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Abstract

For the last several years drugs based on monoclonal antibodies have been manufactured

using Chinese Hamster Ovaries (CHO) cells by the bio-pharmaceutical industries to treat cancer

and other autoimmune diseases. Several control strategies are used to increase the productivity

and efficiency in bio-pharmaceutical manufacturing. Cell growth can be controlled by adjusting the

feed rate based on oxygen uptake rate of the cells in the bioreactor. Determining the volumetric

mass transfer coefficient and oxygen saturation concentration is vital in correctly estimating oxygen

uptake rate. Thus, a robust and efficient method to determine volumetric mass transfer coefficient

and oxygen saturation concentration, which uses common industrial sensors, is desired.

In this thesis, a new method to determine volumetric mass transfer coefficient is proposed

and implemented on simulated and laboratory experiments. Using this method, volumetric mass

transfer coefficient can be calculated independently of oxygen saturation concentration. The fitting

parameters required to estimate volumetric mass transfer coefficients are estimated using only the

estimated oxygen mole ratio of input gas, the measured oxygen mole ratio of the off-gas and the

dissolved oxygen concentration in the bioreactor. A modified version of Savitzky-Golay filtering is

used to determine the change in oxygen concentration in the bioreactor liquid. Another algorithm

is used to reduce the variations between estimated OUR (ÔUR) and OURlinfit signal to estimate

the oxygen saturation concentration in the liquid. Finally, both these signals are used to estimate

final OUR signal.

The performance of these algorithms were validated by simulated experiments and lab ex-

periments. A Simulink model was used to simulate bioreactor experiments and the values obtained

after implementing the algorithm on simulated experiment data were compared with known val-

ues from the Simulink model to verify algorithm accuracy. High accuracy was obtained in all the

simulated experiments even in presence of noise. The variation and noise in estimated OUR was
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significantly reduced when these algorithms were employed. The algorithm could also be used in

cases when there were sudden gas mix changes by estimating OUR using parameters estimated just

prior to the gas mix change. The algorithm was applied to laboratory experiments and it showed

consistent results over short periods of time. Since the oxygen saturation concentration is important

information required to estimate OUR and control the growth rate of cells, these algorithms have

the potential of proving useful in implementing robust controller to increase the productivity and

efficiency of the monoclonal antibody manufacturing process using CHO cells.
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Chapter 1

Introduction

Over the past few years in bio-pharmaceutical industry, Chinese Hamster Ovaries (CHO)

cells are used as host cell lines for recombinant therapeutic protein manufacturing. Through genetic

engineering, these cells can be readily modified, and these host cell lines show robust growth in

large scale bioreactors. CHO cells are used to produce various therapeutic proteins to treat cancer,

autoimmune diseases and neurological disorder[Al-Rubeai et al., 2015].

Large scale bioreactors are used to produce CHO cells and the associated protein in large

quantities. To ensure proper growth and high protein production, it is important to control various

aspects of the bioreactor, such as temperature, pH, dissolved oxygen (DO) [Brunner et al., 2016].

Additionally, feeds to the culture are added to ensure that the cells are neither starved nor overfed.

Several control strategies are used to accomplish feeding nutrients. One of the control

strategy relies on accurate estimation of the oxygen uptake rate (OUR) to determine the metabolic

state of the cells [Pepper, 2015]. OUR is the rate at which oxygen is consumed by the cells in the

bioreactor. The metabolic state of the cells is used to control the glucose feed rate, specifically.

Knowledge of the oxygen saturation concentration (C∗
cal) in the bioreactor liquid and the

Oxygen transfer rate (OTR) is necessary to estimate OUR. OTR is the rate at which Oxygen

is transferred from the sparge gas to the bioreactor liquid. This work estimates mass transfer

coefficient kLa to calculate oxygen transfer rate (OTR) and provides an estimate of oxygen saturation

concentration (C∗
cal) in the bioreactor liquid using an estimation of oxygen mole ratio in the input

gas, measurement of the oxygen mole ratio in the off-gas and the dissolved oxygen concentration in

the liquid.
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Feed

Dissolved oxygen probe

Temperature Sensor

Gas mix to sparger
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Condenser

Gas outlet to BlueSens Motor for agitator

Figure 1.1: Schematic diagram of a basic bioreactor system. Bioreactors are used to manufacture
therapeutic proteins using CHO cells or other cells. Several sensors are used to monitor the process.

1.1 Bioreactor Overview

Bioreactors are used to cultivate suspension of cells to produce therapeutic proteins under

controlled conditions to facilitate biochemical processes within the cell. A bioreactor is a cylindrical

vessel equipped with various sensors and devices which help maintain favorable and contamination

free conditions for rapid growth of cells and high protein production. Under optimum conditions, the

cells are able to perform their desired function of protein production and produce limited impurities

from by-products. Figure 1.1 shows a schematic of typical bioreactor. Enriched air (Air and oxygen

mixed) and carbon dioxide are pumped into the bioreactor through a ring sparger. The sparger is

a metal tube with a horseshoe shaped ring at its end. This ring has multiple holes for sparge gas

to escape into the liquid. A motor operated shaft with impeller blades stir (i.e. agitate) the liquid.

Stirring the liquid increases oxygen transfer rate. The impeller blades breaks down bubbles thus

increasing surface area and oxygen transfer rate. Agitation also aids in maintaining a temperature

control. Metal baffles along the walls of the bioreactor prevent vortex formation.

A metal head plate is used to seal the bioreactor and connect various sensors to the bioreac-

tor. It also serves as an interface for inlet and outlet for the gases and feeds. A water jacket, heating

2



blanket or dip tube can be used to maintain the culture temperature. A condenser attached to the

head plate cools the exhaust gas to reduce evaporation.

Often a digital control unit (DCU) interface is used to regulate the fermentation process

by controlling the environment inside the bioreactor. Various sensors such as temperature sensor,

pH sensor and dissolved oxygen (DO) probe are connected to the DCU. Pumps can also be used to

control feed rates of nutrients.

Initially, the cells grow using the nutrients available in the initial culture media. This

phase is called batch phase. Once these nutrients are depleted, additional nutrients are fed into the

bioreactor using the pumps. This phase is called fed-batch phase. Throughout the process, it is

important to provide sufficient oxygen to the cells to ensure that the cells are in aerobic (oxidative)

metabolism state. Initially, air can meet the oxygen demand and stir speed can be increased to

increase the OTR as needed to meet the oxygen demand. pre-determined percentage. When the stir

speed cannot be increased further, due to biological restrictions, enriched air can be used to meet

the OUR demands of the cells.Thus, stir speed and the mole ratio of oxygen in the input stream are

increased whenever there is an increased demand for oxygen in the bioreactor.

1.2 Relationship between OTR, OUR and Ċ

Oxygen transfer rate (OTR) is the rate at which oxygen is transferred from the sparge gas

to the bioreactor liquid. Oxygen uptake rate (OUR) is the rate at which oxygen is consumed by

the cells in the bioreactor liquid. Ċ is the rate of change in the dissolved oxygen concentration in

the liquid. The relationship between oxygen uptake rate (OUR), oxygen transfer rate (OTR) and

change in the oxygen concentration in the bioreactor liquid (Ċ) can be expressed as,

Ċ = OTR−OUR (1.1)

In previous work [Mayyan, 2017] using Escherichia-coli, the oxygen uptake rate (OUR) and

the oxygen transfer rate (OTR) were nearly equal. That is,

OTR ≈ OUR (1.2)

Thus, Ċ was sufficiently low and could be ignored while calculating OUR from OTR. How-
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ever, for mammalian cells, the cell growth rate is much lower and OUR cannot be estimated by

using equation 1.2. Thus an estimation of Ċ is desired. Ċ can be expressed as

Ċ = C∗
cal ∗ (

ḊO

100
) (1.3)

Where, C∗
cal is oxygen saturation concentration for the culture in the bioreactor at calibra-

tion. Thus, to determine Ċ it is necessary to obtain an estimation of C∗
cal.

1.3 Purpose of oxygen saturation concentration in metabolism

control

To increases the production yield for CHO cells in the bioreactor, the nutrient feed has to

be controlled. To achieve bioreactor control a continuous online estimation of oxygen uptake rate

(OUR) is desired. For correct estimation of OUR an estimation of oxygen saturation concentration

is required.

If the amount of substrate in the bioreactor culture is very high i.e., the cells might shift

to overflow metabolism and produce lactate [Doverskog et al., 1997], [Friesewinkel et al., 2010] and

ammonia [Ljunggren and Häggström, 1992], [Friesewinkel et al., 2010]. Both lactate and ammonia

have an inhibitory response [Doverskog et al., 1997], [Ljunggren and Häggström, 1992] for growth

and therapeutic protein production in the bioreactor. So it is desirable to minimize the production

of these waste products. For E-coli cells maximum growth rate can be achieved if the cells are kept at

the boundary of oxidative and overflow metabolism [Pepper, 2015]. To apply this control strategy

to CHO cells, online estimation of OUR is necessary in the more complex media. For accurate

estimation of OUR, it is vital to accurately determine saturation concentration of oxygen in the

CHO cell cultures.

Previous work designed and implemented an OUR controller for E-coli using an an off-gas

sensor to estimate oxygen transfer rate (OTR). TheOUR controller used a real-time online estimator

[Wang, 2014] and was used by [Pepper, 2015] in his control algorithm. The OTR was estimated

using dissolved oxygen measurements from the DO probe and a continuously updated mass transfer

coefficient (kLa) using off-gas sensor. This 1st generation estimator was limited to using only air

as input gas. This limited the maximum E-coli cell density that could be achieved. A further
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improvement on the estimator design developed by [Mayyan, 2017] and used by [Lashkari, 2017]

involved the ability to increase the oxygen mole ratio in the sparge air. This allowed E-coli to be

cultured to higher cell densities by appropriately adapting the feed rate.

In summary, an estimate of OUR is required to implement control strategies that rely on

sensing metabolic changes in the cells. To estimate OUR, an estimate of the OTR, and oxygen

saturation concentration at calibration, C∗
cal, was required. In this thesis, a method to obtain

continuous online estimation of OUR is designed. This involves estimating OTR by estimating kLa

and Ċ by estimating C∗
cal.

In chapter 2 there is a discussion about prior work to estimate OTR and OUR. Chapter 2

includes methods to increase OTR. In chapter 3 new algorithms to estimate mass transfer coefficient

and oxygen saturation concentration at calibration are discussed. Chapter 3 also includes details

about the bioreactor experiment setup. In chapter 4, the Simulink simulation used to design and test

the algorithms is discussed. In chapter 5, the algorithm results for experiment data are presented.

Chapter 6 presents the conclusion and the future work.

1.4 Thesis statement

To estimate OUR by fitting the relationship between kLa and stir speed (N) and estimating

the dissolved oxygen saturation concentration at calibration (C∗
cal) using offgas sensor data and

dissolved oxygen measurements.
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Chapter 2

Background

This chapter discusses several methods to estimate the oxygen transfer rate (OTR). These

methods include (i) The dynamic method (ii) Off-gas sensor method (iii) The chemical method.

OTR was estimated by using the OTRoffgas measurements from the off-gas sensor for bioreactors

with E-coli cell culture. This chapter briefly talks about the adaptive estimator used to estimate

OUR using OTRoffgas measurements.

