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Abstract

The study of network representations of physical, biological, and social phenomena

can help us better understand their structure and functional dynamics as well as formulate

predictive models of these phenomena. However, in some applications there is a deficiency

in real-world data-sets for research purposes due to such reasons as the data sensitivity and

high costs for data retrieval. Research related to water distribution networks often relies on

synthetic data because the real-world is data is not publicly available due to the sensitivity

towards theft and misuse.

An important characteristic of water distribution systems is that they can be em-

bedded in a plane, therefore to simulate these system we need realistic networks which are

also planar. Currently available synthetic network generators can generate networks that

exhibit realism but the planarity is not guaranteed. On the other hand, existing water

network generators do not guarantee similarity with the input network and do not scale. In

this thesis, we present a flexible method to generate realistic water distribution networks

with optimized network parameters such as pipe and tank diameters, tank minimum and

maximum levels, and pump sizes. Our model consists of three stages. First, we generate a

realistic planar graph from a known water network using the multi-scale randomized edit-

ing. Next, we add physical water network characteristics such as pumps, pipes, tanks, and

reservoirs to the obtained topology to generate a realistic synthetic water distribution sys-

tem that can be used for simulation. Finally, we optimize the operational parameters using

EPANet simulation tool and multi-objective optimization solver to generate a network with

maximum resilience and minimum cost.
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Chapter 1

Introduction

A network is a representation of a set of entities and the relationships between

them. The network paradigm is often used to represent physical, biological, engineered and

social systems [28]. The study of network representations of physical, biological, and social

phenomena can help us better understand their structure and functional dynamics as well

as formulate predictive models of these phenomena. However, in some applications there

is a deficiency of real-world data-sets for research purposes due to the reasons such as data

sensitivity or high costs for data retrieval.

The problem of data scarcity can be tackled by using synthetic data which can

mimic both the properties and diversity of real world networks. Such synthetic data can be

used for simulations, analysis, and performance/quality verification of algorithms - a crucial

task in algorithm engineering. The importance of synthetic networks is well known in the

field of Water Distribution Systems research because the real-world data is not publicly

available due to the sensitivity [31] of this data towards theft and misuse.

The network topology of water networks undoubtedly plays a key role in the gener-

ation of synthesized Water Distribution System (WDS). In particular, an important char-

acteristic of these networks is that they can be (almost fully in most cases) embedded in

a plane, i.e. are planar graphs. The currently available planar graph generators gener-

ate planar random structure that lack the structural characteristics of real-world networks.
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Therefore, the first step we take in this thesis is to model a realistic WDS is generating

a realistic planar topology. However, a true representation of an infrastructure system re-

quires not only the network topology, but also its physical and operational characteristics

such as location and size of pipes, pumps, tanks and reservoirs. This is because the phys-

ical and operational features are crucial in the functioning of a WDS. Therefore, we next

focus on introducing the physical design features such as pipes, pumps, tanks, reservoir etc.

to the generated planar topology to generate a functional WDS. The generated WDS can

successfully mimic properties and characteristics of real-world network and can be used for

simulation.

One of the main goals of a WDS is to satisfy the demand of the network while

minimizing operational cost and maximizing robustness. The WDS design is a discrete

non-linear hard optimization problem that has attracted significant research attention over

decades. In this thesis, we use genetic optimization model coupled with hydraulic solver

EPANet [38] to determine the physical feasibility of the design in terms of pressure and

flow requirements and while minimizing the operational cost and maximizing resilience of

the generated WDS.

1.1 Our Contribution

In this thesis, we introduce a toolbox of algorithms to generate a synthetic Water

Distribution Network with physical characteristics such as pipes, pumps, junctions, tanks,

and reservoirs with optimized operational parameters such as pipe and tank diameters,

pump sizes, tank minimum and maximum levels etc. Our toolbox has 3 main algorithms,

where each tool can be run independently as well as in conjunction with other.

1.1.1 Generation of Planar Topology

In the first step, we generate realistic planar replicas of a known planar graph that

can be rescaled to much larger graphs. The method follows the multi-scale editing approach

2



[15] in which a given graph is projected into a hierarchy of its coarsened representations

(coarse graphs) that are then perturbed by edits at various scales of coarseness in the

hierarchy. The method preserves the structural properties including the planarity with

controllable bias, while introducing realistic variability at multiple scales of coarseness.

Because the method belongs to the family of multiscale editing approaches, it generates

planar graphs that attempt to replicate properties of the original graph at all levels of its

coarse-grained resolutions.

1.1.2 Generation of WDS

In this phase we introduce physical and operational water network design features

to generate a functional WDS network from a known planar graph and real-world WDS. In

this process we rely on the input WDS network and various specific characteristics that are

often found in Water networks such as the location of tanks and reservoirs and allocation of

pumps in Water Network to assign the physical features to the planar topology generated

in previous step.

1.1.3 Optimizing the Water Distribution System Components

Finally, we use multi-objective solver to optimize the operational cost and resilience

of the generated WDS. The input to this step is a known water network which can be the

output of previous step or an independent network. We use genetic optimization solver to

generate a optimized network in terms of physical design such as diameter of pumps and

tanks as well as operation to meet the demand of the system during 24 hour operation

period while saving energy and cost of pumps operation.

The first part of this thesis is based on our paper: Varsha Chauhan, Alexander

Gutfraind, and Ilya Safro. Multiscale planar graph generation. arXiv preprint

arXiv:1802.09617, 2018.
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Chapter 2

Background and Literature Review

2.1 Network Generation Algorithms

The field of network science and, in particular, network synthesis is vast and cannot

be comprehensively reviewed here. Hence, we focus on several particularly illuminating

approaches for modeling realistic networks that presumably may be applied as or changed

to the first step in realistic planar graph generator. (In contrast to the different versions

of random planar graph generators, there is an obvious lack [3] of planar graph generators

that generate graphs that are similar to the original planar graph. This is the reason,

why practitioners and decision makers use other graph generators in combination with

planarization postprocessing to generate planar and hopefully realistic planar graphs. This

is also a reason for our comparison with these algorithms reinforced with planarization in

the next sections.) These approaches fall into two categories, namely, generative models

and editing models.

2.1.1 Generative models

Generative models typically construct a network starting with an empty or small

seed network and then iteratively add network elements (such as nodes and edges) to match

some properties of a network that has to be replicated. These algorithms attempt to pre-

4



serve the real network properties over the evolution and growth of the synthetic network.

Important examples of generative models are the following.

