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ABSTRACT
The Navier-Stokes equations model the evolution of water, oil, and air flow (air under

220 m.p.h.), and therefore the ability to solve them is important in a wide array of engineering

design problems. However, analytic solution of these equations is generally not possible, except

for a few trivial cases, and therefore numerical methods must be employed to obtain solutions.

In the present dissertation we address several important issues in the area of computational fluid

dynamics.

The first issue is that in typical discretizations of the Navier-Stokes equations such as the

mixed finite element method, the conservation of mass is enforced only weakly, and this leads

to discrete solutions which may not conserve energy, momentum, angular momentum, helicity,

or vorticity, even though the physics of the Navier-Stokes equations dictate that they do. It is

widely believed in the computational fluid dynamics community that the more physics is built

into the discretization, the more accurate and stable the discrete solutions are, especially over

longer time intervals. In chapter 3 we study conservation properties of Galerkin methods for

the incompressible Navier-Stokes equations, without the divergence constraint strongly enforced.

We show that none of the commonly used formulations (convective, conservative, rotational, and

skew-symmetric) conserve each of energy, momentum, and angular momentum (for a general finite

element choice). We aim to construct discrete formulations that conserve as many physical laws as

possible without utilizing a strong enforcement of the divergence constraint, and doing so leads us

to a new formulation that conserves each of energy, momentum, angular momentum, enstrophy in

2D, helicity and vorticity (for reference, the usual convective formulation does not conserve most

of these quantities). In chapter 3 we also perform a number of numerical experiments, which verify

the theory and test the new formulation.

To study the performance of our novel formulation of the Navier-Stokes equations, we need

reliable reference solutions/statistics. However, there is not a significant amount of reliable reference

solutions for the Navier-Stokes equations in the literature. Accurate reference solutions/statistics
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are difficult to obtain due to a number of reasons. First, one has to use several millions of degrees of

freedom even for a two-dimensional simulation (for 3D one needs at least tens of millions of degrees

of freedom). Second, it usually takes a long time before the flow becomes fully periodic and/or

stationary. Third, in order to obtain reliable solutions, the time step must be very small. This

results in a very large number of time steps. All of this results in weeks of computational time,

even with the highly parallel code and efficient linear solvers (and in months for a single-threaded

code). Finally, one has to run a simulation for multiple meshes and time steps in order to show

the convergence of solutions. In the second chapter we perform a careful, very fine discretization

simulations for a channel flow past a flat plate. We derive new, more precise reference values for the

averaged drag coefficient, recirculation length, and the Strouhal number from the computational

results. We verify these statistics by numerical computations with the three time stepping schemes

(BDF2, BDF3 and Crank-Nicolson). We carry out the same numerical simulations independently

using deal.II and Freefem++ software. In addition both deal.II/Q2Q1 and Freefem/P2P1 element

types were used to verify the results. We also verify results by numerical simulations with multiple

meshes, and different time step sizes.

Finally, in chapter 4 we compute reference values for the three-dimensional channel flow

past a circular cylinder obstacle, with both time-dependent inflow and with constant inflow using

up to 70.5 million degrees of freedom. In contrast to the linearization approach used in chapter

2, in chapter 4 we numerically study fully nonlinear schemes, which we linearize using Newton’s

method. In chapter 4 we also compare the performance of our novel EMAC scheme with the four

most commonly used formulations of the Navier-Stokes equations (rotational, skew-symmetric,

convective and conservative) for the three-dimensional channel flow past circular cylinder both

with the time-dependent inflow and with constant inflow.
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Chapter 1

Introduction
The ability to efficiently and accurately perform simulations of fluids is important in a

wide array of engineering design problems, including model/design selection (e.g. car and airplane

design, tire design), weather prediction, polymerization, crystallization, blood flow simulation,

ocean currents, plasma physics, nuclear reactors, astrophysics, fluid flows in pipes and channels,

blood flow in arteries, and in the petroleum industry.

However, experimental simulations of fluids are usually time-consuming and expensive.

Consider for example an airflow simulation around an airplane in a wind tunnel. An airplane

model of a real size is expensive, takes a long time to build, and requires a wind tunnel that is

many times larger than the airplane model, so that the walls of the tunnel do not affect the results

of a simulation. Another approach is to use a small airplane model, but in this case one has to

reach a much faster air speed than the regular speed of an airplane in order to obtain the correct

Reynolds number, which is usually not possible to achieve with air [31].

Numerical simulations of fluid and gas allow savings of money and time in many engineering

design problems. On the other hand, an accurate numerical simulation is still very challenging.

Kolmogorov in 1941 showed [30] that the smallest stable eddy has length scale of order O(Re−
3
4 ).

For example, Reynolds number for a subcompact car is ≈ 6×105 [31], therefore one needs the order

of 1012 degrees of freedom to fully resolve such a numerical simulation. This in its turn requires

solving a nonsymmetric system of linear equations with the order of 1012 unknowns, which is not

feasible at the present time.

1



1.1 Navier-Stokes equations

The equations that govern the evolution of an incompressible, Newtonian fluid are the Navier-

Stokes equations (NSE). Let u denote fluid velocity, and p denote pressure. Let ν be the kinematic

viscosity, and f be the external force. In the dimensionless form, the NSE read:

ut + u · ∇u+∇p− ν∆u = f,

∇ · u = 0.

(1.1)

The first equation of (1.1) is the momentum equation, and represents the conservation of linear

momentum. The second equation of (1.1) is the conservation of mass equation, which is also called

the continuity equation or the incompressibility constraint. The NSE models, for example, the

evolution of water, oil, and air flow (air under 220 m.p.h.). However, analytic solutions of these

equations is generally not possible, except for a few trivial cases, and therefore numerical methods

must be employed to obtain solutions. Despite significant developments in the numerical methods

and computer hardware, the numerical solution of the NSE is still very challenging, especially for

high Reynolds numbers.

The NSE were derived in the nineteenth century, and have been studied by many scientists

[23, 31, 36, 51]. However, even the theory of analytical solutions for the NSE is incomplete. It is

an open question whether strong solutions of the NSE exist in three dimensions; if they exist, their

regularity is not known. The Clay Mathematics Institute offers US $1 million prize for a proof or

a counterexample [19]. On the other hand, it was shown that weak solution exist, but there is no

proof of their uniqueness.

The NSE conserves many physical quantities, including kinetic energy, linear momentum,

and angular momentum. However, finite element discretizations of the NSE do not conserve all of

these quantities, if any (usually energy only). There is a long history of numerical methods for the

NSE that better obey physical laws to give more accurate solutions in any measure. We discuss

this in chapter 3.

This thesis is a study of a novel finite element scheme for the incompressible NSE, which

2



conserves kinetic energy, linear momentum and angular momentum, even when the divergence-free

condition is only weakly enforced, and independently of the choice of finite elements.

1.1.1 Reynolds number

The Reynolds number is defined as the ratio of the inertial forces to viscous forces:

Re =
inertial forces

viscous forces
=
vL

ν
, (1.2)

where v is the maximum velocity of the fluid, L is a characteristic linear dimension, ν is the

kinematic viscosity (ν = µ
ρ ), µ is the dynamic viscosity of the fluid, and ρ is fluid density.

1.1.2 Navier-Stokes equations derivation

We denote the usual L2(Ω) norm and its inner product by ||.|| and (., .) respectively. For

the derivation of the NSE, we will use the following theorem.

Theorem 1 (Divergence Theorem). Let F be a differentiable vector field in domain Ω ⊂ R3 with

smooth boundary ∂Ω. Then ∫
Ω

(∇ · F ) dx =

∫
∂Ω
F · nds. (1.3)

1.1.2.1 Derivation of the conservation of mass equation

Let V be an arbitrary chosen control volume in domain Ω ⊂ R3 with a smooth surface ∂V .

According to the Eulerian approach, the velocity of the fluid and its mass density are defined as

functions of time t and space x. Then, the total mass in the control volume is

m(t) =

∫
V
ρ(t, x) dx, (1.4)

and the rate of change of mass in Ω is given by

dm(t)

dt
=

d

dt

∫
V
ρ(t, x) dx =

∫
V

∂ρ(t, x)

∂t
dx. (1.5)
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The physical law of conservation of mass is that for any system closed to all transfers of matter

and energy, the mass of the system must remain constant over time. Since mass is conserved inside

the control volume V , the rate of change of mass in V is equal to the flux of mass ρu(t, x) across

the boundary ∂V . Therefore, we obtain

dm(t)

dt
= −

∫
∂V

(ρu)(t, s) · n(s)ds. (1.6)

Now use (1.5) and apply the divergence theorem to the right hand side, which gives

∫
V

(
∇ · (ρu)(t, x) +

∂ρ(t, x)

∂t

)
dx = 0. (1.7)

Since the control volume V is arbitrary, we obtain

∇ · (ρu) +
∂ρ

∂t
= 0,∀(t, x) ∈ (0, T ]× Ω. (1.8)

Since we assume the fluid is homogeneous and incompressible, the mass density is constant and the

continuity equation follows:

∇ · u = 0 in (0, T ]× Ω. (1.9)

1.1.2.2 Derivation of the Conservation of Linear Momentum Equation

Denote the position of a fluid particle and its velocity at time t as follows,

x = (x(t), y(t), z(t)),

u = (u1(x(t), y(t), z(t)), u2(x(t), y(t), z(t)), u3(x(t), y(t), z(t))).

The linear momentum in a control volume V is

∫
V

(ρu)(t, x) dx.
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Let Fnet(t, x) be the net force acting on the fluid, and Fext(t, x) be the body (external) forces.

Newton’s second law states that the rate of change of linear momentum inside V is equal to the

net force acting on the fluid [13]. Applying it to control volume V , we obtain

d

dt
(ρu)(t, x) = −

∫
∂V

(ρu)(u · n)(t, s)ds+

∫
V
Fnet(t, x) dx. (1.10)

Now apply the divergence theorem to the first term on the right hand side of (1.10), and using the

following equation

u(u · n) =


u1

u2

u3

 (u1n1 + u2n2 + u3n3) =


u2

1n1 + u1u2n2 + u1u3n3

u2u1n1 + u2
2n2 + u2u3n3

u3u1n1 + u3u2n2 + u2
3n3

 = uuTn, (1.11)

we obtain ∫
V

[
∂

∂t
(ρu) +∇ · (ρuuT )(t, x)

]
dx =

∫
V
Fnet(t, x) dx. (1.12)

Since the fluid is incompressible, and by the product rule, we have

∇ · (ρuuT ) = uuT∇ρ+ ρ(∇ · u)u+ ρ(u∇·)u = ρ(u∇·)u,
∂

∂t
(ρu) =

∂ρ

∂t
u+ ρ

∂u

∂t
= ρ

∂u

∂t
.

(1.13)

Now from (1.13) and (1.12), it follows that

∫
V
ρ

[
∂u

∂t
+ (u · ∇)u

]
(t, x) dx =

∫
V
Fnet(t, x) dx. (1.14)

The net force acting on the fluid inside control volume is a sum of internal forces and body (external)

forces, therefore ∫
V
Fnet(t, x) dx =

∫
V
Fext(t, x) dx+

∫
∂V

~t(t, x) dx. (1.15)
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Let ~t denote the Cauchy stress vector (internal force vector), σii the normal stress tensor, τij the

shear stresses, and by S the Cauchy stress vector that is defined as:

S =


σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

 , τij = τji; i, j = 1, 2, 3 (i 6= j). (1.16)

Then from the assumed linear dependence of Cauchy stress vector it follows that

Sn = ~t. (1.17)

Let P be the pressure, and V be viscous stress tensor. Then Cauchy stress tensor can be decomposed

as

S = S− P I. (1.18)

Since pressure P acts on a surface of control volume V , directed into the control volume, and

normal to the surface, we obtain

−
∫
∂V
Pnds = −

∫
V
∇P dx = −

∫
V
∇ · (P I) dx. (1.19)

Let D(u) denote velocity deformation tensor, D(u) := ∇u+(∇u)T

2 . Let µ be the first order viscosity

(also called dynamic viscosity or shear viscosity). We consider incompressible (∇·u = 0), Newtonian

fluids, for which viscous stress tensor is given by

V = 2µD(u). (1.20)

6



Therefore, using the divergence theorem, we obtain

∫
∂V

~t(t, s)ds =

∫
∂V

(Sn)(t, s)ds

=

∫
V

(∇ · S) dx =

∫
V
∇ · (2µD(u)) dx−

∫
V
∇ · (P I) dx

=

∫
V
∇ · (2µD(u)) dx−

∫
V
∇P dx.

(1.21)

Since the flow is incompressible, and µ is constant, from the definition of deformation tensor it

follows that

∇ · (2µD(u)) = ∇ · (2µ∇u+ (∇u)T

2
) = µ∇ · (∇u+ (∇u)T )

= µ∇ · (∇u) + µ∇ · (∇u)T = µ∆u.

(1.22)

From (1.21) and the last equation we obtain

∫
∂V

~t(t, s)ds =

∫
V
µ∆ dx−

∫
V
∇P dx. (1.23)

Now substitute (1.23) into (1.15), and then substitute (1.15) into (1.14). Equation (1.14) becomes

∫
V

(
ρ

[
∂u

∂t
+ (u · ∇)u

]
− µ∆u+∇P

)
(t, x) dx =

∫
V
Fext(t, x) dx. (1.24)

Since the control volume is arbitrary, the subintegral functions must be equal as well

ρ

[
∂u

∂t
+ (u · ∇)u

]
− µ∆u+∇P = Fext in (0, T ]× Ω. (1.25)

Now divide both sides by ρ, and denote by p := P
ρ and f := Fext

ρ :

∂u

∂t
+ (u · ∇)u− µ

ρ
∆u+∇p = f in (0, T ]× Ω. (1.26)
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Equation (1.26) together with (1.9) gives the NSE for unsteady flow of Newtonian, incompressible,

viscous fluid:

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f, (1.27)

∇ · u = 0, (1.28)

in (0, T ] × Ω. The equation (1.27) is called the momentum equation. The second equation (1.28)

is the continuity equation, which is also called the incompressibility constraint or conservation of

mass equation.

1.1.3 Kolmogorov results

It was discovered by Kolmogorov in 1941 [30] (and further analyzed in [32]) that for large

Reynolds numbers, the smallest stable eddy has length scale of order O(Re−
3
4 ). Therefore for a

numerical simulation to capture the smallest possible eddy, one needs to choose a mesh that satisfies

the following conditions,

∆x = ∆y = ∆z = O(Re−
3
4 ).

Hence the number of mesh points in a 3D simulation must be of the order Re9/4 in order to capture

all the physics.

1.1.4 NSE Conservation laws

It is well-known that the NSE conserve kinetic energy (E = 1
2

∫
Ω |u|

2 dx), linear momentum

(M :=
∫

Ω udx) and angular momentum (Mx :=
∫

Ω(u× x) dx), when viscosity is zero and there is

no external force. We now derive conservation laws for the NSE at the continuous level, assuming

u = 0 in a strip along ∂Ω.

8



1.1.4.1 Linear momentum

Integrating the momentum equation over Ω gives

∫
Ω
ut dx+

∫
Ω
u · ∇udx+

∫
Ω
∇pdx− ν

∫
Ω

∆udx =

∫
Ω
f dx. (1.29)

Since ∇ · u = 0, and by Green’s theorem

∫
Ω
u · ∇udx =

∫
Ω
∇ · (uu) · 1 dx = −(uu,∇1) +

∫
∂Ω

(uu · n) · 1 ds = 0. (1.30)

By Green’s theorem and since u = 0 along ∂Ω

∫
Ω

∆udx = (∆u, 1) = (∇u,∇1)−
∫
∂Ω

((∇u) · n) · 1 ds = 0. (1.31)

By Green’s theorem and since p = 0 along ∂Ω

∫
Ω
∇pdx = (∇p, 1) = −(p,∇ · 1) +

∫
∂Ω
p(1 · n) ds = 0. (1.32)

Therefore

d

dt

∫
Ω
udx =

∫
Ω
f dx. (1.33)

If
∫

Ω f dx = 0, then linear momentum is conserved:

∫
Ω
u(T ) dx =

∫
Ω
u(0) dx. (1.34)

1.1.4.2 Kinetic Energy

Kinetic energy is defined as E = 1
2(u, u) := 1

2

∫
Ω |u|

2 dx. Multiply the NSE momentum

equation by u and integrate it over Ω, then use Green’s theorem:

(ut, u) + (u · ∇u, u) + (∇p, u) + ν||∇u||2 = (f, u). (1.35)
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By Green’s theorem

(∇p, u) = −(p,∇ · u) +

∫
∂Ω
p(u · n)ds.

Since ∇ · u = 0, and we assume u = 0 on the boundary, then (∇p, u) = 0. Since

(u · ∇u, u) = −1

2
((div u)u, u)) = 0,

we obtain from (1.35) that

1

2

d

dt
‖u‖2 + ν‖∇u‖2 = (f, u). (1.36)

Kinetic energy is thus preserved for ν = 0 and f = 0, that is

1

2
||u(T )||2 =

1

2
||u(0)||2. (1.37)

1.1.4.3 Angular Momentum

Angular momentum is defined as Mx :=
∫

Ω u × x dx. Let φi(x) := x × ei, i = 1, 2, 3.