2.1 Prior work

2.1.1 Techniques to increase oxygen transfer rate:

To meet the oxygen demand of the increasing number of cells in the bioreactor culture OTR

must be increased. The four major techniques to increase oxygen transfer rate are:

1. By increasing the stir speed of the impeller blades

2. By pressurizing the bioreactor.

3. By increasing the oxygen mole ratio in the input gas.

4. By using chemical methods.

Increasing stir speed increases the oxygen transfer rate from the gas stream to the bioreactor

culture by increasing the amount of time the gas bubbles are in contact with the liquid. Agitation

also breaks down the gas bubbles into smaller bubbles thereby increasing the surface area in contact

with the liquid. This increases the rate at which oxygen from the input gas stream is transferred
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into the liquid. CHO cells have very thin thermodynamically controlled and self-assembled plasma

membrane [Hu et al., 2011]. High stir speed can cause sheer stress on this membrane which can lead

to cell death [Nasser and El-Moghaz, 2010]. Thus, an upper limit is placed on the stir speed.

OTR can also be increased by pressurizing the bioreactor [Lara et al., 2011]. According to

gas laws, pressure is directly proportional to the number of moles, assuming volume and temperature

is constant. Since the bioreactor can be maintained at a fixed temperature and the volume of liquid

does not change by a large amount instantaneously, mole ratio of oxygen in the bioreactor can be

increased by increasing the pressure. In this work, a glass bioreactor was used. Hence, it was not

possible to increase the pressure in the bioreactor much.

By increasing the oxygen mole ratio in the input gas, the oxygen transfer rate can be

increased [Castan et al., 2002]. The oxygen percentage in the input gas can be steadily increased by

increasing the oxygen mass flow rate. By increasing the oxygen mass flow rate and decreasing the

flow rate of house air, mole ratio of oxygen in the input gas is increased. This increases the oxygen

transfer rate from the gas stream to the bioreactor culture.

One example of a chemical method to increase OTR is to add a perfluorocarbon emulsion to

the bioreactor media.[Ju et al., 1991]. The subsequent experiments showed an enhancement in the

oxygen transfer rate of the media. To intermittently predict kLa a continuous estimation of OTR is

required. However, this method does not allow for an online and continuous measurement of OTR.

This limits the use of this method in this work.

2.1.2 Methods to compute volumetric mass transfer coefficient

Oxidative metabolism is desirable to produce good quality recombinant therapeutic protein

using CHO cells. Sufficient amounts of dissolved oxygen are required in the culture to ensure that

the cells have enough oxygen to operate under oxidative metabolism. The oxygen uptake rate is a

good indicator of the metabolism state of the cells in the bioreactor [Pepper, 2015]. As indicated by

equation 1.1, to estimate OUR an estimate of OTR and C∗
cal is desired. Thus an accurate estimation

of OTR is required to estimate the metabolic state of the bioreactor culture. Oxygen transfer rate

is expressed as,

OTR = kLa× (C∗ − C) (2.1)

Where, kLa is the mass transfer rate of oxygen in the liquid [h−1], C∗ is the oxygen saturation
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concentration in the liquid [gL−1] and C is the dissolved oxygen concentration in the liquid [gL−1].

To estimate OTR, it is important to determine kLa. Several methods are proposed to estimate kLa.

In experiments performed for this work, cells were always present in the bioreactor. Cells

actively change the composition of the culture media through out the processes. The cells consume

oxygen which alters the concentration of oxygen in the bioreactor culture. Thus, methods which

only compute kLa in the presence of cells were considered.

One direct way of measuring kLa involves the use of gas sensors connected to the inflow and

outflow of the bioreactor. By measuring the total gas flow at the inlet and outlet of the bioreactor

and measuring the mole ratio of oxygen at the inflow and the outflow of the bioreactor, kLa can be

estimated [Redmon et al., 1983]. This method requires two gas sensors to determine the mole ratio of

oxygen in the input and off-gas. A modification of this method to calculate OTR is used to determine

the feed rate for increased production yield [Goldrick et al., 2018]. A further improved method uses

OTR to obtain a continuous online estimation of OUR [Fontova et al., 2018].This method, however,

had high error rates.

Another method consist of shutting down gas flow to the bioreactor [Bandyopadhyay et al., 1967].

OUR is computed as a function of decreasing slope of the dissolved oxygen concentration. When

the gas flow is turned back on, dissolved oxygen concentration in the culture increases. Using this

time profile of decreasing and increasing DO concentration kLa is computed. There are two major

drawbacks for this method. First, the time response of the DO probe must be taken into con-

sideration. Mammalian cells like CHO cells are extremely fragile and susceptible to change in its

environmental conditions, stopping or decreasing the input oxygen mole ratio can potentially kill

these cells [Riet, 1979]. A later upgrade to this method suggested by[Badino et al., 2000] accounted

for the time response of the DO probe. This allowed a more accurate measurement of kLa but did

not sufficiently counter the potential harm caused by cutting off input gas to the CHO cells in the

bioreactor.

The underlying reason for stopping gas inflow momentarily before restarting it again is to

obtain a time versus dissolved oxygen profile of absorption-desorption cycle to calculate kLa as a

perturbed signal. Thus, another method proposes that does not require switching off the inflow

gas completely. Instead, fluctuates the DO by increasing and decreasing the oxygen mole ratio in

the input gas. However, this subjects the CHO cells to oxidative stress [Handlogten et al., 2018].

Similar results can be obtained by applying small stir speed change to increase or decrease DO
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Figure 2.1: Flow direction of gas through the bioreactor system. b0, b1, b2, b3 are the oxygen mole
ratios of oxygen in the input gas, gas exiting the liquid, gas in the head-space and measured by the
off-gas sensor.

[Patel and Thibault, 2009]. However, unwarranted increase in stir speed subjects the CHO cells to

mechanical sheering [Hu et al., 2011]. In [Hu et al., 2011] the stir speed was varied between 450 rpm

and 550 rpm for a 2L vessel which resulted in a negetive effect on cell viability and growth. In this

work the stir speed was kept between 80 rpm to 320 rpm to avoid decrease in cell viability fue to

sheer stress.

2.1.3 OTR and OUR computation

As explained in section 1.3, to increase protein production in the bioreactor, an estimation

of OUR (ÔUR) [gL−1h−1] is required to implement the control strategy used by [Lashkari, 2017].
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Using equation 1.1 OUR can be expressed as

OUR = OTR− Ċ (2.2)

Thus, an estimation of OTR (ÔTR) [gL−1h−1] and an estimation of change in the dissolved

oxygen concentration in the liquid ( ˆ̇C) is necessary to compute ÔUR. Figure 2.1 schematically shows

the direction of gas flow through the bioreactor system and peripherals. b0 [mol/mol] is the oxygen

mole ratio in the input gas. Further, the gas escapes at the surface of the liquid. The mole ratio of

oxygen here is denoted by b1 [mol/mol]. This gas mixes with the gas in the head-space which has

an oxygen mole ratio of b2. Finally, the gas escapes through the gas outlet of the bioreactor. The

mole ratio of the gas coming out of the bioreactor or off-gas is measured by the off-gas sensor and

it is denoted by b3 [mol/mol].

Equation 2.2 can be rewritten as,

ÔUR = ÔTR− ˆ̇C (2.3)

To calculate OUR, OTR has to be calculated. OTR can be calculated from the off-gas

sensor. It is expressed as [Wang, 2014],

OTRideal = (
MfP

V1RT
) × ( b0 − b1) (2.4)

Where, Mf is the mass flow rate (L/h), P is the absolute pressure (atm) in the bioreactor,

V1 is the volume of the liquid (L), R is the gas constant (L atm/K mol ) and T is the temprature

(Kelvin). b0 can be calculated and b3 is measured by the off-gas sensor. However, it is difficult

to obtain direct measurements for b1. It is generally assumed that b1 is equal to b3. However,

headspace and sensor dynamics heavily filter b1. Analysis of the head-space mixing dynamics and

the measurement delays in the off-gas sensor readings show that b1 is not equal to b3. The oxygen

concentration dynamics for the bioreactor are,

d

dt
b2 =

Mf

V2
( b1 − b2) (2.5)
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d

dt
b3 =

1

τ2
( b2 − b3) (2.6)

The signal b1 is heavily filtered by a time constant τ1 = V2

Mf
. The measurement delay of the

off-gas sensor further filters the headspace signal b2 by a time constant τ2. The value of this time

constant for BlueSens off-gas sensor is 55 seconds [Aehle, 2010]. This filtering effects are considered

while modelling the OTR estimator. Thus, the modified version of off-gas OTR is calculated as,

OTRoffgas = (
MfP

V1RT
) × ( b0 − b3) (2.7)

Physically, OTR can be modeled using equation 2.1 as,

OTR = kLa× (DF ) (2.8)

The term (C∗ − C) is denoted as DF (short for driving force) [Mayyan, 2017]. The mass

transfer coefficient or kLa is a function of stir speed and numerous physical parameters such as

pressure, temperature and salinity [Dorresteijn et al., 1994]. In this work, kLa is modeled as a

function of stir speed. Thus,

kLa = α0 + α1(N −N0) (2.9)

Where N is stir speed (rpm), N0 is a constant chosen as a value in the middle of the range of

stir speeds and α0 and α1 are fitted parameters. α0 and α1 have to be updated as the fermentation

progresses to account for changes in dissolved oxygen (DO), b0 and other physical parameters.

Equating equations 2.7 and 2.8 we get,

b1 = b0 −
V1RT (C∗ − C)

MfP
α0 −

V1RT (C∗ − C)(N −N0)

MfP
α1 (2.10)

By rearranging equations 2.5 and 2.6 and substituting equation 2.10 equation 2.11 is ob-

tained.

 ḃ3

˙̄b2

 =

−Mf

V2
0

1
τ2

−1
τ2

x+

α0 α1 b0

0 0 0




−V1RT (C∗−C)
V2P

−V1RT (C∗−C)(N−N0)
V2P

Mf

V2

 (2.11)
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y =

[
1 0

] b3

b̄2

 (2.12)

b2 is the oxygen mole ratio of gas in the headspace. b̄2 is the mean of b2 and ˙̄b2 is the

differentiation of b̄2. These values are calculated as a part of the state space equations. However,

these values are not needed to use this model. Hence, the output is multiplied by an observable

matrix as shown in equation 2.12.

Based on [Narendra and Annaswamy, 2012], the value of α̂0 and α̂1 can be estimated using

an adaptive estimator. The details of this method are provided in [Pepper, 2015] and [Wang, 2014].

A slight modification of this method was presented by [Mayyan, 2017] and used by [Lashkari, 2017]

where α0 and N0 were assumed to be zero.

After determining the unknown parameters of the linear system (α̂0 and α̂1), OTR and

OUR can be estimated as

ÔTR = (α̂0 + α̂1(N −N0))(C∗ − C) (2.13)

and equation 2.3 can be used to determine ÔUR as,

ÔUR = ÔTR− Ċ (2.14)

In summary, dissolved oxygen (DO) sensor and off-gas sensors were used to estimate OTR

and OTRoffgas. These signals were then used to design an adaptive estimator which can provide an

online estimation of OUR. This method minimizes the filtering effects due to head-space dynamics

and off-gas sensor delay by using OTR measurements obtained using DO measurements. Equations

2.7 and 2.8 are used extensively in this work to estimate a modified version of kLa.
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Chapter 3

Experimental Setup and Research

Design

This chapter presents the experimental setup used to perform the bioreactor experiments.

