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ABSTRACT 

 White-nose syndrome (WNS), an infectious disease that has caused massive 

declines in bat populations since its discovery in 2006, may be indirectly affecting bat 

community structure. As WNS-susceptible species populations decline, WNS-resistant 

species may be taking over foraging niches formerly occupied by WNS-susceptible 

species. We hypothesized that bat communities located in WNS-positive areas in South 

Carolina have experienced niche partitioning relaxation.  

First, because some pre-WNS acoustic data were collected using different 

methods than those primarily used today, we examined if sampling method affected 

detection probabilities and our interpretation of habitat use of bats. We collected data 

using passive and active techniques in July 2017 at the Savannah River Site in South 

Carolina. We used occupancy modeling to determine if data collection method influenced 

detection probability of bats. We found that method had a significant effect on detection 

probabilities of all species and that passively sampling throughout the night yielded the 

highest detection probability. To further examine if data collection method influenced 

habitat use conclusions, we used occupancy modeling to analyze data collected passively 

in July to August 2016 and July 2017 and compared our results to a historical study in 

which active acoustic sampling was used at the same sites in 2001. We found that some 

parameters had the same effect between studies for some species, while other parameters 

had a different effect between studies. We concluded that data collected using different 

methods was not comparable.  
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Second, revisiting a WNS-positive site where passive acoustic sampling was 

conducted historically, we examined the extent to which spatial and temporal niche 

partitioning occurred pre- and post-WNS. Specifically, we collected data using acoustic 

detectors from May to August 2004 and 2005 (“pre-WNS”) and from May to August 

2016 and May to June 2017 (“post-WNS”) in the Andrew Pickens District (APD) of the 

Sumter National Forest in northwestern South Carolina. To examine changes in the 

spatial niche partitioning of the bat community, we used multi-season occupancy 

modeling and examined colonization and extinction probabilities. To examine temporal 

niche partitioning, we examined bat activity throughout the night using temporal overlap 

analysis. We found that the WNS-resistant species had higher colonization rates than 

WNS-susceptible species and changed their nightly activity so that it was more evenly 

distributed throughout the night post-WNS. Myotis, a WNS-susceptible genus, stopped 

using areas in hardwood habitat and changed when they were active at night post-WNS. 

Tricolored bats, a WNS-susceptible species, exhibited changes in the areas they were 

using, though this did not seem to be contingent on the presence of other species, and did 

not change when they were active at night post-WNS. These results provide evidence that 

WNS destabilized the spatial and temporal niche partitioning exhibited by bats pre-WNS 

in South Carolina and further evidence that WNS is both directly and indirectly affecting 

the bat communities in North America. 
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CHAPTER ONE 

 

COMPARISON OF PASSIVE AND ACTIVE ACOUSTIC SAMPLING AND 

OCCUPANCY OF A BAT COMMUNITY IN SOUTH-CENTRAL SOUTH 

CAROLINA 

 

 

Techniques for monitoring bats have changed rapidly over the past decades as 

technology has evolved. In early bat studies, capture methods such as mist netting and 

harp trapping were heavily relied upon to collect basic community data (Baker & Ward, 

1967; Fleming et al., 1972; Kunz, 1973; Bell, 1980; Barclay, 1991; Kuenzi et al., 1999). 

As acoustic sampling technologies were developed and improved upon, biologists began 

to study bats in locations that were otherwise difficult to sample using capture methods 

(e.g., Hayes, 1997; Wickramasinghe et al., 2003; Williams et al., 2006; Brooks, 2008). 

Acoustic techniques have become more heavily relied on in bat monitoring studies over 

the past two decades because compared to mist netting and harp trapping, acoustic 

sampling is (1) less invasive, (2) less time consuming, (3) can be used to sample a wide 

variety of habitats, (4) can be used to estimate changes in species richness over time if 

surveys are repeated, and (5) typically has fewer potential biases (O’Farrell, 1997; 

Kuenzi & Morrison, 1998; Barclay, 1999; O’Farrell et al., 1999; Murray et al., 1999, 

Barlow et al., 2015). However, acoustic sampling has limitations as it can only produce 

estimates of activity, not abundance, and individuals cannot be identified from call data 

(Hayes, 1997; 2000). Additionally, some species, such as the eastern red bat (Lasiurus 

borealis) and the Seminole bat (L. seminolus), have very similar call structures, making 

calls from these species difficult to differentiate from one another (Fenton, 1983; S. Loeb, 

United States Forest Service, personal communication).  
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There are two broad categories of acoustic sampling methodology in use today. 

Active sampling refers to when a surveyor is present at the survey point and actively 

changes the direction of the microphone to follow the flight path of a passing bat (Menzel 

et al., 2002). Active sampling typically occurs from sunset to 0200 hours with each 

survey period lasting 20-30 minutes (Johnson et al., 2002; Menzel et al., 2003; Francl et 

al., 2004; Milne et al., 2004; Brooks & Ford, 2005; Coleman et al., 2014).  Because the 

researcher follows the flight of a passing bat, active sampling can result in higher quality 

calls and in a longer call sequence, which can make identification of the call easier 

(Britzke, 2002; Milne et al., 2004). By contrast, passive sampling uses automatic or 

remote recording techniques, where the surveyor is not present at the time of recording 

and the detector’s microphone is fixed in one direction (Britzke, 2002). This can result in 

lower quality calls that have fewer pulses than actively collected data (Britzke, 2002; 

Milne et al., 2004). However, passive sampling can be less labor intensive, allowing for 

sampling across large spatial scales and throughout the night. Passive sampling is also 

easily repeatable and can be used to measure temporal variation in activity within and 

across nights (Hayes, 1997; Murray et al., 1999; Razgour et al., 2011; Coleman et al., 

2014). Due to these benefits, biologists are increasingly shifting toward passive sampling 

instead of active sampling, but it remains unclear the extent to which data collected by 

different sampling methods can be compared. 

The main concern in attempting to compare passive and active acoustic 

monitoring data is that passive and active acoustic techniques can yield different 

detection probabilities, that is, the probability that a species is detected during a survey 
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period given that the site is occupied (MacKenzie et al., 2006; Coleman et al., 2014). For 

example, when using active sampling techniques the researcher may miss peaks of 

activity throughout the night, which can lead to lower detection probabilities (Hayes, 

2000). While some studies have attempted to test and compare passive and active 

acoustic methods, to our knowledge, these studies either did not collect passive and 

active data using the same methodology (e.g., Johnson et al., 2002; Milne et al., 2004) or 

did not collect all of their passive and active data simultaneously (e.g., Coleman et al., 

2014). Further, there has not been a comparative study conducted within the southern 

Coastal Plain, which has a different bat community than those of the previously 

mentioned studies.  

The objectives of this study were to simultaneously compare passive and active 

acoustic sampling designs within a bat community in the Coastal Plain of South Carolina 

and to determine how sampling method (either active or passive) and environmental 

conditions influenced detection probabilities of species groups. In addition, we used 

occupancy modeling to examine habitat use by bats and compared our study’s results to a 

previous study (Ford et al., 2006) that collected data actively at the same sites in 2001 to 

further evaluate the potential differences between passive (our study) and active (Ford et 

al., 2006) sampling methods. In doing so, we will provide information on the 

comparability between data collected using different methods, which will help 

researchers when they conduct comparative studies in other bat communities. 

 

Methods 
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Study Site 

We conducted our study on the Savannah River Site (SRS) which is situated in 

south-central South Carolina in Aiken, Allendale, and Barnwell counties. SRS is located 

in the upper Coastal Plain physiographic region and is a United States Department of 

Energy nuclear weapons production and maintenance facility and National 

Environmental Research Park (Menzel et al., 2003). SRS encompasses 80,267 ha of land 

dominated by upland pine forests (62%) that are actively managed through pine harvest 

and prescribed fire for red-cockaded woodpeckers (Picolides borealis). Other habitat 

types at SRS include bottomland hardwood forests (14.8%), upland hardwood (3.4%), 

and mixed pine-hardwood (5.2%). Carolina bays, a unique wetland ecosystem, are also 

interspersed throughout SRS, as well as man-made structures such as utility right-of-ways 

and production facilities (14.6%; Ford et al., 2006). To date, Pseudogymnoascus 

destructans, the fungus that causes white-nose syndrome (WNS), has not been detected 

on bats or known to impact bats at SRS (S. Loeb, United States Forest Service, personal 

communication). Ford et al. (2006) conducted an active acoustic survey at SRS in 2001. 

They selected 217 points that were at the center of Forest Inventory and Analysis (FIA) 

plots, which were systematically located across SRS on a 1 km x 1 km grid. An 

additional 213 points were placed both selectively (i.e., bridge crossings, Carolina bays, 

and lakes) and randomly in community types that were under-represented in the FIA 

database (e.g., bottomland hardwood stands and the lower stream reaches) (Ford et al., 

2006). From these 430 points, we used stratified random sampling based on habitat type 

to select 140 points to sample in summer 2016 and 2017 that were allocated in proportion 
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to habitat coverage on SRS. We sampled 110 points in June and July 2016 and 50 points 

in July 2017. All points sampled in 2016 and 2017 were sampled passively. Points 

sampled in 2017 were sampled actively during one of the nights that data were collected 

passively. Points sampled for this study were located from 0 to 340 m from the edge of a 

habitat stand (average = 65 m). 

Acoustic Data Collection 

For our first objective of comparing active and passive sampling, we used Anabat 

Express bat detectors (Titley Scientific, Brendale, Australia) to record bat calls. We 

collected data in five habitat types: upland pine, upland hardwood, mixed pine-hardwood, 

Carolina Bay, and bottomland. Habitat categorizations were based on data from Ford et 

al. (2006). We verified the habitat type when the point was sampled, and if the habitat 

type in 2016 or 2017 differed from that recorded by Ford et al. (2006), it was recorded to 

reflect the current habitat type. When passively sampling, we deployed detectors for 

between two and four consecutive nights. Detectors were set to record from sunset to 

sunrise and were attached to the top of 3.7 m painter’s poles that were held upright using 

a PVC pipe that was connected to a U-pole. The same points were actively sampled 

during the passive sampling period following Ford et al. (2006), where active surveys 

were completed by sweeping the Anabat detector back and forth to scan for bat activity 

for 20 minutes from shortly after dusk to about 0100 hours. As Anabat Express detectors 

do not have built-in speakers, we used an Anabat SD2 Bat Detector (Titley Scientific, 

Brendale, Australia) to follow a bat’s flight when they flew past. We avoided sampling 

during periods of high winds or moderate to heavy precipitation (Ford et al., 2005).  
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To address our second objective of estimating bat occupancy, we passively 

sampled 140 points in summer 2016 and 2017 across SRS from the 430 points sampled 

by Ford et al. (2006), including the 50 points included in the active versus passive survey. 

Sites were surveyed between two and four nights using Anabat Express bat detectors 

(Titley Scientific, Brendale, Australia) set atop of 3.7 m painter’s poles. 

For both objectives, calls were downloaded from SD cards and converted from 

ZCA files to Analook files using AnalookW (version 4.1z). We used two custom filters to 

separate passes (> 1 pulse) from noise and to separate low quality calls (< 5 pulses) from 

high quality calls (> 5 pulses) (Loeb & O’Keefe, 2006). We used Kaleidoscope Pro 

(version 4.1.0a) to automatically identify calls collected passively to species and 

manually vetted and corrected mis-identified calls. Calls that were collected actively were 

manually identified. Nine species of bats have been previously documented to occur at 

SRS (Menzel et al., 2002; Ford et al., 2006). These species include two WNS-impacted 

species, the tricolored bat (Perimyotis subflavus) (Langwig et al., 2012), and the 

southeastern myotis (Myotis austroriparius) (USFWS, 2018), and seven non-impacted 

species (USFWS, 2018), the big brown bat (Eptesicus fuscus), the evening bat 

(Nycticeius humeralis), the hoary bat (Lasiurus cinereus), the eastern red bat, the 

Seminole bat, Rafinesque’s big-eared bat (Corynorhinus rafinesquii), and the Brazilian 

free-tailed bat (Tadarida brasiliensis). We grouped species calls into five groups based 

on similar echolocation call structure. We grouped big brown bats and hoary bats into the 

“low frequency bat” category; eastern red bats and Seminole bats into the “red bat” 

category; and evening bats, tricolored bats, and southeastern myotis into their own 
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respective groups. Despite infrequent records of Brazilian free-tailed bats occurring at 

SRS (Menzel et al., 2002), we did not record any. We did not record Rafinesque’s big-

eared bats, most likely due to their low intensity calls (Clement & Castleberry, 2011). 

Site Data Collection 

 We recorded basal area, habitat type, and amount of clutter at each point sampled. 

Basal area was measured using a JIM-GEM Cruz-All tool (Forestry Suppliers, Jackson, 

Mississippi) for trees up to 10 m from each survey point (BCF, 2016). We visually 

categorized the amount of clutter as low, medium, or high based on understory conditions 

in all directions up to 3 m from the detector (Loeb & O’Keefe, 2006). Areas with little or 

no structural obstructions (e.g., branches) were considered to be low clutter while areas 

with enough structural obstructions that would make it difficult for a bat to fly through 

were considered to be high clutter. Any amount of structural obstructions that fell 

between low and high clutter was considered to be medium clutter. We downloaded 

minimum nightly temperature (°C) and total nightly precipitation (mm) from the 

University of Utah’s Meso-West website (http://mesowest.utah.edu/cgi-

bin/droman/mesomap.cgi?state=SC&rawsflag=3) for the closest weather station to SRS. 