ERGM Exponential Random Graph Models (ERGM) [18] are a class of statistical models,

earlier called p-star models, that are popular in the study of large-scale social networks. To

build a network, the ERGM first estimates certain parameters by fitting an observed social

network and then constructs new networks by sampling from the estimated distribution.

For example, in the Bernoulli and Erds-Rnyi ERGM models which generate homogeneous

networks, the parameter space is based on common probabilities for each added connec-

tion, whereas the Chung-Lu ERGM model [1] for large random graph with given degree

distribution, it uses two parameters, namely, α which is logarithmic of number of nodes of

degree 1, and β which is log-log rate of decrease of the number of nodes with a given degree

and is given by |{v|deg(v) = x}| = y = eα

xβ . The model can generate large graphs which

depict some of the behaviors of massive realistic graphs and also predict the size and num-

ber of large components in the graph from the given values of α and β. ERGM models are

successful in generating social networks and exhibit realistic degree distributions and small

world structures, but do not give any planarity guarantees, and normally violate planarity.

While potentially, this model could serve as the first step in planar network generation (the

planarity could be one of the properties or it can be applied with subsequent planarization

of synthesized network), we emphasize that it is extremely slow and cannot be applied even

on medium size networks, so we cannot experiment with it and compare to our generator.

BTER Block Two-Level Erds-Rnyi model (BTER) [45] is based on the idea that a network

contains communities that are Erds-Rnyi graphs in which each pair of vertices is indepen-

dently connected with probability p. BTER graphs contain dense Erds-Rnyi communities

that are found in real-world networks. The algorithm is two-phased. In the first phase

a collection of blocks or Erds-Rnyi communities with specified degree distribution is cre-

ated. Then the blocks made interconnected and excess degree nodes are removed based on
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Chung-Lu (CL) model [2] such that each subnetwork is well modeled by CL. BTER has

been shown to model realistically a variety of network properties, but as with ERGM, it

gives no guarantees of planarity. Also, whether communities in (almost) planar networks

have hierarchical and connectedness structure similar to BTER model or not is not explored.

RMAT and Stochastic Kronecker Graphs The Recursive Matrix graph generator

introduced by Chakrabarti et al. [7] and its extensions AutoMAT-fast [7] can generate

large-scale complex realistic networks. The generator is based on a recursive algorithm that

operates on the adjacency matrix of the graph by dividing it into four equal-sized partitions

and distributing edges to each partition based on fitting a set of parameters.

The Stochastic Kronecker Graphs (SKG) [23] extends the methods of RMAT. Similarly to

RMAT it is a recursive model, which starts with a small initiator matrix and recursively

produces large graphs by applying Kronecker products. SKG can be interpreted as network

which is a hierarchy of communities which grow recursively to create copies of themselves

and every node has unique set of attributes values. The model can generate graphs with

static patterns such as degree distribution as well as temporal patterns such as diameter

over time. As before, planarity is not guaranteed as well as the community structure simi-

larity with real-world networks that have one.

Multifractal Network Generator In 2010, Pallaa et al. [34] introduced the multifractal

network generator which can generate realistic networks with specified statistical features.

The method starts with defining a generative measure on a single fractal or unit square and

calculating link probability. The network is then scaled to the infinite limit by recursively

dividing the fractal into a number of rectangles and introducing connections between them

based on the link probability. Although this method was able to generate small scale

realistic graphs the recursive method was slow for large complex networks. It is unknown

if the generated networks can be constructed to have planar or quasi-planar structure, but

the random nature of the construction suggests that planarity would be uncommon even in

6



small graphs. However, the backbone networks generated by this model could be planar and

thus possibly relevant to some infrastructure networks (for example, see major gas pipes in

[27]). Unfortunately, these networks are also very far from being similar to infrastructures

which makes the comparison impossible.

2.1.2 Editing models

The editing models approach starts with a given (real or empirical) network and

controllably introduces random changes to its elements (such as nodes and edges) until

the network becomes sufficiently different from the original network. These changes are de-

signed to introduce variability while preserving key structural properties during the random

editing. Such methods are a promising direction for a relatively more realistic modeling of

networks, and that includes properties such as planarity or near-planarity.

Edge-swapping The edge-swapping method [51, 35]is perhaps the first important algo-

rithm in the class of editing models, and it is based on the insight that the degree distri-

bution of a graph is preserved under a chain of edge-swapping operations. Such a chain

of edge swaps can even asymptotically achieve important mixing properties giving high

variability. Despite these successes, edge-swapping operations can be very disruptive to

planarity and other global properties of the graph, and there are no good post-selection

methods for achieving planarity.

Multiscale Network Generation In [15], several of us proposed a strategy termed MUS-

KETEER (Multiscale Entropic Network Generator) for realistic graph generation. The

main idea was based on the observation that the properties of real networks that should

be preserved during generation are not only those measured at the finest resolution but

also those that can be measured at the coarse resolutions. Multiscale generation leverages

coarsening schemes used in highly-accurate multiscale solvers for combinatorial optimiza-

tion such as linear arrangement, compression and partitioning [36, 17, 42, 40, 43]. In such
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coarsening schemes, nodes in a network are assigned into aggregates (or, typically, very

small communities) which are themselves parts of larger aggregates and so on in a hierar-

chical manner. The algorithm was successful in generating a number of replicas for several

real-world original networks, but did not guarantee planarity. This paper continues this line

of research and offers an implementation of the multiscale strategy that actually produces

planar networks.

ReCoN Staudt et al. [49] later used principles similar to those of multiscale method and

developed a fast network generator that could generate large scale replicas of real complex

network that are structurally similar to original network. Instead of leveraging multiscale

coarsening schemes, ReCoN generated synthetic networks by randomizing the edges between

communities which were detected by the community detection methods while keeping the

same degrees of nodes. ReCoN is built on top of the LFR generator implemented in [48].

2.2 Planar Network Generators

Planar graphs are the class of graphs that can be embedded in a two-dimensional

plane without edge crossings. Designing efficient algorithms for planar graphs is an impor-

tant subfield in the area of algorithm development and optimization [25]. From the practical

perspective, the planarity is also an important characteristic of many physical networks such

as roads, utilities, water distribution systems, and some circuit designs. Many of these net-

works are, in fact, almost planar, that is, one can remove typically small fraction of edges

to make them exactly planar. Planar networks with underling graphs have attracted a lot

of attention since a landmark paper by Tutte [52]. Most of the research was dedicated on

the study of structural properties (including their generation) of random planar graphs or

uniform random planar graphs such as triangulations, and meshes. However, the currently

available planar graph generators usually generate uniform random graphs by interpolation

of planar subgraphs or generate planar subgraphs of a non-planar graph. Unfortunately,

8



they are very far from being practically important for such tasks as generating graphs un-

derlying infrastructure networks since they fail to present most other properties that are

viewed as significant in this area, such as the degree distribution, the community structure

and others. Some important available planar graph generators are discussed below.