Separate Simulink blocks were used to control the bioreactor signals, such as the oxygen mole ratio

in the input gas (b0), stir speed (N) and the feed rate. Additionally, this chapter also discusses

and compares the two algorithms developed to estimate OTR and C∗
cal by formulating least squares

problem and using normal equations.

3.1 Experimental Setup

The experimental setup can be subdivided into two subsystems:

1. Gas mix control

2. Stir Speed and Feed control

3.1.1 Gas mix Control

A schematic diagram of this control setup for the bioreactor is shown in figure 3.1:

The experiment requires continuous supply of three gases, house air, oxygen and carbon

dioxide from compressed gas tanks. The flow-rate of these gases was controlled by three mass flow

controllers (GFC-17, AALBORG). Each mass flow controller is calibrated for the respective input
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Figure 3.1: Gas mix control setup for the bioreactor.

gas by the manufacturer and have an accuracy of ± 1% of the full scale. The range of each mass

flow controller and the corresponding absolute error is listed in Table 3.1:

Sr. No. Gas Type Flow range (mL/min) Flow error (mL/min)

1 Air 0 to 100 ± 1
2 Oxygen 0 to 100 ± 1
3 Carbon dioxide 0 to 10 ± 0.1

Table 3.1: List of MFC mass flow ranges and corresponding errors.

One-way valves are connected at the exit of all mass flow controller to ensure that there is

no back-flow of gases. Simulink signals was used to control the mass flow controllers using a Quanser

Q8 board. A safety valve was used to protect the bioreactor. A mass flow meter was used to measure

the total mass flow into the bioreactor. Before the gas enters the bioreactor, a vent filter (0.2µm,

Sartorius) was used to sterilize the gas.

The gases were sparged using a ring sparger. Propeller blades were used. The unconsumed

oxygen and other gases escape at the water and air interface into the headspace. This gas mixes

in the headspace before being measured by the off-gas sensor (Bluesens, Germany). A condenser

was used at the outlet of the bioreactor to reduce evaporation of the media. The off-gas sensor

determined the mole ratio of oxygen in the gas that exited the bioreactor.

3.1.2 Stir Speed and Feed Control

A schematic diagram of stir speed and feed control is shown in the figure 3.2: A stir speed

controller block from Simulink is used to control the motor connected to the stirring rod. This
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Figure 3.2: Stir speed and feed control setup for the bioreactor.

stirring rod has two impeller blades. The stir speed is controlled (either increased or decreased)

based on the dissolved oxygen (DO) probe reading.

The DO probe consists of a probe head featuring a semipermeable membrane and electrolyte

solution. The electrolyte solution reacts with oxygen to produce electrons. These electrons give rise

to a current which is measured by the DO probe. The semi-permeable membrane is used to ensure

that only oxygen molecules are permitted to enter the probe head so that other molecules don’t

interfere with the chemical reaction.

The DO probe is calibrated at the beginning of each experiment. Calibration of DO probe

is relative to the oxygen saturation concentration at the inlet gas stream. For example, the DO

probe could be calibrated with 100% air which contains about 21% oxygen where this reading is

taken a “100”. First, a gas flow of 95% house air and 5% carbon dioxide is established by sending

appropriate voltage signals to the mass flow controllers. Once a steady state is reached, the DO is

calibrated at 100%. Similarly, a DO probe could be calibrated with 95% air and 5% Carbon-dioxide.

In the later case oxygen level is 19.95% versus 21% in the former case. However, both are called

saturation or “100%”. For the work described in this thesis, the DO probe was calibrated with 95%

air and 5% CO2.

Under normal circumstances, nitrogen gas is pumped in the bioreactor to calibrate the DO

reading for 0%. However, the media used in the experiments can be altered if carbon dioxide mole

ratio in the input gas is reduced to 0. Thus,the DO probe is disconnected to calibrate DO reading

for 0%.

Pumps present on the DCU were used to control the feed rate. In these experiments, feed
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rate was manually set. A pulse width modulator (PWM) block in Simulink sets the pump rate

depending on the feed rate calculated offline. The DCU is also used to control and maintain the

culture temperature. The details of the feeding procedure are discussed in section 5.1.1

3.2 New approach to estimate mass transfer coefficient

As discussed earlier, oxygen transfer rate can be modeled using Equation 2.1 as

OTR = kLa(C∗ − C)

As discussed earlier, kLa is the mass transfer coefficient and it can be expressed as,

kLa = (α0 + α1(N −N0)) (3.1)

Where, α0 and α1 are the fitting parameters which are used to model kLa as a linear function of stir

speed. C∗ is the oxygen saturation concentration in the bioreactor liquid and can be expressed as,

C∗ = C∗
cal

b0
b0i

(3.2)

C is the dissolved oxygen concentration in the bioreactor liquid and it can be modeled as,

C = C∗
cal

DO

100
(3.3)

Using equations 3.1, 3.2 and 3.3 equation 2.1 can be expressed as,

OTR = (α0 + α1(N −N0))(C∗
cal

b0
b0i
− C∗

cal

DO

100
) (3.4)

where C∗
cal is oxygen saturation concentration (gL−1), b0 is the mole ratio of oxygen in the

input gas, b0i is the mole ratio of oxygen in the initial input gas and DO is the dissolved oxygen [%]

measured by the dissolved oxygen probe. Initially, b0 = b0i. Thus, using Equation 3.4, OTR can be

estimated once the fitting parameters, α0 and α1, are estimated.

One major drawback of this method to calculate OTR is that driving force or (C∗ − C)

is calculated without prior knowledge of oxygen saturation concentration of the liquid (C∗
cal). For
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CHO cells the OUR is lower. Thus, a low OTR is sufficient to maintain DO at the desired level.

This makes oxygen transfer rate (OTR) comparable to Ċ for CHO cells. Thus, Ċ is not equal to

zero. Ċ can be expressed as,

Ċ = C∗
cal

ḊO

100
(3.5)

Hence, Ċ has to be calculated to calculate OUR and C∗
cal is required to calculate Ċ as shown

in equation 3.5. A wrong estimate of C∗
cal would provide a wrong estimate of OTR, Ċ and OUR.

Thus, to minimize this error, we have to calculate OTR without explicitly using C∗
cal. In

other words, the fitted parameters have to be estimated in such a way that C∗
cal is not explicitly

used to calculate OTR. Equation 3.4 for OTR can be modified as,

OTR = (α0 + α1(N −N0))× C∗
cal × (

b0
b0i
− DO

100
) (3.6)

Thus,

OTR = (α0C
∗
cal + α1C

∗
cal(N −N0))(

b0
b0i
− DO

100
) (3.7)

Rewriting α0C
∗
cal as ᾱ0 and α1C

∗
cal as ᾱ1,

OTR = (ᾱ0 + ᾱ1(N −N0))(
b0
b0i
− DO

100
) (3.8)

It is important to note here that ᾱ0 and ᾱ1 are not averages. They are defined as product

of α0 & C∗
cal and α1 & C∗

cal respectively.

Equation 3.8 is same as equation 3.4. However, equation 3.8 doesn’t use C∗
cal explicitly to

determine OTR. Instead the fitting parameters ᾱ0 and ᾱ0 will be estimated such that they account

for C∗
cal.

Thus,

OTR = (ᾱ0 + ᾱ1(N −N0))× (DF ) (3.9)

Where, DF is the new driving force. It can be mathematically defined using equation 3.9

and 3.8 as,

DF (t) = (
b0(t)

b0i
− DO(t)

100
) (3.10)
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The new version of kLa can be estimated using normal equations. Recounting equation 2.4,

OTRideal = (
MfP

V1RT
) × ( b0 − b1) (3.11)

The equation for the unknown quantity b1 can be calculated by equating equations 2.4 and

3.9,

b1 = b0 − ᾱ0
V1RT

MfP
DF − ᾱ1

V1RT

MfP
(N −N0)DF (3.12)

To account for filtering caused by headspace mixing delay and off-gas sensor dynamics, we

can pass signal from equation 3.12 through two low pass filters with time constants τ1 = V2

Mf
and

τ2 for headspace mixing delay and off-gas sensor delay respectively. For the bioreactor used in this

work, V2 or the headspace volume was 1.1 liters. With a massflow of 3 L/h, the headspace time

constant was calculated as τ1 = V2

Mf
. Thus τ1 = 1320 seconds.The other time constant as obtained

from the off-gas sensor manual as τ2 = 55 seconds.

Thus, a filtered version of equation 3.12 can be written as,

b̂3 = b0(filt)− ᾱ0
V1RT

MfP
DF filt − ᾱ1

V1RT

MfP
(N −N0)DF filt (3.13)

Where b̂3 is the estimated oxygen mole ratio of oxygen measured by the off-gas sensor. The

oxygen mole ratio directly measured by the sensor and the estimated value of this mole ratio are

almost equal. Thus, b̂3 ≈ b3. Further, in this work the data with no gasmix change was used to

estimate all the parameters. Thus, b0(filt) ≈ b0

Using this information, equation 3.13 can be rewritten as

b3 = b0 − ᾱ0
V1RT

MfP
DF filt − ᾱ1

V1RT

MfP
(N −N0)DF filt (3.14)

Simplifying equation 3.14,

b0 − b3 = ᾱ0
V1RT

MfP
DF filt + ᾱ1

V1RT

MfP
(N −N0)DF filt (3.15)
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Rearranging,

MfP

V1RT
(b0 − b3) = ᾱ0DF filt + ᾱ1(N −N0)DF filt (3.16)

Thus,

MfP

V1RT
(b0 − b3) = (ᾱ0 + ᾱ1(N −N0))DF filt (3.17)

The left hand side of equation 3.17 can be calculated using sensor data. It represents

the filtered version of OTRideal through two low pass filters with time delay τ1 = V2

Mf
and τ2 for

headspace mixing delay and off-gas sensor delay respectively.Thus,

OTRoffgas =
MfP

V1RT
(b0 − b3) (3.18)

Similarly, equation 3.8 can be passed through the same series of low pass filters to obtain

the right hand side of equation 3.17. Thus,

OTRfilt = (ᾱ0DF filt + ᾱ1(N −N0)DF filt) (3.19)

Rewriting equation 3.17 using equation 3.18 and 3.19

OTRoffgas = (ᾱ0DF filt + ᾱ1(N −N0)DF filt) (3.20)

Normal equations can be used to estimate the two unknown parameters of equation 3.20.

Equation 3.20 is of the form, y = af1(x) + bf2(x). Where, y = OTRoffgas , f1(x) = DF filt,

f2(x) = ((N −N0)DF filt) and a & b are ᾱ0 and ᾱ1 respectively.

Thus, ᾱ0 and ᾱ1 can be estimated using normal equations as,

ˆ̄α = (ATA)−1ATB (3.21)

Where,

ˆ̄α =

 ˆ̄α0

ˆ̄α1

 (3.22)
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A =



¯DFfilt(1) (N −N0) ¯DFfilt(1)

¯DFfilt(2) (N −N0) ¯DFfilt(2)

...
...