We calculated the straight line distance from sample points to closest water source (m), 

closest road (m), and closest Carolina Bay (m) in ArcGIS 10.5 (ESRI, Redlands, 

California).  

Statistical Analyses 

 For our first objective, we compared actively and passively collected data by first 

performing Kruskal-Wallis tests (Kruskal & Wallis, 1952) to determine if there was a 
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significant difference (P < 0.05) in the average number of calls collected per 20 minutes 

per species group among sampling methodologies (20-minute active, 20-minute passive, 

and all night passive). Calls were averaged per sampling night per 20 minute sampling 

period. We then used the package unmarked in program R (Fiske et al., 2011; R 

Development Core Team, 2010) to fit single-season site-occupancy models to examine 

factors that may influence the detection probability (p) of bat species (MacKenzie et al., 

2006). We developed 10 a priori models using existing literature (Table 1.1), where we 

hypothesized that clutter amount (low, medium, high), precipitation, minimum nightly 

temperature, data collection method (20-minute active, 20-minute passive, and all night 

passive), and basal area would have an effect on our ability to detect bat species. 

Specifically, we predicted that as clutter (Ford et al., 2006; Loeb & O’Keefe, 2006), 

precipitation (Kunz, 1973), and basal area (Ford et al., 2006) increased, bat species 

detections would decrease, and that bat species detections would increase with 

temperature (Kunz, 1973). We also predicted that we would be more likely to detect bats 

when sampling passively throughout the night and less likely to detect bats when 

sampling actively or passively for 20 minutes (Coleman et al., 2014). We included an 

interaction model, method * clutter, to test the hypothesis that certain methods would 

perform better in different clutter amounts. We predicted that we would be less likely to 

detect bats using passive sampling in medium and high clutter than when using active 

sampling. We also included a global and null model in our model set. Prior to model 

fitting, we standardized precipitation, temperature, and basal area to a mean of zero and 

standard deviation of 1. We checked the variables within our a priori models for 
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correlation by calculating Pearson’s correlation coefficients for continuous variables and 

ANOVAs for categorical and continuous variables. We used Pearson’s chi-square tests to 

examine the independence of categorical variables. None of the variables included in our 

a priori models were correlated (Pearson’s product-moment correlation coefficient > 0.5, 

ANOVA: P < 0.5, Pearson’s chi-square: P < 0.05), therefore, all covariates were kept in 

all models. 

Before conducting model selection, we assessed goodness-of-fit of the global 

model for each species. Using methods described by MacKenzie and Bailey (2004), we 

determined the value of the overdispersion factor (ĉ) using 1000 bootstrap simulations. If 

ĉ was > 1, we considered our data to be overdispersed and used the resulting ĉ to 

calculate the quasi-likelihood Akaike’s Information Criterion adjusted for overdispersion 

and small sample sizes (QAICC).  If ĉ was < 1, we assumed our data were not 

overdispersed and used ĉ =1 to calculate the Akaike’s Information Criterion adjusted for 

small sample sizes (AICC; Burnham & Anderson, 2002).  

We ranked models based on either AICC or QAICC and Akaike weights (wi) 

(Burnham & Anderson, 2002) using the package AICcmodavg in R (Mazerolle, 2017). 

We considered models with Akaike weights that were < 2 ∆AICC or QAICC to have 

strong support (Burnham & Anderson, 2002; MacKenzie et al., 2006). If there was only 

one top model, we back-transformed parameter estimates, standard errors, and 95% 

confidence intervals. To address model selection uncertainty, we calculated model-

averaged parameter estimates, standard errors, and 95% confidence intervals based on all 

detection models in our 2 ∆AICC or QAICC confidence set if the same covariates were 
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repeated within the confidence set (Burnham & Anderson, 2002). Covariates with 

confidence intervals that did not overlap zero were considered to significantly influence 

detection probabilities. Lastly, we calculated detection probability estimates of each 

species group for each data collection method. 

For our second objective, we developed nine a priori models to investigate the 

relationship between habitat and landscape variables and bat occupancy (Ψ) using data 

that were collected passively throughout the night during summer 2016 and 2017 (Table 

1.2). It is important to note the terms “site occupancy” and “occurrence” should be 

interpreted as “use” when applied to bat research (MacKenzie, 2005). Foraging bats are 

unlikely to constantly occupy a site due to their volant behavior, and therefore, the 

closure assumption of occupancy models is relaxed in bat research studies (MacKenzie, 

2005). We used the package unmarked in program R (Fiske et al., 2011; R Development 

Core Team, 2010) to first fit detection probability models using the same covariates we 

used when comparing data collection methods (see above), but we excluded “method”. 

After addressing detection, we fit occupancy probability models. We hypothesized that 

increasing structural complexity would have a negative impact on bat occupancy, and 

predicted that as basal area and clutter increased, bat occupancy would decrease (Ford et 

al., 2006; Loeb & O’Keefe, 2006). We hypothesized that habitat type would have an 

impact on bat occupancy, where we predicted that bats would be more likely to use 

upland pine, bottomland forest, and Carolina Bay habitats than mixed and upland 

hardwood habitats (Menzel et al., 2002; Menzel et al., 2005a). We also hypothesized that 

landscape variables would impact bat occupancy, whereas distance to closest Carolina 
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Bay (“Bay”) and distance to closest water source (“Water”) increased, we predicted bat 

occupancy would decrease, and as distance to closest road (“Road”) increased, bat 

occupancy would increase (Ford et al., 2006; Loeb & O’Keefe, 2006). We included two 

additive models in our model set to examine the relationship between clutter and basal 

area (“Structure”), as well as clutter, basal area, and distance to closest water source 

(“Structure + Water”). We also fit a global model and null model. We standardized 

distance to closest water source, distance to closest Carolina Bay, distance to closest road, 

and basal area to a mean of zero and standard deviation of 1 before running the models, 

but back-transformed values to their original units when discussing model predictions. 

We tested our variables within our a priori models for correlation by calculating 

Pearson’s correlation coefficients for continuous variables and ANOVAs for categorical 

and continuous variables. We used Pearson’s chi-square tests to examine the 

independence of categorical variables. None of the variables included in our a priori 

models were correlated (Pearson’s product-moment correlation coefficient > 0.5, 

ANOVA: P < 0.5, Pearson’s chi-square: P < 0.05), therefore, all covariates were kept in 

all models. Goodness-of-fit tests, model selection procedures, model averaging (where 

appropriate), and calculation of back-transformed parameter estimates, standard errors, 

and 95% confidence intervals were the same as in models of active vs. passive sampling 

(see above).  

 

Results 

Active vs. Passive Techniques 
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During July 2017, we collected 108 call files using active sampling, 18 call files 

using passive sampling during the same 20-minute time period active data were collected, 

and 1,463 call files using passive sampling throughout the night. The average number of 

call files collected per 20 minutes was significantly different (P < 0.05) among the 

different data collection methods for each species group. We collected the highest 

average number of call files per 20 minutes using passive sampling throughout the night 

compared to active sampling and passive sampling for 20 minutes, with each species 

group following this pattern (Table 1.3).  

We found that the data were overdispersed for some species groups, and not for 

others, and that models containing “method” generally performed better at predicting 

detection probabilities across species groups. The goodness-of-fit tests for evening bats 

and southeastern myotis global detection models indicated that the data for each species 

were overdispersed. Therefore, we used QAICC to rank detection probability models for 

those species. There was good fit for the global detection models for low frequency bats, 

red bats, and tricolored bats, therefore, we used AICC to rank detection probability 

models for those species. The global model did not converge for tricolored bats, so we 

did not include it in subsequent analyses. The method model was the top ranked model 

for low frequency bats, evening bats, southeastern myotis, and tricolored bats (Table 1.4). 

Detection probabilities for low frequency bats, evening bats, southeastern myotis, and 

tricolored bats were highest when collecting data passively throughout the night, 

followed by active sampling, followed by passive sampling for 20 minutes (Figure 1.1; 

Table 1.5). The global model was the top-ranked model for red bats, followed by the 
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interaction model (method*clutter). However, the interaction model did not converge and 

thus we proceeded with interpretation from the global model. Temperature, basal area, 

clutter amount, and method were the parameters within the top model for red bats with a 

95% confidence interval that did not bound zero (Table 1.5). Red bat detection 

probability increased by 10% for every 1 °C increase in minimum nightly temperature 

(Figure 1.2A), increased by 10% for every 120 m2/ha increase in basal area (Figure 

1.2B), was highest when collecting data passively all night, followed by actively 

sampling (Figure 1.2C), and highest in low clutter, followed by high and medium clutter 

(Figure 1.2D).  

Occupancy Probability at SRS 

 During summer 2016 and 2017, we collected 8,377 call files from 140 passive 

survey points. We collected 2,587 low frequency bat call files, 1,956 red bat call files, 

1,448 evening bat calls files, 269 southeastern myotis call files, 1,890 tricolored bat call 

files, and 227 unidentifiable call files.  

We found that data for all of our species groups were overdispersed and we used 

QAICC to rank species occupancy models (Tables 1.6 & 1.7). The ĉ for detection and 

occupancy parameters for evening bats were of special note, each higher than 4. This 

indicated that there was high uncertainty in our model rankings, and this caveat should be 

taken into account when examining these results (Burnham & Anderson, 2002). To rank 

our detection and occupancy models for evening bats, we set ĉ to 4, the highest estimate 

acceptable in AICcmodavg (Mazerolle, 2017); because of high uncertainty, we model-

averaged occupancy parameters.  
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The null model was the top-ranked detection model for low frequency bats and 

southeastern myotis, therefore, no detection variables were used in these species’ 

occupancy models (Table 1.6). The clutter model was the top-ranked model for red bats, 

evening bats, and tricolored bats and we used this detection parameter in these species’ 

occupancy models (Table 1.6). 

Multiple occupancy models fell within the 2 ∆QAICC confidence set for all 

species (Table 1.7). When model averaging and examining parameter estimates, we 

included models that fell after the null model but were still within each species’ candidate 

set (i.e., < 2 ∆AICC or QAICC). If the null model and other models had similar AICC or 

QAICC weights, this suggested that each model had an equal chance of explaining what 

influenced each species’ occupancy probability (Table 1.7). We model-averaged 

parameters included in the candidate sets for low frequency bats and southeastern myotis 

and found that low clutter was the only covariate that had a statistically significant effect 

on their occupancy (Table 1.8). Low frequency bats and southeastern myotis were more 

likely to use low clutter areas than medium or high clutter areas (Table 1.8). We found 

that red bat occupancy was negatively affected by basal area and distance to closest water 

source (Table 1.8). Red bat occupancy probability decreased by 10% for every 220 m 

increase in distance to closest water source and for every 782 m2/ha increase in basal area 

(Figure 1.4). Evening bat occupancy was negatively affected by distance to closest water 

source, where occupancy probability decreased by 10% for every 230 m increase in 

distance to closest water source (Figure 1.5). We found that tricolored bat occupancy was 

negatively affected by basal area and distance to closest water source (Table 1.8). 
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Tricolored bat occupancy probability decreased by 10% for every 739 m2/ha increase in 

basal area and for every 230 m increase in distance to closest water source (Figure 1.6).  

 

Discussion 

As we predicted, passively sampling throughout the night performed better in 

recording bat calls than sampling actively or passively for 20 minutes. Collecting data 

passively throughout the night yielded the highest estimated detection probabilities for 

each species, followed by active sampling. Coleman et al. (2014) found similar results in 

a different bat community in New York, where they collected more call files using 

passive sampling throughout the night and found that passively collected data yielded 

higher detection probabilities than actively collected data. However, unlike Milne et al. 

(2004) and Johnson et al. (2002), we did not find a difference between the number of 

different species detected between active and passive techniques. In contrast to these 

previous studies, we were able to use the same type of detector when collecting data both 

actively and passively, which we did simultaneously. This gave us data that were easily 

comparable and our study suggests that researchers should use passive sampling 

throughout the night to collect more call files and to have a better chance of their data 

yielding the highest detection probabilities. 

