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ABSTRACT 

Botrytis cinerea Pers. is a necrotrophic fungal pathogen that infects over 235 

different plant species around the world. In cut flower roses, B. cinerea causes gray mold 

disease which leads to large economic losses during greenhouse production and in the 

post-harvest environment. Disease symptoms are often not visible during the production 

stage but are observed after storage and/or transportation. Fungicide applications are the 

primary strategy for gray mold management. However, fungicide resistance has been 

observed in several crops around the world, resulting in lack fungicide efficacy. Cultural 

practices such as plant nutrient management, cultivar selection, and crop sanitation are 

also important aspects of the disease management program. Despite the extensive efforts 

to control this pathogen, gray mold disease remains a persistent threat for cut rose 

production.  

In the first part of this research project, Botrytis cinerea Pers. sensu stricto was 

confirmed as the unique causal agent of gray mold in cut roses from Colombia. Other 

pathogenic fungi were identified, e.g., Alternaria alternata, Cladosporium 

cladosporoides, Epicoccum nigrum, Penicillium citrinum, Aspergillus brasiliensis and 

Diplodia sp. These fungi may become problematic in the future. Gray mold incidence 

and severity were evaluated in different rose tissue from the Botrytis susceptible cultivar 

‘Orange Crush’. Six commercial shipments from two different greenhouses at the same 

farm in Colombia were evaluated. The petals showed the highest disease incidence and 

severity. A total of 49 B. cinerea isolates were collected during the severity and incidence 

evaluation. Fungicide resistance profiling was performed using ten fungicides. The 
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isolates showed high occurrence of resistance to boscalid, cyprodinil, iprodione and 

thiophanate-methyl; moderate frequency of resistance to isofetamid, fenhexamid, 

fluopyram, and penthiopyrad, low resistance to fludioxonil, and no resistance to 

pidiflumetophen. Variation in the fungicide resistance profiles were observed between 

greenhouses and shipments. Isolates with simultaneous resistance to different chemical 

classes were also observed.  

In the second part of this research project, B. cinerea spore count was recorded 

using two spore collectors installed in commercial cut flower greenhouses. The 

relationship between different production activities and conidia count was also evaluated 

via hierarchical cluster analysis. From the total 26 activities evaluated, 14 of them were 

related with a high spore count. A higher spore count was observed during the week days 

compared to the weekend, which coincided with the days with 50.5% more activities in 

the greenhouse. Possible relationships between spore count and disease incidence were 

also evaluated; however, no correlation was observed. The results of this research 

suggest: 1) fungicide resistance management practices should be implemented to improve 

the effective life of different fungicides and their efficacy against B. cinerea infection, 2) 

timely removal of plant debris from the production greenhouses may reduce inoculum 

proliferation, and 3) avoidance of free water in the greenhouse may reduce inoculum 

dispersal and germination.  
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CHAPTER ONE

 LITERATURE REVIEW 

The rose crop 

Botanical history 

Roses are one of the most important ornamental crops in human history. Before 

roses were a popular cut flower and one of the most important garden plants, roses were 

appreciated for the beauty of their flowers and as a source of perfume and edible hips 

(Gudin 2000). Roses are woody perennial shrubs that have been cultivated for over 5000 

years. The first reports date from 3000BC in China, western Asia, and northern Africa 

(Bendahmane et al. 2013). The genus Rosa belongs in the Rosaceae family and contains 

about 200 different species (Soules 2009). Most of the modern cultivated roses are named 

Rosa x hybrida (Gudin 2001). Cultivars are usually tetraploids and come from continuous 

hybridizations and polyploidizations of many species (Gudin 2000) including R. 

moschata, R. wichurana, R. multiflora, R. gallica , R. chinensis, R. gigantean, R. foetida, 

and R. damascene (Smulders et al. 2011). The cultivars are usually propagated asexually 

by bud-grafting or with soft-wood or semi-hardwood cuttings (Zlesak 2007). The most 

desired cultivars and colors depend on the market trends, season, and time of the year. 

However historically, the most dominant roses in the market are red, color (yellow, pink, 

orange and purple) and white roses respectively, additionally single roses predominate 

over spray roses (Blom and Tsujita 2003).  
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Economic importance 

Cut roses are one of the most important ornamental crops in the world with more 

than 15 billion stems produced in approximately 8500 hectares of protected cultivation 

(Bendahmane et al. 2013) and annual wholesale value of over $11 billion. (Zlesak 2007). 

The protected cultivation facilities range from unheated, wooden structures with a single 

layer polyethylene covering to computer-controlled climate technology supplemented 

with artificial lighting in glass and aluminum structures. The more sophisticated 

greenhouses are used in northern latitudes where the ambient temperatures are less 

hospitable, while simpler structures are used in high altitude equatorial regions where the 

structure is primarily needed to protect the plants from wind and rain. (Blom and Tsujita 

2003). Since the 1990’s the cut rose production has moved from northern latitudes to 

equatorial regions as postharvest technology and transportation systems have allowed for 

long distance transport. Additionally, the lower cost of labor, the higher availability of 

labor and the lack need for energy inputs for climate control in equatorial regions have 

made production in these regions more profitable. The largest countries for cut rose 

production are Netherlands, Colombia, Ecuador and Kenya (Blom and Tsujita 2003).  

In Colombia the cut rose industry represents one of the most important agronomic 

and economical crops, with a total estimated area of 1900 hectares of production located 

principally in Sabana Cundi-Boyacence Colombia. Over 70% of the roses that imported 

to the U.S. (Gómez 2013) come from this region, and this growth in production is 

considered  to be one of the major development success stories of the 20th century  

(Mendez 1991).  
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Diseases of roses in greenhouses 

Several plant diseases can affect the yield and quality of cut rose production, 

including fungal, oomycetes, bacterial and virus diseases. The most important fungi and 

oomycetes diseases include: powdery mildew (Podosphaera pannosa (Wall.:Fr.) de 

Bary), downy mildew (Peronospora sparsa Berk), black spot (Diplocarpon rosae Wolf) 

and gray mold (Botrytis cinerea Pers). While crown gall (Agrobacterium tumefaciens) is 

one of the most important bacterial diseases on roses (Gullino and Garibaldi 1996).  

Both, powdery and downy mildew are caused by biotrophic pathogens that mainly 

affect the plants under cold and humid conditions (Debener and Byrne 2014). Powdery 

mildew often occurs on foliage, stems and buds reducing photosynthesis, respiration and 

transpiration which may result in yield losses (Kumar et al. 2010). Downy mildew affects 

greenhouse production of roses around the world (Xu and Pettitt 2003). The fungi 

requires free water for conidia germination (Debener and Byrne 2014). Symptoms on 

leaves appear as irregular purple, red or dark brown spots and leaf abscission that results 

in decreased productivity (Horst and Cloyd 2007). Black spot is a foliage disease with 

infection symptoms that are described as dark spots surrounded by chlorotic areas, 

followed by defoliation and weakened of the plant (von Malek 1998) the most susceptible 

stage is when the leaves are between 6 to 14 days old (in expansion) (Horst and Cloyd 

2007). Gray mold disease is caused by Botrytis cinerea Pers., it is considered the most 

destructive disease for cut roses world-wide affecting both, production and post-harvest 

stages, the pathogen is present in the greenhouses and it sporulate profusely under high 

humidity and cool to mild temperature conditions (Gleason and Helland 2003). 
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Crown gall disease is caused by Agrobacterium tumefaciens, the disease affects 

the plant parenchyma and symptoms described as overgrowths or gals can be shown on 

the crown region right beyond the soil surface, roots or in aerial plant parts (Horst and 

Cloyd 2007). The bacteria enters via wounds to the plant tissue, for this reason proper 

sanitation of the crop and the tools used during cultural practices is determinant for 

maintaining the crown gal disease controlled (Gullino and Garibaldi 1996).  

Botrytis species as plant pathogens 

The genus Botrytis includes about 25 different species that are important 

pathogens of many crops around the world. This genus as well as the genera Sclerotinia 

and Monilinia belong to the family Sclerotiniaceae (Ascomycete). The fungi in this 

family are necrotrophic and for this reason the infected plant tissue results in a 

progressive decay and even plant death (Andrew et al. 2012). Botrytis species are divided 

in two phylogenetic clades (Staats et al. 2005). The first clade include species that 

principally affect monocots. The second clade has a total of five species, including B. 

cinerea, and these species primarily affect dicots Staats et al. (2005). B. cinerea 

(Teleomorph: Botryiotinia fuckeliana) is a filamentous, ubiquitous pathogen that causes 

gray mold in more than 235 plant species around the world, including vegetables, field 

and orchard crops, nursery plants and ornamentals (Andrew et al. 2012). Infection can 

occur during production or post-harvest stages. The economic impact of this pathogen is 

tremendous, and management strategies for the control are essential to the commercial 

viability of many crops (Elad et al. 2007). 

The polyphagic behavior of B. cinerea results in this pathogen infecting different 

plant organs and a wide range of plant species (Fekete et al. 2011). B. cinerea 
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disseminates principally by multinucleate conidia (Holz, et al. 2007) resulting in constant 

genetic variations and mutations even through the reproduction is primarily asexual (Elad 

et al. 2007;  Hahn, et al. 2014) suggest that ascospores produced in apothecium occur 

more frequently than expected, resulting in genetic variability. When sexual reproduction 

occurs, apothecia develop from sclerotia (resistant structures constituted by melanized 

mycelium) formed in soil or plant debris, and then ascospores will be released (Staats et 

al. 2005). 

Botrytis in greenhouse production of cut roses 

Botrytis cinerea is also a significant problem that affects commercial cut flower 

rose (Rosa hybrida L.) crops around the word leading to significant economical loses due 

to reduced productivity and post-harvest quality (Vrind 2005). This pathogen affects 

different plant tissues, such as flowers, leaves, and stems, causing gray mold and canker 

symptoms (Host and Cloyd 2007), although the greatest damage occurs on the flower 

petals (Elad 1988b). The disease is not always observed in the production greenhouses as 

it is often expressed after transportation or storage. This indicates that latent infections 

wait for the proper environmental conditions to develop (Hammer 1988). Symptoms on 

petals appear as small decolorated or necrotic flecks that enlarge to form big necrotized 

areas that may affect entire petals, sepals and receptacle. The infection may also lead to 

petal abscission and collapse of the flower head (Gleason and Helland 2003).  

Botrytis life cycle 

Conidia are the primary inoculum source or infection but sclerotia also provide an 

alternative method for pathogen dissemination. Conidia are produced on gray mycelia in 
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necrotized, infected plant tissue (Williamson, et al. 1995) while sclerotia can survive for a 

long period time in soil or plant debris (Hahn, et al.,  2014; Williamson et al. 1995).  