Multiply the NSE by φi, for i = 1, 2, 3 and integrate it over Ω:

(ut, φi) + (u · ∇u, φi) + (∇p, φi)− ν(∆u, φi) = (f, φi). (1.38)

Using Green’s theorem and that u = 0 along ∂Ω, we show

(∇p, φi) = −
∫

Ω
p · (∇ · φi) dx = −

∫
Ω
p · (∇ · (x× ei)) dx. (1.39)

Using the identity

∇ · (A×B) = (curlA) ·B −A · (curlB), (1.40)

we obtain

∇ · (x× ei) = (curlx) · ei − x · (curl ei) = 0. (1.41)
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because ei is constant vector, and curlx = 0. For the nonlinear term, we use the following identity:

b(u, u, φi) = −((div u)u, φi). (1.42)

Using div u = 0, we obtain

(u · ∇u, φi) := b(u, u, φi) = −((div u)u, φi) = 0. (1.43)

Since both viscosity and external force affect angular momentum, assume ν = 0 and (f, φi) = 0,

we obtain from (1.38): (
∂u

∂t
, φi

)
= 0, i = 1, 2, 3.

But since also (
∂u

∂t
, φi

)
=
∂u

∂t
[(Mx)i] , i = 1, 2, 3, (1.44)

angular momentum is conserved.

1.1.4.4 Helicity

Helicity is defined as H = (u, curlu). Now we show that helicity is conserved by the NSE.

Assuming sufficient smoothness of u and p, we obtain

dH

dt
=

∫
Ω

d

dt
(u · curlu) dx =

∫
Ω

∂

∂t
(u · curlu) dx

=

∫
Ω

∂u

∂t
curludx+

∫
Ω
u
∂

∂t
(curlu) dx.

(1.45)

Since curl involves only spatial derivates, we can exchange the order of time derivative and curl,

and use the fact that curl is self-adjoint operator, we obtain

∫
Ω
u
∂

∂t
(curlu) dx =

∫
Ω
u curl

(
∂u

∂t

)
dx =

(
u, curl

(
∂u

∂t

))
=

(
curlu,

∂u

∂t

)
. (1.46)
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From (1.45) and (1.46) it follows that

dH

dt
= 2

(
curlu,

∂u

∂t

)
. (1.47)

Multiply the NSE momentum equation by curlu and integrate it over Ω:

(ut, curlu) + (u · ∇u, curlu) + (∇p, curlu)− ν(∆u, curlu) = (f, curlu). (1.48)

We use the following identity for the nonlinear term:

u · ∇u = (curlu)× u+
1

2
∇|u|2, (1.49)

which provides

(u · ∇u, curlu) =

(
(curlu)× u+

1

2
∇|u|2, curlu

)
= ((curlu)× u, curlu) +

(
1

2
∇|u|2, curlu

)
.

(1.50)

Since (b× a) ⊥ b = 0 and applying Green’s theorem to (1.50), we obtain

(u · ∇u, curlu) = −1

2
(|u|2,∇ · (curlu)) +

1

2

∫
∂Ω
|u|2(curlu) · n ds. (1.51)

From vector identity ∇ · (curlu) = 0, and as u = 0 along ∂Ω, it follows that

(u · ∇u, curlu) = 0. (1.52)

Using Green’s theorem, and as u = 0 and p = 0 along ∂Ω, we obtain

(∇p, curlu) = −(p,∇ · (curlu)) +

∫
∂Ω
p(curlu · n) ds = 0. (1.53)
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Assuming no viscosity and no forcing, from (1.48) we obtain

(
∂u

∂t
, curlu

)
= 0. (1.54)

From (1.47) and (1.54) we obtain

dH

dt
= 0. (1.55)

Helicity is thus conserved by the NSE.

1.2 Improved physics in discretizations

It is widely believed in the computational fluid dynamics (CFD) community that the more

physics is built into the discretization, the more accurate and stable the discrete solutions are, espe-

cially over longer time intervals. N. Phillips in 1959 [42] constructed an example for the barotropic

nonlinear vorticity equation (using a finite-difference scheme), where the long-time integration of

the convection terms results in a failure of numerical simulations for any time step. In [4] Arakawa

showed that one can avoid instability issues with integration over long time if kinetic energy and

enstrophy (in 2D) are conserved by a discretization scheme. For a two-dimensional flow, Arakawa

[4] developed an energy and enstrophy conserving scheme in 1966 for the two-dimensional incom-

pressible flows. Arakawa and Lamb in 1981 [5] introduced a scheme that conserves a potential

enstrophy and kinetic energy for the shallow water equations. In 2004, Liu and Wang developed

that conserves helicity and energy for three-dimensional flows. In [35], they present an energy and

helicity-preserving scheme for axisymmetric flows. They also show that their dual conservation

scheme eliminates the need for large nonphysical numerical viscosity. In 2007 R. Salmon [47] devel-

oped a finite-difference scheme for the shallow water equations that conserves energy, circulation,

potential enstrophy and mass on an unstructured triangular mesh and on a regular square grid. In

2007 [43] a finite element scheme that conserves both energy and helicity for general, viscous flows

has been developed, and in [40] it was discussed how an alternate (but equally valid) definition of

helicity could be conserved by skew-symmetric formulations. In 2016 A. Palhaa and M. Gerrits-

mab [41] presented a spectral element mimetic scheme for the two-dimensional incompressible NSE,
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that preserves kinetic energy, total vorticity, mass and enstrophy on unstructured grids. Some other

‘clever’ discretizations, which ‘bring back’ conservation laws lost in standard discretizations, for the

NSE and related equations can be found in [3, 17, 20, 35, 41, 48, 52].

Most finite element numerical schemes enforce global mass conservation only weakly, i.e.

∫
Ω

(∇ · uh)qh = 0,

for each qh in a discrete pressure space Qh. Depending on the choice of finite elements this can

lead to significant disagreement with the mass conservation law [12]. It has been known for decades

in CFD, that the more physical quantities are conserved by a finite element scheme, the more

accurate the prediction, especially over the long time intervals. Thus the solutions provided by

a more physically accurate scheme are also more physically relevant. If one could afford a fully

resolved mesh and infinitely small time step, all commonly used finite element schemes are believed

to provide the same numerical solutions. However, in practice one cannot afford a fully resolved

mesh in 3D-simulations, especially for time-dependent problems. For example in chapter 2 we need

50-60 thousand time steps, where each time step requires solving a sparse linear system with 4

million unknowns. This required 2-3 weeks of computational time with highly parallel code on 5

nodes with 24 cores each.

We will develop in chapter 3 a scheme that is seemingly unconsidered in the literature,

which conserves energy, linear momentum and angular momentum both for 2D and 3D flows for

general meshes and element choices. Seemingly no commonly used schemes conserve each of these

quantities. Thus we expect better accuracy, and observe it in tests.

1.2.1 Problems with standard schemes

In chapter 3 we consider these four commonly used formulations (for the case of homoge-

neous Dirichlet boundary conditions for simplicity):

Find (uh, ph) ∈ (Xh, Qh) such that for every (vh, qh) ∈ (Xh, Qh),
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Convective formulation (CONV)

((uh)t, vh) + (uh · ∇uh, vh)− (ph,div vh) + ν(∇uh,∇vh) = (f, vh),

(div uh, qh) = 0.

Skew-symmetric formulation (SKEW)

((uh)t, vh) + (uh · ∇uh, vh) +
1

2
((div uh)uh, vh)− (ph, div vh) + ν(∇uh,∇vh) = (f, vh),

(div uh, qh) = 0.

Conservative formulation (CONS)

((uh)t, vh) + (uh · ∇uh, vh) + ((div uh)uh, vh)− (ph, div vh) + ν(∇uh,∇vh) = (f, vh),

(div uh, qh) = 0.

Rotational formulation (ROT)

((uh)t, vh) + ((curluh)× uh, v)− (ph, div vh) + ν(∇uh,∇vh) = (f, vh),

(div uh, qh) = 0.

In chapter 3 we show that none of the above formulations (convective, skew-symmetric,

rotational, conservative), conserves all of kinetic energy, linear momentum and angular momen-

tum. In chapter 3 we develop a novel EMAC scheme, which conserves all of kinetic energy, linear

momentum and angular momentum.

1.3 Reference solutions

a significant amount of reliable reference solutions for the NSE in the literature. Reference

values for drag and lift for two-dimensional channel flow past a cylinder are given by V. John

in [28]. Three-dimensional channel flow past a circular cylinder for steady flow was suggested as

15



a benchmark problem by Schäfer and Turek [49], and further studied in [8, 9, 27, 38]. Results for

two-dimensional channel flow past a flat plate in the literature are not reliable. The problem is

considered in [46], however the precision of the statistics are low (only 3 digits are given), and it is

not clear whether these statistics have converged or how many digits in the results are significant.

Moreover, in [46], average drag is reported as 2.43 for Reynolds number 100, but for the same

problem and Reynolds number, and by the same author in [45], average drag is reported as 2.60.

We will perform a careful, much finer discretization simulation for channel flow past a flat plate

in chapter 2. The reference solutions/statistics are very difficult to calculate due to a number

of reasons. First, one has to use several millions of degrees of freedom even for two-dimensional

simulation (for 3D one needs at least tens of millions of degrees of freedom). Second, it usually

takes a long time before the flow becomes fully periodic (e.g. in the flat plate project we do not

start collecting data for statistics until T = 200). Third, in order to obtain reliable solutions, the

time step must be very small. This results in a very large number of time steps (e.g. in the flat plate

project we do 50-60 thousand of iterations in time). All this results in weeks of computational time,

even with a highly parallel code and efficient linear solvers (and in months for a single-threaded

code). Finally, one has to run a simulation for multiple meshes and time steps in order to show the

convergence of solutions.

1.4 Thesis structure

In chapter 2 we carry out large-scale numerical simulations for two-dimensional channel flow

past a flat plate obstacle, and compute reliable statistics including averaged drag, recirculation point

and Strouhal number for Reynolds numbers 50, 100 and 150. These statistics are used in chapter 3

to compare a novel EMAC scheme with other commonly used schemes. Furthermore, such statistics

are of interest on themselves for verification of new finite element schemes as well as other numerical

methods. In chapter 3 we study conservation properties of a novel finite element scheme for the

NSE, which conserves kinetic energy, linear momentum and angular momentum, which we call the

EMAC scheme. The statistics obtained in chapter 2 are used to compare the EMAC scheme with

commonly used finite element schemes in chapter 3, and we also carry out several other numerical
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tests.

In chapter 4 we carry out large-scale numerical simulations for three-dimensional channel

flow past a circular cylinder obstacle, and compute reliable statistics including maximum and

minimum drag, lift and pressure drop for Reynolds number 100. We study both time-dependent

and constant-in-time inflow boundary conditions. In chapter 4 we also compare a novel EMAC

scheme with other commonly used schemes.

17



Chapter 2

Reference values for drag, recirculation point

and Strouhal number of a two-dimensional time-

dependent flow past vertical flat plate

2.1 Introduction

In this chapter we calculate reference statistics for the two-dimensional time-dependent

fluid flow in a channel past a vertical flat plate. These statistics can be used for verification of new

models and/or discretization schemes for the incompressible NSE. As the plate has sharp corners

it represents a significantly more challenging problem than the flow past a circular cylinder.

The problem is considered in [46], however the precision of the statistics are quite low (only

3 digits are given), and it is not clear whether these statistics have converged or how many digits

in the results are significant. Moreover, in [46], the average drag is reported as 2.43 for Reynolds

number 100, but for the same problem and Reynolds number, and by the same author in [45],

average drag is reported as 2.60. Thus, we believe the flat plate problem requires additional study

in order to more accurately determine these important statistics. We implemented and carried out

numerical simulations using separately Freefem++ and deal.II libraries and very fine discretizations:

up to 4 million spatial degrees of freedom, and time step 0.005, to obtain accurate statistics for

Reynolds numbers 50, 100 and 150.

2.2 The test problem

We consider the incompressible NSE in a channel, with a constant inflow, no-slip walls, and

a zero-traction outflow. The domain Ω is a box with dimensions 27× 20 and flat plate obstacle has
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dimensions 0.125× 1. A diagram is shown in figure 2.1. We denote Γw to be bottom and top walls

of the channel and boundary of flat plate, Γin to be left boundary of the channel (inlet), and Γout

to be the right boundary (outlet).

ut − ν∆u+ (u · ∇)u+∇p = f on (0, T ]× Ω (2.1)

∇ · u = 0 on (0, T ]× Ω (2.2)

u(0, x) = 0 on Ω (2.3)

(ν∇u− pI) · n|Γout = 0 on (0, T ] (2.4)

u|Γin = 1 on (0, T ] (2.5)

u|Γwalls
= 0 on (0, T ] (2.6)

where u is velocity, p is pressure, ν is kinematic viscosity, f is external force applied to the fluid.

The constant inflow comes from the left boundary. There is no stress boundary condition at the

right outflow boundary and no slip boundary conditions at the walls and at the boundaries of flat

plate obstacle. There is no external force on the fluid, that is, f = 0.

From this setup, we calculate the Reynolds number using the height of the plate Lplate to

be

Re =
UinLplate

ν
= ν−1,

where Uin is inlet velocity. We will consider Re = 50, 100 and 150.
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Figure 2.1: Channel and Boundary Conditions

(-7,-10)

U =< 1, 0 >

U = 0 (20, 10)

do nothing(no stress BC)

U = 0

(-.5,0)

(.5,.125)

U = 0

2.3 Discretization details

DOF stands for “number of degrees of freedom”. We denote the usual L2(Ω) norm and

its inner product by ||.|| and (., .) respectively. Let τh be regular, conforming triangulation of the

domain Ω.

We use the following notations

X0(Ω) =
{
v ∈ (H1(Ω))2

∣∣ v|Γwalls
= 0, v|Γin = 0

}
,

X(Ω) =
{
v ∈ (H1(Ω))2

∣∣ v|Γwalls
= 0, v|Γin =< 1, 0 >T

}
.

The natural function spaces for this problem is

Q := L2(Ω).

Denote conforming velocity and pressure finite element spaces, based on an edge to edge
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triangulation of Ω with the maximum triangle diameter h:

Xh := X ∩ Pk(τh)

X0
h := X0 ∩ Pk(τh)

Qh := Q ∩ Pk−1(τh),

where Pk denotes degree k piecewise polynomials over triangles (on quadrilateral meshes we use

Qk and Qk−1 respectively).

The elements used in our simulations are the lowest order Taylor-Hood, which are the most

common choices. In Freefem++, these are (P2, P1) on triangular meshes, and in deal.II it is (Q2, Q1)

on quadrilateral meshes.

Figure 2.2: Mesh around the flat plate in Freefem++.

We use a non-uniform mesh created as follows. The mesh is refined first time in the area

x, y ∈ [−1, 3]×[−2, 2], then mesh is refined again in a thin area around the plate. The Freefem++ re-

sults are given for meshes with 200K and 300K degrees of freedom. Figure 2.2 shows the Freefem++

mesh in a very small area around the flat plate. Figure 2.3 shows the Freefem++ mesh of the whole

channel. As one can see, the mesh is very fine around the flat plate and becomes much more coarse

near the channel boundaries. This is because fluid behavior is mostly complicated in a small area
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around the flat plate.

Figure 2.3: Mesh of the whole channel in Freefem++. The area around the plate looks completely black because mesh is very
fine around the plate.

2.4 The temporal-spatial discretizations

The spatial discretization is constructed with finite elements, and for the temporal dis-

cretization we use (appropriately linearized) Crank-Nicolson, BDF2 and BDF3. They are defined

as follows, at each time step, by:

Crank-Nicolson FEM:

22



Find (un+1
h , pn+1

h ) ∈ (Xh, Qh) such that

1

∆t
(un+1
h , vh) + ((

3

2
unh −

1

2
un−1
h ) · ∇un+1

h , vh)− (pn+1
h ,∇ · vh) +

ν

2
(∇un+1

h ,∇vh) =

=
1

∆t
(unh, vh)− ν

2
(∇unh,∇vh) ∀vh ∈ X0

h,

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh.

BDF2 FEM:

Find (un+1
h , pn+1

h ) ∈ (Xh, Qh) such that

3

2∆t
(un+1
h , vh) + ((2unh − un−1

h ) · ∇un+1
h , vh)− (pn+1

h ,∇ · vh) + ν(∇un+1
h ,∇vh)

+γ(∇ · un+1
h ,∇ · vh) =

1

2∆t
(4unh − un−1

h , vh) ∀vh ∈ X0
h,

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh.

BDF3 FEM:

Find (un+1
h , pn+1

h ) ∈ (Xh, Qh) such that

11

6∆t
(un+1
h , vh) + ((3unh − 3un−1

h + un−2
h ) · ∇un+1

h , vh)− (pn+1
h ,∇ · vh) + ν(∇un+1

h ,∇vh)

+γ(∇ · un+1
h ,∇ · vh) =

1

∆t
((3unh − 1.5un−1

h +
1

3
un−2
h ), vh) ∀vh ∈ X0

h,

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh.

We use u0
h = u−1

h = 0 as the initial condition in the Freefem++ code, and a solution of the

Stokes equations with the same parameters in the deal.II code. There is no forcing applied to the

fluid in this problem, hence there is no forcing term (f = 0) in right hand side of formulations.

We note that grad-div stabilization is used in the deal.II simulations, as it is an integral part of

the built-in solver [26]. On fine meshes, this term has only a very minor effect on the statistics

of interest. On coarse meshes (which are not our interest herein), it can have a more significant

positive influence.
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2.5 Statistics of interest

2.5.1 Drag

Let S denote boundaries of the flat plate, n = (nx, ny)
T be the normal vector on S directing

into Ω, tS = (ny,−nx)T is the tangential vector. utS is the tangential velocity (utS := t · u), where

t is tangent vector to S. In reference [28], the drag coefficient is defined via the surface integral

cd(t) =
2

ρLU2
max

∫
S

(
ρν
∂uts(t)

∂n
ny − p(t)nx

)
dS , (2.7)

and for this problem, ρ = 1 is the density of fluid, Umax = 1 is inlet velocity and L = 1.

Using this and converting to a global integral, the drag coefficient is defined as

cd(t) =

∫
Ω

[(ut(t), vd) + ν(∇u(t) : ∇vd) + (u(t) · ∇)u(t))vd − p(t)(∇ · vd)]dΩ,

where vd ∈ (H1(Ω))2 with (vd)|S = (1, 0)T and vd vanishes on all other boundaries.