Using passive sampling throughout the night in combination with accounting for 

detection probability produced different estimates of bat species presence or occupancy 

from previous studies. At the same survey locations 15 years prior, Ford et al. (2006) 

collected data actively and did not account for detection probability to examine presence 
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of bats at SRS. While some habitat relationships were similar (Table 1.9), we found that 

some parameters had different impacts on bat species presence or occupancy between 

studies. Distance to closest water source did not have an effect on red bats and evening 

bats in the Ford et al. (2006) study, however, we found a negative effect of distance to 

closest water source on these species. This negative effect of distance to closest water 

source is unsurprising because water sources are considered to be important to bats as 

they serve as a source for drinking water and as habitat for prey (Cross, 1988; Ford et al., 

2006; Salvarina, 2016). Ford et al. (2006) found that basal area had a positive effect on 

hoary bat presence while basal area did not have a significant effect on low frequency 

bats in our study. We hypothesize these different results may be due to how the different 

studies dealt with hoary bats and big brown bats; in our study, we grouped hoary bats and 

big brown bats together while Ford et al., (2006) did not group hoary bats and big brown 

bats and analyzed these species’ presence separately. Unlike Ford et al. (2006), we 

visually estimated clutter amount at each point sampled and found that low clutter was 

the only covariate to have a significant positive effect on low frequency bats. Despite 

both studies including structural complexity as a covariate that was measured in different 

ways, we both found that increasing structural complexity had a negative effect on big 

brown bats/ low frequency bats. We anticipated that increasing clutter would have a 

negative impact on low frequency bats, since these bats are considered to be clutter-

intolerant according to their morphology and call structure (Brigham et al., 1997; 

Patriquin et al., 2003; Menzel et al., 2005a). 
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In addition to sampling and analysis methodology, the differences seen between 

Ford et al. (2006) and this study could have occurred for a number of reasons which need 

to be recognized when other researchers compare studies as we have done. First, the 

differences between studies could have been an artifact of including different variables in 

the analysis; Ford et al. (2006) included overstory canopy cover, insect abundance, 

barometric pressure, humidity, cloud cover, moon illumination, wind speed, landscape 

heterogeneity (i.e., number of distinct stands or compartments), landscape setting, and 

landscape condition as parameters in their a priori models. We did not include these 

parameters but did examine clutter amount in our study. Therefore, because some 

parameters were included in both studies and others were not, we opened up the 

possibility of generating different results. Despite these differences, for the most part, the 

parameters included in both studies were included in the top models for both studies, 

allowing us to still compare the results of these studies. Second, differences in these two 

studies could also be a result of bats changing their behavior or alterations in habitat (e.g., 

clear cutting a pine stand would change the amount of clutter; natural disturbances such 

as blow downs; successional changes in habitat) from the time Ford et al. (2006) 

collected their data and when we collected ours. We attempted to account for this change 

in habitat by updating the habitat type when visiting points in 2016 and 2017, when 

necessary. Third, we assumed the 190 points we sampled in 2016 and 2017 were 

representative of the 430 points sampled by Ford et al. (2006). Despite these caveats that 

likely complicated the comparison of these datasets we believe the major habitat use 
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differences observed are likely primarily driven by the different sampling and analytical 

methodologies used between studies. 

 Our comparison of active and passive data collection techniques demonstrates the 

pitfalls of comparing datasets collected using different methodology to gain insight on bat 

habitat use. As eastern bat populations become increasingly vulnerable to threats 

including WNS, wind energy development, and habitat loss and degradation (Arnett et 

al., 2008; Jones et al., 2009; USFWS, 2018), monitoring these populations becomes 

increasingly important. To understand the structure of these bat communities, researchers 

need to have the most accurate information. Overall, we found that different data 

collection methods yielded different detection probabilities and, as a result, comparison 

of historical active datasets with current passive datasets could lead to different insights 

into habitat selection by similar bat communities. We suggest that actively collected data 

are not comparable to passively collected data, and researchers should account for this 

within their study designs. We recommend that long-term bat monitoring programs 

include the use of passive sampling throughout the night so that researchers have 

consistently collected data sets that can provide more information on the bat community 

structure than actively collected data can provide. 
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Tables 

 

Table 1.1. A priori model variables for detection probability (p) of bats at 

Savannah River Site. A null model was included in the analysis. All listed 

variables were included when comparing passive and active data collection 

methods (Objective 1). However, when examining variables that would influence 

bat detection during summer 2016 and 2017, “Method” was not included 

(Objective 2). 

Model 

# 

Variable Hypothesis Covariates Predicted 

Effects 

Literature 

Cited 

1 Clutter Clutter has 

an effect on 

bat p. 

Low, 

medium, 

high 

As clutter 

amount 

increases, bat 

p decreases. 

Ford et 

al., 2006 

Loeb & 

O’Keefe, 

2006 

2 Precipitation 

(mm) 

Precipitation 

has an effect 

on bat p. 

Continuous  As amount of 

precipitation 

increases, bat 

p decreases. 

Kunz, 

1973 

3 Minimum 

nightly 

temperature 

(°C) 

Temperature 

has an effect 

on bat p. 

Continuous  As 

temperature 

increases, bat 

p increases. 

Kunz, 

1973 

4 Method Method of 

data 

collection 

has an effect 

on bat p. 

Passive all 

night, 

passive 20 

min, active 

More likely 

to detect bats 

passively all 

night, less 

likely to 

detect bats 

passively for 

20 min and 

actively. 

Coleman 

et al., 

2014 

5 Basal Area 

(m2/ha) 

Basal area 

will have an 

effect on bat 

p. 

Continuous  As basal area 

increases, bat 

p decreases. 

Ford et 

al., 2006 

6 Temperature 

+ 

Precipitation 

Weather 

variables 

have an 

additive 

effect on bat 

p. 

Continuous 

(°C & mm ) 

Temperature 

will have a 

positive 

effect on bat 

p as it 

increases, but 

 



20 
 

precipitation 

has a 

negative 

effect on bat 

p as it 

increases. 

7 Clutter + 

Basal Area 

Clutter and 

basal area 

have an 

additive 

effect on bat 

p. 

Categorical 

(low, 

medium, 

high) & 

continuous 

(m2/ha) 

Clutter and 

basal area 

will have a 

negative 

impact on bat 

p as both 

variables 

increase (low 

to medium to 

high clutter; 

increasing 

basal area). 

 

8 Method * 

Clutter 

Certain 

methods will 

perform 

better in 

different 

clutter 

amounts. 

Categorical 

(passive 20 

min, passive 

all night, 

and active; 

low, 

medium, 

high) 

p will be 

lower when 

using passive 

all night in 

medium and 

high clutter 

sites than 

using active 

sampling. p 

will be low 

when using 

passive 20 

minutes in all 

clutter 

amounts. 

 

9 Clutter + 

Precipitation 

+ 

Temperature 

+ Method + 

Basal Area + 

(Method * 

Clutter) 

Global model Continuous 

(mm; °C; 

m2/ha) & 

categorical 

(low, 

medium, 

high; active, 

passive 20 

min, passive 

all night) 
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Table 1.2. A priori model variables for occupancy probability (Ψ) for bats in 

Savannah River Site during summer 2016 and 2017. A null model was 

included in the analysis. 

Model 

# 

Variable Hypothesis Covariates Predicted 

Effects 

Literature 

Cited 

1 Clutter Clutter has 

an effect 

on bat Ψ 

Low, 

medium, 

high 

As clutter 

amount 

increases, bat 

Ψ will 

decrease. 

Ford et al., 

2006 

Loeb & 

O’Keefe, 

2006 

2 Habitat Habitat 

has an 

impact on 

bat Ψ 

Hardwood, 

pine, 

bottomland, 

Carolina 

bay, mixed 

Bats will be 

less likely to 

use upland 

hardwood and 

mixed habitat 

more likely to 

use 

bottomland, 

upland pine, 

and Carolina 

bay. 

Menzel et al., 

2002; 

Menzel et al., 

2005a 

3 Water 

(m) 

Distance 

to closest 

water 

source has 

an effect 

on bat Ψ 

Continuous As the 

distance to the 

closest water 

source 

increases, bat 

Ψ will 

decrease. 

Ford et al., 

2006 

4 Bay (m) Distance 

to closest 

Carolina 

Bay has an 

effect on 

bat Ψ 

Continuous  As distance to 

closest 

Carolina Bay 

increases, bat 

Ψ will 

decrease. 

Ford et al., 

2006 

5 Basal 

Area 

(m2/ha) 

Basal area 

has in 

impact on 

bat Ψ 

Continuous  As basal area 

increases, bat 

Ψ will 

decrease. 

Ford et al., 

2006 



22 
 

6 Structure Clutter and 

basal area 

have an 

additive 

effect on 

bat Ψ 

Continuous 

(m2/ha) & 

categorical 

(low, 

medium, 

high)  

As clutter 

amount and 

basal area 

increases, bat 

Ψ will 

decrease. 

Ford et al., 

2006 

7 Structure 

+ Water 

Structure 

(clutter 

and basal 

area) and 

distance to 

closest 

water 

source 

have an 

additive 

effect on 

bat Ψ 

Continuous 

(m2/ha & 

m) & 

categorical 

(low, 

medium, 

high) 

As clutter 

amount, basal 

area, and 

distance to 

closest water 

source 

increases, bat 

Ψ will 

decrease. 

Ford et al., 

2006 

8 Clutter + 

Habitat + 

Water + 

Bay + 

Basal 

Area 

Global 

model 

Continuous 

(m; m; 

m2/ha) & 

categorical 

(low, 

medium, 

high; 

upland 

hardwood, 

upland 

pine, 

bottomland, 

Carolina 

Bay, 

mixed)  
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Table 1.3. Average number of calls collected per 20 minutes using 

each method (active, passive throughout night, passive for 20 minutes) 

for each species group in Savannah River Site during summer 2017. 

Species Active Passive (all night) Passive (20 min) 

Low Frequency bats 0.02 1.55 0.01 

Red bats 0.03 0.94 0.01 

Evening bats 0.02 0.50 0.01 

Southeastern myotis 0.01 0.19 0 

Tricolored 0.03 0.79 0 
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Table 1.4. Top-ranked models (∆AICC or ∆QAICC < 2) for passive vs. active 

detection probability (p) for bats at Savannah River Site. Data for low frequency 

bats, red bats, and tricolored bats were not overdispersed and AICC was used to 

rank these species’ models. Data for evening bats and southeastern myotis bats 

were overdispersed and QAICC was used to rank their models. 

Species Group Model 

Name 

K LogLik or 

Q-LogLik 

AICC or 

QAICC 

∆AICC or 

∆QAICC 

wi 

Low frequency bats Method 4 -71 150 0 0.79 

Red bats Global 13 -51 138 0 0.55 

Evening bat Method 5 -21 53 0 0.50 

Southeastern Myotis Method 5 -43 97 0 0.88 

Tricolored bat Method 4 -63 136 0 0.50 
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Table 1.5. Parameter estimates, standard errors (SE), and 95% confidence 

intervals (CI) of parameters within the top models for detection (p) models of 

low frequency bats, red bats, evening bats, and southeastern myotis at Savannah 

River Site when comparing passive and active acoustic sampling methods. 

Parameter estimates for tricolored bats are model-averaged. 

Parameter Estimate SE Upper 95% CI Lower 95% CI 

Low frequency bats 

Intercept (Active) -0.74 0.42 -0.32 -1.16 

Passive (20 min) -0.91 0.62 -0.29 -1.53 

Passive (all night) 1.98 0.66 2.64 1.32 

Red bats 

Intercept -1.71 0.64 -1.08 -2.35 

Low clutter 1.40 0.64 2.04 0.75 

Medium clutter -1.53 0.85 -0.68 -2.38 

Precipitation -0.07 0.29 0.22 -0.36 

Temperature 0.85 0.33 1.18 0.51 

Passive (20 min) -2.03 0.77 -1.26 -2.80 

Passive (all night) 1.08 0.54 1.61 0.54 

Basal area -0.36 0.33 -0.04 -0.69 

Evening bat 

Intercept (Active) -0.76 0.45 -0.32 -1.21 

Passive (20 min) -1.49 0.72 -0.77 -2.21 

Passive (all night) 1.46 0.59 2.05 0.87 

Southeastern myotis 

Intercept (Active) -0.72 0.52 -0.20 -1.24 

Passive (20 min) -0.91 0.81 -1.20 -1.72 

Passive (all night) 2.67 1.08 3.75 1.59 

Tricolored bat 

Intercept (Active) -1.25 0.43 -0.82 -1.68 

Passive (20 min) -1.70 0.82 -0.88 -2.52 

Passive (all night) 2.18 0.63 2.81 1.55 
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Table 1.6. Top-ranked models (∆QAICC < 2) for detection probability (p) for 

bats at Savannah River Site during summer 2016 and 2017. Data for all species 

groups were overdispersed and QAICC was used to rank these species’ models. 

Species Group Model Name K Q-LogLik QAICC ∆QAICC wi 

Low frequency 

bats 

Null 3 -112.13 230.43 0 0.28 

Precipitation 4 -111.28 230.86 0.43 0.23 

Basal area 4 -111.95 232.20 1.78 0.12 

Temperature 4 -111.97 232.24 1.81 0.11 

Clutter 5 -110.92 232.29 1.86 0.11 

Red bats Clutter 5 -47.33 150.11 0 0.49 

Clutter + 

Basal area 

6 -47.00 106.63 1.52 0.23 

Evening bats Clutter 5 -35.07 80.60 0 0.42 

Southeastern 

myotis  

Null 3 -99.38 204.93 0 0.33 

Clutter 5 -97.93 206.31 1.38 0.16 

Basal area 4 -99.02 206.33 1.40 0.16 

Tricolored bats Clutter 5 -96.16 202.76 0 0.44 

Clutter + 

Basal area 

6 -95.28 203.20 0.44 0.36 
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Table 1.7. Top-ranked models for occupancy probability (Ψ) for bats at Savannah 

River Site with data that was not overdispersed (AICC) and overdispersed (QAICC) 

during summer 2016 and 2017. Almost all species groups had overdispersed data 

and QAICC was used to rank these species’ models. Southeastern myotis did not 

have overdispersed data and AICC was used to rank their models. 