¯DFfilt(T ) (N −N0) ¯DFfilt(T )


(3.23)

B =



OTRoffgasfilt(1)

OTRoffgasfilt(2)

...

OTRoffgasfilt(T )


(3.24)

Once the value of ᾱ0 and ᾱ1 are determined, OTR can be calculated using equation 3.8 as,

ˆOTR = (ˆ̄α0 + ˆ̄α1(N −N0))× (DF ) (3.25)

3.3 New approach to estimate oxygen saturation concentra-

tion

As seen in section 3.2, ᾱ0 and ᾱ1 can be estimated and ÔTR can be calculated without

explicitly knowing the value of oxygen saturation concentration at calibration (C∗
cal) using equation

3.9. Recalling equation 2.2, oxygen uptake rate can be modeled as

OUR = OTR− Ċ (3.26)

Oxygen uptake rate is the rate at which the cells in the bioreactor consume oxygen and oxy-

gen transfer rate is the rate at which oxygen is transferred from gas state to liquid state. Expanding

equation 2.2,

OUR = OTR− C∗
cal

ḊO

100
(3.27)

In this work, the stir speed is persistently varied. This increases the variation in oxygen

transfer rate (OTR). Oxygen uptake rate (OUR) is not directly dependent on stir speed variation.

Persistent agitation of DO by artificially changing stir speed, in theory, should not change OUR.
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Thus, over short time periods, OUR variations are very low.

Thus, we need to estimate a value for C∗
cal such that variations in OUR are reduced to a

minimum value. An estimate of OUR (ÔUR) can be calculated using equation 3.25, and 2.2 as,

ÔUR = ÔTR− Ĉ∗
cal

ḊO

100
(3.28)

Equation 3.28 can be rewritten as

ÔUR = ÔTR+ Ĉ∗
cal

(−ḊO
100

)
(3.29)

Ĉ∗
cal should be estimated such that the variations in ÔUR were reduced to a minimum value.

To estimate this value, variance of ÔUR is minimized. Thus,

Ĉ∗
cal = argmin(variance(ÔUR)) (3.30)

The mathematical formula can be derived by first determining the variance of ˆOUR. Thus,

var(ÔUR) =
1

(N − 1)

N∑
i=1

[ÔUR(i)− ÔUR]
2

(3.31)

Where ÔUR is mean of ÔUR. Expanding equation 3.31 further,

var(ÔUR) =
1

(N − 1)

N∑
i=1

[ÔUR(i)
2

+ ÔUR
2

− 2ÔUR(i)ÔUR] (3.32)

Which simplifies to,

var(ÔUR) =
1

(N − 1)

[ N∑
i=1

ÔUR(i)
2
−N

(
ÔUR

)2]
(3.33)

Using equation 3.29 to find the mean of ÔUR,

ÔUR = ÔTR+ Ĉ∗
cal

( ˙−DO
100

)
(3.34)
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Squaring equation 3.34 on both sides

(
ÔUR

)2
=
[
ÔTR+ Ĉ∗

cal

( ˙−DO
100

)]2
(3.35)

=⇒
(
ÔUR

)2
=
[(
ÔTR

)2
+
(
Ĉ∗
cal

)2( ˙−DO
100

)2

+ 2Ĉ∗
cal

(
ÔTR

)( ˙−DO
100

)]
(3.36)

Also, using equation 3.34,

N∑
i=1

(ÔUR(i))
2

=
N∑
i=1

[ ̂OTR(i) + Ĉ∗
cal

( ˙−DO(i)

100

)]2
(3.37)

N∑
i=1

(ÔUR(i))
2

=

N∑
i=1

[( ̂OTR(i)
)2

+
(
Ĉ∗
cal

)2( ˙−DO(i)

100

)2

+ 2Ĉ∗
cal

( ̂OTR(i)
)( ˙−DO(i)

100

)]
(3.38)

Substituting equations 3.36 and 3.38 in 3.33

var(ÔUR) =
1

(N − 1)

[[
N∑
i=1

( ̂OTR(i)
)2
−N

(
ÔTR

)2]
+ 2Ĉ∗

cal

[
N∑
i=1

( ̂OTR(i)
)( ˙−DO(i)

100

)

−N
(
ÔTR

)( ˙−DO
100

)]
+ (Ĉ∗

cal)
2

[
N∑
i=1

(
˙−DO(i)

100

)2

−N

(
˙−DO

100

)2]] (3.39)

Equation 3.39 is differentiated and equated to zero to find the value of Ĉ∗
cal which minimizes

equation 3.39. Thus, the value of Ĉ∗
cal which minimizes equation 3.39 is given by,

Ĉ∗
cal =

−

[∑N
i=1

( ̂OTR(i)
)(

˙−DO(i)
100

)
−N

(
ÔTR

)(
˙−DO

100

)]
[∑N

i=1

(
˙−DO(i)

100

)2

−N

(
˙−DO

100

)2] (3.40)

Equation 3.40 is derived based on a fundamental assumption that the OTR is constant (has

zero slope) over short time periods. This allows for Ĉ∗
cal estimation by minimizing the variation in

ÔUR with respect to a straight line with zero slope. However, experiments conducted in this work
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showed that even over short periods of time a linear fit of ÔUR did not have zero slope. Thus, to

calculate a more reasonable estimate of ÔUR and Ĉ∗
cal, the variations between ÔUR and a linear

fit of OUR (ÔURlinfit) has to be minimized.

By using equations 3.25, 3.29 and 3.40, an initial estimate of ÔUR can be obtained. ÔUR

can then be used to obtain ÔURlinfit using least squares method. Thus slope (m) and y-intercept

(b) of ÔURlinfit can be obtained using,

x = (ATA)−1ATB (3.41)

Where,

x =

 m

b

 (3.42)

A =



t1 − t0 1

t2 − t1 1

...
...

tT − tT−1 1


(3.43)

B =



ÔUR(1)

ÔUR(2)

...

ÔUR(T )


(3.44)

ÔURlinfit has a non-zero slope and it can be used to minimize the variation in ÔUR and

get a reasonable estimate of Ĉ∗
cal. Thus the new formulation for estimating Ĉ∗

cal will be,

Ĉcal
∗ = argmin(variance(ÔUR− ÔURlinfit)) (3.45)

By going through a derivation similar to derivation of equation 3.40, an estimation for Ĉ∗
cal
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is obtained as,

Ĉ∗
cal =

−

[∑N
i=1

(
( ̂OTR(i)− ̂OUR(i)linfit)

)(
˙−DO(i)

100

)
−N

(
(ÔTR− ÔURlinfit)

)(
˙−DO

100

)]
[∑N

i=1

(
˙−DO(i)

100

)2

−N

(
˙−DO

100

)2]
(3.46)

Equation 3.46 finds a value of Ĉ∗
cal which minimizes the variation between ÔUR and

ÔURlinfit. Using equations 3.25, 3.29 and Ĉ∗
cal from equation 3.46 ÔUR can be estimated as,

ÔUR = ÔTR+ Ĉ∗
cal

(−ḊO
100

)
(3.47)

In summary, ÔTR and Ĉ∗
cal are separately estimated using the two algorithms developed in

this chapter. These algorithms were applied to experimental data obtained from culturing CHO cells

in lab bioreactors, as well as from bioreactor simulations. Further, the accuracy of these algorithms

was verified by comparing the known parameters from simulations with the estimated parameters

obtained from the algorithm. The consistency of these algorithms was determined by comparing

results obtained by applying these algorithms to experiment data over several sub-data sets.
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Chapter 4

Bioreactor Simulations

The algorithms to estimate kLa and C∗
cal presented in chapter 3 were tested using a simula-

tion environment implemented in Simulink. Values of α0 and α1 were set at a constant value using

OTRoffgas data. Similarly the value of C∗
cal was fixed at an arbitrary value between C∗

cal of pure

water and C∗
cal of sea water at T=310K. OUR signal was modeled as an exponentially increasing

function to simulate exponentially growing culture. It’s magnitude and exponential constants were

obtained as an estimate of previously calculated experimental OUR obtained using OTRoffgas.

The purpose of this simulation was to apply the algorithm formulated in chapter 3 and check the

accuracy of the output values against known values. Detail description of the simulation and the

corresponding results are discussed in this chapter.

4.1 Simulation Design

By keeping certain parameters constant and focusing on modelling and updating signals that

were significant for the algorithm developed in chapter 3, the algorithm was checked for accuracy.

The main purpose of this simulation was to check the algorithm against a known set of data. For

example, the algorithm to estimate OTR by fitting kLa as a linear function of stir speed estimated

the fitting parameters α0 and α1. These fitting parameters were kept at a known constant value

throughout the simulation. After the simulation was over, these fitting parameters were compared

with the estimated fitting parameters obtained by the algorithm to determine algorithm accuracy.

Similar computation was performed for C∗
cal. Other parameters such as massflow, temperature,
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pressure etc were kept constant since they remained relatively constant in the lab experiments.

Several parameters were kept constant in the simulation. This list of parameters is shown in Table

4.1. In Table 4.1, boi is the oxygen mole ratio in the input gas at calibration. Further, initial

conditions for several signals were set depending on the experiments performed in the lab. The list

of the variables and their initial values is given in Table 4.2. In Table 4.2, Cinitial is the oxygen

concentration in the liquid at calibration.

Sr. No. Simulation parameter Value

1 α0 2.5
2 α1 0.0085
3 C∗

cal 0.005 (g/L)
4 Temperature 310.15 K
5 Pressure 0.998 atm
6 Liquid Volume (V1) 0.5 L
7 Headspace volume (V2) 1.1 L
8 Massflow 3 L/h
9 Gas Constant 0.082057 (LatmK−1mol−1)
10 boi 0.1990

Table 4.1: List of predefined constant parameters used in simulation

Sr. No. Simulation signal Initial Value

1 DO 100%
2 Stir Speed 100 rpm
3 CO2 percentage 5 %
4 Air percentage 95 %
5 O2 percentage 0 %
6 Cinitial 0.005 g/L

Table 4.2: List of signals and their initial values

OUR was modeled as an exponential function to represent an increase in oxygen consump-

tion over time due to cell growth as shown in equation 4.1.

OUR = aebt (4.1)

The values for a and b were estimated using a section of OUR data computed from experi-

ments (a = 0.015 and b = 1× 10−6). Once these parameters were fixed, a series of simulations were

executed.
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Figure 4.1: OTRoffgas signal used to estimate OUR for bioreactor simulations

4.1.1 Simulation flow diagram

The simulation follows a set of programmed instructions that estimate the dissolved oxygen

concentration in the bioreactor and update bioreactor signals based on this estimation. A flow

diagram for the simulation is shown in figure 4.2.

First, oxygen mole ratio of the input gas (b0) was calculated as,

b0 = (Air%)× 0.2095 + (O2%)× 1 (4.2)

Second, driving force (DF) was calculated as shown in equation 4.3. Initial values of DO

and b0 were used to calculate initial driving force. These parameters were automatically updated as

the simulation progressed.

