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ABSTRACT 

Ovarian cancer is the deadliest gynecological malignancy and the fifth leading 

cause of cancer death overall. Due to lack of early symptoms, ovarian cancer is most 

commonly diagnosed in the distant stages, drastically reducing the 5 year survival rate 

from 92% in early stage diagnoses to 29% in advanced stage cases. This large difference 

is thought to be linked to the high rate of recurrence and development of drug 

resistance to chemotherapeutics in ovarian cancer patients. First-line therapy includes a 

combination of tumor resection surgery and chemotherapy regimen including cisplatin, 

a DNA-alkylating agent, and paclitaxel, a microtubule stabilization agent. However, 

treatment becomes more complex upon recurrence due to the development of drug 

resistance. Drug resistance has been linked to many mechanisms, including efflux 

transporters, dysregulation of apoptosis, autophagy, cancer stem cells, epigenetics, and 

the epithelial-mesenchymal transition. Due to the wide variety of mechanisms involved 

in resistance, developing and choosing effective therapies is extremely complex. 

Liposomes demonstrate potential as delivery systems to combat drug-resistance 

in cancer due to their versatility in loading. Liposomes possess the ability to load 

multiple therapeutics to re-sensitize resistant cancer cells while simultaneously treating 

those cells with a chemotherapeutic agent. Here, a liposomal carrier for both paclitaxel 

and siRNA was designed and synthesized to provide a combinatorial therapy to re-

sensitize drug-resistant ovarian cancer cells to paclitaxel and thereby increase the 

efficacy of paclitaxel. A custom siRNA array was developed, and we identified three 
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possible gene targets, ABCB1, JAK2, and CFLAR, involved in the development of drug 

resistance in paclitaxel-resistant OVCAR3-TR ovarian cancer cells.  

Two combinatorial, cationic liposome delivery systems were designed and 

synthesized via the lipid film hydration method. Liposomes were characterized for size, 

surface charge, stability, and loading efficiencies. We demonstrated efficient loading of 

paclitaxel and protection of bound siRNA in both liposome formulations. Cellular uptake 

of the liposomes was confirmed using fluorescence microscopy. Overall, the liposomes 

show promise in loading both paclitaxel and siRNA to target genes involved in drug-

resistance development in ovarian cancer cells.  
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND 

Ovarian cancer is the fifth leading cause of cancer death amongst women and 

the most lethal gynecological cancer [1]. Over 22,200 new diagnoses and 14,000 deaths 

are expected in 2018 [1]. The high death rate of ovarian cancer stems from late 

diagnosis and lack of early symptoms of the disease. Around 60% of ovarian cancer 

diagnoses occur in the distant or advanced stages of the diseases, resulting in a five-year 

survival rate of only 21-29% [1]. However, in localized stages, the five-year survival rate 

is 87-93% [1]. Without diagnostic advancements, there is a significant need to improve 

upon current treatments to accurately target cancer cells and increase the efficacy of 

delivered therapeutic agents.  

Current diagnostics for ovarian cancer utilize cancer antigen 125 (CA-125) serum 

levels, transvaginal ultrasonography, or imaging methods including computed 

tomography (CT) or magnetic resonance imaging (MRI) in order to identify potentially 

cancerous tissue. CA-125 is the most used diagnostic for ovarian cancer because serum 

levels of CA-125 are typically elevated in more advanced stages of the disease [2]. 

However, measuring CA-125 levels alone is often not sufficient in diagnosing ovarian 

cancer without the aid of other methods [2]. The most problematic characteristics of 

CA-125 diagnostics include low sensitivity in stage 1 disease and low specificity due to 

increased CA-125 levels in other cancers and benign conditions, like menstruation, 
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pregnancy, endometriosis, and pelvic inflammatory disease [3]. Imaging methods, 

including CT and MRI, have proven to be more reliable than CA-125 in diagnosis of the 

first recurrence of ovarian cancer when overall survival and progression-free survival 

were compared [4]. Currently, transvaginal ultrasonography is utilized when a patient 

has suspected masses on their pelvis to identify the origin [5].  

Upon diagnosis, the current standard of care for ovarian cancer treatment is a 

combination of cytoreductive surgery and chemotherapy [6]. The order in which these 

treatments occur depends on each patient and is ultimately decided upon by the doctor. 

Combination carboplatin and paclitaxel remains the standard frontline chemotherapy 

treatment for advanced ovarian cancer [7]. The time between initial resection and 

initiation of chemotherapy regimens is a vital factor in predicting the overall survival of 

women with advanced ovarian cancer, with an increased risk of death when the time 

period surpasses 25 days [8]. However, despite first-line treatment, around 70% of 

patients relapse [2]. Recurrent cancer is rarely treated with second-line surgery and the 

focus shifts to chemotherapy instead because more problems arise when treating a 

relapse. Alterations in the sensitivity of cancer cells to chemotherapeutics may occur 

based on prior exposure to each type of therapeutic agent; thus, drug resistance may 

become a challenge in treating recurrent cancer.  

1.1 Drug Resistance Development in Ovarian Cancer 
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 The aggressive nature of advanced ovarian cancer is thought to be correlated to 

the development of resistance to chemotherapeutics to which the patients are exposed. 

High recurrence rates are problematic, but they provide an even greater challenge when 

sensitivity to chemotherapy used in primary treatment decreases during secondary 

treatment. Various factors and pathways influence the sensitivity of cells to drugs; 

therefore, resistance cannot be reversed by only targeting one specific area or pathway. 

In ovarian cancer, the main mechanisms of resistance include membrane transporter 

activity [9], dysregulation of apoptosis [10], autophagy [11], cancer stem cells [12], 

epigenetics [13], and the epithelial-mesenchymal transition [14]. However, other 

unknown underlying factors could also be mediating the development of resistant 

phenotypes. 

 

1.1.1 Membrane Transporter Activity 

 Membrane transporters are involved in maintaining an equilibrium influx and 

efflux of molecules in the cell, where a change in this equilibrium can change the 

phenotype of the cell [15]. Chemoresistant phenotypes arise when a decrease in influx 

of molecules is coupled with an increased efflux due to increasingly active membrane 

transporters, reducing the cellular uptake, intracellular accumulation, and anticancer 

activity of chemotherapeutics. The most studied and well-known culprits of 

chemoresistance are ATP-binding cassette (ABC) membrane transporters, which 

eliminate large molecules in order to protect the cell (Fig. 1.1).  
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The ABC protein superfamily includes 49 proteins involved in drug resistance 

from seven subfamilies [16]. Multidrug resistance (MDR) has been linked to 

upregulation in ABCB1, ABCC1, and ABCG2, as well as many others [17,18].  ABCB1, also 

known as multidrug resistance protein 1 (MDR1), codes P-glycoprotein (P-gp), a multi-

drug membrane transporter [19]. Normal function of P-gp includes the regulation of 

apoptosis, which can be modified through transporting molecules into or out of the cell 
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[19]. Overexpression of P-gp led to increased cell protection and decreased stem cell 

differentiation, thereby, promoting cancerous activity [19]. 

Expression levels of MDR-related genes in ovarian cancer cells resistant to 

chemotherapy drugs provide a possible parameter to use to analyze cross-resistance 

between cell lines. High P-gp expression levels indicate drug resistance in W1 ovarian 

cancer cell lines resistant to doxorubicin, paclitaxel, and vincristine. BCRP, or ABCG2, 

expression indicates resistance in topotecan-resistant W1 cells [17]. Cross-resistance 

discovered between the paclitaxel- and doxorubicin-resistant cell lines could be 

problematic if doxorubicin is given as a second line treatment for paclitaxel-resistant 

ovarian cancer. The work of Januchowski and colleagues expands upon earlier studies 

demonstrating that P-gp, MDR1, MDR2, and LRP drug resistance-associated markers are 

prognostic factors in ovarian cancer diagnoses [20]. 

 

1.1.2 Dysregulation of Apoptosis 

 Dysregulation of apoptosis pathways in the cell can increase cell survival and 

avoidance of drug-induced death. Numerous signaling pathways are involved in 

controlling apoptosis pathways in a cell, including PI3K/Akt and NF-kB. The Bcl-2 family 

of regulatory proteins mediates cell death by either inhibiting or inducing apoptosis 

through a balance between pro- and anti-apoptotic proteins. Bcl-2 activates the Akt 

pathway activity [21], and the NF-kB signaling pathway has been found to be activated 

by Akt through the presence of mTOR [22]. The upregulation of Bcl-2 anti-apoptotic 
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proteins is characteristic of cancer and increased proliferation and survival of cancer 

cells. In paclitaxel-resistant SKOV3 cells, downregulation of Bcl-2 and hTERT increased 

apoptosis after 6 days of combination treatment with epigallocatechin gallate and 

sulforaphane [23].  

 The upregulation of signaling pathways, like PI3K/Akt and NF-kB, has also been 

found to play an important role in developing resistance to chemotherapy. The 

development of resistance to cisplatin, paclitaxel, and bevacizumab in ovarian cancer 

cell lines has been linked to activation of the Akt pathway. In A2780 cisplatin-resistant 

and CAOV3 cells, blockage of the Akt pathway via gemcitabine treatment inhibited 

cisplatin-induced Akt activation, and co-treatment with cisplatin completely inhibited 

the invasion of both cell lines in matrigel [24]. Also, overexpression of Akt in cisplatin-

resistant A2780 cells led to an increase in cells escaping the natural killer cells of the 

immune system and an increase in the expression of anti-apoptotic proteins, CIAP-1 and 

-2 [25]. 

In paclitaxel-resistant A2780, SKOV3, and MPSC1 cells, the downregulation of the 

Akt and NF-kB pathways through tectorigenin treatment resulted in sensitization of cells 

to paclitaxel and enhanced growth inhibition, compared to paclitaxel treatment alone 

[26]. Tectorigenin also inhibited the nuclear translocation of NF-kB and the expression 

of many NF-kB-dependent genes known to be involved in drug resistance, including FLIP, 

XIAP, Bcl-2, and Bcl-xL [26]. Akt pathway activation in endothelial ovarian cancer cells, 
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OVCAR-3 and SKOV3 cell lines, demonstrated characteristics of a niche for residual 

cancerous tissue with resistance to bevacizumab [27]. 