Plantri and Fullgen software. Plantri [5] can generate triangulations, quadrangulations,

and convex polytopes using recursive algorithm which is efficient and fast. Fullgen [4]

generates fullereness which are planar cubic graphs with 5 or 6 faces. The important

characteristic of this software is that it generates only one graph as output from a family

of isomorphic graphs saving the space needed to store them. The software also offers the

user the option to restrict adjacent pentagons using an input parameter.

Markov Chain Planar Graph Generator. This algorithm was proposed by Denise et

al. [11] and is based on Markov Chain that generates planar subgraphs from a non-planar

graph. The algorithm defines a Markov Chain on the state space of all subgraphs of the

original graph and transitions as follows. If an edge exists in space, it is deleted. If it is not

present it is added in case it maintains planarity otherwise it is discarded. The method can

successfully generate a planar subgraph in polynomial time.

Delaunay Triangulation and refinement method. This method has been used widely

used by researchers to generate mesh networks. In [46] Shewchuk, presented an implemen-

tation of 2-Dimensional constraint Delaunay triangulation and Ruppert’s [39] Delaunay

refinement algorithm for mesh generation.

Geometric graphs. Gilbert [14] proposed a model to construct random plane networks by

first selecting points in infinite plane based on Poisson process with density D and then con-

necting points based on distance R from each other. The random geometric graphs closely

represent the graphs generated by percolation process through various porous materials and

therefore these graphs are extensively utilized by physicists to study continuum percolation

models. Random geometric graphs also have application in communication networks [3].

Planar ErdosRenyi graph. In 1959, Erdos and Renyi [12] introduced a method to gen-

erate a random graph with N nodes and m edges by connecting the edges randomly with
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independent probability p. The Erdos-Renyi planar graph generator generates random pla-

nar graph with uniform probability [11] by rejecting the non planar edges thereby preserving

planarity [11, 13, 24, 3].

2.3 Domain Specific Network generators: Water Distribu-

tion System Generator

WaterNetGen WaterNetGen [26] developed by Murano et al. is an interactive application

developed as an extension to well-known WDS optimization tool EPANET [38], which could

generate small as well as large network topologies by interconnecting subsystems. Water-

NetGen offers an interactive interface through which users can assign WDS components

such as pipes, pumps, tanks, reservoirs etc. to the generated topology. The additional

parameters such as elevation of tanks or nodes and pipe sizes can also be defined by the

user.

Water Distribution System Designer In 2013, Sitzenfrei [47] developed a software

package, Water Distribution System Designer that can generate realistic synthetic water

networks using GIS data such as population density, housing density and elevation as input

data. Sitzenfrei introduced the newly developed graph concatenation approach (GCA) to

generate layout of WDSs. The model concatenates different blocks from a database while

meeting the requirements of the underlying GIS data. The software provided an interactive

GUI to modify all the design parameters by user. The software could generate synthetic

WDSs that reflected geometrical properties such as pipe length and diameter of a real-world

WDSs.

2.4 Optimization of Water Distribution Network Design

The WDS design optimization is a discrete non-linear NP hard computational prob-

lem. Due to the limitation of computational algorithms the problem is tackled using stochas-

tic approach such as genetic algorithm, simulated annealing, shuffled frog-leaping, tabu
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search algorithm etc.

11



Chapter 3

Generation of Planar Graph

3.1 Multiscale Planar Graph Generation

Multiscale network generation (MNG) introduced in [15] is an editing model that

generates realistic networks. The proposed multiscale planar graph generator follows the

main ideas of MNG and makes them applicable on planar graphs.

MNG follows a multilevel coarsening/uncoarsening scheme shown in Figure 3.1. We

start with an input graph G and generate a hierarchy of next coarser graphs, G0, G1, ..., Gk,

where k is the number of coarsest level. The number of coarsened levels depends on the

structure and size of G. If it is too small or too dense at some level then the hierarchy

construction is terminated (i.e., the coarsest level is reached). The definition of coarsened

level is generic and based on the weighted aggregation method for combinatorial optimiza-

tion problems [40, 36, 41, 22]. Currently, it does not depend on the application predefined

aggregates in the network such as knowledge about real communities. However, this process

can be adjusted as we did in [50]. In order to generate a synthetic graph, we introduce a

series of local randomizations at different levels whose numbers can be specified by user

input. If user is interested in only local changes without destroying the global structure

of the network, only fine levels are specified for randomizations. Otherwise, any realistic

changes in global structure will require randomizations at coarse levels. During the un-
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coarsening, these randomizations are carried forward to the next finer level in the hierarchy.

In Algorithm 1, we describe the sequence of steps in generating planar graph. We will now

discuss each phase and notation in detail and our approach to generate planar graphs using

multiscale method.

Algorithm 1 Multiscale Planar Network Generator MPNG(Gi)

1: if Gi is not small or too dense or perturbations are required for Gi at level i by user
then

2: Gi+1 ← create aggregated network from Gi (see Alg. 2)
3: Gg

i+1 ← MPNG(Gi+1) . Return coarser edited network from recursive call

4: Gd′
i ← interpolateUneditedAggregates from Gg

i+1

5: Gd
i ← interpolateEditedAggregates(Gg

i+1,G
d′
i+1)

6: end if
7: Qi ← measure properties of Gi

8: Qg
i ← editing Gd

i preserving Qi

9: Return Gg
i

3.1.1 Coarsening

Since the input graph G0 is planar, the coarsened graphs Gi are also planar, so we

follow the same coarsening scheme as that in the original MNG. Algorithm 2 describes the

steps involved for generating coarse level graph Gi+1 from Gi.

