is achieved by modelling these distributions as

directed acyclic graphs, assigning a cost to each node based on observations of cardiac

structure and function, and determining to minimum-cost flow through the network. This

resulting flow represents the optimal distribution of myofibrils within the cell. In part

two, these generated geometries are used as inputs to a finite element model (FEM) to

determine the role the myofibrillar organization plays in the axal and transverse

mechanics of the whole cell. The cardiomyocytes are modeled as a composite of fiber

trusses within an elastic solid matrix. The behavior of the model is validated by

 iii

comparison to data from combined Atomic Force Microscopy (AFM) and Carbon Fiber

manipulation. Recommendations for extending the FEM framework are also explored.

A secondary goal, discussed in part three of this work, is to make computational

models and simulation tools more accessible to novice learners. Doing so allows active

learning of complicated course materials to take place. Working towards this goal, we

present CellSpark: a simulation tool developed for teaching cellular electrophysiology

and modelling to undergraduate bioengineering students. We discuss the details of its

implementation and implications for improved student learning outcomes when used as

part of a discovery learning assignment.

 iv

DEDICATION

This work is dedicated to my family. To my wife Julia, whose love, support, and

encouragement has been unwavering. To my mother Heike, for instilling a love of

learning, encouraging my curiosity, and always believing in me. And to Polly, for

keeping me company during many of the long hours it took to make this dissertation a

reality.

 v

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor and mentor, Dr. Delphine

Dean. Words cannot express the gratitude I have for the nearly a decade of advice,

encouragement and wisdom I’ve gained while working alongside you. I would also like

to thank my committee members: Dr. Bruce Gao, Dr. Jiro Nagatomi, and Dr. Will

Richardson who helped guide the course of my research. Additionally, I would like to

thank Dr. Brian Dean, whose ability to make even the most daunting problems seem

simple made much of this work possible and Dr. Scott Wood, whose doctoral work

inspired my own.

I would like to thank Dr. Aesha Desai, Nardine Ghobrial, and all past and present

members of the Multiscale Bioelectromechanics Lab for their contributions to my work,

Dr. Martine LaBerge and the Department of Bioengineering for the opportunity and

support to complete my degree, and especially Maria Torres, for her unending kindness

and support.

I would like to acknowledge Dr. Peter Kohl and Lucas Schmidt for providing the

confocal images and experimental data used in my work, MOSEK Inc, for allowing free-

use of the MOSEK Optimization Toolbox, and the National Science Foundation for their

financial support of this project (NSF CAREER CBET 1254609). I would also like to

acknowledge the Summer Program for Research Interns (SPRI) initiative between the

Calhoun Honors College and the South Carolina Governor’s School for Science and

Mathematics (SCGSSM) for their supplemental funding and Emily Fast, the research

intern who worked on this project.

 vi

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER

 1. INTRODUCTION AND SPECIFIC AIMS... 1
 1.1 Motivation .. 2
 1.2 Specific Aims ... 3
 1.3 Significance.. 4
 1.4 Background .. 5
 1.5 References .. 8

 2. ALGORITHMIC ESTIMATION OF MYOFIBRIL
 DISTRIBUTIONS IN ADULT CARDIOMYOCYTES 9
 2.1 Literature Review... 10
 2.2 Methods.. 16
 2.3 Results .. 24

2.4 Discussion .. 29
 2.5 Conclusions .. 31
 2.6 References .. 32

 3. FINITE ELEMENT MODELLING TO UNDERSTAND
 THE ROLE OF SUBCELLULAR STRUCTURES ON
 WHOLE-CELL BEHAVIOR .. 34
 3.1 Literature Review... 35
 3.2 Methods.. 41
 3.3 Results .. 47

3.4 Discussion .. 58
 3.5 Conclusions .. 60
 3.6 References .. 60

 vii

Table of Contents (Continued)
Page

 4. SINGLE-CELL ELECTROPHYSIOLOGICAL MODELS
 AS TOOLS IN ENGINEERING EDUCATION 70
 4.1 Introduction and Background .. 70
 4.2 Methods.. 78
 4.3 Results .. 84

4.4 Discussion .. 90
 4.5 Conclusions .. 94
 4.6 References .. 95

 5. CONCLUSIONS AND RECOMMENDATIONS
 FOR FUTURE WORK .. 97
 5.1 Conclusions .. 97
 5.2 Recommendations for Future Work... 98

APPENDICES ... 101

 A: MATLAB Code for Generating Myofibril Distributions 102
 A.1: cell6.m .. 102
 A.2: Import_Confocal_Stack_sep.m .. 105
 A.3: estimateBinaryVolume_2.m .. 105
 A.4: estimateBinaryArea_2.m ... 105
 A.5: regImage.m .. 106
 A.6: regImage2.m .. 106
 A.7: paths_nosweep.m ... 107
 A.8: fitcylinder.m ... 113
 A.9: generateNodes3.m .. 114
 A.10: findAttachments2.m ... 116
 A.11: scaleDemand.m .. 117
 A.12: generateEdges3.m .. 117
 A.13: generateSideView.m .. 118
 A.14: matrix2ft.m... 118

 B: MATLAB Code for CellSpark... 119
 B.1: CellSpark.m .. 119
 B.2: settings.m ... 137
 B.3: run_simulation.m ... 142
 B.4: Step.m... 153
 B.5: StepN.m .. 156

 viii

Table of Contents (Continued)
Page

 B.6: Variables.m .. 160
 B.7: VariablesN.m ... 161

 C: CellSpark Related Course Materials .. 162
 C.1: Electrophysiology Lecture Slides .. 162
 C.2: Laboratory Tutorial Exercise ... 166
 C.3: Midterm Lab Assignment Prompt .. 170
 C.4: Midterm Lab Assignment Grading Rubric .. 171

 D: CellSpark Survey and Informed Consent Document 172
 D.1: CellSpark Survey ... 172
 D.2: Informed Consent Document ... 173
 D.3: Participant Recruitment Prompt ... 175

 ix

LIST OF TABLES

Table Page

 2.1 Algorithm results for each sample cell and node spacing case 29

 3.1 Material properties for each component of the COMSOL
 models generated ... 49

 3.2 Summary of model complexity for the four COMSOL
 models generated ... 54

 4.1 Selected ABET criteria for accredited programs in
 engineering ... 77

 4.2 Statistical analysis of assignment grades
 (analyzed papers vs all papers) .. 94

 x

LIST OF FIGURES

Figure Page

 1.1 Cardiac Excitation-Contraction coupling mechanism 6

 1.2 Intercalated disc composition and mechanical
 coupling mechanism .. 7

 2.1 Structure of striated muscle ... 10

 2.2 A Directed Acyclic Graph (DAG) ... 14

 2.3 Schematic representation of the myofibril generation model 19

 2.4 Optimal circle in circle packing of N = 2,3,4,5 and 7 unit circles 22

 2.5 Interpolation curve of optimal packing densities based
on unit and enclosing circle radii ratio .. 23

 2.6 Orthogonal views of isolated membrane and nuclei isosurfaces 24

 2.7 Visual representation of cylinder approximation method 25

 2.8 Visual representation of the node network for a sample cell 26

 2.9 Vizualization of the myofibril generation process 27

 2.10 Comparison of original image and generated fiber distributions 28

 3.1 Simple element models of viscoelasticity .. 37

 3.2 The Generalized Maxwell model of viscoelasticity 38

 3.3 Schematic of the principle of Tensegrity ... 39

 3.4 A unidirectional composite exhibites transverse isotropy 40

 3.5 Overview of cell mechanics measurement techniques 43

 3.6 Schematic representation of AFM method .. 44

 xi

List of Figures (Continued)

Figure Page

 3.7 Overview of the CF manipulation method... 46

 3.8 Visualization of combination CF/AFM technique 51

 3.9 Model geometries visualized in COMSOL.. 53

 3.10 Visualization of axial stress in models with variable
 fiber thickness .. 55

 3.11 Comparison of axial force and elastic moduli for
 models with variable fiber thickness.. 56

 3.12 Deformed mesh and axial stress in truss elements for
 each applied stretch .. 58

 3.13 Axial force vs sarcomere length – experimental data 60

 3.14 Axial force vs sarcomere length – simulation data 60

 3.15 Axial force vs sarcomere length (1% binning) – experimental 61

 3.16 Axial force vs sarcomere length (1% binning) – simulation 61

 3.17 Apparent elastic modulus vs sarcomere length - experimental 63

 3.18 Approximated elastic modulus vs sarcomere length - simulation 63

 4.1 Circuit diagram of the Hodgkin-Huxley model ... 71

 4.2 Action potential at various cardiac cycle frequencies 73

 4.3 Learning objectives for using simulations in teaching
 engineering ... 76

 4.4 Overview of CellSpark software dependencies ... 80

 4.5 CellSpark software interface .. 81

 4.6 Combined responses to survey items ... 87

 1

CHAPTER ONE

INTRODUCTION AND SPECIFIC AIMS

1.1 Motivation

My long-term research goal is to improve the understanding of how changes in

cardiovascular structure at the cellular and subcellular can impact the mechanical and

electrical function at the tissue level. In pursuit of this, the objective of this dissertation is

to develop a framework through which to model the unique electromechanical properties

of cardiac cells and tissues. To this end, the research developed methods to observe,

measure, and estimate information about the geometry, mechanics, and electrical

characteristics of cells at the tissue, cellular, and subcellular level and incorporate this

data into a Finite Element Modelling (FEM) multi-physics package to build useful

models with varying levels of complexity. The research employs various microscopy and

image processing techniques to observe and measure geometries at the cellular and tissue

levels, but electromechanical function is inherently linked to the subcellular structure as

well. Novel computational methods were employed to estimate geometries at this scale

that are below the practical resolution of the microscopy. Validation of these models was

by performed by comparison to experimental cell mechanics methods. The framework

developed allows a simple method to create cardiac cellular models that can be used to

assess the effects of subcellular structure changes on the cellular and tissue level

properties. Additionally, the models can be used to see how tissue level structural

changes affect electromechanical function in environments which are difficult to study in

vivo and difficult to recreate in vitro, such as the post-infarct heart.

 2

Following myocardial infarction, damaged cardiac tissue undergoes remodeling in

an attempt to repair and strengthen the heart. As a part of this remodeling process,

myocytes change size and shape, and there is an infiltration of fibroblasts into the

myocardial space1. This drastic change in the tissue structure leads to changes in the

electrical and mechanical function, the extent of which are not fully understood.2–4

Because of the difficultly of studying this environment in vivo or adequately recreating it

in tissue culture, the long term goal of this project is to develop a computational platform

to model the mechanics of this, and other unique cardiac environments at the tissue level

scale.

My long-term educational goals are to increase undergraduate bioengineering

students’ exposure to topics in computer science, electrical engineering, and engineering

design to improve breadth of knowledge and sense of engineering identity.

1.2 Specific Aims

1.2.1 Aim 1: Algorithmic Estimation of Myofibril Distributions in Adult Cardiomyocytes

The goal of this aim is to create a novel algorithmic method to estimate myofibrils

in adult cardiomyocytes based on confocal images of the cell. This is achieved by

modelling these distributions as directed acyclic graphs, assigning a cost to each node

based on observations of cardiac structure and function, and determining to minimum-

cost flow through the network using the Network Simplex algorithm. This resulting flow

represents the optimal distribution of myofibrils within the cell.

 3

1.2.2 Aim 2: Finite Element Modeling to Understand the Role of Subcellular Structures

on Whole-Cell Behavior

The goal of this aim is to use the geometries generated in aim 1 as inputs to a

finite element model (FEM) to determine the role the myofibrillar organization plays in

the axial and transverse mechanics of the whole cell. The cardiomyocytes are modeled in

COMSOL Multiphysics as a composite of fiber trusses within an elastic solid matrix. The

behavior of the model is validated by comparison to data from combined Atomic Force

Microscopy (AFM) and Carbon Fiber manipulation.

1.2.3 Aim 3: Single-Cell Electrophysiological Models as Tools in Engineering Education

The goal of this aim is to develop and implement CellSpark: a simulation tool

developed for teaching cellular electrophysiology and modelling to undergraduate

bioengineering students. We discuss the details of its implementation and implications for

improved student learning outcomes when used as part of a discovery learning

assignment. This software makes these computational more accessible to novice learners

and allows active learning of these complicated course materials to take place

1.3 Significance

Two of the grand challenges of engineering, as identified by the National

Academy of Engineering, are to engineer better medicines and to engineer the tools of

scientific discovery. As technology and computing advances, a powerful tool is at our

disposal as engineers to help make the transition from benchtop to bedside much faster

through the use of computational biology. This work will help to develop a computational

 4

framework, one of these tools of scientific discovery that will help bridge gaps in

knowledge between cardiac properties at the single cell and tissue levels, 2D to 3D levels,

and in vitro and in vivo levels. This framework makes it possible to predict mechanical

and electrical behavior of tissue constructs, of vital importance for tissue and organ

engineering technologies.

 Medicine is progressively moving to smaller scales, with treatments shifting from

systemic macroscale approaches to targeted, cellular and molecular ones. At this small

scale, not only is observation and assessment more difficult, but the effects of changes at

the higher, macroscopic levels is not as well studied or understood. Development of this

computational platform and its use to assess the impact of the small scale structural and

functional changes will allow future research endeavors to progress faster, and with less

time and capital investment than traditional in vitro preliminary testing. This

multidisciplinary research also allows for improved collaboration between computer

scientists, who possess these powerful computational tools but lack the background to

even realize the extent of problems they could be solving, and bioengineers – especially

those still early in their training – who often have a reluctance to expand outside their

comfort zones into the realms of computing and simulation. The educational goals of this

proposal seek to start bridging this gap, to help bioengineering undergraduates become

well rounded and confident engineers.

 5

1.4 Background

Anatomy and Physiology:

At the cellular level, cardiac tissue is composed of specialized muscle cells

referred to as cardiomyocytes. Cardiac muscle, while possessing qualities similar to both

skeletal muscle (striations due to bands of actin and myosin) and smooth muscle

(involuntary activation), it has two main characteristics which make it both structurally

and electrophysiologically unique within the body: t-tubules and intercalated discs.5

T-tubules are the primary structures responsible for excitation-contraction

coupling. As the cell is excited following an electrical stimulus, a wave of depolarization

travels across the membrane and into t-tubules. Here, the depolarization causes voltage

gated calcium ion channels to open allowing extracellular Ca2+ to diffuse into the cell and

initiate a positive feedback loop to release additional Ca2+ stored in the sarcoplasmic

reticulum into the cytoplasm.6 Cytoplasmic calcium, when in sufficient quantities binds

to the Troponin C, exposing the active site of actin. With actin now exposed, the classical

“sliding filament” model of contraction between the actin and myosin filaments takes

place, contracting the entire muscle. Following contraction, ATP binding releases the

calcium from Troponin-C and ion pumps restore the previous levels of cytoplasmic

calcium, thus repolarizing the cell.7

 6

Figure 1.1: Mechanism of Excitation-Contraction coupling of cardiomyocytes.6

Intercalated discs are the “glue” which hold the heart together – at least

electrically and mechanically. These discs are the site of connection between adjacent

cardiomyocytes and allows them to form a functional syncytium.5 Discs are composed of

three parts: actin anchor points (fascia adherens) which allow internal stresses to be

transferred to the sarcomeres of the adjacent cell, intermediate filament anchor points

(desmosomes) which physically attach the cells together and let external stresses be

transferred between them, and gap junctions which allow intersarcoplasmic ion flow and

enable action potential propagation down the syncytium.

 7

Figure 1.2: Intercalated disc composition and mechanism of mechanical coupling.7

Pathology:

 Abnormal electromechanical behavior of the heart can be generally be broken

down into two main problems: pathology of the conduction circuit itself and necrosis or

other tissue damage with results in mechanical failure of the functional syncytium. The

former cause usually manifests as one of several arrhythmias, interrupting the normal

cardiac cycle.8 Common arrhythmias can include extra beats, which are usually fairly

benign, tachycardias (elevated pacing) and fibrillation, the fast irregular pacing which

leads to both stroke and heart failure.8

 The latter cause, damage to the cardiomyocytes themselves, can be caused by a

number of things including trauma, chronic or prolonged ischemia, and myocardial

infarction. The resulting damage can cause mechanical weakening of the heart muscle,

reduced circulatory capacity, arrhythmias, and enlarging/remodeling of the heart – in

general an overall loss of proper mechanical performance.9

 8

1.5 References

1. Turner NA, Porter KE. Function and fate of myofibroblasts after myocardial
infarction. Fibrogenes Tissue Repair. 2013;6(1):1. doi:10.1186/1755-1536-6-5.

2. Van Breemen VL. Intercalated discs in heart muscle studied with the electron

microscope. Anat Rec. 1953;117(1):49-63. doi:10.1002/ar.1091170106.

3. Barr L. Propagation of Action Potentials and the Structure of the Nexus in Cardiac

Muscle. J Gen Physiol. 1965;48(5):797-823. doi:10.1085/jgp.48.5.797.

4. Goshima K, Tonomura Y. Synchronized beating of embryonic mouse myocardial

cells mediated by FL cells in monolayer culture. Exp Cell Res. 1969;56(2-3):387-
392. doi:10.1016/0014-4827(69)90029-9.

5. Martini, F & Nath J. Anatomy and Physiology. New York: Pearson; 2009.

6. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic

reticulum. Am J Physiol Physiol. 1983;245(1):C1-C14.
doi:10.1152/ajpcell.1983.245.1.C1.

7. Bu G, Adams H, Berbari EJ, Rubart M. Uniform action potential repolarization

within the sarcolemma of in situ ventricular cardiomyocytes. Biophys J.
2009;96(6):2532-2546. doi:10.1016/j.bpj.2008.12.3896.

8. National Heart, Lung and BI-N. Arrhythmia. nhlbi.nih.gov/health/health-

%0Atopics/topics/arr/.

9. Kovanen PT. Mast cells and degradation of pericellular and extracellular matrices:

potential contributions to erosion, rupture and intraplaque haemorrhage of
atherosclerotic plaques: Figure 1. Biochem Soc Trans. 2007;35(5):857-861.
doi:10.1042/BST0350857.

 9

CHAPTER TWO

ALGORITHMIC ESTIMATION OF MYOFIBRIL DISTRIBUTIONS IN ADULT

CARDIOMYOCYTES

Cellular mechanics are often simplified to basic constitutive models, such as

elastic1–3 or poroelastic4 solids. While these models can often predict mechanical

properties or behavior of normal cells relatively accurately, they do not account for

cytoskeletal structure. Since cellular architecture is constantly remodeling5, whether the

result of pathology or changes in the needs of the organism, these models are insufficient

to predict properties and behaviors during or after remodeling and may be insufficient at

different levels of model complexity.

Cytoskeletal organization itself is difficult to measure, especially at the tissue

level and above, where imaging techniques do not have sufficient resolution to visualize

subcellular components. To solve this problem, we are interested in instead using cellular

images as an input and using computational methods to create models of cytoskeletal

architecture that can then improve cellular and tissue mechanics models.

In this chapter, we present one such technique to estimate likely distributions of

myofibrils in cardiomyocytes by approximating the scenario as a thick non-crossing paths

problem. We present an approximate solution by representing the cell volume as a

directed acyclic graph and computing the minimum cost-flow through the network. The

collection of paths that results approximates the distribution of myofibrils within the cell.

 10

2.1 Literature Review

2.1.1 Myocyte Structure and Function

 Cardiomyocytes are the cell that acts as the building block of cardiac tissue,

accounting for nearly 75% of healthy myocardium6. Compared to other cells present in

the heart, such as cardiac fibroblasts, myocytes are large and they account for this volume

despite only being 30-40% of the cells present5,7. Myocytes are roughly cylindrical, about

100 um long, with diameters in the range of 10-25 um, though branching and other non-

cylindrical shapes can be observed. Myocytes contain the same cytoskeletal elements as

other mammalian cells (F-actin, microtubules)8,9 with the notable addition of bundles of

myofibrils, the primary contractile organelles10.

Figure 2.1: Structure of striated muscle. The myocyte is essentially a bundle of smaller
contractile fibers called myofibrils.23

 11

Myofibrils are chains of sarcomeres, the smallest contractile unit of striated

muscle. Each sarcomere consists of two groups of actin filaments bound to Z-disks at

opposite ends of the sarcomere.8 Between each pair of actin filaments is a myosin

filament, which bridges the gap (called the H-zone) and attaches to both Z-disks through

the giant protein titin. Each side of the Z-disk contains a mirror image of these filament

attachments, which is how the sarcomeres are chained together into a myofibril. The

prevailing theory of muscle contraction, the sliding filament theory, posits that the

interweaved actin and myosin filaments slide past each as ATP hydrolysis of the myosin

causes reversible binding of the myosin heads to the actin filaments.4

2.1.2 Myofibril Distribution

 As myofibrils are the contractile element of the myocyte, their distributions within

the cell dictate the overall contractility of the cell. The mechanisms that determine these

distributions have been extensively studied. There has also been interest in modeling

these distributions for reasons similar to our own, but most of these models11–13 are based

upon reaction kinetics of the contractile subunits. In this way they are more accurately

modelling the formation and development of muscles.

 At least one image-based approach to automatic modelling these distributions in

myocytes has been attempted14 by segmenting out individual A-bands from high

resolution phase contrast images of striated muscle and developing a path growing

algorithm to chain them together into myofibrils. Though successful, this approach is

limited to high resolution images and a two-dimensional image which make it non-ideal

as an approach for our goal of extending our model to the tissue and organ level.

 12

2.1.3 Packing Problems

 This question of determining a specific organization of subcellular components

within the finite volume of the cell is a member of a broader class of problems in

mathematics known as packing problems.

In the simplest form the question of their distribution within the cellular volume is

given by the Pencil-Packing Problem15. A three-dimensional grid of voxels, some of

which are occupied with obstacles, is packed with “pencils” – unions of adjacent voxels

that form an axis-parallel strip. Only one pencil can be packed into a given voxel and

cannot be packed into voxels occupied by obstacles. The length of the pencils can be

fixed or variable. In this simplification, myofibrils are assumed to have a square cross-

sectional area equal to one voxel by one voxel, and bending is restricted. The other

limitation is that myofibrils can only be oriented along the major cartesian directions.

The next logical extension of the problem is to remove the bending restriction and

add endpoints in the domain that should be connected to each other. The problem can

now be considered a member of a separate class: shortest path problems16. The simplest

of these problems seeks to find the shortest path between two points in a polygonal

domain which also contains obstacles. This problem can be extended to the non-crossing

paths problem by finding a collection of paths between multiple sets of points such that

the paths do not intersect each other or the obstacles and that the distribution of paths is

optimized in some way. In this problem specifically, the paths are “thick” since the

myofibrillar cross section is non-zero. Thick non-crossing paths problems, where thick

 13

paths are defined as the Minkowski sum of a curve and a disk, are common in other

disciplines such as integrated circuit design and air traffic management.17,18

2.1.4 Nodes, Networks, and Flows

 Our proposed approach to solving the thick non-crossing path problem of

myofibril distribution within cardiomyocytes is by representing the internal volume of the

cell as a graph. A graph is a collection of objects and the interconnections among them.

The objects in the graph are typically called vertices or nodes and the connections

between nodes are called edges or arcs. Both the nodes and edges can be described by

any number of characteristics (such as coordinate position) but at minimum are described

by their node/edge relationships.19

 All edges connect two nodes, but this connection can be either undirected, where

information can move between nodes in either direction, or directed where it is only

possible in one direction. Directed graphs are commonly abbreviated to digraphs. The

other important characteristic of graphs is cyclicity. A cyclic graph is one where one can

trace from a specific node along edges to other nodes and eventually arrive back at the

starting node. An acylic graph is one where this tracing is not possible. Cyclicity is

independent of direction and in this work we will specifically model the cellular volume

with graphs that are both acyclic and directed – so called Directed Acyclic Graphs or

DAGs.19

 14

Figure 2.2: A Directed Acyclic Graph (DAG). Nodes are represented by the blue circles
and the edges are represented as arrows.24

 A flow graph is a specific digraph whose edges represent the coefficients of

algebraic or differential equations of the nodes and a flow network is a specific flow

graph whose edges represent gains or losses of flow. In more concrete terms, each edge

of the flow network has a capacity for the amount of flow it is capable of receiving and

every node in the network must conserve flow – that is the flow into and out of the

network must be equal – with the exception of sources and sinks, where flow originates

and terminates, respectively. The most common problem associated with flow networks

are ones in which the maximum flow through the network is determined. This has

applications in transportation, logistics, and communications. If an additional cost

constraint is placed on edges, analogous to a resistance to flow, then another class of

Minimum-Cost Maximum-Flow problems is created. These types of problems allow the

resulting node disjoint paths through the network to be optimized by not only

 15

connectivity (like a Maximum-Flow problem) but also by any additional quality, such as,

in our case, position.20

2.1.5 The Primal-Simplex Algorithm

Minimum-Cost Maximum-Flow problems are NP-hard but, as linear programs,

are solvable by multiple different optimization algorithms, including the Primal Simplex

Algorithm. Let the Minimum-Cost Flow problem is linearized as:

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑧𝑧 = 𝒄𝒄𝒄𝒄

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑴𝑴𝒄𝒄𝒔𝒔 𝒔𝒔𝒕𝒕 𝑨𝑨𝒄𝒄 = 𝒔𝒔

 𝟎𝟎 ≤ 𝒄𝒄 ≤ 𝒔𝒔

where A is the (sparse) incidence matrix defining permissible edges, b is a vector giving

the demand of each node, c is a matrix defining the cost of each edge, and u is capacity

constraint, defining the maximum permissible flow on each edge (in our formulation, this

is equal to 1 for every permissible edge.)