 

1.1.3 Autophagy 

  In addition, autophagy plays a role in the sensitivity of cancer cells to 

chemotherapy. Autophagy is used by cells to aid in survival under nutrient starvation or 

other cellular stresses through digestion of their own cellular components to maintain 

energy. Cells can use autophagy as a protective mechanism against stresses, like the 

damaging effects of chemotherapy, resulting in decreased anticancer response [28]. 

Cisplatin-resistant ovarian cancer cells, OV433-CR, demonstrated increased activation of 

the ERK pathway, which promotes autophagy induction. Inhibition of ERK/MAPK activity 

decreased autophagy and increased sensitivity of cells to cisplatin-induced death [29]. 

The inhibition of autophagy in cisplatin-resistant SKOV3 and A2780 cells also increased 

apoptosis via the overexpression of miR-152, an autophagy-regulating miRNA involved 

in cisplatin resistance [30]. 

Reactive oxygen species (ROS) maintenance is vital in all cells in order to respond 

to environmental changes. When ROS production increases past an allowable threshold, 

the expected outcome is cell death. However, there is a suspected relationship between 

autophagy and ROS production. Autophagy is believed to be a protective mechanism 

when dealing with stress and ROS generation in ovarian cancer cells, increasing as ROS 
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increases [31]. This extended protection may provide cancer cells a longer time to repair 

DNA damage from chemotherapy, thus decreasing the efficacy of chemotherapeutics. 

 

1.1.4 Cancer Stem Cells 

Autophagy also plays a role in mediating chemoresistance of cancer stem cells 

(CSCs) [11]. A recent discovery proved that cancer stem cells are involved in the 

development of drug resistance due to their stem cell-like phenotype (Fig. 1.2). 

Particularly, their ability to resist apoptosis by DNA damage prolongs the survival of 

cancer stem cells in cancer tissue [10]. Cancer stem cell phenotypes include 

characteristic evasion of apoptosis in hypoxic conditions, increased growth potential 

[32], and increased CSC marker aldehyde dehydrogenase isoform 1 activity [33]. CSCs 

from the HO8910 cell line demonstrated faster growth and enhanced survival potential 

in a 3D cell culture as well as increased tumorigenicity in a xenograft mouse model 

compared to the parental HO8910 cells. Also, CSCs showed increased resistance to 5-

fluorouracil, cisplatin, and carboplatin as well as high expression of MDR genes, ABCB1, 

ABCG2, MMP2, and MMP9 [32]. Recent efforts have explored the mediation of drug 

resistance via cancer stem cell elimination. In SKOV3-spheroid cells, knockdown of KLF5 

is a promising target to eliminate CSCs, shown by a decrease in survivin expression and 

increase in sensitivity to paclitaxel and cisplatin [34]. 

Aldehyde dehydrogenase isoform 1 (ALDH1) is an emerging marker, which when 

used in combination with other stem cell markers, can identify populations of cancer 
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stem cell populations in ovarian cancer. ALDH1 activity, measured by fluorescently-

labeled ALDH1, showed ALDH1-bright cells were more common in ES-2 and CP70 

ovarian cancer cell lines and showed increased chemoresistance compared to SKOV3, 

OVCAR3, and A2780 ovarian cancer cells that did not express high levels of ALDH1 [35]. 

Tumor samples from 84 subjects indicated the association of cancer stem cell marker 

ALDH1 with chemoresistance and poor clinical outcomes in epithelial ovarian cancer 

patients [35].  
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1.1.5 Epigenetics 

Epigenetics and other changes in the tumor microenvironment, including DNA 

methylation, histone modification, and microRNA expression, have become greater 

focuses in the drug resistance mechanisms of ovarian cancer over the last decade [13]. 

Current studies are exploring various miRNAs and DNA modifications in order to exploit 

specific pathways involved in the development of chemoresistance in ovarian cancer 

[36,37]. DNA methylation involves the addition of a methyl group to DNA without 

changing the sequence, but when methylation occurs in the promoter region of a gene, 

the gene can be repressed. Hypermethylation of genes is common in drug-resistant 

ovarian cancer cells, including A2780 cells resistant to cisplatin. In a study of the 

methylome and gene expression in wild-type and resistant A2780 cells, 13 out of 41 

genes were consistently upregulated in the A2780/CP70 cisplatin-resistant ovarian 

cancer cells compared to parental A2780 ovarian cancer cells, where initially 

methylated-MLH1, a DNA repair gene, played a role in re-sensitizing cells to cisplatin 

when demethylated in vitro [38]. DNA methylation has been found to interfere with 

cisplatin-sensitivity in both A2780 and OVCAR3 cells through overexpression of MAFG, a 

DNA binding transcription factor. MAFG expression can be directly regulated by miR-7, 

creating a potential target for mediating drug resistance with MAFG and a factor for 

prognosis in the methylation status of miR-7 [39]. 

Furthermore, epigenetic silencing, or the process of non-mutational change in 

gene expression that can be passed down from generation to generation in cells [40], 
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continues to reveal prognostic biomarkers and potential therapeutic targets in drug-

resistant ovarian cancer cells. Epigenetic silencing of miR-199b-5p in cisplatin-resistant 

A2780 and C13* cells demonstrated activation of the JAG1-mediated Notch1 signaling 

pathway, encouraging the development of chemoresistance. Downregulation of miR-

199b-5p is associated with poor clinical outcomes in ovarian cancer patients; thus, 

microRNA levels could be a prognostic factor and JAG1 a therapeutic target in cisplatin-

resistant ovarian cancer [41]. 

Similarly, silencing of miR-130b, in cisplatin-resistant A2780 and paclitaxel-

resistant A2780 and SKOV3 cells, promote drug resistance through colony stimulating 

factor 1 (CSF1) targeting. MiR-130b silencing was inversely related to DNA methylation 

and resistance development. Thus, CSF1 knockdown is a potential treatment to re-

sensitize cells to chemotherapy and improve clinical outcomes [36]. Epigenetic silencing 

of BLU, a tumor suppressor gene, in paclitaxel-resistant ovarian tumor samples led to 

resistance development, and BLU methylation indicated a shorter progression-free and 

overall survival in patients. BLU methylation levels may be a promising prognostic 

biomarker in advanced serous ovarian carcinoma patients [42]. 

 

1.1.6 Epithelial-Mesenchymal Transition 

Paclitaxel-resistance in A2780 cells induces morphological changes consistent 

with epithelial-mesenchymal transition (EMT) and an increase in EMT-related 

biomarkers confirmed by RT-PCR. Activation of the PI3K/Akt pathway is vital to EMT; 
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thus, when PI3K was inhibited, paclitaxel sensitivity increased and cytoskeleton 

morphology shifted toward an epithelial phenotype [43]. In A2780 cells resistant to 

cisplatin, Snail and Slug, EMT transcription factors, contribute to resistance as evidenced 

by cell morphology changes, from spherical epithelial cells to spindle-like cells with 

formation of pseudopodia. A whole transcriptome microarray revealed overexpression 

of E-cadherin transcriptional repressors, Slug, Snail, TWIST2, and ZEB2, and 

downregulation of E-cadherin in A2780-cis cells compared to the parental A2780 line. 

Knockdown of Snail and Slug reversed the EMT phenotype and reduced resistance to 

cisplatin [44]. Snail, Slug, and TWIST upregulation were also linked to platinum 

resistance and EMT phenotypes in stage III-IV epithelial ovarian tumor biopsies. 

Activation of the TGF-β pathway led to activation of EMT, and relapse in 70% of patients 

was associated with increased activation of the TGF-βR2 pathway [45]. 
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CHAPTER TWO 

TARGETED DELIVERY SYSTEMS TO COMBAT DRUG RESISTANCE IN OVARIAN CANCER 

 

2.1 Delivery Strategies for Overcoming Drug Resistance  

In order to combat different mechanisms of drug resistance development, a 

variety of therapeutics and delivery strategies have been studied to target and reverse 

chemoresistance in cancer cells. Currently, in ovarian cancer, the most common 

methods of reversal are treatment with siRNAs to manipulate the dysregulated genes 

and inhibitors to target the imbalance of efflux and influx in cells. Anti-resistance 

therapeutics aim to re-sensitize the cancer cells to chemotherapy drugs so further 

treatment can be administered to increase progression-free survival of cancer patients.  

In order to deliver siRNAs, inhibitors, and chemotherapeutic agents, alone or in 

combination to chemo-resistant cancer cells, many targeted delivery systems have been 

developed. Current methods include a variety of nanocarriers to increase the efficacy of 

chemotherapy drugs and other therapeutic agents while also decreasing negative side 

effects, like systemic toxicity. The nanocarriers are developed from polymers, lipids, 

peptides, and other inorganic molecules, as depicted in Figure 2.1. 

 The delivery systems used for combatting treatment in drug-resistant ovarian 

cancer are classified into two groups, single agent delivery or combination delivery. 

Single-agent delivery systems are used to increase the targeting and efficacy of one 

therapeutic agent. Typically, a drug carrier is used to increase cellular uptake by cancer 
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cells compared to free drug treatment and decrease off-target effects, limiting the 

damage to healthy cells. The goal of combination treatment is to maximize the 

synergistic ability of two compounds to increase anticancer effects while also decreasing 

adverse side effects of the free therapeutics.  
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Nanoparticles for single-agent use have already performed well in clinical trials. 

One of the most common, liposomal doxorubicin, is an FDA-approved chemotherapy 

drug and is widely used in cancer treatment. The benefit of the liposomal form of the 

drug is increased circulation time compared to free doxorubicin due to protection 

against destruction by the immune system [46]. Similar to this idea, many current 

studies seek to improve the efficacy of common chemotherapeutic agents through 

development of targeted therapies.  

 

2.1.1 Lipid 

 Lipid-based delivery systems are advantageous due to their drug loading 

versatility, utility for combination therapies, ability to modify surface characteristics, and 

decreased toxicity compared to free therapeutics. Drug loading in lipids, especially 

liposomes, is optimal because hydrophilic and hydrophobic drugs can both be loaded. 

The hydrophobic tails of lipids are sufficient environments for hydrophobic drugs to 

reside, while hydrophilic drugs can be loaded into the center of liposomes. In order to 

combat drug resistance in ovarian cancer cells, the versatility of lipid delivery systems 

can elicit greater anticancer effects through targeting activity of efflux transporters, 

cancer stem cells (CSCs), metabolism dysregulation, and hypoxic environments.  