Algorithm 2 Coarsening(Gi)

1: if Gi is not the coarsest graph then
2: Find set of seeds (C) for coarse network Gi+1

3: Find fine-level nodes that belong to each aggregate
4: Calculate weight of edges connecting aggregates and weights of coarse nodes
5: Return Gi+1

6: end if

We start with finding set of seeds C and its complement fine-level nodes F which is

based on two rules, first, nodes with high volume and connectivity (i.e., major aggregates)

are more likely to be included in C and the nodes in F should be “strongly” coupled to

enough neighbors in C. To generate coarse level nodes for Gi+1 we begin with C = ∅ and
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Figure 3.1: The V-model for multiscale planar network generation. The original input
planar network is coarsened to generate a hierarchy of coarse networks, the process is then
reversed generating fine-level networks. The number of level (here 5) depends on the size
of input network or the user input.
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F = Vi where Vi is set of nodes in fine level Gi. Next, we iteratively transfer nodes from F

to C, such that currently visited node i ∈ F is added to C if it is not well connected to those

already chosen to C [40]. The connection strength between nodes i and j is determined

by means of normalized weight of edge ij with respect to C, namely, if node i ∈ F is not

connected strong enough to currently chosen C, i.e.,

∑
j∈C w(ij)∑
j∈V w(ij)

≤ α, (3.1)

then we move i to C. The connection strength is parametrized using threshold α which is

in all experiments 0.5.

The final phase of coarsening is computing the connection strength between the

coarse nodes. Here we define the algebraic multigrid interpolation matrix P of size |V |×|C|

(for details see [40]) in which Pij represents the likelihood of i to belong to the jth aggregate.

The Laplacian of the coarse graph Gi+1, Li+1, can be calculated by the algebraic multigrid

coarsening operator Li+1 ← P TLiP where, Li is the Laplacian of ith level graph, and

Pij = { 1 , fori ∈ C, j = i0, otherwise. (3.2)

The edge ij connecting two coarse nodes i and j, is assigned with the weight

∑
k 6=l

Pkiw(kl)Plj

and the volume of the ith coarse aggregate is
∑

j v(j)Pji.

To this end the (i+1)th level graph is generated, and we can measure the properties

of ith level graph and store them in Qi. In general, this step is application dependent as

in different applications the preserved properties may vary. Because, in planar graphs

of infrastructures it is important to generate realistic path lengths (e.g., not to create

shortcuts that connect distant regions in a graph), we are sampling using random walks the

distribution of path lengths and shortcuts (second shortest distance between nodes) and
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store them in Qi (see [15] for details).

3.1.2 Uncoarsening

Once the coarsest level is reached, we start the uncoarsening. During this process,

at each level i+ 1 we choose nodes and edges to be edited (randomized while keeping some

properties preserved), to generate edited network Gg
i+1 at level i + 1 and then project the

newly created graph to generate the next finer level Gg
i . The projection is done in two

steps. First, we interpolate the unedited aggregates (nodes and edges) in interpolate-

UneditedAggregates (Step 3) from Gg
i+1 to generate graph Gd′

i . This process is just a

reverse interpolation of aggregates based on aggregation data stored in P during the coars-

ening phase, because the input network is planar the interpolation edges do not create

crossing any crossing over edges. This helps in preserving structural properties of original

input network, as after this step we have a subgraph Gd′
i of original network coarsened at

level i+ 1.

In the next step, we interpolate edited aggregates, by first interpolating nodes and

adding edges that were trapped within aggregated (or coarse) nodes connecting the fine

nodes, i.e., these are edges that connect fine nodes that are coarsened within of same coarse

node. Next we interpolate edges in function interpolateEditedAggrregates to generate

graph Gd
i by adding new edges to graph generated at step 3. The pseudocode for the

function is presented in Algorithm 4. This interpolation is likely to introduce crossing over

edges, therefore, when we add an edge ij to Gd
i , we check if the network is still planar. If

it is not, the edge is discarded. If an edge is discarded, we perform several iterations and

find an edge which is similar to the edge ij using properties stored in Qi during coarsening

in Algorithm 1.

After the interpolation is complete and we have a fine-level graph Gd
i , on which

we introduce randomizations or editing (discussed below in detail) specified by the user at

level i to generate a finer-level random planar network network Gg
i . The topology of the

final network depends on the level at which the changes are introduced and the number
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Algorithm 3 interpolateUnEditedAggregates (Gi)

1: Gd′
i ← uncoarsen nodes from Gg

i+1 using data stored in P i during coarsening at level
Gd

i

2: Gd
i ← uncoarsen unedited edges Gg

i+1 using data stored in P i during coarsening at level
Gd

i

3: Gd
i ← interpolateUnEditedAggregates(Gg

i+1 , Gd′
i )

4: Return Gg
i

Algorithm 4 interpolateEditedAggregates (Gg
i+1 , Gd′

i )

1: Gd
i ← uncoarsen nodes from Gg

i+1

2: Gd
i ← uncoarsen edited edges Gg

i+1

3: Gd
i ← interpolateEditedAggregates(Gg

i+1 , Gd′
i )

4: Return Gg
i

of edited network elements both dependent on user input. At the coarsest level, every

network element is an aggregate which interpolate of many network elements at fine level, a

small change introduced at this level may generate high-entropy changes which are carried

forward to the next fine level, whereas addition of an element at fine levels may introduce

elements to the final synthetic network. In general, the changes introduced to deeper levels

of aggregation, the more significant changes are introduced in the topology.

3.1.3 Editing

In the final phase we measure the properties of the generated graph Gd
i and compare

with the properties of original graph Gi coarsened at level i which is stored in Qi, thus

preserving the local topological structure of the network and preventing addition of edges

between nodes which were separated by long distance in original network at coarse level

Gi stored in Qi. We then use an editing process which introduces randomizations in the

network to generate a synthetic network. This is a process of deleting and adding new edges

both dependent on user input for level i (namely, how much randomization is requires in

scale from 0 (no randomization) to 1 (everything is randomized)), however the network

elements are carefully chosen based on the structure of unedited network at level i. The

number of new edges introduced is dependent on the edge edit parameter. When we insert
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a new edge we preserve the structural properties of the original network in the coarse level.

In particular, we are interested in two properties, namely, second shortest path

length distribution and planarity. The first property is measured and verified similar to

previously introduced [15]. The second property is critical for planarity. If inserting the

new edge makes the network non-planar we discard it and find an alternate edge that pre-

serves the desired structural properties (in this case the first property) as well as planarity.

Technically, it is done by verification of existence of Kuratowski subgraph after adding a new

edge. This step is repeated until we find a non-crossing edge that preserves the planarity

of the network and thus generating synthetic planar graph Gg
i at coarse level i.