Then the solution can be found by first computing the basic solutions of the form:

 𝒄𝒄𝐵𝐵 = 𝑩𝑩−1[𝒔𝒔 − 𝑵𝑵1𝒔𝒔1].

where B is the basis vector and N1 is a matrix containing the columns of A associated

with the non-basis variable set n1 such that:

𝑩𝑩𝒄𝒄𝐵𝐵 + 𝑵𝑵0𝒄𝒄0 + 𝑵𝑵1𝒄𝒄1 = 𝒔𝒔.

Next, the algorithm optimizes a solution by iteratively solving the computation

𝒚𝒚𝑘𝑘 = 𝑩𝑩−1𝒂𝒂𝑘𝑘 = 𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑗𝑗

where pi and pj are the columns of B-1 describing the paths from the source to nodes i and

j respectively, and ak is the column of A for the entering node. 20

 16

2.2 Methods

2.2.1 Image processing

The images provided for use in this study were of primary ventricular cardiac

myocytes obtained from female Sprague Dawley rats. The myocytes were fixed using 4%

paraformaldehyde, permeabilized with Triton-X, and fluorescently stained with

phalloidin and DAPI to visualize actin and the nuclei, respectively. Cells were imaged

using an Olympus PLAPON60XO 60x oil immersion objective (NA=1.42) on an

Olympus IX81 inverted microscope with a DSU spinning confocal disc and a Hamamatsu

ImagEM CCD camera (Hamamatsu Photonics K.K., Hamamatsu City, Japan).

Additionally, three images of Human ventricular myocytes, obtained using the same

protocol on comparable equipment were included as a comparison.

The red, green, and blue channels of each image were imported into MATLAB

r2016b (The MathWorks Inc., Natick, MA, USA) as separate 3-D grayscale matrices.

The empty green channel was discarded and each of the red and blue matrices was

converted to a binary (black-and-white) matrix using an empirically determined 15%

intensity threshold. The matrices were rescaled using bicubic interpolation such that each

element of the matrix represented a 1µm x 1µm x 1µm cellular volume.

After being rescaled, the centroid and major axis of the cell was determined by

finding Q1, Q2 (centroid) and Q3 of the (x,y,z) coordinates of the red channel binary

volume matrix. Both matrices were rotated using nearest-neighbor interpolation about the

centroid such that the major axis of the cell was aligned with the y-axis (second

dimension of the matrix.)

 17

“Holes” in the interior of the binary volume were filled and surface artifacts

introduced by the thresholding, rescaling, and registration processes were mitigated by

smoothing using a gaussian filter with size 3 pixels and standard deviation 1 pixel

followed by image dilation with a spherical structuring element of radius 1 pixel. The

membrane surface was captured by extracting the 1% isosurface using the marching-

cubes algorithm21 from the red channel matrix and exporting it as a stereolithography

(STL) file containing vertices and normal vectors of triangular faces which define the

surface. The same method was used to determine the nuclei surfaces using the blue

channel matrix.

2.2.2 Generation of Representative Myofibrils: A Subcellular Min-Cost Flow Problem

In this section, we describe a novel algorithmic technique to estimate the fiber

geometries, based on the geometric information known about the cell membrane and

nuclei. We make the following assumptions about myofibril distribution within a

myocyte:

1) The cell membrane mainly serves to contain all the myofibrils, so the space
between the membrane and the outermost fibers is minimal.

2) The main function of the cardiomyocyte is mechanical contraction, so
myofibrils are efficiently packed within the cell and excess sarcoplasmic
space is minimal.

3) For a combination of the previous reasons, fibers will terminate at or close to
the cell membrane, and the average fiber length will be maximized.

4) Muscle tissue in general, and cardiac tissue specifically, is transversely
isotropic so deviations in fiber direction from the major axis of the cell will be
minimal.

 18

As these assumptions are all linear in nature (maximizing or minimizing some

constraint), the problem of fiber distribution can be modeled and solved as a linear

program. Here, we represent the cellular volume as a directed acyclic graph and solve for

the optimal fiber distribution by determining the Minimum-Cost Flow.

Let N denote a set of nodes located on a regularly spaced grid with spacing s fully

contained within and completely filling the membrane isosurface extracted in the

previous section. Let E denote a set of all edges between members of N and their

orthogonally and diagonally adjacent neighbors. Each edge, Eij, has a length, lij of 1 (for

orthogonally adjacent nodes) or √2 (for diagonally adjacent nodes). dij, the distance from

the membrane isosurface, is calculated by averaging the Euclidean distance transform of

the voxels nearest the nodes Ni and Nj in the binary representation of the intracellular

space. This transform assigns each voxel a number representing the distance from that

voxel to the nearest non-zero voxel. If the spacing between nodes is an integer, then Ni

and Nj will each represent exactly one voxel.

Each edge is assigned a cost, cij, given by:

𝑐𝑐𝑖𝑖𝑗𝑗 = 𝑓𝑓(𝑑𝑑𝑖𝑖𝑗𝑗, 𝑙𝑙𝑖𝑖𝑗𝑗)

where the weighting function, f, allows customization of which assumptions are

prioritized. In our implementation, f was empirically chosen to be given by:

𝑓𝑓�𝑑𝑑𝑖𝑖𝑗𝑗, 𝑙𝑙𝑖𝑖𝑗𝑗� =
3
2
∙ 𝑑𝑑𝑖𝑖𝑗𝑗 ∙ 𝑙𝑙𝑖𝑖𝑗𝑗

Another possible simple weighting function is given by:

𝑓𝑓�𝑑𝑑𝑖𝑖𝑗𝑗 , 𝑙𝑙𝑖𝑖𝑗𝑗� = 𝛼𝛼 ∙ 𝑑𝑑𝑖𝑖𝑗𝑗 + 𝛽𝛽 ∙ 𝑙𝑙𝑖𝑖𝑗𝑗

 19

In this form, the length and distance assumptions can be independently prioritized using

the weighting parameters α and β, respectively.

To represent our scenario as a flow problem, specific nodes representing the

termination points of the fibril paths must be identified as either “sources” or “sinks” of

flow. Following assumption 3, these termination points should 1) lie at or near the

membrane isosurface and 2) lie at opposite ends of the major axis of the cell. To satisfy

the first criteria, nodes with fewer than three non-zero neighboring voxels in the binary

volume representation were eliminated as possible termination points. The second criteria

required segmentation of the cell volume into sections to determine which nodes occurred

near the end of the cell. This can be done in a variety of ways. In our case, this was

achieved by approximating the volume as a set of end-to-end cylinders and only

considering endpoints which lie the terminal cylinders.

Figure 2.3: Schematic representing the model. Nodes are shown as white or grey circles
(grey indicates nodes that are part of a path), and all permissible edges are show as
arrows. Terminal nodes at one end of the cell are connected to a source node with flow
+n and terminal nodes at the other are connected to a sink node with flow -n. This flow
constraint, n, indicates the number of fiber paths (represented by green arrows) to be
computed. The cost of including each node in a path is given by the weighting function f.

 20

 To approximate the cellular volume as cylinders, we represent the volume as a

point cloud, with each voxel represented as a single point in space. These points are

grouped into two clusters using the k-means algorithm. For each cluster, the smallest

cylinder which contains every point is generated. The axis of the cylinder lies along the

least-squares regression line of the points. The radius is given by the maximum

perpendicular distance between all the points and the regression line, and the height is

given by the maximum distance between two points in the direction of the line. The fit of

each cylinder is scored by dividing the number of points in the cluster by the volume of

the cylinder. This score is equal to the volume of cell which lies in the cylinder since each

point represents one unit voxel. This process is repeated with incrementally increasing

clusters until the set of cylinders with the best fit is found.

 Once the possible termination nodes have been identified, an additional edge is

created between each node at one end of the cell and a master source node and each node

at the other end and a master sink node. The cost of each of these edges can either be zero

so that each node is equally likely to be included in a path, or some other function which

allows the probability of each node being included to be further tuned. The source and

sink nodes are given a demand value of positive and negative n, respectively. This

demand value, n, represents the number of paths which will be placed within the cell.

The scenario presented now represents a fully defined flow problem. The

minimum-cost flow through the network can be linearized in the form described in

section 2.1.5. To generate our myofibril distributions, we solved this minimum-cost flow

problem using the Primal Simplex algorithm as implemented in the Mosek Optimization

 21

Toolbox (Mosek ApS, Copenhagen, Denmark) iteratively, with the number of paths to be

placed incrementing until an optimal solution could no longer be found. The output of the

model is a list of all the node coordinates for each path. The distributions were visualized

by sweeping a circle along each path and overlaying this over the surface plot of the cell

volume.

2.2.3 Validation

 Performance of the model was measured with two separate criteria. The average

fiber length was computed as a percentage of the total length of the cell. The percentage

of cellular volume filled by the fibers was also computed. However, an ideal packing of

cylinders inside a larger cylinder can never achieve a packing of 100% so in order for this

metric to better represent the performance of the model, the percentage of volume filled

relative to an ideal packing was determined. To compute this, each cell was approximated

as the cylinder with the same length and volume of the cell and containing no nuclei. The

packing of smaller cylinders, with radius s into this larger cylinder simplifies to a circle

packing problem – where an integer number of unit circles are packed into a larger

enclosing circle. Optimal solutions (proven or conjectured) for this problem has been

found for packings up to 20 unit circles22. As the number of unit circles increases, the

ratio of the enclosing circle radius to the unit circle radius also increases. An interpolation

curve of this ratio vs packing density for the first 20 solutions was created and used to

 22

roughly approximate the optimal packing density for the radius ratio of each model

output.

Figure 2.4: Optimal packings for the packings of N=2,3,4,5, and 7 unit circles into a
larger enclosing circle. As the number of unit circles increases, the ratio of the radius of
the enclosing circle to the ratio of the unit circle increases. For these packings, the
packing density also increases, but this is not true for all N. The 7 solutions show are
trivially optimal.22

 23

Figure 2.5: Interpolation curve of optimal packing densities for unit circles of radius
Runit into an enclosing circle of radius Renc, based on the proven or conjectured optimal
solutions for packing of up 1 – 20 unit circles.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Pa
ck

in
g

D
en

si
ty

Renc/Runit

Interpolation Curve of Optimal Circle Packing

 24

2.3 Results

2.3.1 Image Segmentation and Boundary Extraction

 Image segmentation and boundary extraction of both the cell membrane and

nuclei were successful for each sample image. The images of human cells used in this

study did not contain a full z-stack all the way through the cell, due to their larger size, so

the tops and bottoms of these cells are “clipped” flat. Additionally, the channel

containing fluorescence of the nuclei was missing, but extraction of the nuclei was still

possible from voids in the present channel. Figure 2.6 shows an orthogonal view of the

extracted isosurfaces from a sample cell (Rat 3).

Figure 2.6: Orthogonal views of isolated membrane and nuclei isosurfaces for a sample
cell (Rat 3).

 25

2.3.2 Myofibril Distributions

 Myofibril distributions were successfully generated for each cell using the

algorithm outlined. Figure 2.7 shows a visualization of the cylinder approximation

method used to identify the termination points for one particular cell (Rat 4). The cell

geometry, point cloud clusters, and approximating cylinders are shown.

Figure 2.7: Plots of the extracted membrane and nuclei isosurfaces (top), the k-clusters of
voxels used in partitioning the cell (middle), and the cylindrical approximation for
identification of the fiber termination points for a sample cell (Rat 4).

 26

Figure 2.8 shows a visualization of the algorithm’s solution for a particular cell

(Human 3). Overlaid on the membrane isosurface is the set of nodes generated for the cell

as well as a solution of myofibril paths generated by the algorithm. Source and sink nodes

(representing termination points of the myofibrils) are shown in purple and yellow

respectively.

Figure 2.8: A visual representation of the node network for a sample cell (Human 3).
Regular nodes are shown in teal, source nodes in purple, and sink nodes in yellow. A
collection of minimum-cost flows through the network is shown as a solid edge-paths.

 27

Figure 2.9 shows a full visualization of the algorithm’s solution. The original

confocal image is the input to the algorithm, and from this membrane and nuclei

isosurfaces are extracted and the cellular volume is represented by a node network. The

minimum cost flow through the network is determined and flow represents the paths of

myofibrils through the cell. These myofibrils are visualized as thick paths with circular

cross sections.

 The sensitivity of the model to fiber thickness was determined by running the

algorithm on each cell with fiber spacings of both 2 µm and 4 µm. The two solutions for

Figure 2.9: Visualization of the fiber generation process for a sample cell (Rat 2) showing
the original confocal image (left), the network flow solution overlaid on the membrane
and nucleus isosurfaces (middle two), and the visualized myofibrils (right). Fiber spacing
= 4 µm.

 28

a sample cell (Human 2) are shown in figure 2.10, along with the original confocal image

for comparison.

Figure 2.10: Comparison of original confocal image (left), visualized fiber distribution
with spacing of 4 µm (middle), and visualized fiber distribution with spacing of 2 µm for
a sample cell (Human 2).

 29

2.3.3 Validation Metrics

 Performance of the algorithm for each cell was determined by comparing the

number of fibers placed in each cell, the average volume filled (as a percentage of “ideal

packing” – see section 2.2.3 for details) and the average length of the fibers as a

percentage of the cell length. These metrics, as well as the cellular volume are presented

below in table 2.1 for both cases of node spacing.

Table 2.1: Algorithm results for each sample cell and node spacing case

 Node spacing = 4 µm Node spacing = 2 µm

Cell Volume
(µm3)

No. of
Fibers

Volume
Filled*

Avg.
Fiber

Length

No. of
Fibers

Volume
Filled*

Avg.
Fiber

Length
Hum. 1 25,749 13 50.0% 74.0% 105 86.8% 82.7%

Hum. 2 23,715 14 61.1% 63.5% 82 91.6% 82.1%

Hum. 3 45,026 24 68.7% 80.4% 111 69.0% 94.5%

Rat 1 14,188 7 82.2% 87.9% 24 64.28% 92.7%

Rat 2 27,483 17 86.7% 72.0% 64 73.0% 78.9%

Rat 3 16,057 7 56.1% 75.3% 34 67.1% 87.2%

Rat 4 16,662 8 70.9% 78.2% 37 77.3% 86.3%

2.4 Discussion

 Our results show that the choice of myofibril size is somewhat dependent on the

cell used. Cells with high aspect ratios (much longer than they are wide) are better filled

with thinner myofibrils. Because of the small cross-sectional areas, even a few obstacles

severely limits the number of fibers that can be placed if a larger spacing is used. Filling

with smaller diameter fibers tends to increase the fiber length score. This is assumed to

 30

occur since the thinner fibers are able to penetrate farther to the terminal ends of the cell,

where the cross-sectional area of the cell decreases. Conversely, the volume filled tends

to drop with smaller fibers somewhat counterintuitively. While more fibers are being

placed, the smaller diameters of the fibers means more wasted space between them.

Looking at figure 2.4 and considering this from the standpoint of circle packing

this makes sense. As the radius of the fibers is cut in half, approximately 4 times is many

fibers are packed into the same area, but these four fibers do not take up the same amount

of space a single fiber that is four times the size. The extra length gained from the smaller

fibers does not appear to make up for this deficit for most cells. One other consideration

is that the computational time increases exponentially with the number of fibers placed,

however this can be mitigated to some degree if there is a good initial estimate of the

number of fibers, since all iterating through distributions with fewer fibers is not needed.

The images of human cardiomyocytes used in this study did not capture the

entirety of the cell’s volume in the z-dimension. Despite this, the algorithm was still

capable of generating myofibril distributions for these cells, albeit with lower volume fill

scores. This lower volume filled is likely due to the cells not being very cylindrical, since

the top and bottoms of the cell are not present, but the volume filled is still scored based

on ideal packing in a cylindrical cell. Modifying the method of calculating the volume

filled is one possible method to better capture these cells. The fact that the algorithm is

still capable of working for these cells is promising that it could be implemented towards

our larger goal of tissue-based models as tissue slices that are stained and imaged will

likely contain many cells that are not fully imaged in the z-direction.

 31

 As a more general limitation, cells that are very non-cylindrical also require a

different method to identify termination points for the fibers, since the current method

also relies on approximating the cell as a set of cylinders. Some potential methods to

address this include creating a probability distribution of points based on additional cell

staining, such as for integrins or connexins that indicate focal adhesions and gap

junctions with other cells (for tissues) or manual segmentation identification of the cell

termini. While manual identification would be simple in practice for single cells, it is not

ideal for studies with many cells or if the approach is scaled up for tissue constructs.

2.5 Conclusions

 We have demonstrated a novel algorithmic method that allows for rapid

generation of cellular geometries that can be used in other studies, such as Finite Element

Analysis. This method is automatic and only based on confocal microscopy images of the

cells. Since the only inputs to the algorithm are the whole cell and nuclei geometries, the

method should work successfully independent of image quality, as long as the whole cell

geometry can segmented. The method can also be optimized to allow more specific

control over the subcellular organization and study how organization affects other aspects

of the cell such as mechanics or electrophysiological behavior. Because of the nature of

the algorithm, generation of cytoskeletal structures could also be performed on custom

cellular geometries, created in a Computer Assisted Design (CAD) program, for example,

allowing the algorithm to be used as an unprecedented design tool for future cellular

engineering studies.

 32

2.6 References

1. Radmacher M. Measuring the elastic properties of biological samples with the
AFM. IEEE Eng Med Biol Mag. 1997;16(2):47-57. doi:10.1109/51.582176.

2. Ding Y, Xu GK, Wang GF. On the determination of elastic moduli of cells by

AFM based indentation. Sci Rep. 2017;7:1-8. doi:10.1038/srep45575.

3. Dokukin ME, Guz N V., Sokolov I. Quantitative study of the elastic modulus of

loosely attached cells in AFM indentation experiments. Biophys J.
2013;104(10):2123-2131. doi:10.1016/j.bpj.2013.04.019.

4. Huxley AF, Niedergerke R. Structural Changes in Muscle During Contraction:

Interference Microscopy of Living Muscle Fibres. Nature. 1954;173(4412):971-
973. doi:10.1038/173971a0.

5. Turner NA, Porter KE. Function and fate of myofibroblasts after myocardial

infarction. Fibrogenes Tissue Repair. 2013;6(1):1. doi:10.1186/1755-1536-6-5.

6. Camelliti P, McCulloch AD, Kohl P. Microstructured Cocultures of Cardiac

Myocytes and Fibroblasts : A Two-Dimensional In Vitro Model of Cardiac Tissue.
Microsc Microanal. 2005;11(3):249-259. doi:10.1017/S1431927605050506.

7. Camelliti P, Green CR, Kohl P. Structural and Functional Coupling of Cardiac

Myocytes and Fibroblasts. Adv Cardiol. 2006;42:132-149.
doi:10.1159/000092566.

8. Sarantitis I, Papanastasopoulos P, Manousi M, Baikoussis NG, Apostolakis E. The

cytoskeleton of the cardiac muscle cell. Hell J Cardiol. 2012;53(5):367-379.

9. Aquila LA, McCarthy PM, Smedira NG, Young JB, Moravec CS. Cytoskeletal

structure and recovery in single human cardiac myocytes. J Hear Lung Transplant.
2004;23(8):954-963. doi:10.1016/j.healun.2004.05.018.

10. Severs NJ. The cardiac muscle cell. BioEssays. 2000;22:188-199.

11. Grosberg A, Kuo P-L, Guo C-L, et al. Self-Organization of Muscle Cell Structure

and Function. Crampin EJ, ed. PLoS Comput Biol. 2011;7(2):e1001088.
doi:10.1371/journal.pcbi.1001088.

12. Drew NK, Eagleson MA, Baldo Jr. DB, Parker KK, Grosberg A. Metrics for

Assessing Cytoskeletal Orientational Correlations and Consistency. Zaman M, ed.
PLOS Comput Biol. 2015;11(4). doi:10.1371/journal.pcbi.1004190.

 33

13. Sanger JW, Kang S, Siebrands CC, et al. How to build a myofibril. J Muscle Res

Cell Motil. 2006;26(6-8):343-354. doi:10.1007/s10974-005-9016-7.

14. Ningping Fan, Li CC, Fuchs F. Myofibril image processing for studying sarcomere

dynamics. In: [1988 Proceedings] 9th International Conference on Pattern
Recognition. IEEE Comput. Soc. Press; 1988:468-472.
doi:10.1109/ICPR.1988.28269.

15. Arkin EM, Kim J, Mitchell JSB, Sabhnani GR. The Pencil Packing Problem. Proc

Fall Work Comput Geom. 2009;19.

16. Bellman R. On a routing problem. Q Appl Math. 1958;16(1):87-90.

doi:10.1090/qam/102435.

17. Polishchuk V, Mitchell JSB. Thick non-crossing paths and minimum-cost flows in

polygonal domains. In: Proceedings of the Twenty-Third Annual Symposium on
Computational Geometry - SCG ’07. New York, New York, USA: ACM Press;
2007:56. doi:10.1145/1247069.1247079.

18. Arkin EM, Mitchell JSB, Polishchuk V. Maximum thick paths in static and

dynamic environments. Comput Geom. 2010;43(3):279-294.
doi:10.1016/j.comgeo.2009.02.007.

19. Chartrand G. Introductory Graph Theory. Courier Corporation; 1977.

20. Jenson, P, Bard J. Relation of Pure Minimum Cost Flow Model to Linear

Programming.

21. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface

construction algorithm. In: Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques - SIGGRAPH ’87.Vol 91. New
York, New York, USA: ACM Press; 1987:163-169. doi:10.1145/37401.37422.

22. Friedman E. Circles in Circles - Erich’s Packing Center.

http://www2.stetson.edu/~efriedma/cirincir/.

23. Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal

of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436.

24. David Eppstein - Own work

 34

CHAPTER THREE

FINITE ELEMENT MODELLING TO UNDERSTAND THE ROLE OF

SUBCELLULAR STRUCTURES ON WHOLE-CELL MECHANICS

The cellular models and subcellular geometries identified by the method presented in the

previous chapter are a useful input for further investigation of the mechanical and

electrophysiological behavior of single cells. In this chapter we present a framework for using

these (or other cellular geometries) as inputs for a multiphysics finite element model of the

mechanical behavior and properties of the cells. This model framework was developed in

COMSOL Multiphysics and allows fully or semi-automated generation mechanics simulations.

COMSOL Multiphysics was used as the underlying finite element solver platform upon

which the model will be built as it offers several advantages over other platforms that make it

suited for this project. First, is a fully documented Java API which makes integration with

MATLAB, where the algorithm previously described was developed, simple. Second, COMSOL

handles the coupling of the underlying physics to each other, which is much more difficult in

other software packages which are not designed specifically for multiphysics problems. Lastly,

COMSOL is deployed on the Palmetto Cluster, Clemson University’s supercomputing platform.

This would allow us to access this computing resource to run complex simulations with only

minor modification, if the project grows in scale and complexity in the future.

 35

3.1 Literature Review

3.1.1 Cell Mechanics

 The earliest models of cellular mechanics were of “balloons full of molasses” –

simple continuum models with no internal structures present.1 While not representative of

the actual physiological environment of the cell, these models persist in the literature as

they are easy to understand, provide decent approximations of mechanical properties, and

are analogous to the macroscopic mechanics that are introduced in most undergraduate

engineering curricula. On the contrary, structural models of cell mechanics take into

account these subcellular elements and provide a more realistic model of the mechanical

behavior, at the expense of computational cost.

The simplest (yet most persistent in literature2–5) mechanical model that is applied

to cellular mechanics is the Hertz model6 of elastic contact between spheres or infinite

half-spaces. This model assumes each material is a linearly elastic, homogenous, and

isotropic material and contact between them is frictionless, non-plastic, and with

infinitesimally small strain7. If these assumptions hold, then the contact force can be

given by:

𝐹𝐹 =
4
3

𝐸𝐸
(1 − 𝜈𝜈2)

𝑅𝑅
1
2𝛿𝛿

3
2

where E is the elastic modulus of the sample and ν is the Poisson’s ration, R is the radius

of the indenting sphere, and δ is the depth of indentation. This approximation is

particularly useful for analysis of Atomic Force Microscopy3 (AFM) indentation data – a

 36

technique commonly used to assess whole cell mechanical properties (described in more

detail in section 3.1.4).

3.1.2 Viscoelasticity

 A notable limitation of the Hertz model when applied to cell mechanics is the

assumption that biological materials are elastic in nature. In reality, most biological

materials exhibit some degree of viscoelasticity8,9 – a time-dependent response when

subjected to stress or strain. While an elastic material experiences a linear increase in

stress with applied strain (or vice versa) and an equally linearly decrease upon unloading,

viscoelastic materials experience hysteresis between loading and unloading as well as the

phenomena of creep and stress-relaxation when subjected to constant stress and strain

respectively.

 Several material models of viscoelastic materials have been developed which

describe the various phenomena associated with viscoelasticity. The Maxwell model

consists of a perfectly elastic spring in series with a purely viscous damper10 and the

constitutive equation describing its mechanics is given by:

𝜎𝜎 +
𝜂𝜂
𝐸𝐸
𝑑𝑑𝜎𝜎
𝑑𝑑𝑑𝑑

= 𝜂𝜂
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

where σ and ε are the stress and strain of the material, η is the viscosity and E is the

elastic modulus. Because of the series relationship of this model, it predicts stress

relaxation well. There is an immediate reaction to the application or removal of stress

(because of the spring element) and a time dependent relaxation due to the dashpot

element. However, the Maxwell material does not accurately predict creep, since the

 37

elastic component ensures a linear increase in strain under constant stress, which is not

observed in most viscoelastic materials.

 Arranging the components in parallel instead of series yields the Kelvin-Voigt

model10. As the inverse arrangement, this model’s constitutive equation is given by:

𝜎𝜎 = 𝐸𝐸𝑑𝑑 + 𝜂𝜂
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

The Kelvin-Voigt model predicts the creep behavior well but is less accurate in

accounting for relaxation.