 Increasing intracellular accumulation of therapeutics remains one of the main 

goals of nanoparticle delivery systems, thereby decreasing off-target toxicity and 
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increasing the efficacy of the delivered therapeutics. In drug-resistant ovarian cancer, 

increasing uptake of therapeutics is necessary to increase the concentration of drugs 

ultimately reaching the targeted tumor site. Solid lipid nanoparticles loaded with 

paclitaxel and doxorubicin have exhibited increased cellular uptake into A2780res and 

SKOV3TR drug-resistant ovarian cancer cells, increasing the anticancer effects of the 

treatment compared to free drug treatment alone [47,48].  

Increase in intracellular uptake has also been demonstrated through the use of 

surface-modified liposomes for targeting ovarian cancer cells. Folic acid is used to target 

folate receptors, which are overexpressed on the surface of ovarian cancer cells. One 

study showed paclitaxel-loaded nanoparticles decorated with folic acid demonstrated 

increased cellular uptake and inhibited growth and doubling time in SKOV/TAX cells 

compared to undecorated paclitaxel nanoparticles [49]. The addition of polyethylene 

glycol (PEG) to lipid nanoparticles also increases the stealth and uptake of the particles 

into drug-resistant SKOV3 ovarian cancer cells by evading efflux transporters [50]. 

Due to a relationship between CSC activity and aggressiveness of tumors, 

decreasing activity of CSCs has gained increasing popularity as a method to target drug 

resistance development in ovarian cancer cells. A novel, liposomal form of paclitaxel has 

been found to suppress CSC sub-populations, from drug-resistant ES-2 ovarian cancer 

cells, when delivered intraperitoneally compared to intravenously administering 

paclitaxel alone, as indicated by decreased levels of CSC-markers, CD44, CD24, and 

CD133 [51]. Metabolic reprogramming from glycolysis to oxidative phosphorylation was 
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also induced through reactivation of p53 in resistant ES-2 cells resulting in better control 

of tumor growth [51].  

The ability to deliver treatments in combination provides a promising method to 

synergistically enhance the efficacy of therapeutics, especially those used to treat drug-

resistance in ovarian cancer. Crosslinked multilamellar liposomes developed to deliver 

carboplatin and paclitaxel, two of the most common intravenous chemotherapeutics, 

were shown to increase anticancer effects in NCI/ADR-RES ovarian cancer cells in vitro 

and in OVCAR8 ovarian cancer xenograft mice models [52]. Also, in vitro studies showed 

decreased cancer stem cell activity in NCI/ADR-RES cells, where ALDH+ cells decreased 

from 57.3% in the untreated control to 30.2% in the resistant cells treated with the 

combination liposomes [52].  

Combination therapies have also been used to mediate resistance by avoiding 

efflux of chemotherapeutics by p-gp membrane transporters and hypoxia-induced 

resistance on ovarian cancer cells. Liposomes containing paclitaxel and tariquidar, a 

third-generation p-gp inhibitor, blocked proliferation and induced G2-M phase arrest in 

SKOV3-TR and HeyA8-MDR drug-resistant ovarian cancer cells in vitro. The combination 

liposomes reduced tumor weight to 16.9% from 43.2%, in mice xenografts with 

orthotopic HeyA8-MDR tumors compared to paclitaxel-only liposomes [53]. To address 

resistance related to hypoxia, liposomes containing doxorubicin and antisense 

oligonucleotides (ASO) targeting HIF-1α mRNA were delivered to A2780/AD 

doxorubicin-resistant ovarian cancer cells in vitro and athymic nu/nu mice with 
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A2780/AD subcutaneous tumors in vivo [54]. Confocal microscopy and in vivo 

fluorescence imaging identified intracellular localization of the combinatorial liposomes, 

and RT-PCR and IHC-staining showed decreased expression of HIF-1α when compared to 

free or liposomal doxorubicin without ASOs. Increased cell death signals were shown 

through expression of apoptotic proteins, BAX, CASP3, CASP9, and P53, as well as 

decreased expression of VEGF, identifying a decrease in tumor vascularization [54]. 

The various modifications of liposomal delivery of therapeutics in order to 

increase targeting, intracellular uptake, and efficacy of drug-resistant cancer treatments 

are promising in that the delivery systems can be modified to exploit the different 

mechanisms of resistance and overexpression of receptors in cancers on an individual 

basis. Personalized cancer treatment could lead to higher remission rates and lower 

incidence of drug resistance in secondary treatment. Liposomal therapeutic options 

show promise in future applications of targeted therapies as few treatments have 

reached clinical trials.  

 

2.1.2 Polymer 

 Polymer nanoparticles are the most common synthetic delivery systems utilized 

in targeted treatments for drug-resistant ovarian cancer. Similar to lipids, polymers 

possess the ability to increase intracellular accumulation of therapeutics, increase 

efficacy of treatments via surface-conjugated targeting moieties, deliver synergistic 

combination agents, and sustain the release of therapeutics. Increased accumulation 
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and efficacy of paclitaxel and cisplatin in drug-resistant A2780 ovarian cancer cells 

resulted from single-agent delivery in poly (n-butylcyanoacrylate) nanoparticles 

compared to free paclitaxel or cisplatin treatment [55,56]. 

 Similar to surface modifications in lipids, the addition of targeting moieties in 

polymer-based nanoparticles has been shown to increase uptake of therapeutics 

thereby increasing anticancer effects. Folate-targeted triblock copolymer nanoparticles 

delivered TLR4 siRNA and paclitaxel to drug-resistant SKOV3 ovarian cancer cells in vitro, 

to re-sensitize cells to paclitaxel and mediate TLR4-driven resistance [57]. Folate has also 

been used to increase uptake of paclitaxel-loaded PLGA nanoparticles [58]. In addition 

to folate, biotin is a common targeting ligand used for ovarian cancer due to its affinity 

for EGF receptors, which mediate resistance via the epithelial-mesenchymal transition. 

Biotinylated-PAMAM dendrimers exhibited a ten-fold increase in intracellular 

accumulation of cisplatin in A2780-CP70 cisplatin-resistant ovarian cancer cells 

compared to free cisplatin treatment alone [59]. Hyaluronic acid is an important 

targeting moiety for ovarian cancer cells as it targets CD44, a cancer stem cell and drug 

resistance marker. HA-targeted PEI/PEG nanoparticles were developed to deliver MDR1 

siRNA and paclitaxel to OVCAR8TR cells in vitro [60]. MDR1 siRNA knockdown increased 

sensitivity of cells to paclitaxel by decreasing p-gp activity and increased cellular uptake 

by targeting CD44, compared to untargeted nanoparticles [60].  

 Combinatorial delivery of anticancer therapeutics is an advantage of the 

versatility of polymer-based nanoparticle design. Like lipids, paclitaxel and p-gp inhibitor 
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molecules, tacrolimus and borneol, have been delivered in combination to elicit a 

greater anticancer effect than either of the drugs alone, by decreasing efflux and 

increasing intracellular accumulation of paclitaxel in A2780 paclitaxel-resistant ovarian 

cancer cells in vitro [61,62]. The combination of two molecular therapeutics was also 

demonstrated by co-encapsulation of doxorubicin and rhein in vitamin E-PEG 

nanomicelles and of paclitaxel and lonidamine in PCL-EGFR targeted NPs. In comparison 

to free drug treatment, both types of polymer nanoparticles exhibited increased tumor 

targeting and cytotoxic activity when studied in vitro on drug-resistant SKOV3 ovarian 

cancer cells [63,64]. Combinatorial delivery also includes simultaneous delivery of 

multiple siRNA, as demonstrated by the delivery of MDR1 and PKM2 siRNA in HA-

targeted PEI-PEG NPs to SKOV3TR ovarian cancer cells. The synergistic ability of the dual 

silencing of multidrug resistance protein and pyruvate kinase isoform 2 showed a 1.3 

fold decrease in IC50 value of paclitaxel when drug delivery followed siRNA delivery in 

SKOV3TR cells, but there was no significant difference in IC50 when delivered to wild-

type SKOV3 cells [65].  

 The most advantageous quality of polymer-based sustained release of 

therapeutics due to stimuli-responsive or biodegradable characteristics. Sustained 

release allows the drug to be exposed to the cancer cells for a longer period of time, 

which leads to increased efficacy of the therapy. pH-responsive polymer nanoparticles 

exploit the acidic environment of tumors in order to maintain a sustained release of 

therapeutics. Poloxamer 407 vitamin E-TPGS mixed micelles functionalized with folate 
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exhibited decreased efflux of doxorubicin in doxorubicin-resistant SKOV3 ovarian cancer 

cells, where accumulation increased 24% with the addition of poloxamer 407 and 264% 

with the addition of TPGS, when compared to efflux rates of untreated Dox-resistant 

SKOV3 cells [66]. The increased accumulation of doxorubicin led to an increase in 

doxorubicin binding to DNA, increasing cytotoxicity compared to free doxorubicin. 

 Biodegradable polymers, like polylactic acid (PLA), polyglycolic acid (PGA), or a 

combination of the two, PLGA, promote sustained release of therapeutics through 

degradation of the delivery systems. PLGA nanoparticles developed with a poly-

dopamine and PEG coating prevented rapid release and clearance of paclitaxel in a 

BR5FVB1-Akt murine ovarian cancer model [67]. Mice treated with the PLGA NPs 

showed an 8-fold increase in paclitaxel concentration in the peritoneal cavity than mice 

treated with free paclitaxel, while the systemic circulation of paclitaxel was three times 

higher in the free paclitaxel treatment than the nanoparticle treatment [67]. PLGA 

nanoparticles were shown to sustain release of diphtheria toxin-subunit A suicide genes 

in chemo-resistant ovarian tumor-bearing SCID mice, inhibiting tumor growth [68]. 

Chitosan-coated PLA NPs mediated release of p62 siRNA, β5 plasmid, and cisplatin, in 

C13 cisplatin-resistant ovarian cancer cells in vitro, as demonstrated by a 26% decrease 

in IC50 of cisplatin, compared to only 15.2% with delivery of sP62 alone or 8% with pβ5 

[69]. 