Species 

Group 

Model Name K LogLik or 

Q-LogLik 

AICC or 

QAICc 

∆AICC or 

∆QAICc 

wi 

Low 

frequency 

bats 

Ψ(Structure), p(.) 6 -109.80 232.23 0 0.26 

Ψ(Clutter), p(.) 5 -110.90 232.26 0.03 0.26 

Ψ(Clutter + Basal 

area + Water), p(.) 

7 -109.35 233.56 1.32 0.13 

Ψ(.), p(.) 3 -113.85 233.88 1.65 0.11 

Red bats Ψ(.), p(Clutter) 5 -45.66 101.78 0 0.30 

Ψ(Water), p(Clutter) 6 -45.07 102.77 0.99 0.18 

Ψ(Basal area), 

p(Clutter) 

6 -45.33 103.30 1.52 0.14 

Evening 

bats 

Ψ(.), p(.) 5 -35.07 80.60 0 0.35 

Ψ(Water), p(.) 6 -34.61 81.85 1.26 0.19 

Ψ(Basal area), p(.) 6 -34.87 82.38 1.79 0.14 

Southeastern 

myotis 

Ψ(Clutter), p(.) 4 -104.47 217.24 0 0.30 

Ψ(Clutter + Basal 

area), p(.) 

5 -104.10 218.65 1.40 0.15 

Ψ(.), p(.) 2 -107.33 218.74 1.50 0.14 

Ψ(Bay), p(.) 3 -106.45 219.08 1.84 0.12 

Tricolored 

bats 

Ψ(Basal area), 

p(Clutter) 

6 -113.23 239.10 0 0.22 

Ψ(.), p(Clutter) 5 -114.40 239.26 0.16 0.21 

Ψ(Water), p(Clutter) 6 -113.39 239.41 0.31 0.19 

Ψ(Road), p(Clutter) 6 -114.09 240.81 1.71 0.09 
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Table 1.8. Parameter estimates, standard errors (SE), and 95% confidence 

intervals (CI) of parameters in the top models for occupancy (Ψ) models for 

red bats, evening bats, and tricolored bats at Savannah River Site during the 

summer of 2016 and 2017. Model-averaged parameter estimates, standard 

errors (SE), and 95% confidence intervals (CI) of parameters within the top 

models for occupancy (Ψ) models of low frequency bats and southeastern 

myotis. 

Parameter Estimate SE Upper 95% CI Lower 95% CI 

Low Frequency bats  

Intercept -0.77 0.51 0.23 -1.78 
Medium clutter 0.72 0.58 1.85 -0.41 

Low clutter 1.29 0.53 2.34 0.24 

Basal area -0.29 0.22 0.14 -0.72 

Water -0.19 0.22 0.23 -0.62 

Red bats 

Intercept 0.14 0.25 0.39 -0.11 

Basal area -0.20 0.20 -0.001 -0.40 

Water -0.38 0.22 -0.12 -0.56 

Evening bats 

Intercept 0.16 0.23 0.39 -0.07 

Basal area -0.16 0.19 0.03 -0.35 

Water -0.35 0.22 -0.13 -0.57 

Southeastern myotis 

Intercept -1.68 0.61 -0.49 -2.87 

Medium clutter 0.56 0.70 1.93 -0.81 

Low clutter 1.32 0.62 2.54 0.10 

Basal area -0.19 0.23 0.27 -0.66 

Bay -0.30 0.24 0.16 -0.77 

Tricolored bats 

Intercept 0.54 0.29 0.83 0.25 

Basal area -0.29 0.22 -0.07 -0.51 

Water -0.30 0.22 -0.08 -0.52 

Road -0.10 0.22 0.12 -0.32 

 

 

 

 

 

 

 

 



29 
 

Table 1.9. Comparison of parameters that were included in Ford et al., 

2006 and this study. Parameters that had a significant effect have 

parentheses surrounding the sign. A negative sign refers to a negative 

effect of the parameter and a positive sign refers to a positive effect. A zero 

(0) indicates the parameter did not have an impact in the corresponding 

study. See Ford et al. (2006) for full descriptions of models and variables. 

Species Groups Parameter Effect of parameters  

(Ford/current study) 

Hoary bats & Big 

brown bats (Ford 

et al., 2006) /  

low frequency bats 

(this study) 

Distance to water source (–) hoary bats /  

– low frequency bats 

Distance to road (–) hoary bats / 

0 low frequency bats 

 Basal area (+) hoary bats, (–) big 

brown bats /  

– low frequency bats 

Red bats Distance to water source 0/(–) 

Basal area (–)/(–) 

Evening bats Distance to closest water 

source 

0/(–) 

Basal area (–)/0 

Southeastern 

myotis 

Distance to Carolina Bay (–)/– 

Basal area 0/– 

Tricolored bats 

 

Distance to water source (–)/(–) 

Basal area (–)/(–) 
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Figures 

 
Figure 1.1. Predicted probability of detection (p) for each species group for each data 

collection method when comparing passive and active sampling techniques at Savannah 

River Site. The error bars represent the 95% confidence interval. 
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Figure 1.2. Influence of (A) minimum nightly temperature (°C), (B) basal area (m2/ha), 

(C) method, and (D) clutter amount on probability of detection (p) of red bats during July 

2017 at Savannah River Site. Covariates are from the top-ranked detection model. The 

dotted lines and vertical lines represent 95% confidence intervals. 
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Figure 1.3. Influence of basal area (m2/ha) on probability of detection (p) of tricolored 

bats during July 2017 at Savannah River Site. The covariate is the only significant 

covariate from the top-ranked detection model. The dotted lines represent the 95% 

confidence interval. 
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Figure 1.4. The effect of basal area and distance to closest water source on red bat 

occupancy (Ψ) during summer 2016 and 2017 at Savannah River Site. The covariates are 

the only significant covariates within the top-ranked occupancy model. The dotted lines 

represent the 95% confidence interval. 
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Figure 1.5. The effect of distance to closest water source on evening bat occupancy (Ψ) 

during summer 2016 and 2017 at Savannah River Site. The covariate is the only 

significant covariate within the top-ranked occupancy model. The dotted lines represent 

the 95% confidence interval. 
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Figure 1.6. The effect of basal area and distance to closest water source on tricolored bat 

occupancy (Ψ) during summer 2016 and 2017 at Savannah River Site. The covariates are 

the only significant covariates within the top-ranked occupancy model. The dotted lines 

represent the 95% confidence interval. 
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CHAPTER TWO 

BEHAVIORAL CHANGES OF BATS FOLLOWING THE ARRIVAL OF WHITE-

NOSE SYNDROME IN NORTHWESTERN SOUTH CAROLINA 

 

The structure of ecological communities can be influenced by biotic and abiotic 

factors (Smith, 1966). Niche partitioning is the process in which competing species 

divide resources so that they may coexist (Schoener, 1974), and tends to occur in 

assemblages where species are diverse and highly structured by competition (Begon et 

al., 1996). For mammalian communities, niche partitioning has been observed among 

individuals within the same genus (western chipmunks Eutamias amoenus and E. 

townsendii; Trombulak, 1985 and spiny mice Acomys cahirinus and A. russatus; Jones et 

al., 2001) as well as among genera (large herbivores in Africa; Valeix et al., 2007, and 

ungulates in the Rocky Mountains; Stewart et al., 2002). In particular, bats often exist in 

highly diverse communities in which niche partitioning has been observed in several 

systems globally (Aldridge & Rautenbach, 1987; Adams & Thibault, 2006; Razgour et 

al., 2011). Sympatric bat species can exhibit niche partitioning through morphology 

(Brigham et al., 1989), prey selection (Barclay, 1988), habitat use (Arlettaz, 1999; 

Arlettaz et al., 2000; Nicholls & Racey, 2006) use of different areas within an ecosystem 

(Arlettaz et al., 2000; Patterson et al., 2003; Nicholls & Racey, 2006; Razgour et al., 

2011), and time of activity (Kunz, 1973; Reith, 1980; Kronfeld-Schor & Dayan, 2003; 

Adams & Thibault, 2006). Niche partitioning can be destabilized by a number of things, 

such as loss of a certain species, which can occur when an emerging infectious disease is 

introduced into a system (Dobson & Hudson, 1986; Lips et al., 2006).  
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Bat communities in the eastern United States have come under threat of an 

emerging infectious disease called white-nose syndrome (WNS), which has killed more 

than 6 million bats since it was first detected in 2006 (Blehart et al., 2008; USFWS, 

2018). All symptomatic species hibernate in caves or mines, with declines of 

cavernicolous bat species ranging from 30 to 99% annually (Frick et al., 2010). The little 

brown bat (Myotis lucifugus), the federally threatened northern long-eared bat (M. 

septentrionalis), the federally endangered Indiana bat (M. sodalis), and the tricolored bat 

(Perimyotis subflavus) are the four most susceptible species (Langwig et al., 2012; 

USFWS, 2018). One cave-hibernating bat species, the big brown bat (Eptesicus fuscus), 

may be resistant to WNS due to significantly greater mean body fat content during 

hibernation (Frank et al., 2014). While the fungus that causes WNS (Pseudogynmoascus 

destructans) has been detected on some tree-dwelling species such as the eastern red bat 

(Lasiurus borealis) and silver-haired bat (Lasionycteris noctivagans), the disease has not 

been confirmed in these species (Bernard et al., 2015). These tree-dwelling species use 

winter roosts with unstable temperatures, are often more exposed to the elements, and 

tend to arouse from torpor and become active to forage or to move to other roosts in 

winter (Whitaker, 1967; Padgett & Rose, 1991; Saugey et al., 1998; Boyles & Robbins, 

2006; Boyles et al., 2003, Boyles et al., 2005; Hein et al., 2005; Mormann & Robbins, 

2007). 

Because tree-dwelling and cave-dwelling species are differentially impacted by 

WNS, remnant tree-dwelling and cave-hibernating bats may be utilizing available niches 

differently after WNS detection. Jachowski et al. (2014) found that spatial and temporal 
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niche partitioning was relaxed post-WNS with the rapid decline of the once abundant 

little brown bat. They proposed that non-impacted bat species (e.g., hoary bat, L. 

cinereus, red bat) were able to forage in areas and at times formerly dominated by the 

little brown bat, because the little brown bat was no longer as abundant as it once was, 

and therefore no longer able to outcompete hoary bats and red bats for foraging niches. 

Thalken et al. (2018) found that non-impacted species at Mammoth Cave National Park 

also experienced an ecological release after the onset of WNS and resulting decline of 

impacted species. Changes in niche partitioning, like those seen by Jachowski et al. 

(2014) and Thalken et al. (2018) are important for researchers to take into account, as 

data collected pre-WNS may no longer be relevant to a system’s community structure 

and species-specific habitat associations post-WNS. Further, because these data are often 

used as the basis for bat habitat management decisions (e.g., Menzel et al., 2005a; 2005b; 

Loeb & O’Keefe, 2006; Brooks, 2008; Castro-Arellano et al., 2009), it is important to 

ensure the data used are accurate and specific to the system and species of interest. 

Additionally, such pre- vs. post-disease comparative studies provide a broader ecological 

understanding of how bats are responding to WNS at a community-level.  However, to 

date, such pre- vs. post-WNS comparisons of bat activity outside of caves have been 

restricted to portions of Tennessee (Thalken et al. 2018) and New York (Jachowski et al. 

2014), with no investigations into the response of bat communities in South Carolina. 

In this study, we investigated the foraging activity of a bat community in 

northwestern South Carolina that was previously studied by Loeb & O’Keefe (2006) 

prior to the arrival of WNS in 2012 (SCDNR, 2016). We focused on examining niche 
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partitioning between low frequency bats (WNS-resistant), red bats (WNS-resistant), 

evening bats (WNS-resistant), Myotis (WNS-susceptible), and tricolored bats (WNS-

susceptible) because we predicted that niche partitioning between these species would 

change pre- to post-WNS (Table 2.1). Our objectives were to: (1) examine colonization 

and extinction probabilities of bats between pre- and post-WNS periods, and (2) examine 

the temporal foraging niches of bats and compare partitioning of these niches by bats pre- 

and post-WNS. We hypothesized that post-WNS, there would be a relaxation of niche 

partitioning among WNS-resistant and WNS-susceptible species, as the WNS-susceptible 

species have suffered population declines due to WNS. Specifically, because of similar 

call structure and habitat use patterns (Table 2.1), we predicted that red bats and evening 

bats (Nycticeius humeralis) (WNS-resistant species) would move into areas previously 

used by Myotis and tricolored bats (WNS-susceptible), and be active at times of night in 

which Myotis and tricolored bats were once more active. At the same time, we predicted 

that Myotis and tricolored bats would change where and when they were active, as 

remnant WNS-susceptible species will use areas in which it is easiest to forage while 

keeping competition with WNS-resistant species low. Lastly, because of different call 

structure and habitat associations compared to WNS-vulnerable species (Table 2.1), we 

predicted that low frequency bats would not change their spatial and temporal foraging 

niches post-WNS. Our results further test how WNS could be indirectly effecting bat 

communities and provides land managers in the southeastern U.S. with important 

information regarding both where and when remnant bats are most likely to forage 

following WNS.  
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Methods 

Study Site 

Our study area was the Andrew Pickens District (APD) of the Sumter National 

Forest is in northwestern South Carolina in Oconee county. Topography ranges from 

gentle slopes and hills in the Piedmont to steep slopes in the Mountains and elevation 

ranges from 218 to 995 m. APD consists of 34,220 ha with privately owned land 

interspersed throughout. Forest types include pine (37%), mixed pine and upland 

hardwood (36%), and hardwood (27%). The Chattooga River borders the western side of 

APD and the Chauga River bisects APD and drains throughout most of the area (Loeb & 

O’Keefe, 2006; Stottlemyer et al., 2009). WNS was confirmed in neighboring Pickens 

county in 2012-13 and in Oconee county in 2013-2014 (SCDNR, 2016). We selected 

stands that were representative of the different habitat types and structures present in 

APD (Loeb & O’Keefe, 2006). We used the Forest Service Continuous Inventory of 

Stand Condition database to select pine, hardwood, and mixed pine-hardwood stands. 