2.5.2 Recirculation length

The recirculation length is the distance from the left boundary of the flat plate to the point,

where the recirculation region of the time averaged velocity behind the plate ends. This occurs,

due to symmetry, along the x-axis.

2.5.3 Strouhal number

The Strouhal number is the dimensionless frequency of eddies shedding behind the plate,

and can be calculated as the maximum frequency obtained by the FFT transformation of drag

evolution in time. This frequency is called “primary frequency”. In case there is secondary dominant

frequency, often it is called “secondary frequency” according to [45].

The data for FFT transformation is obtained from the velocity component in vertical direc-

tion at point (4, 0). Note that the data should be used only after the flow gets into a periodic regime.

Due to limited number of drag data-points, the frequency data obtained by FFT transformation
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has finite resolution.

In [46] Strouhal number is defined as fB
umax

, where f is vortex shedding frequency, B is height

of the plate, and umax is maximum inflow velocity. In this test problem, B = 1, and umax = 1.

2.6 Averaging interval

In order to compute the recirculation length and average drag statistics, one need to average

velocity solutions over some time interval (we refer to such time intervals below as averaging

interval).

The averaging interval needs to satisfy several criteria in order for calculated statistics to

be reliable:

• The averaging interval should not start until fluid behavior becomes periodic, which for the

problem at hand happens near time 200 seconds.

• The number of periods in an averaging interval needs to be an integer (whole), which can be

achieved by starting averaging from one local maximum to another local maximum in drag

evolution.

• Even when drag behavior becomes periodic, nearby periods for Reynolds number 150 do not

repeat each other exactly. Only two/four drag periods taken together can be considered fully

periodic. Therefore we use 16 number of periods for an averaging interval.

When a direct linear solver is used for solving of finite element linear system (as in the

case of Freefem++ code), determining of local maximum/minimum in drag evolution is a trivial

task, due to high precision of drag calculation. However, when an iterative solver is used, one

cannot afford infinitely low relative accuracy of the iterative solver, hence the drag graph looks like

a saw and automatic finding of local maximum/minimum becomes an issue. Additional difficulty,

when using one-pass approach, is that we have to determine whether the current time step is a

local minimum/maximum in drag evolution “on the fly”, since drag data after the current time

step is not yet available. In order to overcome this issue we used least squares fit with quadratic
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polynomial to approximate local evolution of drag at every time step, and use such approximation

to determine whether there is local minimum/maximum at current iteration.

2.7 Numerical simulations

During the numerical simulations it appeared that for the first time steps, the required

linear solver tolerance of 10−7 is hard to achieve, which is most likely due to difficulties in the

initial spin up: we used zero velocity in Freefem++ code, and a solution of the Stokes equations

as the initial condition in the deal.II code. Thus for Reynolds number 150 and a 4 million degrees

of freedom (DOF) mesh, we could not achieve 10−7 for the very first time step. This issue gets

worse with the increase of DOFs. For example (with the deal.II code) for a 500 thousand DOF

mesh there were no issues with achieving 10−7 solver tolerance. But when we switched to 2 million

DOFs, the iterative linear solver required 1000 outer iterations and even more during the first time

steps. Therefore we had to reduce the outer solver tolerance to 10−3 at the first time steps and

than gradually increase the solver tolerance with time until obtaining 10−7. This allowed us to

increase the mesh DOF to 4 million in the deal.II code. Since the averaging interval does not start

until t = 200, this approach does not affect the precision of the obtained statistics. During the

numerical simulations with the Freefem++ code and a direct solver, it was crashing for over 300

thousand DOFs for a single-threaded code (while working fine for up to 300 thousand DOF).

2.8 Computational Results

Algorithm for recirculation length search used in Freefem++ code:

Averaged velocity figures found in the literature and obtained in our study are symmetric across

the line y = 0. We use this observation to conclude that recirculation length is located on the line

y = 0. Therefore in Freefem++ we carry out a linear search along the line y = 0 starting from the

right boundary of the flat plate.

Algorithm for recirculation length search used in deal.II code:

Since the mesh is distributed across many MPI workers, we need to carry out a linear search
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separately on every MPI worker on the locally available part of the mesh, and than use collective

MPI operation to find the minimum among all MPI workers. The obtained minimum point is

reported as recirculation length.

On the figures below, the recirculation length is denotes by red ∗.

Strouhal number computation

In order to increase the resolution of FFT transformation for Strouhal number computation,

we use spline interpolation of drag values (“spline” function in Matlab) to create 10N data points

(where N is the number of data points), and than apply FFT transformation to interpolated data.

After that if, in an area of frequency with maximum amplitude, there is a neighboring frequency that

has close amplitude, we compute weighted average with the frequency with maximum amplitude

and report it as Strouhal number.

2.8.1 Reynolds number 50

The (Q2, Q1) element results are in good compliance with Freefem++ results: thus average

drag increases with finer mesh and seem to approach (Q2, Q1) element average drag computed with

4 million degrees of freedom from below.

Average drag for every fixed mesh has converged with respect to a time step in 4 digits.

Therefore we conclude that ∆t = 0.005 is small enough for precise computation of average drag

(and similar with recirculation length and Strouhal number).

Note that in [45] for Reynolds number 50 average drag is reported as 2.47, but in [46]

average drag for Reynolds number 35 is 1.87, and average drag for Reynolds number 75 is 2.26,

hence it follows that the average drag value for Reynolds number 50 is expected to belong to interval

[1.87, 2.26]. The average drag from the literature (computed on coarser mesh) significantly differs

from all computed by the present project drag values. The Strouhal number from the literature

coincides in the first two significant digits to our results.

When building statistics intervals below, we ignore Freefem++ results with 200 thousand

DOF, due to the presence of Freefem++ results with 300 thousand DOF and the same other

parameters. For Reynolds number 50, average drag ∈ [2.213, 2.234], which is in good compli-
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Method Re ∆t DOF Software/Elt Caved

Recirc
length

Strouhal
cmaxd −cmind

(t > 200)

BDF2 50 0.005 197781 Freefem/P2P1 2.21062 2.04376 0.1565 0.0315
BDF3 50 0.005 197781 Freefem/P2P1 2.21057 2.04390 0.1558 0.0314
CNLE 50 0.005 197781 Freefem/P2P1 2.21060 2.04383 0.1589 0.0314
BDF2 50 0.005 290234 Freefem/P2P1 2.21343 2.04251 0.1558 0.0315
BDF3 50 0.005 290234 Freefem/P2P1 2.21338 2.04266 0.1526 0.0315
CNLE 50 0.005 290234 Freefem/P2P1 2.21341 2.04258 0.1560 0.0315
BDF2 50 0.02 521632 deal.II/Q2Q1 2.23375 2.03895 0.1555 0.0245
BDF2 50 0.01 521632 deal.II/Q2Q1 2.23322 2.04056 0.1555 0.0245
BDF2 50 0.005 521632 deal.II/Q2Q1 2.23313 2.04082 0.1559 0.0246
BDF2 50 0.02 2082368 deal.II/Q2Q1 2.22794 2.03750 0.1558 0.0239
BDF2 50 0.01 2082368 deal.II/Q2Q1 2.22741 2.03915 0.1558 0.0239
BDF2 50 0.005 2082368 deal.II/Q2Q1 2.22730 2.03943 0.1558 0.0240
BDF2 50 0.005 4019895 deal.II/Q2Q1 2.22485 2.03865 0.1559 0.0237

Saha [45],
Adams-
Bashforth
forward
scheme

50 5 ·10−4

426×162
stag-
gered
MAC

grid

2.47 0.1526

Table 2.1: Reynolds number 50 results.

ance with [46]. The lowest average drag value differs from the highest value by only 0.91%,

which allows us to conclude that all average drag values are highly consistent for all discretization

schemes/time steps/finite element types used herein. Recirculation length ∈ [2.0375, 2.04266]. The

lowest recirculation length value differs from the highest value by only 0.25%. Strouhal number

∈ [0.152588, 0.156009]. The lowest Strouhal number differs by 2.19% comparing to the maximum

Strouhal number.

As one can see from drag evolution figure 2.4, fluid behavior becomes periodic for some

t ∈ [150, 200]. Therefore we start averaging from t = 200. Each period in drag evolution corresponds

to 2 eddies shedding: one eddy from the upper part of the flat plate, and one from the bottom

part. Then everything repeats.

The symmetry across line y = 0 on time-averaged velocity figure 2.5 confirms that fluid

behavior after t = 200 is fully periodic. The recirculation length on the figure 2.5 is placed according

to the data in table 2.1 and indeed corresponds to a steady point of averaged velocity field in figure

2.5.
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Figure 2.4: Drag for 290K DOF mesh, Reynolds 50.

Figure 2.5: Averaged velocity figure for Reynolds number 50, red ∗ denotes calculated recirculation point.
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Figure 2.6: Strouhal number for 4M DOF mesh, Reynolds 50.

The Strouhal number shown in figure 2.6 has a clear dominant peak, which means that

there is a primary frequency.

2.8.2 Reynolds number 100

Averaged drag increased comparing to Reynolds number 50. Strouhal number number

increased comparing to Reynolds number 50. This means eddies shedding faster for Reynolds

number 100, which is explained by the fact that higher Reynolds number corresponds to a faster

moving fluid.
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Method Re ∆t DOF Software/Elt Caved

Recirc
length

Strouhal
cmaxd −cmind

(t > 200)

BDF2 100 0.005 197781 Freefem/P2P1 2.62181 1.14006 0.1907 0.3242
BDF3 100 0.005 197781 Freefem/P2P1 2.62168 1.14014 0.1800 0.3242
CNLE 100 0.005 197781 Freefem/P2P1 2.62173 1.14009 0.1876 0.3240
BDF2 100 0.005 290234 Freefem/P2P1 2.62657 1.13928 0.1907 0.3250
BDF3 100 0.005 290234 Freefem/P2P1 2.62648 1.13940 0.1907 0.3250
CNLE 100 0.005 290234 Freefem/P2P1 2.62652 1.13935 0.1907 0.3248

BDF2 100 0.02 521632 deal.II/Q2Q1 2.65943 1.13897 0.1894 0.2437
BDF2 100 0.01 521632 deal.II/Q2Q1 2.65820 1.14024 0.1896 0.2435
BDF2 100 0.005 521632 deal.II/Q2Q1 2.65795 1.14045 0.1895 0.2437
BDF2 100 0.02 2082368 deal.II/Q2Q1 2.65072 1.13677 0.1900 0.2401
BDF2 100 0.01 2082368 deal.II/Q2Q1 2.64951 1.13804 0.1901 0.2400
BDF2 100 0.005 2082368 deal.II/Q2Q1 2.64924 1.13829 0.1901 0.2402
BDF2 100 0.005 4093417 deal.II/Q2Q1 2.64541 1.13728 0.1903 0.2385

Saha in
[45]

100 5 ·10−4 2.60 0.1826

Saha in
[46]

100 2.43 1.11 0.183

Najjar &
Vanka in
[37]

100 2.43
0.166

(x=2,y=1)

Table 2.2: Reynolds number 100 results
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Figure 2.7: Drag for 4M DOF mesh, Reynolds 100.

Figure 2.8: Averaged velocity for 290K DOF mesh, Reynolds 100.
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Recirculation length is much closer to the flat plate comparing to Reynolds number 50.

Note that average drag values for Reynolds number 100 from the literature differs in second

digit! Recirculation point coincides in 2 digits and Strouhal number coincides in 2 digits with values

obtained by the current project.

As one can see from figure 2.7, drag evolution becomes periodic by T = 180.

The fact that calculated recirculation length is much closer to the plate than it is for

Reynolds number 50 is supported by averaged velocity figure 2.8.

Figure 2.9: Strouhal number for 4M DOF mesh, Reynolds 100.
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Method Re ∆t DOF Software/Elt Caved

Recirc
length

Strouhal
cmaxd −cmind

(t > 200)

BDF2 150 0.005 203928 Freefem/P2P1 2.67926 1.14498 0.1755 0.5220
BDF3 150 0.005 203928 Freefem/P2P1 2.67892 1.14523 0.1755 0.5222
CNLE 150 0.005 203928 Freefem/P2P1 2.67922 1.14502 0.1755 0.5217
BDF2 150 0.005 299468 Freefem/P2P1 2.68434 1.14455 0.1755 0.5230
BDF3 150 0.005 299468 Freefem/P2P1 2.68459 1.14440 0.1755 0.5239
CNLE 150 0.005 299468 Freefem/P2P1 2.68429 1.14460 0.1755 0.5227

BDF2 150 0.02 521632 deal.II/Q2Q1 2.72322 1.14457 0.1751 0.3922
BDF2 150 0.01 521632 deal.II/Q2Q1 2.72304 1.14552 0.1751 0.3926
BDF2 150 0.005 521632 deal.II/Q2Q1 2.72242 1.14582 0.1750 0.3932
BDF2 150 0.02 2082368 deal.II/Q2Q1 2.71223 1.14139 0.1759 0.3894
BDF2 150 0.01 2082368 deal.II/Q2Q1 2.70974 1.14303 0.1757 0.3889
BDF2 150 0.005 2082368 deal.II/Q2Q1 2.70991 1.14333 0.1756 0.3870
BDF2 150 0.005 4078986 deal.II/Q2Q1 2.70421 1.14259 0.1761 0.3867

Saha in
[45]

150 5 ·10−4 2.54 0.1665

Saha in
[46]

150 2.54
1.17,
4.24

0.167

Table 2.3: Reynolds number 150 results

2.8.3 Reynolds number 150

As one can see from the figure 2.11 drag becomes periodic by t = 200 or earlier. Therefore

starting averaging interval from the first maximum after t = 200 must lead to correct statistics.

The recirculation length on the figure 2.10 is placed according to the data in table 2.3 and

indeed corresponds to a steady point of averaged velocity field in figure 2.10.
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Figure 2.10: Average velocity for 290K DOF mesh, Reynolds 150.

Figure 2.11: Drag for 4M DOF mesh, Reynolds 150.
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Figure 2.12: Strouhal number for 2M DOF mesh, Reynolds 150.
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deal.II setup

In our C++ code we use the deal.II program library. As stated on deal.II web site [1], ‘deal.II

- a name that originally meant to indicate that it is the successor to the Differential Equations Anal-

ysis Library - is a C++ program library targeted at the computational solution of partial differential

equations using adaptive finite elements. It uses state-of-the-art programming techniques to offer

you a modern interface to the complex data structures and algorithms required’.

Our C++ code uses BDF2 discretization scheme. The (Q2, Q1) finite element is used in

numerical simulation. The initial condition is obtained by solving Stokes equations for the same

Reynolds number and boundary conditions. Meshes used are 500K, 2 million and 4 million degrees

of freedom. Mesh is finer around the flat plate and gets coarser further from the flat plate as the

flow is most complicated close around the flat plate. We use the excellent block solver with grad-div

preconditioner developed by Dr. Heister and Dr. Rapin, which is described in the paper [26]. The

linear solver uses the iterative Krylov method (flexible GMRES) to solve the arising linear system

with a preconditioner. The linear system resulting from the discretized NSE has the following block

structure.

Mx = G,

with

M =

A BT

B 0

 ,

G =

F
0

 .

Instead of solving the above system directly, the right preconditioner is applied with an operator

P−1, and the solution is calculated as

x = P−1y.
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The auxiliary variable y is the solution of

MP−1y = G.

P−1 is an implicitly defined operator given in a block-triangular way as

P−1 :=

Ã BT

0 S̃


−1

=

Ã−1 0

0 I


I BT

0 −I


I 0

0 S̃−1

 ,

where S̃ is an approximation of the Schur complement

S = −BA−1BT ,

and Ã is an approximation to the velocity block. We use one V-cycle of the algebraic multigrid

to approximate Ã−1. The preconditioner uses grad-div stabilization parameter term. As it is

suggested in [11, 26, 56], the operator S̃−1 is approximated by the sum

S̃−1 = S−1
1 + S−1

2 ,

where

S1 =
1

ν + γ
Mp

and

S2 =
10−5

c
Mp +

1

c
Lp.

γ is grad-div stabilization parameter (we use γ = 0.1), ν is viscosity, Mp is the mass matrix in

the pressure space, Lp is the stiffness matrix of the pressure Poisson problem with the Neumann

boundary conditions, and

c =
3

2∆t
.

The actions for S−1
1 and S−1

2 are approximated by separate inner solves with GMRES precondi-

tioned with the incomplete LU factorization respectively. The preconditioner obtained with the
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incomplete LU factorization has the same sparsity pattern as the matrix itself known as ILU(0).

The outer solve with flexible GMRES is stopped when the current residual is decreased 10−8 times

relative to the starting residual. The stopping criterion for the preconditioned GMRES solves for

approximating actions of S−1
1 and S−1

2 is when the ratio of the starting residual to the current

residual is equal or lower than 10−2. We use a flexible GMRES method for the outer solve, because

we use iterative linear solvers to approximate the preconditioner. In particular the preconditioner

cannot be considered as linear operator from one outer solve iteration to the next [26, 44]. We

report the typical number of iterations that are needed for the inner and the outer GMRES solves

in table 2.4. The number of iterations are obtained for 3D flow past a circular cylinder problem

with γ = 0.1. For the number of inner iterations we report sum of the number of iterations for

both S1
−1 and S2

−1 solves.

∆t DOF Average. Outer Average. Inner (S1+S2)

0.005 2 289 362 24.8 39.1

0.005 23 516 262 26.2 43.1

0.01 23 579 751 36.8 46.2

0.01 70 456 859 43.7 60.6

Table 2.4: Typical number of iterations that are needed for the inner and the outer GMRES solves.