The disease cycle starts in the greenhouse when conidia are released into the air 

from conidiophores produced over decaying and necrotized tissue after rapid changes in 

temperature and humidity (Jarvis 1962a). Once released, conidia can spread amongst 

plants though the air, water, insects, or via human manipulation trough cultural practices 

(Daughtrey et al. 1995). After conidia land on the plant surface, the pathogen germ tube 

emerges if the environmental (relative humidity: >94%, and  temperature from 15 to 25 

ºC), and plant metabolic conditions (water and nutrients supply) are adequate 

(Williamson et al. 2007). The germ tube  penetrates the plant cuticle with or without 

appressorium development (Tenberge 2007). Then, colonization and invasion of the sub-

epidermal and intracellular tissue occurs, involving a series of enzymes and toxins that 

promote the death of host cells (Clark 1976); subsequently, the first visual symptoms will 

appear. The final stage of B. cinerea infection involves lesion expansion, tissue 

maceration and sporulation which makes inoculum available for new infections (Choquer 

et al. 2007).  

The disease cycle in rose petals may occur in two different stages depending on 

the environmental conditions. The first stage includes the initial tissue penetration 

followed by growth cease. In this stage the disease remains as a latent infection in the 

rose tissue. At the second stage, under the proper environmental and host conditions rapid 

colonization occurs, and invasion of the tissue results in the development of necrotic 

lesions. Because of this, non-symptomatic, infected roses may not exhibit symptoms until 

the post-harvest environment (Elad 1988b).  
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Biological and metabolic mechanisms of B. cinerea infection 

The entire infection process involves four stages. The first stage is host 

recognition, which is based on signals that occur during the plant-pathogen interaction. 

The second stage is the penetration of the plant surface. This stage involves a series of 

different genes codifying for enzymes that act in the host cuticle and cell wall to facilitate 

the penetration process. The third stage is the formation of the primary lesion that 

involves the death of the host tissue. In this stage, several secondary metabolites such as 

reactive oxygen species (ROS), hydrogen peroxide (H2O2), extracellular Cu-Zn 

superoxide dismutase, necrosis-inducing proteins of the NLP family, and different toxins 

are released allowing the pathogen to colonize the plant. These secondary metabolites 

make nutrients available for the pathogen, resulting in cell collapse and chlorosis 

(Colmenares et al. 2002; Hahn, et al. 2014). While, ROS and H2O2 are also produced by 

the plant as a defensive response called the hypersensitive response, there is evidence that 

B. cinerea takes advantage of the hypersensitive response to achieve full pathogenicity

(Rossi et al. 2017; Hahn, et al. 2014). The fourth stage is the lesion expansion and 

sporulation which completes the cycle (van Kan 2006).  

Botrytis cinerea requires a series of different signal transducers to complete 

various cellular process involved in pathogenicity. Mitogen-activated protein kinase 

(MAPK) cascades, which consist in a series of three interconnected kinases activated by 

phosphorylation and cAMP- dependent pathway as part of the protein receptors system, 

play important roles in the regulation of the infection process (Hahn, et al. 2014; 

Schumacher et al. 2008). For example, during spore germination, a series of chemical and 

physical signals are released, and both cAMP-dependent and MAP-kinase cascade 
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pathways are part of the signal transduction process that leads to conidia germination. 

Other chemical signals as nutrients concentration such as glucose that are present in free 

water on the epidermis of the plants and are involved in the pathogen metabolism 

(Williamson et al. 1995). Additionally, different sugar sources as well as hydrophobicity 

responses are an important part of the fungi recognition system of the plant surface 

(Doehlemann, et al. 2005). 

Management approaches 

Cultural  

Sandón (2005) described essential practices in rose production for the reduction 

of inoculum dispersal and reproduction such as crop sanitation, microclimate 

manipulation (reduction of relative humidity), air circulation, and plant nutrient 

management. 

Nutrition management is highly related to crop susceptibility to B. cinerea 

infection, for example extremely high or low nitrogen concentration in the crop is directly 

correlated with gray mold incidence (Hobbs and Waters 1964). Additionally, calcium has 

been highly associated with reduced susceptibility to B. cinerea, since it has an essential 

role enhancing cell wall strength and reducing the B. cinerea enzymatic degradation 

(Elad and Volpin 1993). Baas et al., (2000) showed a negative correlation between 

calcium concentration in flowers and Botrytis incidence suggesting calcium as an 

essential nutrient for gray mold disease management in roses.   
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Biological 

The role of bacteria and fungi as biocontrol agents (BCA) has been studied in the 

last decade as a component of gray mold management (Heyens et al. 2011). Different 

modes of action are attributed to the effect on BCAs on B. cinerea including synthesis of 

anti-fungal metabolites, nutrient and niche competition, and induction of host resistance 

(Haidar et al. 2016). Research has shown an effect of Bacillus amyloliquefaciens, B. 

subtillilis, Halomonas sp., Aureobasidium pullans inhibiting B. cinerea germination and 

penetration (Sylla et al. 2015). However, the considerable variability in the response has 

been reported in the production and post-harvest environments (Haidar et al. 2016). 

Chemical 

The principal strategy for Botrytis control in cut rose production is based on 

fungicide applications (Heyens et al. 2011) that include multi-site inhibitors, such as 

captan, chlorothalonil and dithiocarbamates, as well as  site-specific fungicides with 

different modes of action such as succinate dehydrogenase inhibitors, dicarboxamides, 

anilinopyrimidines, methyl benzimidazoles carbamates, hydroxyanilides, phenylpyrroles 

and strobilurins. The multi-site fungicides have  broad-spectrum activity and have been 

used since the 1950’s, while single-site fungicides were first used in the 1960’s as 

benzimidazoles (Hahn, Viaud, and Kan 2014a). On average, between 52 to 104 fungicide 

foliar applications per hectare are applied in commercial cut rose  greenhouses over the 

course of one year. This  results in high production costs associated with fungicide 

applications (until 60% of the total annual budget) which involve the fungicides value 

and labor cost. Additionally, the re-entrance period associated with some fungicide 
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applications, limits the accomplishment of other production activities in the greenhouse 

(Álvarez 2012). 

Botrytis fungicide resistance development 

Several studies have described Botrytis resistance development to site-specific 

fungicide chemical classes (Saito, Michailides, and Xiao 2016); however, no resistance 

has been documented for multi-site fungicides. Additionally, several B. cinerea isolates 

have shown chemical class resistance (CCR) that is defined as a simultaneous resistance 

development to more than one chemical class (Katan 2007; Grabke et al. 2012). 

Several factors are important for resistance development which include the 

biology, reproductive and adaptive ability of the target fungi, structural or chemical class 

of the fungicide, and the specific mode of action of the fungicide (Brent and Hollomon 

1998). According to the Fungicide Resistance Action Committee (FRAC), B. cinerea is a 

pathogen with a high risk of fungicide resistance development because it has a short life 

cycle, high genetic and phenotypic variability, and a high reproduction rate. Thus, 

Botrytis was one of the first fungi reported for resistance development to different  

chemical classes (Elad et al. 1992; Forster et al. 2007; Jiang, Ding, Michailides et al. 

2009). 

Factors driving genetic diversity of Botrytis 

Although sexual recombination is not the primary reproduction strategy of B. 

cinerea isolates, a high genetic variability is attributed to this pathogen. Asexual 

reproduction though multinucleate conidia has been associated with the phenotypical and 

genotypical variation observed in B. cinerea (Alfonso et al. 2000). However, putative 
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sexual reproduction is still considered as a potential source of genetic variability due to 

recombination of strains with different mating types.  

Two of the principal reasons for the success of B. cinerea as a pathogen are the 

efficiency in the production of very large amounts of conidia (Nicot et al. 1996), and the 

occurrence of multiple infection cycles (involving primary and secondary inoculum) of 

the gray mold disease in infected plant tissue which may result in a variable genetic 

population with different biological efficacy and resistance qualities (Decognet et al. 

2009). Spontaneous mutations are considered as another very important source of genetic 

variation leading to resistance development, e.g., Delcán (1997) described spontaneous 

mutations for resistance development occurring with a frequency that oscillates between 

1 x 10-8 to 4.4 x 10-6 individuals .  

Fungicide selection pressure over B. cinerea isolates may lead genetical and 

phenotypical changes in the pathogen population, i.e. the extensive use of fungicides, 

especially single-site fungicides had been related with fungicide resistance development 

to several chemical classes and modes of action (Brent and Hollomon 1995). 

Additionally, mixture of geographically distant spore populations between greenhouses 

and neighboring areas also has implications for genetic differentiation in terms of allelic 

frequency at specific locations (Alfonso et al.,  2000).  

Molecular mechanisms of fungicide resistance 

Four different mechanisms have been attributed to resistance development in 

B. cinerea: 1) Point mutations on the gene encoding for the target site of the fungicide

which is the most common and most important mechanism for resistance development 

(Hahn 2014). 2) Fungicide detoxification, including a series of different enzymes as 
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cytochrome P450 monooxygenases, hydrolases, and glutathione S-transferases, to 

quickly metabolize the fungicide and transform it in to a less harmful compound to the 

fungi cells (Leroux et al. 2002a). 3) Overexpression of the target site thought mutations 

that increase the transcription of the target site. In this case higher doses of the fungicide 

may compensate the target overproduction, however this is not recommended due to the 

increased potential to enhance fungicide resistance (Hahn 2014). 4) Efflux-based 

resistance that excludes the fungicide from the Botrytis mycelium and is based on 

overproduction of transported molecules described as ABC and MFS in B. cinerea 

isolates (Leroux et al. 2002b) making the fungicide less effective due to the inability to 

reach the target site (Kretschmer et al. 2009). This last mechanism has been described as 

a non-specific fungicide resistance and is considered to be the principal responsible for 

CCR (Hahn 2014).  

Resistance to different FRAC codes 

The fungicides belonging to the methyl benzimidazole carbamates (FRAC 1) and 

dicarboxamides (FRAC 2) chemical classes are site-specific fungicides that have been 

used for B. cinerea management for a longer period of time than the other chemical 

classes. This partially explains the higher rate for fungicide resistance development in 

B. cinerea reported for FRAC 1 and 2 (Leroux 2007). The methyl benzimidazole

carbamates mode of action focuses on the pathogen cytoskeleton and motor proteins and 

is related to the ß- tubulin assembly during the meiosis process. Resistance to methyl 

benzimidazole carbamate fungicides has been related to point mutations mostly at codon 

E198 in the ß- tubulin gen (Table 1.1), resulting in a lack of binding between the 

fungicide and the fungi target places (Ma and Michailides 2005; Liu et al. 2016). 
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Resistance to the methyl benzimidazole carbamate group persists through long periods of 

cessation of application of these fungicides (Georgopoulos and Skylakakis 1986).  

Dicarboxamides (FRAC 2) affect the pathogen signal transduction, specifically  

MAP/histidine kinase in the osmotic signal transduction, and involve different genes, 

e.g., Os1, Daf1 and Bos1. Mutation in these genes, mostly in the codon I365S (Table

1.1),  is responsible for fungicide resistance development to dicarboxamides (Sun et al. 

2010). 

The anilinopyrimidine fungicides (FRAC 9), such as cyprodinil and pyrimethanil, 

are considered to be very effective against Botrytis. Their mode-of-action involves the 

inhibition of amino acid synthesis and protein secretion by the fungus. Resistance has 

been reported for this chemical class; however, the specific point of mutation is not clear 

(Table 1.1) (Hahn, et al 2014). 