Stands that contained sampling points ranged in size from 2 to 105 ha and sampling 

points were at least 50 m from the edge of the stand.  

Acoustic Data Collection 

 We monitored acoustic activity within our study area during 2004 and 2005 (i.e. 

pre-WNS), and then again in 2016 and 2017 (i.e., post-WNS). In summer 2004 and 2005, 

we passively surveyed bats using Anabat II bat detectors (Titley Scientific, Brendale, 

Australia) that were connected to programmable zero-crossings analysis interface 

modules (Anabat CF Storage ZCAIM; Loeb & O’Keefe, 2006). In May to August 2004, 
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we sampled 89 points, and in May to August 2005, we sampled 98 points, with 78 points 

being sampled both years. We sampled 80 of the 89 points from 2004 for one night, and 

in 2005, we sampled points for one to three nights. During June to August 2016 and June 

and July 2017, we collected acoustic data at 105 of the 109 points sampled in 2004 and 

2005. We used Anabat Express bat detectors (Titley Scientific, Brendale, Australia) to 

record bat calls for ≥ 2 consecutive nights. Detectors were set to record from sunset to 

sunrise and were attached to the top of 3.7 m painter’s poles that were held upright using 

a PVC pipe connected to a U-pole.  

We used two custom filters to separate bat passes (≥ 1 pulse) from noise, and to 

separate low quality passes (< 5 pulses) from high quality passes (> 5 pulses) from the 

resulting acoustic data (Loeb & O’Keefe, 2006). We used Kaleidoscope Pro (version 

3.1.8) to identify calls to species and then manually vetted and corrected mis-identified 

calls. Ten species of bats have been documented to occur at APD (Loeb & O’Keefe, 

2006). These are four WNS-susceptible species (the tricolored bat, the small-footed bat 

[Myotis leibii], the little brown bat, and the northern long-eared bat; Langwig et al., 2012; 

USFWS, 2018), as well as six WNS-resistant species (the evening bat, the big brown bat, 

the hoary bat, the eastern red bat, the silver haired bat, and Rafinesque’s big-eared bat 

[Corynorhinus rafinesquii]; USFWS, 2018). We grouped species calls into five groups 

based on similar call structure. Big brown bats, hoary bats, and silver haired bats were 

grouped into the “low frequency bats” category, the small-footed bat, the little brown bat, 

and the northern long-eared bat were grouped into the “Myotis” category, and eastern red 

bats, evening bats, and tricolored bats were categorized into their own groups, 
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respectively. Rafinesque’s big-eared bats were not detected, likely due to their low 

intensity calls (Clement & Castleberry, 2011). 

Site Data Collection 

In 2004 and 2005, we obtained habitat type (pine, hardwood, or mixed pine-

hardwood) data from the Forest Service Continuous Inventory of Stand Condition 

database. In 2005, we visually estimated the amount of clutter above and immediately 

surrounding each sampling point. In revisiting points in 2016 and 2017, we similarly 

categorized habitat type and amount of clutter at each point sampled. Amount of clutter 

was visually categorized as low, medium, or high based on understory conditions in all 

directions up to 5 m from the detector in 2004 and 2005, and up to 3 m away from the 

detector in 2016 and 2016. Areas with little or no structural obstructions (e.g., branches) 

were considered to be low clutter, while areas with enough structural obstructions that 

would make it difficult for a bat to fly through were considered to be high clutter. Any 

amount of structural obstructions that fell between low and high clutter was considered to 

be medium clutter. If clutter amount changed in revisiting sites in 2016 or 2017, the 

change was noted and included in the detection probability models (clutter amount 

changed pre- to post-WNS at 69 points). However, due to our inability to account for 

changes in clutter amount when examining occupancy probabilities in our multi-season 

occupancy analysis, clutter amount was kept as the category assigned in 2004 or 2005. 

Minimum nightly temperature (°C) and total nightly precipitation (mm) were 

downloaded from the Western Regional Climate Center’s Remote Automatic Weather 

Station (RAWS) located in APD (https://wrcc.dri.edu/cgi-bin/rawMAIN.pl?laSANP). 
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Straight line distance from sample points to closest stream (m) and closest road (m) were 

calculated in ArcGIS 10.5 (ESRI, Redlands, California).  

Hypothesized changes in niche partitioning 

 We developed a priori predictions on which species were more likely to exhibit 

relaxed niche partitioning post-WNS by examining call structure, foraging habitat, 

foraging strategy, and known prey items of each species (Table 2.1). We used an index to 

determine where competition was high among the different species. We based this point 

system on the amount of acoustic and foraging behavior (habitat, time of day, and diet) 

similarity each WNS-resistant species had with WNS-susceptible species (i.e., Myotis 

and tricolored bats). For example, if red bats and Myotis had similar call structures, red 

bats were awarded a point for this category. Following this protocol, we determined that 

red bats and evening bats had an index score of 4 with Myotis and tricolored bats, while 

low frequency bats had an index score of 1 with Myotis and tricolored bats (Table 2.1). 

Therefore, we predicted that Myotis and tricolored bats would more likely experience 

relaxed niche partitioning with red bats and evening bats, while there would not be 

relaxation in niche partitioning between low frequency bats and Myotis and tricolored 

bats, since these species did not have a lot of overlap in call structure, foraging habitat, 

foraging times, or known prey items. 

Statistical Analyses  

We used multi-season single-species occupancy models to examine factors that 

may influence the probability of occurrence and detection of each bat species in APD 

(MacKenzie et al., 2006; Fiske et al., 2011). It is important to note the terms “site 
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occupancy” and “occurrence” should be interpreted as “use” when applied to bat research 

(MacKenzie, 2005). Foraging bats do not constantly occupy a site and therefore, the 

closure assumption of occupancy models is relaxed in bat research studies (MacKenzie, 

2005). We used data that were collected in summer 2004 and 2005 (“pre-WNS data”) as 

our first primary sampling period, and considered data that were collected in summer 

2016 and 2017 (“post-WNS data”) as our second primary sampling period to estimate the 

dynamic occupancy of bats in APD, which consisted of occupancy (Ψ), site colonization 

rates (γ), site extinction rates (ε), and detection probability (p) (MacKenzie et al., 2006; 

Fiske et al., 2011). Colonization (γ) and extinction (ε) govern changes in occupancy 

between successive primary sampling periods. The colonization parameter denotes the 

probability of an unoccupied site in sampling period t becoming an occupied site in 

sampling period t + 1. Conversely, the extinction parameter denotes the probability that 

an occupied site in sampling period t becomes unoccupied in sampling period t + 1. We 

combined 2004 and 2005 data where necessary to create two sampling occasions for our 

first primary sampling period (i.e., we considered the one night of data collected in 2004 

as our first secondary sampling occasion and the first night sampled in 2005 as our 

second secondary sampling occasion). As this likely violated the assumption that sites 

were closed to changes in occupancy between sampling occasions, the following results 

should be considered with this caveat in mind (MacKenzie & Bailey, 2004; MacKenzie et 

al., 2006). 

We used a two-step process in our occupancy analysis. In our first step, we 

examined factors we thought would influence detection of bats to account for imperfect 
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detection. We developed seven a priori models using existing literature (Table 2.2). We 

hypothesized that clutter amount (low, medium, high), precipitation, minimum nightly 

temperature, and Julian day would have an effect on our ability to detect bat species. 

Specifically, we predicted that as clutter (Sleep & Brigham, 2003) and precipitation 

(Yates & Muzika, 2006) increased, bat species detectability would decrease. We also 

predicted that bat species detectability would increase with temperature (Yates & 

Muzika, 2006; Starbuck et al., 2015) and Julian day (Starbuck et al., 2015). Prior to 

model fitting, we standardized precipitation, temperature, and Julian day to a mean of 

zero and standard deviation of 1. We checked the variables within our a priori models for 

correlation by calculating Pearson’s correlation coefficients for continuous variables and 

ANOVAs for categorical and continuous variables. We used Pearson’s chi-square tests to 

examine the independence of categorical variables. None of the variables included in our 

a priori detection and occupancy models were correlated (Pearson’s product-moment 

correlation coefficient > 0.5, ANOVA: P < 0.5, Pearson’s chi-square: P < 0.05), 

therefore, all covariates were retained. 

We incorporated the covariates included in the most supported detection 

probability model into our second step of fitting occupancy, colonization, and extinction 

models for each species (MacKenzie et al., 2006). We compared a set of six a priori 

models that examined environmental variables that we hypothesized might affect 

occupancy (Ψ) (Table 2.3). We hypothesized that clutter amount, habitat type, distance to 

closest stream, and distance to closest road would impact bat occupancy in APD. 

Specifically, we predicted that as clutter amount (Loeb & O’Keefe, 2006; Yates & 
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Muzika, 2006) and distance to closest stream (Cross, 1988; Racey, 1998; Ford et al., 

2006) increased, bat occupancy probabilities would decrease for all species. We also 

predicted that as distance to closest road increased, all bat species’ occupancy would 

increase (Starbuck et al., 2015). We predicted low frequency bats would most likely use 

pine habitat (Perry et al., 2007), red bats would most likely use hardwood habitat 

(Hutchinson & Lacki, 2000; Perry et al., 2007), evening bats and Myotis would more 

likely use mixed habitat (Perry et al., 2007), and tricolored bats would most likely use 

hardwood and mixed habitat types (Perry et al., 2007).  

We compared three a priori models to determine if clutter amount, habitat type, 

or neither of these parameters affected colonization (γ) and extinction (ε) probabilities of 

our species of interest. Because the first primary sampling period took place prior to 

WNS being detected at APD and the second primary sampling period took place after 

WNS was detected, we assumed the structure of our data captured pre- and post-WNS 

colonization and extinction rates. We predicted that generally, Myotis and tricolored bat 

(WNS-susceptible) colonization probabilities would be lower and extinction probabilities 

would be higher than low frequency bats, red bats, and evening bats (WNS-resistant). We 

predicted that colonization probabilities and extinction probabilities of low frequency 

bats, red bats, and evening bats would be impacted by clutter amount because they would 

forage more often in lower clutter sites post-WNS since there would be fewer Myotis and 

tricolored bats in those areas. We predicted that colonization and extinction probabilities 

of Myotis and tricolored bats would not be affected by clutter amount or habitat type, 

because they would already be in areas where they would most likely forage and would 
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not move out of those areas. Similar to detection probability modeling described above, 

prior to model fitting we standardized continuous covariates and checked for correlations 

among predictor variables. None of the variables included in our a priori models were 

correlated (Pearson’s product-moment correlation coefficient > 0.5, ANOVA: P < 0.5, 

Pearson’s chi-square: P < 0.05), therefore, all covariates were kept in all models. We 

calculated parameter estimates for occupancy, colonization, and extinction probabilities 

for each bat species. Lastly, we compared colonization and extinction rates among the 

species group by examining predicted colonization and extinction probabilities and 95% 

confidence intervals of each species. 

We used the package unmarked in program R to fit our multi-season single-

species occupancy models (Fiske et al., 2011; R Development Core Team, 2010). We 

compared models using AIC scores and AIC weights (wi), and considered models within 

2 ∆AIC to be top-ranked models, with the model with the lowest ∆AIC value to be the 

most parsimonious model (Burnham & Anderson, 2002). To address model uncertainty 

(i.e., multiple models fell within 2 ∆AIC and included the same covariates), we model-

averaged parameter estimates, standard errors and calculated 95% confidence intervals 

based on all models in our 2 ∆AIC confidence set (Burnham & Anderson, 2002). If 

multiple models were highly competitive and did not repeat the same covariates, we 

examined parameter estimates of covariates included in the top models to determine what 

covariates had a statistically significant effect on detection and occupancy. We 

considered covariates to have a statistically significant effect on bat detection or 

occupancy if the confidence interval of the covariate did not cross zero.  
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To examine temporal niche partitioning, we first used two-tailed t-tests to 

determine if there was a significant difference between the number of calls per night 

collected from all points sampled pre- and post-WNS.  Then, to examine activity of low 

frequency bats, red bats, evening bats, Myotis, and tricolored bats throughout the night 

during pre- and post-WNS sampling periods, we used the non-parametric kernel density 

estimation procedure as described by Ridout & Linkie (2009) and Wang et al. (2015). 