The developed deal.II code is highly parallel, which allowed to increase degrees of freedom

up to 4 million and refine time step to ∆t = 0.005. Total simulation time T is about 250 (depending

on the length of averaging interval), hence total number of time iterations is 250/0.005 = 50000.

The computational time for 4 million DOF mesh is over 2 weeks using 5 nodes with 24 cores each,

which required a special reservation queue.

FreeFem++ setup

As stated on FreeFem++ library web site [2], ‘FreeFem++ is a partial differential equation

solver. It has its own language. freefem scripts can solve multiphysics non linear systems in 2D

and 3D. Problems involving PDE (2D, 3D) from several branches of physics such as fluid-structure

interactions require interpolations of data on several meshes and their manipulation within one

program. FreeFem++ includes a fast 2d-tree-based interpolation algorithm and a language for the
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manipulation of data on multiple meshes (as a follow up of bamg, now a part of FreeFem++).

FreeFem++ is written in C++ and the FreeFem++ language is a C++ idiom.’

Freefem++ computations are carried out using Crank-Nicolson, BDF2 and BDF3 discretiza-

tion methods. Initial condition for velocity and pressure is zero. Time step is 0.005 seconds. We use

UMFPACK linear solver that implements unsymmetric multiFrontal method [16]. The developed

Freefem++ code is single threaded. The (P2, P1) finite element is used in numerical simulation.

2.9 Evaluation of the computational results

The figures of averaged velocity for all Reynolds numbers 50, 100, 150 are very similar to

corresponding figures found in the literature for the studied flat plate problem. See e.g. references

[45],[46],[28]. Drag, recirculation length and Strouhal number for all Reynolds numbers 50, 100, and

150 have converged both with respect to time step refinement and with respect to mesh refinement.

We report statistics for Reynolds numbers 50, 100 and 150 obtained with the maximum

space resolution in table 2.5. These statistics can be used for verification of new models and/or

discretization schemes for the incompressible NSE.

Method Re ∆t DOF Caved

Recirc
length

Strouhal
cmaxd −cmind

(t > 200)

BDF2 50 0.005 4019895 2.22485 2.03865 0.1559 0.0237

BDF2 100 0.005 4093417 2.64541 1.13728 0.1903 0.2385

BDF2 150 0.005 4078986 2.70421 1.14259 0.1761 0.3867

Table 2.5: Statistics for Reynolds numbers 50, 100, 150 obtained with 4 million DOF space resolution, with (Q2, Q1) finite
element.

2.10 Summary

A two-dimensional flow through a channel around a vertical flat plate obstacle with a time-

independent inflow was computed with three time stepping schemes (BDF2, BDF3 and Crank-

Nicolson). The evolutions of the drag at the flat plate, recirculation length and Strouhal number

have been studied. The code is implemented twice in two different environments for verification of
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results (with Freefem++ and deal.II). New more precise reference values for the averaged drag co-

efficient, recirculation length, and the Strouhal number, have been derived from the computational

results.

The present numerical project differs from results found in the literature in the following.

Firstly, the maximum space resolution is 4 million degrees of freedom, which is much higher than

for results found in the literature. For example we estimate DOF number in [46] to be about only

100 thousand DOF. For the same parameters, numerical simulations are carried out with several

different meshes and different time steps. This allowed to show convergence of statistics both with

respect to spatial resolution and with respect to time step refinement. All presented statistics are

computed purely using software code only, i.e. no human measurement error involved. The same

numerical simulation was carried out independently using deal.II and Freefem++ software and

both gave very similar results. In addition both deal.II/Q2Q1 and Freefem/P2P1 element types

were used. Finally, the averaging interval does not start until T = 200, that is until fluid behavior

becomes fully periodic to guarantee reliable values of statistics.
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Chapter 3

Energy, momentum and angular momentum

conserving formulation
This chapter is from the work done by the author and collaborators in [15]. We consider

formulations of the incompressible NSE, which are given in a domain Ω ⊂ Rd, d=2 or 3, and for

t > 0 by

ut + (u · ∇)u+∇p− ν∆u = f, (3.1)

div u = 0, (3.2)

u(0) = u0, (3.3)

where u and p represent velocity and pressure, f is an external forcing, u0 is the initial velocity,

and ν is the kinematic viscosity. To solve this system, it must also be equipped with the boundary

conditions. Finding analytical solutions of the NSE is known to be extremely difficult, and thus

practitioners instead typically approximate solutions using numerical methods.

In this chapter we study conservation laws of solutions arising from discretizations of the

NSE with finite element methods. In typical discretizations, e.g., with Taylor-Hood finite elements,

the conservation of mass is only weakly enforced, leading to discrete solutions uh which have

div uh 6= 0.

While convergence of the H1 error can often be proven, leading to the bound ‖ div uh‖ ≤ Ch2, the

divergence error can still be significant on practical meshes (here h is a characteristic step of an

underlying mesh; in practice, there is a minimum h that can produce solutions in reasonable time).
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With the loss of mass conservation, it turns out that many other important conservation laws are

also lost, including energy, momentum, angular momentum, and others, if steps are not taken in

the development of the numerical discretization to make sure these quantities are conserved. The

fact that energy conservation is lost in Galerkin discretizations of the NSE is well-known, and a fix

for this problem by using the skew-symmetric or rotation forms of the nonlinearity has been known

for many years [55]. A finite element formulation for energy and helicity conservation was proposed

in [43], and in [40] it was discussed how an alternate (but equally valid) definition of helicity could

be conserved by skew-symmetric formulations. Similar phenomena happen with other types of

discretization methods, and some clever discretizations have been developed which ‘bring back’

conservation laws lost in standard discretizations, beginning decades ago by Arakawa, Fix, and

others, for the NSE and related equations [3–5, 17, 20, 35, 41, 48, 52]. A common theme for all

‘enhanced-physics’ based schemes is that the more physics is built into the discretization, the more

accurate and stable the discrete solutions are, especially over longer time intervals.

In the present chapter, we aim to develop numerical schemes/formulations that preserve

even more conservation laws for the full NSE, beyond just energy. By noticing that the key to

discrete conservation properties is the formulation of the nonlinear term, we are able to find a

formulation of the NSE seemingly unconsidered in the literature, which conserves all of energy,

momentum, and angular momentum; we call it the Energy, Momentum, and Angular Momentum

(EMA) conserving formulation. We propose this formulation in section 3.2, and formally show these

conservation properties hold. We show that the usual convective, skew-symmetric and rotational

formulations all fail to conserve momentum and angular momentum. Of course, if a Galerkin

solution happens to be pointwise divergence-free, then all of the formulations are equivalent and

each of them would conserve all of these quantities in an appropriate sense. However, the use of

such special element choices that provide pointwise divergence-free solutions (e.g. [6, 18, 24, 25, 57])

is not widespread, as they require constraints on the mesh and approximating polynomial degrees,

and are not typically available in open source finite element software for large scale computing [7].

This chapter is arranged as follows. Section 3.1 presents notation and mathematical pre-

liminaries that will allow for smoother analysis in later sections. Section 3.2 presents the EMA-
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conserving formulation, and studies its conservation properties along with those of the convective,

skew-symmetric, conservative, and rotational formulations. Section 3.3 performs several numerical

experiments, which test the conservation properties and accuracy of the various schemes.

3.1 Notation and preliminaries

Consider the domain Ω ⊂ Rd, d = 2 or 3, and denote (·, ·) and ‖ · ‖ to be the L2(Ω) inner

product and norm on Ω. Denote

|u|2 := |u(x)|2 = u(x) · u(x).

Consider u, v, w ∈ H1(Ω), and note that we do not enforce that any of these quantities are

solenoidal except for the last two equations of this section. Let w = curlu. Define the trilinear

form b : H1(Ω)×H1(Ω)×H1(Ω)→ R by

b(u, v, w) = (u · ∇v, w). (3.4)

We recall the following properties of b. The first two follow immediately from integration by parts,

provided u ∈ H1
0 (Ω):

b(u, v, w) = −b(u,w, v)− ((div u)v, w), (3.5)

b(u,w,w) = −1

2
((div u)w,w) , (3.6)

b(u, v, w) = ((∇v)u,w) = ((∇v)Tw, u). (3.7)

We denote the symmetric part of ∇u by

∇su := D(u) =
∇u+ (∇u)T

2
,

and the skew-symmetric part by

∇nu :=
∇u− (∇u)T

2
.
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For any u, v ∈ H1(Ω) one readily checks that

(∇nu)v =
1

2
(curlu)× v. (3.8)

Note that we define curlu in 2D in the usual way, as the 3D curl of u extended by 0 in the third

component.

Straight-forward calculations provide the following vector identities for functions u, v ∈

H1(Ω):

(u · ∇)u = (curlu)× u+∇1

2
|u|2 =: (curlu)× u+∇q, (3.9)

(∇u)u = (∇su)u+ (∇nu)u = D(u)u+
1

2
(curlu)× u, (3.10)

where q := |u|2
2 . Also note that identity (3.10) implies that

(D(u)u, u) = ((∇u)u, u) = b(u, u, u). (3.11)

From (3.8)–(3.10) we obtain the following representation of the inertia term from the momentum

equations:

(u · ∇)u = 2D(u)u−∇q. (3.12)

The identity (3.12) is key to the new formulation we propose in the next section, which leads to

improved discrete conservation properties.

3.2 Conservation properties and the EMA formulation for Navier-

Stokes

We now consider subspaces X ⊂
[
H1

0 (Ω)
]d

, Q ⊂ L2(Ω) of finite dimensions. To be more

specific, we further assume that X and Q are finite element velocity and pressure spaces corre-

sponding to an admissible triangulation of Ω. For simplicity we assume X and Q satisfy inf-sup

compatibility conditions [21]; non inf-sup stable pairs require stabilization terms that will affect
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conservation properties, and should be studied separately and on a case-by-case basis. We note our

analysis can be easily extended to other Galerkin methods.

In most common discretizations of the NSE and related systems, the divergence-free con-

straint div u = 0 is only weakly enforced. What holds instead of the pointwise constraint is that a

numerical solution u from X satisfies

(div u, q) = 0 ∀ q ∈ Q,

where Q is a finite dimensional pressure space, for example piecewise linears which are globally

continuous. Even though convergence theory of mixed finite element methods exists that guarantees

‖ div u‖ converges to 0 with optimal rate, in practical computations the divergence error can be large

due to the associated constants being larger than the minimum practical mesh width [12]. Enlarging

the pressure space Q to ensure divX ⊂ Q is usually not possible, since it would violate (apart of

a few exceptional cases) the inf-sup compatibility condition and make the method numerically

unstable.

We now consider conservation properties of several common NSE formulations, along with

a new one based on the identity (3.12). To this end, we write the NSE momentum equation in the

generic form:

ut +N(u) +∇p− ν∆u = f, (3.13)

with the nonlinear terms defined for each formulation by

convective : Nconv(u) = u · ∇u,

skew − symmetric : Nskew(u) = u · ∇u+
1

2
(div u)u,

rotational : Nrot(u) = (curlu)× u,

conservative : Ncons(u) = ∇ · (u⊗u) = u · ∇u+ (div u)u.

The convective, skew-symmetric, and rotational forms above are commonly used in CFD and
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numerical analysis of fluid equations, see, e.g., [22, 55], with the convective form being, probably,

the most frequent choice in computation practice.

We propose now a new formulation, which we will show conserves energy, momentum and

angular momentum, which we call the energy momentum and angular momentum (EMA) conserv-

ing form. It is based on the following choice:

EMA conserving : Nemac(u) = 2D(u)u+ (div u)u.

We remark that if we did assume the divergence constraint div u = 0 holds pointwise, then all

above formulations are equivalent; for the EMA conserving scheme, this follows from (3.12).

The Galerkin method corresponding to various forms of inertia term reads: Find {u, p} ∈

X ×Q satisfying

(
∂u

∂t
+N(u), v

)
− (p,div v) + (q,div u) + ν(∇u,∇v) = (f, v) (3.14)

for all v ∈ X, q ∈ Q.

For both the rotational and EMA-conserving formulations, the pressure p is modified and

includes a velocity contribution. To our knowledge, the EMA-conserving formulation has yet to be

considered in the literature, and our motivation for using it comes from Proposition 3.2.1 below,

which says that of these five formulations, only the EMA-conserving formulation exactly conserves

energy, momentum and angular momentum when the divergence constraint is not strongly enforced.
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3.2.1 Energy, momentum and angular momentum

We now prove a result regarding conservation laws for (3.14). Our interest first is the

conservation of energy, momentum and angular momentum:

Kinetic energy E =
1

2
(u, u) :=

1

2

∫
Ω
|u|2dx;

Linear momentum M :=

∫
Ω
udx;

Angular momentum Mx :=

∫
Ω
u× x dx.

Most useful boundary conditions alter the balance of these quantities, as they should in

the presence of walls and interfaces. Moreover, the numerical treatment of boundaries, e.g. by

enforcing conditions strongly or in a weak form, also affect this balance. In this study, we isolate

the effect of the treatment of the nonlinearity on the quantities of interest from the contribution of

the boundary conditions. For this reason, we assume in section 3.2 that the finite element solution

u and p is supported in some subset Ω̂  Ω of the computational domain Ω, i.e., there is a strip

S = Ω \ Ω̂ along ∂Ω where u is zero. The same is assumed for the source term f . We note this

implies there is a strip of elements along the boundary where u, p, and f vanish. The prototypical

scenario is the evolution of an isolated vortex in a self-induced flow.

Proposition 3.2.1. Assuming (div u, q) = 0 for all q ∈ Q, but div u 6= 0, the skew-symmetric,

rotational, and EMA-conserving formulations conserve kinetic energy (for ν = 0, f = 0), and only

the EMA-conserving and conservative formulations conserve momentum (for f with zero linear

momentum) and angular momentum (for f with zero angular momentum). Hence, the EMA-

conserving is the only one of the the formulations that conserves all three quantities.

We divide the proof of this proposition into several subsections.
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3.2.1.1 Kinetic energy

For energy conservation, testing (3.14) with v = u, q = p gives

1

2

d

dt
‖u‖2 + (NL(u), u) + ν‖∇u‖2 = (f, u).

Thus, kinetic energy will be preserved for ν = 0, f = 0 if

(NL(u), u) = 0. (3.15)

For the skew-symmetric formulation, we use (3.6) to get

(NLskew(u), u) = b(u, u, u) +
1

2
((div u)u, u) = 0,

and for the rot formulation we use that the cross of two vectors is perpendicular to each of them,

(NLrot(u), u) = ((curlu)× u, u) = 0.

For the EMA-conserving formulation, we use (3.11) and then (3.6) to obtain

(NLemac(u), u) = 2(D(u)u, u) + ((div u)u, u) = 2b(u, u, u) + ((div u)u, u) = 0.

For the convective formulation, the nonlinear term does not vanish in general:

(NLconv(u), u) = b(u, u, u) = −1

2
((div u)u, u),

and thus kinetic energy will not be typically conserved by the convective formulation whenever

div u 6= 0. Lastly, for the conservative formulation, we use the same identity as in the convective

case, and find that

(NLcons(u), u) = b(u, u, u) + ((div u)u, u) =
1

2
((div u)u, u),
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and thus this formulation will not conserve kinetic energy in general.

3.2.1.2 Linear Momentum

Next, we consider momentum conservation in the formulations. Let e1 = (1, 0, 0)T , e2 =

(0, 1, 0)T and e3 = (0, 0, 1)T . We cannot test (3.14) with v = ei since this function is not in X.

Thanks to the assumption that u 6= 0 only in some strictly interior subdomain Ω̂, we can define the

restriction χ(g) ∈ X of an arbitrary function g by setting χ(g) = g in Ω̂ and χ(g) arbitrary defined

on S = Ω \ Ω̂ to satisfy zero boundary conditions. We test (3.14) with v = χ(ei) ∈ X and q = 0,

which gives

d

dt
(u, ei) + (N(u), ei) = (f, ei),

because the solution is zero on S. Thus, momentum conservation is obtained if (f, ei) = 0 and

(N(u), ei) = 0. Thus we consider the latter for the different formulations. In the convective

formulation, we use (3.5) and that ei is constant to find that

(Nconv(u), ei) = b(u, u, ei) = −b(u, ei, u)− ((div u)u, ei)

= −((div u)u, ei) 6= 0

in general. Linear momentum is NOT conserved.

For the skew-symmetric form we get

(Nskew(u), ei) = b(u, u, ei) +
1

2
((div u)u, ei) = −1

2
((div u)u, ei) 6= 0

in general. Linear momentum is NOT conserved. For rotational form, we use the vector identity

u · ∇u = (curlu)× u+
1

2
∇|u|2
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to obtain

(Nrot(u), ei) = ((curlu)× u, ei) = b(u, u, ei)−
1

2
(∇|u|2, ei)

= (u · ∇u, ei) = −((div u)u, ei) 6= 0

in general. Linear momentum is NOT conserved. For the EMA-conserving formulation, however,

the nonlinear term does vanish. By expanding the rate of deformation tensor and using

(u · ∇u, ei) = −((∇ · u)u, ei),

and then (3.7), we find that

(Nemac(u), ei) = 2(D(u)u, ei) + ((div u)u, ei)

= b(u, u, ei) + b(ei, u, u) + ((div u)u, ei)

= b(ei, u, u)

= 0,

since ei is divergence-free.

The conservative form also conserves momentum, as using the same identity as in the

convective case, we obtain

(Ncons(u), ei) = b(u, u, ei) + ((div u)u, ei) = −((div u)u, ei) + ((div u)u, ei) = 0.

