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Abstract

The study of network representations of physical, biological, and social phenomena
can help us better understand their structure and functional dynamics as well as formulate
predictive models of these phenomena. However, in some applications there is a deficiency
in real-world data-sets for research purposes due to such reasons as the data sensitivity and
high costs for data retrieval. Research related to water distribution networks often relies on
synthetic data because the real-world is data is not publicly available due to the sensitivity
towards theft and misuse.

An important characteristic of water distribution systems is that they can be em-
bedded in a plane, therefore to simulate these system we need realistic networks which are
also planar. Currently available synthetic network generators can generate networks that
exhibit realism but the planarity is not guaranteed. On the other hand, existing water
network generators do not guarantee similarity with the input network and do not scale. In
this thesis, we present a flexible method to generate realistic water distribution networks
with optimized network parameters such as pipe and tank diameters, tank minimum and
maximum levels, and pump sizes. Our model consists of three stages. First, we generate a
realistic planar graph from a known water network using the multi-scale randomized edit-
ing. Next, we add physical water network characteristics such as pumps, pipes, tanks, and
reservoirs to the obtained topology to generate a realistic synthetic water distribution sys-
tem that can be used for simulation. Finally, we optimize the operational parameters using
EPANet simulation tool and multi-objective optimization solver to generate a network with

maximum resilience and minimum cost.
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Chapter 1

Introduction

A network is a representation of a set of entities and the relationships between
them. The network paradigm is often used to represent physical, biological, engineered and
social systems [28]. The study of network representations of physical, biological, and social
phenomena can help us better understand their structure and functional dynamics as well
as formulate predictive models of these phenomena. However, in some applications there
is a deficiency of real-world data-sets for research purposes due to the reasons such as data
sensitivity or high costs for data retrieval.

The problem of data scarcity can be tackled by using synthetic data which can
mimic both the properties and diversity of real world networks. Such synthetic data can be
used for simulations, analysis, and performance/quality verification of algorithms - a crucial
task in algorithm engineering. The importance of synthetic networks is well known in the
field of Water Distribution Systems research because the real-world data is not publicly
available due to the sensitivity [31] of this data towards theft and misuse.

The network topology of water networks undoubtedly plays a key role in the gener-
ation of synthesized Water Distribution System (WDS). In particular, an important char-
acteristic of these networks is that they can be (almost fully in most cases) embedded in
a plane, i.e. are planar graphs. The currently available planar graph generators gener-

ate planar random structure that lack the structural characteristics of real-world networks.



Therefore, the first step we take in this thesis is to model a realistic WDS is generating
a realistic planar topology. However, a true representation of an infrastructure system re-
quires not only the network topology, but also its physical and operational characteristics
such as location and size of pipes, pumps, tanks and reservoirs. This is because the phys-
ical and operational features are crucial in the functioning of a WDS. Therefore, we next
focus on introducing the physical design features such as pipes, pumps, tanks, reservoir etc.
to the generated planar topology to generate a functional WDS. The generated WDS can
successfully mimic properties and characteristics of real-world network and can be used for
simulation.

One of the main goals of a WDS is to satisfy the demand of the network while
minimizing operational cost and maximizing robustness. The WDS design is a discrete
non-linear hard optimization problem that has attracted significant research attention over
decades. In this thesis, we use genetic optimization model coupled with hydraulic solver
EPANet [38] to determine the physical feasibility of the design in terms of pressure and
flow requirements and while minimizing the operational cost and maximizing resilience of

the generated WDS.

1.1 Owur Contribution

In this thesis, we introduce a toolbox of algorithms to generate a synthetic Water
Distribution Network with physical characteristics such as pipes, pumps, junctions, tanks,
and reservoirs with optimized operational parameters such as pipe and tank diameters,
pump sizes, tank minimum and maximum levels etc. Our toolbox has 3 main algorithms,

where each tool can be run independently as well as in conjunction with other.

1.1.1 Generation of Planar Topology

In the first step, we generate realistic planar replicas of a known planar graph that

can be rescaled to much larger graphs. The method follows the multi-scale editing approach



[15] in which a given graph is projected into a hierarchy of its coarsened representations
(coarse graphs) that are then perturbed by edits at various scales of coarseness in the
hierarchy. The method preserves the structural properties including the planarity with
controllable bias, while introducing realistic variability at multiple scales of coarseness.
Because the method belongs to the family of multiscale editing approaches, it generates
planar graphs that attempt to replicate properties of the original graph at all levels of its

coarse-grained resolutions.

1.1.2 Generation of WDS

In this phase we introduce physical and operational water network design features
to generate a functional WDS network from a known planar graph and real-world WDS. In
this process we rely on the input WDS network and various specific characteristics that are
often found in Water networks such as the location of tanks and reservoirs and allocation of
pumps in Water Network to assign the physical features to the planar topology generated

in previous step.