Using the overlap package in program R (R Development Core Team, 2010; Meredith & 

Ridout, 2018), we converted the time stamp associated with each call file to radians and 

used kernel density estimation to generate a probability density distribution of each 

species’ activity throughout the night during both sampling periods. We then calculated 

the overlap term (∆), a value that ranges from 0 (complete activity shift) to 1 (no activity 

shift), to quantify the amount of temporal overlap that occurred between sampling 

periods. Ridout & Linkie (2009) recommended using ∆1 for small sample sizes (n < 50) 

and ∆4 for larger sample sizes (n > 50). Therefore, we estimated ∆4 and calculated 95% 

confidence intervals for estimates from 1000 bootstrap samples. To determine if a 

significant shift had occurred, we examined the 95% bootstrapped confidence intervals; if 

estimates did not overlap, they were considered to be significantly different (Ridout & 

Linkie, 2009). 

First, we compared species’ nightly activity pre- and post-WNS (e.g., red bat 

activity in pre-WNS vs. red bat activity post-WNS) to determine if each species changed 

when and how much they changed their activity at night. We predicted that low 

frequency bats would exhibit a small change in their activity pre- to post-WNS and that 
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red bats and evening bats would exhibit larger shifts in activity throughout the night than 

the WNS-susceptible species. Second, we compared species activity between pairs of 

species we hypothesized would exhibit more or less overlap of temporal foraging niches 

WNS (Table 2.1). We hypothesized that red bats and evening bats would change their 

activity at night to take advantage of times when WNS-susceptible species were once 

more active and become more active during the times of night in which low frequency 

bats are active, thus, we predicted that the level of temporal overlap would increase 

between red bats and all other species and evening bats and all other species. We 

hypothesized that Myotis and tricolored bats would change their activity to avoid each 

other, thus, we predicted that the level of overlap would decrease between Myotis and 

tricolored bats. We also hypothesized that there would not be much competition between 

low frequency bats and WNS-susceptible bats (Table 2.1), thus, we predicted that the 

level of overlap between WNS-susceptible species and low frequency bats would 

decrease.  

Results 

Occupancy modeling at APD 

 From the 109 points sampled during summer 2004 and 2005 and the 105 points 

during summer 2016 and 2017, we were able to include 86 points in our occupancy 

modeling. Points were not included if they had missing habitat covariate data or if they 

were not sampled during both primary sampling periods. All species were recorded 

during both primary sampling periods (Table 2.4).  
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 We found that the most parsimonious models with covariates that influenced bat 

detection probabilities were species-specific. The global model was the top model for low 

frequency bats (Table 2.5) and we found that Julian day, minimum nightly temperature, 

and clutter amount affected detection probabilities (Table 2.6). Low frequency bat 

detection probability increased by 10% every 37.5 days and for every 5 °C increase in 

minimum nightly temperature (Figure 2.1). Additionally, we were 25% more likely to 

detect a low frequency bat low clutter than medium clutter and 40% more likely in low 

clutter than high clutter (Figure 2.1). For red bats, we observed strong support for the 

clutter model and the global model (Table 2.5). From model-averaging, we found that 

low clutter was the only significant covariate for red bat detection probability (Table 2.6). 

Red bat detection probability was 15% lower in medium clutter than low clutter and 12% 

lower in high clutter than low clutter (Figure 2.2A). The clutter model was the top-ranked 

model for evening bats (Table 2.5). As we predicted, as clutter increased, the probability 

of detecting evening bats decreased (Table 2.6). Detection probability of evening bats 

was 25% lower in medium clutter than low clutter and 35% lower in high clutter than low 

clutter (Figure 2.2B). We observed support for the Julian day model, the precipitation 

model, the temperature model, and the clutter model for Myotis bats (Table 2.4). From 

examining the parameter estimates of each covariate in these models, we found that low 

clutter was the only covariate that had a statistically significant effect on Myotis detection 

(Table 2.6). Myotis detection probability was 20% lower in medium clutter than in low 

clutter and 21% lower in high clutter than in low clutter (Figure 2.2C). The Julian day 

model was the top-ranked model for tricolored bats (Table 2.5). As we predicted, Julian 
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day had a significant positive affect on tricolored bats (Table 2.6). Tricolored bat 

detection probability increased by 10% every 20 days (Figure 2.2D).  

 We found that the most parsimonious models with covariates that influenced bat 

occupancy were also species-specific. Multiple models fell within 2 ∆AIC for low 

frequency bats; this included the null model, the stream model, the road model and the 

clutter model (Table 2.7). From examining the parameter estimates for these covariates, 

we found that only distance to closest road had a significant effect on low frequency bat 

occupancy probability (Table 2.8). Low frequency bat occupancy probability decreased 

by 10% for every 281 m increase in distance to closest road (Figure 2.3A). The global 

model was the top model for red bat occupancy (Table 2.7). From examining the 

parameter estimates, we found that habitat type, clutter amount, distance to closest road, 

and distance to stream impacted red bat occupancy probabilities (Table 2.8). Red bat 

occupancy probability was 35% higher in hardwood than pine habitat, 11% lower in pine 

than mixed habitat, and 23% lower in mixed than hardwood habitat. Red bat occupancy 

was 35% higher in medium clutter than low clutter and 2% higher in high clutter than low 

clutter. Red bat occupancy also decreased by 10% for every 131 m increase in distance to 

closest road; and was lowest when 8 m from a stream but increased toward one at 123 m 

(Figure 2.4). Multiple models fell within 2 ∆AIC for evening bats; these included the null 

model, the global model, the road model, and the stream model (Table 2.7). When we 

attempted to examine the parameter estimates for the global model, we found that it did 

not converge and we eliminated it from our model set. After doing so, we found support 

for the null model, the road model, and the stream model. From examining parameter 
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estimates of the covariates included in these models, we found that distance to closest 

road was the only covariate that had a significant effect on evening bat occupancy 

probability (Table 2.8). Evening bat occupancy decreased by 10% for every 263 m 

increase in distance to closest road (Figure 2.3B). We found support for multiple models 

for Myotis occupancy; these models included the null model, the road model, the habitat 

model, and the stream model (Table 2.7). Myotis occupancy was significantly affected by 

habitat type and distance to closest road (Table 2.8). Myotis occupancy probability was 

29% higher in hardwood than pine habitat, 30% lower in pine than mixed habitat, and 

10% higher in mixed than hardwood habitat, and decreased by 10% for every 197 m 

increase in distance to closest road (Figure 2.5). The null model, road model, and the 

stream model were highly competitive for tricolored bat occupancy (Table 2.7) and we 

found that distance to closest road had a significant impact on tricolored occupancy 

(Table 2.8). Tricolored bat occupancy probability was predicted to decrease by 10% for 

every 133 m increase in distance to closest road (Figure 2.3C). 

 Some of our predictions were supported by the results for colonization and 

extinction probabilities, which were species-specific. Low frequency bats exhibited the 

highest colonization probabilities, followed by red bats, then, unlike what we predicted, 

tricolored bats had the third highest colonization probabilities. Evening bats had the 

second lowest colonization probabilities and Myotis colonization probabilities fell 

between evening bats and tricolored bats (Table 2.9). The colonization probability of low 

frequency bats was affected by habitat type, where they were most likely to move into 

areas in mixed habitat, followed by pine, and least likely to move into areas in hardwood 
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habitat (Table 2.9). We found that Myotis colonization probabilities were affected by 

clutter amount, where Myotis were most likely to move into areas of high clutter, 

followed by medium clutter, and were least likely to move into areas of low clutter post-

WNS (Table 2.9). We did not find any support for clutter amount or habitat type when 

examining colonization probabilities of red bats, evening bats, and tricolored (Table 2.9). 

As with our predictions for colonization probabilities, some of our predictions regarding 

what species had higher extinction probabilities were supported by our results. As we 

predicted, Myotis exhibited the highest extinction probabilities, however, unlike our 

predictions, evening bats exhibited the second-highest extinction probabilities. Red bats 

had the third highest extinction rates, followed by tricolored bats, and low frequency bats 

exhibited the lowest extinction rates (Table 2.10). Myotis extinction probabilities were 

affected by habitat type, where Myotis were most likely to stop using points in hardwood 

habitat, followed by mixed habitat, and were least likely to stop using points in pine 

habitat (Table 2.10). Evening bat extinction probabilities were affected by clutter amount, 

where these bats were most likely to move out of medium clutter, followed by low 

clutter, and were least likely to move out of high clutter areas (Table 2.10). Red bat 

extinction probabilities were affected by habitat type, where red bats were most likely to 

stop using points in mixed habitat, followed by pine, and were least likely to stop using 

points in hardwood habitat (Table 2.10). Low frequency bat and tricolored bat extinction 

probabilities were not affected by clutter amount or habitat type (Table 2.10). 

Temporal Niche Partitioning 
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 A total of 1,555 call files were collected from the 109 points sampled during 

summer 2004 and 2005. Of those call files, 195 were low frequency bat call files, 372 

were red bat call files, 77 evening bat call files, 255 Myotis call files, 573 tricolored bat 

call files, and 83 were unidentified. During summer 2016 and 2017, we collected 2,684 

bat call files from the 105 points sampled. We collected 1,286 low frequency bat call 

files, 669 red bat call files, 253 evening bat call files, 225 Myotis bat call files, 130 

tricolored bat call files, and 121 were unidentified. We found a significant difference 

between the number of files collected per night pre- and post-WNS for low frequency 

bats, with significantly more calls collected post-WNS (Table 2.11). There was no 

significant difference in the number of calls collected pre- and post-WNS for all other 

species (Table 2.11).  

 While all species changed when they were active at night, some of our predictions 

regarding the amount of change in activity for bat species from pre- to post-WNS were 

supported by our results (Figure 2.6). Unlike our predictions, low frequency bats shifted 

their activity the most pre- to post-WNS, with activity becoming more evenly distributed 

throughout the night. Additionally, the amount of shift low frequency bats exhibited was 

significantly different from the amount of shift exhibited by all other species. Red bats 

exhibited the second-greatest amount of change in activity pre- to post-WNS, with 

activity becoming more evenly distributed throughout the night post-WNS. Myotis 

shifted their activity the most out of the WNS-susceptible species and third-most overall, 

becoming less active at the beginning of the night and more active at the end of the night 

post-WNS. Additionally, the amount of change exhibited by Myotis and red bats was 
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significantly different from tricolored bats. Tricolored bats changed their activity the least 

amount, followed by evening bats.  

Some of our predictions regarding the change in level of overlap between species 

pre- and post-WNS were supported by our results (Table 2.12). Following our 

predictions, the level of overlap between low frequency bats and red bats and evening 

bats increased, however, unlike our predictions, the level of overlap between low 

frequency bats and WNS-susceptible species also increased (Table 2.12). In particular, 

the level of overlap between low frequency bats and tricolored bats was significantly 

different from pre- to post-WNS (Table 2.12). As we predicted, the level of overlap 

increased between red bats and WNS-resistant species increased, but unlike our 

predictions, the level of overlap between red bats and WNS-susceptible species also 

increased, with the level of overlap between red bats and Myotis and red bats and 

tricolored bats being significantly different from pre- to post-WNS (Table 2.12). 

Following our predictions, the level of overlap decreased between evening bats and 

Myotis (Table 2.12). As we predicted, the level of overlap significantly decreased 

between Myotis and tricolored bats (Table 2.12). 

 

Discussion 

Our data suggest that in forests of South Carolina, tree-dwelling and cave-

hibernating bat species are utilizing available niches differently following the arrival of 

WNS. Similar to previous studies in other portions of the U.S. (Jachowski et al., 2014; 
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Thalken et al., 2018), as WNS-susceptible species became less abundant on the 

landscape, WNS-resistant species moved into the areas and times in which WNS-

susceptible species were once more active. Specifically, low frequency bats, red bats, and 

evening bats, the WNS-resistant species, moved into previously unused areas and 

changed when they were active at night. Myotis, which are susceptible to WNS, moved 

out of previously used areas and changed when they were active at night, potentially so 

that they would not have to compete with evening bats. At the same time, tricolored bats, 

our other WNS-susceptible species, moved into previously unused areas, left previously 

used areas, and did not change when they were active at night. This suggests that WNS 

destabilized the spatial and temporal niche partitioning exhibited by each species in APD. 

Our research suggests that spatial niche partitioning between bats at APD has 

changed pre- to post-WNS. Specifically, we saw that Myotis stopped using hardwood 

habitat, which may have allowed low frequency bats to start using hardwood habitat. 

While we did not predict to see such a movement in the areas they used between Myotis 

and low frequency bats, we did hypothesize that there would be relaxed niche partitioning 

exhibited by WNS-susceptible species. As Myotis altered which habitat they used for 

foraging, the spatial niche partitioning between them and low frequency bats relaxed. 