3.2.1.3 Angular momentum

We consider next angular momentum conservation in the formulations; that is, whether or

not they conserve (Mx)i := (u, φi), φi := x× ei, i = 1, 2, 3.
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Let x =


x

y

z

. Direct computation shows:

φ1 =


0

z

−y

 , φ2 =


−z

0

x

 , φ3 =


y

−x

0

 . (3.16)

This implies

∇φ1 =


0 0 0

0 0 −1

0 1 0

 , (3.17)

∇φ2 =


0 0 1

0 0 0

−1 0 0

 , (3.18)

∇φ3 =


0 −1 0

1 0 0

0 0 0

 . (3.19)

Note that div φi = 0 and ∆φi = 0. Setting v = χ(φi), q = 0 in (3.14) gives

(
∂u

∂t
, φi

)
+ (N(u), φi) + ν(∇u,∇φi) = (f, φi).

Whether angular momentum is conserved comes down, once again, to whether it is preserved by

the nonlinear term, i.e. whether or not (N(u), φi) = 0. For the EMA-conserving formulation, since
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div φi = 0 we have that

(Nemac(u), φi) = 2(D(u)u, φi) + ((div u)u, φi)

= b(u, u, φi) + b(φi, u, u) + ((div u)u, φi)

= b(u, u, φi) + ((div u)u, φi)

= −b(u, φi, u),

with the last step coming from (3.5). From here, expanding out the terms immediately reveals that

b(u, φi, u) = 0, and thus the EMA-conserving formulation does conserve angular momentum.

Similarly for the conservative formulation,

(Ncons(u), φi) = b(u, u, φi) + ((div u)u, φi)

= −b(u, φi, u)

= 0.

For the convective formulation, similar identities reveal

(Nconv(u), φi) = b(u, u, φi) = −((div u)u, φi) 6= 0

in general, and for the skew-symmetric formulation we use these same identities to obtain

(Nskew(u), φi) = b(u, u, φi) +
1

2
((div u)u, φi) = −1

2
((div u)u, φi),

which will not be zero in general either. For the rotational formulation, we again use the vector

identity

u · ∇u = (curlu)× u+
1

2
∇|u|2,

which provides since div φi = 0,

(Nrot(u), φi) = ((curlu)× u, φi) = (u · ∇u, φi) = −((div u)u, φi),
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which is the same as for the convective formulation.

3.2.2 Discussion

We have now established that the EMA-conserving formulation does indeed conserve kinetic

energy, linear momentum and angular momentum. One may question if the EMA-conserving

formulation is the only one or the ‘simplest’ one which conserves all quantities listed above. We

do not have an ultimate answer to these questions. Nevertheless, attempting to address it let

us comment on the way we deduce this formulation: we can write the momentum equation with

linear combinations of different forms of the inertia terms from (3.4), (3.9), (3.10) and additional

divergence terms. The EMA-conserving formulation is then found to be the unique combination

that conserves discrete kinetic energy, momentum, and angular momentum.

3.3 Numerical Experiments

We now provide results of several numerical experiments that test and compare the different

NSE formulations. The specific formulations we test are (for the case of homogeneous Dirichlet

boundary conditions):

Find (uh, ph) ∈ (Xh, Qh) such that for every (vh, qh) ∈ (Xh, Qh),

Convective formulation (CONV)

((uh)t, vh) + (uh · ∇uh, vh)− (ph,div vh) + ν(∇uh,∇vh) = (f, vh),

(div uh, qh) = 0.

Skew-symmetric formulation (SKEW)

((uh)t, vh) + (uh · ∇uh, vh) +
1

2
((div uh)uh, vh)− (ph, div vh) + ν(∇uh,∇vh) = (f, vh),

(div uh, qh) = 0.
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Conservative formulation (CONS)

((uh)t, vh) + (uh · ∇uh, vh) + ((div uh)uh, vh)− (ph, div vh) + ν(∇uh,∇vh) = (f, vh),

(div uh, qh) = 0.

Rotational formulation (ROT)

((uh)t, vh) + ((curluh)× uh, v)− (ph,div vh) + ν(∇uh,∇vh) = (f, vh),

(div uh, qh) = 0.

Energy, momentum, and angular momentum conserving formulation (EMAC)

((uh)t, vh) + 2(D(uh)uh, vh) + ((div uh)uh, vh)− (ph,div vh) + ν(∇uh,∇vh) = (f, vh),

(div uh, qh) = 0.

For the temporal discretizations, our tests employ several temporal discretizations, including Crank-

Nicolson method for the Gresho problem described below (since here we test for integral invariants),

BDF2, and BDF3. The choice of Taylor-Hood velocity-pressure elements is used throughout, which

is (P2, P1) on triangular meshes, and (Q2, Q1) on quadrilateral meshes. No stabilization was used in

any of the 2D simulations, however for the (Q2, Q1) computations, grad-div stabilization [39] with

a small parameter (γ = 0.1) was used since it is an integral part of the preconditioner used for the

linear solves. We recognize that different element choices and different stabilizations can improve

these schemes to varying degrees; future studies certainly could include various stabilization and

element choices. In all of our tests, we solve the full nonlinear problem, for each formulation, at

each time step in the simulations using a Newton method, and we converge the nonlinear iteration

up to 10−8. For the channel flow problems with an outflow, we weakly enforce the zero-traction

boundary condition (−ν∇u+pI) ·n|Γout = 0. For the convective and conservative formulations, this

becomes a ‘do-nothing’ condition. For the rest of the formulations, it requires a nonlinear boundary

integral at the outflow. To illustrate the conservation properties of the various formulations, we
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choose several test problems: For the first one, the quantities of interest are exactly conserved,

while other test cases represent more realistic scenarios of viscous fluid flows passing streamlined

or bluff bodies. In the latter case, viscous and boundary effects perturb all conservation laws. We

include these test cases in the attempt to give the first assessment of other properties of the EMAC

form such as numerical stability and accuracy.

3.3.1 Gresho Problem
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Figure 3.1: Shown above is the true velocity solution for the Gresho problem as a vector figure (left) and speed contour figure
(right).

We consider first the Gresho problem, which is often referred to as the ‘standing vortex

problem’ [22, 34, 53]. The problem is defined by starting with an initial condition u0 that is an

exact solution of the steady Euler equations. On Ω = (−.5, .5)2, with r =
√
x2 + y2, the velocity
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and pressure solutions are defined by

r ≤ 0.2 :


u =

 −5y

5x


p = 12.5r2 + C1

,

r > 0.4 :


u =

 0

0


p = 0

,

0.2 ≤ r ≤ 0.4 :


u =

 2y
r + 5y

2x
r − 5x


p = 12.5r2 − 20r + 4 log(r) + C2

,

where

C2 = (−12.5)(0.4)2 + 20(0.4)2 − 4 log(0.4), C1 = C2 − 20(0.2) + 4 log(0.2).

The vorticity (w = u2x − u1y) can be calculated to be w = 10 when r ≤ 0.2, w = 2/r − 10 on

0.2 ≤ r ≤ 0.4, and w = 0 when r > 0.4. This is an interesting problem because it is an exact

solution of the steady Euler equations, i.e.

u · ∇u+∇p = 0.

Since we choose the initial condition to be this steady Euler solution, an accurate scheme should

preserve the solution in time. Moreover, it is also a good test for a numerical scheme’s ability to

conserve certain quantities such as energy, momentum and angular momentum, since no viscosity

or forcing is present, and the boundaries do not play a role (unless significant error causes nonzero

velocity to creep out to the boundary). A plot of the true velocity solution is shown in Figure 3.1.

We compute solutions to the Gresho problem using the different formulations, together with

Crank-Nicolson time stepping (using Newton’s method to solve the nonlinear problem at each time

step), with f = 0, ν = 0, and no-penetration boundary conditions up to T = 4. We computed
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using (P2, P1) Taylor-Hood elements on a 24x24 uniform mesh and a time step of ∆t = 0.01.

Plots of energy, momentum, angular momentum, and L2 velocity error versus time are

shown in Figure 3.2.

3.3.1.1 Summary of results

EMAC, skew-symmetric and rotational schemes conserve kinetic energy. EMAC and skew-

symmetric schemes conserve linear momentum. EMAC is the only scheme to conserve angular

momentum to t = 4. EMAC scheme has significantly better L2(Ω) error than all the other methods.

The conservative scheme gives by far the worst results. Kinetic energy of conservative and convective

formulations are blowing up, which causes the nonlinear solver to fail. We note that all the results

for conserved quantities are consistent with the theory of the previous section, and in particular

the EMAC scheme is the only one to conserve each of energy, momentum and angular momentum.

3.3.2 Channel flow around a cylinder

Our next experiment tests the algorithms above on the flow around a cylinder benchmark

problem, taken from [28, 50]. The domain for the problem is a 2.2× 0.41 rectangular channel with

a circle (cylinder) of radius 0.05 centered at (0.2, 0.2), see Figure 3.3.

No slip boundary conditions are enforced on the walls and cylinder, and the time dependent

inflow profile is taken to be

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y) ,

u2(0, y, t) = u2(2.2, y, t) = 0,

and a zero-traction outflow condition is weakly enforced. The viscosity is set as ν = 10−3 and there

is no external force, f = 0.

This problem is well studied, and it is known that as the flow rate increases, two vortices

start to develop by T = 4 behind the cylinder. They then separate into the flow, and soon after a

vortex street forms which can be visible through t = 8. Reference values for lift and drag coefficients,
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Figure 3.2: Shown above are figures of time versus kinetic energy, linear momentum, angular momentum, and L2(Ω) velocity
error, for the various formulations in the Gresho problem.
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Figure 3.3: Shown above is the channel flow around a cylinder domain (top), and a resolved velocity field at t = 6.

and for pressure drop across the cylinder at t = 8 are given in [28] as

crefd,max = 2.95092, crefl,max = 0.47795, ∆pref = −0.11160.

Method dim(Xh) ∆t cmaxd |error| cmaxl |error| ∆p(8) |error|
ROT 34,762 0.005 2.94442 6.48E-3 0.412069 6.59E-2 -0.11168 8.20E-5

CONV 34,762 0.005 2.94672 4.18E-3 0.470062 7.94E-3 -0.11176 1.62E-4

SKEW 34,762 0.005 2.94678 4.12E-3 0.467538 1.05E-2 -0.11177 1.70E-4

CONS 34,762 0.005 2.94667 4.25E-3 0.450239 2.77E-2 -0.11179 1.90E-4

EMAC 34,762 0.005 2.94819 2.71E-3 0.525675 4.77E-2 -0.11166 5.68E-5

ROT 61,694 0.005 2.94638 4.52E-3 0.484486 6.49E-3 -0.11139 2.10E-4

CONV 61,694 0.005 2.94893 1.97E-3 0.478282 2.82E-4 -0.11159 1.13E-5

SKEW 61,694 0.005 2.94892 1.98E-3 0.477249 7.51E-4 -0.11158 2.15E-5

CONS 61,694 0.005 2.94891 1.99E-3 0.477013 9.37E-4 -0.11149 1.10E-4

EMAC 61,694 0.005 2.94961 1.29E-3 0.490655 1.27E-2 -0.11119 4.06E-4

ROT 95,738 0.005 2.94919 1.71E-3 0.480021 2.02E-3 -0.11186 2.64E-4

CONV 95,738 0.005 2.94966 1.24E-3 0.478567 5.67E-4 -0.11155 5.00E-5

SKEW 95,738 0.005 2.94966 1.24E-3 0.478106 1.06E-4 -0.11154 6.04E-5

CONS 95,738 0.005 2.94966 1.24E-3 0.477831 1.19E-4 -0.11155 5.00E-5

EMAC 95,738 0.005 2.94986 1.04E-3 0.484425 6.43E-3 -0.11141 1.93E-4

Table 3.1: The Maximum lift and drag coefficients, and the pressure drop across the cylinder at t = 8, for the various
formulations, using (P2, P1) elements.

We computed solutions using several meshes with Taylor-Hood elements, BDF3 time step-
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ping, and time step ∆t = 0.005 (we also used ∆t = 0.01 and obtained very similar results). Results

for the maximum lift and drag, as well as for the t = 8 pressure drop are shown in Table 3.1.

For each mesh, the best errors are made bold for each statistic. We observe that in each case,

the EMAC formulation provides the best prediction of the maximum drag coefficient, convective

and skew-symmetric forms provide the best maximum lift coefficient prediction, and the EMAC,

convective and conservative provide the best predictions of pressure drop error. Overall, the meth-

ods give rather similar predictions, and it is fair to say the methods are comparable for this test

problem with these discretizations.

3.3.3 Channel flow past a flat plate at Re=100

Our next test is for channel flow past a flat plate with Re=100, following [45, 46]. The

domain of this test problem is a [−7, 20] × [−10, 10] rectangle channel with a 0.125 × 1 flat plate

placed 7 units into the channel, and vertically centered. The inflow velocity is set as uin = 〈1, 0〉,

we use a zero-traction outflow, and there is no forcing, f = 0. No-slip conditions are enforced on

the walls and plate. A diagram of the test setup is shown in Figure 3.4.

We compute results using the convective, conservative, skew-symmetric, rotational, and the

EMAC formulations, with BDF3 time stepping. The simulations all used BDF3 time stepping,

a Delaunay mesh with (P2, P1) elements (which provided 58,485 total degrees of freedom) for

each simulation. This is a fairly coarse mesh, and we use it to observe differences between the

formulations (since as h→ 0, the formulations will all converge to each other). The simulations all

used the same time step size of ∆t = 0.02, and were started from rest, ran until a periodic-in-time

state was reached, and then ran for an additional 16 periods. Periods were determined using the

drag coefficient

Cd(t
m) =

2

ρLU2
max

∫
S

(
ρν
∂utS (tm)

∂n
ny − pmh nx

)
ds.

Here, S is the plate, n = 〈nx, ny〉 is the outward normal vector, utS (tm) is the tangential velocity

of umh , the density ρ = 1, the max velocity at the inlet Umax = 1, and L = 1 is the length of the

plate.
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Figure 3.4: Setup for the flow past a normal flat plate.

The statistics of interest are the average drag coefficient, and the recirculation point of the

time averaged velocity; all averages were taken over the last 16 periods. Results for these statistics

are shown in table 3.2, along with results from a very fine discretization we obtained using the deal.II

software [7] and (Q2, Q1) elements with the convective formulation and BDF2, using ∆t = 0.005

and 4,019,895 total degrees of freedom (for which we assume is a convergent result, since it was

very similar to results computed with ∆t = 0.01 and about 2 million total degrees of freedom).

For further comparison, we also give results of Saha from [45, 46], who used a MAC scheme with

426x162 cells (16x50 grid points on the plate surface), and a typical time step size of 5E-4.

We note first that the rotational and conservative schemes did not run to completion: the

rotational simulation became unstable around T = 25, and before T = 26 the energy grows to

1E+100; similarly, the conservative scheme gives energy blowup at about T = 78. The EMAC

solution’s average drag most closely matches that of the very fine discretization, and is significantly

closer than that of the convective and skew-symmetric solutions. For the recirculation point, the

convective, EMAC, and skew-symmetric formulations give results with similar accuracy.
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Formulation Re Average Cd Recirculation point

CONV 100 2.5434 1.1577

EMAC 100 2.6598 1.1648

SKEW 100 2.5903 1.1565

ROT 100 failed: energy blows up at T = 25

CONS 100 failed: energy blows up at T = 78

Very fine discretization 100 2.6454 1.1373

Saha [46] 100 2.43 1.11

Saha [45] 100 2.60 (not given)

Table 3.2: Shown above are the average drag coefficient and x-coordinate of the recirculation point for simulations of flow past
a flat plate with varying formulations, together with reference values from a DNS and from [45, 46].

3.4 Conclusions

We have developed a new discrete formulation for the incompressible NSE, named the

EMA-conserving (EMAC) formulation herein, which conserves energy, momentum, angular mo-

mentum, when the solenoidal constraint on the velocity is enforced only weakly. Moreover, we

show that none of the commonly used convective, conservative, rotational, and skew-symmetric

formulations conserve each of energy, momentum, and angular momentum. Results of several nu-

merical experiments have been provided which verify the discrete conservation properties of the

EMAC scheme, and also show that it performs at least as good, or better, than the commonly used

formulations.
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Chapter 4

3D Channel Flows Past Cylinder

4.1 The test problem

The domain Ω is a 3D box with dimensions 0.41×0.41×2.5m, and the obstacle is a circular

cylinder with the diameter D = 0.1m. A diagram is shown in the figure 4.1. Here, we denote Γwalls

to be the bottom, left, right and top walls of the channel and the boundary of the cylinder, Γin to

be the left boundary of the channel (inlet), and Γout to be the right boundary (outlet).

Figure 4.1: The channel with the circular cylinder.
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4.2 Statistics of interest

In the paper [49], the Reynolds number for this problem is defined as

Re =
ŪD

ν
, (4.1)

where

Ū =
4

9
Umax

is mean inflow velocity, and ν is the kinematic viscosity of the fluid. In the definition of drag and

lift coefficients we follow the paper [49]. The drag coefficient is defined as

cd(t) =
2

ρHŪ2D

∫
S

(
ρν
∂uts(t)

∂n
ny − p(t)nx

)
dS

where H = 0.41m is the height and the width of the channel, S denotes the boundaries of an

obstacle, n = (nx, ny)
T is normal vector on S directing into domain, tS = (ny,−nx)T is a tangential

vector on S, utS is a tangential velocity (utS := t · u), where t is a tangent vector to S.

The lift coefficient is defined as

cl(t) = − 2

ρHŪ2D

∫
S

(
ρν
∂uts(t)

∂n
nx + p(t)ny

)
dS

We compute the dressure drop in the way suggested in the paper [49],

∆P = P (xa, ya, za)− P (xe, ye, ze), (4.2)

where (xa, ya, za) = (0.45, 0.20, 0.205) and (xe, ye, ze) = (0.55, 0.20, 0.205).