Phenylpyrrole fungicides (FRAC 12), such as fludioxonil, have a similar mode-

of-action as the dicarboxamides group, inhibiting the signal transduction process of 

mitogen-activated protein (MAP)/histidine-kinase in the osmotic pathway. While, the 

mode-of-action of FRAC 2 and FRAC 12 are similar, cross resistance between both 

chemical classes is rare (Fernández-Ortuño et al. 2012). Isolates of Botrytis with low to 

medium resistance level to phenylpyrroles are sporadically found in the field (Kojima et 

al. 2004). This resistance development is a result of a drug efflux mechanism. 

The hydroxyanilides chemical class (FRAC 17), represented by fenhexamid, acts 

through the inhibition of  the ergosterol biosynthesis of the 3-ketoreductase enzyme 

which is involved in the C-4 demethylation of this pathway and is encoded by the erg27 

gene, which is the point of mutation in Botrytis isolates showing resistance development 
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to this FRAC class (Table 1.1). The drug efflux mechanism has also been related to 

resistance development to this chemical class (Fillinger et al. 2008) 

The mode-of-action of the strobilurins, also known as the quinone outside 

inhibitors (FRAC 11), is to inhibit pathogen respiration interacting at the Qo site (cyt b 

gene) in the mitochondrial cytochrome bc1 complex. Strobilurins are not usually used for 

Botrytis management because this fungus is able to bypass this respiratory inhibition by 

using an alternative enzyme as part of the respiratory chain. Nevertheless, quinone 

outside inhibitors are used and very effective against other fungi and oomycetes. Botrytis 

can be influenced by strobilurins because the crops are often treated with strobilurins for 

powdery or downy mildew, pathogens that often co-exist with Botrytis in several crops 

(Wood and Hollomon 2003). 

The succinate dehydrogenase inhibitors fungicides (FRAC 7) have become a very 

important part of the fungicide pool since their release in 2003 (Sierotzki and Scalliet 

2013). They are used alone or in mixtures with great efficacy for Botrytis control. 

However, mutations in the SdhB, SdhC and  SdhD subunits in the ubiquinone binding 

point have been reported to confer resistance to different fungicides from this chemical 

group, especially boscalid (Amiri, et al. 2013). Four different patterns that represent 

different resistance responses to several fungicides in this group have been described as 

patterns A, B, C, and D. Pattern A represents Botrytis isolates resistant to boscalid. 

Pattern B contains isolates with resistance to boscalid and penthiopyrad. Pattern C 

isolates are resistant to boscalid, fluxapiroxad and penthiopyrad; and Pattern D represents 

Botrytis isolates that are resistant to boscalid, fluxapiroxad, penthiopyrad and fluopyram. 

These resistance responses are associated with the alleles H272R, H272Y, P225 and 
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N230I at the locus SdhB (Table 1.1), and resistance management practices are an 

important tool to preserve the efficacy of these fungicides (Hu, et al. 2015). 

Fitness and resistance 

Fitness is defined as “the capacity of a variant type to invade and displace the 

resident population in competition for available resources” or “an organism’s capacity to 

survive and reproduce” (Demetrius and Ziehe 2007). Fitness is considered to be an 

essential component for the evaluation of resistance development since competitivity of 

resistant isolated might be affected if a “fitness penalty” (mutation confering resistance 

have an impact decreasing the pathogen reproductive rate, virulence or severity with non 

resistant isolates (Leach et al. 2001)) is associated . The relationship between fungicide 

resistance and B. cinerea fitness remains a point of discussion, and it depends on the 

fungicide to which resistance is expressed. Leroux (2007) suggested that in the absence 

of selection pressure (fungicide application), the frequency of fungicide resistance tends 

to decrease; however, if there is fitness penalty associated with the mutation that confers 

the resistance, the resistant response may persist.  

The fitness of B. cinerea isolates has been evaluated using mycelial growth, 

sporulation, conidial germination, sclerotia production, and symptom severity as 

indicators to compare possible fitness penalties between resistant and non-resistant 

isolates to several fungicides. For example, Markoglou et al. (2006) analyzed B. cinerea 

isolates resistant to quinone outside inhibitors (FRAC 11) and determined a fitness cost 

associated with the resistant isolate expressed as a reduction on the sporulation rate, 

conidial germination and sclerotia production. Methyl-benzimidazole fungicides (FRAC 

1) are a clear example of no fitness cost being associated with the resistance response,
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because even when these fungicides have not been applied for several years, resistant 

isolates continue to dominate the population. Thus, methyl-benzimidazole-resistant 

isolates show a high fitness in the field (Malandrakis, Markoglou, and Ziogas 2011a). 

Resistance development to dicarboxamide and succinate dehydrogenase inhibitor 

fungicides (FRAC 2 and 7) has a fitness penalty for Botrytis populations. For this reason, 

once fungicide applications are interrupted for a period of time and then re-applied, the 

fungicide will recover efficacy because the resistance strains are replaced with sensitive 

strains amongst the Botrytis population (Elad, et al. 1992; Leroux et al. 2002b).  

Chen et al. (2016) described a fitness penalty associated with B. cinerea isolates 

that expressed CCR. Isolates with simultaneous resistance to five or six fungicides were 

less competitive than sensitive isolates in terms of mycelial growth rate and spore 

production resulting in an increase in the population of sensitive isolates in the absence of 

the fungicide selection pressure. However, under continuous fungicide applications, the 

frequency of multi-fungicide resistance isolates tends to increase rapidly.  

Fungicide resistance management approaches 

Resistance management should be consider as a long-term series of strategies 

incorporating different tools (Walker et al. 2013), including good crop management 

practices as prophylaxis and sanitation, plant nutrition, humidity reduction, and removal 

of plant debris (Fig. 1.1) (Hahn 2014; Walker et al. 2013). Population monitoring is a 

basic step to determine the best management strategies, considering the evolution of 

resistance in the crop (Walker et al. 2013).  The effectiveness of fungicide application 

and the rate of  resistance development are affected by the following strategies: 1) 

Management of the application dose, because increasing dosage has been directly related 
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with higher rates of resistance development (van den Bosch et al. 2015). 2) Management 

of the number of applications, because increasing the number of fungicide applications 

increases the selection for resistance development. Additionally, split dose applications 

also increase the risk of resistance development since they increase the exposure time of 

the fungicides (van den Bosch et al. 2015). 3). Fungicide mixtures, because the effective 

life of highly risk-resistance fungicides can be improved by adding a second fungicide 

with a different mode of action (multi-site or single-site without evidence for resistance 

development) because it may increase the coverage of the pathogen population resulting 

in a better efficacy. However, the viability of this strategy depends of the availability of 

effective fungicides with different modes of action (Walker et al. 2013). 4) Fungicide 

(mode of action) rotation, because it decreases the exposure to selection pressure (Fig. 

1.1) (van den Bosch et al. 2015).  

Purpose of this study 

The overall goal of this study was to assess the efficacy of current gray mold 

management practices on cut rose production. For that purpose, the first part of this 

research focused on evaluating: 1) the current disease status in a commercial cut rose 

production greenhouses, considering disease causal agent identification, and disease 

incidence and severity evaluation, and 2) fungicide resistance profiling for B. cinerea 

isolates obtained in the disease and incidence evaluation. The second part of the project 

focused on determining possible relationships of B. cinerea spore count with cultural 

practices and disease incidence.  



18 

Table 1.1.  Most commonly used fungicides against Botrytis and their resistance 
components. 

Fungicide group 
name  

FRAC 
code 

Year 
of 
first 
use 

Target 
site/mode of 
action 

Molecular 
mechanism 

Target 
site of 
resistance 

Resistance 
levels 

MBC Methyl 
benzimidazole 
carbamates 

1 1968 β-tubulin 

Monogenic 
resistance due to 
mutation in single 
major gene and 
multiallelic 
resistance  

E198A, 
E198X, 
F200 

High 

Dicarboximides 2 1975 
Osmosensing 
MAP/histidine 
kinase 

Monogenic 
resistance due to 
mutation in single 
major gene 

I365S/N, 
Q369P, 
N373S 

Low to 
high 

SDHI Succinate 
dehydrogenase 
inhibitors  

7 2004 
Respiration, 
complex II or 
succinate 
dehydrogenase 

Monogenic 
resistance due to 
mutation in single 
major gene and 
multiallelic 
resistance. Partial 
cross resistance 
between SDHI  

H272R/Y, 
H272L, 
N230I, 
P225X 

Medium to 
high 

AP
Anilinopyrimidines 9 1994 Methionine

biosynthesis 

Monogenic 
resistance due to 
mutation in single 
major gene and 
alternative 
overexpression of 
efflux transporters 
in MDR mutants 

Unknown  High 

PP Phenylpyrroles 12 1995 Osmoregulation 

Monogenic 
resistance due to 
mutation in single 
major gene and 
overexpression of 
efflux transporters 
in MDR mutants 

Unknown  Medium 

Hydroxyanilides 17 1999 

3-Keto
reductase
(sterol
biosynthesis)

Monogenic 
resistance due to 
mutation in single 
major gene and 
detoxification 
P450-mediated 

F412S, 
F412X, 
T631 

Low to 
high 

Adapted from Walker et al. (2013); Hahn (2014); De Miccolis Angelini et al. (2015) 
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Figure 1.1. Decision tree of fungicide resistance management in B. cinerea populations 

based on monitoring of resistance status. Adapted from Walker et al. (2013) 
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CHAPTER TWO 

CHARACTERIZATION OF BOTRYTIS CINEREA FROM COMMERCIAL
CUT FLOWER ROSES 

Abstract 

Botrytis cinerea Pers. infects cut flower roses (Rosa x hybrida L.) during 

greenhouse production and gray mold symptoms are often expressed in the post-harvest 

environment resulting in significant economic losses. Disease management is based on 

cultural practices and preventative chemical treatments, however gray mold outbreaks 

continue to occur. Rose tissues from six commercial shipments from two greenhouses in 

Colombia were evaluated to determine the Botrytis species composition as well as 

identify other pathogens present, gray mold incidence and severity, and fungicide 

resistance profiles. Botrytis isolates (49 total) were grouped into six morphological 

phenotypes, and all were identified to be B. cinerea sensu stricto. Disease incidence was 

higher in the petals than in the stem, stamen and ovary, sepal, or leaf tissues. Other 

pathogens were isolated infrequently and included Alternaria alternata, Cladosporium 

cladosporoides, Epicoccum nigrum, Penicillium citrinum, Aspergillus tubingensis, and 

Diplodia sp. Fungicide resistance profiles were determined using previously established 

discriminatory doses. Isolates resistant to thiophanate-methyl, iprodione, boscalid, and 

cyprodinil were found frequently in all shipments and in both greenhouses. The 

frequency of resistance to penthiopyrad, fenhexamid, fluopyram, isofetamid and 

fludioxonil varied between shipments and greenhouses. No resistance to pydiflumetofen 

was observed at the discriminatory doses tested. Isolates with resistance to multiple 

chemical classes were commonly found. These results indicate that fungicide resistance 
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management practices may improve preharvest and postharvest gray mold control of cut 

flower roses.  