1.1.3 Optimizing the Water Distribution System Components

Finally, we use multi-objective solver to optimize the operational cost and resilience
of the generated WDS. The input to this step is a known water network which can be the
output of previous step or an independent network. We use genetic optimization solver to
generate a optimized network in terms of physical design such as diameter of pumps and
tanks as well as operation to meet the demand of the system during 24 hour operation
period while saving energy and cost of pumps operation.

The first part of this thesis is based on our paper: Varsha Chauhan, Alexander
Gutfraind, and Ilya Safro. Multiscale planar graph generation. arXiv preprint

arXiv:1802.09617, 2018.



Chapter 2

Background and Literature Review

2.1 Network Generation Algorithms

The field of network science and, in particular, network synthesis is vast and cannot
be comprehensively reviewed here. Hence, we focus on several particularly illuminating
approaches for modeling realistic networks that presumably may be applied as or changed
to the first step in realistic planar graph generator. (In contrast to the different versions
of random planar graph generators, there is an obvious lack [3] of planar graph generators
that generate graphs that are similar to the original planar graph. This is the reason,
why practitioners and decision makers use other graph generators in combination with
planarization postprocessing to generate planar and hopefully realistic planar graphs. This
is also a reason for our comparison with these algorithms reinforced with planarization in
the next sections.) These approaches fall into two categories, namely, generative models

and editing models.

2.1.1 Generative models

Generative models typically construct a network starting with an empty or small
seed network and then iteratively add network elements (such as nodes and edges) to match

some properties of a network that has to be replicated. These algorithms attempt to pre-



serve the real network properties over the evolution and growth of the synthetic network.

Important examples of generative models are the following.

ERGM Exponential Random Graph Models (ERGM) [18] are a class of statistical models,
earlier called p-star models, that are popular in the study of large-scale social networks. To
build a network, the ERGM first estimates certain parameters by fitting an observed social
network and then constructs new networks by sampling from the estimated distribution.
For example, in the Bernoulli and Erds-Rnyi ERGM models which generate homogeneous
networks, the parameter space is based on common probabilities for each added connec-
tion, whereas the Chung-Lu ERGM model [1] for large random graph with given degree
distribution, it uses two parameters, namely, o which is logarithmic of number of nodes of
degree 1, and § which is log-log rate of decrease of the number of nodes with a given degree
and is given by [{v|deg(v) = z}| =y = Z—(; The model can generate large graphs which
depict some of the behaviors of massive realistic graphs and also predict the size and num-
ber of large components in the graph from the given values of o and 5. ERGM models are
successful in generating social networks and exhibit realistic degree distributions and small
world structures, but do not give any planarity guarantees, and normally violate planarity.
While potentially, this model could serve as the first step in planar network generation (the
planarity could be one of the properties or it can be applied with subsequent planarization
of synthesized network), we emphasize that it is extremely slow and cannot be applied even

on medium size networks, so we cannot experiment with it and compare to our generator.

BTER Block Two-Level Erds-Rnyi model (BTER) [45] is based on the idea that a network
contains communities that are Erds-Rnyi graphs in which each pair of vertices is indepen-
dently connected with probability p. BTER graphs contain dense Erds-Rnyi communities
that are found in real-world networks. The algorithm is two-phased. In the first phase
a collection of blocks or Erds-Rnyi communities with specified degree distribution is cre-

ated. Then the blocks made interconnected and excess degree nodes are removed based on



Chung-Lu (CL) model [2] such that each subnetwork is well modeled by CL. BTER has
been shown to model realistically a variety of network properties, but as with ERGM, it
gives no guarantees of planarity. Also, whether communities in (almost) planar networks

have hierarchical and connectedness structure similar to BTER model or not is not explored.

RMAT and Stochastic Kronecker Graphs The Recursive Matrix graph generator
introduced by Chakrabarti et al. [7] and its extensions AutoMAT-fast [7] can generate
large-scale complex realistic networks. The generator is based on a recursive algorithm that
operates on the adjacency matrix of the graph by dividing it into four equal-sized partitions
and distributing edges to each partition based on fitting a set of parameters.

The Stochastic Kronecker Graphs (SKG) [23] extends the methods of RMAT. Similarly to
RMAT it is a recursive model, which starts with a small initiator matrix and recursively
produces large graphs by applying Kronecker products. SKG can be interpreted as network
which is a hierarchy of communities which grow recursively to create copies of themselves
and every node has unique set of attributes values. The model can generate graphs with
static patterns such as degree distribution as well as temporal patterns such as diameter
over time. As before, planarity is not guaranteed as well as the community structure simi-

larity with real-world networks that have one.