 The Standard Linear Solid model is the simplest model that accounts for both

phenomena10 and consists of a spring in parallel with a series combination of spring and

damper (Maxwell representation) or a spring in series with a parallel combination (Kelvin

representation). It is more accurate than either of the simpler models but is still incapable

of predicting the response to all loading conditions since it only accounts for a single time

constant.

Figure 3.1: Three models of viscoelastic elements. From left to right: the Maxwell
model, the Kelvin-Voigt model, and the Standard Linear Solid model (Maxwell
representation)32

 38

 This limitation is overcome in the Generalized Maxwell model10, which extends

the Maxwell representation of the Standard Linear Solid Model to include as many

parallel viscous branches as are necessary to fully describe the viscoelastic response of

the material. While all the viscoelastic models have been applied to cell mechanics8,11–15,

the Generalized Maxwell model most accurately predicts cellular behavior which often

exhibit multiple time-dependent rates of relaxation.16

Figure 3.2: The Generalized Maxwell model of viscoelasticity.32

3.1.3 Structure Based Models

 As an alternative to the continuum-based models described in the previous

sections, structural models of cellular mechanics have also been explored. The most

notable of these model paradigms is based around the concept of tensegrity in which the

internal structure of the cell is represented by isolated compressive elements connected to

each other through a series of tensioned elements17–19. The members are either

 39

undergoing pure tension or pure compression, so failure of the whole can only occur if

one of the component elements is broken but otherwise the material experiences

mechanical stability. This modeling paradigm is particularly interesting for the study of

cell mechanics because of the implication that the structure can be rapidly remodeled in

response to applied stress to maintain mechanical stability similar to the remodeling that

has been observed in cells.19

Figure 3.3: A mechanically stable combination of compressed beams and tensioned
cables demonstrating the principle of Tensegrity.33

 Another property of biological materials not accounted for by the simpler

continuum-based approaches is varying isotropy. While some biological cells and tissues

are nearly isotropic, others exhibit anisotropy. Muscle tissue specifically exhibits

transverse isotropy. This means that the properties in one direction (such as along the axis

of a cylindrical cell) are vastly different than the properties in the transverse directions.

 40

This is largely due to the organization of myofibrils as described in section 2.1.2.

Because of this transverse isotropy, we hypothesize that modeling cardiac cells as a

composite material of fibers embedded in an elastic continuum could improve the

accuracy of the model while retaining the benefits of the continuum approach (namely

computation efficiency.)

Figure 3.4: A unidirectional fiber composite exhibits transverse isotropy.34

 A unidirectional fiber composite is a well understood material composite

consisting of uniform fibers which are aligned along a single axis. This provides excellent

tensile strength to the material in the fiber direction. The mechanical properties of the

material can be approximated in both the axial and transverse directions. For the axial

direction, it is assumed that the only two components of the composite are the fibers and

matrix. If the fibers are fixed in the matrix and an axial load is applied, it can be assumed

 41

that the strain in the matrix is the same as the strain in the fibers. This iso-strain

assumption can be represented as:

𝑑𝑑𝑐𝑐 = 𝑑𝑑𝑚𝑚 = 𝑑𝑑𝑓𝑓

where εc, εm, and εf are the strain in the composite, matrix, and fiber domains

respectively. Since the only components are the matrix and fiber domain, all of the

applied force is translated to one of the two domains, so the force in the composite can be

given by:

𝐹𝐹𝑐𝑐 = 𝐹𝐹𝑚𝑚 + 𝐹𝐹𝑓𝑓

From the definition of stress, we can also represent this as:

𝜎𝜎𝑐𝑐𝐴𝐴𝑐𝑐 = 𝜎𝜎𝑚𝑚𝐴𝐴𝑚𝑚 + 𝜎𝜎𝑓𝑓𝐴𝐴𝑓𝑓

where σ is the stress and A is the cross-sectional area of each domain. If the composite

and fibers are assumed to be uniform along their axes, then the cross-sectional areas and

volume fractions of the domains are equivalent:

𝜎𝜎𝑐𝑐 =
𝜎𝜎𝑚𝑚𝐴𝐴𝑚𝑚
𝐴𝐴𝑐𝑐

+
𝜎𝜎𝑓𝑓𝐴𝐴𝑓𝑓
𝐴𝐴𝑐𝑐

= 𝜎𝜎𝑚𝑚
𝑉𝑉𝑚𝑚
𝑉𝑉𝑐𝑐

+ 𝜎𝜎𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

From the definition of the elastic modulus, E, and the iso-strain assumption this can be

rewritten as:

𝐸𝐸𝑐𝑐𝑑𝑑𝑐𝑐 = 𝐸𝐸𝑚𝑚𝑑𝑑𝑚𝑚
𝑉𝑉𝑚𝑚
𝑉𝑉𝑐𝑐

+ 𝐸𝐸𝑓𝑓𝑑𝑑𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

= 𝐸𝐸𝑚𝑚𝑑𝑑𝑐𝑐
𝑉𝑉𝑚𝑚
𝑉𝑉𝑐𝑐

+ 𝐸𝐸𝑓𝑓𝑑𝑑𝑐𝑐
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

Dividing by strain on both sides yields:

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚
𝑉𝑉𝑚𝑚
𝑉𝑉𝑐𝑐

+ 𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

And since the volume and matrix volume fractions must add up to 1:

 42

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚(1 −
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

) + 𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

This results in a very good approximation of the axial elastic modulus of the composite

dependent only on the moduli of the fibers and matrix and the volume of fibers.

 A similar assumption of the properties in the transverse direction can be made if it

is assumed that the stress in both domains is the same. The equivalent derivation gives:

1
𝐸𝐸𝑐𝑐

=
1
𝐸𝐸𝑚𝑚

(1 −
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

) +
1
𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

This iso-stress assumption is much weaker than the iso-strain assumption, so this is a

worse approximation, but is still relatively accurate for low transverse deformations.20

Soft fiber composites have been used to model muscle mechanics at the tissue level and

have demonstrated similar properties to muscle.21

3.1.4 Experimental Cell Mechanics Techniques

 Measurement of mechanical properties of any material, including cells, requires a

method of applying either a constant force or displacement and another method of

recording the other metric. These manipulations and measurements can be applied to one

small part of the cell, or to the cell as a whole. Common techniques used with cells and

other biological samples include cantilever techniques like atomic force microscopy22,23,

flow techniques, bead probing driven optically or magnetically24, micropipette aspiration,

and cell stretching25. These techniques and others are categorized in figure 3.5.

 43

Figure 3.5: Overview of cell mechanics measurement techniques.26

Atomic Force Microscopy (AFM) is specific type of scanning probe microscopy

used to characterize material properties (force mode) or sample topography (scanning

mode). During force mode, a tipped cantilever is indented into a sample via a

piezoelectric motor. As the tip indents the material, it experiences a resisting force which

causes bending of the cantilever to occur. Simultaneously, a laser is aimed at the back of

the cantilever, which is usually coated in a reflective material, and reflects into a

 44

photodiode array, which indirectly measures the cantilever’s deflection. By calibrating

the stiffness of the cantilever and the deflection of the laser, the force of indentation can

be measured and used along with the amount of indentation to approximate the

mechanical properties of the sample.

Figure 3.6: Schematic representation of AFM method.35

AFM is widely used in measurements of cellular mechanical properties because

of its prevalence in materials science research and the ease of analyzing the data by

fitting to the Hertz contact model, as previously discussed. More complex models of

contact allow relatively good measurements of cellular properties, but the major

limitations of AFM are that it cannot be used to measure whole cell properties and that it

can be used to perform measurements normal to or tangent to the cell surface.27 This

makes it a great tool for measuring transverse and shear properties, but a bad choice for

axial measurements.

 45

Carbon Fiber (CF) manipulation is a relatively new technique in which forces are

applied and recorded at opposing ends of a cell through carbon fibers mounted to glass

capillaries.25 This allows the measurement of axial properties of cells like myocytes as

well as performing contraction studies.25,27,28 Measurement of strains in the cells are

performed via processing of optical microscopy done simultaneously.29,30This processing

allows the sarcomere length of cells to be monitored and the resulting signal can be used

as a feedback mechanism to control the piezoelectric elements that apply forces to the

carbon fibers. Recently, the combination of the CF technique with other techniques such

as AFM has been shown to be successful.25 This combination of AFM and CF allows

simultaneous measurements of both axial and transverse properties of the cell and is the

experimental setup this chapter will attempt to model.

 46

Figure 3.7: A: block diagram of a CF manipulation system29 B: schematic of the

experimental setup and images of a myocyte being manipulated30

 47

3.2 Methods

Geometry

The cellular membrane of each cell is represented by an isosurface of triangular

faces. In the previous chapter, we described the method to generate this isosurface and

the results were saved as Stereolithography (STL) format files. These STL files were

imported into COMSOL Multiphysics v5.3 (COMSOL, Inc., Burlington, MA) as meshes

into a separate 3-dimensional component with minimal boundary detection. This mesh

sequence was then imported into the primary 3-dimensional component as a geometry

sequence, utilizing mesh simplification with a relative repair tolerance of 0.01, a defect

removal factor of 1, and solids not automatically generated from surface objects. Then,

the sequence was converted to a solid to allow physics to be applied. While STL files can

be imported as geometry sequences directly, segmenting the process into two distinct

steps allows the built-in mesh simplification to be utilized, which makes later meshing of

the model domains as free tetrahedral elements significantly simpler.

In the previous chapter, a collection of paths representing myofibrils within the

cellular volume was identified and is represented by a list of node-coordinates. In the

COMSOL model, each of these paths is given by an open Interpolation Curve, defined by

the list of node coordinates. By interpolating the path between points rather than simply

importing the paths as piecewise Bezier polygons, sharp angles which make meshing

difficult (and which are not physiologically accurate) can be avoided. While these

Interpolation Curves can be constructed by manually entering each point or semi-

automatically (if the list of points for each curve is stored in a separate text file) the

 48

process can be quite time consuming if a large number of myofibrils are being modelled.

In our case, these interpolation curves were generated automatically using the MATLAB

Scripting plugin for COMSOL as the paths were generated in the previous chapter.

In order to apply stretch to our model, one end of the cell must be fixed while the

other end is subjected to a displacement. Ideally, this displacement will be entirely in one

cartesian dimension. In our case, the initial image processing steps rotated and rescaled

the images so that the major axis of the cell would be aligned with the y-axis. If this step

was not performed in pre-processing, rotation of the entire geometry within COMSOL to

achieve this orientation is recommended. To create domains that could be fixed and

subjected to displacement, a rectangular block larger than the cell volume in the x and z

dimensions and 70-80% of the length of the cell in the y dimension was created roughly

in the center of the cell. This block was used as a tool in a Partition Objects sequence to

divide the geometry into three distinct domains. The two resulting domains which lie

outside the partitioning block are subject to a fixed constraint and a prescribed

displacement, respectively, and are therefore not subject to any stress or strain. To

simplify the meshing and reduce the computational load of the model, the sections of the

interpolation curves which lie in these domains were deleted from the geometry. The

geometry was finalized by forming a union of all remaining objects.

Materials

 Distinct material properties were defined for the cytoplasmic and myofibril

domains. In reality, these particular structures are nonhomogeneous and viscoelastic. Our

model will consider them as homogenous (for the sake of computational efficiency) and

 49

purely elastic since the transient responses of the cell to mechanical stress are not of

interest to our investigation. The relevant mechanical properties of each material were

based on values found in the literature31 and are summarized in Table 3.1.

Table 3.1: Material properties for each component of the COMSOL models generated.

Material Density (kg/m^3) Young’s Modulus (kPa) Poisson’s Ratio

Cytoplasm 1.0 2.2 0.49

Myofibril 12.0 12.0 0.05

Since cytoplasm is primarily composed of water, its density was set to be 1.0

kg/m^3. This could also be set slightly higher to account for the presence of other cellular

components, but these were ignored in our model. Being primarily water, the cytoplasm

is highly viscous, and the elasticity of the cell is primarily due to the cellular membrane.

To minimize the computational complexity of the model, the decision was made to

combine these into one elastic continuum with an elastic modulus consistent with the

literature. If complexity is not a concern, the membrane could instead be modeled as a

separate thin-shell or membrane domain with its own mechanical properties.

Physics

 Two separate physics modules were applied to the model. On the cytoplasm

domains, Solid Mechanics with linear elastic mechanical properties was applied. A fixed

constraint was applied to the domain lying in the negative y direction (the major axis of

the cell is oriented along y) and a prescribed displacement was applied to the domain

 50

lying closest to the positive y direction. The displacement was restricted to the y direction

a parameter was created to vary the amount of stretch applied to the cell.

 The Truss physics module was applied to all edges representing fibers (note that

the edges created as a result of the domain partitioning were not subject to this physics.)

The default straight edge constraint for the trusses was disabled, and the cross section

area of the trusses elements was set consistent with the node spacing of the geometry

(circular cross sections with radii of either 2 or 4 µm.) To couple the two physics

modules to one another, the dependent variable of the truss physics, displacement, was

changed to the same displacement field of the solid mechanics domains.

Mesh

 The geometry was reduced to a single free tetrahedral mesh with normal size

elements using the default meshing algorithms in COMSOL. This resulted in sufficient

element density of both the truss elements and solid domains for the current investigation.

Study and Results

 A stationary study including geometric nonlinearity (to account for the deforming

mesh) was performed using a segregated MUMPS solver with COMSOL’s suggested

settings. A parametric sweep was included to alter the applied stretch. The exact amounts

of stretch differed for each cell, but each was subject to up to approximately 15% strain.

 After the study was performed, the results were determined from the solution set

with a spatial reference frame. At each value of applied stretch, the axial stress in each

truss element was plotted in 3D along with the deformed mesh (represented as a

wireframe) and the deformed cellular volume, deformed truss volume, average axial

 51

strain in the truss elements, and total y reaction force at the fixed end of the cell were

computed.

Assessment and Validation

 Assessment of the model was performed by comparison to experimental data

obtained through combined AFM and Carbon Fiber mechanical analysis of isolated

mouse adult cardiomyocytes25. The main metrics for comparison are total axial force vs

applied stretch and apparent transverse elastic modulus vs applied stretch. In order to

compare between different sized cells and account for species differences, the applied

stretch was normalized by change in sarcomere length. This was measured optically in

the experimental setup and calculated from the average axial strain in each fiber for the

model.

Figure 3.8: AFM/Carbon Fiber experimental setup being used to perform
mechanics measurements on an isolated mouse adult cardiomyocyte.25

 52

Apparent elastic modulus was measured experimentally using an AFM cantilever

with a 5 µm borosilicate glass bead conjugated. Elastic modulus was then calculated by

fitting the data to the Hertz contact model. This technique was not recreated in the model

due to the large computational load required to analyze contact mechanics. Additionally,

there is no direct way to measure the elastic modulus in either the axial or transverse

directions from our model data. Instead, the moduli were estimated by approximating the

cell as a unidirectional fiber composite. In this approximation, the transverse elastic

modulus can be estimated by:

1
𝐸𝐸𝑐𝑐

=
1
𝐸𝐸𝑚𝑚

(1 −
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

) +
1
𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

where Ec, Em, and Ef are the moduli of the cell (composite), matrix, and fibers

respectively and Vf and Vc are the total volumes of the fibers and cell. Similarly, the

elastic modulus in the axial direction can be given by:

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚(1 −
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

) + 𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑉𝑉𝑐𝑐

with the variables representing the same quantities as the transverse direction. It is

important to note that the axial direction requires assuming an iso-strain state and the

transverse requires the iso-stress assumption. The makes the estimation of the transverse

properties slightly less accurate, but still a reasonably good approximation.

 53

3.3 Results

 The resulting COMSOL geometries that were generated for the four sample cells

used in this study are shown in figure 3.9. The fiber spacing for each cell is 2 µm. Table

3.2 provides a summary of the details of the geometry including cell volume and number

of fibers generated for that cell in the algorithm presented in the previous chapter. The

model degrees of freedom are also listed. These are dependent not only on the complexity

of the geometry, but also the meshing of the geometry and the physics applied. Lastly the

computation time needed to perform the stationary study at 7 different values of stretch

are included.

Rat 1 Rat 2

Rat 3 Rat 4

Figure 3.9: Model geometries, generated by the algorithm presented in chapter 2,
visualized in COMSOL. Fiber node spacing for all geometries shown is 2 µm.

 54

Table 3.2: Summary of model complexity for the four COMSOL models generated.

Cell Volume (µm3) # of Fibers Degrees of Freedom Computation Time*
Rat 1 14,188 24 44,775 9 min 37 sec
Rat 2 27,483 56 92,505 21 min 6 sec
Rat 3 16,057 30 80,157 36 min 52 sec
Rat 4 16,662 37 87,696 22 min 26 sec

*All computations were performed with COMSOL v5.3 on a 64-bit Windows 10
machine with an AMD A8-7600 Radeon R7, 10 Compute Cores (4C+6G) @ 3.10 GHz
and 24.0 GB of DDR3 RAM.

Sensitivity of the model to fiber spacing was assessed by performing the study on

a sample cell (Rat 2) with fiber spacings of both 2 µm and 4 µm. The resulting

visualization of axial stress in each fiber overlaid on deformation of the solid domains at

maximum stretch is shown in figure 3.10. Fiber spacing of 4 µm is shown on the left and

2 µm on the right. As expected, the larger spacing resulted in higher maximum stresses in

individual fibers. A larger decrease in the cross-sectional area of the cell can also be

observed in the larger spacing case.

 Figure 3.11 shows the summary graphs of the axial force vs applied stretch,

transverse elastic modulus vs applied stretch, and axial elastic modulus vs applied stretch

for both models. All three metrics were initially higher (at zero stretch) for the model

with larger fiber spacing and also exhibited a larger increase with increased stretch in this

model.

 55

Figure 3.10: Comparison of fiber thickness on simulation results. Deformed meshes and
axial stress in the truss elements are shown for a sample cell (Rat 2) with node spacing of
4 µm (left) and 2 µm (right). Units for both color legends are N/m2.

 56

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.9 1.8 2.7 3.6 5.4 7.2 9

Ax
ia

l F
or

ce
 (µ

N
)

Applied Stretch (µm)

Axial Force vs Applied Stretch

4um Spacing 2 um Spacing

0
1
2
3
4
5
6
7
8
9

0 0.9 1.8 2.7 3.6 5.4 7.2 9

El
as

tic
 M

od
ul

us
 (k

Pa
)

Applied Stretch (µm)

Transverse Elastic Modulus vs
Applied Stretch

4um Spacing 2 um Spacing

6.5

7

7.5

8

8.5

9

9.5

0 0.9 1.8 2.7 3.6 5.4 7.2 9

El
as

tic
 M

od
ul

us
 (k

Pa
)

Applied Stretch (µm)

Axial Elastic Modulus vs Applied Stretch

4um Spacing 2 um Spacing

Figure 3.11: Comparison of simulation results between models with fiber spacing of 2
and 4 µm for a sample cell (Rat 2). Total axial force, transverse elastic modulus, and axial
elastic modulus are plotted vs applied stretch.

 57

 The remaining cells were only modeled with a fiber spacing of 2 µm. The amount

of applied stretch varied for each cell (based on it’s initial length) in order to achieve a

similar degree of strain in each cell. Figure 3.12 shows a representative visualization of

axial stress in each fiber overlaid on solid deformation for a single cell (Rat 3) at each

value of stretch applied. The colored legend for each is normalized to the highest stretch

case. It can be observed that axial strain remains relatively low initially as the fibers

straighten out, with stress increasing rapidly after the fibers are all straight. Some degree

of necking can also be observed at the higher cases of stretch.

 58

Figure 3.12: Deformed mesh and axial stress in the truss elements for a sample cell (Rat
3) for each applied stretch (0, 1.2, 2.4, 3.6, 4.8, 7.2, 9.6, 12 µm). Units of the color legend
are N/m2.

 59

The model data was compared to experimental data measured on a combined

Carbon Fiber/AFM setup on isolated mouse adult cardiomyocytes. To account for size

differences across species, the stretch data was normalized to % change in sarcomere

length (experimental) or % change in axial strain (model). Figure 3.13 shows each value

of axial force plotted vs change in sarcomere length for the experimental data. A total of

19 cells from 4 mice were included. Figure 3.14 shows the same metrics plotted for the

model data from all 4 rat cardiomyocyte models.

 Figures 3.15 and 3.16 presents this same data for the experimental setup and

model, respectively. In these figures, the x-axis data is binned into groups of 1% change

in sarcomere length/axial strain to show the range of axial forces experienced at each

percent change in elongation. Because of the small sample size of the model, some bins

only resulted in a single data point.

 60

0

0.2

0.4

0.6

100 104 108 112 116

Ax
ia

l F
or

ce
 (µ

N
)

Axial Strain (% SL0)

Figure 3.13: Experimental data of 19 cardiomyocytes (4 mice) stretched on a combination
carbon fiber/AFM apparatus. Total axial force in the cell is plotted vs sarcomere length
(as a percentage of resting length).

Figure 3.14: Simulated data of 4 cardiomyocytes (Rat 1-4). Total axial force in the cell is
plotted vs axial strain (as a percentage of resting length). This axial strain is analogous to
a change in sarcomere length.

 61

Figure 3.15: Experimental data of 19 cardiomyocytes (4 mice) stretched on a
combination carbon fiber/AFM apparatus. Total axial force in the cell is plotted vs
sarcomere length (as a percentage of resting length). The x-axis was grouped into bins of
1% change in sarcomere length.

Figure 3.16: Simulated data of 4 cardiomyocytes (Rat 1-4). Total axial force in the cell is
plotted vs axial strain (as a percentage of resting length). The x-axis was grouped into
bins of 1% change in sarcomere length.

 62

 The second metric assessed through comparison with the experimental data is the

transverse elastic modulus of the cell. This data is plotted in Figure 3.17, with similar 1%

binning of the elongation as in the previous analysis. For the experimental setup, this was

assessed using the AFM with a 5 um borosilicate glass bead attached to the end of the

AFM cantilever. Resulting indentation data was fit to the Hertz elastic contact model, so

the data plotted is the apparent elastic modulus of the cell.

 For the model, transverse elastic modulus was assessed by approximating the cell

as a unidirectional composite material, so the data plotted in Figure 3.18 is the estimated

elastic modulus vs elongation, with the same 1% binning. Again, due to the small sample

size of the model, some bins only contained one data point.

 63

Figure 3.17: Experimental data of 19 cardiomyocytes (4 mice) stretched on a
combination carbon fiber/AFM apparatus. Apparent elastic modulus of the cell is plotted
vs sarcomere length (as a percentage of resting length). The x-axis was grouped into bins
of 1% change in sarcomere length

Figure 3.18: Simulated data of 4 cardiomyocytes (Rat 1-4). Estimated transverse elastic
modulus on the cell is plotted vs axial strain (as a percentage of resting length). The x-
axis was grouped into bins of 1% change in sarcomere length.

 64

3.4 Discussion

 As expected, larger diameter fibers result in an increase in the axial force and

elastic moduli of the cell. Consistent with the findings in the previous chapter, larger fiber

spacing results in an increase in the packing density of the fibers. The elastic moduli

estimations are especially sensitive to the volume fraction of fibers. Both fiber spacings

resulted in cell properties of similar magnitude to the experimental data, at least in the

single cell model where both were analyzed. It can also be observed in figure 3.10 that

the smaller fiber spacing resulted in noticeably more narrowing of the cell as it was

stretched, despite an increase in the transverse elastic modulus. It is important to note that

this cell had a much larger volume and lower aspect ratio than the other cells, which

resulted in efficient packing despite fiber spacing. As shown in the previous chapter, high

aspect ratio cells can be packed more efficiently by smaller fibers. Because of this, the

remainder of the models were only generated with the smaller spacings.

 Comparison of the model performance to the experimental data shows that most

measured properties were consistent. In general, the model exhibited lower total axial

force in the cell and lower mechanical properties. The material properties chosen for the

model were based on values reported in literature. These properties could be modified to

so that the performance more closely matches the experimental data. It is also worthwhile

to note that there was much less variability in the model data (as can be expected with a

model) but the sample size for the model was also much lower than the experimental data

(n=4 vs n=19). Perhaps the biggest difference between the experimental and model data

is the dependence of transverse elastic modulus on applied stretch. A similar increase in

 65

modulus was observed as the cells experienced stretch, but the magnitude of the increase

was much lower in the model. The exact reasons for this are unclear but it is likely due to

some other physiological mechanisms that are taking place in the experimental data that

are not captured by the model, such as osmosis. It could also be due to other cytoskeletal

elements of the cell which are not captured by the model.

 This limited information about what is occurring in the transverse directions is

one of the major limitations of the model. Trusses, by design, only experience stresses in

the axial direction, so they don’t contribute much to the transverse mechanics of the cell.

In future studies, this limitation might be diminished by also including other cytoskeletal

elements, such as actin and microtubules which are more directly involved with

transverse mechanics since they are not isotropic in the cell like myofibrils. Despite the

limitation of trusses, they also exhibit several advantages. Even though our paths travel

through all three dimensions, once meshed each individual truss is modeled as a 1D

element. This substantially reduces the computational load compared to modelling the

fibers as a 3D solid. Additionally, because they are truss elements, the axial properties are

easier to calculate than they would be for a different geometry type since the physics are

already calculated based on their axial direction. If instead they were modelled as 3D

elements, the physics would be calculated with respect to the x, y, and z directions so an

extra step of computing the rotated axis that align with the axis of the fiber would be

necessary to compute the axial properties. Though not performed in this study, applying

stresses to each individual fiber in the axial direction is also possible using our

framework. This allows further modelling of cellular contraction to be performed.