Introduction 

Gray mold is a destructive fungal disease caused primarily by Botrytis cinerea 

Pers., a ubiquitous fungal pathogen affecting more than 235 plant species around the 

world (Andrew et al. 2012), including roses (Rosa x hybrida L.). The disease reduces cut 

flower rose yield and post-harvest quality (Vrind 2005). B. cinerea is disseminated 

mainly by airborne conidia, which are produced on conidiophores (Holz, Coertze, and 

Williamson 2007). The pathogen can affect different plant tissues, including leaves, 

stems, and flowers. However, the most severe economic damage occurs when the 

pathogen infects the flowers petals (Elad 1988). Diseased flowers can be imperceptible at 

harvest because infections may remain latent until environmental conditions are favorable 

for tissue colonization. The favorable conditions for B. cinera growth include high 

relative humidity (>94%) and temperatures ranging from 15 to 25 ºC (Williamson et al. 

2007). The initial symptoms appear as small lesions that develop into necrotic tissue 

leading to collapse of the petals and flower head (Elad 1988).  

Botrytis cinerea has been described as a morphologically and genetically variable 

species (Elad et al. 2007b). Research done in several fruit crops has shown that gray mold 

disease caused by B. cinerea can be the result of a species complex with different genetic 

groups that may vary with the season, tissue, and host preference (Giraud et al. 1999; 

Fournier and Giraud 2008).  Staats et al., (2005) described a comprehensive DNA-

sequence-based methodology to more accurately distinguish between Botrytis species 

using the nucleotide sequences of G3PDH, HS60, and RPB2 genes. These genes used to 
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form the phylogenetic trees are essential for and often unique to the pathogen because 

they code for enzymes involved in different cellular processes (Staats et al. 2005). Based 

on these sequences, and considering the presence or absence of transposable elements 

(Walker 2016), and microsatellite amplifications (Váczy et al. 2008), Botrytis 

pseudocinerea was identified as a pathogen causing gray mold in different fruit crops 

including grapes, blackberries, and strawberries (Plesken et al. 2015). More cryptic 

species, including B. caroliniana and B. fragariae, were identified to cause gray mold of 

strawberry (Dowling and Schnabel 2017; Rupp et al. 2017b; Li et al. 2012). On 

ornamental plants different Botrytis species have been identified including, Botrytis 

narcissicola on narcissus; Botrytis calthae as a host-specific species on Caltha, occurring 

simultaneously with B. pseudocinerea and B. cinerea; B. pelargonium on geranium; and 

B. convoluta on iris (Walker 2016). Botrytis species have been previously identified in

cut roses using PCR-RFLP and restriction enzymes to evaluate if B. pseudocinerea was 

part of the disease complex causing grey mold (Gomez 2013). The authors determined 

that only Botrytis cinerea sensu stricto was present in the roses, however this assessment 

was not based on key genes used for phylogenetic analysis including G3PDH, HS60, and 

RPB2  

One of the principal strategies for gray mold management relies on weekly 

preventive fungicide applications including multi-site and site-specific fungicides (Hahn, 

Viaud, and Kan 2014a); however, the genetic plasticity and high adaptability of B. 

cinerea have resulted in resistance development to various single-site fungicides. Isolates 

may possess resistance to a single or multiple fungicide classes, termed chemical class 

resistance (CCR) (Elad, Yunis, and Katan 1992; Jiang et al. 2009; Grabke, Fernández-
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Ortuño, and Schnabel 2012). Botrytis cinerea isolates with multiple CCR have been 

observed on different crops including cucumber, grapes, and strawberries (Elad, Yunis, 

and Katan 1992; Leroch et al. 2013; Amiri, Heath, and Peres 2013; Fernández-Ortuño et 

al. 2014). Resistance monitoring has been implemented to improve resistance 

management programs in order to preserve the efficacy of fungicides and improve 

disease control (Fernández-Ortuño et al. 2014; Hu, Cox, and Schnabel 2016). Whether 

Botrytis from Colombian roses is resistant to fungicides is unknown. The objectives of 

this study were to evaluate commercial shipments of cut flower roses to determine: (i) the 

Botrytis species and other pathogens present, (ii) the incidence and severity of gray mold 

on different cut flower tissues, and (iii) the occurrence of fungicide resistance in isolates 

from cut rose shipments.  

Materials and Methods 

Six shipments of commercial cut roses (Rosa x hybrida L.) from the Botrytis 

susceptible cultivar ‘Orange Crush’ were received between December 2016 and March 

2017 from two greenhouses (A and B) located at Sabana Cundiboyacene in Colombia, 

South America (4º59’16.9” N, 73º59’36” W; 2650 m.a.s.l). The greenhouses were 400 m 

apart and 150 x 60 m in dimension. The roofs and sides were plastic and allowed for air 

ventilation during the day and night. The rose plants were produced in hydroponic 

systems using rice husks as a substrate. The production systems in both greenhouses were 

virtually identical, however, the setup of the two greenhouse floors varied slightly. 

Greenhouse A did not have any ground cover, while greenhouse B had brick paths 

installed in areas of highest human activity. Gray mold disease was managed in both 
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greenhouses with cultural practices, including removal of diseased or detached plant 

tissues on a regular basis, and forced air circulation using fans. Fungicides used during 

the experiment for gray mold management were the protectants captan, ziram, mancozeb, 

and chlorothalonil as well as site-specific fungicides belonging to FRAC codes 3, 7, 9,11, 

and 29. According to the producer, representatives of FRAC codes 1, and 2 were used in 

previous years. Also, FRAC 12 fungicides were used more recently. Protectant fungicides 

were applied and rotated on a weekly interval for gray mold management in both 

greenhouses. Additionally, weekly rotations of site-specific fungicides were based on 

FRAC codes. Not only the same FRAC code but also the same fungicides were applied in 

both greenhouses.   

The roses were harvested and packaged as commercial bouquets of 25 roses per 

greenhouse. Each bouquet was wrapped in a clear plastic film covering the side of the 

flowers, and the bouquets were shipped in cardboard boxes. The shipments were received 

within one week at Clemson University and immediately processed. From each shipment 

and greenhouse, a set of five roses arbitrary selected from each bouquet. Each flowering 

stem was divided into five different groups of tissues: petals (3 outer petals, 3 mid petals 

positioned inside the outer petals, and 3 inner petals in direct contact with stamens and 

ovary), leaves, sepals, stamens and ovaries, and the entire stem cut into 15 cm sections. 

The tissues were surface sterilized for 1 min in a sodium hypochlorite solution (0.525%), 

immersed for 1 min in sterile deionized water, and air dried for 5 min to kill any spores 

that may have come in contact with the flowers during the transportation process. Then, 

each tissue type from each rose was individually placed in 15-cm-diameter petri dishes 

with moist filter paper covered with a lid and placed in a clear (3.78 L) sealable bag. 
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Bags were kept at -20 ºC for 24 h and then incubated for 7 d at 22 ºC and 100% relative 

humidity with 12 h light/12 h dark intervals. Gray mold incidence was determined as the 

percentage of samples that developed disease symptoms or signs. Gray mold severity was 

determined based on the percentage of symptomatic area per tissue type. Affected area 

was calculated based on the total area of the tissue showing symptoms or signs of the 

disease. Incidence of other fungi occurring in the rose tissues was also recorded, and the 

identity of the pathogens was determined as described below.  

Morphological and phenotypic characterization of fungal isolates 

Forty-nine Botrytis isolates and 20 non-Botrytis fungal isolates were collected 

from symptomatic rose tissue from the six shipments. Each isolate came from a different 

tissue sample. For single-spore isolation, spores were spread onto water agar and Petri 

dishes (9 cm dia.) and were placed in the dark at 22 ºC for 16 h to promote conidia 

germination. Individual germinated conidium were removed from the water agar under a 

dissection microscope using a sterile scalpel and then placed onto potato dextrose agar 

(PDA) medium (Difco Laboratories, Sparks, MD). Morphological characters of single 

spore colonies were assessed after 10 d at 22 ºC with intervals of 12 h of fluorescent light 

and 12 h darkness. Isolates were stored in the form of dried mycelium on filter paper. 

Koch’s postulates were performed with each of the non-Botrytis isolates to verify 

pathogenicity.  
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DNA extraction, PCR amplification and sequencing 

DNA sequencing was performed on single-spore Botrytis isolates from each 

morphological type and resistance profile, as well as non-Botrytis isolates. The isolates 

were cultured on PDA as described above for 7 d, except that cellophane paper (Research 

Products International Corp, Mount Prospect, IL) was used to cover the medium surface. 

Approximately 10 to 20 mg of aerial mycelia and conidia were collected using a sterile 

toothpick and placed into extraction buffer (1M KCl, 100mM Tris-HCl and 10 mM 

EDTA). Genomic DNA was extracted and purified as described previously (Chi et al. 

2009) 

For Botrytis species identification, a set of three different pairs of primers were 

used to amplify the glyceraldehyde 3-phosphate dehydrogenase (G3PDH), heat-shock 

protein 60 (HS60), and DNA-dependent RNA polymerase subunit II (RPB2) regions of 

nuclear DNA (Staats et al. 2005). PCR amplifications were carried out in a 25 μl mixture 

reaction containing 50 to 100 ng of fungal DNA, 5 μl of 10X Thermo Pol buffer, 2.5mM 

dNTPs, 10 pmol of each primer and 0.25 μl of Taq polymerase (New England Biolabs). 

The PCR amplifications were accomplished using an iCycler Thermal Cycler (T100; Bio-

Rad Laboratories Inc). The following thermocycling program was used to amplify the 

G3PDH gene fragment: 94 ºC for 3 min (1 cycle), denaturation at 94 ºC for 30 s, 

annealing at 56ºC for 30 s, extension at 72 ºC for 1 min (35 cycles), and then final 

extension at 72 ºC for 5 min (1 cycle). The thermocycling program used to amplify the 

genes HS60 and RPB2 was 94 ºC for 5 min (1 cycle); denaturation at 94 ºC for 30 s, 

annealing at 55ºC for 30 s, extension at 72 ºC for 90 s (35 cycles), and final extension at 

72 ºC for 10 min (1 cycle). The PCR products were visualized in red gel (<100 ppm, 
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Biotum, Hayward, CA) stained with 1% agarose-Tris-borate-EDTA (1X TBE). The PCR 

products were purified and sequenced in both 3’ and 5’ directions at CORE laboratories 

at Arizona State University. The internal transcribed spacer regions from non-Botrytis 

fungal isolates were amplified using ITS1F and ITS4 primers (White et al. 1990). The 

PCR amplifications were carried out in an iCycler Thermal Cycler (T100; Bio-Rad 

Laboratories Inc) using the following thermocycling pattern: 94 ºC for 5 min (1 cycle); 

denaturation at 94 ºC for 40 s, annealing at 55 ºC for 1 min, extension at 72 ºC for 2 min 

(35 cycles), and then final extension at 72 ºC for 10 min (1 cycle). The PCR products 

visualization, purification and DNA sequencing were performed as described above. 