3.1.3.1 Rescaling

Rescaling is a part of the editing phase in which we add new elements (edges and

nodes) to the synthetic network. The scaling factor and the coarsened level at which the

network is rescaled is controlled by node growth parameter which is provided as an input

from the user depending on the user requirement. In general, rescaling at coarsest levels

will preserve the local structure of the input network, i.e. the generated network will have

increased number of communities whereas rescaling at finer levels will increase the size of

communities. The scaling factor ranges from 0 to 1 which decides the percentage of new

nodes that are to be added at the level i. This is a two step process, first we introduce a new

node (u) and connect to an existing node (v) in the network deleting an existing edge from

v to restore the degree of node v. In the next step, we find neighbors of v iteratively over

increasing distance from v and connect the newly added node u to the neighbors of node v

thus preserving the local topological structure of the network at coarse level Gi stored in

Qi. The process is terminated when the desired number of network elements are added and

a rescaled network Gg
i is generated at coarse level i.
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3.2 Computational Experiments

In this section we show the computational results summarizing the performance

of our multiscale planar network generator in replicating the original and also generating

rescaled networks. To test the variability of the generator we used real-world infrastructure

networks such as water distribution system, power grid and road network that are either

planar or have very few edge crossings that we removed. We used the water network from

“The Battle of the Water Networks II“ [32] and for road network we used a sub graph of

Texas [21] road network from [20]. We also used a finite element large planar sub-graph of

a finite-element graph from Boeing collection in [9]. In case of the power grid [20] which

was not planar, we generated approximate maximal planar subgraph of the network using

Open Graph Drawing Framework (OGDF) [8] to be used as an input to our algorithm.

3.2.1 Replication

We tested our implementation on three sets of parameters, namely, “Musketeer

Coarse” (at only two coarsest levels 5% randomizations are allowed), “Musketeer Fine”

(at only two finest levels 5% randomizations are allowed), and “Musketeer All” (small 1%

randomizations are allowed at all levels). Because randomizations and editing are introduced

at all levels, even very little changes at the coarse levels will result in significant changes at

the finest level in generated synthetic graph.

We generated 30 network replicas for each network and compared the replicas with

the original network based on the following metrics: number of nodes and edges, number of

components, clustering coefficient, average degree, total degree-degree assortativity, average

harmonic distance, modularity, pagerank and average betweenness centrality. We also com-

pared our results with the existing generative models implemented in [48], namely, ReCoN,

RMAT and BTER and stochastic Kronecker graphs by generating replicas of same input

network. Since, these models do not necessarily generate planar network, we post-processed

the generated networks to find the maximal planar subgraph of the replicas using OGDF
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library which uses edge removing technique, i.e., it adds one edge at a time while preserving

planarity, if addition of the edge results in a non-planar graph then the edge is discarded thus

generating a planar subgraph. We compared the generated planar graphs with the original

graphs for the structural properties mentioned above. Clearly, one may argue that these

generators were not developed to planar networks. We, however, note that these meth-

ods with planarization post-processing were chosen because there is no other acceptable

solution to generate more or less realistically looking planar network that is similar to the

original. As mentioned earlier, the available planar graph generators are generative models

which either create specific classes of graphs with restricted values for minimum degree

and connectivity (e.g., plantri and fullgen or Delaunay triangulation methods) or generate

random realistic spatial networks based on give probability p (e.g., planar ErdosRenyi, and

spatial Watts-Strogatz generator). Other examples include domain specific generators for

road networks (e.g., StreetGen) and power grid random networks that are not necessarily

planar networks. To the best of our knowledge, there is no domain independent generator

whose goal is to preserve similarity with the input network.

The structural properties of the replicas were normalized such that 1 denotes the

property of original network. We performed 30 experiments for each set of parameters

the results for which is graphically represented in Figures 3.2-3.9. Our results indicate

that multiscale planar graph generator can generate replicas that preserve almost all the

properties of the original networks with relatively small deviation. Also, we observe that

graphs generated by BTER and RMAT after planarization are close to original network

(within 0−2, where 1 represents the property of original input network after normalization)

for properties such as average degree and mean harmonic distance whereas the properties

for networks generated by stochastic Kronecker graphs (SKG) are far from those in the

original graphs. As such the plots for properties for the networks generated by SKG are not

represented in the plots. However, we note that the distortion of properties on the replicas

by other network generators may have been the result of the post-processing step (maximal

planar sub-graph of the generated replica), which often created more than one connected
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Figure 3.2: Computational results on performance of planar Musketeer on power grid graph
opsahl-powergrid with 4941 nodes and 6211 edges for clustering coefficient, number of edges,
mean eccentricity, total degree *degree assortativity, modularity and average degree.

components.

3.2.2 Rescaling

Our second set of experiments was designed to generate rescaled networks. We tested

our implementation on three sets of parameters, namely, “Musketeer Coarse” (30% edge

and node addition on 4 coarsest levels are allowed), “Musketeer Fine” (30% edge and node

addition on 4 finest levels are allowed), and “Musketeer All” ( 15% edge and node addition

at all levels are allowed). The parameters are chosen such that the generated network has

3 − 4 times the number of nodes and edges than the original network. We generated 30

rescaled replicas for the same dataset as used in our previous experiment and compared the

generated networks with the original network based on the following metrics: number of

components, clustering coefficient, average degree, total degree-degree assortativity, average
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Figure 3.3: Computational results on performance of planar Musketeer on power grid graph
opsahl-powergrid with 4941 nodes and 6211 edges for number of nodes, harmonic mean path,
number of components, average shortest path and average betweenness centrality.

harmonic distance, modularity, pagerank and average betweenness centrality.

The structural properties of the replicas were normalized such that 1 denotes the

property of original network. The comparison for 30 experiments is presented in Figures 3.9-

3.12. As depicted in the plots we are able to preserve almost all the properties of original

network even when the network is rescaled to more than 3 times the original network.

Also, there is no significant variance observed in properties for the three different sets of

parameters (coarse,fine and all) used to generate rescaled networks. However, we observed

that rescaling by introducing elements at finer levels results in high clustering coefficient in

generated network. This is because the planarity constraint restricts addition of long edges

(edges between nodes which are far from each other) which in turn forces the algorithm to

connect new elements locally at each level i. In case the network elements are introduced

at coarsest levels, the locally added edges and nodes are uncoarsened to several finer edges

and nodes over the V-cycle of coarsening and uncoarsening, and the near neighbors at level

i are drifted apart at level i + 1.However, network elements added at fine levels are not

drifted as a result of levels of coarsening and uncoarsening as described above, and the
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Figure 3.4: Computational results on performance of planar Musketeer on finite-element
graph with 4704 nodes and 13427 edges for clustering coefficient, number of edges, mean
eccentricity, total degree *degree assortativity, modularity and average degree.

edges still connect the nodes locally. Hence, we observe an increased number of triangles

(Figure 3.10) or high clustering coefficient (Figures 3.11 - 3.14) for networks generated

by introducing elements at fine level as compared to coarse level. As depicted in Figure

3.10 when the network is rescaled by introducing new elements at only coarse levels, we find

larger communities (e.g., mesh structures in case of our input road network) in the generated

network, whereas if the network is rescaled at fine level we observe smaller communities.