 Overall, polymer nanoparticles possess many desirable qualities for targeted 

therapy options in the reversal and treatment of drug-resistant ovarian cancer. While 
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qualities like sustained release and specific stimuli response favor polymer systems over 

lipids, most of the concepts of the two types of delivery systems remain similar. Thus, 

the addition of targeting ligands, the potential to co-encapsulate therapeutics, and the 

increase in intracellular accumulation and cytotoxicity are all important to developing a 

successful targeted therapy for treatment of drug resistance in ovarian cancer.  

 

2.1.3 Inorganic 

 Beyond lipids and polymers, other nanoparticles have become popular in 

studying reversal of drug resistance in ovarian cancer, specifically, silica and metal 

nanoparticles. Mesoporous silica nanoparticles (MSNs) are desirable for the delivery of 

siRNA specifically to perinuclear targets in vitro and in vivo. MSNs have been utilized to 

deliver and knockdown TWIST siRNA to decrease tumor burden in mice and target the 

epithelial-mesenchymal transition when treated concurrently with cisplatin compared 

to cisplatin alone [70]. Combination therapy has been attempted with MSNs as well, 

delivering doxorubicin and Bcl-2 siRNA to control and decrease apoptosis-related 

resistance. The off-target release of doxorubicin was minimal and the intracellular 

localization of the agents increased indicating successful management of resistance and 

increased efficacy of doxorubicin [71].  

 Metal nanoparticles, such as iron oxide, silver, and copper, are modified with 

organic materials and loaded with therapeutic agents to treat drug-resistant ovarian 

cancer. Iron-oxide nanoparticles as delivery systems for doxorubicin have been shown 
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to sustain slow release of DOX at slightly acidic pHs and avoid drug efflux pumps [72]. In 

addition, release of doxorubicin from mesoporous iron-oxide nanoparticles has also 

been studied for combination therapy with hyperthermia, where DOX burst release 

occurs upon magnetic heating [73]. Lycopene-reduced graphene oxide-silver 

nanoparticles were developed for co-delivery with trichostatin A. The combined effects 

of these two agents decreased cell viability in a dose-dependent manner through an 

increase in apoptosis due to DNA fragmentation and double strand dysfunction [74]. 

Similarly, phosphorous dendrimers were modified with copper to target BAX pathways. 

The copper-phosphorus structures increased apoptosis by increasing activation of the 

BAX signaling pathway [75]. The benefit of using a metal nanoparticle is that therapeutic 

agents may not be needed as some metals elicit anticancer effects alone.  

 

2.1.4 Theranostic 

 Lastly, some delivery systems aim to improve treatment and diagnostic abilities 

in a single therapy by personalization of therapy to meet patient’s varying needs. These 

methods are designated as theranostic approaches in which nanoemulsions of 

chemotherapeutic drugs are delivered and imaged to predict the success of the therapy 

in different patients [76]. Nanoemulsions load platinum drugs and doxorubicin, and they 

are functionalized with folate in order to increase on-target localization of the particles. 

Targeted nanoemulsions have demonstrated increased cytotoxicity due to efficient 

cellular uptake than treatment with free chemotherapeutic drugs [77,78]. 
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2.2 Current Clinical Trials 

 Overall, the versatility of nanoparticle delivery systems in the reversal and 

treatment of drug-resistant ovarian cancer seems to be a promising quality; however, 

targeted therapy research is cutting-edge and there has yet to be much translation from 

the research setting into the clinical setting. Clinical trials for ovarian cancer currently 

focus on options improving traditional chemotherapy drugs to treat recurrent or 

resistant cancer through modifications in dosing regimens, differing combinations of 

drugs, and changing the method of delivery of the drugs, as laid out in Table 2.1. The 

more recent targeted therapies have yet to become popular in clinical trials due to poor 

translation of treatments, but a few have been tested as second, third, or last lines of 

therapy.   
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Table 2.1.Clinical Trials for Ovarian Cancer Treatment. Recent clinical trials for ovarian cancer characteristics and 

phases, with accompanying results. 

 

Drug(s) In trial Phase Delivery Method/Regimen Drug mechanism(s) 

Paclitaxel I Novel liposomal platform[79]  Paclitaxel stabilizes microtubules during mitosis and 
leads to mitotic arrest  

Pertuzumab 
with topotecan 
or paclitaxel 

I IV pertuzumab every 3 weeks 
with either topotecan every 3 
weeks or paclitaxel weekly[80] 

Pertuzumab inhibits ligand-dependent HER2-HER3 
dimerization and reduces signaling through PI3K 
pathway; Topotecan inhibits topoisomerases to cause 
double strand DNA breakage and cell death 

Paclitaxel and 
carboplatin 

II Cremophor-free polymeric 
micelles of paclitaxel IV with 
carboplatin every 3 weeks[81] 

Carboplatin inhibits DNA synthesis by causing intra- 
and inter-strand crosslinking in DNA 

Temsirolimus II Weekly IV infusions[82] Temsirolimus inhibits mTOR leading to cell cycle 
arrest in the G1 phase and inhibiting tumor 
angiogenesis 

Olaparib II Oral capsules[83] Olaparib inhibits PARP enzymes and DNA repair 

Pazopanib II Daily pazopanib with or 
without weekly paclitaxel[84] 

Pazopanib inhibits tyrosine kinase for antiangiogenic 
activity 

Albumin-bound 
paclitaxel 

II Cremophor-free nanoparticle 
of albumin-stabilized paclitaxel 
IV[85] 

Paclitaxel stabilizes microtubules during mitosis and 
leads to mitotic arrest 

Paclitaxel II Lipid core nanoparticles weekly 
IV infusion[86] 

Paclitaxel stabilizes microtubules during mitosis and 
leads to mitotic arrest 

Sorafenib with 
paclitaxel and 
carboplatin 

II Paclitaxel and carboplatin IV 
infusions with or without twice 
daily sorafenib orally[87] 

Sorafenib inhibits tyrosine kinases in Raf/MEK/Erk 
pathways and induces autophagy 
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2.3 Conclusion and Future Steps 

  Due to the aggressive malignancy, the limited early diagnostics, and the potential 

of drug resistance in ovarian cancer, there is a significant need for increased efficacy and 

specificity in treatment. Without much-needed advancements in diagnostic methods 

and patient compliance for screenings, the only option to limit the negative effects of 

ovarian cancer is to improve treatment success. Reversal of drug resistance is currently 

at the forefront of ovarian cancer research, showing promising results in vitro and in 

vivo. Numerous inhibitors and siRNA have been successful in re-sensitizing cells to 

chemotherapy, including P-gp inhibitors, PARP inhibitors, and siRNA to modify 

expression in signaling pathways important for cancer proliferation and progression. The 

success of these inhibitors, while promising, remains low due to the complexity and 

interdependence of mechanisms protecting the cells from chemotherapeutic agents.  

Nanoparticles have become an increasingly popular option to deliver drug 

resistance reversal agents in combination with chemotherapeutic agents to achieve 

greater anti-cancer effects without increasing the danger of therapy to patients. 

Nanoparticles can be developed from lipids, polymers, inorganic materials, or a 

combination of the molecules in order to decrease toxicity of the drugs being delivered. 

However, the significance of nanoparticle delivery systems actually lies in the ability to 

modify particles to increase targeting specificity, increase intracellular accumulation, 

and decrease premature clearance of the drugs before reaching the targeted area. 

Translation from in vivo studies to clinical trials has been one of the largest obstacles in 
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producing new treatment options for current ovarian cancer patients. Recently, a few 

nanoparticle-based therapies have made their way into clinical trials, with hopes that as 

more research is done on targeted therapies in ovarian cancer models, the number of 

potential treatments reaching clinical trials will increase.  
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CHAPTER THREE 
RESEARCH AIMS 

3.1 OBJECTIVES 

Ovarian cancer is the deadliest gynecological malignancy and the fifth leading 

cause of cancer-related death overall. Around 60% of ovarian cancer cases are 

diagnosed in the distant stages, where the survival rate is only 21-29% [1].  The 

aggressiveness of the disease lies in the high rates of recurrence and the development 

of drug resistance after initial treatment. 70% of ovarian cancer patients will experience 

a recurrence of their cancer [2], where the development of resistance to prior 

chemotherapy regimens creates difficulty in determining an appropriate second-line 

regimen. Currently, the standard treatment of a recurrence is to choose a 

chemotherapy drug that has not shown cross-resistance with the first regimen.  

However, some tumors will develop resistance to many chemotherapy drugs. Thus, 

there is a significant need for therapies to increase the survival rate of drug-resistant 

ovarian cancer.  

The objective of this research is to identify potential gene targets involved in the 

development of paclitaxel-resistance in ovarian cancer cells. Initial treatment of ovarian 

cancer includes a regimen consisting of cycles of a platinum-based DNA-alkylating agent, 

carboplatin or cisplatin, and paclitaxel, a microtubule stabilization agent [88]. Therefore, 

the effectiveness of secondary treatments containing paclitaxel decreases if paclitaxel-
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resistance has developed. The overall goal of this research is to synthesize and 

characterize cholesterol- and cholesteryl hemisuccinate (CHEMS)-based liposomal 

combination delivery systems for siRNAs, specific to gene targets with identified 

involvement in drug resistance in ovarian cancer cells, and paclitaxel to synergistically 

increase the efficacy of paclitaxel in drug-resistant ovarian cancer.  

Through completion of the following aims, I will collect the data necessary to 

identify potential gene targets involved in the development of paclitaxel-resistance, as 

well as synthesize and characterize two liposomal carriers with the ability to encapsulate 

and deliver paclitaxel and siRNAs to drug-resistant ovarian cancer cells. Comparison of 

the two liposomal delivery systems will determine the potential of substituting CHEMS 

for cholesterol to incorporate a pH-sensitive compound without compromising the 

loading and delivery ability of the liposomes.  