Sequences were assembled and analyzed using Geneious version 11.1.3 (Biomatters 

Ltd.). Sequences of Botrytis and non-Botrytis fungi were entered into National center of 

Biotechnology Information (NCBI) BLAST tool. The accessions with higher homology 

were obtained from the GenBank database (https://www.ncbi.nlm.nih.gov) and used as 

reference for comparisons.  

Fungicide resistance profiling and chemical class resistance evaluation 

Commercial formulations of the following 10 active ingredients were used to 

determine fungicide resistance of Botrytis isolates as previously described (Fernández-

Ortuño et al. 2014; Dowling et al. 2016; Hu, Cox, and Schnabel 2016; Hu, Fernández-

Ortuño, and Schnabel 2015): boscalid (Endura fungicide, 70% wt/wt; BASF Corporation, 

FRAC 7), cyprodinil (Vangard WG fungicide; Syngenta Crop Protection, FRAC 9), 

fenhexamid (Elevate 50 WDG; Arysta Life Science, FRAC 17), fluopyram (Luna 

Privilege fungicide; Bayer CropScience, FRAC 7), fludioxonil (Scholar SC fungicide; 
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Syngenta Crop Protection, FRAC 12), iprodione (Rovral 4 Flowable; Bayer Crop 

Sciences, FRAC 2), isofetamid (Kenja fungicide, 400 SC; SummitAgro, FRAC 7), 

penthiopyrad (Fontelis; DuPont Crop Protection, FRAC 7), pidiflumetophen (Adepidin; 

Syngenta, FRAC 7), and thiophanate-methyl (Topsin M 70WP; United Phosphorus, Inc., 

FRAC 1). The fungicide resistance profiles were identified for all the Botrytis isolates 

collected during the evaluation by testing for resistance to each of the 10 fungicides 

described above. The profiles were tested in 24-well plates (15 mm-diameter, 6 x 4 

wells12.5 x 8.5 x 2 cm; Thermo Fischer Scientific, Rochester, NY) using spores present 

in different tissues as described previously (Fernández-Ortuño et al. 2014; Hu, 

Fernández-Ortuño, and Schnabel 2015; Hu et al. 2016). Discriminatory doses for FRAC 

7 fungicides isofetamid and pidiflumetophen were chosen to be the same as was 

described previously for the FRAC 7 fungicide penthiopyrad (5 ug/ml) (Hu, et al. 2015). 

Conidia were transferred from actively growing colonies to the 24 well plates with a 

sterile toothpick. Mycelial growth was visually assessed after 4 d of incubation in the 

darkness at 22 ºC as described previously (Fernández-Ortuño et al. 2014).  

The number of chemical class resistances (CCR) was determined for each of the 

49 isolates. The isolates were classified as being simultaneously resistant to 0, 1, 2, 3, 4, 

5, or 6 chemical classes, i. e. 0 CCR to 6 CCR isolates. The frequency of CCR isolates 

was evaluated across shipments and greenhouses. 
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Data analysis 

Data analysis was made using JMP® Pro version 13.2.0 (SAS Institute Inc., Cary, 

NC). ANOVA and Fisher’s LSD student’s T test were used respectively to determine 

treatment effects and compare means between treatments at p<0.05.  

For determination of disease incidence and severity, the data set consisted of a 

2x6 factorial model consisting of two greenhouses, six shipments and five different tissue 

samples per combination. When the factors were significant, a Fisher’s LSD student’s T 

test was used to compare means for the factor levels at p<0.05. Additionally, multivariate 

analysis was performed to determine correlations between latent infections and the 

evaluated tissues.  

A 2x6x10 unbalanced, full factorial ANOVA was made to analyze the effect of 

fungicide (10), shipment (6) and greenhouse (2) factors on the fungicide resistance for all 

49 Botrytis isolates collected during the evaluation period. When the factors or 

interactions were significant a Fisher’s LSD Student’s T test was used for comparing 

means for the factor levels at p<0.05.  For CCR evaluation a full factorial ANOVA was 

used to determine if the shipment, greenhouse or the interaction of both had an effect on 

CCR number. When the factors or interactions were significant, a Fisher’s LSD Student’s 

T test was used for comparing means for the factor levels at p<0.05.    

Results 

Morphological and molecular characterization of fungal isolates 

The 49 single spore isolates were grouped into six morphology groups based on 

shape, amount of aerial mycelium, mycelium/conidia color, and distribution (Fig. 2.1). 
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Morphology groups were characterized as follows: group 1: irregular, aerial, umbonate 

formations and strong sporulation; group 2: a homogeneous colony with copious gray 

sporulation; group: profuse, raised white mycelium in the center and sporulation at the 

edges of the colony; group 4: variable mycelium elevation and spore distribution; group 

5: white mycelium with variable elevation and rare sporulation; group 6: large 

sporulation evenly distributed and white umbonate mycelium at the center of the colony.  

Morphology group 4 was the most prevalent (20.9%), followed by groups 6, 5, 3, 2, and 1 

with 20.9%, 14.0%, 14.0%, 14.0% and 9.3%, respectively. No differences were found in 

the resistance development of the different morphological groups. 

Based on combined G3PDH, HS60, and RPB2 gene sequence analysis, isolates 

from each morphological group were identified as Botrytis cinerea Pers. sensu stricto. 

The G3PDH and HS60 sequences of our isolates revealed the highest identity with the 

reference sequences KY930944 and KY930945, respectively. Only HS60 sequences from 

isolates S2GAR2M and S2GAR2O differed from the reference sequence and resulted in 

an amino acid (aa) change from cytosine to thymine at codon 644 resulting in the change 

at codon 215 from proline to leucine. Most nucleotide variations were found in gene 

RPB2, but all corresponded to silent mutations, including a change of guanine for adenine 

at the bases 276 and 348 for the isolate S2GBR3O and a change of guanine for thymine 

at base 849 for the isolates S5GBR1M, S5GBR4Sep, S1GBR3M, S5GBR4O, S4GBR4O, 

and S2GBR3O (data not shown).  

Sequence analysis of the ITS regions from other fungi revealed their identity as 

Alternaria alternata, Cladosporium cladosporoides, Epicoccum nigrum, Penicillium 

citrinum, Aspergillus brasiliensis and Diplodia sp. The highest homologies corresponded 
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with the accession numbers MF564200, MG199960, KX869965, NR_121224, 

KT378129, and KC963918 respectively at the GenBank data base 

(https://www.ncbi.nlm.nih.gov). Incidence of Alternaria alternata, Epicoccum nigrum, 

Penicillium citrinum, and Cladosporium cladosporiodes in all shipments and greenhouses 

combined was 5.1%, 2.7%, 2.6%, and 1.7% respectively. Koch’s postulates were 

confirmed for all of the fungi isolated from ‘Orange Crush’ roses. Aspergillus brasiliensis 

and Diplodia sp. were isolated from rose tissues, but they appeared to be avirulent 

because we were unable to confirm Koch’s postulates (data not shown). 

Botrytis incidence and severity on cut rose tissues 

 Evaluation of latent infections on cut flower roses showed that B. cinerea was the 

most frequently isolated pathogen. A total of 14.6% of sampled rose tissue showed 

symptoms and/or signs of Botrytis cinerea. Greenhouse and shipment did not have an 

effect in the B. cinerea incidence or severity, but B. cinerea incidence and severity were 

differentially expressed (p< 0.005%, and p< 0.01% respectively) on the different rose 

tissues. Incidence (Fig. 2.2a) in the petals (50%) was significantly higher than in stems 

(8.3%), sepal (3.3%), stamen and ovary (3.3%), and leaf (0%), and no significant 

differences were found amongst the last four tissues. Disease severity (Fig. 2.2b) was 

greater in the petals (9.5%) than in the stamen and ovary tissues (3.0%), sepals (1.7%) 

and leaves (0%).  

The interaction between greenhouse and tissue was significant (p< 0.05%) for 

disease incidence. Specifically, the percent affected petals was higher in greenhouse A 
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(63.3%) than greenhouse B (36.7%; p< 0.05%), but no differences were found for the 

other rose tissues between greenhouses. No differences were observed for the main effect 

of shipment or greenhouse on disease incidence or severity. Multivariate analysis showed 

no correlation between tissues for B. cinerea incidence or severity, i.e., the infection of 

one tissue was not a prerequisite to infection of another (data not shown).  

Fungicide resistance profiling 

Fungicide, shipment, greenhouse and their interactions were significant for the 

presence of fungicide resistance (p< 0.005). Across greenhouses and shipments B. 

cinerea isolates exhibited a high occurrence of resistance to thiophanate-methyl, 

iprodione, boscalid, and cyprodinil with average frequencies of 86.7%, 78.8%, 77.1%, 

and 75.4%, respectively (p= 0.05, Fig. 2.4). Differences in the resistance to isofetamid, 

fluopyram, penthiopyrad and fenhexamid were observed between greenhouses A and B. 

For greenhouse B a high percentage (66.7%) of the isolates was resistant to isofetamid, 

fluopyram, penthiopyrad, and a moderate percentage (47.5%) of the isolates from 

greenhouse B was resistant to fenhexamid. Resistance frequencies to isofetamid, 

fluopyram, penthiopyrad and fenhexamid in greenhouse A isolates were 19.2%, 22.5%, 

33.8% and 26.3%, respectively.  

The frequency of fludioxonil resistant isolates was relatively low for both 

greenhouses with an average frequency of 23.3%. No resistance was found to 

pydiflumetophen. The percentage of isolates displaying fungicide resistance varied with 

shipments and ranged from 0% at shipment 2 from greenhouse A to 73% at shipments 1 

and 3 from greenhouse B (Fig. 2.3, Supplemental Table 2.1).  Shipments 1, 3, 4, and 5 
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had the highest resistance frequencies and shipments from greenhouse B had higher 

fungicide resistance frequencies than greenhouse A in 4 of the 6 shipments.  

Chemical class resistant evaluation 

No differences were observed in numbers of isolates with multiple CCR between 

greenhouses; however, differences were observed amongst shipments (p<0.001) 

(Supplemental Table 2.2). The isolates from shipment 2 revealed a smaller proportion of 

4, 5, and 6 CCR isolates compared to other shipments. A one direction ANOVA was 

performed to evaluate if resistance profiles were related with morphological group, 

shipment, or greenhouse. No effect of morphological type or greenhouse was determined 

for the resistance profile response; however, shipment had an effect on the resistance and 

CCR (p<0.001) (Supplemental Table 2.2). Shipments 3 and 4 had a higher proportion of 

isolates with simultaneous resistance to FRAC 1, 2, 7, 9, and 17 fungicides and FRAC 1, 

2, 7, 9, 12, and 17 fungicides, respectively. 