The amount of new introduced elements can be controlled by user input which is provided

as node growth parameters (from 0 to 1) at certain levels. In our experiment we used 0.3 as

node growth rate for coarsest and finest level and 0.10 when introducing network elements

at all levels.
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Figure 3.5: Computational results on performance of planar Musketeer on finite-element
graph with 4704 nodes and 13427 edges for number of nodes, harmonic mean path, number
of components, average shortest path and average betweenness centrality.

Figure 3.6: Computational results on performance of planar Musketeer on real water net-
work with 407 nodes and 459 edges for clustering coefficient, number of edges, mean eccen-
tricity, total degree *degree assortativity, modularity and average degree.

24



Figure 3.7: Computational results on performance of planar Musketeer on real water net-
work with 407 nodes and 459 edges for number of nodes, harmonic mean path, number of
components, average shortest path and average betweenness centrality

Figure 3.8: Computational results on performance of planar Musketeer on road network
from roadNet-TX with 2001 nodes and 2957 edges for clustering coefficient, number of
edges, mean eccentricity, total degree *degree assortativity, modularity and average degree.
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Figure 3.9: Computational results on performance of planar Musketeer on road network
from roadNet-TX with 2001 nodes and 2957 edges for number of nodes, harmonic mean
path, number of components, average shortest path and average betweenness centrality.
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Figure 3.10: Visualization of a road network from roadNet-TX with 2001 nodes and 2957
edges rescaled to at least 5900 nodes and 7000 edges.
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Figure 3.11: Computational results for road network from roadNet-TX with 2001 nodes
and 2957 edges rescaled to at least 6000 nodes and 6500 edges.

Figure 3.12: Computational results for road network real water network with 407 nodes
and 459 edges rescaled to at least 1098 nodes and 1500 edges.
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Figure 3.13: Computational results for finite-element graph with 4704 nodes and 13427
edges rescaled to at least 12700 nodes and 36000 edges.

Figure 3.14: Computational results for power grid graph opsahl-powergrid with with 4941
nodes and 6211 edges rescaled to at least 16500 nodes and 27000 edges.
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Chapter 4

Generating WDS from Planar

Topology

A practical representation of an infrastructure network that can be used by the

domain experts requires not only the network topology, but also its physical and operational

characteristics. In this thesis we generate a synthetic Water Distribution System (WDS)

with realistic topology as well as physical design features such as pipes, pumps, tanks

and reservoirs. We try to replicate the input WDS, as such the physical features such as

number of tanks and reservoir and parameters such as demand and elevation are based on

the input WDS. However, features such as location of tanks and reservoir are based on

specific characteristics often found real-world water networks. The generated WDS is in

“.inp“ format and can be interpreted by various available hydraulic solvers such as EPANet.

In the following section we will discuss each feature and the parameter values for each in

detail.

4.1 Assigning coordinates

This is the first step in the generation of WDS from a planar topology. Planar

embedding of planar graphs is a well known problem with a variety of applications such as
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circuit design and infrastructure networks. There are various drawing methods for planar

embedding [29] such as straight-line drawing and polyline drawing. There exist a number

of algorithms such as [33], and [44]) for constructing planar embedding in O(n2) or faster

time. In our model, we use popular visualization algorithms neato [30] and Forceatlas2 [19]

to generate nearly planar layout of the generated planar graph. The number of iterations

of graph visualization algorithms can be controlled by user. The returned positioning map

in x, y coordinate space for nodes are written as ”Coordinates” in the generated file. At

the end of this step we have a network representation of an geographical area.

4.2 Reservoirs

A Reservoir represents an unlimited source that provides the network with water.

In order to assume that the generated water network is a potential valid network, it must

have at-least one reservoir/ tank. In case the generated network is rescaled such that it is

larger than the original network then we increase the number of reservoirs by the rescaling

factor while also introducing a decreasing probability factor β which adds a randomization

factor and also restricts assignment of improbable or unrealistic number of reservoirs in the

generated network.

Since in reality, a reservoir is more often a lake or river which is connected to the

entire network, we make an assumption for a border location for the reservoir and find a

node in our generated topology which lies on the boundary of the network and is connected

to the remaining network with a single edge. In order to find the boundary nodes we use the

position coordinates generated in previous step and create a set R, such that coordinates of

nodes in R are boundary points in the previously generated layout. Our next step is based

on the assumption that a reservoir is connected to network through single pipe/pump, as

such we filter the selected nodes based on degree, namely, if the degree is greater than 1

the node is removed from R. Next, we randomly choose nodes from the set R and label

the node as reservoir and repeat the process until we have allocated the required number
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of reservoirs. Finally, we assign some user specified value to various reservoir parameters

such as “head”.

4.3 Tanks

Tanks play a significant role in the WDS design and operation. Using tanks storage

capability, the WDSs design to be redundant, resourceful, and reliable in case of contin-

gencies. In our model we assign tanks by first dividing the network into clusters such that

they mimic the real-world WDS, this is achieved by minimum edge cut partitioning graph

algorithm [6]. We use graph partitioning recursively such that the number of partitions is

equal to number of tanks to be allocated. The partitions can be considered as clusters or

communities found in real-world water networks, where each cluster has a tank.

Next, we introduce randomness using factor ’β’ (a random value between 0−1) which

controls addition of unrealistic number of tanks. We select a random node in each partition

which has degree 1 and random value between . If β is greater than some defined value p,

we assign the selected node as tank, otherwise no tank is assigned in the partition. We then

repeat the process for each partition assigning tanks in each partition with probability p.

Finally, we assign specified values to parameters such as the minimum level, maxi-

mum level, diameter and elevation tank. For generalization we assign elevation as maximum

elevation of all junctions plus some specified value. The remaining parameters values are

optimized later by our optimization algorithm discussed later. The addition of tanks will al-

low the network to be optimized in terms of operation to secure water delivery to customers

during 24 hour operation period while saving energy and cost of pumps operation.

4.4 Junctions

Junctions will denote the network demand nodes which WDS need to satisfy. After

the Reservoirs and Tanks are assigned, we label the remaining nodes in the graph as junc-

tions. In our generation model, we assign values for junction parameters such as demand
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and elevation that are based on the original input water network. This guarantees that the

generated water network has similar demand nodes and geographical features as the input

network.