Aim 1: Identify gene targets involved in the development of paclitaxel-resistance in 

ovarian cancer cells with a siRNA array. We will design a custom array of siRNAs specific 

to genes involved in apoptosis, the cell cycle, and drug resistance development in 

cancer. Through siRNA transfection with the custom array followed by paclitaxel 

treatment, we will identify the siRNAs responsible for the greatest anticancer effect in 

paclitaxel-resistant ovarian cancer cells. We hypothesize that the siRNAs which 

demonstrate the greatest anticancer effect in combination with paclitaxel when 

compared to treatment with paclitaxel alone, will correlate to genes involved in the 

development of resistance in ovarian cancer cells.  
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Aim 2: Synthesize and characterize cholesterol- and cholesteryl hemisucciante-based 

liposomal carriers, and compare their ability to encapsulate and deliver both 

paclitaxel and siRNA to drug-resistant ovarian cancer cells.  We will synthesize cationic, 

cholesterol-based liposomes and cholesteryl hemisuccinate-based liposomes and 

examine the size, surface charge, encapsulation efficiency, siRNA binding, stability, and 

cellular uptake of the liposomes. We hypothesize that both types of liposomes will be 

positively charged and uniform in size. We also hypothesize that the liposomes will be 

stable when paclitaxel is loaded in the hydrophobic region of the lipid bilayer and 

negatively-charged siRNA is bound to the cationic lipid components. We believe that 

cellular uptake will be achieved through endocytosis of the cationic liposomes. We 

believe that cholesteryl hemisuccinate can be substituted for cholesterol in the 

synthesis of the liposomes without compromising the encapsulation ability or stability of 

the liposomes.  

3.2 Approach 

Aim 1:  

After determining the IC50 value of paclitaxel in OVCAR3 and OVCAR3-TR, wild-

type and drug-resistant ovarian cancer cells, we will evaluate the viability of OVCAR3-TR 

cells after transfection with the custom siRNA array and 15 nM paclitaxel treatment 

using an MTS assay. Gene targets will be chosen based on the siRNAs demonstrating the 

greatest anticancer effects compared to treatment with paclitaxel alone. These chosen 
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siRNAs will be used as therapeutics bound to the liposomes to re-sensitize cells when 

delivered in combination with paclitaxel.  

Aim 2: 

After identification of the gene targets, we will synthesize and characterize the 

liposomes using dynamic light scattering to determine size and polydispersity index of 

the particles, and micro-electrophoresis with phase analysis light scattering to find the 

zeta potential. Then, we will examine the encapsulation efficiency of paclitaxel in the 

liposomes when loaded with 2.5 µg/mL of paclitaxel. The amount of drug loaded will be 

determined with high-performance liquid chromatography (HPLC). 

After determining paclitaxel loading, we will evaluate the binding/loading of 

siRNA to the liposomes to quantify the amount of siRNA available for knockdown upon 

delivery into the drug-resistant cells. Liposomes loaded with fluorescent non-targeting 

siRNAs allow the use of fluorescence spectrophotometry to determine the amount of 

siRNA bound to liposomes. siRNA binding will be further studied with a gel shift assay to 

ensure binding and protection of siRNAs and stability of loaded liposomes.  

Cellular uptake will be visualized using immunofluorescence, fluorescent labeling 

of early endosomes, nuclear counterstaining, and fluorescent siRNA and Nile Red loaded 

liposomes. OVCAR3-TR cells treated with 100 µM of liposomes will be fixed at 2 hour 

time points, and fluorescence microscopy will be used to evaluate the intracellular 

localization of the liposomes.  
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CHAPTER FOUR 

IDENTIFYING GENE TARGETS IN THE DEVELOPMENT OF PACLITAXEL RESISTANCE IN 
OVARIAN CANCER CELLS 

Due to lack of early symptoms, a majority of ovarian cancer diagnoses occur in 

the distant stages, leading to a low five-year survival rate of about 21-29% [1]. Low 

survival rates are believed to be linked to recurrence of cancer and development of drug 

resistance after initial treatment, which involves tumor resection surgery and a 

chemotherapy regimen, usually including cisplatin or carboplatin, both platinum-based 

DNA-alkylating drugs, and paclitaxel, a microtubule inhibitor [6,88]. Without advances in 

current diagnostic methods, there is a significant need to find a therapy that is effective 

on drug-resistant ovarian cancer.  

The underlying intracellular mechanisms responsible for resistance are complex 

and intertwined, making it difficult to treat the disease by targeting only one 

mechanism. Thus, combination therapy has been heavily researched as a treatment 

option for drug-resistant cancer. Combination therapies allow two or more therapeutics 

to be delivered simultaneously, with the goal of synergistically increasing the efficacy of 

either treatment alone [89,90]. Therapeutics in combination therapies include 

chemotherapeutics, inhibitor molecules, and siRNAs. Controlling expression of genes 

that are believed to be involved in the development of drug resistance with siRNAs 

could be vital in treating recurrent cancer and re-sensitizing cancer cells to cisplatin, 

carboplatin, and paclitaxel [91,92]. siRNAs delivered into the cell form an RNA-induced 
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silencing complex with proteins and specifically bind to target mRNA, interrupting 

translation and degrading the mRNA [93]. siRNAs can target the various pathways 

involved in the development of drug-resistance in ovarian cancer by knocking down 

overexpressed genes coding for p-gp membrane transporters, apoptosis, autophagy, 

cancer stem cells, epigenetics, and the epithelial-mesenchymal transition. Combination 

therapies can elicit increased anticancer effects by using siRNAs or inhibitors to re-

sensitize cells to chemotherapy drugs and treat the cells simultanously with delivered 

chemotherapeutics.  

Here, a custom siRNA array of gene targets involved in apoptosis and the cell 

cycle was designed in order to identify genes that may be involved in the development 

of drug resistance in ovarian cancer cells. The anticancer effect of siRNA transfection 

followed by paclitaxel treatment was studied in OVCAR3-TR cells. We found five siRNAs 

had significantly greater anticancer effects compared to treatment with paclitaxel alone. 

4.1 MATERIALS AND METHODS 

4.1.1 Materials 

The custom siRNA array was designed by including siRNAs from apoptosis and 

cell cycle gene libraries, as well as siRNAs recently shown in literature to play a role in 

development of drug resistance, and purchased from Dharmacon (Lafayette, CO). 

Transfection supplies including 5x siRNA buffer, GAPDH siRNA, and Non-targeting #5 

siRNA were also purchased from Dharmacon. Lipofectamine RNAiMAX and OPTIMEM 
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media were both acquired from ThermoFisher Scientific (Waltham, MA) as well as cell 

culture reagents, fetal bovine serum (FBS), penicillin/streptomycin, and trypsin. The 

OVCAR3 cell line was obtained from ATCC (Manassas, VA) and the OVCAR3-TR cell line 

was a generous donation from Dr. George Duran at Stanford University. McCoy’s 5A 

modified media, phosphate-buffered saline (PBS), RNA grade water, and dimethyl 

sulfoxide (DMSO) were purchased from Fisher Scientific (Pittsburgh, PA).  Paclitaxel was 

obtained from LC Laboratories (Woburn, MA). Thiazolyl Blue Tetrazolium Bromide 

(TBTB) was purchased from Sigma-Aldrich (St. Louis, MO). Cell Titer One Aqueous 

Solution Cell Proliferation Assay was acquired from Promega (Madison, WI).  

4.1.2 Cell Culture 

The human ovarian carcinoma cell lines OVCAR3 and OVCAR3-TR were cultured 

in McCoy’s 5A Modified Medium with 10% FBS and 1% antibiotic (100 IiU/mL penicillin 

and 100 µg/mL streptomycin). Both cell lines were cultured in an incubator at 37°C with 

5% CO2. 

4.1.3 IC50 Studies 

The half maximal inhibitory concentration (IC50) value of paclitaxel in OVCAR3 

and OVCAR3-TR ovarian cancer cell lines was determined to find the level of resistance 

in OVCAR-TR cells. Both cell lines were seeded at 35,000 cells/well in two 24-well plates 

and allowed to attach overnight. Paclitaxel dissolved in DMSO was added to the cells 
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and allowed to incubate in media containing 10% FBS with a final paclitaxel 

concentration ranging from 0-10 nM in the OVCAR3 cells and 0-100 nM in the OVCAR3-

TR cells for 24 hours. After 24 hours, the cells were washed with PBS three times to 

ensure the removal of drug and media was replaced for another 48-hour incubation 

period. After a total of 72 hours post-treatment, the cytotoxicity of paclitaxel was 

examined using an MTT assay. The media was removed from the cells and Thiazolyl Blue 

Tetrazolium Bromide was dissolved in PBS at a concentration of 2 mg/mL and added to 

the cells for a final concentration of 1 mg/mL. The cells were then incubated with TBTB 

for 4 hours at 37°C. After incubation, the TBTB was aspirated from the cells and 

formazan crystals were solubilized with 500 μL of DMSO in each well. The absorbance of 

each well was measured at a wavelength of 540 nm on a Biotek Synergy plate reader 

(Winooski, VT). Cell viability was normalized to untreated cells and calculated with the 

equation below: 

Cell Viability (%)= (
Absorbance 540 (sample)

Absorbance 540 (control)
 ) x 100. 

The ratio of IC50 values in the resistant OVCAR3-TR cells compared to the wild-type 

OVCAR3 cells was calculated to determine the level of resistance.  

4.1.4 siRNA Array for Gene Target Identification 

A custom siRNA array was developed by identifying genes involved in apoptosis 

and the cell cycle, as well as genes recently found to be involved in drug resistance 
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development, specifically in ovarian cancer. After the IC50 values were determined, an 

optimal paclitaxel treatment concentration (15 nM) was found through MTT studies for 

the siRNA array experiment. OVCAR3-TR cells were seeded at 7,000 cells per well in a 

96-well plate and incubated overnight to allow for attachment. The cells were

transfected with 50 nM siRNA from the custom array and from controls and incubated 

at 37° C for 24 hours. Five controls were used for the array, GAPDH siRNA, a positive 

targeting control, Non-targeting #5 siRNA, a non-targeting control, lipofectamine only, 

free paclitaxel only, and an untreated control. 24 hours post-transfection, the 

transfection media was removed and the cells were treated with 15 nM paclitaxel and 

incubated for another 24 hours.  

At the 48-hour time point, an MTS cell proliferation assay was performed using 

the Cell Titer 96 Aqueous One Solution Cell Proliferation Assay. The cells were incubated 

for 2 hours at 37°C with 20 μL of the Cell Titer reagent.  After incubation, absorbance 

was measured using a Biotek Synergy plate reader (Winooski, VT) at an absorbance of 

490 nm. Absorbance values were used to calculate cell viability compared to untreated 

OVCAR3-TR cells using the equation: 

Cell Viability (%)= (
Absorbance 490 (sample)

Absorbance 490 (control)
 ) x 100. 