Discussion 

This study showed that gray mold was the most common disease in cut roses from 

Colombia. This is consistent with previous studies that showed Botrytis cinerea to be the 

most frequent and limiting pathogen for production and postharvest management of cut 

rose flowers (Pie and De Leeuw 1991). We also confirmed PCR-RFLP results obtained 

by Gomez (2013) that the gray mold pathogen of roses is Botrytis cinerea Pers. sensu 

stricto. Other pathogens affecting postharvest quality of cut roses from Colombia were 

found in lower frequencies. Alternaria alternata was the second most frequently isolated 

pathogen which has been described as one of the main rose pathogens in Bangladesh 
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(Ghosh and Shamsi 2014), Pakistan (Abbas et al. 2017), and Ecuador (León and Andrés 

2016), as well as in other flower crops such as sunflowers (Kgatle et al. 2018). However, 

this research is the first report of Alternaria alternata as a pathogen of roses from 

Colombia. Cladosporium cladosporoides, Epicoccum sp., Penicillium sp., Aspergillus 

sp., and Diplodia sp. have also been described as pathogens for roses and other 

ornamental plants (Yong 2004; Bensch et al. 2010; Ghosh and Shamsi 2014), but this is 

the first report of Epicoccum nigrum, Penicillium citrinum and Aspergillus tubingensis as 

rose pathogens. 

Some studies have examined levels of susceptibility of rose cultivars to Botrytis 

cinerea (Hammer and Evensen 1991; Friedman et al. 2010) and differences in 

susceptibility amongst rose cultivars were found. Differences in the susceptibility have 

been attributed to the thickness of petal cuticles (Hammer and Evensen 1991), genetic 

background, polyphenolic compound levels (Lattanzio, et al. 2006; Nagpala et al. 2016), 

and pectin levels in the cell walls (Lionetti et al. 2007). The cultivar used in this study, 

Orange Crush, is a particularly susceptible cultivar according to the producers in 

Colombia. The petals of ‘Orange Crush’ roses yielded more B. cinerea infections that any 

other tissue. On grapes and strawberries flower petals have been characterized not only as 

the most susceptible tissue for Botrytis infection, but also the site of primary infections 

(Williamson et al. 2007). Host tissue susceptibility to Botrytis infection has been related 

with different factors such as tissue maturity (Droby and Lichter 2007), plant hormones, 

free radical levels (Elad 1997), phenolic compounds (Kretschmer et al. 2007), and plant 

nutrition (Elad 1988; Volpin 1991; Lattanzio et al. 2006). It is possible that the 

differential response of B. cinerea incidence in the evaluated rose tissues may be related 
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to some of these compounds; however, further investigation needs to be done to 

determine the cause of the variations on the Botrytis incidence in the different rose 

tissues.  

The cut roses were asymptomatic upon delivery to our research facility but 

developed disease on various tissues after incubation. This coincides with the two stages 

described for Botrytis infection on cut roses Elad, (1988). In the first stage, often referred 

to as latent infections, conidia germinate on rose tissue followed by limited colonization 

that is macroscopically invisible. In the second stage, mycelia continue to expand in the 

rose tissue under favorable environmental conditions, e.g., relative humidity >94%. 

Visible necrotic areas appear as the disease advances to finally develop mycelia that will 

produce new conidia. This second stage of gray mold development during shipment was 

likely suppressed by forced air cooling of the bouquets in shipping boxes soon after 

harvest and by keeping the boxes at 4ºC during shipping.  

Fungicide resistance in B. cinerea from agricultural crops is common and was 

also confirmed in isolates from cut roses in this study. Fungicide resistance in B. cinerea 

isolates has been reported for different crops including strawberries, grapes, apples, and 

some vegetables (Weber 2011; Leroch et al. 2013; Grabke et al. 2012). In this study, B. 

cinerea isolates from cut roses of both greenhouses were frequently resistant to 

thiophanate methyl (FRAC 1), iprodione (FRAC 2), cyprodinil (FRAC 9), and boscalid 

(FRAC 7). Thiophanate-methyl or any other FRAC 1 had not been used by the 

Colombian rose producer in more than a decade out of resistance concerns. This 

underscores the stability of resistance to FRAC 1 fungicides in B. cinerea and confirms 

observations of other studies (Malandrakis et al 2011; Ma and Michailides 2005). FRAC 
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2 fungicides had not been used for several years according to the producer but resistance 

still persisted in a large proportion of the population. This persistence of resistance to 

FRAC 2, contradicts other studies showing that once applications of FRAC 2 fungicides 

are interrupted for a long period of time, the susceptible population will recover making 

the fungicide efficient again (Leroux et al. 2002; Elad et al 1992). It is possible that the 

routine applications of FRAC 12 fungicide fludioxonil maintained resistance to FRAC 2 

fungicides in the population. Depending on the molecular basis of resistance some 

genotypes do reveal positive cross resistance between fludioxonil (FRAC 12) and 

iprodione (FRAC 2), as documented for Alternaria alternata from tomatoes (Malandrakis 

et al. 2015). FRAC 9 fungicides had still routinely been used in both greenhouses up to 

the onset of this study either as solo products or in mixture with fludioxonil, which may 

explain the high frequency of resistance in both greenhouses. 

FRAC 7 boscalid was one of the first FRAC 7 fungicides introduced for gray 

mold control and had been used extensively in the operation in previous years. Resistance 

to this particular chemical is conferred by many point mutations in the SDHB subunits 

(Amiri et al 2013; Hu et al 2015). Many of the these genotypes can also be selected by 

carboxin, another SDHI fungicide (Avenot and Michailides 2010). A review of the spray 

history revealed that carboxin and fluxapyroxad had been used in the 7 weeks prior to the 

first shipment in both greenhouses, thus the populations were exposed to roughly to the 

same selection pressure. That may explain the consistent and high frequency of resistance 

across both greenhouses.  

Resistance to newer generation FRAC 7 fungicides, including isofetamid, 

fluopyram, and penthiopyrad was identified but neither had been used ever at the farm. 



47 

Furthermore, resistance frequencies were significantly different between greenhouses. 

This can be explained by incomplete cross resistance among FRAC 7 fungicides, where 

certain point mutations in SDHI subunit B confer resistance to specific SDHIs (Hu et al 

2016). It is also possible, that the pathogen populations in the two greenhouses were 

subject to different genetic influx from several sources such as from weeds, nearby 

greenhouses, or compost piles. Resistance frequencies were fewer in isolates from 

shipments 2 and 6, which coincided with a reduced number of site-specific fungicides 

applied prior to these shipments. According to the producer, the number of single-site 

fungicide applications made in the four weeks previous to each shipment were 5, 1, 5, 8, 

5, and 2 (in form of rotations of FRAC codes 3, 7, 9, 11, and 29) from shipments 1 to 6, 

respectively. This would support the hypothesis that the selection of resistant genotypes 

is directly linked to the number of applications of selective fungicides. The differences in 

resistance frequencies among FRAC 7 fungicides is a function of genotype selection and 

differences in intrinsic activity. Pydiflumetofen has the highest intrinsic activity among 

the FRAC 7s tested and can inhibit mycelium of B. cinerea that at the same 

discriminatory dose (5 ug/ml ai) can overcome exposure to penthiopyrad, fluopyram, and 

isofetamid.  

Farm managers in Colombia have been rotating fungicides to avoid or delay 

resistance development for years.  However, the number of effective and available 

fungicides is limited to 4 to 5 single-site fungicides, which results in producers using 

these FRAC codes multiple times per year. In this study isolates with resistance to 

fungicides of multiple FRAC codes were found, which is consistent with observations in 

other crops (Leroch et al. 2013; Amiri et al. 2013; Chen et al. 2016). For example, 
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isolates of B. cinerea collected from strawberries in Europe and the United States 

revealed resistance to five and more chemical classes of fungicides (Leroch et al. 2013; 

Fernández-Ortuño et al. 2014). Research shows that the development of resistance to 

multiple chemical classes is a consequence of stepwise accumulation of resistance to 

fungicides often based on target gene modifications rather than a single mechanism of 

resistance such as ATP-Binding Cassette transporter activity (Li et al. 2012; Nakajima et 

al. 2001). Rotation of fungicides may therefore continue to select for such phenotypes 

and not lead to effective disease management (Hu et al. 2016). 

Continual production of roses occurs throughout the year in humid greenhouses 

that provide optimal conditions for gray mold development. Under these conditions it is 

difficult to implement resistance management strategies without having to use fungicides 

frequently. In the absence of gray mold-resistant rose cultivars only an integrated 

approach including cultural practices, the integration of multisite and single-site 

fungicides, extended spray intervals, and perhaps integration of biological control options 

for gray mold management will result in sustainable disease management.  
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Figure  2.1. Morphology groups of B. cinerea cultures on PDA. Group 1: Gray, raised, 

sporulating mycelium with umbonate elevations non-uniformly distributed across the 

colony; Group 2: homogeneous raised elevation with uniform gray sporulation occurring 

evenly over the plate; Group 3: umbonate white mycelium without sporulation in the 

center of the plate; Group 4: Unevenly distributed mycelium and sporulation over the 

plate. Elevation varies within the same colony between raised, flat and umbonate; Group 

5: Predominantly white colony with little sporulation; Group 6: large areas of sporulation 

with umbonate elevations of white mycelium frequently at the center of the plate. 
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Figure 2.2. B. cinerea incidence (A) determined as the percentage of tissue with any 

symptoms or signs; and severity (B) determined as percentage of symptomatic area for 

each rose tissue from six shipments and two greenhouses. LSD test (α= 0.05), error bars 

represent +1 SE. Different letters indicate significantly different responses within tissues 
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Figure 2.3. B. cinerea isolates resistant to fungicides from infected rose tissues from both 

greenhouse A (n=30) and B (n=19) averaged over six shipments. Least square means 

where calculated based on an LSD test (α= 0.05). Error bars represent +1 SE. Different 

letters indicate significantly different responses within fungicides and greenhouses.  
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Figure 2.4. Percentage of fungicide resistant isolates to at least one fungicide recorded 

from six shipments from both greenhouse A (n=30) and B (n=19). LSD test (α = 0.05). 

Error bars represent +1 SE. Different letters indicate significantly different responses 

within shipments and greenhouses. 
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APPENDICES 

S. Table 2.1. List of morphological types and fungicide resistance profile for isolates

collected from six cut flower rose shipments from each of two greenhouses. 

Shipment Greenhouse Morphology type 
FRAC 

1 2 7 9 12 17 

1 A 1 ● ● ● ● 

1 A 3* ● ● ●

1 A 5 

1 B 2* ● ● ● ● ● 

1 B 5 

2 A 5* 

2 A 4* 

2 A 6* 

2 B 5 

2 B 3 

2 B 3* ● ● ● ● ● 

2 B 6 

3 A 2 ● ● ● ● ● 

3 A 4 ● ● ● ● ● 

3 A 5 ● ● ● ● 

3 A 6 ● ● ● ● ● 

3 B 2 ● ● ● ● ● 

3 B 5 ● ● ● ● 

4 A 4 ● ● ● ● ● 

4 A 4 ● ● ● ● 

4 A 5 ● ● ● ● 

4 A 5 ● ● ● ● ● 

4 A 6 ● ● ● ● ● ● 
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4 B 3 ● ● ● ● ● ● 

4 B 4 ● ● ● ● 

4 B 5 ● ● ● ● 

4 B 6 ● ● ● ● 

4 B 6* ● ● ● ● ● ● 

5 A 1* ● ● ● ● 

5 A 1 

5 A 2 ● ● ● ● ● 

5 A 2 ● ● ● ● 

5 A 4 ● ● ● ● 

5 B 2* ● ● ● ● ● 

5 B 4* ● ● ● ● 

5 B 6 ● ● ● ● 

6 A 1 ● ● ● ● 

6 A 4 ● ● ● ● 

6 A 4 ● ● 

6 B 3 ● ● 

6 B 3 ● ● ● ● 

6 B 4 ● ● ● ● 

6 B 4 ● ● ● ● ● ● 

6 B 6 ● ● ● ● 

* Indicates that the isolate from that specific combination was sequenced for genetic

identification. 
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S.Table 2.2. Distribution of isolates with different levels of chemical class resistance

(CCR) for each of the six shipments of cut flower roses. LSD test (p= 0.05%). 