 66

3.5 Conclusions

 We have created a semi-automated framework to model the mechanics of single

cardiomyocytes using COMSOL Multiphysics. It has been demonstrated that modelling

these cells as composites of a linear elastic solid embedded with fiber trusses provides a

reasonable approximation of cellular mechanical properties in the transverse and axial

directions. This basic framework allows for easy extension to account for more

cytoskeletal elements, contraction and contact mechanics studies, or coupling of

additional physics such as cellular electrophysiology. By modifying the input geometries,

such as by changing the optimization parameters of the algorithm presented in the

previous chapter, rapid analysis of how differing cytoskeletal organization affects the

mechanical properties of the cell can be performed. This method could also be readily

adapted to by used on tissue-level geometries as well. We have demonstrated that

differing fiber spacings results in similar mechanical behavior, so with tuning of the

model’s material properties computational cost can be saved if necessary when scaling up

to multicellular geometries without only minimal reductions in performance.

3.6 References

1. Brookes M. Hard cell, soft cell. New Sci. 1999;164(2206):42-46.

2. Thomas G, Burnham NA, Camesano TA, Wen Q. Measuring the Mechanical

Properties of Living Cells Using Atomic Force Microscopy. J Vis Exp.
2013;(76):1-7. doi:10.3791/50497.

3. Zhu X. Tutorial on Hertz Contact Stress. 2012:1-8.

4. Dokukin ME, Guz N V., Sokolov I. Quantitative study of the elastic modulus of

loosely attached cells in AFM indentation experiments. Biophys J.
2013;104(10):2123-2131. doi:10.1016/j.bpj.2013.04.019.

 67

5. Hayashi K, Iwata M. Stiffness of cancer cells measured with an AFM indentation
method. J Mech Behav Biomed Mater. 2015;49:105-111.
doi:10.1016/j.jmbbm.2015.04.030.

6. Hertz H. On the contact of rigid elastic solids. J Reine und Angwandte Math.

1896;92:156.

7. Wood ST. Computational approaches to understanding phenotypic structure and

constitutive mechanics relationships of single cells. 2011.

8. Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK. Measuring the

viscoelastic properties of human platelets with the atomic force microscope.
Biophys J. 1996;70(1):556-567. doi:10.1016/S0006-3495(96)79602-9.

9. Ragazzon MRP, Gravdahl JT, Vagia M. Viscoelastic properties of cells: Modeling

and identification by atomic force microscopy. Mechatronics. 2018;50:271-281.
doi:10.1016/j.mechatronics.2017.09.011.

10. Roylance D. Engineering Viscoelasticity. 2001:8-11.

11. Yu H, Li Z, Jane Wang Q. Viscoelastic-adhesive contact modeling: Application to

the characterization of the viscoelastic behavior of materials. Mech Mater.
2013;60:55-65. doi:10.1016/j.mechmat.2013.01.004.

12. Mahaffy R, Park S, Gerde E, Kas J, Shih C. Quantitative Analysis of the

Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force
Microscopy. Biophys J. 2004;86(March):1777-1793. doi:10.1016/S0006-
3495(04)74245-9.

13. Smith BA, Tolloczko B, Martin JG, Grütter P. Probing the Viscoelastic Behavior

of Cultured Airway Smooth Muscle Cells with Atomic Force Microscopy:
Stiffening Induced by Contractile Agonist. Biophys J. 2005;88(4):2994-3007.
doi:10.1529/biophysj.104.046649.

14. Li M, Liu L, Xi N, Wang Y. Atomic force microscopy studies on cellular elastic

and viscoelastic properties. Sci China Life Sci. 2018;61(1):57-67.
doi:10.1007/s11427-016-9041-9.

15. Corbin EA, Adeniba OO, Ewoldt RH, Bashir R. Dynamic mechanical

measurement of the viscoelasticity of single adherent cells. Appl Phys Lett.
2016;108(9):093701. doi:10.1063/1.4942364.

 68

16. Hemmer JD, Nagatomi J, Wood ST, Vertegel AA, Dean D, LaBerge M. Role of
Cytoskeletal Components in Stress-Relaxation Behavior of Adherent Vascular
Smooth Muscle Cells. J Biomech Eng. 2009;131(4):041001.
doi:10.1115/1.3049860.

17. Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell

Sci. 2003;116(7):1157-1173.

18. Wang N, Naruse K, Stamenovic D, et al. Mechanical behavior in living cells

consistent with the tensegrity model. Proc Natl Acad Sci. 2001;98(14):7765-7770.
doi:10.1073/pnas.141199598.

19. Hoffman BD, Crocker JC. Cell Mechanics: Dissecting the Physical Responses of

Cells to Force. Annu Rev Biomed Eng. 2009;11(1):259-288.
doi:10.1146/annurev.bioeng.10.061807.160511.

20. Zinoviev PA, Smerdov AA. Ultimate properties of unidirectional fiber composites.

Compos Sci Technol. 1999;59(5):625-634. doi:10.1016/S0266-3538(98)00108-0.

21. Chanda A, Callaway C. Tissue Anisotropy Modeling Using Soft Composite

Materials. Appl Bionics Biomech. 2018;2018:1-9. doi:10.1155/2018/4838157.

22. Ding Y, Xu GK, Wang GF. On the determination of elastic moduli of cells by

AFM based indentation. Sci Rep. 2017;7:1-8. doi:10.1038/srep45575.

23. Radmacher M. Measuring the elastic properties of biological samples with the

AFM. IEEE Eng Med Biol Mag. 1997;16(2):47-57. doi:10.1109/51.582176.

24. Trepat X, Grabulosa M, Buscemi L, et al. Oscillatory magnetic tweezers based on

ferromagnetic beads and simple coaxial coils. Rev Sci Instrum. 2003;74(9):4012-
4020. doi:10.1063/1.1599062.

25. Desai AY. Manipulating Cardiovascular Cellular Interactions and Mechanics: A

Multidimensional and Multimodal Approach. 2016.

26. Rodriguez ML, McGarry PJ, Sniadecki NJ. Review on Cell Mechanics:

Experimental and Modeling Approaches. Appl Mech Rev. 2013;65(6):060801.
doi:10.1115/1.4025355.

27. Addae-Mensah KA, Wikswo JP. Measurement Techniques for Cellular

Biomechanics In Vitro. Exp Biol Med. 2008;233(7):792-809. doi:10.3181/0710-
MR-278.

 69

28. Radmacher M, Fritz M, Hansma PK. Imaging soft samples with the atomic force
microscope: gelatin in water and propanol. Biophys J. 1995;69(1):264-270.
doi:10.1016/S0006-3495(95)79897-6.

29. Yasuda S-I, Sugiura S, Kobayakawa N, et al. A novel method to study contraction

characteristics of a single cardiac myocyte using carbon fibers. Am J Physiol Circ
Physiol. 2001;281(3):H1442-H1446. doi:10.1152/ajpheart.2001.281.3.H1442.

30. Iribe G, Helmes M, Kohl P. Force-length relations in isolated intact

cardiomyocytes subjected to dynamic changes in mechanical load. Am J Physiol
Circ Physiol. 2007;292(3):H1487-H1497. doi:10.1152/ajpheart.00909.2006.

31. Ogneva I V., Lebedev D V., Shenkman BS. Transversal stiffness and young’s

modulus of single fibers from rat soleus muscle probed by atomic force
microscopy. Biophys J. 2010;98(3):418-424. doi:10.1016/j.bpj.2009.10.028.

32. WikiMedia user: Pekaje – Own work.

33. Bob Burkhardt – Own work.

34. WikiMedia user: Tomeasy – Own work.

35. Mai, W. Fundamental Theory of Atomic Force Micrscopy. Professor Zhong L.
Wang’s Nano Research Group. Georgia Institute of Technology.
http://www.nanoscience.gatech.edu/zlwang/research/afm.html

 70

CHAPTER FOUR

SINGLE-CELL ELECTROPHYSIOLOGICAL MODELS AS TOOLS IN

ENGINEERING EDUCATION

The goal of this aim is to develop, launch, and evaluate a new software,

CellSpark, which simulates experiments in electrophysiology for use in the course BIOE

3700 – Bioinstrumentation and Bioimaging. This software is used by the undergraduate

students enrolled in the course to learn about models of electrophysiology and to develop

and perform a short electrophysiology experiment. The experiment becomes the basis of

their midterm lab report, which is a journal style article presenting and discussing the

findings of their experiment.

4.1 Introduction and Background

4.1.1 Models of Electrophysiology

 The earliest successful attempt at any single-cell electrophysiological modelling

occurred in 1952, with the publishing of the now famous work by Alan Lloyd Hodgkin

and Andrew Huxley.1 The Hodgkin-Huxley model, also referred to as the conductance-

based model, was developed primarily by studying the squid giant axon through use of

the patch clamp technique. While originally developed to describe only the behavior or

neurons, the model can be generalized to describe any electrically excitable cells

including cardiomyocytes.

 71

Figure 4.1: Circuit diagram of the Hodgkin-Huxley conductance-based model.23

Fundamentally, the conductance-based model represents the cell membrane of an

electrically excitable cell as the circuit shown in Figure 5.1, with the following elements

in parallel:

• A capacitor, representing the membrane capacitance that arises due to the lipid

bilayer.

• Nonlinear conductances in series with voltage sources, representing voltage gate

ion channels and electrochemical gradients which drive ion diffusion (Nernst

potentials), respectively.

• Linear conductances in series with voltage sources, representing leakage ion

channels and their Nernst potentials, respectively.

• Current sources, representing the ion pumps which facilitate active transport

against electrochemical gradients.

Modelling the membrane in this way results in the excitability of any cell being able

to be fully described by the following four ordinary differential equations:

 72

where I represents the total membrane current, α and β represent species specific rate

constants, and ḡ is the maximum value of the conductance. n, m, and h are positive

constants less than 1 associated with sodium and potassium channel activation and

inactivation. The rate constants, which were experimentally determined by Hodgkin and

Huxley are given by:

 Even more than 60 years later, the Hodgkin-Huxley model is still regarded as one

of the most complete models of cell excitability. However, due to its nonlinearity, it is

difficult to study analytically and is computationally costly. For this reason, many have

sought to build on and simplify the conductance-based model.

 The most famous simplification of the Hodgkin-Huxley model is the relaxation

oscillator model of nerve conduction first suggested by Richard FitzHugh in 19612 and

independently created by Jin-ichi Nagumo et al in 1962.3 Unlike the Hodgkin-Huxley

model, which describes ion channel dynamics in great detail, the FitzHugh-Nagumo

(FHN) model is described by only two variables: v, the nonlinear membrane voltage and

w, a linear recovery variable. The equations of the system are:

 73

This results in a good approximation of the Hodgkin-Huxley model while

ignoring the individual ionic dynamics. As such, the comparative simplicity of the

FitzHugh-Nagumo model (and derivations of it) makes an ideal choice for many

computationally efficient modelling applications.

 Another two-variable model, this one focused directly on the heart, was

developed with the simplicity of the FitzHugh-Nagumo in mind. In 1996, Rubin Aliev

and Alexander Paniflov published “A Simple Two-variable model of cardiac excitation.”4

This modification of the FHN differs from the original in two important aspects: the pulse

shape and the restitution property of myocardium. Restitution refers to the relationship

between action potential duration and length of the cardiac cycle. As can be seen in

Figure 5.2, which is generated by the model, the duration of duration of the action

potential is substantially shortened as cycle length decreases.

Figure 4.2: Action potential duration at various cardiac cycle frequencies4

 74

 More advanced models of cardiac electrophysiology have been published for

various species including rabbits5,6, guinea pigs, dogs, and humans. One of the most

comprehensive of these models is the ten Tusscher Noble Noble Paniflov7 (TNNP) model

published in 2004. This model of human epicardial, endocardial, and cardiac M cells is

an extension of the Hodgkin-Huxley model in that it recreates ionic currents present

across the membrane rather than simplifying to an over dynamics problem like the FHN

model.

4.1.2 Experiential Education Tools

Over the past 15 years, educators and industry partners alike have repeatedly

warned of a growing gap in US competitiveness 8, a declining interest in STEM, and

lagging innovation 9In order to address this, a considerable effort has been made to

incorporate more hands-on engineering practice into engineering curricula, with much of

the push being at the request of industry partners, who warn of graduates unprepared for

immediate success in the “real world” 10. One specific method used to this end is Design

Based Learning.

Design Based Learning (DBL) is a specific type of Problem Based Learning that

“involves students engaged in the process of developing, building, and evaluating a

product they have designed.” 11 The general process of DBL is that instructor will

generally pose an open-ended, loosely defined problem to students. Students the work,

typically in small groups, to design, build, and test solutions to the problem 11. This

method allows students to have a hands-on application of what they learn and because

students work in groups to design unique solutions, DBL encourages teamwork and

 75

interpersonal skills, fosters independence from the instructor and allows students to

reinforce the curricula and develop problem solving and critical thinking skills 12

While shown to be successful, DBL requires access to time, space, and physical

resources that make it infeasible in some settings. An alternative approach to traditional

DBL is the use of simulations as tools for engineering education. Sophisticated computer

simulations can allow undergraduate engineering students exposure to “real world”

engineering activities in which they would otherwise not be able to participate 13 or

simulated activities that would be time or resource intensive to do physically 14 This latter

example is specifically the situation for electrophysiology – the content area of interest

for this study. The “gold standard” technique in electrophysiology, the patch clamp, is

expensive and time intensive to perform, on top of the hours of practice needed to

develop competency, making it a perfect candidate for replacement with a simulation

based learning tool.

4.1.3 Instructor Motivation

While many faculty are hesitant to change curricula in order to accommodate

simulation tools (especially those designed for research or industry use) into their course

content, it has been demonstrated that these tools can be successfully incorporated into

courses, showing that students improve their use of these tools and their mastery of

course content, without requiring a large amount of lecture time. 15

In a 2012 study, Magana et al16 explored the various learning objectives, both explicit and

implicit, that professors identified when deciding the use computational simulations in

their classrooms. This determination was carried out by conducting interviews of 14

 76

engineering professors who implemented computational simulations developed by the

Network for Computational Nanotechnology (NCN) into both graduate and

undergraduate courses, mostly in the fields of Electrical, Computer, and Material Science

Engineering. The interviews were analyzed through the theoretical framework of

phenomenography and identified eight distinct categories of learning objectives, shown

below in Figure 1.

Figure 4.3: Learning Objectives for using simulations in teaching engineering16

 77

This study initiated critical thinking about the implementation of the simulation tool

in our study and lead to identification of 5 learning objectives to be accomplished using

the software outlined later which roughly align to categories A-E in Figure 1, and

additional objective based on the write up portion of the assignment. These learning

objectives are:

1) The student should be able to identify and distinguish between various models of
cell electrophysiology

2) The student should be able to use simulation tools to design and carry out an
experiment

3) The student should be able to critically analyze the results of a simulated
experiment in the context of the underlying model

4) The student should be able to critically assess the validity of simulated results
based on their understanding of the underlying physiology

5) The student should be able to corroborate or contradict simulated results or their
own critical analysis through external sources

6) The student should be able to effectively communicate the results and analysis of
their experiment

These identified learning outcomes also roughly align to the requirements of the

Accreditation Board of Engineering and Technology, Inc.17 criteria 3 a,b,e,g and k, listed

below and this assignment is routinely used as an artifact to show compliance with these

criteria.

Table 4.1: Selected ABET criteria for accredited programs in engineering17

Criteria
(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and

interpret data
(e) an ability to identify, formulate, and solve engineering problems
(g) an ability to communicate effectively
(k) an ability to use the techniques, skills, and modern engineering tools

necessary for engineering practice.

 78

4.1.4 Theoretical Framework

The theoretical framework chosen for the analysis in this study is the that of

discovery learning. Discovery learning is a constructivist approach to education similar to

(and in some applications synonymous with) Problem-Based Learning. While the

literature presents a very broad range of definitions for discovery learning, Alfieri et al

suggest the most important quality in defining it is that the learner is not directly given

the information to be learned and must discover it himself through investigation within

the confines of a specific task and given material18.

While its’ effectiveness as an instructional method has been called into question19

especially among younger learners20 or when pure discovery is relied upon21, recent work

describing “enhanced discovery learning” in which necessary information and assistance

needed to complete the task are provided by the instructor has led to renewed advocacy

of the approach22.

4.2 Methods

4.2.1 Software

 CellSpark is implemented as a MATLAB App. It is compatible with the current

(at the time of this publication) version R2018a and backwards compatibility has been

tested back to version R2014a. The full code is included in Appendix B but the software

hierarchy and some implementation details will be included in this section.

The main program is contained in CellSpark.m. This serves as the bridge between

the user interface (CellSpark.fig) and the script that actually runs the simulations

 79

(run_simulation.m). CellSpark.m contains the code which initializes the user interface

objects, defines their callbacks, and updates the user interface as the program is used

interactively. Four different cell types can be chose: neurons, epicardial cells, endocardial

cells, and cardiac M cells. Two different models are implemented in run_simulation.m:

the Hodgkin-Huxley1 model which controls the simulation if neuron is chosen, and the

ten-Tusscher Noble Noble Paniflov7 (TNNP) model, which controls the simulation if any

of the three cardiac cells are chosen. Any parameters (for either model) that can be

controlled by the user are set in the user interface. The default settings for these

parameters are the published values. Some additional advanced settings can be changed

in Settings.m, which is the backend for the Settings.fig user interface.

Once the “Run Simulation” button of the user interface is pressed,

run_simulation.m is called to begin the numerical estimate. Depending on the cell type

chosen, initial values for the computed variables are pulled from the user interface (in

CellSpark.m) or from a separate variables file. Variables for the Hodgkin-Huxley model

(neuron) are stored in VariablesN.m and variables for the TNNP model (cardiac cells) are

stored in Variables.m. The non-linear differential equation which describes each model is

approximated using the forward Euler method. The time step is one of the advanced

settings that can edited by the user. Each step of the approximation is performed by

Step.m (TNNP) or StepN.m (Hodgkin-Huxley) and returned to run_simulation.m and

CellSpark.m (to update the plots in realtime).

 80

CellSpark.m CellSpark.fig

run_simulation.m

Step.m Variables.m StepN.m VariablesN.m

Settings.m Settings.fig

Figure 4.4: Overview of the CellSpark software dependencies. The full code is available
in Appendix B.

 81

Figure 4.5: Screenshot of the CellSpark software interface. The cell type is currently set
to “Neuron” and the characteristic Hodgkin-Huxley action potential is plotted. Other
dependent variables that can be plotted include ionic currents, the values of gating
parameters, and ion concentrations.

 82

4.2.2 Study Parameters

CellSpark was developed for use in the laboratory portion of an undergraduate

bioengineering course, Bioinstrumentation and Imaging, at a large public research

institution in the southeastern United States. The course focuses on teaching the basic

principles of physics, electronics, and physiology necessary to acquire, analyze, and

interpret signals of biological origin. One third of the course is spent on electronics, one

third on electrophysiology at the cell-organ levels, and one third on biomedical imaging

modalities. The corresponding laboratory portion of the course closely follows the lecture

section and covers the same topics. Enrollment in the course is typically 50-75 students

per semester and is divided nearly evenly among males and females and among juniors

and seniors, though class standing is often more skewed to seniors in the fall semester

and juniors in the spring.

The course is part of the required curriculum for bioengineering students and is an

elective for electrical engineering students. The breakdown by major is approximately

80% bioengineering students with a biomaterials concentration, 15% bioengineering with

a bioelectrical concentration, and 5% electrical engineering students. All students have

taken calculus through differential equations, physics II (electricity and magnetism), and

some form of preparatory electrical engineering course (basic EE for non-majors or DC

circuit analysis.)

This study focuses primarily on students’ completion of the midterm lab

assignment, which constitutes 15% of the final course grade. After brief exposure to the

basics of cellular electrophysiology in lecture and a short tutorial exercise in lab, students

 83

design and simulate an electrophysiology experiment on either a neuron or cardiac cell

using the CellSpark software. After collecting data from the simulator, students write up

their findings in a journal style article and present a critical discussion of the results in the

context of physiology and the mathematical models upon which the simulation are based.

4.2.3 Assignments

A short introductory lecture presentation (slides are included in Appendix C.1)

and tutorial lab exercise (included in Appendix C.2) were developed to introduce students

to the field of electrophysiology, the mathematical models upon which CellSpark is

based, and to introduce students to the software interface. The goals of the presentation

were mainly to review the topics already discussed in lecture about action potentials and

the ionic currents which initiate them, to familiarize students with the proper terminology

to use when discussing electrophysiology concepts, and to give some helpful tips about

what the teaching staff looks for when grading the assignment. The steps of the tutorial

mainly served to introduce all of the parameters of the model, give an example of an

“experiment” performed using the software, and to cause students to begin analyzing

results of the software both quantitatively and qualitatively.

Two weeks after initial exposure to the software in lab, students had to submit

their initial hypotheses for approval by the instructor and teaching assistants. Along with

the hypothesis (generally of the form “if I increase/decrease X, I expect an

increase/decrease in Y” - which essentially serves as their “plan” for conducting the

experiment) the students had to give a logical argument to back up the hypothesis.

Approval of the hypotheses was not based on correctness (or soundness of the argument)

 84

but on suitability for testing with the software and for evidence of thinking critically

about how the two parameters of the hypothesis relate, either in the context of physiology

or the mathematics of the model.

Two weeks after having their hypotheses approved, students submitted their full

lab reports written in the style of a short journal article. (The full assignment prompt and

guidelines are presented in Appendix C.3.) While students were not forbidden from

asking for help from the instructor or Teaching Assistants, only 3 students out of 65

sought additional help in interpreting the results of their experiments. Since the goal of

this study is individual discovery learning, only explanations of previously taught topics

were given, with the students encouraged to logically develop their own interpretation of

the results.

4.2.4 Data Collection

Following submission and grading of their midterm lab reports, students were

invited via email to participate in an anonymous survey about their use of the CellSpark

software. The survey consisted of seven Likert-type scale questions to determine the ease

of use of the software, the quality of the presentation and tutorial, the students’

understanding of electrophysiology before and after completing the assignment, and

preference to using the software over a traditional lecture based learning environment.

The survey also featured a free response question for students to given additional

comments or suggestions for improving the software.

The primary method to assess the identified learning outcomes was through

content analysis of the submitted lab reports. The content of students’ reports (primarily

 85

the discussion sections) was analyzed with the intent of finding specific evidence of 1)

the students’ understanding of the basic process of action potential generation in a cell, 2)

the students’ ability to identify and interpret key elements of the mathematical models

which influence their results, 3) the students’ ability to think critically about the

experiment and not simply rely on explanations given in lecture/lab and 4) the students’

ability to find and evaluate external sources in support of or contradiction to their

reasoning, without specifically being asked to.

4.3 Results

Authors Note: Three students were found to have plagiarized the assignment being
examined in this study. Papers from these students were excluded from the analysis and
since two of the students unenrolled in the course, they were not asked to complete the
post assignment survey. It is unknown whether the third student who remained enrolled
completed the anonymous survey.

4.3.1 Survey Questions

Students were solicited via email and during lecture to complete an optional

online assessment concerning their use of the CellSpark software. Of the 141 students

remaining in the course, 61 students participated in the survey. The survey asked students

to indicate their level of agreement with 7 statements. The responses were quantized by

assigning a value of 1-5 and normal distributions of responses were generated. These

summary of response for each statement are presented below in figure 4.6.

An additional space was added to the survey for students to give any other comments

about the software or suggestions to improve it. 16 of the 61 students who completed the

survey gave a response and these are included here:

 86

“I liked the interaction of the software but, coming from someone who was
relatively new at learning about electrophysiology, I think that a key for what the
abbreviations for things meant would make it easier to follow”

“I really liked using the software as a learning tool. When I got an interesting
result for my experiment, it made me look into it more and I actually learned a
lot.”

“Maybe account for more parameters, like denaturation or membrane
composition!”

“I think there should be more of a clear way to export data from the graphs”

“Maybe have different colors to better distinguish lines if there are multiple (i.e.
darker colors for the lighter background)”

“It [would] be cool if it had sound effects, like whooshes and Zaps!”

“It was very user-friendly and helped me to understand how certain parameters
affect the action potential of different cell types.”

“There seem to be certain values in a relatively normal range that result in
modelling errors. For example, using a neuron's default values but setting Cm to
1.1 or 1.7 results in discontinuities.”

“Could you be able to choose the colors you use for the graph? I am colorblind
and some colors were, therefore, difficult to see and determine the shape of the
graph. Literally couldn't see the yellow line at all and had to get someone with
normal color vision to help me.”

“Add the ability to edit line colors to prevent to lines of similar colors being
adjacent to each other”

“The software was great, clean interface and easy to use, and allowed me to better
visualize the relationships between depolarization, repolarization, and the flux of
ions.”

“I thought the software was interesting. I also thought it was pretty intuitive. I
didn't know about the software beforehand and I appreciated getting to use it.”

“I thought the program was great. I was able to visualize and learn a lot that I
don’t feel I would have learned simply from lecture.”

 87

“Great software! The only thing I would suggest to improve is to add more colors.
I ran the program for 12 different values, graphing the curves for all values on one
plot for direct comparison. There were only 6 colors (red-yellow) and then the
colors repeated. This made the legend show the same color for 2 different values,
which could be confusing for anyone other than the person who ran the
simulation, themselves. I would say 20 colors
would be sufficient.”

“Entering decimal values for variables sometimes caused weird graphs to be
made, e.g. entering values like 40.111 deg C caused an extra spike to appear on an
action potential that did not occur at 40 or 41 deg C. This might be due to
calculator rounding errors.”

“It would be cool to see the code that was used in the program”

Figure 4.6: Combined responses to survey items (n=61)

4.3.2 Content Analysis – Learning Objectives

Of the 62 assignments completed by students, 13 of them were randomly selected

to be used for the content analysis portion of this preliminary study. While there may be

1

2

3

4

5

Ease of Use Demonstration
Quality

Previous
Understanding

Parameters Knowledge
Gain

Interest Gain Prefer to
Lecture

 88

overlap with the 61 survey responses, these papers were selected at random and do not

represent the same set of students.