4.3 Sine inflow past circular cylinder

In the present section we consider the channel flow with circular cylinder and sine inflow

boundary condition (the case “3D-3Z” described in [49]).
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Consider the incompressible NSE:

ut − ν∆u+ (u · ∇)u+∇p = f on (0, T ]× Ω,

∇ · u = 0 on (0, T ]× Ω,

u(0, x) = 0 on Ω,

(ν∇u− pI) · n|Γout = 0 on (0, T ],

u|Γwalls
= 0 on (0, T ],

where u is velocity, p is pressure, ν is the kinematic viscosity, f is an external force applied to the

fluid, Um = 2.25 m/s, H = 0.41m. The time interval for numerical simulation is 0 < t ≤ 8 s.

The inlet flow profile is given for 0 ≤ t ≤ 8 (the times of interest) as

ux(0, y, z, t)|Γin =
16Umyz(H − y)(H − z)

H4
sin

(
πt

8

)
,

where Um = 2.25 m/s, H = 0.41m, and we enforce no slip boundary conditions on the walls and

cylinder, and use a zero traction condition at the outflow. That the inlet is being forced periodically

in time leads to 0 ≤ Re(t) ≤ 100. We use the zero traction boundary condition at the outflow

instead of a generally used Dirichlet boundary condition, because it is physically more correct.

Thus it means that the total stress which the outflow boundary exerts on the fluid is equal to zero.

Also in contrast to the Dirichlet boundary condition, the zero traction boundary condition makes

no assumption on the velocity of a fluid at the outflow. The initial condition was taken to be the

flow at rest, which corresponds to t = 0.

We compute with ((Q2)3, Q1) elements on a quadrilateral mesh refined heavily around

the cylinder. Next we discuss the choice of grad-div stabilization parameter γ. When grad-div

parameter γ is significantly larger than 0.1, this makes it difficult to converge for the inner solve

of the Schur complement. However, with grad-div parameter γ significantly larger than 0.1, this

makes it difficult to converge for the outer solve of the Schur complement. Therefore a choice

of grad-div parameter of γ = 0.1 seems to be reasonable, and was used for all simulations. The
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runs take up to 72 hours, using between 120 and 1460 cores on the Palmetto cluster at Clemson

University.

4.3.1 Newton method derivation

We solve full nonlinear NSE problem at every time iteration. For this, we linearize the NSE

using Newton method. In this section we derive the Newton iteration equations for the NSE.

Denote by X =

u
p

. Let N(u) denotes the nonlinear term in the NSE. We will use this general

notation below, because derivation for all 5 schemes are very similar. Denote Navier-Stokes operator

with BDF2 approximation of the time-derivative term F (·) by

F (X) =

 1
∆t

(
3
2u− 2un + 1

2u
n−1
)

+N(u)− ν∆u+∇p− fn+1

∇ · u

 , (4.3)

where the upper index denotes time step number, and the lower index denotes Newton method

iteration number. The Newton iteration is defined in the following way:

Xk+1 = Xk − [∇F (Xk)]
−1 F (Xk). (4.4)

Denote

δX := Xk+1 −Xk. (4.5)

Multiply by ∇F (Xk) on both sides to get

[∇F (Xk)] δX = −F (Xk). (4.6)

By definition of directional derivative,

∇F (X)δX := lim
ε→0

F (X + εδX)− F (X)

ε
, (4.7)
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and now we obtain

F (X + εδX)− F (X) = ε

 3
2∆t(δu)− ν∆(δu) +∇(δp) + 1

ε [N(u+ εδu)−N(u)]

∇ · (δu)

 . (4.8)

For convective form

N(u+ εδu)−N(u) := (u+ εδu) · ∇(u+ εδu)− u · ∇u

= ε [u · ∇(δu) + (δu) · ∇u+ ε(δu) · ∇(δu)] .

From above we obtain for convective form:

∇F (Xk)δX =

 3
2∆t(δu)− ν∆(δu) +∇(δp) + uk · ∇(δu) + (δu) · ∇uk

∇ · (δu)

 . (4.9)

Thus for convective form and BDF2 approximation of the NSE, Newton method equations become

the following:

3

2∆t
uk+1 − ν∆uk+1 +∇pk+1 + uk · ∇uk+1 + uk+1 · ∇uk

= uk · ∇uk +
1

∆t

(
−2un +

1

2
un−1

)
,

∇ · uk+1 = 0.

Let φp,i be velocity test function, φu,i be pressure test function. Then the equations for Newton

method for the NSE in weak form for the convective form becomes:

3

2∆t
(φp,i, uk+1) + ν(∇φp,i,∇uk+1)− (∇ · φp,i, pk+1) + (φp,i, uk · ∇uk+1 + uk+1 · ∇uk)

−(φu,i,∇ · uk+1) = (φp,i, uk · ∇uk)− (φp,i,
1

∆t
(−2un +

1

2
un−1)),

(φu,i,∇ · uk+1) = 0.
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Newton method equations for the NSE for other formulations are derived in a very similar way, by

replacing the nonlinear term N(u).

4.3.2 Discretization details

The elements used in our simulations are the lowest order Taylor-Hood [54], which are a

very common choice. In deal.II these are (Q2, Q1) on quadrilateral meshes. We note these finite

elements are known to be inf-sup stable [10].

4.3.2.1 Mesh generated with Gmsh software

The very first mesh we used was generated with software tool called ’Gmsh’. As one can

see on figures 4.2, 4.3, this mesh leads to significant pressure fluctuations around the cylinder. We

believe this is caused by a high disproportion between the sizes of cells, especially in those around

the circular cylinder. Due to this issue we switched to another mesh generated with our C++ code,

which we will discuss in the next section.

Figure 4.2: Mesh generated with Gmsh software on midplane.
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Figure 4.3: Mesh generated with Gmsh software, around circular cylinder.

4.3.2.2 Mesh Refinement algorithm

We start with coarse 2D mesh generated in C++ code shown on figure 4.4. Next we

Figure 4.4: Coarse 2D mesh.

extrude the 2D mesh into 3D mesh, which is shown on figure 4.5. Than we refine cells around

the cylinder 1 time. Next we carry out 2 global refinements of obtained 3D mesh. Finally, we

carry out adaptive mesh refinement ‘on the fly’, that is at the second, third, and forth time steps

using the solution obtained at previous time step. Introducing adaptive mesh refinement ‘on the

fly’ significantly improved simulation accuracy at relatively low computational cost (by refining

approximately 30% of cells per time step), comparing to global refinements.

The mesh on the midplane around the cylinder obtained by this approach is shown in

figures 4.6 and 4.7. As one can see, side lengths of cells are now similar to each other, which is

an advantage for example for linear solver and solution error. Cells are much smaller at the top
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Figure 4.5: 3D mesh after extrusion.

Figure 4.6: Refined mesh on midplane around the circular cylinder.
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Figure 4.7: Refined mesh on midplane around the circular cylinder (closer to the cylinder).

and bottom of the cylinder, which is expected as we use adaptive refinement and norm of velocity

gradient is larger there. The mesh is finer around the circular cylinder and gets coarser further

from the circular cylinder, since the flow is most complicated close around the cylinder obstacle.

For sine inflow boundary condition we carried out computational experiments for meshes with 23.5

million, 7.4 million and 2.29 million degrees of freedom.

4.3.3 Reference values from literature for sine inflow

In table 4.1 we report reference values for 3D channel flow past circular cylinder problem

with sin inflow that we have found in the literature.

4.3.4 Computational results for sine inflow

In this section we show results obtained by numerical experiments for 3D channel flow past

circular cylinder obstacle with sine inflow boundary condition.

4.3.4.1 All forms results with finest mesh

We report statistics for all five formulations computed with 23.5 million degrees of freedom

in table 4.2, and statistics computed with 7.4 million degrees of freedom in table 4.3. The statistics
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Scheme ∆t DOF (K) max drag max lift min lift

Lehrenfeld & Schöberl
2016, polynomial de-
gree 5 [33]. Time-
discretization: modified
fractional-step-θ-scheme

0.004 939 3.29798 0.00278 -0.011054

Bayraktar, Mierka,
Turek 2012. 3rd order
method [8] (Q2/P

disk
1 )

0.005 89,760 3.2978 0.0028 -0.010999

Volker, John 2006 [29] 7,036 3.2968 -0.011

Schafer, Turek 1996 [49]
(several research groups
with different numerical
methods)

Depends
on

research
group

Depends
on

research
group

[3.2, 3.3] [0.002, 0.004]

Table 4.1: Reference values from literature for 3D-3Z case

for 23.5 million degrees of freedom are very similar between the different formulations. Interestingly,

even with 23.5 million degrees of freedom, the simulations appear to be not fully resolved spatially,

as max drag and lift from [8, 33] predict max drag and lift to be ∼ 3.2978 and 0.0028, respectively,

and minimum lift to be −0.010999 using 3,145,728 cells (with 90 million total DOF) and ∆t = 0.005.

However, our goal here is to rather study how a choice of a scheme affects on the statistics. EMAC’s

scheme maximum drag is the closest to literature values both for 23.5 and 7.4 million degrees of

freedom mesh. Maximum lift, minimum lift and minimum drag are almost the same for all schemes.

They also match well corresponding statistics from the literature. However there are no reference

values for minimum and maximum pressure drop.

Scheme ∆t max drag min drag max lift min lift max ∆P min ∆P

CONSERV 0.005 3.2716 -0.17081 0.002756 -0.01123 3.351 -0.1033
CONVECT 0.005 3.2727 -0.17082 0.002756 -0.0113 3.352 -0.1032
EMAC 0.005 3.2784 -0.17094 0.002755 -0.01164 3.356 -0.1029
ROT 0.005 3.2724 -0.17081 0.002756 -0.01106 3.345 -0.1034
SKEW 0.005 3.2722 -0.17082 0.002756 -0.01126 3.352 -0.1033

Table 4.2: Statistics for the 5 formulations, where the nonlinear problem is fully resolved at each time step. 23.5 million mesh
DOF. ∆t = 0.005. Results that are closest to literature values are in bold.

4.3.4.2 Results by scheme

In this section we show computational results for each of 5 schemes separately.
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Scheme max drag min drag min lift max lift ∆Pmax ∆Pmin
CONS 3.24648 -0.170774 -0.01022 0.002753 3.345 -0.103599
CONV 3.24388 -0.170789 -0.01020 0.002753 3.346 -0.103568
EMAC 3.25593 -0.170797 -0.01035 0.002753 3.351 -0.103541
ROT 3.24108 -0.170805 -0.01012 0.002753 3.336 -0.103574
SKEW 3.24519 -0.170781 -0.01021 0.002753 3.345 -0.103583

Table 4.3: Statistics for the 5 formulations, where the nonlinear problem is fully resolved at each time step. 7.42 million mesh
DOF. ∆t = 0.005. Results that are closest to literature values are in bold.

outflow BC ∆t DOF Cmaxd Cmind Cmaxl Cminl

No stress 0.01 7410378 3.2351 -0.1733 0.002752 -0.0100
No stress 0.01 23576690 3.2691 -0.1732 0.002756 -0.0110
No stress 0.005 2289362 3.2296 -0.1708 0.002751 -0.0099
No stress 0.005 7419803 3.2411 -0.1708 0.002753 -0.0101
No stress 0.005 23516262 3.2724 -0.1708 0.002756 -0.0111
No stress 0.0025 7422017 3.2617 -0.1683 0.002757 -0.0111
No stress 0.00125 7413223 3.2651 -0.1690 0.002757 -0.0111
Dirichlet 0.005 7409020 3.2426 -0.1709 0.002753 -0.0102

Table 4.4: Statistics for the rotational formulation only, for different ∆t and DOF, where the nonlinear problem is fully resolved
at each time step. Part 1

outflow BC ∆t DOF ∆Pmax ∆Pmin drag range lift range ∆Pmax −∆Pmin
No stress 0.01 7410378 3.334 -0.1056 3.4083 0.013 3.440
No stress 0.01 23576690 3.345 -0.1054 3.4423 0.014 3.450
No stress 0.005 2289362 3.333 -0.1035 3.4004 0.013 3.437
No stress 0.005 7419803 3.336 -0.1036 3.4119 0.013 3.440
No stress 0.005 23516262 3.345 -0.1034 3.4432 0.014 3.448
No stress 0.0025 7422017 3.344 -0.1014 3.4301 0.014 3.445
No stress 0.00125 7413223 3.343 -0.1019 3.4341 0.014 3.445
Dirichlet 0.005 7409020 3.336 -0.1037 3.4135 0.013 3.440

Table 4.5: Statistics for the rotational formulation only, for different ∆t and DOF, where the nonlinear problem is fully resolved
at each time step. Part 2.
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In tables 4.4 and 4.5 we collect results for the rotational formulation only. From table 4.4

it follows that for the rotational formulation, the maximum drag converged in at least 2 digits, the

minimum drag converged in 2 digits (after the decimal), the maximum lift converged in 5 digits

(after the decimal), and the minimum lift converged in 3 digits (after the decimal). From table 4.5

it appears, that maximum pressure converged in 3 digits, minimum pressure converged in 2 digits

(after the decimal).

outflow BC ∆t DOF Cmaxd Cmind Cmaxl Cminl

No stress 0.01 7410802 3.2396 -0.1732 0.00275 -0.0100
No stress 0.01 23579480 3.2686 -0.1732 0.00276 -0.0112
No stress 0.005 2289362 3.2349 -0.1708 0.00275 -0.0100
No stress 0.005 7419112 3.2452 -0.1708 0.00275 -0.0102
No stress 0.005 23516262 3.2722 -0.1708 0.00276 -0.0113
No stress 0.0025 7422017 3.2622 -0.1683 0.00276 -0.0110
Dirichlet 0.005 7409020 3.2468 -0.1709 0.00275 -0.0103

Table 4.6: Statistics for the skew-symmetric formulation only, for different ∆t and DOF, where the nonlinear problem is fully
resolved at each time step.

outflow BC ∆t DOF ∆Pmax ∆Pmin drag range lift range ∆Pmax −∆Pmin

No stress 0.01 7410802 3.344 -0.1056 3.4128 0.013 3.449
No stress 0.01 23579480 3.352 -0.1053 3.4418 0.014 3.457
No stress 0.005 2289362 3.342 -0.1035 3.4056 0.013 3.446
No stress 0.005 7419112 3.345 -0.1036 3.4160 0.013 3.449
No stress 0.005 23516262 3.352 -0.1033 3.4430 0.014 3.455
No stress 0.0025 7422017 3.352 -0.1015 3.4305 0.014 3.453
Dirichlet 0.005 7409020 3.345 -0.1037 3.4177 0.013 3.449

Table 4.7: Statistics for the skew-symmetric formulation only, for different ∆t and DOF, where the nonlinear problem is fully
resolved at each time step.

In tables 4.6 and 4.7 we show results for the skew-symmetric formulation only. From table

4.6 it follows, that for the skew-symmetric formulation the maximum drag converged in at least 2

digits, minimum drag converged in 2 digits (after the decimal), maximum lift converged in 4 digits

(after the decimal), and minimum lift converged in 3 digits (after the decimal). From table 4.7

it appears, that maximum pressure converged in 3 digits, minimum pressure converged in 2 digits

(after the decimal).

In tables 4.8 and 4.9 we show results for the convective formulation only. From table 4.8 it

75



outflow BC ∆t DOF Cmaxd Cmind Cmaxl Cminl

No stress 0.01 7410177 3.2379 -0.1733 0.00275 -0.0100
No stress 0.01 23579288 3.2688 -0.1732 0.00276 -0.0112
No stress 0.005 2289362 3.2330 -0.1708 0.00275 -0.0100
No stress 0.005 7419112 3.2439 -0.1708 0.00275 -0.0102
No stress 0.005 23516262 3.2727 -0.1708 0.00276 -0.0113
No stress 0.0025 7422017 3.2622 -0.1683 0.00276 -0.0110
Dirichlet 0.005 7409020 3.2454 -0.1709 0.00275 -0.0102

Table 4.8: Statistics for the convective formulation only, for different ∆t and DOF, where the nonlinear problem is fully resolved
at each time step. Part 1.

outflow BC ∆t DOF ∆Pmax ∆Pmin drag range lift range ∆Pmax −∆Pmin

No stress 0.01 7410177 3.344 -0.1056 3.4112 0.013 3.449
No stress 0.01 23579288 3.352 -0.1053 3.4420 0.014 3.457
No stress 0.005 2289362 3.343 -0.1035 3.4038 0.013 3.446
No stress 0.005 7419112 3.346 -0.1036 3.4147 0.013 3.449
No stress 0.005 23516262 3.352 -0.1032 3.4435 0.014 3.456
No stress 0.0025 7422017 3.352 -0.1015 3.4305 0.014 3.454
Dirichlet 0.005 7409020 3.345 -0.1037 3.4163 0.013 3.449

Table 4.9: Statistics for the convective formulation only, for different ∆t and DOF, where the nonlinear problem is fully resolved
at each time step. Part 2

follows that for the convective formulation, the maximum drag converged in at least 2 digits, the

minimum drag converged in 2 digits (after the decimal), the maximum lift converged in 4 digits

(after the decimal), and the minimum lift converged in 3 digits (after the decimal). From table 4.9

it appears, that maximum pressure converged in 3 digits, minimum pressure converged in 2 digits

(after the decimal).

outflow BC ∆t DOF Cmaxd Cmind Cmaxl Cminl

No stress 0.01 7410234 3.2411 -0.1732 0.00275 -0.0100
No stress 0.01 23579751 3.2685 -0.1732 0.00276 -0.0112
No stress 0.01 70456859 3.2859 -0.1737 0.00277 -0.0112
No stress 0.005 2289362 3.2366 -0.1708 0.00275 -0.0100
No stress 0.005 7419112 3.2465 -0.1708 0.00275 -0.0102
Dirichlet 0.005 7409032 3.2481 -0.1709 0.00275 -0.0103
No stress 0.005 23516262 3.2716 -0.1708 0.00276 -0.0112
No stress 0.0025 7422017 3.2621 -0.1683 0.00276 -0.0110

Table 4.10: Statistics for the conservative formulation only, for different ∆t and DOF, where the nonlinear problem is fully
resolved at each time step.
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outflow BC ∆t DOF ∆Pmax ∆Pmin drag range lift range ∆Pmax −∆Pmin

No stress 0.01 7410234 3.344 -0.1056 3.4144 0.013 3.449
No stress 0.01 23579751 3.351 -0.1053 3.4417 0.014 3.457
No stress 0.01 70456859 3.341 -0.1054 3.4597 0.014 3.446
No stress 0.005 2289362 3.342 -0.1035 3.4074 0.013 3.446
No stress 0.005 7419112 3.345 -0.1036 3.4172 0.013 3.449
Dirichlet 0.005 7409032 3.345 -0.1037 3.4190 0.013 3.449
No stress 0.005 23516262 3.351 -0.1033 3.4425 0.014 3.455
No stress 0.0025 7422017 3.351 -0.1015 3.4304 0.014 3.453

Table 4.11: Statistics for the conservative formulation only, for different ∆t and DOF, where the nonlinear problem is fully
resolved at each time step.