The anticancer effects were determined by comparing the viability associated with each 

siRNA in the array to the viability of cells treated with free paclitaxel only.  
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Statistical analysis was performed on the viability data from the array to 

determine significant anticancer effects. Gene targets were chosen based on the highest 

mean anticancer effects as demonstrated by the lowest viability values.  

4.1.5 Statistical Analysis 

Quantitative data were presented as mean ± SEM of three independent 

experiments. Statistical analysis was performed using a Student's t-test or one-way 

ANOVA, with *P < 0.05, **P < 0.01, and ***P < 0.001, and a value of P < 0.05 was 

considered statistically significant.  

4.2 RESULTS 

4.2.1 IC50 Studies 

Drug-resistance is identified by an increase in half maximal inhibitory 

concentration of a drug on cells. The results comparing anticancer activity of paclitaxel 

in OVCAR3 cells to resistant OVCAR3-TR ovarian cancer cells indicated an increase in 

IC50 value of paclitaxel in OVCAR3-TR cells. In the OVCAR3 cell line, the IC50 value of 

paclitaxel was 4.29 ± 0.12 nM. The resistant OVCAR3-TR cells showed a ten-fold increase 

in paclitaxel IC50 value, 43.10 ± 2.41 nM, indicating a more resistant phenotype toward 

paclitaxel than the OVCAR3 cells.  
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4.2.2 Identification of Gene Targets 

A custom siRNA array (Fig. 4.1) was used to identify gene targets that may be 

involved in the development of drug resistance in ovarian cancer. From the anticancer 

effects determined via viability data, seven siRNAs demonstrated higher anticancer 

effects than paclitaxel treatment alone in OVCAR3-TR cells in vitro. Out of the seven 

siRNAs identified, five siRNAs demonstrated significantly higher anticancer activity than 

paclitaxel treatment alone, including, CASP8AP2, PAK2, ABCB1, JAK2, and CFLAR (Fig. 

4.2A-B). The three siRNAs the results in the lowest viability in combination with 

paclitaxel compared to treatment with paclitaxel alone were chosen as gene targets. 

ABCB1, which codes for ATP-binding cassette transporters and manages efflux of 

molecules out of cells, demonstrated the third lowest viability at 49%. JAK2, Janus 

kinase 2, which plays a role in signaling cell growth, exhibited the second lowest viability 

at 34%. The lowest viability overall, 29%, was due to silencing CFLAR, an apoptosis 

regulator protein that inhibits caspase-8 cleavage, thereby inhibiting apoptosis.  
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CHAPTER 5  

SYNTHESIS AND CHARACTERIZATION OF COMBINATION LIPOSOMES FOR TREATMENT 

OF DRUG-RESISTANT OVARIAN CANCER 

Liposomes are multifunctional nanoparticles and allow for loading of hydrophilic 

and hydrophobic chemotherapeutics, singularly or simultaneously, for delivery to 

targeted cancer cells.  Liposomal formulations of chemotherapy drugs decrease 

hypersensitivity and off-target toxicity of chemotherapeutics delivered systemically. By 

encapsulating paclitaxel, a poorly water-soluble drug, in lipids, the goal is to decrease 

hypersensitivity and adverse effects due to polyoxyl-35 castor oil, used as a solubilizing 

vehicle to mediate intravenous delivery of the hydrophobic drug [94]. Many liposomal 

formulations of paclitaxel have been through clinical trials in recent years and are 

beginning to gain clinical relevance as treatments for patients with ovarian cancer [95].  

Liposomes are not only useful for eliminating the need for harsh solvents or 

vehicles needed for delivery of poorly water-soluble drugs, but also for their therapeutic 

loading versatility. Liposomes contain a region where phospholipid tails overlap and 

create a hydrophobic shell within the membrane bilayer, allowing for hydrophobic 

molecules to be loaded and protected inside the membrane. The core of liposomes, 

lined by the hydrophilic heads of phospholipids, creates a suitable environment for 

loading hydrophilic drugs. Thus, liposomes possess the ability to co-load both 

hydrophobic and hydrophilic drugs, a characteristic that can be exploited for increasing 
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the efficacy of chemotherapeutics, especially in difficult to treat cancers [52]. In addition 

to co-loading drugs, liposomes also can load nucleic acid therapeutics, including plasmid 

DNA, siRNA, and antisense oligonucleotides, through electrostatic interactions with 

cationic lipids, to regulate expression of cancer-related genes [96]. 

The benefits of combination delivery of therapeutics can be further improved by 

modifying liposomes with surface ligands, antibodies, and stealth components [50,97]. 

Modifications can assist in targeting and reversing drug-resistance mechanisms in 

ovarian cancer. Inhibition of drug resistance mechanisms combined with chemotherapy 

treatment have shown increased anticancer effects in drug-resistant ovarian cancer 

models compared to chemotherapy alone [98].  

To address drug resistance in ovarian cancer, we synthesized cationic, 

cholesterol- and cholesteryl hemisuccinate-based liposomes in order to deliver 

paclitaxel in combination with siRNA targeting genes involved in the development of 

drug resistance. The liposomes were designed to bind negatively-charged siRNA to 

cationic lipid components and load hydrophobic paclitaxel into the membrane bilayer. 

Characterization based on size, polydispersity index, and zeta-potential confirmed the 

formation of cationic liposomes. Efficient loading of paclitaxel and binding of siRNA into 

the liposomes as well as stability of the loaded liposomes were all demonstrated. 

Quantification of siRNA in CHEMS-LPs demonstrated lower concentrations than CHOL-

LPs in the fluorescence study, however similar siRNA binding was shown in the gel shift 

assay. Further analysis is needed to determine the loading potential of the CHEMS-LPs. 
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Cholesterol-based liposomes mediated cellular uptake of Nile Red and fluorescent non-

targeting #5 siRNA and CHEMS-LPs mediated uptake of fluorescent non-targeting #5 

siRNA into OVCAR3-TR drug-resistant ovarian cancer cells. 

5.1 MATERIALS AND METHODS 

5.1.1 Materials 

All lipid components, DOTAP, DPPC, and DSPE-PEG(2000), a mini hand extruder, 

and 0.2 µm polycarbonate membranes were purchased from Avanti Polar Lipids, Inc. 

(Alabaster, AL). Cholesterol, cholesteryl hemisuccinate, Nile Red, and chloroform were 

obtained from Sigma Aldrich (St. Louis, MO). Methanol, glucose, and acetonitrile were 

purchased from VWR (Radnor, PA). Paclitaxel was acquired from LC Laboratories 

(Woburn, MA). Fluorescent non-targeting #5 siRNA and non-targeting #5 siRNA were 

obtained from Dharmacon (Lafayette, CO). Electrophoresis materials including agarose, 

TAE buffer, ethidium bromide, Ambion PUC19 RNA Ladder, and agarose loading dye 

were purchased from Fisher Scientific (Pittsburgh, PA). Paraformaldehyde and Triton X-

100 were also purchased from Fisher Scientific. NucBlue ReadyProbes stain and Alexa-

488 Anti-rabbit secondary antibody were acquired from ThermoFisher Scientific 

(Waltham, MA). EEA1 rabbit monoclonal antibody was purchased from Cell Signaling 

Technology (Danvers, MA). 

5.1.2 Cell Culture 
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The human ovarian carcinoma cell line OVCAR3-TR was cultured in McCoy’s 5A 

Modified Medium with 10% fetal bovine serum (FBS), and 1% antibiotic 

(100iU/mLpenicillin/100ug/mL streptomycin). The cell line was grown in an incubator at 

37°C with 5% CO2. 

5.1.3 Liposome Synthesis 

Cationic liposomes were formed by dissolving lipids at a 25:40:30:4 molar ratio 

(DOTAP:DPPC:Cholesterol (or CHEMS):DSPE-PEG2000) in a 3:1 (v/v) mixture of 

chloroform and methanol as previously described [99]. The solvent was evaporated at 

40° C for 20 minutes and then the lipid film was allowed to vacuum dry for 2 hours to 

ensure complete removal of solvent. Fluorescent non-targeting #5 siRNA was added to 

RNA grade water with 5% glucose (w/v) and used to rehydrate the lipid film. The 

mixture was then sonicated in an ultrasonic bath for 20 minutes, followed by extrusion 

through a 0.2 µm filter membrane in a mini-hand extruder. After extrusion, the 

liposomes were diluted to the desired working concentrations and stored at 4°C. The 

same process was used to form liposomes containing cholesteryl hemisuccinate in place 

of cholesterol.  

5.1.4 Characterization of Liposomes 

Size and polydispersity index of the liposomes at a concentration of 5 mM was 

determined using Dynamic Light Scattering, while surface charge was determined via 
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micro-electrophoresis and phase analysis light scattering (M3-PALS) using a Zetasizer 

Nano ZS (Malvern Instruments, Malvern, UK). The Zetasizer was maintained at a 

temperature of 25°C while obtaining measurements. A refractive index of 1.45, an 

absorbance value of 0.001, and an angle of 173° was used to collect the intensity of 

scattered light due to the nanoparticles. Intensity-based size distribution plots were 

generated based on twelve separate measurements.  

5.1.5 Liposomal Loading Efficiency of Paclitaxel 

To release encapsulated paclitaxel from liposomes, liposomes were disrupted in 

methanol by centrifuging at 13,000 rpm for 20 minutes prior to HPLC analysis. Loading 

of paclitaxel into the liposomes was determined using an HPLC system consisting of a 

Waters Model 2707 Autosampler connected to a 1515 Isocratic HPLC Pump (Waters, 

Inc., Milford, MA). Samples of 50 µL were injected into a Waters Symmetry C18 (4.6 x 75 

mm, 3.5µm) column, with a gradient flow of water and acetonitrile beginning at 66:34 

(v/v) at a flow rate of 0.6 mL/min. The UV detector was set to 227 nm. The loading 

efficiency was determined by comparing encapsulated paclitaxel to the initial amount of 

paclitaxel dissolved with the lipids using the equation: 

Loading Efficiency (%) = (
Amount of drug detected

Amount of drug initially loaded
) × 100 

5.1.6 siRNA Binding and Stability in Liposomes 
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Agarose gel electrophoresis was performed to determine the binding and 

protection of siRNAs in the liposomes. Intact and disrupted liposome samples were 

loaded into a 2% agarose gel in TAE buffer and ran for 60 minutes at 100V. The gel was 

stained with ethidium bromide and imaged with a UV illuminator.  