We first, create sets E and D which contain elevation and demand values in the

input network, respectively. Next, we assign elevation and demand values to junctions by

randomly choosing values from set E and D. However, this causes an uneven distribution

of elevation and demand, e.g., a low elevation (demand) node can be in a cluster which has

all high elevation (demand) nodes and may result in an unrealistic network. To solve this

problem, we apply iterative smoothing, such that the neighboring junctions have similar

demand and elevation such that the generated network mimics characteristic of real-world

network.

4.5 Pumps

Pumps are essential component to keep the WDS functional by providing an ade-

quate amount of energy needed for WDS operation. An important property typically found

in real world water networks is that the pumps are often located near the supply nodes

such as reservoirs, and tanks. Our generator replicates this property by utilizing the same

recursive partitioning as used for assigning tanks and assigning pumps by selecting edges

in a partition which has a tank or reservoir, thus guaranteeing the location of pumps is

near the tanks. It should be noted that the direction of flow for the pumps is based on the

assumption that the system is filling water from the reservoirs to the tanks. Finally, we

assign a user defined value to parameters such as pump curve and pattern, which can be

optimized later by our optimization algorithm discussed in next chapter.

4.6 Pipes

Pipes are the veins of the WDSs that carry water through the network. After we

assign pumps, the remaining edges are labeled as pipes. The assigned base values are based
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Network Junctions Pipes Pumps Tanks Reservoirs

Net1 Rossman 9 14 1 1 1

d-town 399 443 11 7 1

Charleston Network 1533 3401 5 4 1

Table 4.1: Input Networks

on the original input network but can also be provided as user input for pipe parameters

length, diameter, roughness, minorloss and status. We optimize pipe diameter later using

genetic optimization solver discussed in the next chapter.

After assignment of physical features is complete, we write the network in ’.inp’

format to generate a network file which can be exported to any hydraulic solver.

4.7 Experiments and Results

In this section we show the computational results summarizing the performance of

our WDS generator in replicating the original and also generating rescaled networks. To test

the variablity of our generated we used 3 different water networks, namely, Net1 Rossman

[37], d-town network from “The Battle of the Water Networks II“ [32], and Charleston area

network details for which are provided in Table 4.7.

We tested our model on 2 different parameters, first replication by introducing

1% edits at all levels and second rescaling by introducing 15% growth at each level of

uncoarsening. In case of replication, the generated network has similar number of WDS

components as that is original network, whereas in rescaling the number of components was

rescaled to meet the needs of larger sized network with random probability parameter β = 1

and minimum probability p = 0.5 (discussed in previous section). Since, Net1 Rossman is a

small network (11 nodes and 15 edges), we generated a much larger network by recursively

4.7 generating rescaled networks from the original Network such that the final generated

network is rescaled to at least 22 times the original network. We then ran the hydraulic

simulation for these networks using EPANet software. The summary and visualization of
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Iteration Junctions Pipes Pumps Tanks Reservoirs

Original Network 9 14 1 1 1

1 56 76 1 1 1

2 126 169 2 2 1

3 231 308 1 1 1

Table 4.2: Summary of WDS Components in synthetic WDS generated from Net1 Rossman
Network

Network Junctions Pipes Pumps Tanks Reservoirs

Original Network 399 443 11 7 1

Replicated Network 401 464 2 5 1

Rescaled Network 814 1048 6 11 1

Table 4.3: Summary of WDS Components in synthetic WDS generated from d-town Net-
work

generated WDSs is represented in Tables 4.7-4.7 and Figures 4.7-4.7

Our results indicate that our Water Distribution system can generate synthetic WDS

that preserve the topological as well as physical design of the original WDS. The generator

is also successful in replicating the small communities with similar degree, elevation and

demand junctions as found in real-world network which is used as the input to our model.
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Network Junctions Pipes Pumps Tanks Reservoirs

Original Network 1533 3401 5 4 1

Replicated Network 1496 1664 3 3 1

Rescaled Network 3130 3833 3 6 1

Table 4.4: Summary of WDS Components in synthetic WDS generated from Charleston
Network

a b

c d

Figure 4.1: Visualization of input network Net1 Rossman and generated synthetic networks
on EPANet software. (a) Original Input Network (b) Synthetic WDS rescaled to at least 7
times (c) Synthetic WDS rescaled to at least 7 times (b) Synthetic WDS rescaled to atleast
14 (d) Synthetic WDS rescaled to atleast 22.
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a b c

Figure 4.2: Visualization of input network d-town and generated synthetic networks on
EPANet software. (a) Original Input Network (b) Synthetic WDS by replication (c) Syn-
thetic WDS rescaled to at least 2 times.
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a b c

Figure 4.3: Visualization of input network Charleston Network and generated synthetic net-
works on EPANet software. (a) Original Input Network (b) Synthetic WDS by replication
(c) Synthetic WDS rescaled to at least 2 times.
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Chapter 5

Optimizing Water Distribution

System Components

The WDS design is a discrete non-linear NP-hard optimization problem. The con-

straints are functions of decision variables such as pipe and tank diameters, pump sizes and

operation status (ON and OFF) and is calculated by hydraulic simulation which requires

solving conservation of mass and energy. Also, the objectives such as cost and reliability

are multi modal convex function. As such we rely on evolutionary algorithms such as ge-

netic algorithm, evolution strategy , differential evolution etc. to find an optimal solution

to such a problem. In this thesis, we used NSGAII [10] genetic algorithm to solve WDS

optimization problem.

5.1 Objectives

In this thesis, we optimize the generated water network for two objectives, maximum

resilience and minimum cost.

Resilience: In this thesis, a weighted metric called resilience is utilized where the

reliability of the WDS is measured and maximized. This metric is weighted for the case

study since the hydraulic simulation is associated with extended period of 24 hours and
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Diameter (in) 6 8 10 12 14 16 18 20 24 30

Cost (USD) 137.76 191.552 242.064 314.224 389.664 469.04 554.32 646.816 828.528 1135.208

Table 5.1: Diameter of Pipe vs Cost

Tank Volume (cubic ft) 50000 100000 250000 500000 1000000

Cost (USD) 115000 145000 325000 425000 600000

Table 5.2: Volume of Tank vs Cost

there is a demand pattern involved at an hourly intervals. The resilience is the ratio of

total energy of the demand nodes and energy provided by the source nodes. The energy of

a node is a product of head and demand. In our energy quantification we consider a tank

as demand node when it is filling whereas when it is considered source when it is providing

water to the system.