Evening bats, red bats, and tricolored bats also changed the areas they used, though these 

movements did not seem to be directly related to other species’ movements. As was seen 

by Jachowski et al. (2016) and suggested by Thalken et al. (2018), WNS-susceptible 

species altered their habitat use and as a result, WNS-resistant species were able to alter 

their habitat use as well. 
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Our results also suggest that bats altered temporal activity pre- to post-WNS at 

APD. Contrary to our predictions, low frequency bats exhibited the most amount of shift 

in activity pre- to post-WNS. Though we hypothesized that low frequency bats would not 

compete with other species, they seem to still be taking advantage of times of night when 

WNS-susceptible species used to be active. Additionally, we considered red bats to be the 

most adaptable of the species included in this study. Because they are adaptable, our 

findings support our prediction that they were likely able to become active during times 

when WNS-susceptible species were once more active. By contrast, we did not consider 

Myotis bats to be as adaptable as red bats, as their calls do not fluctuate between pulses 

and they rely on gleaning to capture prey items (Faure et al., 1993). Despite this, Myotis 

activity shifted towards the end of the night, which may have happened because they may 

be experiencing some increased competition from WNS-resistant bats, especially evening 

bats. As we predicted, evening bats were able to shift their activity to times of night so 

that they could take advantage of times of night when Myotis bats were no longer as 

active as they were pre-WNS. Contrary to our predictions, tricolored bats shifted their 

activity the least amount. Tricolored bats were the smallest-bodied bat of the species 

included in this study, had the highest call frequency, and preyed soft-bodied prey items, 

therefore, they may have been able to continue to be active during the same times of 

night pre- and post-WNS, since competition between them and other species was 

considered to be low. 

As bats changed when they were active at night, they in turn altered temporal 

niche partitioning, though the degree to which these alterations occurred varied between 
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species. As we predicted, the level of overlap between WNS-resistant species increased 

and the level of overlap between Myotis and tricolored bats decreased pre- to post-WNS. 

We predicted the level of overlap between WNS-susceptible species would decrease for 

two reasons; (1) both species were less abundant on the landscape due to WNS, and (2) 

both species had high frequency calls and if they foraged in the same areas during the 

same times, they may have experienced jamming of their calls. Echolocation jamming 

occurs when sympatric species emit echolocation calls in the same area and equates to 

interference for each species (Bates et al., 2008; Takahashi et al., 2014). Therefore, 

Myotis and tricolored bats would try to avoid each other so that they would avoid 

jamming each other’s call. Contrary to our predictions, we saw a decrease in the level of 

overlap between evening bats and Myotis and an increase in the level of overlap between 

low frequency bats and Myotis and low frequency bats and tricolored bats. Additionally, 

the level of overlap between low frequency bats and tricolored bat was significantly 

different pre- to post-WNS. The level of overlap between evening bats and Myotis bats 

might have decreased for two reasons: (1) there were fewer Myotis on the landscape post-

WNS and (2) Myotis were not be able to compete with evening bats. These bats had 

similar prey items, call frequencies that included 40 kHz, and foraged along edges 

(Barbour & Davis, 1969; LaVal et al., 1977; Caire et al., 1979; Fenton et al., 1983; 

Whitaker & Clem, 1992; Feldhamer et al., 1995; Lacki et al., 2007). Despite our 

prediction that low frequency bats would not compete with WNS-susceptible species, we 

found evidence that low frequency bats changed when they foraged post-WNS and seem 

to be taking advantage of fewer WNS-susceptible species on the landscape. 



59 
 

Overall, our findings lend additional support for the results of other studies 

conducted in different bat communities while also building upon these previous studies in 

a number of ways. As we found evidence of destabilized niche partitioning post-WNS in 

South Carolina, Jachowski et al. (2014) found relaxed niche partitioning in New York 

after the little brown bat population succumbed to WNS and Thalken et al. (2018) found 

that species that were not impacted by WNS were exploiting niche space formerly used 

by WNS-susceptible species in Kentucky. Therefore, we can infer that niche partitioning 

in widespread communities has been affected by WNS, both directly and indirectly. Our 

study also differed from these previous studies; unlike Jachowski et al. (2014), we did not 

have one dominant species in our bat community, and, therefore, we could compare 

multiple species instead of one. Thalken et al. (2018) collected data using mist nets 

instead of acoustic detectors. These two methods have their own advantages: for 

example, captures from mist nets allow researchers to identify bats by sex, age, and 

species in the case of Myotis (Keunzi & Morrison, 1998) while acoustic detectors 

generally yield higher species richness values (Murray et al., 1999). Despite these 

differences, data collected by both techniques were still able to capture the effect WNS 

has had on niche partitioning in two different bat communities. We would suggest using 

acoustic detectors to collect community data, however, as acoustic detectors can be 

deployed in areas otherwise difficult to sample using mist nets (Murray et al., 1999) and 

mist nets can be avoided by some species (Kunz & Kurta, 1988). 

Our findings also have implications to the conservation of bat species due to some 

species’ threatened status and on how managers will conserve them through habitat 
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management. As WNS continues to impact bats in North America, it is important to 

collect data that provides an up-to-date representation of the bat communities affected by 

this disease. It is particularly important to collect recent data on little brown bats and 

tricolored bats, as both of these species are under review by the U.S. Fish and Wildlife 

Service for listing under the Endangered Species Act. Recent data on northern long-eared 

bats are also necessary to collect, as this species is federally listed (USFWS, 2016; 2018). 

As part of their listed status or potential listed status, additional information on these 

species, including habitat requirements, current range, summer population estimates, and 

species-specific population data pre- and post-exposure to WNS, is necessary in order to 

warrant their status (USFWS, 2016; 2017). As such, this study provides an up-to-date 

representation of post-WNS habitat requirements for tricolored bats and Myotis species, 

as well as other species, in APD. Additionally, changes in niche partitioning among bats 

impact the habitat management decisions land managers will need to make to conserve 

these species. As habitat use by bats changes post-WNS, land managers may no longer be 

able to rely on research conducted pre-WNS. For example, we found evidence that 

Myotis are more likely to use high clutter areas from pre- to post-WNS. As such, if land 

managers decide to focus on conserving habitat for Myotis, using our results, they could 

decide to alter their land management so that there would be more high clutter areas 

available for remnant Myotis to forage in. Similarly, changes in temporal niche 

partitioning can also clue us in to how well remnant bats will be able to survive in the 

coming years. We found evidence that Myotis are now active at the end night and they 

may be expending more energy than they should to catch prey during this time of night 
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(Kunz, 1973; Eckert, 1982; Racey & Swift, 1985). The habitats Myotis forage in, 

therefore, may become more important for land managers to maintain and create when 

attempting to conserve these WNS-susceptible species. 

 As WNS continues to spread across the U.S., it is important to continue 

investigating the direct and indirect effects the disease has had on remnant bat 

community structure. When continuing this research, we suggest that studies are 

conducted for longer periods of time (e.g., more than 4 years; Jachowski et al., 2014) so 

that researchers can determine if changes in niche partitioning have any long-term or 

cascading effects on bats. Acquiring such knowledge will provide an accurate baseline 

and in turn improve land management decisions for WNS-impacted communities. 

Additionally, we suggest that researchers conduct additional studies in different bat 

communities so that we can determine if relaxed niche partitioning affects demographic 

increases of WNS-resistant species and the ability of remnant WNS-susceptible species 

to persist. Other systems are also under threat from emerging infectious diseases, such as 

chytridiomycosis in amphibian communities (Lips et al., 2006), sylvatic plague in 

grassland ecosystems (Antolin et al., 2002), and snake fungal disease in North America 

(Lorch et al., 2016). As such, we suggest research be conducted within these 

communities as well to determine the direct and indirect effects of emerging infectious 

diseases.   
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Tables 

Table 2.1. A priori prediction index regarding level of overlap between bat species 

in Andrew Pickens District. Prediction index scores were based on amount of 

overlap in call structure, foraging habitat, foraging times, and known prey items 

with Myotis and tricolored bats. If species overlapped in one of these categories, 

they earned one point; if they did not overlap, they earned a zero for that category. 

Species Characteristic 

call frequency 

Foraging 

habitat 

Foraging 

times 

Known prey 

items 

Predicti

on 

index 

score  

Low 

frequency 

bats (WNS-

resistant) 

20-30 kHz 

(Brigham et 

al., 1989; 

Thomas et al., 

1987; 

Crampton & 

Barclay, 

1998) 

Generalist; 

clutter-

intolerant 

(Furlonger 

et al., 1987; 

Geggie & 

Fenton, 

1985; 

Brigham et 

al., 1997; 

Menzel et 

al., 2005a) 

Forage 

throughout 

the night 

with most 

activity 

within 

second 

hour after 

sunset 

(Kunz, 

1973) 

“Beetle 

specialist”; 

katydids, 

flies, 

hymenopter-

ans (Black, 

1974) 

1 

Red bats 

(WNS-

resistant) 

35-40 kHz, 

fluctuates 

(Brigham et 

al., 1989) 

High above 

treetops/ 

canopy; 

clutter-

adapted 

(LaVal et 

al., 1977) 

Forage in 

early 

evening, 

(Harvey et 

al., 2011) 

Moths, 

beetles, flies, 

mayflies, 

grasshoppers 

(Carter et al., 

2004; Clare 

et al., 2009) 

4 

Evening 

bats 

(WNS-

resistant) 

35-40 kHz 

(Menzel et al., 

2003) 

Along 

edges; 

clutter-

adapted 

(Lacki et 

al., 2007) 

First hours 

of night 

(Lowery, 

1974) 

Beetles, 

moths, flies, 

leafhoppers 

(Whitaker & 

Clem, 1992; 

Feldhamer et 

al., 1995) 

4 

Myotis 

(WNS-

susceptible) 

40 kHz 

(Fenton & 

Bell, 1979; 

1981; Thomas 

et al., 1987; 

Crampton & 

Along 

edges, 

underneath 

canopy; 

clutter-

adapted 

First hours 

of the night 

(dusk to 

2400) then 

again from 

0100 to 

Moths, 

wasps, 

mosquitoes, 

craneflies 

(Barbour & 

Davis, 1969) 

Tricol-

ored: 4 
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Barclay, 

1998) 

(LaVal et 

al., 1977; 

Caire et al., 

1979; 

Fenton et 

al., 1983) 

0500 

(Anthony 

& Kunz, 

1977) 

Tricolored 

bats 

(WNS-

susceptible) 

40-50 kHz 

(MacDonald 

et al., 1994) 

Generally 

do not use 

cluttered 

habitats, 

though 

they are 

clutter-

adapted; 

waterways 

and forest 

edges 

(LaVal et 

al., 1977) 

Early in 

evening 

(Davis & 

Schmidly, 

1997) 

Moths, flies, 

beetles, ants 

(Barbour & 

Davis, 1969; 

Fujita & 

Kunz 1984) 

Myotis: 

4 
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Table 2.2. A priori model variables for detection probability (p) of bats in 

Andrew Pickens District in summer 2016 & 2017. A null model was included 

in the analysis. 

Model 

# 

Variable Hypothe

sis 

Covariates Predicted 

Effects 

Literature 

Cited 

1 Clutter Clutter 

has an 

effect on 

bat p.  

Low, 

medium, 

high 

As clutter 

amount 

increases, 

bat p 

decreases. 

Sleep & 

Brigham, 

2003 

2 Julian day Julian 

day has 

an effect 

on bat p. 

Continuous As Julian 

day 

increases, 

bat p 

increases. 

Starbuck et 

al., 2015 

3 Precipitation 

(mm) 

Precipita

tion has 

an effect 

on bat p. 

Continuous As amount 

of 

precipitation 

increases, 

bat p 

decreases. 

Yates & 

Muzika, 

2006 

4 Minimum 

nightly 

temperature 

(°C) 

Tempera

ture has 

an effect 

on bat p. 

Continuous As 

temperature 

increases, 

bat p 

increases. 

Yates & 

Muzika, 

2006; 

Starbuck et 

al., 2015 

5 Minimum 

nightly 

temperature 

+ 

Precipitation 

Weather 

variables 

have an 

additive 

effect on 

bat p. 

Continuous 

(°C & mm) 

Temperature 

will have a 

positive 

effect on bat 

p as it 

increases, 

but 

precipitation 

will have a 

negative 

effect on bat 
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p as it 

increases. 

6 Clutter + 

Julian day + 

Precipitation 

+ 

Temperature  

Global 

model 

Categorical 

(low, 

medium, 

high) & 

continuous 

(date; mm; 

°C) 
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Table 2.3. A priori model variables for occupancy probability (Ψ) of bats in 

Andrew Pickens District in summer 2016 & 2017. A null model was included 

in the analysis. 

Model 

# 

Variable Hypothesis Covariates Predicted 

Effects 

Literature 

Cited 

1 Clutter Clutter will 

have an 

effect on 

bat Ψ. 

Low, 

medium, high 

As clutter 

amount 

increases, 

bat Ψ will 

decrease. 

Yates & 

Muzika, 

2006 

2 Habitat 

type 

Habitat 

type will 

have an 

effect on 

bat Ψ.  

Pine, 

hardwood, 

mixed 

Low 

frequency 

bats more 

likely to use 

pine habitat, 

red bats 

more likely 

to use 

hardwood 

habitat, 

evening 

bats and 

Myotis 

more likely 

to use 

mixed 

habitat. 

Tricolored 

bats more 

likely to use 

mixed and 

hardwood 

habitat. 

Low 

frequency 

bats, evening 

bats, Myotis, 

tricolored 

bats: Perry et 

al., 2007           

Red bats: 

Hutchinson 

& Lacki, 

2000; Perry 

et al., 2007 

3 Stream 

(m) 

Distance to 

closest 

stream 

source will 

have an 

Continuous As distance 

to closest 

water 

source 

increases, 

Cross, 1988; 

Racey, 1998; 

Ford et al., 

2006 
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effect on 

bat Ψ. 

bat Ψ will 

decrease. 

4 Road 

(m) 

Distance to 

closest 

road will 

have an 

effect on 

bat Ψ. 