DF =
[
C∗
cal

( b0
b0i

)
− C∗

cal

(DO
100

)]
(4.3)

Thus,

=⇒ DF = (C∗ − C)
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Figure 4.2: Flow diagram of bioreactor simulations

Where C∗ is the oxygen saturation concentration in the liquid (gL−1) and C is the dissolved

oxygen concentration in the liquid (gL−1). The mass transfer coefficient is calculated as

kLa =
(
α0 + α1N

)
(4.4)

Finally, oxygen transfer rate (OTR) is calculated using equation 4.3 and equation 4.4,

OTR = kLa×DF (4.5)

The rate of change of oxygen concentration in the bioreactor liquid is modeled as the dif-

ference between oxygen transfer rate (OTR) and oxygen uptake rate (OUR),

Ċ = OTR−OUR (4.6)

By integrating Ċ, a measurement of instantaneous oxygen concentration in the bioreactor

liquid (C) is obtained,

C =

∫ ti

ti−1

Ċdt (4.7)
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The dissolved oxygen concentration obtained using equation 4.7 is used to update dissolved

oxygen (DO),

DO = C
100

C∗
cal

(4.8)

The updated DO measurement serves two purposes. First, it is used to update driving force

given by equation 4.3. Second, updated DO measurement is used to update three signals. (i) Air

percentage, (ii) Oxygen percentage and (iii) Stir Speed.

This update logic depends on two signal values, DO and Stir Speed. A pseudo-code for updating the

Air and Oxygen percentages in the input gas and the stir speed is shown below:

If (DO >= lowerDOlim and DO < upperDOlim)

Do nothing

ElseIf (DO < 40 and Stir <= 300)

Increase Stir Speed;

elseif (DO < 40 and Stir > 300)

Increase oxygen percentage

Decrease air percentage

elseif (DO > upperDOlim and Stir > 100)

Decrease Stir Speed

end

The upper and lower DO limits in this simulation were set to 50% and 40% respectively.

These signals are updated after every 15 seconds. Thus, depending on the DO measurement, b0

and stir speed were updated. The updated values of b0 and stir speed are used to update kLa and

driving force (DF). This updated values of driving force and kLa were used to update OTR. After

the simulation is over, the data is sampled at 15 seconds interval and stored.

The oxygen mole ratio at the liquid-air interface (b1) can be calculated as,

b1 = b0 − α0
V1RT

MfP
DF − α1

V1RT

MfP
NDF (4.9)

The offgas oxygen mole ratio (b3) can be simulated by filtering equation 4.9. This filtering
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Figure 4.3: OUR, OTR and DO signals during a ramp event for simulated data. OUR signal is
artificially increased by 20% to simulate instances when DO gets perturbed due to feeding or taking
a sample.

process involves passing the b1 signal through two low pass filters as explained in section 3.2. These

low pass filters will have time constants τ1 = 22 minutes for head space mixing delay and τ2 = 55

seconds for offgas sensor dynamics respectively. A full diagram of this Simulink model is provided

in appendix A.

Simulink also had a probe capability. By adding an external ramp signal to OUR, the DO

was artificially perturbed. Figure 4.3 depicts the change in OUR, OTR and DO caused due to a

ramp event. The ramp event which causes a sudden change in OUR simulates a feed pulse. This

created a series of disturbances in simulated sensor readings. This allowed the investigation of effects

of sudden changes in DO caused due to various events such as taking a sample or gas mix change

on the algorithm. The ramp increased OUR by around 20%. In the bioreactor, a sudden gas mix

change changes DO creating a spike in the DO signal. If the algorithm discussed in chapter 3 is

applied to this curve, there was a possibility of higher error in the parameter estimation. However,

it was possible to use parameters determined in an earlier data segment without any perturbation

to estimate a more reasonable OUR signal. This hypothesis was tested using the probe signal.

To ensure that the least squares problem is well formed and to ensure that none of the
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matrices involved in finding the fitting parameters were singular, persistent excitation was provided

to the DO signal by adding a triangular wave to the stir speed signal. This triangular wave had time

period of 40 minutes and it changed the stir speed signal by ±20 rpm. In the bioreactor experiment

DO changes very slowly. This makes ḊO ≈ 0. This in turn makes Ċ ≈ 0. However, as discussed

earlier, for mammalian cells growth rate is low and thus OTR 6= OUR. Thus Ċ is not zero. Thus

to ensure that Ċ 6= 0, DO is artificially varied by continuously varying stir speed.

4.1.2 Adding noise to the simulation

The signals measured during experiments with the bioreactor have associated measurement

noise. However, the signals obtained using simulation do not have noise. The algorithm developed

in chapter 3 has to work in the presence of noise. Thus to closely resemble the signals acquired

during experiments, a noise model was developed and added to the Simulink signals.

A Gaussian noise model with mean = 0 and standard deviation = 0.2107 is used to simulate

noise in DO probe reading. This variance is obtained by measuring the error between measured

DO and estimated DO (D̂O) for one of the experiments (Experiment 14). Square root of variance

provided the standard deviation which was used in the noise model. In this model a set of DO

readings were obtained when stir speed was constant (No zigzag) and just prior to a feeding event.

During this time period DO increases to ensure that the cells did not encounter any sudden decreases

in DO due to cell growth or other physical disturbances to the system that might decrease the DO.

DO levels below 20% saturation can cause mammalian cells harm and death. Stir speed was also

manually set to a value slightly higher than the previous operating value. Using this data, the slope

(m) and y-intercept (b) of D̂O were calculated as

x = (ATA)−1ATB (4.10)

Where,

x =

 m

b

 (4.11)
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Figure 4.4: D̂O and DO profiles used in simulation. D̂O is a linear estimate of DO. The DO signal
was obtained from experimental data and was used to model the noise for DO signals in simulation.

A =



t1 − t0 1

t2 − t1 1

...
...

tT − tT−1 1


(4.12)

B =



DO(1)

DO(2)

...

DO(T )


(4.13)

Using the values obtained using Equation 4.10, D̂O were calculated as

D̂O(i) = m(ti − ti−1) + b (4.14)

The two signals, DO and D̂O, are shown in figure 4.4

The DO noise (DOnoise) signal can then be calculated as

DOnoise = D̂O −DO (4.15)
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The standard deviation of DOnoise can be calculated using MATLAB function std. The

dissolved oxygen (DO) signal with and without superimposed noise is shown in Figure 4.5.
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Figure 4.5: DO signal profile with and without noise. Experiment data was used to determine the

noise model to use in the simulation.

4.1.3 Noise in ḊO calculation and Savitzky-Golay filtering

There are several methods that can be used to compute ḊO to obtain Ċ. A direct way

to compute ḊO is to use the MATLAB function diff, however, the diff function computes the

derivative by simply dividing the difference between two consecutive data points with the difference

between the two consecutive times. Another method to compute ḊO is by using Savitzky-Golay

filtering.

Savitzky-Golay filtering method fits a low order polynomial to sequential subsets of data.

These polynomial coefficients are used to calculate the filtered value of the signal in the middle of

the data set. In the modified version of Savitzky-Golay filtering used in this work, the polynomial

coefficients were used to calculate the filtered value of the signal for the last data point in the subset.

This modification was used to allow for real time estimates. Calculating the signal value for the

data point at the end of the the data set is similar to using past data points to calculate the signal

value for the next data point.

In this work a second order polynomial is used to estimate ḊO using the modified Savitzky-
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Golay filtering method. This polynomial can be expressed as,

DO(ti) = a2(ti)
2

+ a1ti + a0 (4.16)

The coefficients of this polynomial can be calculated by formulating a least squares problem.

Thus if there are “n” data points in the data subset,

x = (ATA)−1ATB (4.17)

Where,

x =


a2

a1

a0

 (4.18)

A =



(t−n)
2

t−n 1

(t−(n−1))
2

t−(n−1) 1

...
...

(−2)
2 −2 1

(−1)
2 −1 1

0 0 1


(4.19)

B =



DO(−n)

DO(−(n− 1))

...

DO(0)


(4.20)

The filtered value of DO at DO(0) were found by using the matrices 4.18, 4.19 and 4.20 and

evaluating equation 4.16

DO(0) = a0 (4.21)

ḊO can be calculated by differentiating equation 4.16. Thus,

ḊO(ti) = 2a2(ti) + a1 (4.22)
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Finally using matrices 4.18, 4.19 and 4.20 and evaluating equation 4.22,

ḊO(0) = a1 (4.23)

The Savitzky-Golay filtering process is repeated for the entire data and a filtered version of DO and

ḊO is obtained. The comparison plots of filtered and unfiltered DO and ḊO are shown in Figure

4.6 and 4.7 respectively.
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Figure 4.6: The filtered and unfiltered DO signal obtained from simulation. Savitzky-Golay filtering

was used to obtain the filtered DO signal.
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Figure 4.7: The filtered and unfiltered ḊO signal obtained from simulation. Savitzky-Golay filtering

was used for obtain the filtered ḊO signal.

4.2 Simulation output

As discussed in section 4.1, several signals were obtained from the simulation. The stir

speed variation with a traingular wave superimposed on it is shown in Figure 4.8. The oxygen mole

ratio in the input gas b0 and output gas b3 (measured by offgas sensor) are shown in Figure 4.10.

As expected b3 increases when b0 increases and b3 < b0. Figure 4.9 shows the three mole ratios b0,

b1 and b3 plotted together. There is no variation in b0. However, b1 and b3 reflect the variations due

to stir speed variations shown in Figure 4.8. As expected b3 is a filtered version of b1.

As seen in Figure 4.11 the OTR signal has high variation due to continuously varying stir

speed. The OUR signal has comparatively low variation since OUR should not be affected due to

artificial changes in stir speed. OUR signal increases over time due to increase in cell numbers in

the bioreactor due to cell growth. The simulated OUR and OTR signals in case of a ramp event is

shown in Figure 4.12.
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Figure 4.8: Stir speed profile using triangular wave.

4.3 Calculating kLa and C∗cal using simulation data

As discussed in section 4.1, the simulation was designed to keep fitting parameters i.e. α0

and α1 constant. Thus, α0 and α1 values used for simulation were known. Similarly, the value of

C∗
cal was kept at a known constant value throughout the simulation. Using the algorithm developed

in section 4.1 and simulated sensor signals like DO and b3, estimated values of α0 and α1 (α̂0 and

α̂1) were calculated. Similarly, using the new algorithm developed in chapter 3, an estimate of C∗
cal

(Ĉ∗
cal) was calculated. These calculated values were then compared with known values used in the

simulation to verify the accuracy and consistency of the algorithm.
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Figure 4.9: Mole ratio profile showcasing mass transfer characteristics in the bioreactor. b3 is a
filtered version of b1.
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Figure 4.10: Effect of step change of input gas oxygen mole ratio (b0) on sensor off-gas output
reading (b3)
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Figure 4.11: Profiles of simulated OTR and OUR signals.
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Figure 4.12: Graph of simulated OTR and OUR signals with a ramp event.
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4.3.1 Accuracy

The fitting parameters α0 and α1 were fixed in this simulation at 2.5 and 0.0085 respectively.