Binding of siRNA to liposomes can be estimated by utilizing fluorescent siRNA 

and measuring the intensity of fluorescence when bound to liposomes. Fluorescence 

spectroscopy was performed in a Synergy Biotek plate reader (Winooski, VT) to examine 

the binding of siRNAs to the liposomes. Serial fluorescent siRNA dilutions were used to 

create a standard curve. Liposome solutions, including both 5 mM and 500 mM stocks, 

were used as samples and their fluorescence intensities were fit to the standard curve 

to determine the amount of siRNA bound. Liposome samples disrupted with 0.1% Triton 

X-100 were also used to examine the siRNA fluorescence intensity without interference

from the stable liposomes. Binding efficiency was calculated as: 

Binding Efficiency (%)= (
Amount of siRNA detected

Amount of siRNA initially added
) ×100 

5.1.7 Cellular Uptake of Liposomes 

Cellular uptake and intracellular accumulation of cholesterol-containing 

liposomes loaded with fluorescent non-targeting #5 siRNA and Nile Red were visualized 

using fluorescence microscopy. OVCAR3-TR cells were seeded at 35,000 cells per well in 

24-well plates and incubated to allow attachment overnight. The cells were treated with
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liposomes at a final concentration of 50 µM and incubated for 4 or 8 hours. At 4 and 8 

hours, the cells were stained with NucBlue ReadyProbes nuclear stain and imaged using 

an EVOS FL Cell Imaging System (ThermoFisher Scientific, Waltham, MA).  

Immunofluorescence assays were performed on OVCAR3-TR cells treated with 

cholesterol- and CHEMS-containing liposomes loaded with fluorescent non-targeting #5 

siRNA and paclitaxel. OVCAR3-TR cells were seeded at 35,000 cells per chamber on 8-

chamber collagen I-coated culture slides and incubated overnight for attachment. The 

cells were then treated with 50 µM liposomes containing cholesterol or CHEMS and 

incubated for 2 hours. OVCAR3-TR cells were fixed with 4% paraformaldehyde and 

permeabilized with 0.1% Triton X-100 in PBS. The cells were incubated at 4°C overnight 

with primary EEA1 antibody solution. Following incubation, cells were washed three 

times using PBS and incubated with Alexa Fluor 488-conjugated secondary antibody 

solution. Nuclear material was counterstained with mounting media containing DAPI. 

Fluorescence microscopy was used to visualize cellular uptake and intracellular 

accumulation of the liposomes.  

5.1.8 Statistical Analysis 

Quantitative data were presented as mean ± SEM of three or more independent 

experiments. Statistical analysis was performed using a Student's t-test. 

5.2 RESULTS 
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5.2.1 Characterization of Liposomes 

Two formulations of liposomes were synthesized using the same lipid film 

hydration method to create liposomes containing cholesterol (CHOL-LPs) and liposomes 

containing cholesteryl hemisuccinate (CHEMS-LPs) (Fig 5.1). After synthesis, the two 

types of liposomes were characterized by size, polydispersity index (PDI), and surface 

charge using DLS and M3-PALS at a concentration of 5 mM of liposomes. The mean 

particle size of the CHOL-LPs was 114.9 ± 10.35 nm, while the mean size of the CHEMS-

LPs was slightly lower at 91.29 ± 7.66 nm (Fig. 5.2A-B). The PDI of the CHOL-LPs, 0.252, 

was also higher than that of the CHEMS-LPs, 0.214 (Fig. 5.2C). Both values for PDI 

indicated monodisperse liposomes in solution with minimal aggregation. The mean zeta-

potentials of the CHOL-LPs and CHEMS-LPs, +27.6 ± 1.79 mV and +23.2 ± 1.56 mV 

respectively (Fig. 5.2C), were positive due to the cationic lipid component DOTAP and 

the ability of CHEMS to be protonated in aqueous solution. Both liposome formulations 

resulted in uniformly-sized, monodisperse, positively charged particles.  



48 



49 

5.2.2 Efficient Loading of Paclitaxel into Liposomes 

In order to further compare the CHOL-LPs and CHEMS-LPs, the loading efficiency 

of paclitaxel in the liposomes was analyzed. Paclitaxel was dissolved with the lipids and 

rehydrated to form liposomes with a final drug concentration of 2.5 µg/mL. HPLC 

analysis was used to determine the amount of paclitaxel loaded into each type of 

liposomes, and the loading efficiencies of both types of liposomes were calculated. The 

CHOL-LPs exhibited a loading efficiency of 80.4%, while the CHEMS-LPs loaded with an 

efficiency of 79.3% (Table 5.1). Overall, the CHOL-LPs and CHEMS-LPs were comparable 

in their ability to load paclitaxel.  

5.2.3 Binding and Protection of siRNA in Liposomes 

A gel shift assay was performed to examine the siRNA binding capabilities of the 

CHOL-LPs and CHEMS-LPs. Samples of each liposome at concentrations of 5 mM and 
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500 mM were examined. siRNA content was also examined after disruption with 0.1% 

Triton X-100 in order to validate binding of siRNAs in liposomes. Intact and disrupted 

liposomes at a concentration of 5 mM showed no stained siRNA, likely due to the siRNA 

concentration being too dilute. Intact 500 mM CHOL-LPs and CHEMS-LPs stained for 

siRNA inside of the wells, while both disrupted 500 mM liposome samples appeared 

around the same area of the gel as free siRNA (Fig 5.3). Staining near the well in Lane 10 

indicates remaining siRNA bound to liposome components. The disrupted 500 mM 

CHOL-LPs showed more staining of siRNA than in the disrupted CHEMS-LPs; however, 

the staining near the well in the disrupted CHEMS-LPs indicates incomplete release of 

bound siRNA and further studies of the binding potential of CHOL- and CHEMS-LPs are 

needed. 

The amount of fluorescent non-targeting #5 siRNA bound to the liposomes was 

quantified using fluorescence spectroscopy with a Biotek Synergy plate reader 

containing a red (530/590) filter cube (Winooski, VT). The concentration of bound siRNA 

was estimated using a standard curve of serial siRNA dilutions. A standard curve with 

siRNA and Triton X-100 was also created to account for the interference of Triton X-100 

in the fluorescence reading. Intact and disrupted samples of the CHOL-LPs and CHEMS-

LPs at a concentration of 500 mM were examined. The 5 mM samples were not 

analyzed because the concentration of siRNA in the liposomes was too low to be 

detected, as seen in the gel shift assay. Binding/loading efficiency, as determined by 

siRNA concentration correlating to intensity of fluorescence, was higher in the CHOL-LPs 



51 

than in the CHEMS-LPs (Table 5.2). Fluorescence quenching due to tight interactions 

between protonated CHEMS and slightly negatively-charged DPPC in the lipid bilayer 

may have influenced the apparent bound siRNA concentration. 
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5.2.4 Cellular Uptake of Liposomes 

CHOL-LPs mediated uptake of Nile Red and fluorescent non-targeting #5 siRNA 

into OVCAR3-TR cells after 4- and 8-hour treatment with 50 µM of liposomes. 

Fluorescence microscopy was used to visualize the intracellular accumulation of the 

cholesterol-containing liposomes (Fig. 5.4). As the length of treatment increased, the 

cellular uptake of the liposomes also increased, as demonstrated by the increase in red 

fluorescence in the 8-hour treatment compared to the 4-hour treatment.  
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Cellular uptake and co-localization of the CHOL-LPs and CHEMS-LPs loaded with 

fluorescent siRNA was also examined in OVCAR3-TR cells using immunofluorescence. 

The liposomes are expected to enter the cells through endocytosis due to incorporation 

of cationic lipids and pegylation, so an early endosomal marker (EEA1) was used to label 

endosome locations in the cell, as shown by green fluorescence. The CHOL-LPs 

experienced increased cellular uptake compared to the CHEMS-LPs (Fig. 5.5). However, 

final conclusions cannot be made about the uptake until further studies are done to 

analyze the binding efficiency of siRNA in CHEMS-LPs without interference or quenching 

from any of the lipids. Due to the lack of fluorescent labeling of the liposomes 

themselves, our uptake visualization is based solely on the fluorescence of siRNA. Co-

localization of the CHOL- and CHEMS-LPs with endosomes was analyzed using ImageJ. 

Little co-localization was visualized in either liposomes (Fig. 5.6), indicating a different 
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mechanism of cellular uptake than endocytosis, likely due to the ability of cationic lipids 

to fuse and incorporate into the plasma membrane of cells.  
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CHAPTER 6 

DISCUSSION 

In this study, we identified potential gene targets in the development of drug-

resistance in ovarian cancer cells. We developed two formulations of liposomes with the 

ability to encapsulate paclitaxel and bind siRNAs for combinatorial delivery to drug-

resistant ovarian cancer cells. The concurrent delivery strategy provides the potential to 

knockdown genes related to resistance and re-sensitize cells to paclitaxel to improve the 

drug’s efficacy in resistant ovarian cancer cells. Also, liposomal delivery may allow for a 

smaller effective drug dosage with limited systemic toxicity compared to standard 

intravenous chemotherapy. 

Our results identified potential gene targets involved in the development of 

paclitaxel-resistance in ovarian cancer cells. Gene expression and microarray analysis 

have been useful in discovering genes which might play a role in cisplatin-resistance in 

ovarian cancer cells in vitro and in patient samples [100,101]. Similarly, paclitaxel 

resistance has been studied through small-scale analysis of gene expression in multidrug 

cross-resistance [102]. However, array analysis of gene expression in paclitaxel-resistant 

ovarian cancer has yet to be explored on its own.  The results of the siRNA 

array/paclitaxel MTS assay demonstrated five different siRNAs significantly increased 

anticancer effects upon transfection and paclitaxel treatment compared to paclitaxel 

treatment alone.  The identified gene targets, ABCB1, JAK2, and CFLAR, are related to 

different functions in the cell, confirming the complexity of drug-resistance 
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development and treatment. ABCB1, encodes for an efflux transporter which mediates 

the efflux of chemotherapeutics in cells. JAK2 is a kinase in a signaling pathway 

responsible for promoting cell proliferation and survival. CFLAR is a regulating protein 

involved in the apoptosis pathways. This experiment validated the need to target 

multiple pathways when treating drug-resistance in ovarian cancer. The three siRNAs 

with the greatest anticancer effects have been chosen as therapeutic targets and will be 

loaded into the liposomal delivery system in combination with paclitaxel in the future 

for in vitro cytotoxicity studies.  