Learning Objective 1: The first learning objective identified in the implementation of this

project was that students be able to identify and distinguish between various models of

cellular electrophysiology. The specific models implemented in the software are the

Hodgkin-Huxley model of a neuron and the TNNP model of cardiomyocytes. Of the 13

reports analyzed so far, 7 chose to perform experiments on cardiac cells and the

remaining 6 chose neurons.

Only 1 of the 7 cardiac reports correctly identified that the TNNP model was

being used, and this student reached out for extra assistance during the preparation of

their reports and was confused about the distinction at that time. 5 of the students

incorrectly identified the model as the Hodgkin-Huxley (which doesn’t model cardiac

cells) and 1 student failed to identify the model as TNNP, but did correctly state that the

Hodgkin-Huxley only applies to neurons. The last student did not discuss either model in

their paper.

However, the 6 students who chose to perform their experiments on neurons were

all able to correctly identify the model used in their experiments as the Hodgkin-Huxley.

It is important to note that this model is covered more extensively in the lecture portion of

the course, whereas the only introduction to the TNNP model was in the short lecture on

electrophysiology given in lab before introducing the software for the first time.

Learning Objectives 2 & 3: Since all students were able to complete the assignment, the

second identified learning objective of students being able to use simulation tools to

 89

design and carry out an experiment was completely achieved. However the third

objective, that students should be able to critically analyze the results of a simulated

experiment in the context of the underlying model, was not achieved by all students.

Disregarding the student who made no reference to either model, students’ papers tended

to fall into one of three categories:

• Group I: 5 students demonstrated a good understanding of the model and were
able to assess their results in the context of this understanding (fulfilling the
objective)

• Group II: 4 students demonstrated an understanding of the model but only
partially explained their results in the context of it, or made key errors in the
analysis

• Group III: 3 students demonstrated an understanding of the model, but failed to
discuss their results in the context of it at all

Learning Objective 4: The alternative approach to discussing the results in the context of

the mathematical model is to discuss them in the context of what is happening

physiologically at the cellular and ionic levels. Due to this, it was expected that students

would primarily take one approach or the other – resulting in three similarly sized groups

with the opposite trend – so the fourth identified learning objective was that student

should be able to critically assess the validity of their simulated results based on their

understanding of the underlying physiology.

However, all 5 students in Group I, who showed the best understanding of and

ability to interpret the model also showed the best understanding of what happens at the

physiological level, with only a few minor incorrect details. In Group II, two of the

students showed a good understanding of the physiology while the third failed to discuss

it and the last student had significant mistakes in their understanding. In Group III, only

one student showed a partial understanding.

 90

4.3.3 Content Analysis – The Case of the Black Mamba

 Here we will highlight one specific case study which demonstrates what we aimed

to achieve by creating the CellSpark software. In the third semester of the software’s use

in BIOE 3700 (Fall 2018), one student posed the following hypothesis:

“I hypothesize that the venom of the Black Mamba snake will increase the
duration of the action potential of the neuron cell.”

The CellSpark software does not contain an option directly to alter this parameter, but

this student, through their own outside research found that the primary component of

Black Mamba venom is dendrotoxin. This student learned that dendrotoxin functions as

a potassium channel blocker. In order to model this, the student proposed altering the

maximum potassium conductance. At the time, this was not a changeable parameter in

the software, but it was added at the student’s request. This example highlights the type

of active learning that CellSpark was designed to encourage. The student had some

creative interest, engaged with the mathematical model enough to understand how their

hypothesis could be tested, and requested a feature be added to the software. Once added,

the student successfully tested their hypothesis and was able to relate the physiological

response they observed back to the symptoms of a Black Mamba bite.

4.4 Discussion

4.4.1 Implications

In order for discovery learning to take place, students must begin the assignment

with relatively little content knowledge of the material being covered or there is nothing

for them to ‘discover’ by performing the exercise. Responses to survey item S3 showed

that this criteria was true for the average student, who felt they did not have a strong

 91

understanding of electrophysiology prior to using the CellSpark software, though it is

worthwhile noting this item had the highest variation of the survey, showing that students

come in with a variety of skill levels. Another key component of a discovery learning

framework is that students are given only the basic tools required to complete the task so

that they succeed in discovering the content knowledge through completion of the task. A

key design criteria of the CellSpark software was that be simple and intuitive to use, as to

minimize the barrier to entry, while containing enough complexity for meaningful

scientific inquiry to take place. Affirmative responses to survey items S1, S2 and S5

indicate that this goal was successfully met, though one of the students expressed a

desired for more detail in the interface in their free response.

Survey item S5 assessed the utility of the software for improving student

understanding of the material (or at least their self-assessment of understanding) and the

overall affirmative response is promising. Moreover, the affirmative responses to survey

item S6 show that the exposure to the software also increased students interest in the

content, though to a lesser extent. Surprisingly, students indicated in survey item S7 that

they strongly prefer the learning activity to a traditional lecture environment.

The learning objectives identified for this study can be roughly assigned into a

hierarchy similar to the one presented by Magana et al or to Bloom’s taxonomy. Because

of this, it was assumed that learning objective 1 would be the easiest for students to

achieve, being the lowest in the hierarchy. However, as the results show this was clearly

not the case as most students failed to correctly identify the model being used. One

potential implication of this finding is that the timing and setting of content delivery

 92

significantly impacts the ability of students to correctly learn the content. The students in

this study pretty overwhelmingly failed to process the information that was presented

immediately before introduction of the software/assignment and were unable to recall the

content when preparing their reports 2-4 weeks later. On the other hand, content which

was introduced prior to introducing the assignment and then expanded upon in more

detail at a later date was able to be recalled and correctly related to the assignment. This

is further evidenced by the fact that all five students who misidentified the model did so

by choosing the one that was covered in lecture (which presumably they were more

familiar with.)

Since the students who make up this class come from primarily two backgrounds

– bioelectrical engineering and biomaterials engineering – it was expected that two

different groups of students would emerge from the content analysis: those explaining

their results in the context of physiology vs those explaining in the context of the

mathematical model. As the results indicated, instead the groups consisted of students

who were successfully able to implement both explanations, those who could partially

explain one or the other, and those who really failed to show mastery of either

explanation. Coupled with the survey data which showed most students did not consider

themselves as having strong prior knowledge but that their knowledge improved after

intervention, this finding lends strong support to the CellSpark platform as a learning

tool. The implication of this finding is that the mathematical models are not just

important research tools in electrophysiology, but are effective for teaching it as well. At

this point it is unclear whether students developed a better understanding of the

 93

physiology based on their understanding of the model or the other way around, but it is

evident that students with strong understandings of both were able to better think

critically about the experiments the performed.

Lastly, as the case study we highlighted shows, a discovery learning task requires

students to engage with course content in a more active way. It allows students some

degree of creativity and control over their learning which enhances their perceived

knowledge and interest gains in the material, as demonstrated by the survey responses.

Further, students strongly prefer learning difficult concepts, like electrophysiology,

through experimentation rather than a traditional lecture environment.

4.4.2 Limitations

One potential limitation of this study is that content analysis of student reports

may not be sufficient to measure the impact of the software of development of content

knowledge as exposure to the content in other portions of the course may also influence

its mastery. Additionally, as the three students caught plagiarizing on this assignment

demonstrate, today’s university student has access to many resources, including the work

of past students so critical insights in their writing, even if presented as original thought,

may not necessarily demonstrate content mastery. In an expanded follow up study this

could be addressed by incorporating additional methods of assessing understanding of the

content such as concept mapping, performance on related exam questions, and individual

interviews with students about their experience with the assignment.

Another possible limitation of the current approach is that the students who chose

to respond to the survey as well as those whose reports were randomly selected for

 94

analysis may not give an accurate representation of the overall class population. While

the survey response concern can’t be easily controlled for (aside from making

participation a mandatory part of the assignment) the latter can be validated by

comparing the assignment grades of students whose papers were analyzed to the grades

of the class as a whole. The assignment was graded by splitting the 65 submitted papers

into 5 groups 13, with each group being graded by a separate teaching assistant according

to a uniform rubric (Appendix C). All 65 papers were then read separately by the course

instructor who adjusted the grades to account for any variance between the teaching

assistants. The statistical comparison of the analyzed papers to the whole class is

presented below, showing no statistical difference between the two groups.

Table 4.2: Statistical analysis of assignment grades (analyzed papers vs all papers)

 Analyzed papers (n=13) Entire class (n=62)
Mean score (out of 20) 18.269 18.066
Standard deviation 1.235 1.706
2-Tailed T-Test (unequal
variance)

p=0.622

4.5 Conclusions

This pilot study offers clear evidence that the CellSpark application has the

potential to be a powerful tool for electrophysiology education and demonstrates the

feasibility of using simulation tools primarily designed for research and a discovery

learning framework as effective strategies for undergraduate engineering education.

 95

4.6 References

1. Huxley, A. L., Hodgkin AF. A Quantitative Description of Membrane Current and
its Application to Conduction and Excitation in Nerve. J Physiol. 1952;(117):500-
544. doi:10.1007/BF02459568.

2. Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve

Membrane. Biophys J. 1961;1(1948):445-466. doi:10.1016/S0006-3495(61)86902-
6.

3. Nagumo J, Arimoto S, Yoshizawa S. An Active Pulse Transmission Line

Simulating Nerve Axon. Proc IRE. 1962;50(10):2061-2070.
doi:10.1109/JRPROC.1962.288235.

4. Aliev RR, Panfilov A V. A Simple Two-variable Model of Cardiac Excitation.

Chaos, Solitons and Fractals. 1996;7(3):293-301. doi:10.1016/0960-
0779(95)00089-5.

5. Luo CH, Rudy Y. A model of the ventricular cardiac action potential.

Depolarization, repolarization, and their interaction. Circ Res. 1991;68(6):1501-
1526. doi:10.1161/01.RES.68.6.1501.

6. Tung L, Borderies J. Analysis of electric field stimulation of single cardiac muscle

cells. Biophys J. 1992;63:371-386.
http://www.sciencedirect.com/science/article/pii/S0006349592816326. Accessed
August 21, 2014.

7. ten Tusscher KH, Noble D, Noble P., Panfilov A. A model for human ventricular

tissue. Am J Physiol - Hear Circ Physiol. 2004;286(4):H1573-H1589.

8. National Acadmemy of Sciences, National Academy of Engineering I of M. Rising

Above the Gathering Storm. Washington, D.C.: National Academies Press; 2007.
doi:10.17226/11463.

9. Duderstadt JJ. Engineering for a Changing World: A Roadmap to the Future of

Engineering Practice, Research, and Education. Ann Arbor, MI: The Millennium
Project; 2007.

10. Silk EM, Schunn CD, Strand Cary M. The impact of an engineering design

curriculum on science reasoning in an Urban setting. J Sci Educ Technol.
2009;18(3):209-223. doi:10.1007/s10956-009-9144-8.

 96

11. Barron, Brigid JS. BARRON_1998-Doing with understanding_Lessons from
research on problem and project based learning.pdf. J Learn Sci.
1998;7(3&4):271-311.

12. Johnson, T, Chen, H, Suh, EK, Kim P. Innovative design through creative thinking

in design based learning. Forthcoming.

13. Chung GKWK, Harmon TC, Baker EL. The impact of a simulation-based learning

design project on student learning. IEEE Trans Educ. 2001;44(4):390-398.
doi:10.1109/13.965789.

14. Campbell JO, Bourne JR, Mosterman PJ, Brodersen AJ. The effectiveness of

learning simulations for electronic laboratories. J Eng Educ. 2002;91(1):81-87.
doi:10.1002/j.2168-9830.2002.tb00675.x.

15. Wankat PC. Integrating the Use of Commercial. J Eng Educ. 2002;91(1):19-23.

16. Magana AJ, Brophy SP, Bodner AM. Instructors’ intended learning outcomes for

using computational simulations as learning tools. J Eng Educ. 2012;101(2):220-
243. doi:10.1002/j.2168-9830.2012.tb00049.x.

17. Commission AEA. Criteria for Accrediting Engineering PRograms.

18. Alfieri L, Brooks PJ, Aldrich NJ, Tenenbaum HR. Does Discovery-Based

Instruction Enhance Learning? J Educ Psychol. 2011;103(1):1-18.
doi:10.1037/a0021017.

19. Adelson R. Instruction versus exploration in science learning. Monit Physchology

APA. 2004;35(6):34. https://www.apa.org/monitor/jun04/instruct.aspx.

20. Stokke A. What to Do About Canada’s Declining Math Scores? Comment CD

Howe Inst. 2015;(427). doi:10.2139/ssrn.2613146.

21. Mayer RE. Should There Be a Three-Strikes Rule against Pure Discovery

Learning? The Case for Guided Methods of Instruction. Am Psychol.
2004;59(1):14-19. doi:10.1037/0003-066X.59.1.14.

22. Marzano RJ. Art & Science of Teaching: The Perils and Promises of Discovery

Learning. Educ Leadersh Promot Respectful Sch. 2011;69(1):86-87.
http://www.ascd.org/publications/educational-leadership/sept11/vol69/num01/The-
Perils-and-Promises-of-Discovery-Learning.aspx.

23. WikiMedia user: Krishnavedala - Own work.

 97

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

5.1 Conclusions

 The main motivation for this work is a need to increase understanding of the

structure-function relationships of cells and the impacts those have on cellular and tissue

level mechanics and electrophysiology. As we move into a new era of medicine, where

tissues and organs are engineered and grown, having a wide variety of methods at our

disposal to investigate the properties of those constructs will be vital. This work

represents a step toward developing those tools.

 In Chapter 2, we demonstrated a novel, fully automated algorithm to develop

geometries of cardiomyocytes for use in finite element modelling (FEM) studies. This

algorithm can be used with confocal images as inputs or with cellular geometries

designed using CAD tools. We demonstrated the customizability of the algorithm and

showed that it can estimate subcellular geometries regardless of image resolution.

 In Chapter 3, we used those geometries to create scalable and customizable FEM

simulations of single cell mechanics. These simulations, developed automatically, were

capable of replicating experimental cell mechanics measurements by modeling

cardiomyocytes as fiber composites, which resulted in low computational complexity.

We also demonstrated the sensitivity of the model to myofibril diameter/spacing to show

the viability of scaling the model to tissue and organ levels.

 98

 In Chapter 4, we developed a software simulation tool that implements common

models of cellular electrophysiology. This tool was designed for use in an undergraduate

bioengineering course to allow discovery learning of electrophysiology to take place. We

successfully launched in the software in the course BIOE 3700: Bioinstrumentation and

Imaging and demonstrated the effectiveness of simulation tools in undergraduate

engineering education.

5.2 Recommendations for Future Work

1. Extend the model to include additional subcellular components. While nuclear

membranes were segmented in the method presented in Chapter 2, these were excluded

from the model geometries in Chapter 3 for the sake of computational efficiency.

Additional subcellular geometries, such as F-actin, microtubules and cell organelles could

also be included. The model could also be improved by using clues from imaging to

refine the approach. For example, staining for connexins or integrins could be used to

develop a more sophisticated method of determining fiber termination points. Some

preliminary work was also performed that shows the presence of the glycocalyx has a

significant impact on whole cell mechanics measurements and additional modelling to

explore this effect could yield interesting insights.

2. Extend the model to replicate more physical experiments. A contact simulation would

provide more information about the transverse mechanical properties than our current

simplifications can provide at the expense of additional computational cost. Contraction

studies could be performed without much modification of the current framework.

 99

3. Incorporate electrophysiology and excitation-contraction coupling into the finite

element model. As you move from the cell to tissue level in the heart, not only are their

implications for the mechanics of the tissue, but also the electrophysiology. In our

additional work, we show that present framework could easily be extended to include

simple models of cardiac electrophysiology without increasing the computational

complexity too much. Coupling this electrophysiology to the mechanics by modeling the

excitation-contraction coupling is the next step towards creating a representative model

of the cardiac environment.

4. Model the transient mechanical behavior of cells. The modelling framework as it’s

currently presented only looks at the steady-state behavior of cells under stretch, but as

the heart is one of the most dynamic environments in the body, an understanding of the

transient behavior is also necessary. A minor change to the model to include viscoelastic

properties to the cell would allow these time-dependent studies to be performed.

However, this analysis is much more computationally intensive, which is the primary

reason it was not performed in the current study. A high-throughput computing

environment, such as Clemson’s Palmetto Cluster, may be necessary to perform these

simulations.

5. Extend the model to higher scales of complexity. While the structure-function

relationships and mechanics of single cells are interesting, our primary goal is to

determine the implications of these relationships at the tissue and organ level. Extending

the model to the tissue level is feasible with only minor modification (and an increase in

computational complexity) and would allow us to work towards this goal.

 100

6. Extend the model to additional cell types. With modifications, the approach presented

here could be applied to other cell types (particularly skeletal and smooth muscle) of

interest to mechanobiology.

7. Refine the CellSpark software and create other simulation tools for engineering

education. While we saw great success with implementing the CellSpark software into

the curricula, there are still improvements that can be made to the software, mostly with

the interface and data handling. We would also like to incorporate additional models of

electrophysiology and different numerical techniques which can help to better illustrate

some of the difficulties of simulation tools. Documentation of the software should be

developed to increase its effectiveness as a software tool. Other simulation tools for

engineering education can also be developed to allow active learning of concepts. Some

potential concepts that could be explored include fluid dynamics, diffusion and heat

transfer, and biomechanics.

 101

APPENDICES

 102

APPENDIX A

MATLAB CODE FOR GENERATING MYOFIBRIL DISTRIBUTIONS

A.1: cell6.m

This file must be manually created for each cell to be analyzed. It points to the

directory containing images of the cell, assigns an identifier to the cell (the name of the

file), performs the segmentation of the geometry, and writes the STL files of the cell and

nuclei meshes.

%import sequential TIFF images into one stacked matrix, and generate a
%black and white stack of the images (25% intensity threshold)
z = 52;
[im bw] = Import_Confocal_Stack_sep...
 ('C:\Users\tgharve\OneDrive\Research\Image Processing\Confocal
Images\typical picture\ACM 3\Isolated Adult
CM_1.lif_Series017_z','_ch0.tif',z,0.15);
[nuc nbw] = Import_Confocal_Stack_sep...
 ('C:\Users\tgharve\OneDrive\Research\Image Processing\Confocal
Images\typical picture\ACM 3\Isolated Adult
CM_1.lif_Series017_z','_ch2.tif',z,0.15);
%estimate the volume and generate a binary matrix(1 inside/0 outside).
Use
[a b c] = size(im);

im_scaledxy = imresize(im,0.19);
nuc_scaledxy = imresize(nuc,0.19);

mrows = size(im_scaledxy,2); %the second dimension is already the right
size
mcols = round(0.346*size(im_scaledxy,3)); %we want to rescale the third
dimension

for i = 1:size(im_scaledxy,1)
 B(:,:) = im_scaledxy(i,:,:); %make a 2D array with the last two
dimensions of A1
 B1 = imresize(B,[mrows,mcols]);
 im_scaled(i,:,:) = B1;
end

for i = 1:size(nuc_scaledxy,1)
 B(:,:) = nuc_scaledxy(i,:,:); %make a 2D array with the last two
dimensions of A1
 B1 = imresize(B,[mrows,mcols]);
 nuc_scaled(i,:,:) = B1;
end

 103

vol_nuc = estimateBinaryVolume_2(nuc_scaled,10,.02);
vol_nuc = bwareaopen(vol_nuc,100);

mem = estimateBinaryVolume_2(im_scaled,10,.02);
mem = bwareaopen(mem,200);

vol = mem - vol_nuc;

[im_rot,ang,CoM] = regImage(im_scaled);
vol_rot = regImage2(vol,-ang,CoM);
nuc_rot = regImage2(vol_nuc,-ang,CoM);
mem_rot = regImage2(mem,-ang,CoM);

gauss = fspecial('Gaussian',3,1);
[a b c] = size(vol_rot);
for k = 1:c
 vol_smoothed(:,:,k) =
imfilter(imfill(vol_rot(:,:,k),'holes'),gauss);
 nuc_smoothed(:,:,k) =
imfilter(imfill(nuc_rot(:,:,k),'holes'),gauss);
end

vol_bound = vol_rot;

%SE = strel('sphere',1);
%membrane = imdilate(vol_smoothed,SE);

[faces,vertices] = isosurface(vol_smoothed,0.01);
stlwrite('3D Model Files/cell6.stl',faces,vertices,'mode','ascii');

%[faces_m,vertices_m] = isosurface(membrane,0.01);
%stlwrite('3D Model
Files/membrane6.stl',faces,vertices,'mode','ascii');

[faces_n, vertices_n] = isosurface(nuc_smoothed,0.01);
stlwrite('3D Model Files/nucleus6.stl',faces_n,
vertices_n,'mode','ascii');

FVc.vertices = vertices; FVc.faces = faces;
FVn.vertices = vertices_n; FVn.faces = faces_n;
pc = patch(FVc);
pn = patch(FVn);
set(pc, 'facecolor', [0.6 0.4 0.4]);
set(pc, 'facealpha', 0.6); %translucency
set(pc, 'linestyle', 'none'); % uncomment to hide mesh
set(pn, 'facecolor', [0 0 1]);
set(pn, 'linestyle', 'none');

axis equal

 104

grid off % undo by grid off
axis vis3d

daspect([1 1 1]);
%axis xy;
camlight;
lighting phong;

hold on

 105

A.2: Import_Confocal_Stack_sep.m
function [A,B]= Import_Confocal_Stack_sep(froot,froot2,n,th)
if n>9
 for k = 0:9
 A(:,:,k+1) = imread(strcat(froot,'00',num2str(k),froot2));
 B(:,:,k+1) = im2bw(A(:,:,k+1),th);
 % ... Do something with image A ...
 end
 for k=10:n
 A(:,:,k+1) = imread(strcat(froot,'0',num2str(k),froot2));
 B(:,:,k+1) = im2bw(A(:,:,k+1),th);
 end
else
 for k = 0:n
 A(:,:,k+1) = imread(strcat(froot,'00',num2str(k),froot2));
 B(:,:,k+1) = im2bw(A(:,:,k+1),th);
 end
end

A.3: estimateBinaryVolume_2.m
function [vol] = estimateBinaryVolume_2(im,r,th)
%imf = imgaussfilt3(im);
[a,b,z] = size(im);
for stack=1:1:z
vol(:,:,stack) = estimateBinaryArea_2(im(:,:,stack),r,th);
end

A.4: estimateBinaryArea_2.m

function [mask] = estimateBinaryArea_2(im,r,th)
SE = strel('disk',4);
mask = im2bw(im,th);
mask = imdilate(mask,SE);
mask = imfill(mask,'holes');
mask = imerode(mask,SE);

 106

A.5: regImage.m
function [imout2, ang, CenterOfMass] = regImage(im)
%bw = im2bw(im,.05);
[a b c] = size(im);
bw = im(:,:,floor(c/2));
[x y] = find(bw);
CenterOfMass = floor([mean(x) mean(y)]);
CenterOfImage = floor([a b]./2);
x1 = prctile(x,25);
y1 = prctile(y,25);
x2 = prctile(x,75);
y2 = prctile(y,75);
ang = 57.2958*atan((y2-y1)/(x2-x1));
for k =1:c
 imout(:,:,k) = imtranslate(im(:,:,k),CenterOfImage - CenterOfMass);
 imout2(:,:,k) = imrotate(imout(:,:,k),ang);
end

A.6: regImage2.m
function [imout] = regImage2(im, ang, CenterOfMass)
[a b c] = size(im);
CenterOfImage = floor([a b]./2);
for k =1:c
 temp(:,:,k) = imtranslate(im(:,:,k),CenterOfImage - CenterOfMass);
 imout(:,:,k) = imrotate(temp(:,:,k),ang);
end

 107

A.7: paths_nosweep.m

This script initiates the algorithm for a single cell and must be modified to point

to the particular cell being studied. Additionally this is where the cell spacing parameter

is specified and where an initial guess of the number of paths to be placed can be

provided to speed up computation time. This script requires the Mosek Optimization

Toolbox to be installed and for COMSOL with MATLAB to be running and the functions

kmeans, stlwrite, and extrude, all of which are available for download on the Mathworks

User Community File Exchange.

clear
clc
close all
recon = figure;
addpath 'C:/Program Files/Mosek/7/toolbox/r2013a'
import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');
geom1 = model.geom.create('geom1',3);
model.geom('geom1').lengthUnit('um');

cell5
filename = 'cell5_th';
sp = 4; %c3=5 c4=4 c6=4 c7=4
maxpaths = 2;
found = true;

%break for cylinder fitting

[Vx Vy Vz] = ind2sub(size(vol_bound),find(imfill(vol_bound,'holes')));

flag = true;
bestscore = 1e20;
k = 3;
while flag
 [lab eng m] = kmeans([Vx'; Vy'; Vz'],k);
 [f1 f2] = sortrows(m.means',1);
 for i=1:length(f2)
 lab2(find(lab==f2(i)))=i;

 108

 end
 for i=1:max(lab)
 cluster{i} = zeros(size(vol_bound));
 end
 clustered_vol = vol_bound;
 imfill(clustered_vol,'holes');
 clustered_vol(clustered_vol == 1) = -1;

 for i =1:length(lab2)
 cl = lab2(i);
 cluster{cl}(Vx(i),Vy(i),Vz(i)) = 1;
 clustered_vol(Vx(i),Vy(i),Vz(i)) = cl;
 end
 for i=1:length(cluster)
 [cx{i} cy{i} cz{i}] =
ind2sub(size(cluster{i}),find(cluster{i}));
 end
 for i=1:length(cx)
 col{i} = cx{i};
 col{i}(:) = i;
 end

 for i=1:length(cluster)
 [ax{i} r{i}] = fitcylinder(cluster{i});
 end

 for i=1:length(cluster)
 %score based on average distance to cylider surface
 % D = zeros(a,b,c);
 % for x=1:a
 % for y=1:b
 % for z=1:c
 % if cluster{i}(x,y,z) == 1
 % D(x,y,z) =
distanceToCylSurf(ax{i},r{i},[x,y,z]);
 % end
 % end
 % end
 % end
 % d(i) = mean(nonzeros(D));