These values were obtained using the OTRoffgas data shown in Figure 4.1. The oxygen saturation

concentration C∗
cal is fixed at 5×10−3. This oxygen saturation concentration at calibration is selected

to be between the oxygen saturation concentration of pure water and oxygen saturation concentration

of sea water. The algorithm developed in chapter 3 was used to calculate these parameters and the

percentage error between the known parameters from the simulation and calculated parameters from

the algorithm was calculated as,

%Error(α0) =
( α̂0 − α0

α0

)
× 100 (4.24)

%Error(α1) =
( α̂1 − α1

α1

)
× 100 (4.25)

%Error(C∗
cal) =

( Ĉ∗
cal − C∗

cal

C∗
cal

)
× 100 (4.26)

Where α̂0, α̂1 and Ĉ∗
cal are the parameters calculated using the algorithm and α0, α1 and

C∗
cal are the known values used in the simulation. The algorithm was executed for several iterations.

The random noise function changed the percentage error in each case.

The values calculated for α̂0, α̂1 and Ĉ∗
cal and the corresponding errors are listed in the table

4.3. The error is below 5% in all cases. The errors in Table 4.3 are comparatively high since α̂0 and

α̂1 were calculated as,

α̂0 =
̂̄α0

Ĉ∗
cal

(4.27)

α̂1 =
̂̄α1

Ĉ∗
cal

(4.28)

The algorithm computed ̂̄α0, ̂̄α1 and Ĉ∗
cal. There were errors associated with ̂̄α0, ̂̄α1 and

Ĉ∗
cal. Thus, a higher error was obtained due to error propagation when these quantities were used

to calculate new parameters (α̂0 and α̂1).
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Simulation No. α̂0 α̂1 Ĉ∗
cal %Error(α0) %Error(α1) %Error(C∗

cal)

1 2.5553 0.0087 0.0049 4.11 2.21 2.53
2 2.5627 0.0087 0.0049 4.04 2.51 1.95
3 2.5483 0.0087 0.0049 3.64 1.93 1.98
4 2.5192 0.0085 0.0050 2.68 0.77 0.15
5 2.5573 0.0085 0.0049 4.27 2.29 3.14

Table 4.3: Calculated model parameters and corresponding errors for simulated data.

Since the values of simulation parameters (α0, α1 and C∗
cal) were known, ᾱ0, ᾱ1 can be

calculated as,

ᾱ0 = α0 × C∗
cal (4.29)

ᾱ1 = α1 × C∗
cal (4.30)

Thus ᾱ0 = 0.0125 and ᾱ1 = 4.25× 10−5. This allows us to compare ᾱ0 and ᾱ1 with ̂̄α0 and̂̄α1 respectively. Thus, the error between these parameters can be calculated as

%Error(ᾱ0) =
(̂̄α0 − ᾱ0

ᾱ0

)
× 100 (4.31)

%Error(ᾱ1) =
(̂̄α1 − ᾱ1

ᾱ1

)
× 100 (4.32)

These errors are listed in Table 4.4. A less than 1% error is obtained in all the cases.

Simulation No. ̂̄α0 ̂̄α1 %Error(ᾱ0) %Error(ᾱ1)

1 0.0125 4.25E-05 0.0442 5.79E-02
2 0.0125 4.25E-05 0.0975 0.2677
3 0.0125 4.25E-05 0.0305 0.1067
4 0.0125 4.25E-05 0.102 0.2484
5 0.0125 4.25E-05 0.0666 0.2535

Table 4.4: Calculated model parameters and corresponding errors for simulated data.

The parameters calculated above were used to get an estimation of OUR and OTR. The
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RMSE error between ÔTR and OTRSimulated is calculated as,

RMSE(OTR) =

√√√√ 1

N

N∑
i=1

(ÔTR−OTRSimulated)
2

(4.33)

and The RMSE error between ÔUR and OURSimulated is calculated as,

RMSE(OUR) =

√√√√ 1

N

N∑
i=1

(ÔUR−OURSimulated)
2

(4.34)

The RMSE error is listed for 5 iterations in Table 4.5.

Simulation No. RMSE(OTR) RMSE(OUR)

1 3.60E-05 8.54E-05
2 3.54E-05 8.74E-05
3 3.59E-05 7.00E-05
4 3.42E-05 8.36E-05
5 3.59E-05 8.01E-05

Table 4.5: RMSE error between ÔTR and OTRSimulated and between ÔUR and OURSimulated for
simulated data.

The plot for ÔTR and OTRSimulated signals and plot for ÔUR and OURSimulated signals

are shown in Figure 4.14. The associated stir speed and DO signal are shown in Figure 4.13. The

same signals in presence of a ramp event are shown in Figure 4.15 and Figure 4.16.

As seen in Figure 4.13, DO signal periodically varies due to periodic zig-zag variations in

stir speed. This effect is visible even in filtered DO signal as seen in Figure 4.13. Figure 4.14 shows

the OUR and OTR graphs for the simulation over a small period of time. Very low error is obtained

between the simulated OTR (OTRsim) and the estimated OTR (ÔTR). The last part of Figure

4.14 shows the plots for the simulated OUR (OURsim) and the estimated OUR (ÔUR). The slight

variation between ÔUR and OURsim is due to noise.

Figure 4.15 portrays the effects of a sudden increase in OUR on DO signal. An increase

in OUR results in a decrease in DO as expected. This effect is apparent in the filtered DO signal.

Estimated OTR (ÔTR) and estimated OUR (ÔUR) signals were calculated using the algorithm

discussed in Chapter 3. As seen in the last part of Figure 4.16, ÔUR is a good approximation of

simulated OUR. A slight delay between ÔUR and OURSim is due to lag produced by Savitzky-Golay

filtering.
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Figure 4.13: Effects of stir speed zig-zag on the filtered and unfiltered DO signals.
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Figure 4.14: OTRSimulated and OURSimulated signal profiles showing high variations due to stir
speed in OTRSimulated compared to OURSimulated. ÔUR, OURSimulated, ÔTR and OTRSimulated
signal profiles show a comparison between estimated and simulated OUR and OTR.
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Figure 4.15: Effects of stir speed zig-zag on the filtered and unfiltered DO signals during a ramp
event.
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signal profiles show a comparison between estimated and simulated OUR and OTR during a ramp
event.
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In Summary, algorithms to estimate fitting parameters for kLa (α0 and α1) and C∗
cal were

used to calculate α̂0, α̂1 and Ĉ∗
cal. An error of less than 1% was recorded between the known pa-

rameter values used in simulation and the parameter values obtained from the algorithm. Similarly,

an estimation of OTR and OUR were calculated which had a very low RMSE error compared to the

simulated OTR and OUR.
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Chapter 5

Results: Estimation of kLa and C∗cal

for the experiment data

5.1 Experimental setup

Three experiments were conducted using CHO cells to obtain data to calculate OTR and

OUR in real time. These experiments used the same cell line and media used to obtain the estimation

of kLa and C∗
cal for the simulation constants. These experiments used constant mass flow with low

error in the massflow reading.

Once the inlet gases were stabilized, the bioreactor is inoculated with cells. CHO VRC01

(NIH) cell line were used and innocuated into the bioreactor with an initial VCD (viable cell density)

of approximately 6× 105 cells/mL. Feed Boost 7a and 7b (GE) were fed 3% and 0.3% daily starting

day 3. The amount of feed was increased as the cell number increased following the NIH protocol.

A glucose solution with concentration of 75 g/L was used to ensure that the glucose concentration

did not drop too low.The culture was fed using a pulse with modulation (PWM) controller from

Simulink and DCU pumps. The feed rate and duration of the feed was calculated offline. Each

of the feeding instances resembled a square pulse with constant magnitude across different feeding

intervals. Thus, the total feeding rate was kept constant.
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Figure 5.1: Graph of a typical feed pulse used in experiment 14. The feed rate is kept constant.
This feed pulse had a duration of 20 minutes. However, depending on the glucose requirements, feed
durations were changed.

5.1.1 Feeding method

A culture sample was obtained and glucose level (CInitial)was determined before starting

to feed the culture. Based on the glucose level in the culture, the required increase in the glucose

concentration (CFinal) was determined. The change in the glucose concentration was calculated, as

∆C = CFinal − CInitial

The feed rate was calculated using Equation 5.1

∆F =
∆C × Vculture
Cfeed ×∆t

(5.1)

Where,∆F is the feed rate [L/h], ∆C is the required change in the glucose concentration

[g/L]. Vculture is the volume of the culture [L], Cfeed is the glucose concentration in the feed [g/L]

and ∆t is the feed time required to change the glucose concentration in the liquid by ∆C. In this

work, the feed rate was maintained constant. Thus, ∆t was calculated using a modification of 5.1
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as,

∆t =
∆C × Vculture
Cfeed ×∆F

(5.2)

The glucose concentration was measured again at the end of the pulse confirm the change in

the glucose concentration. Figure 5.2 shows an example feeding profile for one of the experimental

runs, experiment 14. In Figure 5.2 shorter blue pulses are Boost 7a feed and the taller red pulses are

for additional glucose. During feeding period, the gas mix update controller and stir speed controller

were switched to manual control and kept constant.

Experiment. No. V CDinitial V CDfinal Feeding Stir Speed Control during BOOM events

12 6.07× 105 1.56× 107 No BOOM feeding NA

13 6.05× 105 2.03× 107 BOOM feeding
Stir speed would change.
No zigzag
No gas mix change.

14 6.07× 105 1.35× 107 BOOM feeding
Constant stir speed.
No zigzag
No gas mix change.

Table 5.1: Key experiment parameters for experiments 12,13 and 14. VCD is measured in cells/ml.

The growth curve for the three experiments is shown in Figure 5.11, 5.7 and 5.3 respectively.

The metabolite profiles for experiments 12, 13 and 14 are shown in Figures 5.13 to 5.14 and 5.9 to

5.10 and 5.5 to 5.6 respectively. The stir speed, pH and oxygen enrichment profiles for experiments

12, 13 and 14 are shown in Figures 5.15 to 5.17 and 5.18 to 5.20 and 5.21 to 5.23 respectively.
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Figure 5.2: Feed profile for experiment 14.
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Figure 5.3: Growth profile for experiment 12.
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Figure 5.4: Glucose profile for experiment 12.
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Figure 5.5: Lactate profile for experiment 12.
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Figure 5.6: Glutamine profile for experiment 12.
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Figure 5.7: Growth profile for experiment 13.
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Figure 5.8: Glucose profile for experiment 13.
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Figure 5.9: Lactate profile for experiment 13.
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Figure 5.10: Glutamine profile for experiment 13.
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Figure 5.11: Growth profile for experiment 14.
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Figure 5.12: Glucose profile for experiment 14.
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Figure 5.13: Lactate profile for experiment 14.
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Figure 5.14: Glutamine profile for experiment 14.
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Figure 5.15: Stir speed profile for experiment 12.
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Figure 5.16: pH profile for experiment 12.
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Figure 5.17: Oxygen enrichment profile for experiment 12.
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Figure 5.18: Stir speed profile for experiment 13.
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Figure 5.19: pH profile for experiment 13.
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Figure 5.20: Oxygen enrichment profile for experiment 13.

20 40 60 80 100 120 140 160 180 200 220

Time [h]

50

100

150

200

250

300

350

400

S
ti
r 

S
p

e
e

d
, 

N
, 

[r
p

m
]

Figure 5.21: Stir speed profile for experiment 14.
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Figure 5.22: pH profile for experiment 14.
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Figure 5.23: Oxygen enrichment profile for experiment 14.