Continuous As distance 

to closest 

road 

increases, 

bat Ψ will 

increase. 

Starbuck et 

al., 2015 

5 Clutter 

+ 

Habitat 

type + 

Water + 

Road 

Global 

occupancy 

model 

Categorical 

(low, 

medium, 

high; pine, 

hardwood, 

mixed) & 

continuous 

(m2/ha; m) 
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Table 2.4. Number of points species groups colonized (i.e., started using) and became 

extinct (i.e., stopped using) pre- to post-WNS at Andrew Pickens District. 

Species group # points species colonized 

pre- to post-WNS 

# points where species became 

extinct pre- to post-WNS 

Low frequency bats 24 19 

Red bats 19 27 

Evening bats 15 24 

Myotis 19 30 

Tricolored bats 13 36 
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Table 2.5. Top-ranked models for detection probability (p) for species 

groups in Andrew Pickens District pre- and post-WNS. Only top-ranked 

models (∆AIC < 2) are included. 

Species 

Group 

Model Name K AIC ∆AIC wi 

Low 

frequency 

bats 

Clutter + Julian day + 

Precipitation + Minimum 

nightly temperature 

9 396.06 0 0.73 

Red bats Clutter 6 388.74 0 0.52 

Clutter + Julian day + 

Precipitation + Minimum 

nightly temperature 

9 389.55 0.82 0.32 

Evening bats Clutter 6 324.44 0 0.84 

Myotis  Julian day 5 358.89 0 0.27 

Null 4 359.00 0.10 0.25 

Precipitation 5 360.22 1.32 0.14 

Clutter 6 360.39 1.49 0.13 

Minimum nightly 

temperature 

5 360.43 1.54 0.12 

Tricolored 

bats 

Julian day 5 321.62 0 0.79 
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Table 2.6. Parameter estimates, standard errors (SE), and 95% confidence 

intervals (CI) of parameters within the top models for detection (p) models (< 

2 ∆AIC) of low frequency bats, evening bats, Myotis, and tricolored bats in 

Andrew Pickens District. Model-averaged parameter estimates, standard 

errors (SE) and 95% confidence intervals (CI) for the two top models for red 

bats. 

Parameter Estimate SE Upper 95% CI Lower 95% CI 

Low frequency bats 

Intercept -1.08 0.30 -0.78 -1.39 

Low clutter 2.17 0.56 2.73 1.61 

Medium clutter 0.59 0.40 1.00 0.19 

Precipitation -0.16 0.18 0.02 -0.33 

Minimum nightly 

temperature 

0.23 0.20 0.44 0.03 

Julian day 0.31 0.21 0.53 0.10 

Red bats 

Intercept -0.40 0.33 0.25 -1.05 

Low clutter 1.09 0.48 2.04 0.15 

Medium clutter -0.19 0.43 0.66 -1.04 

Precipitation 0.09 0.17 0.42 -0.24 

Minimum nightly 

temperature 

0.22 0.19 0.60 -0.15 

Julian day 0.17 0.19 0.55 -0.21 

Evening bats 

Intercept (high clutter) -1.62 0.39 -1.24 -2.01 

Low clutter 1.67 0.48 2.15 1.18 

Medium clutter 0.52 0.46 0.98 0.06 

Myotis 

Intercept -0.03 0.57 0.54 -0.60 

Low clutter 0.66 0.60 1.26 0.06 

Medium clutter -0.10 0.53 0.43 -0.63 

Precipitation 0.19 0.26 0.45 -0.07 

Minimum nightly 

temperature 

0.06 0.22 0.28 -0.16 

Julian day 0.26 0.29 0.55 -0.03 

Tricolored bats 

Intercept -0.41 0.17 -0.24 -0.58 

Julian day 0.57 0.18 0.75 0.39 
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Table 2.7. Top-ranked models for occupancy probability (Ψ) for species 

groups in Andrew Pickens District pre- and post-WNS. Only top-

ranked models (∆AIC < 2) are included. 

Species Group Model Name K AIC ∆AIC wi 

Low frequency 

bats 

Null 11 395.24 0 0.35 

 Stream 12 396.40 1.16 0.19 

 Road 12 396.47 1.23 0.19 

 Clutter 13 397.12 1.88 0.14 

Red bats Clutter + Road + 

Habitat + Stream 

17 378.98 0 0.97 

Evening bats Null 8 323.49 0 0.41 

 Road 9 325.20 1.71 0.18 

 Stream 9 325.34 1.84 0.16 

Myotis Null 9 361.65 0 0.36 

Road 10 362.58 0.93 0.23 

Habitat 11 363.25 1.60 0.16 

Stream 10 363.40 1.75 0.15 

Tricolored bats Null 5 321.62 0 0.32 

Road 6 321.64 0.02 0.32 

Stream 6 322.23 0.61 0.24 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

Table 2.8. Parameter estimates, standard errors (SE), and 95% confidence 

intervals (CI) of parameters in the top models for occupancy (Ψ) models 

for bats in Andrew Pickens District.  

Parameter Estimate SE Upper 95% CI Lower 95% CI 

Low frequency bats 

Intercept 0.04 0.87 0.84 -0.91 

Road -0.37 0.33 -0.04 -0.70 

Stream 0.24 0.33 0.57 -0.09 

Low clutter -0.73 0.99 0.26 -1.72 

Medium clutter 0.52 1.09 1.61 -0.57 

Red bats 

Intercept 16.02 11.79 27.81 4.23 

Road -17.30 12.51 -4.79 -29.81 

Stream 11.96 8.53 20.49 3.43 

Mixed habitat -15.66 12.09 -3.57 -27.75 

Pine habitat -23.31 15.88 -7.43 -39.19 

Low clutter 4.02 3.27 7.29 0.75 

Medium clutter 40.09 28.36 68.45 11.73 

Evening bats 

Intercept -0.57 1.90 1.33 -2.47 

Road -3.50 3.09 -0.41 -6.59 

Stream 0.37 0.80 1.17 -0.43 

Low clutter -0.92 2.63 1.71 -3.55 

Medium clutter 16.24 26.19 42.43 -9.95 

Myotis 

Intercept 0.61 0.64 1.25 -0.04 

Road -0.35 0.32 -0.03 -0.67 

Stream 0.11 0.30 0.41 -0.19 

Mixed habitat 0.44 1.26 1.70 -0.82 

Pine habitat -0.90 0.74 -0.17 -1.64 

Tricolored bats 

Intercept 1.44 0.46 1.90 0.99 

Road -0.40 0.35 -0.05 -0.75 

Stream 0.44 0.56 1.00 -0.12 
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Table 2.9. Parameter estimates, standard errors, and 95% confidence intervals 

(CI) for colonization (γ) probabilities of bats in Andrew Pickens District. Low 

frequency bats and Myotis colonization probabilities were affected 

environmental covariates (i.e., habitat type or clutter amount). Red bats, 

evening bats, and tricolored bats colonization probabilities were not affected 

by either clutter amount or habitat type. 

Species Estimate Standard 

Error 

Upper 95% CI Lower 95% CI 

Low frequency bats   

Hardwood habitat 0.61 0.56 1.17 0.04 

Pine habitat 1.22 0.72 1.94 0.50 

Mixed habitat 19.57 315.18 334.76 -295.61 

Red bats 9.31 31.7 41.01 -22.39 

Evening bats 6.91 17.8 24.71 -10.89 

Myotis 

Low clutter -1.25 0.80 -0.45 -2.05 

Medium clutter -0.54 0.66 0.11 -1.20 

High clutter 0.73 1.24 1.97 -0.52 

Tricolored bats 9.04 29.00 38.04 -19.96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 
 

Table 2.10. Parameter estimates, standard errors, and 95% confidence 

intervals (CI) for extinction (ε) probabilities of bats in Andrew Pickens 

District. Red bats, evening bats, and Myotis extinction probabilities were 

affected environmental covariates (i.e., clutter amount or habitat type). Low 

frequency bats and tricolored bats extinction probabilities were not affected 

by either clutter amount or habitat type. 

Species Estimate Standard 

Error 

Upper 95% CI Lower 95% CI 

Low frequency bats 0.24 0.40 0.64 -0.17 

Red bats 

Hardwood habitat 0.48 0.69 1.17 -0.21 

Pine habitat 0.29 0.82 1.11 -0.53 

Mixed habitat 2.20 1.25 3.45 0.96 

Evening bats 

Low clutter 1.18 1.01 2.18 0.17 

Medium clutter 3.26 1.31 4.57 1.95 

High clutter -0.76 0.87 0.11 -1.63 

Myotis 

Hardwood habitat 8.76 24.2 32.96 -15.44 

Pine habitat -6.66 24.2 17.54 -30.86 

Mixed habitat -6.26 24.3 18.04 -30.56 

Tricolored bats 2.27 0.56 2.83 1.71 
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Table 2.11. Average number of call files collected pre- and post-WNS and two-

tailed t-test results from comparing number of call files collected per night for 

species in Andrew Pickens District in pre- and post-WNS. Number of call files 

collected per night are statistically different if P < 0.05. 

Species group Average # call 

files pre-WNS 

Average # call 

files post-WNS 

Test 

statistic 

SE Df P 

Low frequency 

bats 

2.67 17.26 -2.19 0.16 72 0.03 

Red bats 5.10 8.03 -0.87 0.13 72 0.38 

Evening bats 1.05 2.86 -1.89 0.02 72 0.06 

Myotis 3.49 3.04 0.23 0.02 72 0.82 

Tricolored bats 7.85 1.73 1.55 0.09 72 0.13 
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Table 2.12. Temporal overlap between bats in Andrew Pickens District. An asterisk (*) 

by the species names indicates the level of overlap was significantly different between 

pre- and post-WNS.  

Species 

comparison 

Pre-

WNS ∆4 

Pre-WNS CI 

(lower, 

upper) 

Post-

WNS ∆4 

Post-WNS 

CI (lower, 

upper) 

Pre-Post 

difference 

Low frequency 

bats – red bats 

0.81 0.74, 0.86 0.83 0.77, 0.85 -0.02 

Low frequency 

bats – evening 

bats 

0.67 0.58, 0.79 0.81 0.75, 0.87 -0.14 

Red bats – 

evening bats 

0.77 0.70, 0.86 0.88 0.82, 0.94 -0.11 

Tricolored bats – 

Myotis* 

0.92 0.87, 0.95 0.78 0.71, 0.85 0.14 

Low frequency 

bats – Myotis 

0.62 0.52, 0.67 0.76 0.66, 0.77 -0.14 

Low frequency 

bats – tricolored 

bats* 

0.63 0.55, 0.69 0.89 0.83, 0.91 -0.26 

Red bats – 

Myotis* 

0.63 0.54, 0.68 0.83 0.76, 0.88 -0.10 

Red bats – 

tricolored bats* 

0.64 0.54, 0.65 0.81 0.73, 0.86 -0.17 

Evening bats – 

Myotis 

0.77 0.64, 0.85 0.75 0.65, 0.80 0.02 

Evening bats – 

tricolored bats 

0.76 0.63, 0.85 0.81 0.70, 0.87 -0.05 

 

  



77 
 

Figures 

 
Figure 2.1. Influence of Julian day, minimum nightly temperature, and clutter amount on 

detection probabilities (p) of low frequency bats in Andrew Pickens District. The dotted 

lines (Julian day and temperature) and vertical black lines (clutter amount) represent the 

95% confidence interval. 
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Figure 2.2. Influence of clutter on (A) red bat, (B) evening bat, and (C) Myotis detection 

probabilities (p) and (D) Julian day on tricolored bats detection probabilities in Andrew 

Pickens District. The horizontal black lines (A, B, & C) and dotted lines (D) represent the 

95% confidence interval. 
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Figure 2.3. Predicted occupancy (Ψ) probability of (A) low frequency bats, (B) evening 

bats, and (C) tricolored bats as distance to closest road increases. The solid line represents 

the predicted occupancy probability estimate and the dotted lines represent the 95% 

confidence intervals. 
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Figure 2.4. Predicted occupancy (Ψ) probability of red bats in each habitat, clutter 

amount, and as distance to closest road and distance to closest stream increases in 

Andrew Pickens District. The points (habitat type and clutter amount) and solid line 

(distance to closest road and closest stream) represent the predicted occupancy 

probability estimate and the error bars (habitat type and clutter amount) and dotted lines 

(distance to closest road and closest stream) represent the 95% confidence intervals. 
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Figure 2.5. Predicted occupancy (Ψ) probability of Myotis in different habitat types and 

as distance to closest road increases. The point (habitat type) solid line (distance to 

closest road) represents the predicted occupancy probability estimate and the vertical 

lines (habitat type) and dotted lines (distance to closest road) represent the 95% 

confidence intervals. 
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Figure 2.6. Kernel density estimates of (A) low frequency bats, (B) red bats, (C) evening 

bats, (D) Myotis, and (E) tricolored bats pre- (solid black lines) and post-WNS (dotted 

black lines) in Andrew Pickens District. The shaded gray areas represent the amount of 

overlap in activity between pre- and post-WNS. Temporal shifts of species pre- to post-

WNS are represented by ∆4, with ∆4 = 1 representing no temporal shifts pre- to post-

WNS and ∆4 = 0 representing complete temporal shift. Midnight is represented by 0:00 

and noon is represented by 12:00. 
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