 %score based on volume occupied
 v(i) = r{i}^2*pi()*norm(ax{i}(:,2)-ax{i}(:,1)) -
nnz(cluster{i});

 end

 %score = mean(d)
 score = sum(v)

 if score < bestscore

 109

 best.cluster = cluster;
 best.ax = ax;
 best.r = r;
 best.clustered_vol = clustered_vol;
 %best.d = d;
 best.v = v;
 best.cx = cx;
 best.cy = cy;
 best.cz = cz;
 best.col = col;
 bestscore = score;
 k = k+1;
 else
 flag = false;
 end
 %k = k+1;
end

figure(recon);

%end break for cylinder fitting

while found
 clear temp;

 [N, demand] =
generateNodes3(vol_bound,best.clustered_vol,sp,maxpaths);
 demand2 = scaleDemand(demand);
 [edges, c] = generateEdges3(N,sp);
 [from, to, costs, upper] = matrix2ft(edges, c);
 lower = zeros(size(upper));
 G = digraph(c);
 I = incidence(G);
 param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_NETWORK_PRIMAL_SIMPLEX';
 param.MSK_IPAR_INFEAS_REPORT_AUTO = 'MSK_OFF';
 demand_l = zeros(size(demand2));
 sol = msklpopt(costs,I,demand2,demand2,lower,upper,param);

 %scatter3(N(:,2),N(:,1),N(:,3),20,N(:,5),'filled')

 temp(:,3) = sol.sol.bas.xx;
 temp(:,1) = from';
 temp(:,2) = to';
 [s1 s2] = size(temp);
 [nNodes s2] = size(N);

 for i = 1:s1
 if temp(i,2) <= nNodes
 temp(i,1) = temp(i,1) - nNodes;
 end
 end
 TF = temp(:,2) > nNodes;

 110

 temp(TF,:) = [];
 TF = temp(:,3) == 0;
 temp(TF,:) = [];

 [s1 s2] = size(temp);
 count = 1;
 count2 = 1;
 for i=1:s1
 if temp(i,1) ~= 1 && temp(i,2) ~= nNodes
 temp2(count,:) = temp(i,:);
 count = count+1;
 end
 if temp(i,1) == 1
 start(count2,:) = temp(i,2);
 count2 = count2+1;
 end
 end
 [s1 s2] = size(temp);
 %scatter3(N(:,2),N(:,1),N(:,3),20,N(:,5),'filled')
 axis equal
 hold on
 for k = 1:s1

%plot3([N(temp(k,1),2),N(temp(k,2),2)],[N(temp(k,1),1),N(temp(k,2),1)],
[N(temp(k,1),3),N(temp(k,2),3)],'-k')
 end

 % start = N(:,5)';
 % start(start ~= -1) = 0;
 % start = find(start);
 %
 % for i = 1:length(start)
 % if ~ismember(start(i),temp2(:,1))
 % start(i) = 0;
 % end
 % end
 % start = start(start~=0);

 S=digraph(temp2(:,1),temp2(:,2));

 myo_vol = zeros(size(start));
 myo_len = zeros(size(start));
 found = strcmp(sol.sol.bas.solsta,'OPTIMAL');
 if found
 maxpaths = maxpaths+1;
 for i = 1:length(start)
 paths{i} = shortestpathtree(S,start(i));
 end
 end
end
maxpaths = maxpaths - 1;
disp(strcat(num2str(maxpaths),' myofibrils generated.'));

 111

% figure
count = 1;
for i = 1:length(paths)
 asdf = table2array(paths{i}.Edges);
 [s1 s2] = size(asdf);
 asdf(s1+1,1) = asdf(s1,2);
 for k = 1:s1+1
 asdf(k,3) = N(asdf(k,1),1);
 asdf(k,4) = N(asdf(k,1),2);
 asdf(k,5) = N(asdf(k,1),3);
 end

 q = linspace(0,2*pi,33);
 base = [(sp/2)*cos(q);(sp/2)*sin(q)];
 traj = [asdf(:,3)';asdf(:,4)';asdf(:,5)'];
 hull_nodes(count,:) = traj(:,1)';
 count=count+1;
 hull_nodes(count,:) = traj(:,size(traj,2))';
 count = count+1;

 ic = strcat('ic',num2str(i));

 num = size(traj,2)-1;
 model.geom('geom1').feature().create(ic,'InterpolationCurve');
 traj_sw = [traj(2,:);traj(1,:);traj(3,:)];
 model.geom('geom1').feature(ic).set('table',traj_sw');
 points{i} = traj';

 [X,Y,Z] = extrude(base,traj,1);
 myo = surf(Y,X,Z);
 set(myo, 'facecolor',[.8 0 0]);
 set(myo, 'facealpha', .5);
 for j = 1:size(traj,2)-1
 seg_len = sqrt((traj(1,j+1)-traj(1,j))^2 + (traj(2,j+1)-
traj(2,j))^2 + (traj(3,j+1)-traj(3,j))^2);
 seg_vol = pi*sp^2/4 * seg_len;
 myo_vol(i) = myo_vol(i) + seg_vol;
 myo_len(i) = myo_len(i) + seg_len;
 end
end
geom1.feature('fin').name('Form Assembly');
geom1.feature('fin').set('action','assembly');
geom1.feature('fin').set('imprint',true);
geom1.feature('fin').set('createpairs',false);
geom1.run
model.save(strcat('C:/Users/tgharve/Desktop/COMSOL Models/',filename));

sv = generateSideView(vol_bound);
c = size(sv,3);
for i = 1:c
 csa(i) = nnz(sv(:,:,i));
end
d_ideal = 2*sqrt((sum(csa)/nnz(csa))/pi);

 112

rat = d_ideal/sp;
f = 0.5919*exp(.0509*rat)-(7.041e+12)*exp(-15.72*rat);
%fillscore = (sum(myo_vol)/nnz(vol_smoothed))/f * 100;
fillscore = (sum(myo_vol)/nnz(vol_smoothed)) * 100;
lengthscore = mean(myo_len)/nnz(csa) * 100;

figure
hold on
for i=1:length(best.cluster)
 q = linspace(0,2*pi,33);
 base = [best.r{i}*cos(q);best.r{i}*sin(q)];
 [X,Y,Z] = extrude(base,best.ax{i},1);
 cyl{i} = surf(X,Y,Z);
 %set(cyl{i}, 'facecolor', [0.6 0.4 0.4]);
 set(cyl{i}, 'facealpha', 0.6);
end
axis equal

 113

A.8: fitcylinder.m
function [ax r] = fitcylinder(vol)
[a b c] = size(vol);
[Vx Vy Vz] = ind2sub(size(vol),find(vol));
MA = Skeleton3D(imfill(vol,'holes'));
[MAx MAy MAz] = ind2sub(size(vol),find(MA));
dist = bwdistsc(~imfill(vol,'holes'));
% r = max(nonzeros(MA.*dist));
%r = ceil(max(nonzeros(dist)));

%[m p s] = best_fit_line(MAx, MAy, MAz);
[m p s] = best_fit_line(Vx, Vy, Vz);

bnd1 = (min(Vx)-m(1))/p(1);
bnd2 = (max(Vx)-m(1))/p(1);

ax = [m(1)+p(1)*bnd1, m(2)+p(2)*bnd1, m(3)+p(3)*bnd1;...
 m(1)+p(1)*bnd2, m(2)+p(2)*bnd2, m(3)+p(3)*bnd2]';

 D = zeros(a,b,c);

 for x=1:a
 for y=1:b
 for z=1:c
 if vol(x,y,z) == 1
 D(x,y,z) = distanceFromAxis(ax,[x,y,z]);
 end
 end
 end
 end
 r = max(nonzeros(D))+1;

 bnd1 = ((min(Vx)-r*sin(acos(p(1))))-m(1))/p(1);
 bnd2 = ((max(Vx)+r*sin(acos(p(1))))-m(1))/p(1);

 ax = [m(1)+p(1)*bnd1, m(2)+p(2)*bnd1, m(3)+p(3)*bnd1;...
 m(1)+p(1)*bnd2, m(2)+p(2)*bnd2, m(3)+p(3)*bnd2]';

 114

A.9: generateNodes3.m
function [N, demand, cent] = generateNodes3(vol, cl_vol, d, s)
%given a binary cell volume (rotated so that the long axis of the cell
is
%in the x direction) and a distance between nodes (d), this function
%generates a regular grid of nodes (N) within the volume.
%Each row of N is a node given by Xcoord, Ycoord, Zcoord, node cost,
%and node demand (-1 for source, +1 for sink). The function also
returns a
%vector containing only the demand for each node.

weights = bwdistsc(imcomplement(vol),[1,1,1]); %each voxel given a
price based on distance to the outside of the cell
%weights = weights / max(max(max(weights))); %weights are normalized
[attach_pos, attach_neg] = findAttachments2(cl_vol); %finds possible
fibril attachment sites to determine node demand

%offset grid so it is approximately centered on the entire volume
matrix
[a b c] = size(vol);
xoffset = mod(a,d)/2;
yoffset = mod(b,d)/2;
zoffset = mod(c,d)/2;

%generate a regular grid of nodes over the entire volume matrix
N1(1,1:3)= [0, b/2, c/2];
N1(1,4) = 0;
N1(1,5) = -s;
count = 2;
for i = max(floor(xoffset),1):d:a
 for j = max(floor(yoffset),1):d:b
 for k = max(floor(zoffset),1):d:c
 N1(count,1:3) = [i,j,k];
 N1(count,4) = weights(i,j,k);
 if attach_pos(i,j,k) == 1 %if a node falls in positive
attachment site, assign it as a sink
 N1(count,5) = 1;
 elseif attach_neg(i,j,k) == 1 %if a node falls in a
negative attachment site, assign it as a source
 N1(count,5) = -1;
 else
 N1(count,5) = 0;
 end
 count = count + 1;
 end
 end
end

%delete all nodes that do not fall within the volume
[s1 s2] = size(N1);

 115

count = 2;
N(1,:) = N1(1,:);

for i=2:s1
 if vol(N1(i,1),N1(i,2),N1(i,3)) == 1
 %if N1(i,4) >= d/2 || N1(i,5) ~= 0
 N(count,1:5) = N1(i,1:5);
 count = count + 1;
 end
end
[s1 s2] = size(N);

cent = [mean(N(:,1)), mean(N(:,2)), mean(N(:,3))];
N1(1,1:3)= [0, cent(2), cent(3)];
N(s1+1,1:3) = [a , cent(2), cent(3)];
N(s1+1,4) = 0;
N(s1+1,5) = s;

%generate demand vector
demand = N(:,5)';
demand(abs(demand)~=s) = 0;

 116

A.10: findAttachments2.m

function [attach_pos, attach_neg] = findAttachments2(clustered_vol)
[a b c] = size(clustered_vol);
cl = max(max(max(clustered_vol)));
attach_pos = zeros(size(clustered_vol));
attach_neg = zeros(size(clustered_vol));

for i = 2:a-1
 for j = 2:b-1
 for k = 2:c-1
 if clustered_vol(i,j,k) == cl && nnz(clustered_vol(i-
1:i+1,j-1:j+1,k-1:k+1)) < 24
 attach_pos(i,j,k) = 1;
 elseif clustered_vol(i,j,k) == 1 && nnz(clustered_vol(i-
1:i+1,j-1:j+1,k-1:k+1)) < 24
 attach_neg(i,j,k) = 1;
 end
 end
 end
end
%attach_pos = bwareaopen(attach_pos,15);
%attach_neg = bwareaopen(attach_neg,15);

 117

A.11: scaleDemand.m
function [scaled_demand] = scaleDemand(demand)
s1 = length(demand);
scaled_demand = zeros([1 2*s1]);
for i = 1:s1
 if demand(i) < 0
 scaled_demand(i)= demand(i);
 end
 if demand(i) > 0
 scaled_demand(i+s1) = demand(i);
 end
end

A.12: generateEdges3.m

function [E, c] = generateEdges3(N,sp)
[s1 s2] = size(N);
E = zeros(2*s1);
c = zeros(2*s1);
E(1, s1+1) = 999;
c(1, s1+1) = 0.01;
E(s1, s1+s1) = 999;
c(s1, s1+s1) = 0.01;

for i=2:s1-1
 E(i,i+s1) = 1;
 c(i,i+s1) = 0.01;
 if N(i,5) == -1
 E(1+s1,i) = 1;
 c(1+s1,i) = 100*(norm(N(i,1:3) - N(1,1:3)))^2;
 end
 if N(i,5) == 1
 E(i+s1,s1) = 1;
 c(i+s1,s1) = 100*(norm(N(s1,1:3)-N(i,1:3)))^2;
 end

 for j=2:s1-1
 if i ~= j
 d = sqrt((N(i,1)-N(j,1))^2 + (N(i,2)-N(j,2))^2 + (N(i,3)-
N(j,3))^2);
 if d <= sqrt(3*sp^2) && N(j,1) > N(i,1)
 %if N(j,1) > N(i,1)
 E(i+s1,j) = 1;
 c(i+s1,j) = d^2*(N(i,4) + N(j,4))/2;
 end
 end
 end
end

 118

A13: generateSideView.m
function [im_sv] = generateSideView(im)
%[im_rot, ang, CoM] = regImage(im);
%vol_rot = regImage2(vol, ang, CoM);
[a b c] = size(im);
for k = 1:c
 for i=1:b
 im_sv(k,:,i) = im(i,:,k)';
 end
end

A14: matrix2ft.m
function [from, to, costs, upper] = matrix2ft(E,c)
[a b]=size(E);
count = 1;
for i = 1:a
 for j = 1:b
 if E(i,j) ~= 0
 from(count) = i;
 to(count) = j;
 upper(count) = E(i,j);
 costs(count) = c(i,j);
 count = count+1;
 end
 end
end

 119

APPENDIX B

MATLAB CODE FOR CELLSPARK

The original CellSpark application files and the MATLAB installer are available for

download at: http://github.com/tgharve/CellSpark

B.1: CellSpark.m
function varargout = CellSpark(varargin)
global State currents
% CELLSPARK MATLAB code for CellSpark.fig
% CELLSPARK, by itself, creates a new CELLSPARK or raises the
existing
% singleton*.
%
% H = CELLSPARK returns the handle to a new CELLSPARK or the
handle to
% the existing singleton*.
%
% CELLSPARK('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in CELLSPARK.M with the given input
arguments.
%
% CELLSPARK('Property','Value',...) creates a new CELLSPARK or
raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before CellSpark_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to CellSpark_OpeningFcn via
varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help CellSpark

% Last Modified by GUIDE v2.5 25-Sep-2018 09:32:57

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...

 120

 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @CellSpark_OpeningFcn, ...
 'gui_OutputFcn', @CellSpark_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before CellSpark is made visible.
function CellSpark_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to CellSpark (see VARARGIN)
handles.count = 0;
handles.labels={};
%handles.P = plot(handles.axes1,0,0,'k');
xlim([0,600])
ylim([-100,80])
grid minor
datacursormode on
hold on
setappdata(0,'HT',0.02);
setappdata(0,'STOPTIME',600);
setappdata(0,'bcl',1000);
setappdata(0,'protocol', 'DYNREST');
pushbutton3_Callback(hObject,eventdata,handles);
% Choose default command line output for CellSpark
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes CellSpark wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = CellSpark_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 121

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate axes1

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
type =
find([get(handles.radiobutton1,'Value'),get(handles.radiobutton2,'Value
'),get(handles.radiobutton3,'Value'),get(handles.radiobutton7,'Value')]
);
switch type
 case 1
 Args.type = 'EPI';
 case 2
 Args.type = 'ENDO';
 case 3
 Args.type = 'MCELL';
 case 4
 Args.type = 'NEURON';
end

Args.Ko = str2double(get(handles.edit1,'String'));
Args.Cao = str2double(get(handles.edit2, 'String'));
Args.Nao = str2double(get(handles.edit3, 'String'));
Args.Tc = str2double(get(handles.edit4, 'String'));
Args.Ki = str2double(get(handles.edit5, 'String'));
Args.Cai = str2double(get(handles.edit6, 'String'));
Args.Nai = str2double(get(handles.edit7, 'String'));
Args.Cm = str2double(get(handles.edit8, 'String'));
Args.Vc = str2double(get(handles.edit13, 'String'));
Args.Vsr = str2double(get(handles.edit14, 'String'));
Args.amp = str2double(get(handles.edit9, 'String'));
Args.dur = str2double(get(handles.edit10, 'String'));
Args.tbegin = str2double(get(handles.edit11, 'String'));
Args.ow = get(handles.checkbox1,'Value');
Args.HT = getappdata(0,'HT');
Args.STOPTIME = getappdata(0,'STOPTIME');
Args.bcl = getappdata(0,'bcl');
Args.protocol = getappdata(0,'protocol');
Args.GNa = str2double(get(handles.edit17 , 'String'));
Args.GK = str2double(get(handles.edit16 , 'String'));

 122

Args.GL = str2double(get(handles.edit15, 'String'));

xlim([0,getappdata(0,'STOPTIME')]);
[hObject,handles] = run_simulation(Args,hObject,handles);
guidata(hObject,handles);

function edit11_Callback(hObject, eventdata, handles)
% hObject handle to edit11 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit11 as text
% str2double(get(hObject,'String')) returns contents of edit11
as a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','50');
end
set(hObject,'String',sprintf('%d',round(str2num(get(hObject,'String')))
));

% --- Executes during object creation, after setting all properties.
function edit11_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit11 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit10_Callback(hObject, eventdata, handles)
% hObject handle to edit10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit10 as text
% str2double(get(hObject,'String')) returns contents of edit10
as a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','1');
end
set(hObject,'String',sprintf('%d',round(str2num(get(hObject,'String')))
));

% --- Executes during object creation, after setting all properties.
function edit10_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit10 (see GCBO)

 123

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit9_Callback(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit9 as text
% str2double(get(hObject,'String')) returns contents of edit9 as
a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','52');
end
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.
function edit9_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit8_Callback(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit8 as text
% str2double(get(hObject,'String')) returns contents of edit8 as
a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','0.185');
end
set(hObject,'String',sprintf('%0.3f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.

 124

function edit8_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit7_Callback(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit7 as text
% str2double(get(hObject,'String')) returns contents of edit7 as
a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','11.6');
end
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.
function edit7_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit6_Callback(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit6 as text
% str2double(get(hObject,'String')) returns contents of edit6 as
a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','0.2');
end
set(hObject,'String',sprintf('%0.5f',str2num(get(hObject,'String'))));

 125

% --- Executes during object creation, after setting all properties.
function edit6_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit5_Callback(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text
% str2double(get(hObject,'String')) returns contents of edit5 as
a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','138.8');
end
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.
function edit5_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit13_Callback(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit13 as text
% str2double(get(hObject,'String')) returns contents of edit13
as a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','0.0164');

 126

end
set(hObject,'String',sprintf('%0.4f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.
function edit13_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit14_Callback(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit14 as text
% str2double(get(hObject,'String')) returns contents of edit14
as a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','0.0011');
end
set(hObject,'String',sprintf('%0.4f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.
function edit14_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as
a double

 127

if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','5.4');
end
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2 as
a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','2.0');
end
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit3_Callback(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 128

% Hints: get(hObject,'String') returns contents of edit3 as text
% str2double(get(hObject,'String')) returns contents of edit3 as
a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','140.0');
end
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit4_Callback(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit4 as text
% str2double(get(hObject,'String')) returns contents of edit4 as
a double
if isempty(str2num(get(hObject,'String')))
 set(hObject,'String','37.0');
end
set(hObject,'String',sprintf('%0.1f',str2num(get(hObject,'String'))));

% --- Executes during object creation, after setting all properties.
function edit4_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in radiobutton1.
function radiobutton1_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton1 (see GCBO)

 129

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton1
set(handles.edit2,'String','2.0');
set(handles.text17,'String','CaSR');
set(handles.edit6,'String','0.2');
set(handles.text32,'Visible','on');
set(handles.edit14,'Visible','on');
set(handles.text31,'Visible','on');
set(handles.text29,'Visible','on');
set(handles.text30,'Visible','on');
set(handles.edit13,'Visible','on');
set(handles.edit4,'String','37.0');
set(handles.text23,'String','mA');
set(handles.uibuttongroup4,'Visible','off');
setappdata(0,'STOPTIME',600);
setappdata(0,'HT',.02);
s={'Nao','Ko','Cao','T','Nai','Ki','CaSR','Cm','Vc','Vsr','Amplitude','
Duration','Start Time'};
set(handles.popupmenu2,'String',s);
s = {'Voltage (mV)','Cai (mM)','INa (mA)','ICaL (mA)','Ito (mA)','IKs
(mA)',...
 'IKr (mA)','IK1 (mA)','INaCa (mA)','INaK (mA)','IbNa (mA)','IbCa
(mA)','Irel (mA)'};
set(handles.popupmenu3,'String',s);
pushbutton2_Callback(hObject,eventdata,handles);
pushbutton3_Callback(hObject,eventdata, handles);

% --- Executes on button press in radiobutton2.
function radiobutton2_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton2
set(handles.edit2,'String','2.0');
set(handles.text17,'String','CaSR');
set(handles.edit6,'String','0.2');
set(handles.text32,'Visible','on');
set(handles.edit14,'Visible','on');
set(handles.text31,'Visible','on');
set(handles.uibuttongroup4,'Visible','off');
set(handles.text29,'Visible','on');
set(handles.text30,'Visible','on');
set(handles.edit13,'Visible','on');
set(handles.edit4,'String','37.0');
set(handles.text23,'String','mA');

setappdata(0,'STOPTIME',600);
setappdata(0,'HT',.02);
s={'Nao','Ko','Cao','T','Nai','Ki','CaSR','Cm','Vc','Vsr','Amplitude','
Duration','Start Time'};

 130

set(handles.popupmenu2,'String',s);
s = {'Voltage (mV)','Cai (mM)','INa (mA)','ICaL (mA)','Ito (mA)','IKs
(mA)',...
 'IKr (mA)','IK1 (mA)','INaCa (mA)','INaK (mA)','IbNa (mA)','IbCa
(mA)','Irel (mA)'};
set(handles.popupmenu3,'String',s);
pushbutton2_Callback(hObject,eventdata,handles);
pushbutton3_Callback(hObject,eventdata, handles);

% --- Executes on button press in radiobutton3.
function radiobutton3_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton3
set(handles.edit2,'String','2.0');
set(handles.text17,'String','CaSR');
set(handles.edit6,'String','0.2');
set(handles.text32,'Visible','on');
set(handles.edit14,'Visible','on');
set(handles.text31,'Visible','on');
set(handles.uibuttongroup4,'Visible','off');
set(handles.text29,'Visible','on');
set(handles.text30,'Visible','on');
set(handles.edit13,'Visible','on');
set(handles.edit4,'String','37.0');
set(handles.text23,'String','mA');

setappdata(0,'STOPTIME',600);
setappdata(0,'HT',.02);
s={'Nao','Ko','Cao','T','Nai','Ki','CaSR','Cm','Vc','Vsr','Amplitude','
Duration','Start Time'};
set(handles.popupmenu2,'String',s);
s = {'Voltage (mV)','Cai (mM)','INa (mA)','ICaL (mA)','Ito (mA)','IKs
(mA)',...
 'IKr (mA)','IK1 (mA)','INaCa (mA)','INaK (mA)','IbNa (mA)','IbCa
(mA)','Irel (mA)'};
set(handles.popupmenu3,'String',s);
pushbutton2_Callback(hObject,eventdata,handles);
pushbutton3_Callback(hObject,eventdata, handles);

% --- Executes during object creation, after setting all properties.
function uibuttongroup2_CreateFcn(hObject, eventdata, handles)
% hObject handle to uibuttongroup2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% --- Executes on button press in checkbox1.
function checkbox1_Callback(hObject, eventdata, handles)
% hObject handle to checkbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

 131

% handles structure with handles and user data (see GUIDATA)
handles.count = 1;

% Hint: get(hObject,'Value') returns toggle state of checkbox1

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
cla(handles.axes1);
handles.labels = {};
handles.count = 0;
legend(handles.axes1,'off');
guidata(hObject,handles);

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.edit4,'String','37.0');
if get(handles.radiobutton7,'Value') == 1
 set(handles.edit1,'String','4.0');
 set(handles.edit2,'String','41.0');
 set(handles.edit3,'String','142.0');
 set(handles.edit5,'String','120.0');
 set(handles.edit7,'String','10.0');
 set(handles.edit6,'String','0.00011');
 set(handles.edit11,'String','1.0');
 set(handles.edit9,'String','15');
 set(handles.edit8,'String','1.0');
 set(handles.edit17,'String','120');
 set(handles.edit16,'String','36');
 set(handles.edit15,'String','0.3')
else
 set(handles.edit1,'String','5.4');
 set(handles.edit2, 'String','2.0');
 set(handles.edit3, 'String','140.0');
 set(handles.edit4, 'String','37.0');
 set(handles.edit5, 'String','138.8');
 set(handles.edit6, 'String','0.2');
 set(handles.edit7, 'String','11.6');
 set(handles.edit8, 'String','0.185');
 set(handles.edit13, 'String','0.0164');
 set(handles.edit14, 'String','0.0011');
 set(handles.edit9, 'String','52');
 set(handles.edit10, 'String','1');
 set(handles.edit11, 'String','50');
end

% --- Executes on selection change in popupmenu1.