5.1.2 Measurement noise in sensors

Several sensors are used for measuring signals such as off gas, dissolved oxygen, culture

volume and mass flow. These sensors have an associated accuracy. Measurement noise becomes

significant if the measurements have low amplitude compared to the full range of the sample. For

example, in case of the oxygen mass flow controller with an accuracy of ±1 ml/min, the flow rate
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varies from 2.5 ml/min to 25 ml/min. Thus, the error in measurements can vary from 40% to 4%

of the flow rate. This is a significant amount of error specially in cases where flow rate is low.

In case of volume measurement, the volume of the liquid is assumed to be constant through-

out the experiment. This assumption is based on the fact that there is continuous addition of feed

to compensate for the bioreactor liquid pulled out of the bioreactor during sampling. However, it

is observed that the final culture volume is always less then the starting culture volume. This is

due to the fact that the total amount of feed added in the bioreactor is less then the total volume

withdrawn from the bioreactor during sampling. Thus, the volume measurement has an average

error of 20 to 25 ml.

In this work, the offgas sensor was limited to measuring up to 0.55 oxygen mole ratio in the

output gas. Additionally it had an accuracy of ±2% of the maximum range.Thus, the measurement

error is significant during the initial stages of the experiment when the oxygen mole ratio in the sparge

gas is low. The cumulative effect of the mass flow controller error and off gas sensor measurement

error is significant can be observed in the initial stages of the experiment. Theoretically, the mole

ratio of oxygen in the input gas (b0) has to be larger than the mole ratio in the off-gas (b3) due to

oxygen consumption by the cells. However, as shown in figure 5.24, b0 < b3. Thus, this data cannot

be used to calculate OTRoffgas. This error is eliminated in the later part of the experiment as the

oxygen mole ratio becomes comparable to the sensor measurement precision.

5.2 Results and Discussion

The algorithm developed in Chapter 3 to estimate kLa and C∗
cal was applied to three exper-

iments. These experiments used the CHO VRC01 cell line (NIH) which were cultured in GE Actipro

media. The accuracy of this algorithm was checked in Chapter 4 using a simulated experiment.

5.2.1 Mass Transfer Coefficient Estimation for Experiment Data

To apply kLa estimation algorithm to experiment data it was vital to decide the length of

the data subset. The algorithm cannot be applied to the entire data set because of various reasons.

kLa estimate (k̂La), depends on estimation of ˆ̄α0 and ˆ̄α1 . As shown in section 3.2, ˆ̄α0 and ˆ̄α1 values

depend on 3 major signals, (i) b0, (ii) OTRoffgas, (iii) DO. In the experiment, these signals change

over time. The input oxygen mole ratio (b0) changes when there is a change in gas mix. OTRoffgas
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Figure 5.24: Difference in the input and output oxygen mole ratio.

changes due to increase in VCD and change in b0. Dissolved oxygen (DO) changes due to change

b0 and VCD. To accommodate all these changes we need to obtain continuous estimation of kLa.

Thus, the length of the data subset has to be decided. A very small data set leads to higher errors

in k̂La and it is not feasible to apply this algorithm for online estimation if the length of the data set

is too large. Thus, a trade-off has to be established to get low error results with minimum possible

data set length. By applying the algorithm to various data set lengths, the final data set length was

fixed at 40 minutes.

The algorithm to estimate k̂La was applied to various data subsets of 40 minutes each.

These k̂La estimations computed for each experiment were then compared with k̂La estimation for

the same experiment at different time periods . A graph of k̂La versus stir speed is shown in fig-

ure 5.25. The time period over which these values were computed is given in table 5.2. During

these time periods, there is no gas-mix change. Thus, b0 is almost constant. Hence the changes

in OTRoffgas and DO signals are small. Thus, theoretically, the different k̂La values calculated

over short consecutive time periods will be similar. As seen in figure 5.25, The kLa calculated over

different consecutive time periods are similar. This fact can also be observed in figures 5.26 and

5.27.
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Figure 5.25: kLa estimates for experiment 14 between 91.22 and 95.22 hours. Each line represents a
40 minute time interval where the stir speed varied±20 rpm. These kLa calculations occured between
known disturbances such as feeding, antifoam addition, air enrichment changes and sampling.

Further, k̂La was estimated for the same time period across different experiments. The plot

for k̂La is shown in figure 5.28. Unlike k̂La for the same experiments shown in Figures 5.25, 5.26

and 5.27, the k̂La plots for different experiments are not clustered close together. This might be due

to various changes in the physical and chemical changes in the media. Variation in kLa can occur

due to change in propeller positions in the bioreactor.

Start time (h) End time (h) k̂La

91.22 91.88 k̂La1

91.88 92.55 k̂La2

92.55 93.22 k̂La3

93.22 93.88 k̂La4

93.88 94.55 k̂La5

94.55 95.22 k̂La6

Table 5.2: Data subsets used to calculate k̂La for experiment 14 as shown in Figure 5.25.
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Figure 5.26: kLa estimates for experiment 13 between 89.42 and 93.42 hours. Each line represents a
40 minute time interval where the stir speed varied±20 rpm. These kLa calculations occured between
known disturbances such as feeding, antifoam addition, air enrichment changes and sampling.
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Figure 5.27: kLa estimates for experiment 12 between 136.99 and 140.33 hours. Each line represents a
40 minute time interval where the stir speed varied±20 rpm. These kLa calculations occured between
known disturbances such as feeding, antifoam addition, air enrichment changes and sampling.

63



Start time (h) End time (h) k̂La

89.42 90.08 k̂La1

90.08 90.75 k̂La2

90.75 91.42 k̂La3

91.42 92.08 k̂La4

92.08 92.75 k̂La5

92.75 93.42 k̂La6

Table 5.3: Data subsets used to calculate k̂La for experiment 13 as shown in Figure 5.26.

Start time (h) End time (h) k̂La

136.99 137.66 k̂La1

137.66 138.33 k̂La2

138.33 138.99 k̂La3

138.99 139.66 k̂La4

139.66 140.33 k̂La5

Table 5.4: Data subsets used to calculate k̂La for experiment 12 as shown in Figure 5.27.

Experiment No. Start time (h) End time (h)

12 75.66 76.33

13 77.33 78

14 75.33 76

Table 5.5: Data subsets used to calculate k̂La for experiment 12, 13 and 14 corresponding to figure
5.28

5.2.2 Oxygen saturation concentration estimation for experiment data.

As discussed in section 3.3, the oxygen saturation concentration can be obtained by min-

imizing the variations between OURlinfit and ÔUR. A fixed data subset length is selected based

on the reasoning discussed in section 5.2.1. A very small data set leads to higher errors in k̂La

and it is not feasible to apply this algorithm for online estimation if the length of the data set is

too large. Thus, a trade-off has to be established to get low error results with minimum possible

data set length. By applying the algorithm to various data set lengths, the final data set length

was fixed at 40 minutes. Furthermore, the frame-length and order of the fitting polynomial for

Savitzky-Golay filtering has to be fixed. In this experiments stir speed was continuously varied by
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Figure 5.28: kLa versus stir speed for experiment 12, 13 and 14. The kLa values are extrapolated
for comparison. The data subsets are chosen during a similar time frame for all the experiments.

adding a triangular wave with a period of 40 minutes to the stir speed signal. This was to ensure

that k̂La estimation problem was well formed. This stir speed variations lead to a similar variation

in DO signal reading. Thus, it is important to make sure that the filter frame-length is not very

large. A large frame-length will not filter the DO signal correctly at its peak where the DO signal

changes slope. A very small frame-length will not filter the noise to deliver a smooth DO signal.

Thus, through trial and error a frame length of 11 samples (time period = 165 seconds) was chosen.

A second order filtering polynomial was chosen to better fit the typical DO signal.

The algorithm to estimate Ĉ∗
cal was applied to various data subsets of 40 minutes each. These

Ĉ∗
cal estimations computed for each experiment were then compared with Ĉ∗

cal estimation for the

same experiment at different time periods. Table 5.6 lists the estimated Ĉ∗
cal values for experiment

14. The Ĉ∗
cal are almost constant with a error between successive values of approximately ±5%.

These values are calculated on day 4 of the experiment. Thus, the oxygen saturation concentration

is very low due to addition of feed and other compounds. The oxygen saturation concentration also

decreases as the VCD increases. On day 4 of experiment, the VCD is 10.7 × 106. Similar results

were observed for experiment 13 and 12 as shown in table 5.7 and 5.8.

The estimated oxygen saturation concentration in the bioreactor liquid (Ĉ∗
cal) is compared

65



Start time (h) End time (h) Ĉ∗
cal (g/L)

91.22 91.88 2.99× 10−3

91.88 92.55 3.21× 10−3

92.55 93.22 2.90× 10−3

93.22 93.88 2.78× 10−3

93.88 94.55 2.92× 10−3

94.55 95.22 2.97× 10−3

Table 5.6: Data subsets used to calculate Ĉ∗
cal and the estimated Ĉ∗

cal for experiment 14.

Start time (h) End time (h) Ĉ∗
cal (g/L)

89.42 90.08 3.19× 10−3

90.08 90.75 3.09× 10−3

90.75 91.42 3.02× 10−3

91.42 92.08 2.86× 10−3

92.08 92.75 2.49× 10−3

92.75 93.42 2.77× 10−3

Table 5.7: Data subsets used to calculate Ĉ∗
cal and the estimated Ĉ∗

cal for experiment 13.

Start time (h) End time (h) Ĉ∗
cal (g/L)

136.99 137.66 3.49× 10−3

137.66 138.33 3.49× 10−3

138.33 138.99 3.14× 10−3

138.99 139.66 2.92× 10−3

139.66 140.33 2.68× 10−3

Table 5.8: Data subsets used to calculate Ĉ∗
cal and the estimated Ĉ∗

cal for experiment 12.

for different time periods across experiments 13 and 14. As seen from tables 5.6 and 5.7, the Ĉ∗
cal

estimate is constant over approximately the same time range. These time ranges are listed in Table

5.9

Experiment 13 Experiment 14

Start time(h) End time(h) Ĉ∗
cal (g/L) Start time(h) End time(h) Ĉ∗

cal (g/L)
91.22 91.88 3.08× 10−3 91.42 92.08 3.21× 10−3

92.55 93.22 2.83× 10−3 92.08 92.75 3.01× 10−3

125.75 126.42 3.28× 10−3 124.33 124.99 3.09× 10−3

Table 5.9: Data subsets used to calculate Ĉ∗
cal and the estimated Ĉ∗

cal for experiment 12.
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5.2.3 ÔTR and ÔUR

The estimated values of k̂La and Ĉ∗
cal are used to calculate ÔTR and ÔUR. A small subset

of ÔTR and ÔUR signals calculated during feeding pulses is shown in Figure 5.29 to 5.32. The

ÔUR signal for all the feed pulses are compiled in appendix B. It can be observed from all the feed

pulses that OTRoffgas is a filtered version of ÔTR and hence OTRoffgas lags behind ÔTR. The

estimated values of k̂La and Ĉ∗
cal calculated using the algorithm discussed in sections 3.2 and 3.3

reduce the variation in ÔUR. As seen in figure 5.32, ÔTR has high variation. However, a smooth

ÔUR signal is obtained. The high variation in ÔTR for pulse 8 is due to quantization error in stir

speed value.
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Figure 5.29: OUR, OTR and OTRoffgas for feed pulse 4 of experiment 14. The purple line represents
a feeding pulse. Start time for the pulse was 96.95 hours and the end time for the pulse was 97.28.