CCR 

CCR isolates (%) observed within each shipment 

Shipment number 

1 2 3 4 5 6 

0 0 82 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 22 

3 25 0 0 0 0 0 

4 25 9 40 31 86 56 

5 50 9 40 54 14 11 

6 0 0 20 15 0 11 

abz c ab a ab b 
z Different letters indicate significantly different distribution of CCR responses between 

shipment numbers (α= 0.05). 
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CHAPTER THREE

EVALUATION OF BOTRYTIS CINEREA CONIDIA COUNT IN THE ROSE
CANOPY AND ITS RELATIONSHIP WITH THE PRODUCTION 

ACTIVITIES OCCURING IN COMMERCIAL ROSE GREENHOUSES 

Abstract 

Gray mold disease caused by Botrytis cinerea Pers. affects cut rose quality in 

production and postharvest environments, but inoculum for infection is mostly produced 

during production. Production activities may increase spore dispersal which may increase 

the B. cinerea infection risk. Over the course of one-year, daily spore count data was 

obtained from spore traps located in two commercial greenhouses. Production activities 

and disease incidence data were compared with daily spore count. The correlation 

between the different production activities and spore count was evaluated via hierarchical 

cluster analysis and possible relationships between spore count and disease incidence 

were assessed using transfer functions analysis in time series. The spore count was 49.5% 

during the week days, were most activities take place compared to the weekends. The 

highest spore count was observed across both greenhouses when “dumping refreshing 

solutions”, “fungicide application”, “lime application”, “harvest”,  “pinch”, “removal of 

powdery mildew symptomatic tissue” , “removal of downy mildew symptomatic tissue” 

“supplemental watering”, “sweeping of the central aisle” activities occurred. 

Additionally, for greenhouse A “changing greenhouse plastic” and “cleaning leachate 

trays” activities were also related with a high spore count, while a high spore count for 

greenhouse B was observed during “NaOCl application”, “dead heading” and “manual 

plant debris removal” were performed. No correlation was observed between spore count 
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and the duration of leaf wetness and the temperature during leaf wetness. No correlation 

was observed between B. cinerea spore count and gray mold incidence as was previously 

described for gray mold infection in strawberry flowers (Blanco, de Santos, and Romero 

2006). The results indicate that the number and type of production activities have an 

effect in the movement of inoculum y cut rose greenhouses. Activities handling and 

increasing free water in the greenhouses were related with a high spore count.  

Introduction 

Botrytis cinerea is the fungal pathogen that causes gray mold in cut roses in both 

production and post-harvest environments (Vrind 2005). The disease primarily affects 

flower petals, but other plant tissues can also be infected (Elad 1988a).  Dissemination of 

B. cinerea occurs primarily by spread of multinucleate conidia through air movement and

in rain splash (Holz et al. 2007). Conidia are produced in conidiophores over gray 

mycelia in infected and necrotized plant tissue (Hahn, et al. 2014). Plant debris, senescing 

stems in the canopy, and growing substrate in the greenhouses are considered to be the 

most important sources of B. cinerea inoculum for rose crops while environmental 

conditions play a critical role in the conidia availability and movement (Sandón 2005). 

Inoculum can also be produced in sclerotia in the soil, plant debris and weed, as well as 

mycelium on decaying plant material (Beever and Weeds 2007).  

B. cinerea spore dispersal has been related to a series of different factors

including environmental and non-environmental conditions. Rapid changes in the 

environment humidity  may lead to conidia release from the conidiophores by 

hygroscopic movements of the conidiophore (Jarvis 1962b). While, leaf wetness period 
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and temperature during leaf wetness are important climatic variables for predicting B. 

cinerea infection risk (Bulger 1987). 

Sampling of airborne conidia to evaluate inoculum availability has been done to 

better understand different plant-pathogen systems (West, et al. 2009). Luo et al. (2005) 

used spore traps to monitor Monilinia fruticola spores in plum orchards and determined 

differences in the spore population during the season. Jarvis (1962) observed that the 

number of B. cinerea spores present on raspberry fields was affected by the removal of 

berries. Later, Hausbeck and Pennypacker (1991) showed that B. cinerea conidia 

concentration in a geranium stock plant greenhouse was associated with different ‘grower 

activities’ including fertilization, irrigation, fungicide applications and harvest. In 

geranium pot production, cultural practices such as cuttings manipulation, plant sanitation 

and watering influenced the amount of B. cinerea conidia present in the greenhouses 

(Daughtrey, et al. 1995). The production stage of cut roses also involves a series of 

different activities inside the greenhouses that may move or disturb a large amount of 

plant material or substrate through various processes such as harvesting flowering stems, 

plant debris removal, and plant growth regulator applications. The objectives of this 

research were: 1) To determine the daily variation in the B. cinerea spore count in 

commercial cut rose production greenhouses over the course of one year, 2) To identify 

the relationship between the B. cinerea spore count and the activities used during crop 

production, and 3) To identify if there is a relationship between high spore count and high 

B. cinerea infection risk.
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Materials and Methods 

Two spore traps (Burkard multi-vial cyclone samplers, Burkard Manufacturing 

Co Ltd, Hertfordshire, UK) were installed inside two commercial greenhouses similar in 

structure and size, identified as A and B, both located at the same farm in Sabana 

Cundiboyacene in Colombia, South America (4º59’16.9” N, 73º59’36” W; 2650 m.a.s.l). 

Each spore trap was placed inside the canopy of a commercial bed of ‘Orange Crush’ 

roses at a height of 1.5 m above the ground. Air samples with solid particulate material 

were collected daily between 06:30 am and 06:30 pm using an air inflow rate of        

16.5 L/min. Daily samples were contained in 1.5 ml Eppendorf tubes (USA scientific, 

Ocala, FL) and 14 tubes (one from each day) were sent every two weeks to Clemson 

University for conidia quantification. The spores were counted in a hemocytometer 

(Bright-line 3110, Hausser Scientific, Horsham, PA) under the microscope (Olympus 

BX41-YX, Olympus America Inc., Melville, NY). To verify that the spores observed 

where from B. cinerea, macroscopic evaluation where done on Petri dishes (9 cm dia.) 

with potato dextrose agar medium (PDA) (Difco Laboratories, Sparks, MD) amended 

with 1% of lactic acid (Honeywell Fuka™ - Thermo Fischer Scientific, Rochester, NY) 

and then molecular confirmation using the partial gene glyceraldehyde 3-phosphate 

dehydrogenase (G3PDH) were performed, which confirmed that the spores belong to  

B. cinerea.

Date and type of  production activities were recorded by the greenhouse 

managers. A total of 29 different activities were recorded (Table 3.1) and only the ones 

conducted five or more times per greenhouse during the year of evaluation were included 

in the analysis to reduce the possibility of random chance associations. Daily spore count 
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data was categorized as low, medium and high based on >22, 22-50, and >50 spores 

counts per day respectively, considering that 22 spores/day was the average of the spore 

count observed on the evaluation. The effect of production activities on the spore count 

was evaluated on same-day and day-after merged.  

Relative humidity, air temperature, and duration of continuous leaf wetness data 

were recorded during the evaluated period using an iMethos 3.3 weather station (Pess 

Instruments, Loxahatchee, FL). Two on-farm monitoring techniques and one scouting 

technique were used to evaluate gray mold incidence: “Flower quality index” was 

obtained daily after evaluation of 40 arbitrarily selected roses per cultivar and greenhouse 

as the percentage of flowers with necrotic, discolored, or pink flecks. “Botrytis humid 

chamber index” was recorded after placing 5 arbitrarily-selected flowers per cultivar per 

greenhouse in a humid chamber and evaluating the proportion of flowers with signs of 

Botrytis. Finally, “Plant quality index” was obtained weekly by scouting to the upper two 

thirds of the plants and determining the percentage of necrotic, or discolored flecks 

symptoms in flowers, stems and leaves per cultivar, greenhouse and bed. These datasets 

were used separately for correlation analysis between spore count and gray mold 

occurrence. 

Data analysis 

Data analysis was performed using JMP® Pro version 13.2.0 (SAS Institute Inc., 

Cary, NC). ANOVA and Fisher’s LSD student test were performed to compare spore 

count means between greenhouses, days of the week, and weeks of the year at p < 0.05. 

Hierarchical clustering using the Ward method was used to group production activities 
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with similar spore count profiles, ANOVA and Fisher’s LDS student test (p < 0.05) were 

used to determine significance of the clusters. Transfer functions analysis using time 

series evaluation was made to determine the correlation between weather variables (leaf 

wetness and air temperature during the leaf wetness period), and gray mold incidence 

data with spore count.  

Results 

Temporal variation in the spore count 

A low, medium and high spore count was observed for 72%, 20.3% and 8% of the 

year of evaluation, respectively (Fig. 3.1a). The maximum, minimum, and average spore 

count values over the evaluation were 215, 0 and 22 spores/day respectively (Fig. 3.2a). 

Spore count varied throughout the year of observation with the highest values occurring 

from the last week of December 2017 to the first week of January 2018 (Fig. 3.2a). 

Differences were also observed between days of the week (p < 0.013 %), with 49.5% 

higher spore count values occurring during weekdays (Mon.-Fri.) (Fig. 3.3) which are the 

days with an average of 50.5% more activities happening in the greenhouses. No 

difference was observed between greenhouses.  

Relationship between Botrytis spore count and the greenhouse environment 

No relationship between spore count and leaf wetness duration (p = 0.38) or 

average temperature during leaf wetness (p = 0.81) was observed. The peaks on the year 

of evaluation with longer period of continuous leaf wetness and higher temperatures were 

observed during June-July 2017 and March-April 2018 (Fig. 3.1a and 1b), while the 
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highest peaks for spore count occurred between December 2017 and March 2018 (Fig. 

3.1a).   

Relationship between Botrytis spore count and gray mold incidence reported by the 

growers  

No relationship was observed between Botrytis spore count and the daily or 

weekly reports of Botrytis incidence including “Flower quality index” (p = 0.89), 

“Botrytis humid chamber index” (p = 0.11), and “Plant quality index” (p = 0.15). The 

highest “Flower quality index” (71%) was observed during the first two weeks of April 

2018 (Fig. 3.1d). “Flower quality index”  was below 35% during the rest of the evaluated 

period. “Botrytis humid chamber index”  showed two peaks over 50% during June to July 

2017 and November 2017 to January 2018 (Fig. 3.2b), while the highest values reported 

“Plant quality index”  were observed from November 2017 to January 2018 and during 

the first two weeks of April 2018 (Fig 3.2c). 