In tables 4.10 and 4.11 we show results for the conservative formulation only. From table

4.10 it follows that for the conservative formulation, maximum drag converged in at least 2 digits,

minimum drag converged in 2 digits (after the decimal), maximum lift converged in 4 digits (after

the decimal), and minimum lift converged in 3 digits (after the decimal). From table 4.11 it appears

that maximum pressure converged in 3 digits, and minimum pressure converged in 2 digits (after

the decimal).

In tables 4.12 and 4.13 we show results for the EMAC formulation only. From table 4.12 it

follows, that for the EMAC formulation maximum drag converged in at least 2 digits, minimum drag

converged in 2 digits (after the decimal), maximum lift converged in 4 digits (after the decimal),

and minimum lift converged in 3 digits (after the decimal). From table 4.13 it appears, that for

the EMAC scheme the maximum pressure converged in 3 digits, the minimum pressure converged

in 2 digits (after the decimal).

outflow BC ∆t DOF Cmaxd Cmind Cmaxl Cminl

No stress 0.01 7410216 3.2501 -0.1733 0.00275 -0.0101
No stress 0.01 23579573 3.2749 -0.1733 0.00276 -0.0115
No stress 0.005 2289362 3.2459 -0.1708 0.00275 -0.0101
No stress 0.005 7419112 3.2559 -0.1708 0.00275 -0.0104
No stress 0.005 23516526 3.2784 -0.1709 0.00276 -0.0116
No stress 0.0025 7422017 3.2678 -0.1683 0.00276 -0.0110
Dirichlet 0.005 7409210 3.2576 -0.1709 0.00275 -0.0104

Table 4.12: Statistics for the EMAC formulation only, for different ∆t and DOF, where the nonlinear problem is fully resolved
at each time step. Part 1.
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outflow BC ∆t DOF ∆Pmax ∆Pmin drag range lift range ∆Pmax −∆Pmin

No stress 0.01 7410216 3.349 -0.1055 3.4234 0.013 3.455
No stress 0.01 23579573 3.356 -0.1050 3.4483 0.014 3.461
No stress 0.005 2289362 3.348 -0.1034 3.4167 0.013 3.451
No stress 0.005 7419112 3.351 -0.1035 3.4267 0.013 3.455
No stress 0.005 23516526 3.356 -0.1029 3.4493 0.014 3.459
No stress 0.0025 7422017 3.356 -0.1014 3.4361 0.014 3.458
Dirichlet 0.005 7409210 3.351 -0.1036 3.4285 0.013 3.455

Table 4.13: Statistics for the EMAC formulation only, for different ∆t and DOF, where the nonlinear problem is fully resolved
at each time step. Part 2

4.3.4.3 Evolution of statistics in time

Here we show how statistics (including drag, pressure drop, lift) change with respect to

simulation time. Figure 4.8 shows evolution in time of the drag coefficient for the EMAC scheme

Figure 4.8: The drag coefficient in time for the EMAC scheme, ∆t = 0.005.

with ∆t = 0.005, and without a limit on the number of Newton iterations. Figure 4.9 shows

evolution in time of the drag coefficient for the EMAC scheme with ∆t = 0.005, and without a

limit on the number of Newton iterations. Figure 4.10 shows evolution in time of pressure drop
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Figure 4.9: The lift coefficient in time for the EMAC scheme, ∆t = 0.005.

Figure 4.10: Pressure drop in time for the EMAC scheme, ∆t = 0.005.
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for EMAC scheme with ∆t = 0.005, and without a limit on the number of Newton iterations.

These figures match well with corresponding figures found in the literature (see for example paper

of Schafer,Turek 1996 [49]).

Figure 4.11: Kinetic Energy in time for the EMAC scheme, ∆t = 0.005.

Figure 4.11 shows evolution in time of kinetic energy for EMAC scheme with ∆t = 0.005,

and without a limit on the number of Newton iterations. Kinetic energy is zero at T = 0 and T = 8,

which is matches well with sin inflow boundary condition, which is zero both at T = 0 and T = 8.

Also from figure 4.11 one can see that kinetic energy is maximum at T = 4, which corresponds to

the maximum inflow boundary condition.

Figure 4.12 shows evolution in time of linear momentum, and figure 4.13 shows evolution

in time of angular momentum for EMAC scheme with ∆t = 0.005.

Next we collect and compare statistics for all 5 schemes on line figures. On figure 4.14 we

show the maximum drag coefficient for meshes with 2.29, 7.4 and 23.5 million degrees of freedom,

and for all of EMAC, conservative, convective, rotational and skew-symmetric formulations. Paper

[33] reports the maximum drag to be ∼ 3.29798 computed with div-free finite elements of order 5,
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Figure 4.12: Linear Momentum in time for the EMAC scheme, ∆t = 0.005.

Figure 4.13: Angular Momentum in time for the EMAC scheme, ∆t = 0.005.
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Figure 4.14: The maximum drag coefficient for all 5 schemes, for different meshes.

and paper [8] reports maximum drag to be ∼ 3.2978 (with 90 million total degrees of freedom and

∆t = 0.005). EMAC’s prediction of the maximum drag coefficient is the closest of all 5 formulations

to the above reference values for all meshes. For each mesh, the maximum drag coefficient of all 5

formulations differs only within 0.02. With the increase of mesh degrees of freedom to 23.5 million,

the interval for the maximum of drag coefficient for all 5 formulations decreases to under 0.01.

On figure 4.15 we show the maximum lift coefficient for meshes with 2.29, 7.4 and 23.5

million degrees of freedom, and for all of EMAC, conservative, convective, rotational and skew-

symmetric formulations. The maximum lift coefficient is almost the same for each particular mesh

for all formulations. Paper [33] reports the maximum lift to be ∼ 0.00278 computed with div-free

finite element of order 5. Paper [8] reports the maximum lift to be ∼ 0.0028 with 90 million total

degrees of freedom and ∆t = 0.005. All formulations predict the maximum lift coefficient with

very similar precision. The maximum lift coefficient changes only in sixth digit with the increase

of mesh degrees of freedom from 2.3 to 23.5 million.

On figure 4.16 we show the maximum pressure drop for meshes with 2.29, 7.4 and 23.5

82



Figure 4.15: The maximum lift coefficient for all 5 schemes, for different meshes.

Figure 4.16: Maximum pressure drop for all 5 schemes, for different meshes.
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million degrees of freedom, and for all of EMAC, conservative, convective, rotational and skew-

symmetric formulations. Reference values for maximum pressure drop are not found in the litera-

ture. Therefore for evaluation of maximum pressure drop results, we will use maximum pressure

drop from conservative scheme we computed with 70 million degrees of freedom (presented in table

4.11), which is 3.341. All schemes seems to perform equally comparing to this value.

Figure 4.17: Minimum lift for all 5 schemes, for different meshes.

On figure 4.17 we show the minimum lift coefficient for meshes with 2.29, 7.4 and 23.5

million degrees of freedom, and for all of EMAC, conservative, convective, rotational and skew-

symmetric formulations. Reference values for the minimum lift coefficient for 3D cylinder with

sin inflow are not found in the literature. Therefore for evaluation of the minimum lift coefficient

results, we will use the minimum lift coefficient from conservative scheme we computed with 70

million degrees of freedom, which is −0.1054. All schemes seems to perform very similar comparing

to this value.

Figure 4.18 shows iso-surfaces of vorticity magnitude in 3D together with streamlines that

show trajectories of particles in time. Coloring is based on pressure. Iso-surfaces are chosen for the
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Figure 4.18: Vorticity iso-contours with streamlines at T = 5 sec for EMAC form. ∆t = 0.005.

following vorticity magnitude values: 0, 54.625, 109.25, 163.875, 218.5, 273.125, 327.75, 382.375,

437, 491.625.

Figure 4.19: Pressure iso-contours in 3D
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Figure 4.19 shows iso-surfaces of pressure in 3D at T = 5 sec for EMAC form with coloring

based on velocity. Iso-surfaces are chosen for the following values of pressure: -1.698, -1.2237,

-0.7495, -0.275.

Figure 4.20: Velocity magnitude iso-contours on midplane at T = 5 sec.

Figure 4.20 magnitude of velocity iso-contours on midplane at T = 5 sec for EMAC form

with coloring based on pressure. The midplane is passing through the center of the circular cylinder

and is perpendicular to the axis of the cylinder. Iso-contours are chosen for the following values of

velocity magnitude: 0.1975, 0.6708, 1.144, 1.617, 2.091, 0.1, 0.05, 0.02.

Figure 4.21: Pressure iso-contours on midplane.

Figure 4.21 pressure iso-contours on midplane at T = 5 sec for EMAC form with coloring

based on pressure, and ∆t = 0.005. Iso-contours are chosen for the following values of pressure:

-3.534, -2.812, -2.09, -1.37, -0.646, 0.075, 0.797, 1.519, 2.24, 2.96.

4.3.4.4 EMAC linearizations

This section is from the work done by the author and collaborators in [14]. An important

direction is to consider more efficient treatments of the EMA-conserving formulation. That is,
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in this study, we have considered schemes that solve the nonlinear problem at each time step.

However, it is typical with the more commonly used formulations to linearize the nonlinear term

at each time step by approximating one of the velocities using previous time step solutions; such

schemes need only one linear solve per time step, whereas schemes that resolve the full nonlinear

problem with Newton’s method often require two or three.

We report statistics for the different limits on the number of nonlinear Newton iterations

for EMAC formulation in table 4.14. It appears to be enough to do 2 Newton steps for the EMAC

scheme, while a single Newton steps produces small variations in the statistics.

Scheme (EMAC) max drag min drag min lift max lift ∆Pmax ∆Pmin
Full nonlinear 3.25594 -0.17080 -0.01035 0.002753 3.351321 -0.103541
2-step Newton 3.25594 -0.17080 -0.01035 0.002753 3.351321 -0.103541
1-step Newton 3.25962 -0.17087 -0.00992 0.002762 3.352163 -0.103532

Table 4.14: EMAC statistics for 1, 2, and ‘as many as necessary’ Newton steps take at each time steps. 7.42 million mesh DOF.
∆t = 0.005

Interestingly, at most 2 Newton iterations required to achieve the required solution tolerance

for the full nonlinear EMAC problem. This explains why the statistics for ’Full nonlinear’ and ’2-

step Newton’ are the same.

4.3.4.5 Mesh refinement algorithm, second approach

Statistics we obtained with numerical computations in the last section match very close

the values found in the literature. Thus the maximum drag coefficient matches those found in the

literature in 3 significant digits, but is about 0.01 different even when we used mesh with 70 million

degrees of freedom (for conservative formulation), see for example paper of Braack and Richter

[9]. Therefore we also carried numerical computations with another approach to mesh refinement,

which leads to smaller cells right at the boundary of the circular cylinder, and is described below.

First, we extrude code generated coarse 2D mesh into 3D mesh. Than we carry out 1 global

refinement. Than we make several refinements of cells right at the boundary of the cylinder. Next

we carry out an adaptive mesh refinement ‘on the fly’, that is we carry the adaptive mesh refinement

at the second time iteration using the solution obtained at the first time iteration.
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As one can notice, in this approach we changed the order of global mesh refinement and

refinements of cells right at the boundary of the cylinder. Also we now carry out several refinements

of cells right at the boundary of the cylinder, comparing to one such mesh refinement in the previous

section. This approach allows to obtain cells with a very small diameter at the boundary of the

cylinder while keeping total degrees of freedom relatively low.

Table 4.15 shows statistics computed with 22.5 million degrees of freedom, where mesh around the

circular cylinder was refined 5 times.

Scheme DOF Cmaxd Cmaxl Cminl ∆Pmax
CONSERV 22485976 3.3011 0.00277 -0.0112 3.344
CONVECT 22483776 3.3019 0.00277 -0.0113 3.348
EMAC 22564844 3.3045 0.00277 -0.0112 3.342
ROT 22492148 3.3041 0.00277 -0.0114 3.346
SKEW 22483792 3.3015 0.00277 -0.0113 3.346

Table 4.15: Statistics for the 5 formulations, where the nonlinear problem is fully resolved at each time step. Around 22.5
million mesh DOF. ∆t = 0.005. Results that are closest to the literature values are in bold.

From table 4.15 we conclude that the maximum drag obtained by the current approach to mesh

refinement with 22.5 million degrees of freedom, has difference from the maximum drag value

obtained by Bayraktar, Mierka, Turek 2012 [8] with 3rd order method with 90 million degrees of

freedom has maximum difference among all 5 schemes at most 0.006688497. This difference with

the maximum drag value in the literature is several times smaller than results obtained by previous

approach to mesh refinement with 23.5 million degrees of freedom. Furthermore, the maximum

drag values obtained by all 5 schemes lie within the narrow interval [3.301148455, 3.304488497].

We conclude that the accuracy of drag coefficient depends heavily on the size of cells right at

the boundary of cylinder obstacle, even when total degrees is similar in different meshes. On the

other hand, reference values for the maximum drag from the literature shown in table 4.1 are not

consistent between authors in the third digit after the decimal. Due to above it is possible that

the maximum drag values obtained by our computations is as close (or possibly closer) to the

(unknown) true value of the maximum drag for this problem as the values from the literature.

Based on results obtained with the approach to mesh refinement presented in the present and last

section we give the following reference interval for the maximum drag [3.2716, 3.3045].
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The maximum lift values obtained by all 5 schemes lie within the narrow interval

[0.002767976, 0.00277314]. Thus the maximum lift for all 5 schemes coincide in 5 digits. Minimum

lift values obtained by all 5 schemes lie within the interval [−0.011394966,−0.01116685]. Thus

minimum lift for all 5 schemes coincide in 3 digits. Pressure drop values obtained by all 5 schemes

lie within the interval [3.341756726, 3.347657548].

4.3.5 Summary

A three-dimensional flow through a channel around a circular cylinder obstacle with time-

independent inflow has been studied for all of rotational, skew-symmetric, convective, conservative

and EMAC formulations. The evolution in time of the drag coefficient at the circular cylinder

obstacle, the lift coefficient and the pressure drop have been studied.

In the present section, we obtained reference intervals for the maximum drag, the maximum

lift and the pressure drop for the channel flow past circular cylinder with sin inflow and Reynolds

number varying from 0 to 100. We carried out numerical computations with multiple meshes

obtained by two completely different approaches to mesh refinement, and different time steps.

Our numerical results obtained by the first approach to mesh refinement matches very well

with statistics obtained by the second approach to mesh refinement. Our results also match well

with the corresponding statistics reported in the literature (see e.g. table 4.1).
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4.4 Constant inflow past circular cylinder

In the present chapter we study channel flow with the same circular cylinder obstacle as in

the previous chapter, but now sin inflow boundary condition is replaced with constant in time inflow

boundary condition. The Re = 20 problem with constant inflow has been studied in [9, 29, 49],

where this problem is shown to give a steady solution. We consider the case “3D-2Z” (described in

[49]) with the inlet being forced constant in time leading to a Re = 100. In this section we compute

and compare statistics for all of EMAC, conservative, convective, rotational and skew-symmetric

schemes, for several different meshes and with different time steps. We will also study if a higher

Reynolds number 100 lead to a time dependent solution.

Consider the incompressible NSE:

ut − ν∆u+ (u · ∇)u+∇p = f on (0, T ]× Ω,

∇ · u = 0 on (0, T ]× Ω,

u(0, x) = 0 on Ω,

(ν∇u− pI) · n|Γout = 0 on (0, T ],

u(0, y, z, t)|Γin =
16Umyz(H − y)(H − z)

H4
on (0, T ],

u|Γwalls
= 0 on (0, T ],

where u is velocity, p is pressure, ν is kinematic viscosity, f is external force applied to the fluid,

Um = 2.25 m/s, H = 0.41m. The time interval is 0 < t ≤ 8s.

The inlet flow profile is given for 0 ≤ t ≤ 8 (the times of interest) as

ux(0, y, z, t)|Γin =
16Umyz(H − y)(H − z)

H4
,

where Um = 2.25 m/s, H = 0.41m, and we enforce no slip boundary conditions on the walls and

cylinder, and use a zero traction condition at the outflow.
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4.4.1 Computational results

4.4.1.1 All forms results with finest mesh

We report statistics for all five formulations computed at the last time iteration with ≈ 22.4

million degrees of freedom in table 4.16, and statistics computed with ≈ 7.2 million degrees of

freedom in table 4.17.