This is a small sampling of OUR, OTR and OTRoffgas signals calculated for different feed

pulses of experiment 14. All the pulses and the corresponding signals are compiled in Appendix B.
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Figure 5.30: OUR, OTR and OTRoffgas for feed pulse 5 of experiment 14. The purple line represents
a feeding pulse. Start time for the pulse was 111.05 hours and the end time for the pulse was 111.55.
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Figure 5.31: OUR, OTR and OTRoffgas for feed pulse 7 of experiment 14. The purple line represents
a feeding pulse. Start time for the pulse was 120.90 hours and the end time for the pulse was 121.23.
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Figure 5.32: OUR, OTR and OTRoffgas for feed pulse 8 of experiment 14. The purple line represents
a feeding pulse. Start time for the pulse was 133.18 hours and the end time for the pulse was 134.01.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, a new method was proposed to estimate k̂La and Ĉ∗
cal based on minimizing the

variations in OURlinfit − ÔUR. The dynamics of headspace delay and off-gas sensor measurement

delay were included in the design. A Simulink simulation environment was used to simulate a

bioreactor experiment and the algorithm to compute k̂La and Ĉ∗
cal was tested against known values

from this simulation. A noise model was developed based on the dissolved oxygen reading of the

actual bioreactor experiment to mimic the effects of noise in laboratory experiments. It was found

that, the algorithm converged and estimated the correct values of k̂La and Ĉ∗
cal even in the presence

of noise. This established the accuracy of the algorithm.

It is important to note here that a data range is used apply this algorithm and predict k̂La

and Ĉ∗
cal . To apply this algorithm online and to quickly get estimates for k̂La and Ĉ∗

cal this data

range has to be minimized. Through trial and error it was determined that using only 40 minutes

of previously acquired data can give good estimate of k̂La and Ĉ∗
cal. The algorithm used to estimate

k̂La does not directly use the value of C∗
cal, instead it uses a product of α0 & C∗

cal and α1 & C∗
cal.

Thus, any errors in initial estimation of C∗
cal is automatically balanced by changing α0 and α1. The

algorithm automatically adjusts these values thus eliminating dependence of the algorithm on initial

estimation of C∗
cal.

This algorithm was used to find k̂La and Ĉ∗
cal for three laboratory experiments with NIH

igG cell line and GE Actipro media. First, the k̂La values for different data subsets in the same

70



experiments were determined and compared for consistency. It was observed that, consequent data

subsets provided similar values of k̂La in the same experiment. This fact was observed for different

experiments. Thus, k̂La estimation helped establish the consistency of the algorithm. Next, esti-

mated k̂La values from different experiments but same time period were compared with each other.

It was found that Experiment 12 had the lowest value of k̂La followed by k̂La for experiment 14.

Experiment 13 had the highest k̂La. This could be one of the reasons why VCD for experiment 13

was highest followed by experiment 14 and experiment 12.

Next, Ĉ∗
cal was calculated for different experiments using different data subsets. It was

observed that Ĉ∗
cal was almost constant over short data ranges. It is difficult to establish the

accuracy of this results since there are no published values of Ĉ∗
cal for the media used. Second, the

culture composition changes over time, thus it is not possible to know the actual oxygen saturation

concentration in the bioreactor culture. However, the estimated values of Ĉ∗
cal over short data subsets

were consistent. On comparing the values of Ĉ∗
cal from different experiments but from approximately

same time period, it was observed that Ĉ∗
cal values are similar for same culture conditions for different

experiments.

The estimated values of Ĉ∗
cal and k̂La were used to calculate ÔTR and ÔUR. The algorithm

was used to minimize the variation between OURlinfit − ÔUR to provide a correct ÔUR signal.

It was observed that even when ÔTR variations are high due to changing stir speed or noise, the

algorithm provided a smooth ÔUR signal. This establishes the accuracy of the algorithm. Thus,

the algorithm estimated a correct values of k̂La and Ĉ∗
cal and provided a smooth ÔUR signal.

6.2 Future Work

6.2.1 Change in oxygen saturation concentration over time.

This work estimates Ĉ∗
cal which is then used to calculate ÔUR. The oxygen saturation

concentration, however, changes over time changing the effect of increase in gas mix on ÔTR. This

effect can be mathematically stated by modifying equation 3.4,

OTR = (α0 + α1(N −N0))(Ccal
∗ b0
b0i
− Ccal∗

DO

100
) (6.1)

As seen in equation 3.4, Ĉ∗
cal affects the gas mix change given by b0

b0i
and the DO change
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which in turn affects ÔTR estimation. However, the effect of oxygen saturation concentration on gas

mix change is not same over time. This is because the oxygen saturation concentration changes due

to various reasons like feed addition and increase in VCD throughout the experiment. The changing

oxygen saturation concentration can be mathematically represented using a new variable K0. K0 is

a function of different parameters such as salinity of the culture, temperature, pressure etc. Thus

equation 3.4 can be rewritten as,

OTR = (α0 + α1(N −N0))(K0 × Ccal∗
b0
b0i
− Ccal∗

DO

100
) (6.2)

Initially during calibration K0 is 1. It should decrease with time to represent a the decrease

in oxygen saturation concentration over time. In this work K0 is assumed to be constant and equal

to 1. However, a new method needs to be developed which estimates K0 value.

6.2.2 Online implementation of the algorithm

This algorithm can be implemented online during a bioreactor experiment. A small data

subset of 40 minutes can be acquired and various parameters like α̂0, α̂0 and Ĉ∗
cal can be estimated.

The algorithm uses Savitzky-Golay filtering to reduce noise in DO signal and compute ḊO. A

framelength of 11 samples or 165 seconds will suffice to compute ḊO online. Thus, ÔTR and ÔUR

can be estimated online.

This algorithm can be implemented on multiple consequent data subsets to verify the calcu-

lated parameters. This will help determine the metabolic state of the bioreactor culture and enable

the estimator-controller pair to update the feed rate.
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Appendix A Simulation Blocks to simulate bioreactor exper-

iment.

A set of simulation blocks were used to simulate an experiment. The block used in this

simulation are explained in this section with their corresponding alphabet.

A: First, all the fixed parameters are predetermined and fixed. These parameters include

α1, α0, temprature, pressure, gas constant, mass flow etc.

Figure A1: Block A

B: kLa is computed using equation equation 4.4.

C: The input oxygen mole ratio was calculated using the oxygen and air percentages. The

driving force is calculated as a function of oxygen saturation concentration [Kstar].

D: The oxygen uptake rate [OUR1] is modeled as shown.
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Figure A2: Block B

Figure A3: Block C

E: The change in oxygen concentration [Cdot] is calculated as OTR−OUR0.This signal is

then integrated to calculate the oxygen concentration [Ct].
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Figure A4: Block D

Figure A5: Block E
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F: The oxygen concentration [Ct] is used to update dissolved oxygen [DO].

Figure A6: Block F

G: The updated [DO] signal is used to update stir speed and oxygen and air percentages

in the sparge gas. A triangular signal is superimposed on the stir speed output signal to mimic

persistent agitation in the experiments. The update logic code is given below:

function [StirSP,AirSP,O2SP] = ControlStir(Stir,DO,Air,O2)

upper_DO_lim = 50;

lower_DO_lim = 40;

StirSP = Stir;

AirSP = Air;

O2SP = O2;

if (DO >= lower_DO_lim && DO < upper_DO_lim)

% Do nothing

elseif (DO <40 && Stir<=300)

StirSP = Stir+20;

elseif (DO<40 && Stir>300)

AirSP = Air-0.05;

O2SP = O2+0.05;

elseif (DO > upper_DO_lim && Stir > 100)

StirSP = Stir-5;

end
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end

Figure A7: Block G

H: The offgas sensor reading are simulated by first calculating the oxygen mole ratio at the

surface of the bioreactor culture. Then, the signal is passed through two low pass filters to allow

simulate headspace mixing dynamics and offgas sensor measurement delay.

Figure A8: Block H
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Appendix B ÔUR plots for all feed pulses of experiment 14

This sections provides a catalog of all the feed pulses of experiment 14. The oxygen uptake

rate is normalized to make analysis easy.

Pulse No. Start Time [h] End Time [h]

Initial Glucose

concentration

(g/L)

Final Glucose

concentration

(g/L)

Initial OUR [g/Lh]

1 72.63 72.96 2.77 2.80 0.0037

2 86.80 87.13 1.73 1.89 0.0047

3 91.88 92.38 1.53 1.82 0.0056

4 96.95 97.28 1.57 1.77 0.0059

5 111.05 111.55 0.85 0.54 0.0088

6 115.82 116.32 0.49 0.69 0.0095

7 120.90 121.23 0.29 0.51 0.0098

8 133.18 134.01 0.28 0.73 0.0116

9 137.90 138.73 0.46 0.81 0.0116

10 142.02 142.69 0.63 1.09 0.0119

11 153.80 154.47 0.63 1.09 0.0166

12 167.95 168.62 0.85 1.25 0.0164

13 176.30 176.97 0.16 0.44 0.0166

14 181.00 181.67 0.19 0.90 0.0163

15 185.90 187.07 0.78 1.16 0.0150

Table 1: List of feed pulses and corresponding initial and final glucose concentration and initial

OUR.
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Pulse No.
V CDinitial

[cells/mL]
Lactateinitial [g/L] Lactateinitial [g/L]

1 7.12× 106 1.17 1.02

2 9.35× 106 0.97 0.92

3 −−− 1.01 0.9

4 1.07× 107 0.85 0.75

5 −−− 0.45 0.29

6 −−− 0.4 0.39

7 1.75× 107 0.43 037

8 1.72× 107 0.26 0.25

9 −−− 0.43 0.39

10 2.32× 107 0.46 0.36

11 1.99× 107 0.42 −−−

12 1.84× 107 0.47 −−−

13 1.67× 107 −−− 0.52

14 −−− 0.37 −−−

15 −−− 0.38 −−−

Table 2: Feed pulses and corresponding VCD and lactate.
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Figure A9: Pulse 1

-15 -10 -5 0 5 10 15 20 25 30 35

Time (min)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

O
U

R
/O

U
R

i

Figure A10: Pulse 2
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Figure A11: Pulse 3
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Figure A12: Pulse 4
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Figure A13: Pulse 5
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Figure A14: Pulse 6
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Figure A15: Pulse 7
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Figure A16: Pulse 8
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Figure A17: Pulse 9
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Figure A18: Pulse 10
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Figure A19: Pulse 11
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Figure A20: Pulse 12
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Figure A21: Pulse 13
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Figure A22: Pulse 14
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Figure A23: Pulse 15
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[Fontova et al., 2018] Fontova, A., Lecina, M., López-Repullo, J., bIvánMart́ınez Monge, Comas, P.,
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