Relationship between Botrytis spore count and production activities 

 A total of 23 and 22 production activities were analyzed for its relationship with 

the spore count for greenhouses A and B, respectively. For greenhouse A, 11, 4 and 8 

production activities grouped into clusters 1, 2 and 3 respectively (Fig. 3.4). For 

greenhouse B, clusters 1, 2 and 3 contained 13, 5 and 4 production activities, respectively 

(Fig. 3.5). In both greenhouses, activities at cluster 1 were most related with high spore 

counts (Table 3.2, and Table 3.3) and there were 9 production practices applied to both 

greenhouses including “dumping refreshing solutions”, “fungicide application”, “lime 

application”, “harvest”,  “pinch”, “removal of powdery mildew symptomatic tissue”, 
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“removal of downy mildew symptomatic tissue” “supplemental watering”, “sweeping of 

the central aisle”. In greenhouse A, activities in cluster 2 were most related with a 

medium spore count, and activities at cluster 3 with a low spore count (Table 3.2). At 

greenhouse B, clusters 1 and 2 showed the highest values of  medium spore count, and 

activities at cluster 3 were most related with a low spore count (Table 3.3). 

Discussion 

In this study variations in the B. cinerea spore count were observed suggesting 

constant changes in the inoculum availability and movement in the cut rose commercial 

greenhouses. An overall higher number of spores was collected between Monday through 

Friday, where about 50% more production activities were performed. This is in 

agreement with Buttner and Stetzenbach (1993) who used four aerobiological samplers in 

an enclosed experimental room to determine the effects of human activity on air 

sampling. They described a direct correlation between human activities and movement of 

airborne fungal conidia. 

Of production activities associated with a high spore count in greenhouses A and 

B respectively, nine activities were shared between both greenhouses including: 

“dumping refreshing solutions”, “fungicide application”, “lime application”, “harvest”,  

“pinch”, “removal of powdery mildew symptomatic tissue”, “removal of downy mildew 

symptomatic tissue”, “supplemental watering”, and “sweeping of the central aisle”. These 

practices involve movement of B. cinerea inoculum in rose greenhouses in form of 

infected substrate or plant debris. The movement of this material could be related with 

the disturbance of the principal spore deposits in the greenhouse leading to conidia 

liberation into the air (Sandon 2005). Other high risk activities involved water handling 
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practices in the greenhouse that had previously been related with high spore counts in 

greenhouses as well. For example, Jarvis (1962) described the “water-and-spore 

projectiles” theory where handling and splashing water was associated with horizontal 

conidia movement followed by  immediate germination after landing on the new host. 

Also, Williamson et al. (2007) described free water in greenhouses as a high-risk 

condition for Botrytis development if the optimal temperature (15 to 25 ºC) is also 

present. Thus, these activities can affect both spore dispersal and germination. Hausbeck 

and Pennypacker (1991) also showed an increase in the concentration of  B. cinerea 

conidia in geranium stock plant greenhouses after fungicide applications, and these 

results were attributed to the “water-and-spore projectiles” theory.  

Additionally, for greenhouse A, “changing the greenhouse plastic” and “cleaning 

of leachate trays” were activities related with a high spore count. For the first case 

“changing the greenhouse plastic” is an activity that move large amounts of dust in the 

greenhouse and generate air disturbance that likely increases aerial dispersal of fungal 

spores (Aylor and Flesch 2001). “Cleaning of leachate trays” involves wet plant debris 

movement, however, this activity was not related with a high spore count when it was 

done at greenhouse B.  

Conidia development, mycelial growth, and infection development are directly 

related with climatic conditions such as leaf wetness, relative humidity and temperature 

(Jarvis 1962b), in the current study no correlation was shown between climatic conditions 

and spore count. This may be a result of  time delay that between conducive weather 

conditions and sporulation. Also, uneven spore distribution and movement in the 
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greenhouses, i.e., single location spore traps may be insufficient to accurately describe 

the spore count in a commercial greenhouse. For example, stationary spore collectors 

may underestimate vertical profile of spore movement and actual number of spores 

produced in the greenhouse (Eversmeyer and Kramer 1992), since spore collectors are 

more reliable for horizontal conidia movement (Savage et al. 2012). 

In this study no correlation was shown between B. cinerea spore count and 

disease incidence observed on roses from these greenhouses which agrees with (Blanco, 

de Santos, and Romero 2006) who observed a similar response between B. cinerea 

conidia concentration and gray mold incidence in strawberry flowers. In that study, no 

correlation was shown between conidia concentration and gray mold incidence. In some 

cases, the highest incidence for gray mold was observed when low conidia concentrations 

were present in the field. Underestimation of real spore production as was described 

above may had influence these results.  Inoculum sources external to the greenhouse may 

also contribute to alter the infection risk since they may change the inoculum influx and 

also affect the genetic variability of the inoculum (Kerssies et al. 1997). Additionally, Xu 

et al., (2000) showed that relying on spore monitoring is not the most accurate method to 

predict Botrytis infection risk, but weather data, such as vapor pressure deficit and 

temperature, are more reliable indicators, because only a few infective spores are required 

to start a new disease cycle. This was confirmed by MacKenzie and Peres (2011) and 

Pavan et al. (2009) who developed an accurate model to predict B. cinerea infection risk 

only based on climatic variables such as leaf wetness and temperature for strawberry 

crops. Additional research is needed to determine if an infection risk model can be 

developed for cut rose production based on environmental data.  



73 

The results of this study have several implications for improving gray mold 

management practices. For example, fungicide applications prior to the performance of 

high-risk activities may improve Botrytis disease management. Reducing free water in 

the greenhouse has the potential to reduce spore dispersal, movement and germination. 

Successful gray mold management should involve sanitation, opportune removal of the 

primary inoculum sources, avoidance of free water, and proper use of fungicides.  
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Table 3.1. Descriptions of the production activities performed commercial greenhouses. 

Production activities Description 

Aligning  Shoot reallocation into the canopy.  

Blowing (mechanical plant 

debris removal) 

Plant debris are removed from the beds using a 

mechanical blower. 

Changing greenhouse plastic Plastic of the walls and roofs of the greenhouse are 

removed and changed by new plastic. 

Cleaning of leachate trays Remoting of substrate and plant debris from the plastic 

leachate trays underneath crop beds. 

Deadheading Removal of decaying flower heads.  

Dumping refreshing 

solutions  

Flower rehydrating solutions used right after harvest 

are dumped in the greenhouse floor and replaced for a 

new solution.   

Foliar fertilizer application Fertilizer sprays supplementary to fertigation . 

Fungicide applications  Fungicides (site-specific and multisite) are applied as 

canopy sprays.   

Harvest Recollection of ready flowers (correct age and size). 

Harvest zone cleaning Removal of decaying plant tissue from the highest third 

of the plants. 

Lime application Dry lime application  in the principal aisle. 

Manual plant debris removal Plant debris are collected by hand form the beds.  

Mite control Scouting of mites and insecticide application using 

high volume spray equipment. 

NaOCl application Application of sodium hypochlorite (NaOCl) solution 

in the principal aisle and between beds using a venturi 

injector. 

Pinch  Removal of apical flower buds.  

Pruning Trimming plant tissue to renew the canopy.  

Pruning of dead stems Trimming decaying and dead stems.  
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Removal of Botrytis 

symptomatic tissue in the 

harvest zone 

Removal of any plant tissue with symptoms or signs of 

gray mold especially in the highest third of the plant. 

Removal of dead stems Recollection of trimmed dead stems.  

Removal of downy mildew 

symptomatic tissue  

Scouting and elimination of any plant material 

symptomatic of downy mildew. 

Removal of powdery mildew 

symptomatic tissue  

Scouting and elimination of any plant material 

symptomatic of powdery mildew. 

Supplemental watering Water application with a hose in addition to the drip 

irrigation when plants are looking water stressed.   

Sweeping between beds Waste and plant debris removal between beds using a 

broom.  

Sweeping of the central aisle Waste and plant debris removal from the greenhouse 

principal aisle (people, equipment and plant material 

movement) using a broom.  

Thermo-fogging Quaternary ammonium salts application by 

vaporization into the canopy and substrate. 

Weeding Weed removal from the surface of the crop beds. 
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Figure 3.1. a) Spore count recorded from a spore trap placed in a rose canopy over one 

year. Dashed lines separate the three spore count classifications: low (<22 spores/day), 

medium (22-50 spores/day), and high (>50 spores/day), b) daily leaf wetness duration per 

day, c) average temperature during leaf wetness, and d) Botrytis incidence as evaluated 

during daily flower scouting. Data averaged across both evaluated greenhouses. 
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Figure 3.2. Average weekly data of (a) spore count recorded in a cut flower rose canopy, 

(b) Botrytis presence in the harvest zone, e.g., the top one third of a cut flower rose

canopy, and (c) Botrytis incidence in the humid chamber (containing harvested cut flower 

roses). Data averaged across greenhouses. 
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Figure 3.3. Variation in the spore count between days of the week recorded in a cut 

flower rose canopy. Data were averaged across greenhouses. Different letters indicate 

statistically different values between days. Least square means where calculated based on 

an LSD test (α= 0.05). Error bars represent +1 SE.  
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Figure 3.4. Hierarchical cluster distribution of production activities and their relationship 

to spore count when comparisons were made for the cultural practices performed on the 

same day and the day before spore count was recorded at greenhouse A. The number of 

times that each activity was performed is shown inside the parentheses.  
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Figure 3.5. Hierarchical cluster distribution of production activities and their relationship 

to spore count when comparisons were made for the cultural practices performed on the 

same day and the day before spore count was recorded at greenhouse B. The number of 

times that each activity was performed is shown inside the parentheses.  
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Table 3.2. The number of production activities performed in a cut flower rose 

greenhouse included within clusters, that encompass unique spore count distribution at 

greenhouse A. Low <22 spores/day; Medium = 22-50 spores/day; High >50 spores/day. 

Cluster Number of cultural practices 
Spore count (%) 

Low Medium High 

1 11 64.4 bz 25.9 b 9.7 a 

2 4 62.9 b 37.1 a 0.0 b 

3 8 80.2 a 19.3 c 0.4 b 

z Different letters indicate statistically different values for the clusters within spore count 

levels (within columns). Least square means where calculated based on an LSD test (α= 

0.05). 
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Table 3.3. The number of production activities performed in a cut flower rose 

greenhouse included within clusters, that encompass unique spore count distributions at 

greenhouse B. Low <22 spores/day; Medium = 22-50 spores/day; High >50 spores/day. 

Cluster Number of cultural practices 
Spore count (%) 

Low Medium High 

1 13 73.8 cy 19.9 a 7.0 a 

2 5 81.3 b 18.7 a 0.0 b 

3 4 94.9 a   5.1 b 0.0 b 

y Different letters indicate statistically different values for the clusters within spore count 

levels (within columns). Least square means where calculated based on an LSD test (α= 

0.05). 
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