Cost: In our optimization model we include design as well as operational cost. The

design cost is the summation of cost of pipes, pumps and tanks whereas the operational

cost is calculated based on the energy used by the system over 365 days of operation period.

The cost of pipe and tank is calculated from the diameter of pipe and volume of tank based

on Table 5.1 and Table 5.1

5.2 Constraint

The main constraint for the WDSs design is that an adequate amount of pressure

is delivered that would satisfy customers demand. The evaluation of each design solution

is performed through EPANET solver for an extended period hydraulic simulation to de-

termine the pressures at all the WDS nodes for all design conditions, and the accumulated

sum of the nodal pressure shortfalls (NPS) is used as the pressure deficit constraint. In

addition, in this work, the tank characteristics are treated as independent design variables.

In particular, the design top and bottom water levels for all tanks are specified for each trial

solution. All tanks should empty and fill over their operational ranges during the specified
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Design Pipe Pump Pump Tank Min. Tank Max. Tank
Variable Diameter Size Control level level Diameter

Value 0-10 1-10 0-1 9-10 25-40 25-100

Type Integer Integer Integer Real Real Real

Table 5.3: Decision Variables

average demand day, leaving the specified emergency volumes untouched. The actual max-

imum and minimum water levels are then identified for each tank during a 24 h simulation

(over a 24 h operation time). There will in general be a mismatch between the top and

bottom water levels specified and those resulting from the simulation, and also a mismatch

between initial and final water levels. The accumulated sum of the mismatch in levels is

used as the operating level difference (TLD) constraint.

5.3 Decision Variables

Depending on the final generated network components, design decision variables

would be assigned accordingly. The range of each type of variable is given in Table 5.3.

For each pipe, the integer values in the pipe sizes, 1 to 10 correspond to the 10 available

discrete pipe diameters: 152.4, 203.2, 254, 304.8, 355.6, 406.4, 457.2, 508, 609.6, and 762

mm (6, 8, 10, 12, 14, 16, 18, 20, 24, and 30 inches). For each pump design variable, the

integer values in the pipe sizes, 1 to 10 correspond to the 10 available discrete pump curves

5.3. In addition, given a 24 h operation cycle and 1 h time step, the control variables for

pump status ( 0 OFF, 1 ON) give a further 24 design variables for each pump in the WDS.

Since cylindrical storage tank where used to supply water to the network, For each tank, the

design variables for the new tanks are overflow and minimum normal day elevations, bottom

of tank from minimum normal day elevation, and diameter of each tank (4 design variables

each). Minimum and maximum boundary values for the decision variables of overflow and

minimum normal day elevation, diameter, and bottom of tank from minimum normal day

elevation are also given in Table 5.3.
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Variable Flow Head

1 1000 180

2 2000 200

3 3000 220

4 4000 240

5 5000 260

6 1000 200

7 2000 220

8 3000 240

9 4000 260

10 5000 280

Table 5.4: Values for Pump Curve

Iteration Number of Decision Variable Resilience Cost

1 104 0.353230515057 68873157.0349

2 225 0.731463304832 156375658.068

3 336 No solution No solution

Table 5.5: Computational Results for Optimization Solver for synthetic network generated
by rescaling Net1 Rossman Network

5.4 Experiments and Results

In this thesis, we tested our optimization model by recursively rescaling and opti-

mizing the Net1 Rossman network 4.7 such that the size of generated network is at least

22 times original input network. We used Python implementation of NSGAII [10] genetic

algorithm available in Platypus [16] optimization library. We ran our genetic algorithm

for 1000 generation where each generation has the population size 20000. We further vali-

dated our solution, by importing the solution WDS in EPANet [38] software and running

a 24 hours hydraulic simulation. The computational results for our optimization algorithm

are represented in Table 5.4 and result of EPANet hydraulic simulation are represented in

Figure 5.4

As shown in Table 5.3 our optimization algorithm is successful in finding a feasible

solution for small networks. However, the algorithm fails to obtain a feasible solution as

the number of decision variables is increased. One of the main reasons for this is the
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a b

Figure 5.1: Visualization of solution networks for Optimization algorithm on EPANet soft-
ware with link flow and junction head values after 24 hr simulation. (a) Synthetic WDS
with 76 pipes and 1 pump, tank and reservoir (b) Synthetic WDS with 169 pipes, 2 pumps
and tanks and 1 reservoir

interdependence of decision variables such as pipe diameter and pump size which is not

taken into consideration by a genetic algorithm in which selection of variable values at each

run is based on a random generator.
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Chapter 6

Conclusions

In this thesis, we introduced a multiscale planar graph generation framework and

its implementation using Musketeer framework [15]. We then generated realistic synthetic

Water Distribution Systems by adding physical design features to planar topology generated

by our planar graph generator. Finally, we used genetic algorithm to optimize physical

design and operational features of the generated WDS to obtain a cost efficient and reliable

synthetic WDS. While there are clearly enough space for the improvement of this method,

our 3 step algorithm provides a flexible and fast way to generate functional synthetic from

a known real-world WDS with no manual intervention. Also, the mutiscale planar graph

generator introduced in this thesis, to the best of our knowledge, is the first general purpose

synthetic planar graph generation method that is able to produce realistic instances.

The Water Distribution System generation and optimization pipeline introduced in

this thesis provides several future research directions that can be explored. First, the planar

graph generation method proposed in this thesis offers a generic method to generate planar

graphs across domains while preserving topological properties. However, the generator can

be customized to replicate specific characteristics found in water networks such as maximum

degree, size and number of communities, number of cycles etc. by controlling the size of

aggregates during coarsening and introducing specific editing instead of random editing.

In this thesis, the assignment of WDS components such as pipes, pumps, tanks,
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reservoir etc. to nodes and edges of the generated graph is based on various assumptions

and specific characteristics found in real-world water networks. In addition, we currently

determine the values to the physical design parameters such as pipe diameter and tank

diameter, tank sizes etc. randomly. This however often generates a non-feasible WDS. As a

future research direction we propose an algorithm that iteratively assigns components and

the physical design parameters based on the network requirements.

As discussed in Section 5.4 as the size of decision variables increases the genetic

algorithm fails to find a feasible solution further work needs to be done to improve the op-

timization solver. As a possible next step we would like to investigate the inter-dependency

of various decision variables e.g. pipe diameters vs pump sizes to reduce the number of

decision variables.
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