Scheme ∆t Mesh DOF
Drag at last

time step
Lift at last time

step
Pressure drop at

last time step

CONSERV 0.005 22405401 3.291 -0.0099 3.349
SKEW 0.005 22394113 3.291 -0.0100 3.350
EMAC 0.005 22425516 3.291 -0.0103 3.349
CONVECT 0.005 22405303 3.291 -0.0100 3.350
ROT 0.005 22259684 3.289 -0.0100 3.350

Table 4.16: Statistics for the 5 formulations, where the nonlinear problem is fully resolved at each time step. 22.4 million mesh
DOF. ∆t = 0.005.

Scheme ∆t Mesh DOF
Drag at last

time step
Lift at last time

step
Pressure drop at

last time step

EMAC 0.005 7131438 3.281 -0.0109 3.369
ROT 0.005 7133772 3.280 -0.0107 3.351
CONSERV 0.005 7199301 3.283 -0.0102 3.350
CONVECT 0.005 7203358 3.283 -0.0103 3.350
SKEW 0.005 7206569 3.283 -0.0102 3.350

Table 4.17: Statistics for the 5 formulations, where the nonlinear problem is fully resolved at each time step. 7.2 million mesh
DOF. ∆t = 0.005.

Drag, lift and pressure drop at the last time iteration are almost the same for all schemes both

for 22 and 7.2 million of degrees of freedom. Drag values computed by several research groups,

and reported in the paper of Schäfer and Turek, 1996 [49], range from 3.225 to 3.792. Thus for

22.4 million degrees of freedom computed drag at last time iteration for all schemes belong to an

interval from 3.2888 to 3.2915.

The lift coefficient values reported in [49], range from -0.0210 to 0.048. The drag and lift coefficient

values we obtained with computed both with 22.4 million and 7.2 million degrees of freedom, and

with all schemes are within the above intervals. Thus for 22.4 million degrees of freedom computed

lift at last time iteration for all schemes belong to an interval from -0.0099 to -0.0103.
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The computed pressure drop at the last time iteration for 22.4 million degrees of freedom for all

schemes belong to an interval from 3.349 to 3.350. There are no reference values for Re = 100 for

pressure drop for this problem with constant inflow in the literature.

4.4.1.2 Results by scheme

In this section we show computational results for each of 5 schemes separately. In table

4.18 we collect results for the conservative formulation only. From table 4.18 it follows, that for

conservative formulation drag at the last time iteration converged in at least 2 digits. Thus increase

of mesh degrees of freedom from 2.3 million to 22.4 million changed drag by less than 0.02. Lift at

the last time iteration converged in 5 digits (after the decimal), and pressure drop converged in 3

digits.

∆t Mesh DOF
Drag at last

iteration
Lift at last
iteration

Pressure drop at
last iteration

0.005 2295555 3.274 -0.0099 3.358
0.0025 2282303 3.273 -0.0096 3.376
0.005 7199301 3.283 -0.0102 3.350

0.0025 7116164 3.281 -0.0103 3.366
0.005 22405401 3.291 -0.0099 3.349

Table 4.18: Statistics for the conservative formulation only for several different ∆t and DOF, where the nonlinear problem is
fully resolved at each time step.

In table 4.19 we collect results for the EMAC formulation only. From table 4.19 it follows, that for

EMAC formulation drag at the last time iteration converged in at least 2 digits, lift at the last

time iteration converged in 5 digits (after the decimal), and pressure drop converged in 3 digits.

∆t Mesh DOF
Drag at last

iteration
Lift at last
iteration

Pressure drop at
last iteration

0.005 2306538 3.273 -0.0100 3.391
0.0025 2293396 3.272 -0.0107 3.389
0.005 7131438 3.281 -0.0109 3.369

0.0025 7163775 3.280 -0.0103 3.353
0.005 22425516 3.291 -0.0103 3.349

Table 4.19: Statistics for the EMAC formulation only for several different ∆t and DOF, where the nonlinear problem is fully
resolved at each time step.

In table 4.20 we collect results for the rotational formulation only. From table 4.20 it follows, that
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for rotational formulation drag at the last time iteration converged in at least 2 digits, lift at

the last time iteration converged in 5 digits (after the decimal), and pressure drop converged in 3

digits.

∆t Mesh DOF
Drag at last

iteration
Lift at last
iteration

Pressure drop at
last iteration

0.005 2296327 3.274 -0.0102 3.357
0.0025 2285315 3.274 -0.0100 3.363
0.005 7133772 3.280 -0.0107 3.351

0.0025 7179341 3.281 -0.0104 3.350
0.005 22259684 3.289 -0.0100 3.350

Table 4.20: Statistics for the rotational formulation only for several different ∆t and DOF, where the nonlinear problem is fully
resolved at each time step.

In table 4.21 we collect results for the skew-symmetric formulation only. From table 4.21 it follows,

that for skew-symmetric formulation drag at the last time iteration converged in at least 2 digits,

lift at the last time iteration converged in 5 digits (after the decimal), and pressure drop converged

in 3 digits.

∆t Mesh DOF
Drag at last

iteration
Lift at last
iteration

Pressure drop at
last iteration

0.005 2293693 3.273 -0.0099 3.358
0.0025 2281566 3.273 -0.0096 3.375
0.005 7206569 3.283 -0.0102 3.350

0.0025 7127873 3.281 -0.0101 3.366
0.005 22394113 3.291 -0.0100 3.350

Table 4.21: Statistics for the skew-symmetric formulation only for several different ∆t and DOF, where the nonlinear problem
is fully resolved at each time step.

As we already indicated, statistics for each scheme are converging, and furthermore statistics for

all schemes seem to converge to the same values for drag, lift and pressure drop.

4.4.1.3 Evolution of statistics in time

In this section we show how statistics (including drag and lift coefficient, pressure drop)

change with respect to simulation time.

Figure 4.22 shows the evolution in time of the drag coefficient for all schemes starting from T = 0,

with ∆t = 0.005, without a limit on the number of Newton iterations. Figure 4.23 shows the same
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Figure 4.22: The drag coefficient for all schemes, start time T = 0

evolution in time of the drag coefficient, but starting from time T = 1. The evolution in time of

the drag coefficient for all 5 schemes is very similar. Figure 4.22 shows that the drag coefficient

becomes constant for all schemes at T = 3.5s. Figure 4.24 shows evolution in time of the lift

Figure 4.23: The drag coefficient for all 5 schemes, start time T = 1
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coefficient for all schemes starting from T = 0, with ∆t = 0.005, without a limit on the number of

Newton iterations. Figure 4.25 shows the same evolution in time of the lift coefficient, but starting

from time T = 1. The evolution in time of the lift coefficient for all 5 schemes is very similar.

Figure 4.25 shows that the lift coefficient becomes constant for all schemes at T = 3.5s.

Figure 4.24: The lift coefficient for all 5 schemes, start time T = 0

Figure 4.26 shows the evolution in time of the pressure drop for all schemes starting from T = 0,

with ∆t = 0.005, without a limit on the number of Newton iterations. Figure 4.27 shows the same

evolution in time of the pressure drop, but starting from time T = 1. The evolution in time of

pressure drop for all 5 schemes is very similar. Figure 4.27 shows that the pressure drop becomes

constant for all schemes at T = 3.5s.
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Figure 4.25: The lift coefficient for all 5 schemes, start time T = 1

Figure 4.26: Pressure drop for all 5 schemes, start time T = 0
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Figure 4.27: Pressure drop for all 5 schemes, start time T = 1

4.4.1.4 Charts

Next we collect and compare statistics for all 5 schemes on line figures. On figure 4.28 we

show the drag coefficient for meshes with 2.29, 7.2 and 22.4 million degrees of freedom, and

for all of EMAC, conservative, convective, rotational and skew-symmetric formulations. For each

mesh the drag coefficient of all 5 formulations differs only within 0.02. With the increase of mesh

degrees of freedom to 22.4, the interval for the drag coefficient for all 5 formulations decreases to

under 0.01. The drag coefficient is almost the same for all schemes (for each particular mesh).

On figure 4.29 we show the maximum lift coefficient for meshes with 2.29, 7.2 and 22.4 million

degrees of freedom, and for all of EMAC, conservative, convective, rotational and skew-symmetric

formulations. The maximum lift coefficient is almost the same for each particular mesh for all

formulations. The maximum lift coefficient changes only in the sixth digit with the increase of

mesh degrees of freedom from 2.3 to 22.4 million.

On figure 4.30 we show maximum pressure drop for meshes with 2.29, 7.2 and 22.4 million

degrees of freedom, and for all of EMAC, conservative, convective, rotational and skew-symmetric

formulations. Reference values for pressure drop for flow past circular cylinder with constant inflow
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Figure 4.28: The drag coefficient for all 5 schemes at the last time iteration, for different meshes.

Figure 4.29: The lift coefficient for all 5 schemes at the last time iteration, for different meshes.
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Figure 4.30: Pressure drop for all 5 schemes at the last time iteration, for different meshes.
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are not found in the literature.

Figure 4.31: Vorticity iso-contours with streamlines at T = 5 sec for EMAC form. ∆t = 0.005. Constant inflow.

Figure 4.31 shows iso-surfaces of vorticity magnitude in 3D together with streamlines that

show trajectories of particles in time. Coloring is based on pressure. Iso-surfaces are chosen for the

following vorticity magnitude values: 0, 54.625, 109.25, 163.875, 218.5, 273.125, 327.75, 382.375,

437, 491.625.

Figure 4.32 shows iso-surfaces of pressure in 3D at T = 5 sec for EMAC form with coloring

based on velocity. Iso-surfaces are chosen for the following values of pressure: -1.698, -1.2237,

-0.7495, -0.275.

Figure 4.33 shows magnitude of velocity iso-contours on midplane at T = 5 sec for EMAC

form with coloring based on pressure. The midplane is passing through the center of the circular

cylinder and is perpendicular to the axis of the cylinder. Iso-contours are chosen for the following

values of velocity magnitude: 0.1975, 0.6708, 1.144, 1.617, 2.091, 0.1, 0.05, 0.02.

Figure 4.34 shows pressure iso-contours on midplane at T = 5 sec for EMAC form with

coloring based on pressure, and ∆t = 0.005. Iso-contours are chosen for the following values of

pressure: -3.534, -2.812, -2.09, -1.37, -0.646, 0.075, 0.797, 1.519, 2.24, 2.96.
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Figure 4.32: Pressure iso-contours in 3D. Constant inflow.

Figure 4.33: Velocity magnitude iso-contours on midplane at T = 5 sec. Constant inflow.
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Figure 4.34: Pressure iso-contours on midplane at T = 5 sec.

4.4.2 Summary

We computed new and more precise reference values for Re = 100 problem for 3D channel

flow past circular cylinder with constant inflow for drag and lift coefficient, and pressure drop.

We compared the performance of EMAC, conservative, convective, rotational and skew-symmetric

formulations for different meshes with up to 22.4 million degrees of freedom. EMAC formulation

performed very similar to other formulations. Based on evolution in time figures of all of drag and

lift coefficient, and pressure drop we conclude that fluid flow becomes stable/constant at about

T = 3.5s, which indicates that Re = 100 with constant inflow is a stationary problem.

Statistics at the last time iteration Interval

Drag [3.2888, 3.2915]
Lift [−0.0099,−0.0103]
Pressure drop [3.349, 3.350]

Table 4.22: Interval obtained with 5 formulations, where the nonlinear problem is fully resolved at each time step. 22.4 million
mesh DOF. ∆t = 0.005.

We summarize the statistics obtained with the maximum space resolution with all of EMAC,

conservative, convective, rotational and skew-symmetric formulations, and ∆t = 0.005 as intervals

in table 4.22. These statistics can be used for verification of new models and/or discretization

schemes for the incompressible NSE. We note that the drag coefficient changes in the third digit

when we increase space resolution of the mesh from 7.2 million to 22.4 million degrees of freedom.
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Conclusions and Directions for Future Research
In chapter 2 of the present thesis we have computed reference values for a two-dimensional

flow through a channel around a vertical flat plate obstacle with a time-independent inflow problem.

New, more precise reference values for the averaged drag coefficient, recirculation length, and

the Strouhal number have been derived from the computational results. These statistics have

been verified by numerical computations with three time stepping schemes (BDF2, BDF3 and

Crank-Nicolson). The same numerical simulations were carried out independently using deal.II

and Freefem++ software and both gave very similar results. In addition both deal.II/Q2Q1 and

Freefem/P2P1 element types were used to verify the results. For the same parameters, numerical

simulations are carried out with several different meshes and different time step sizes. This allowed

us to show convergence of statistics both with respect to spatial resolution and with respect to time

step refinement.

In chapter 3 we have developed a new discrete formulation for the incompressible NSE,

named the EMA-conserving (EMAC) formulation, which conserves energy, momentum, angular mo-

mentum, when the solenoidal constraint on the velocity is enforced only weakly. Moreover, we have

shown that none of the commonly used convective, conservative, rotational, and skew-symmetric

formulations conserve each of energy, momentum, and angular momentum (for a general finite ele-

ment choice). Results of several numerical experiments have been provided which verify the discrete

conservation properties of the EMAC scheme, and also show that it performs at least as good, or

better, than the commonly used formulations. In chapter 3 we have used statistics obtained in

chapter 2 to compare the performance of the novel EMAC scheme with 4 most commonly used

formulations (rotational, skew-symmetric, convective and conservative). The EMAC formulation

seems to significantly outperform all of rotational, skew-symmetric, conservative and convective

formulations when the number of degrees of freedom is ‘relatively low’ (see Gresho problem in

chapter 3 for example). ‘Relatively low’ of course depends on the dimension of the problem and on

Reynolds number.
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In section 4.3 of the present thesis we have computed reference values for three-dimensional

channel flow past circular cylinder obstacle with sin inflow. We have studied numerically fully non-

linear schemes, which we linearized using Newton method. We also compared the performance of

the EMAC scheme with 4 most commonly used formulations (rotational, skew-symmetric, convec-

tive and conservative) for three-dimensional channel flow past circular cylinder with time-dependent

inflow problem. Statistics computed with time-dependent inflow and the EMAC formulation match

very well with those found in the literature. In section 4.3 we also studied the performance of the

EMAC formulation for 1, 2 and ‘as many as necessary’ number of Newton iterations. Interestly, at

most 2 Newton iterations required to achieve the required solution tolerance for the full nonlinear

EMAC problem.

In section 4.4 we have computed reference values for three-dimensional channel flow past

circular cylinder obstacle with constant inflow. Drag, lift and pressure drop obtained by numerical

computations with the EMAC formulation for three-dimensional channel flow past circular cylinder

problem are very similar to the corresponding statistics computed with rotational, skew-symmetric,

convective and conservative formulations.

In all our numerical computations the EMAC formulation provides at least as accurate or

better results than rotational, skew-symmetric, convective and conservative formulations.

Based on the above results, we conclude that the energy, momentum, angular momentum

formulation/scheme (EMAC) is a very promising method and it should be studied further. It has

been well-known for decades that more physically accurate schemes are more stable and accurate,

especially over long times, and our computational study of the EMAC formulation indicates this is

true here also.

For future research directions, we think it is necessary to carry out more numerical tests

with the novel EMAC formulation, which has been developed in the present thesis. Our numerical

simulations for three-dimensional flow past circular cylinder with constant inflow and Reynolds

number 100 have showed that it results in a stationary flow (i.e. no vertices). We think it is

important to perform numerical computations with a similar geometry but for unsteady (periodic)

flows that generate vertices, for example numerical simulation of three-dimensional flow past circular
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cylinder problem with a Reynolds number higher than 100. It is also an open question at which

lowest Reynolds number this problem generates vortices.

All of our numerical computations with three-dimensional flows were carried out with grad-

div stabilization term. We think it is necessary to carry out numerical computations with three-

dimensional flows and without grad-div stabilization term, since it might show more difference

between the performance of EMAC and the other four commonly used formulations. However this

in its turn would require another linear solver, because the linear solver we use for three-dimensional

simulations uses a preconditioner that requires the grad-div stabilization term.

In the present thesis we have showed that for the incompressible NSE our novel EMAC

formulation conserves kinetic energy, linear and angular momentums. However many fluids cannot

be described by the incompressible NSE. Therefore we believe a theoretical study of EMAC conser-

vation properties in terms of physical quantities (kinetic energy, linear and angular momentums)

for the incompressible NSE and/or fluids with variable density is needed also, which will likely

result in a significant effort in analysis.

There is a need for numerical simulations and theoretical analysis of whether physical con-

servation laws hold in case of a non-Dirichlet boundary conditions for the EMAC formulation. Since

non-Dirichlet boundary conditions usually means there is a fluid inflow/outflow, which in its turn

affects such physical quantities as kinetic energy, linear and angular momentums. In this case, one

would have to consider the conservation of more general physical quantities that take into account

fluid inflow/outflow.

Our computational tests for the two-dimensional channel flow past vertical flat plate show

that vertices appear with EMAC formulation for a Reynolds number lower than with the other

commonly used formulations. We believe this fact is related to a better conservation properties

of physical quantities of EMAC formulation. It would be interesting to determine the lowest

Reynolds number at which vertices appear in three-dimensional flow past circular cylinder with

constant inflow for all formulations of the NSE.

Another potential research direction is to study the performance of the EMAC formulation

with turbulent flows. Numerical simulation of turbulent flows has always been a difficult area for
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example due to the following. It was discovered by Kolmogorov in 1941 [30] (and further analyzed in

[? ]) that for large Reynolds numbers, the smallest stable eddy has length scale of order O(Re−
3
4 ).

Therefore for a numerical simulation to capture the smallest possible eddy, one needs to choose a

mesh with

∆x = ∆y = ∆z = O(Re−
3
4 ).

Hence the number of mesh points in a 3D simulation must be of order Re9/4 in order to capture all

the physics. Since turbulent flows have very high Reynolds number, such numerical computations

are not feasible even on the current supercomputers. Therefore we think that the application of the

EMAC formulation to turbulent flows is especially interesting due to the conservation properties

of the EMAC formulation.
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