After determination of gene targets, liposomes were synthesized. We 

characterized the liposomes by evaluating size, polydispersity index, and surface charge 

of the different formulations. The mean particle size of both formulations was about 

100 nm and the PDI ranged from 0.214-0.252, indicating uniformly sized and 

monodisperse particles. CHEMS-LPs possessed smaller mean particle size and PDI, likely 

due to the presence of interactions with protonated CHEMS and DPPC creating tightly-

bound particles [103]. The zeta-potential of the liposomes ranged from +20 to +30 mV, 

indicating stable, cationic particles due to the incorporation of cationic lipids and 

protonation of CHEMS in aqueous media.   

Paclitaxel loading efficiency and siRNA binding efficiency were analyzed after 

initial characterization studies. Paclitaxel loading efficiency was almost identical in the 

CHOL-LPs and CHEMS-LPs, with values of about 80%, indicating efficient drug loading 

and encapsulation. siRNA binding did differ between the liposome formulations, with 
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more siRNA binding shown in the CHOL-LPs than in the CHEMS-LPs. The difference in 

siRNA concentration in the liposomes could be due to quenching of the fluorescent 

siRNA in the CHEMS-LPs due to electrostatic interactions between CHEMS and DPPC. To 

ensure proper binding of siRNA in the CHEMS-LPs, we would need to control the 

formation of the liposomes and encourage the siRNA to bind inside, possibly by 

introducing the siRNA into a system in which CHEMS is not protonated. The siRNA 

binding could also be lower in the CHEMS-LPs, especially the disrupted samples, due to 

formation of self-aggregates by CHEMS. These self-aggregates could be preventing the 

release of siRNA during disruption, decreasing the apparent amount of siRNA. Further 

RNA quantification studies can be done to eliminate the interference from the lipids. 

Both of these theories are also validated through the gel shift assay because the 

intact CHEMS-LPs sample demonstrated stained siRNA inside the well, indicating the 

stain was able to reach the siRNA. Also, the CHEMS-LPs disrupted with Triton X-100 

showed a fainter band of stained siRNA than the CHOL-LPs and staining of siRNA near 

the well, showing some siRNA was still bound to lipid components even after disruption. 

The gel shift assay indicated siRNA protection due to the lack of free siRNA present in 

the intact liposomes. Further studies of siRNA binding ability in the CHEMS-LPs are 

needed in order to create a potential pH-sensitive alternative to the CHOL-LPs. CHEMS-

containing liposomes have not commonly been used for combination delivery systems, 

though they are popular for single drug delivery systems. Thus, more extensive studies 
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on the N/P ratios and charge ratios would be beneficial to increase siRNA binding 

efficiency in the CHEMS-LPs.  

Cellular uptake of Nile Red and fluorescent siRNA by drug-resistant ovarian 

cancer cells was mediated by the cholesterol-containing liposomes in 4- and 8-hour 

treatments. Uptake increased with increased treatment length. Immunofluorescence 

was utilized to analyze cellular uptake and co-localization of the CHOL-LPs and CHEMS-

LPs loaded with fluorescent siRNA in endosomes after 2-hour treatments. The liposomes 

mediated uptake in both treatments; however, greater uptake was visualized with the 

CHOL-LPs than the CHEMS-LPs. The decrease in fluorescence from siRNA could be 

correlated to the lower binding of siRNA in CHEMS-LPs than CHOL-LPs or due to 

quenching and interference of lipids. Low amounts of co-localization of the fluorescent 

siRNA in endosomes indicates an uptake mechanism other than endocytosis. By 

fluorescently labeling the liposomes instead of only the loaded therapeutics, the uptake 

of the liposomes can be visualized with fluorescence microscopy [104]. 

In order to determine the potential of the liposomes and selected siRNAs as an 

effective therapy for drug-resistant ovarian cancer, studies examining the ability of the 

liposomes to mediate silencing of the targeted siRNAs need to be conducted. 

Quantification of gene targets in wild-type and resistant ovarian cancer cells can be 

analyzed with western blotting and RT-PCR to ensure upregulation of genes in resistant 

cells. Also, knockdown efficiency of the chosen siRNA and resulting viability can also be 

explored. Cytotoxicity assays, including MTT assay, wound healing assay, and flow 
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cytometry for live/dead analysis, can help demonstrate the therapeutic potential of the 

combination liposome delivery system.  
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CHAPTER 7 

CONCLUSION 

Overall, we have identified three gene targets that may be involved in the 

development of paclitaxel-resistance in ovarian cancer cells from a siRNA array. The 

three siRNA with the greatest anticancer effects will be used as therapeutics in 

combination with paclitaxel in our liposome delivery system. After liposome synthesis, 

we confirmed uniform sizing, monodisperse particles, and stable cationic liposomes 

through characterization studies. We demonstrated efficient loading of paclitaxel and 

protection of bound siRNA in both liposome formulations. In addition, liposomes 

mediated uptake of Nile Red and fluorescent siRNA or fluorescent siRNA alone into 

ovarian cancer cells. The characterization studies of the liposomes indicate their 

potential as a combination delivery system. However, further studies need to be done 

to increase siRNA binding efficiency and examine the pH-sensitive release of CHEMS-

LPs. Also, in vitro and in vivo cytotoxicity studies are necessary to confirm the efficacy of 

the combinatorial liposome delivery system.  

Liposomal combination therapies are gaining popularity as potential treatments 

for drug-resistant cancer. Combinatorial delivery can synergistically enhance the efficacy 

of therapeutics when delivered to drug-resistant cells by simultaneously re-sensitizing 

and treating cancer cells. The liposomes developed in this study show promise as 

combination delivery systems upon optimizing siRNA binding and release profiles of the 
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particles. We aim to create a more effective alternative to current treatments for drug-

resistant ovarian cancer and increase patient survival rates.  
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CHAPTER 8 

FUTURE DIRECTIONS 

In order to further determine the therapeutic potential of the developed 

liposomal combination delivery systems, gene target expression, release profiles, and 

cytotoxicity must be analyzed for both liposomes. Expression of the selected target 

genes, ABCB1, JAK2, and CFLAR, must be studied in both wild-type and paclitaxel-

resistant ovarian cancer cells. Western blotting will be utilized to compare the 

expression of the targeted genes in OVCAR3 and OVCAR3-TR ovarian cancer cells, where 

upregulation of the gene targets in the OVCAR3-TR cells indicates a potential 

involvement in paclitaxel-resistance. To further quantify the targeted genes in both cell 

lines, reverse-transcription polymerase chain reaction (RT-PCR) will be used to 

determine the RNA transcript levels.  

After quantifying expression of gene targets in the OVCAR3 and OVCAR3-TR 

ovarian cancer cells, siRNA knockdown will be used to determine the efficiency of the 

siRNAs in silencing the selected genes. Western blotting and RT-PCR will be used to 

quantify protein and RNA levels in untreated OVCAR3-TR cells and in cells transfected 

with siRNAs correlating to targeted genes. The quantification of gene target expression 

is vital in confirming the therapeutic potential of the selected siRNAs in targeting 

mechanisms of paclitaxel-resistance.  

To further characterize the CHOL- and CHEMS-LPs, release profile studies will be 

completed to analyze the pH-sensitivity of CHEMS-LPs compared to CHOL-LPs. Release 
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studies using release media of varying pHs will be used to determine the characteristics 

of pH-responsive behavior in CHEMS-LPs in environments with similar pH to tumor 

microenvironments. Other studies include scanning electron microscopy (SEM) and 

conductivity studies of the liposomes in various pHs can be used to analyze the change 

in shape and stability of the liposomes due to pH changes, indicating pH-sensitivity. In 

addition, to improve siRNA quantification in the CHEMS-LPS, it is necessary to eliminate 

interference or quenching due to the presence of lipids.  

To quantify siRNA directly, a Take 3 microplate will be used in the Biotek Synergy 

plate reader. Also, a Ribogreen assay, a method using an ultra-sensitive fluorescent 

molecule to quantify small amounts of RNA without interference from lipids. If siRNA 

quantification studies demonstrate lower siRNA binding/loading efficiencies in the 

CHEMS-LPs, optimization of the size/charge ratio and N/P ratio of the liposomes will 

take place.  

Immunofluorescence will be done at a later time point, 4 hours, to examine 

uptake mechanisms and track the localization and escape of both types of liposomes. To 

better visualize the liposomes, liposomes will be fluorescently labeled instead of the 

liposomal contents. A fluorescent tracker, like BODIPY FL or LysoTracker can then be 

used to examine the mechanism of uptake of the liposomes.  

Additional work on the synthesis methods of the liposomes will include 

developing a method to improve stability of liposomes and a method of long-term 

storage. Currently, synthesis of the liposomes is not optimal as liposomes are 
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synthesized weekly, so developing a method of longer storage is needed. Synthesis of 

liposomes will also expand to include targeting moieties and surface modifications to 

increase specificity, cellular uptake, and intracellular release and accumulation.  

Finally, cytotoxicity assays will be completed in vitro to examine the therapeutic 

potential of the delivered siRNAs and paclitaxel, alone and in combination. Cell viability 

assays, specifically MTT assays, will be used to determine viability of cells transfected 

with siRNAs alone, treated with paclitaxel alone, or transfected and treated with siRNAs 

and paclitaxel. The liposomal delivery systems will be analyzed to confirm the synergistic 

anticancer effects of simultaneous siRNA knockdown and paclitaxel treatment. Wound 

healing assays will be used to determine changes in motility of OVCAR3-TR ovarian 

cancer cells after liposomal treatment. Flow cytometry will be used for live/dead 

analysis of OVCAR3-TR cells treated with various concentrations of paclitaxel 

encapsulated in liposomes. Western blotting and RT-PCR will be used to confirm the 

knockdown of targeted genes after delivery of siRNAs by the liposomal delivery systems. 

Through these future steps, the therapeutic potential of the liposomal delivery systems 

as a combination therapy to combat paclitaxel-resistance in ovarian cancer.  
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