 132

function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1
contents as cell array
% contents{get(hObject,'Value')} returns selected item from
popupmenu1

% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject,'String',['Legend
Parameter';'Ko';'Cao';'Nao';'T';'Ki';'CaSR';'Nai';'Cm';'Vc';'Vsr';'Ampl
itude';'Duration';'Start Time']);
guidata(hObject,handles);

% --- Executes on selection change in popupmenu2.
function popupmenu2_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
cla(handles.axes1);
handles.labels = {};
handles.count = 0;
legend(handles.axes1,'off');
guidata(hObject,handles);

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu2
contents as cell array
% contents{get(hObject,'Value')} returns selected item from
popupmenu2

% --- Executes during object creation, after setting all properties.
function popupmenu2_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: popupmenu controls usually have a white background on Windows.

 133

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in popupmenu3.
function popupmenu3_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
cla(handles.axes1);
handles.labels = {};
handles.count = 0;
legend(handles.axes1,'off');
guidata(hObject,handles);
% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu3
contents as cell array
% contents{get(hObject,'Value')} returns selected item from
popupmenu3

% --- Executes during object creation, after setting all properties.
function popupmenu3_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
advsettings();

% --- Executes on button press in radiobutton4.
function radiobutton4_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton4

zoom off
pan off

 134

datacursormode on

% --- Executes on button press in radiobutton5.
function radiobutton5_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton5

pan off
datacursormode off
zoom on

% --- Executes on button press in radiobutton6.
function radiobutton6_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton6

datacursormode off
zoom off
pan on

% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%reset(handles.axes1);
xlim(handles.axes1,[0,getappdata(0,'STOPTIME')])
ylim(handles.axes1,'auto')
%grid minor
datacursormode on
set(handles.radiobutton4,'Value',1);
set(handles.radiobutton5,'Value',0);
set(handles.radiobutton6,'Value',0);
xlim([0,getappdata(0,'STOPTIME')]);

% --- Executes on button press in radiobutton7.
function radiobutton7_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton7
set(handles.edit1,'String','20.11');
set(handles.edit2,'String','44.0');
set(handles.edit3,'String','491.0');

 135

set(handles.edit5,'String','400.0');
set(handles.edit7,'String','50,0');
set(handles.text17,'String','Cai');
set(handles.edit6,'String','0.1');
set(handles.text32,'Visible','off');
set(handles.edit14,'Visible','off');
set(handles.text31,'Visible','off');
set(handles.text29,'Visible','off');
set(handles.text30,'Visible','off');
set(handles.edit13,'Visible','off');
set(handles.edit9,'String','15');
set(handles.text23,'String','uA');
set(handles.uibuttongroup4,'Visible','on');
set(handles.edit4,'String','37.0');
setappdata(0,'STOPTIME',20);
setappdata(0,'HT',.001);
pushbutton2_Callback(hObject,eventdata,handles);
pushbutton3_Callback(hObject,eventdata,handles);
s={'Nao','Ko','Cao','T','Nai','Ki','Cai','Cm','Amplitude','Duration','S
tart Time','GNa','GK','GL'};
set(handles.popupmenu2,'String',s);

s = {'Voltage (mV)','INa (mA)','IK (mA)','Ileak (mA)','m','h','n'};
set(handles.popupmenu3,'String',s);

function edit15_Callback(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit15 as text
% str2double(get(hObject,'String')) returns contents of edit15
as a double

% --- Executes during object creation, after setting all properties.
function edit15_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit16_Callback(hObject, eventdata, handles)
% hObject handle to edit16 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 136

% Hints: get(hObject,'String') returns contents of edit16 as text
% str2double(get(hObject,'String')) returns contents of edit16
as a double

% --- Executes during object creation, after setting all properties.
function edit16_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit16 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit17_Callback(hObject, eventdata, handles)
% hObject handle to edit17 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit17 as text
% str2double(get(hObject,'String')) returns contents of edit17
as a double

% --- Executes during object creation, after setting all properties.
function edit17_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit17 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

 137

B.2: settings.m
function varargout = settings(varargin)
% settings MATLAB code for settings.fig
% settings, by itself, creates a new settings or raises the
existing
% singleton*.
%
% H = settings returns the handle to a new settings or the handle
to
% the existing singleton*.
%
% settings('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in settings.M with the given input
arguments.
%
% settings('Property','Value',...) creates a new settings or
raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before settings_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to settings_OpeningFcn via
varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help settings

% Last Modified by GUIDE v2.5 23-Aug-2017 10:30:54

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @settings_OpeningFcn, ...
 'gui_OutputFcn', @settings_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});

 138

end
% End initialization code - DO NOT EDIT

% --- Executes just before settings is made visible.
function settings_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to settings (see VARARGIN)

% Choose default command line output for settings
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes settings wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = settings_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
setappdata(0,'HT',0.2);
setappdata(0,'STOPTIME',600);
setappdata(0,'BCL',1000);
setappdata(0,'protocol', 'DYNREST');
set(handles.edit1,'String','0.02');
set(handles.edit2,'String','600');
set(handles.edit3,'String','1000');
set(handles.radiobutton1,'Value',1);

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)

 139

% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
setappdata(0,'HT',str2num(get(handles.edit1,'String')));
setappdata(0,'STOPTIME',str2num(get(handles.edit2,'String')));
setappdata(0,'bcl',str2num(get(handles.edit3,'String')));
if (get(handles.radiobutton1,'Value'))
 setappdata(0,'protocol','DYNREST');
else
 setappdata(0,'protocol','S1S2REST');
end
delete(handles.figure1);

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as
a double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
set(hObject,'String',getappdata(0,'HT'));
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2 as
a double

 140

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
set(hObject,'String',getappdata(0,'STOPTIME'));
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit3_Callback(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text
% str2double(get(hObject,'String')) returns contents of edit3 as
a double

% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
set(hObject,'String',getappdata(0,'bcl'));
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes during object creation, after setting all properties.
function uibuttongroup1_CreateFcn(hObject, eventdata, handles)
% hObject handle to uibuttongroup1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

 141

% --- Executes during object creation, after setting all properties.
function radiobutton1_CreateFcn(hObject, eventdata, handles)
% hObject handle to radiobutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
protocol = getappdata(0,'protocol');
if isequal(protocol,'DYNREST')
 set(hObject,'Value',1);
else
 set(hObject,'Value',0);
end

% --- Executes during object creation, after setting all properties.
function radiobutton2_CreateFcn(hObject, eventdata, handles)
% hObject handle to radiobutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
protocol = getappdata(0,'protocol');
if isequal(protocol,'S1S2REST')
 set(hObject,'Value',1);
else
 set(hObject,'Value',0);
end

 142

B.3: run_simulation.m
function [hObject_new, handles_new] =
run_simulation(Args,hObject,handles)

%clc
%close all

%External concentrations
global Ko Cao Nao Vc Vsr Bufc Kbufc Bufsr Kbufsr taufca taug Vmaxup Kup
R F T RTONF CAPACITANCE ...
 Gkr pKNa Gto GKs GK1 GNa GbNa KmK KmNa knak GCaL GbCa knaca KmNai
KmCa ksat n GpCa KpCa GpK ...
 i_low i_high j_low j_high stimduration stimstrength period currents
kT Tc type protocol State GK GL VL

handles.count = handles.count + 1;
ow = Args.ow;
type = Args.type; %EPI, ENDO, MCELL, or NEURON

%Ko=5.4;
%Cao=2.0;
%Nao=140.0;
if isequal(type,'NEURON')
 Ko = Args.Ko;
 Cao = Args.Cao;
 Nao = Args.Nao;

 Vc = Args.Vc;

 %Constants
 R=8314.472;
 F=96485.3415;
 %Tc = 37;
 Tc = Args.Tc;
 T=Tc+273.0;
 kT = 3^((Tc-37.0)/10);
 RTONF=(R*T)/F;

 %Conductances
 %GNa = 120;
 %GK = 36;
 %GL = 0.3;
 VL = -49;

 GNa = Args.GNa;
 GK = Args.GK;
 GL = Args.GL;

 143

 CAPACITANCE = Args.Cm;

 HT = Args.HT;

 %Initial values of state variables

 Cai_init=Args.Cai;
 Nai_init=Args.Nai;
 Ki_init=Args.Ki;

 %V_init=(5/115)*RTONF*(log((Nao/Nai_init))) + (100/115)*
RTONF*(log((Ko/Ki_init))) + (10/115)*VL;
 V_init = -62;

 %duration of the simulation
 STOPTIME = Args.STOPTIME;

 stimduration=Args.dur;
 stimstrength=-10* Args.amp;
 tbegin=Args.tbegin;
 tend=tbegin+stimduration;

 time = 0;
 step = 0;
 Istim = 0;
 Var = VariablesN(V_init, Cai_init,Nai_init,Ki_init);
 State =
[0,Var.Volt,Var.Volt2,Var.Cai,Var.Nai,Var.Ki,Var.M,Var.H,Var.N,Var.Itot
];
 currents = [0 0 0 0];

 leg = get(handles.popupmenu2,'Value');

 switch leg
 case 1
 label = [get(handles.edit3,'String'), ' mM'];
 case 2
 label = [get(handles.edit1,'String'), ' mM'];
 case 3
 label = [get(handles.edit2,'String'), ' mM'];
 case 4
 label = [get(handles.edit4,'String') ' ' char(176) 'C'];
 case 5
 label = [get(handles.edit7,'String'), ' mM'];
 case 6
 label = [get(handles.edit5,'String'), ' mM'];
 case 7
 label = [get(handles.edit6,'String'), ' mM'];
 case 8
 label = [get(handles.edit8,'String'), ' \muF/cm^{2}'];
 case 9

 144

 label = [get(handles.edit9,'String'), ' mA'];
 case 10
 label = [get(handles.edit10,'String'), ' ms'];
 case 11
 label = [get(handles.edit11,'String'), ' ms'];
 case 12
 label = [get(handles.edit17,'String'), ' mS/cm^{2}'];
 case 13
 label = [get(handles.edit16,'String'), ' mS/cm^{2}'];
 case 14
 label = [get(handles.edit15,'String'), ' mS/cm^{2}'];
 end

 if ow == 1
 genvarname('handles.P',num2str(handles.count));
 eval(['handles.P' num2str(handles.count)
'=plot(handles.axes1,0,0);']);
 handles.labels{handles.count,1} = label;
 legend(handles.labels);
 else
 cla(handles.axes1);
 clear handles.labels;
 handles.labels = {};
 handles.P=plot(handles.axes1,0,0);
 handles.count = 1;
 handles.labels{handles.count,1} = label;
 legend(handles.labels);
 end

 while time<=STOPTIME
 time = time+HT;
 if(time>=tbegin && time<=tend)

 Istim=stimstrength;
 end

 if(time>tend)
 Istim=0.;

 end

 Var = StepN(Var,HT,time,step,Istim);
 if(mod(step,10)==0)
 State = [State; time,
Var.Volt,Var.Volt2,Var.Cai,Var.Nai,Var.Ki,Var.M,Var.H,Var.N,Var.Itot];
 if(mod(step,250)==0)

 xvals = State(:,1);
 yvar = get(handles.popupmenu3,'Value');
 switch yvar
 case 1
 yvals = State(:,2); %Voltage

 145

 case 2
 yvals = currents(:,2); %INa
 case 3
 yvals = currents(:,3); %IK
 case 4
 yvals = currents(:,4); %IL
 case 5
 yvals = State(:,7); %M
 case 6
 yvals = State(:,8); %H
 case 7
 yvals = State(:,9); %N
 end

 if(ow == 0)
 set(handles.P,'xdata',xvals,'ydata',yvals);

 else
 eval(['set(handles.P'
num2str(handles.count) ',''xdata'',xvals,''ydata'',yvals);']);
 end
 ylim(handles.axes1,'auto');
 drawnow('update');
 guidata(hObject,handles);
 end
 end

 step = step+1;
 end
 %handles.count = handles.count + 1;
 handles.State = State;

 %ylim(handles.axes1,'auto');

 hObject_new = hObject;
 handles_new = handles;

 else
 protocol = Args.protocol; %DYNREST or S1S2REST

 Ko = Args.Ko;
 Cao = Args.Cao;
 Nao = Args.Nao;

 %Intracellular volumes

 %Vc=0.016404;
 %Vsr=0.001094;

 Vc = Args.Vc;

 146

 Vsr = Args.Vsr;

 %Calcium dynamics
 Bufc=0.15;
 Kbufc=0.001;
 Bufsr=10.;
 Kbufsr=0.3;
 taufca=kT*2.;
 taug=kT*2.;
 Vmaxup=0.000425;
 Kup=0.00025;

 %Constants
 R=8314.472;
 F=96485.3415;
 %Tc = 37;
 Tc = Args.Tc;
 T=Tc+273.0;
 kT = 3^((T-310)/10);
 RTONF=(R*T)/F;

 %Cellular capacitance
 %CAPACITANCE=0.185;
 CAPACITANCE = Args.Cm;

 %Parameters for currents
 %Parameters for IKr
 Gkr=0.096;
 %Parameters for Iks
 pKNa=0.03;

 %cell type dependent parameters for Iks and Ito
 switch type
 case 'EPI'
 Gto = 0.294;
 GKs = 0.245;
 case 'MCELL'
 Gto = 0.294;
 GKs = 0.062;
 case 'ENDO'
 Gto = 0.073;
 GKs = 0.245;
 end

 %Parameters for Ik1
 GK1=5.405;

 %Parameters for INa
 GNa=14.838;
 %Parameters for IbNa
 GbNa=0.00029;
 %Parameters for INaK

 147

 KmK=1.0;
 KmNa=40.0;
 knak=1.362;
 %Parameters for ICaL
 GCaL=0.000175;
 %Parameters for IbCa
 GbCa=0.000592;
 %Parameters for INaCa
 knaca=1000;
 KmNai=87.5;
 KmCa=1.38;
 ksat=0.1;
 n=0.35;
 %Parameters for IpCa
 GpCa=0.825;
 KpCa=0.0005;
 %Parameters for IpK;
 GpK=0.0146;

 %timestep (ms)
 %HT =0.02;
 HT = Args.HT;

 %Initial values of state variables

 CaSR_init=Args.Cai;
 Nai_init=Args.Nai;
 Ki_init=Args.Ki;

 Cai_init=0.0002;
 %CaSR_init=0.2;
 %Nai_init=11.6;
 %Ki_init=138.3;
 V_init=RTONF*(log((Ko/Ki_init)));

 %duration of the simulation
 %STOPTIME=600;
 STOPTIME = Args.STOPTIME;

 switch protocol
 case 'DYNREST'
 i_low=0;
 i_high=1;
 j_low=0;
 j_high=1;
 stimduration = Args.dur;
 %stimduration=1.0;
 stimstrength = -1 * Args.amp;
 %stimstrength=-52;

 148

 %period=1000;
 period = Args.bcl;
 sum=period*1000.;
 tbegin = Args.tbegin;
 %tbegin=50;
 tend=tbegin+stimduration;
 case 'S1S2REST'
 i_low=0;
 i_high=1;
 j_low=0;
 j_high=1;
 stimduration=Args.dur;
 stimstrength=-1* Args.amp;
 tbegin=Args.tbegin;
 tend=tbegin+stimduration;
 counter=1;
 dia=5000;
 %basicperiod=1000.;
 basicperiod = Args.bcl;
 basicapd=274;
 repeats=10;
 end

 time = 0;
 step = 0;
 Istim = 0;
 Var = Variables(V_init, Cai_init,
CaSR_init,Nai_init,Ki_init);
 State =
[0,Var.Volt,Var.Volt2,Var.Cai,Var.CaSR,Var.Nai,Var.Ki,Var.M,Var.H,Var.J
,Var.Xr1,Var.Xr2,Var.Xs,Var.S,Var.R,Var.D,Var.F,Var.FCa,Var.G,Var.Itot]
;
 currents = [0 0 0 0 0 0 0 0 0 0 0 0];

 leg = get(handles.popupmenu2,'Value');

 switch leg
 case 1
 label = [get(handles.edit3,'String'), ' mM'];
 case 2
 label = [get(handles.edit1,'String'), ' mM'];
 case 3
 label = [get(handles.edit2,'String'), ' mM'];
 case 4
 label = [get(handles.edit4,'String') ' ' char(176)
'C'];
 case 5
 label = [get(handles.edit7,'String'), ' mM'];
 case 6
 label = [get(handles.edit5,'String'), ' mM'];
 case 7
 label = [get(handles.edit6,'String'), ' mM'];

 149

 case 8
 label = [get(handles.edit8,'String'), '
\muF/cm^{2}'];
 case 9
 label = [get(handles.edit13,'String'), '
\mum^{3}'];
 case 10
 label = [get(handles.edit14,'String'), 'mum^{3}'];
 case 11
 label = [get(handles.edit9,'String'), ' mA'];
 case 12
 label = [get(handles.edit10,'String'), ' ms'];
 case 13
 label = [get(handles.edit11,'String'), ' ms'];
 case 14
 label = Args.type;
 end

 if ow == 1
 genvarname('handles.P',num2str(handles.count));
 eval(['handles.P' num2str(handles.count)
'=plot(handles.axes1,0,0);']);
 handles.labels{handles.count,1} = label;
 legend(handles.labels);
 else
 cla(handles.axes1);
 clear handles.labels;
 handles.labels = {};
 handles.P=plot(handles.axes1,0,0);
 handles.count = 1;
 handles.labels{handles.count,1} = label;
 legend(handles.labels);
 end

 while time<=STOPTIME
 time = time+HT;
 switch protocol
 case 'DYNREST'
 if(time>sum)
 if (period>4000)
 period=period-1000;
 sum=sum+period*30;
 elseif (period>3000)
 period=period-1000;
 sum=sum+period*30;
 elseif (period>2000)
 period=period-1000;
 sum=sum+period*30;
 elseif (period>1000)
 period=period-1000;
 sum=sum+period*100;
 elseif (period>500)
 period=period-250;

 150

 sum=sum+period*100;
 elseif(period>400)
 period=period-50;
 sum=sum+period*100;
 elseif(period>300)
 period=period-10;
 sum=sum+period*100;
 elseif(period>250)
 period=period-5;
 sum=sum+period*100;
 elseif(period>50)
 period=period-1;
 sum=sum+period*100;
 else
 %disp('Restitution protocol complete')
 end
 end
 if(time>=tbegin && time<=tend)

 Istim=stimstrength;
 end

 if(time>tend)

 Istim=0.;
 tbegin=tbegin+period;
 tend=tbegin+stimduration;
 end

 case 'S1S2REST'
 if(counter<repeats)
 if(time>=tbegin && time<=tend)
 Istim=stimstrength;
 end
 if(time>tend)
 Istim=0.;
 tbegin=tbegin+basicperiod;
 tend=tbegin+stimduration;
 counter=counter+1;

 elseif(counter==repeats)
 if(time>=tbegin && time<=tend)
 Istim=stimstrength;
 end
 if(time>tend)
 Istim=0.;
 tbegin=tbegin+basicapd+dia;
 tbeginS2=tbegin;
 tend=tbegin+stimduration;
 counter=counter+1;
 elseif(counter==repeats+1)

 151

 if(time>=tbegin && time<=tend)
 Istim=stimstrength;
 end
 if(time>tend)
 Istim=0.;
 tbegin=tbegin+basicperiod;
 tend=tbegin+stimduration;
 counter=0;
 end
 if(dia>1000)
 dia=dia-1000;
 elseif(dia>300)
 dia=dia-100;
 elseif(dia>150)
 dia=dia-5;
 elseif(dia>5)
 dia=dia-1;
 else
 % disp('Restitution protocol
complete')
 end
 end
 end
 end
 end
 Var = Step(Var,HT,time,step,Istim);
 if(mod(step,10)==0)
 State = [State; time,
Var.Volt,Var.Volt2,Var.Cai,Var.CaSR,Var.Nai,Var.Ki,Var.M,Var.H,Var.J,Va
r.Xr1,Var.Xr2,Var.Xs,Var.S,Var.R,Var.D,Var.F,Var.FCa,Var.G,Var.Itot];
 if(mod(step,250)==0)

 xvals = State(:,1);
 yvar = get(handles.popupmenu3,'Value');
 switch yvar
 case 1
 yvals = State(:,2); %Voltage
 case 2
 yvals = State(:,4); %Cai
 case 3
 yvals = currents(:,6); %INa
 case 4
 yvals = currents(:,9); %ICaL
 case 5
 yvals = currents(:,5); %Ito
 case 6
 yvals = currents(:,3); %IKs
 case 7
 yvals = currents(:,2); %IKr
 case 8
 yvals = currents(:,4); %IK1
 case 9
 yvals = currents(:,11); %INaCa

 152

 case 10
 yvals = currents(:,8); %INaK
 case 11
 yvals = currents(:,7); %IbNa
 case 12
 yvals = currents(:,10); %IbCa
 case 13
 yvals = currents(:,12); %Irel
 end

 if(ow == 0)
 set(handles.P,'xdata',xvals,'ydata',yvals);

 else
 eval(['set(handles.P'
num2str(handles.count) ',''xdata'',xvals,''ydata'',yvals);']);
 end
 ylim(handles.axes1,'auto');
 drawnow('update');
 guidata(hObject,handles);
 end
 end

 step = step+1;
 end
 %handles.count = handles.count + 1;
 handles.State = State;

 %ylim(handles.axes1,'auto');

 hObject_new = hObject;
 handles_new = handles;
 end

end

 153

B.4: Step.m
function [Vs] = Step(V,HT,tt,step,Istim)
global Ko Cao Nao Vc Vsr Bufc Kbufc Bufsr Kbufsr taufca taug Vmaxup Kup
R F T RTONF CAPACITANCE ...
 Gkr pKNa type Gto GKs GK1 GNa GbNa KmK KmNa knak GCaL GbCa knaca
KmNai KmCa ksat n GpCa KpCa GpK ...
 currents kT

inverseVcF2=1/(2*Vc*F);
inverseVcF=1./(Vc*F);
Kupsquare=Kup*Kup;
BufcKbufc=Bufc*Kbufc;
Kbufcsquare=Kbufc*Kbufc;
Kbufc2=2*Kbufc;
BufsrKbufsr=Bufsr*Kbufsr;
Kbufsrsquare=Kbufsr*Kbufsr;
Kbufsr2=2*Kbufsr;
exptaufca=exp(-HT./taufca);
exptaug=exp(-HT./taug);

sm = V.M;
sh = V.H;
sj = V.J;
sxr1 = V.Xr1;
sxr2 = V.Xr2;
sxs = V.Xs;
ss = V.S;
sr = V.R;
sd = V.D;
sf = V.F;
sfca = V.FCa;
sg = V.G;
svolt = V.Volt;
svolt2 = V.Volt2;
Cai = V.Cai;
CaSR = V.CaSR;
Nai = V.Nai;
Ki = V.Ki;
sItot = V.Itot;

%Needed to compute currents
Ek=RTONF*(log((Ko/Ki)));
Ena=RTONF*(log((Nao/Nai)));
Eks=RTONF*(log((Ko+pKNa*Nao)/(Ki+pKNa*Nai)));
Eca=0.5*RTONF*(log((Cao/Cai)));
Ak1=0.1/(1.+exp(0.06*(svolt-Ek-200)));
Bk1=(3.*exp(0.0002*(svolt-Ek+100))+exp(0.1*(svolt-Ek-10)))/(1.+exp(-
0.5*(svolt-Ek)));
rec_iK1=Ak1/(Ak1+Bk1);

 154

rec_iNaK=(1./(1.+0.1245*exp(-0.1*svolt*F/(R*T))+0.0353*exp(-
svolt*F/(R*T))));
rec_ipK=1./(1.+exp((25-svolt)/5.98));

%Compute currents
INa=GNa*sm*sm*sm*sh*sj*(svolt-Ena);
ICaL=GCaL*sd*sf*sfca*4*svolt*(F*F/(R*T))*(exp(2*svolt*F/(R*T))*Cai-
0.341*Cao)/(exp(2*svolt*F/(R*T))-1.);
Ito=Gto*sr*ss*(svolt-Ek);
IKr=Gkr*sqrt(Ko/5.4)*sxr1*sxr2*(svolt-Ek);
IKs=GKs*sxs*sxs*(svolt-Eks);
IK1=GK1*rec_iK1*(svolt-Ek);
INaCa=knaca*(1./(KmNai*KmNai*KmNai+Nao*Nao*Nao))*(1./(KmCa+Cao))*(1./(1
+ksat*exp((n-1)*svolt*F/(R*T))))*(exp(n*svolt*F/(R*T))*Nai*Nai*Nai*Cao-
exp((n-1)*svolt*F/(R*T))*Nao*Nao*Nao*Cai*2.5);
INaK=knak*(Ko/(Ko+KmK))*(Nai/(Nai+KmNa))*rec_iNaK;
IpCa=GpCa*Cai/(KpCa+Cai);
IpK=GpK*rec_ipK*(svolt-Ek);
IbNa=GbNa*(svolt-Ena);
IbCa=GbCa*(svolt-Eca);

%Determine total current
sItot = IKr+IKs+IK1+Ito+INa+IbNa+ICaL+IbCa+INaK+INaCa+IpCa+IpK+Istim;

%update concentrations
Caisquare=Cai*Cai;
CaSRsquare=CaSR*CaSR;
CaCurrent=-(ICaL+IbCa+IpCa-2*INaCa)*inverseVcF2*CAPACITANCE;
A=0.016464*CaSRsquare/(0.0625+CaSRsquare)+0.008232;
Irel=A*sd*sg;
Ileak=0.00008*(CaSR-Cai);
SERCA=Vmaxup/(1.+(Kupsquare/Caisquare));
CaSRCurrent=SERCA-Irel-Ileak;
CaCSQN=Bufsr*CaSR/(CaSR+Kbufsr);
dCaSR=HT*(Vc/Vsr)*CaSRCurrent;
bjsr=Bufsr-CaCSQN-dCaSR-CaSR+Kbufsr;
cjsr=Kbufsr*(CaCSQN+dCaSR+CaSR);
CaSR=(sqrt(bjsr*bjsr+4*cjsr)-bjsr)/2;
CaBuf=Bufc*Cai/(Cai+Kbufc);
dCai=HT*(CaCurrent-CaSRCurrent);
bc=Bufc-CaBuf-dCai-Cai+Kbufc;
cc=Kbufc*(CaBuf+dCai+Cai);
Cai=(sqrt(bc*bc+4*cc)-bc)/2;

dNai=-(INa+IbNa+3*INaK+3*INaCa)*inverseVcF*CAPACITANCE;
Nai=Nai+HT*dNai;

dKi=-(Istim+IK1+Ito+IKr+IKs-2*INaK+IpK)*inverseVcF*CAPACITANCE;
Ki=Ki+HT*dKi;

if mod(step,10)==0

 155

 currents = [currents; tt, IKr, IKs, IK1, Ito, INa, IbNa, INaK,
ICaL, IbCa, INaCa, Irel];
end

%compute steady state values and time constants
AM=1./(1.+exp((-60.-svolt)/5.));
BM=0.1/(1.+exp((svolt+35.)/5.))+0.10/(1.+exp((svolt-50.)/200.));
TAU_M=(1/kT)*AM*BM;
M_INF=1./((1.+exp((-56.86-svolt)/9.03))*(1.+exp((-56.86-svolt)/9.03)));
if (svolt>=-40.)

 AH_1=0.;
 BH_1=(0.77/(0.13*(1.+exp(-(svolt+10.66)/11.1))));
 TAU_H= kT/((AH_1+BH_1));

else

 AH_2=(0.057*exp(-(svolt+80.)/6.8));
 BH_2=(2.7*exp(0.079*svolt)+(3.1e5)*exp(0.3485*svolt));
 TAU_H=kT/((AH_2+BH_2));
end

H_INF=1./((1.+exp((svolt+71.55)/7.43))*(1.+exp((svolt+71.55)/7.43)));

if(svolt>=-40.)

AJ_1=0.;
BJ_1=(0.6*exp((0.057)*svolt)/(1.+exp(-0.1*(svolt+32.))));
TAU_J= kT/((AJ_1+BJ_1));

else

 AJ_2=(((-2.5428e4)*exp(0.2444*svolt)-(6.948e-6)*exp(-
0.04391*svolt))*(svolt+37.78))/(1.+exp(0.311*(svolt+79.23)));
 BJ_2=(0.02424*exp(-0.01052*svolt)/(1.+exp(-0.1378*(svolt+40.14))));
 TAU_J= kT/((AJ_2+BJ_2));
end

J_INF=H_INF;

Xr1_INF=1./(1.+exp((-26.-svolt)/7.));
axr1=450./(1.+exp((-45.-svolt)/10.));
bxr1=6./(1.+exp((svolt-(-30.))/11.5));
TAU_Xr1=(1/kT)*axr1*bxr1;
Xr2_INF=1./(1.+exp((svolt-(-88.))/24.));
axr2=3./(1.+exp((-60.-svolt)/20.));
bxr2=1.12/(1.+exp((svolt-60.)/20.));
TAU_Xr2=(1/kT)*axr2*bxr2;

Xs_INF=1./(1.+exp((-5.-svolt)/14.));
Axs=1100./(sqrt(1.+exp((-10.-svolt)/6)));

 156

Bxs=1./(1.+exp((svolt-60.)/20.));
TAU_Xs=(1/kT)*Axs*Bxs;

switch type
 case 'EPI'
 R_INF=1./(1.+exp((20-svolt)/6.));
 S_INF=1./(1.+exp((svolt+20)/5.));
 TAU_R=(1/kT)*(9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8);
 TAU_S=(1/kT)*(85.*exp(-
(svolt+45.)*(svolt+45.)/320.)+5./(1.+exp((svolt-20.)/5.))+3.);
 case 'ENDO'
 R_INF=1./(1.+exp((20-svolt)/6.));
 S_INF=1./(1.+exp((svolt+28)/5.));
 TAU_R=(1/kT)*(9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8);
 TAU_S=(1/kT)*(1000.*exp(-(svolt+67)*(svolt+67)/1000.)+8.);
 case 'MCELL'
 R_INF=1./(1.+exp((20-svolt)/6.));
 S_INF=1./(1.+exp((svolt+20)/5.));
 TAU_R=(1/kT)*(9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8);
 TAU_S=(1/kT)*(85.*exp(-
(svolt+45.)*(svolt+45.)/320.)+5./(1.+exp((svolt-20.)/5.))+3.);
end

D_INF=1./(1.+exp((-5-svolt)/7.5));
Ad=1.4/(1.+exp((-35-svolt)/13))+0.25;
Bd=1.4/(1.+exp((svolt+5)/5));
Cd=1./(1.+exp((50-svolt)/20));
TAU_D=(1/kT)*(Ad*Bd+Cd);
F_INF=1./(1.+exp((svolt+20)/7));
TAU_F=(1/kT)*1125*exp(-(svolt+27)*(svolt+27)/300)+80+165/(1.+exp((25-
svolt)/10));

FCa_INF=(1./(1.+power((Cai/0.000325),8))+0.1/(1.+exp((Cai-
0.0005)/0.0001))+0.20/(1.+exp((Cai-0.00075)/0.0008))+0.23)/1.46;
if(Cai<0.00035)
 G_INF=1./(1.+power((Cai/0.00035),6));
else
 G_INF=1./(1.+power((Cai/0.00035),16));
end

%Update gates
sm = M_INF-(M_INF-sm)*exp(-HT/TAU_M);
sh = H_INF-(H_INF-sh)*exp(-HT/TAU_H);
sj = J_INF-(J_INF-sj)*exp(-HT/TAU_J);
sxr1 = Xr1_INF-(Xr1_INF-sxr1)*exp(-HT/TAU_Xr1);
sxr2 = Xr2_INF-(Xr2_INF-sxr2)*exp(-HT/TAU_Xr2);
sxs = Xs_INF-(Xs_INF-sxs)*exp(-HT/TAU_Xs);
ss= S_INF-(S_INF-ss)*exp(-HT/TAU_S);
sr= R_INF-(R_INF-sr)*exp(-HT/TAU_R);
sd = D_INF-(D_INF-sd)*exp(-HT/TAU_D);
sf =F_INF-(F_INF-sf)*exp(-HT/TAU_F);
fcaold=sfca;

 157

sfca =FCa_INF-(FCa_INF-sfca)*exptaufca;
if(sfca>fcaold && (svolt)>-37)
 sfca=fcaold;
end
gold=sg;
sg =G_INF-(G_INF-sg)*exptaug;
if(sg>gold && (svolt)>-37)
 sg=gold;
end
%update voltage
svolt= svolt + HT*(-sItot);

Vs.M = sm;
Vs.H = sh;
Vs.J = sj;
Vs.Xr1 = sxr1;
Vs.Xr2 = sxr2;
Vs.Xs = sxs;
Vs.S = ss;
Vs.R = sr;
Vs.D = sd;
Vs.F = sf;
Vs.FCa = sfca;
Vs.G = sg;
Vs.Volt = svolt;
Vs.Volt2 = svolt2;
Vs.Cai = Cai;
Vs.CaSR = CaSR;
Vs.Nai = Nai;
Vs.Ki = Ki;
Vs.Itot = sItot;

end

 158

B.5: StepN.m
function [Vs] = StepN(V,HT,tt,step,Istim)
global Ko Cao Nao Vc R F T RTONF CAPACITANCE ...
 type GNa GK GL VL ...
 currents kT

sm = V.M;
sh = V.H;
sn = V.N;
svolt = V.Volt;
svolt2 = V.Volt2;
Cai = V.Cai;
Nai = V.Nai;
Ki = V.Ki;
sItot = V.Itot;

%Needed to compute currents
Ek=RTONF*(log((Ko/Ki)));
Ena=RTONF*(log((Nao/Nai)));

%Compute currents
INa=GNa*sm*sm*sm*sh*(svolt-Ena);
IK=GK*sn*sn*sn*sn*(svolt-Ek);
IL=GL*(svolt-VL);

%Determine total current
sItot = INa + IK + IL + Istim;

%update concentrations
% dNai=-(INa)*inverseVcF*CAPACITANCE;
% Nai=Nai+HT*dNai;
%
% dKi=-(Istim + IK)*inverseVcF*CAPACITANCE;
% Ki=Ki+HT*dKi;

if mod(step,10)==0
 currents = [currents; tt, INa, IK, IL];
end

%compute steady state values and time constants
VCa = 0.03335*T*(log(Cao/Cai)-12.995);
AM=-0.1*kT*(35+svolt+VCa)/(exp(-0.1*(35*svolt+VCa))-1);
BM=4*exp(-(svolt+VCa+60)/18)*kT;
TAU_M=1/(AM+BM);
M_INF=AM/(AM+BM);
AH=0.07*kT*exp(-0.05*(svolt+VCa+60));
BH=kT/(1+exp(-0.1*(svolt+VCa+30)));
TAU_H=1/(AH+BH);
H_INF=AH/(AH+BH);
AN=kT*(-0.01*(svolt+VCa+50))/(exp(-0.1*(svolt+VCa+50))-1);

 159

BN=kT*0.125*exp(-0.0125*(svolt+VCa+60));
TAU_N=1/(AN+BN);
N_INF=AN/(AN+BN);

%Update gates
%sm = M_INF-(M_INF-sm)*exp(-HT/TAU_M);
%sh = H_INF-(H_INF-sh)*exp(-HT/TAU_H);
%sn = N_INF-(N_INF-sh)*exp(-HT/TAU_N);

sm = sm + HT*(AM*(1-sm)-BM*sm);
sh = sh + HT*(AH*(1-sh)-BH*sh);
sn = sn + HT*(AN*(1-sn)-BN*sn);
%update voltage
svolt2 = svolt;
svolt= svolt - (HT/CAPACITANCE)*(sItot);

Vs.M = sm;
Vs.H = sh;
Vs.N = sn;
Vs.Volt = svolt;
Vs.Volt2 = svolt2;
Vs.Cai = Cai;
Vs.Nai = Nai;
Vs.Ki = Ki;
Vs.Itot = sItot;

end

 160

B.6: Variables.m
function [V] = Variables(V_init, Cai_init, CaSR_init, Nai_init,
Ki_init)
V.Volt=V_init;
V.Volt2=V_init;
V.Cai=Cai_init;
V.CaSR=CaSR_init;
V.Nai=Nai_init;
V.Ki=Ki_init;
V.M= 0.;
V.H= 0.75;
V.J= 0.75;
V.Xr1= 0.;
V.Xr2= 1.;
V.Xs= 0.;
V.R= 0.;
V.S= 1.;
V.D= 0.;
V.F= 1.;
V.FCa= 1.;
V.G= 1.;
V.Itot = 0;
end

 161

B.7: VariablesN.m
function [V] = VariablesN(V_init, Cai_init, Nai_init, Ki_init)

global Cao T kT

V.Volt=V_init;
V.Volt2=V_init;
V.Cai=Cai_init;
V.Nai=Nai_init;
V.Ki=Ki_init;

VCa = 0.03335*T*(log(Cao/Cai_init)-12.995);

AM=-0.1*kT*(35+V_init+VCa)/(exp(-0.1*(35*V_init+VCa))-1);
BM=4*exp(-(V_init+VCa+60)/18)*kT;
TAU_M=1/(AM+BM);
M_INF=AM/(AM+BM);
AH=0.07*kT*exp(-0.05*(V_init+VCa+60));
BH=kT/(1+exp(-0.1*(V_init+VCa+30)));
TAU_H=1/(AH+BH);
H_INF=AH/(AH+BH);
AN=kT*(-0.01*(V_init+VCa+50))/(exp(-0.1*(V_init+VCa+50))-1);
BN=kT*0.125*exp(-0.0125*(V_init+VCa+60));
TAU_N=1/(AN+BN);
N_INF=AN/(AN+BN);

V.M= M_INF;
V.H= H_INF;
V.N= N_INF;
V.Itot = 0;
end

 162

APPENDIX C

CELLSPARK RELATED COURSE MATERIALS

C.1: Electrophysiology Lecture Slides

Slide 1

Electrophysiology
Lab 4

Slide 2

What is electrophysiology?
“As yet we know nothing of what goes to create or evoke the active spark of life.”

– Bram Stroker, The Jewel of Seven Stars

De viribus electricitatis in motu musculari – Luigi Galvani, 1780

Not so fast,
my friend!

 163

Slide 3

Electrically excitable cells

Slide 4

Action potential

Slide 5

Hodgkin-Huxley Model

 164

Slide 6

Cardiac Action Potential

• Depolarization
• Fast Na+ channels

• Plateau
• Slow Ca++ channels

• Slow to open
• Slow to close

• After depolarization, permeability
to K+ decreases

• Ca++ is pumped in – excitation-
contraction coupling

• Repolarization
• Slow K+ channels

Slide 7

Tusscher-Noble-Noble-Panfilov (TNNP) Model

Slide 8

 165

Slide 9

Midterm Lab Report

• Design and carry out an electrophysiology experiment that can be
completed in CellSpark.

• Write up your findings in a journal article style lab report
• Introduction, Methods, Results, Discussion, References
• May include 1-2 figures
• 4 pages max

• Submit your hypothesis to be approved for your pre-lab next week!
• Due October 20, 2017 by 11:55pm

 166

C.2: Laboratory Tutorial Exercise

Lab #4: Electrophysiology
The goal of this lab is to show you some basic cell electrophysiology techniques. In
addition, you should learn how electrically excitable cells response to electrically stimuli
so that you can interpret electrophysiological measurements.

Part 1: Patch Clamp vs. Microelectrode Array
We will visit the lab with the patch clamp and microelectrode array (MEA) set ups.

1. Why are both the patch clamp and MEA set ups in metal cages?

2. What are some advantages and disadvantages of doing patch clamp vs. using an MEA
to measure cellular electrical responses?

Part 2: Electrically Excitable Cell Simulation

In this part of the lab, you’ll be using CellSpark, a simulation software, to do a couple
patch clamp type experiments virtually. Real patch clamp experiments are long and take
many hours/days of practice to master the techniques.
In the software, the membrane of a neuron is modeled as the Hodgkin-Huxley circuit
model below:

 167

 In this simulation environment, you can interrogate a single cell in a manner similar to a
real patch experiment (without all the noise, though). You can also change many of the
cell and environment parameters to see the effect on the electrical response.

1. Start Matlab R2017a and click the “CellSpark” icon under apps to launch the software.

2. Under “Cell Type”, select “Neuron” and run the simulation leaving all other parameters
at the default values.

3. Using the cursor, determine the peak amplitude of the action potential. ________ mV

3. Now let’s add sodium to the outside bath. Increase the box labeled “Nao” to 200 mM.
What do you notice happens when you add the sodium?

4. Why do you suppose this happens? (Hint: What’s the Nernst potential for sodium with
the original values and with your new increased external concentration?)

 168

5. Now, decrease the external concentration to 100 mM (below the original value).
Explain what you observe.

6. Set the simulation back to the default values by pressing the “Default Parameters”
button and clear the axes by pressing the “Clear Axes” button.

7. Run the simulation again. Now change the Stimulus Amplitude to 5 µA, and run the
simulation again. What do you notice about this membrane response? Would you
consider this an action potential?

8. Next we will look at a model of a different electrically excitable cell, a ventricular
myocyte. The model for this cell is much more complicated and includes many more ionic
currents. Change the “Cell Type” to “Endocardial Cell”.

9. Run the simulation. Using the cursor, measure the peak amplitude and duration of the
action potential and sketch the shape of the membrane response below. How does it
differ from the neuron action potential?

Amplitude: __________ mV Duration: ____________ ms

 169

10. Change the dependent variable of the axes to “ICaL (mA)” and run the simulation
again. You should see the current through the L-Type Calcium channels plotted. How
does this compare to the plot of membrane response? Explain what you observe.

 170

C.3: Midterm Lab Assignment Prompt

Midterm Lab Assignment

Design your own Patch-Clamp cell experiment! The write-up is due by 11:55pm on the
date indicated by the syllabus; turn it in on time or get a 0! (this is worth 15% of your final
grade) Submit it on the TurnItIn link on Blackboard before the due date.

You can use either the axon or cardiomyocyte model. You can start now but finish later
(just download the simulation installers from blackboard onto a computer.)

Ideas:
What effect does capacitance have on how susceptible myocytes are to excitation?
What’s the effect of any of the ion concentrations on either of the model cells?
What effect does temperature have on the action potential duration in neurons?

Pick a good set of parameter values to test over and make sure you record your results!
You should pretend you are running a real experiment (think about controls and
validation for your theory for what happens).

The write-ups should be in the form of a short journal publication (~2-3 pages) and have
the following: Tell me what you are planning and what your hypothesis is (Introduction
and Background), then explain what you did (Methods), then what happened (Results)
and then why you think it happened (Discussion). You may include one or two figures and
have a maximum of 4 pages total. Please remember to cite all references you use in a
bibliography. The Reference Section does not count in your page limit. Use either Times
New Roman font size 12pt or Ariel/Helvetica font size 11pm with 1 in margins. For
convenience, a template is included on Blackboard.

Note: references papers and journals are good references. Websites (especially
Wikipedia) are NOT appropriate references. See template for bibliography format.

As an example a good hypothesis would be:
Increasing external sodium concentration increases the peak of the action potential.
You are NOT allowed to pick this hypothesis. This is the experiment you ran in lab today.
If you use this hypothesis you will get a 0.

Your hypothesis must be submitted in writing or via email to Dr. Dean or a TA before the
start of lab next week. This counts as your pre-lab grade for lab #5.

 171

C.4: Midterm Lab Assignment Grading Rubric

 Excellent (5 point) Very Good (4 point) Good (3 point) Fair (2 point) Poor (1 point)

Content • Presents a well-
thought hypothesis
with sufficient details
of reasoning behind it

• Presents both
qualitative and
quantitative results
with well-laid out
summary graphs of
the relevant quantities
being measured

• Uses Hodgkin-
Huxley and/or correct
scientific theory to
explain resulting
trends

• Presents a hypothesis
with explanation of
reasoning behind it

• Presents some data
with calculated or
summarized results

• Presents detailed
methods section

• Uses some HH model
and other scientific
theory to explain
reasoning

• Presents a hypothesis
with some
background

• Presents some data
with graphs of raw
data

• Methods section
contains relevant
details

• Presents a hypothesis;
with very little details
of reasoning behind
hypothesis

• Few scattered results
• Missing details in

methods section

• Lacks a central
hypothesis

• Lacks any organized
quantitative data and
results

Organization /
Structure

• Has a distinct
structure of
Introduction, Body
(Development of
theme), and
Conclusion

• Sentences are
coherent

• Transitions between
paragraphs and
sentences are smooth
and logical

• Has a distinct
structure of
Introduction, Body
(Development of
theme), and
Conclusion

• Sentences are
coherent

• A few of the
transitions between
paragraphs and
sentences are jumpy

• Has a distinct
structure of
Introduction, Body
(Development of
theme), and
Conclusion

• A few sentences are
incoherent or hard to
follow

• Most of the
transitions between
paragraphs and
sentences are jumpy

• Has some structure of
Introduction, Body
(Development of
theme), and
Conclusion

• Many sentences are
incoherent or hard to
follow

• Most of the
transitions between
paragraphs and
sentences are jumpy

• Has no structure of
Introduction, Body
(Development of
theme), and
Conclusion

Discussion and
Reasoning

• All statements are
accurate and concise

• Opinions (theories)
and facts (physical
evidence) are clearly
distinguished

• Proper citation of
literature (source of
information

• All statements are
accurate and concise

• Opinions (theories)
and facts (physical
evidence) are
somewhat mixed up

• Proper citation of
literature (source of
information

• All statements are
accurate and concise

• Opinions (theories)
and facts (physical
evidence) are not
distinguished

• Some missing citation
of literature (source
of information

• Some statements are
inaccurate and long-
winded

• Opinions (theories)
and facts (physical
evidence) are not
distinguished

• Poor citation of
literature (source of
information

• Most statements are
inaccurate

• Opinions (theories)
and facts (physical
evidence) are not
distinguished

• No citation of
literature (source of
information

Mechanics / Style
(one select page is
graded)

• No Grammatical error
• Proper syntax
• No spelling error /

typographical error

• No Grammatical error
• Proper syntax
• A few (2 -3) spelling

errors / typographical
errors

• A few (2-3)
Grammatical errors

• Some awkward
syntax

• Several (4-7) spelling
errors / typographical
errors

• Several (4-7)
Grammatical errors

• Some awkward
syntax

• Several (4-7) spelling
errors / typographical
errors

• Many (>7)
Grammatical errors

• No control of syntax
• Many (>7) spelling

errors / typographical
errors

 172

APPENDIX D

CELLSPARK SURVEY AND IRB DOCUMENTS

D.1: CellSpark Survey

 173

D.2: Informed Consent Document

Information about Being in a Research Study
Clemson University

Impact on Simulation Software on Learning Electrophysiology

Description of the Study and Your Part in It

Dr. Delphine Dean and Tyler Harvey are inviting you to take part in a research study. Dr.
Delphine Dean is an Associate Professor at Clemson University. Tyler Harvey is a
student at Clemson University, running this study with the help of Dr. Delphine Dean.
The purpose of this research is to assess the effectiveness of a software package which
simulates experiments on cells for teaching undergraduate students concepts in
electrophysiology (the electrical activity of cells) as well as assessing the software's
usefulness for teaching students to design and conduct scientific experiments.

Your part in the study will be to identify your level of agreement with seven statements
concerning your use of the software, create a concept map of your understanding of
electrophysiology by dragging and dropping concepts and relationships onto a chart, and
give any additional opinion or feedback on the software.

It will take you about 20 minutes to be in this study.

Risks and Discomforts

We do not know of any risks or discomforts to you in this research study.

Possible Benefits

We do not know of any way you would benefit directly from taking part in this study.
However, this research may help us to better understand the role of simulation software
for engineering education and may help improve curriculum for students who take this
course in the future.

Protection of Privacy and Confidentiality

No personally identifiable information will be collected in this study or will be known by
any member of the research team.

Choosing to Be in the Study

You do not have to be in this study. You may choose not to take part and you may choose
to stop taking part at any time. You will not be punished in any way if you decide not to

 174

be in the study or to stop taking part in the study. If you decide not to take part or to stop
taking part in this study, it will not affect your grade in any way.

Contact Information

If you have any questions or concerns about this study or if any problems arise, please
contact Dr. Delphine Dean at Clemson University at 864-656-2611.

If you have any questions or concerns about your rights in this research study, please
contact the Clemson University Office of Research Compliance (ORC) at 864-656-0636
or irb@clemson.edu. If you are outside of the Upstate South Carolina area, please use the
ORC’s toll-free number, 866-297-3071.

Clicking on the "agree" button indicates that:

• You have read the above information
• You voluntarily agree to participate
• You are at least 18 years of age

You may print a copy of this informational letter for your files.

mailto:irb@clemson.edu

 175

D.3: Participant Recruitment Prompt

Recruitment Script - Email
Subject: Optional Assessment
BIOE 3700 Students,
Now that you have completed and submitted your midterm lab report, we would like you
to complete a short survey concerning the software you used to complete the assignment,
CellSpark, and a short activity to gauge your understanding of cell electrophysiology.

Participation in the study is completely optional and anonymous. Your choice to
participate will not affect your grade in any way.
The activity is designed to take less than 20 minutes to complete.
If you would like to participate please visit the following link and read through the
informed consent document. If you understand and agree to participate, you can continue
through to complete the activity. You may choose to stop participating at any time by
closing the webpage.
Link: <link to online assessment will be included here>
Thank you,
Tyler Harvey
Dr. Dean

Recruitment Script – In person
Now that you have finished your midterm lab reports, you all should have received an
email about participating in a survey and short activity related to the assignment. This is a
study designed to help us improve the simulation software and understand whether it was
effective in helping meet the objectives of the course. Participation is completely optional
and anonymous, and does not affect your grade in any way.

If you would like to participate, please refer to the email for how to access and complete
the assessment.

	Clemson University
	TigerPrints
	12-2018

	Computational Approaches to Understanding Structure-Function Relationships at the Intersection of Cellular Organization, Mechanics, and Electrophysiology
	Tyler George Harvey
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER ONE
	1.1 Motivation
	1.2 Specific Aims
	1.3 Significance
	1.4 Background
	1.5 References

	CHAPTER TWO
	2.1 Literature Review
	2.2 Methods
	2.3 Results
	2.4 Discussion
	2.5 Conclusions
	2.6 References

	CHAPTER THREE
	3.1 Literature Review
	3.2 Methods
	3.3 Results
	3.4 Discussion
	3.5 Conclusions
	3.6 References

	CHAPTER FOUR
	4.1 Introduction and Background
	4.2 Methods
	4.3 Results
	4.4 Discussion
	4.5 Conclusions
	4.6 References

	CHAPTER FIVE
	5.1 Conclusions
	5.2 Recommendations for Future Work

	APPENDIX A
	A.1: cell6.m
	A.2: Import_Confocal_Stack_sep.m
	A.3: estimateBinaryVolume_2.m
	A.4: estimateBinaryArea_2.m
	A.5: regImage.m
	A.6: regImage2.m
	A.7: paths_nosweep.m
	A.8: fitcylinder.m
	A.9: generateNodes3.m
	A.10: findAttachments2.m
	A.11: scaleDemand.m
	A.12: generateEdges3.m
	A13: generateSideView.m
	A14: matrix2ft.m

	APPENDIX B
	B.1: CellSpark.m
	B.2: settings.m
	B.3: run_simulation.m
	B.4: Step.m
	B.5: StepN.m
	B.6: Variables.m
	B.7: VariablesN.m

	APPENDIX C
	C.1: Electrophysiology Lecture Slides
	C.2: Laboratory Tutorial Exercise
	C.3: Midterm Lab Assignment Prompt
	C.4: Midterm Lab Assignment Grading Rubric

	APPENDIX D
	D.1: CellSpark Survey
	D.2: Informed Consent Document
	D.3: Participant Recruitment Prompt