Multifractal Network Generator In 2010, Pallaa et al. [34] introduced the multifractal
network generator which can generate realistic networks with specified statistical features.
The method starts with defining a generative measure on a single fractal or unit square and
calculating link probability. The network is then scaled to the infinite limit by recursively
dividing the fractal into a number of rectangles and introducing connections between them
based on the link probability. Although this method was able to generate small scale
realistic graphs the recursive method was slow for large complex networks. It is unknown
if the generated networks can be constructed to have planar or quasi-planar structure, but

the random nature of the construction suggests that planarity would be uncommon even in



small graphs. However, the backbone networks generated by this model could be planar and
thus possibly relevant to some infrastructure networks (for example, see major gas pipes in
[27]). Unfortunately, these networks are also very far from being similar to infrastructures

which makes the comparison impossible.

2.1.2 Editing models

The editing models approach starts with a given (real or empirical) network and
controllably introduces random changes to its elements (such as nodes and edges) until
the network becomes sufficiently different from the original network. These changes are de-
signed to introduce variability while preserving key structural properties during the random
editing. Such methods are a promising direction for a relatively more realistic modeling of

networks, and that includes properties such as planarity or near-planarity.

Edge-swapping The edge-swapping method [51, 35]is perhaps the first important algo-
rithm in the class of editing models, and it is based on the insight that the degree distri-
bution of a graph is preserved under a chain of edge-swapping operations. Such a chain
of edge swaps can even asymptotically achieve important mixing properties giving high
variability. Despite these successes, edge-swapping operations can be very disruptive to
planarity and other global properties of the graph, and there are no good post-selection

methods for achieving planarity.

Multiscale Network Generation In [15], several of us proposed a strategy termed MUS-
KETEER (Multiscale Entropic Network Generator) for realistic graph generation. The
main idea was based on the observation that the properties of real networks that should
be preserved during generation are not only those measured at the finest resolution but
also those that can be measured at the coarse resolutions. Multiscale generation leverages
coarsening schemes used in highly-accurate multiscale solvers for combinatorial optimiza-

tion such as linear arrangement, compression and partitioning [36, 17, 42, 40, 43]. In such



coarsening schemes, nodes in a network are assigned into aggregates (or, typically, very
small communities) which are themselves parts of larger aggregates and so on in a hierar-
chical manner. The algorithm was successful in generating a number of replicas for several
real-world original networks, but did not guarantee planarity. This paper continues this line
of research and offers an implementation of the multiscale strategy that actually produces

planar networks.

ReCoN Staudt et al. [49] later used principles similar to those of multiscale method and
developed a fast network generator that could generate large scale replicas of real complex
network that are structurally similar to original network. Instead of leveraging multiscale
coarsening schemes, ReCoN generated synthetic networks by randomizing the edges between
communities which were detected by the community detection methods while keeping the

same degrees of nodes. ReCoN is built on top of the LFR generator implemented in [48].

2.2 Planar Network Generators

Planar graphs are the class of graphs that can be embedded in a two-dimensional
plane without edge crossings. Designing efficient algorithms for planar graphs is an impor-
tant subfield in the area of algorithm development and optimization [25]. From the practical
perspective, the planarity is also an important characteristic of many physical networks such
as roads, utilities, water distribution systems, and some circuit designs. Many of these net-
works are, in fact, almost planar, that is, one can remove typically small fraction of edges
to make them exactly planar. Planar networks with underling graphs have attracted a lot
of attention since a landmark paper by Tutte [52]. Most of the research was dedicated on
the study of structural properties (including their generation) of random planar graphs or
uniform random planar graphs such as triangulations, and meshes. However, the currently
available planar graph generators usually generate uniform random graphs by interpolation

of planar subgraphs or generate planar subgraphs of a non-planar graph. Unfortunately,



they are very far from being practically important for such tasks as generating graphs un-
derlying infrastructure networks since they fail to present most other properties that are
viewed as significant in this area, such as the degree distribution, the community structure
and others. Some important available planar graph generators are discussed below.
Plantri and Fullgen software. Plantri [5] can generate triangulations, quadrangulations,
and convex polytopes using recursive algorithm which is efficient and fast. Fullgen [4]
generates fullereness which are planar cubic graphs with 5 or 6 faces. The important
characteristic of this software is that it generates only one graph as output from a family
of isomorphic graphs saving the space needed to store them. The software also offers the
user the option to restrict adjacent pentagons using an input parameter.

Markov Chain Planar Graph Generator. This algorithm was proposed by Denise et
al. [11] and is based on Markov Chain that generates planar subgraphs from a non-planar
graph. The algorithm defines a Markov Chain on the state space of all subgraphs of the
original graph and transitions as follows. If an edge exists in space, it is deleted. If it is not
present it is added in case it maintains planarity otherwise it is discarded. The method can
successfully generate a planar subgraph in polynomial time.

Delaunay Triangulation and refinement method. This method has been used widely
used by researchers to generate mesh networks. In [46] Shewchuk, presented an implemen-
tation of 2-Dimensional constraint Delaunay triangulation and Ruppert’s [39] Delaunay
refinement algorithm for mesh generation.

Geometric graphs. Gilbert [14] proposed a model to construct random plane networks by
first selecting points in infinite plane based on Poisson process with density D and then con-
necting points based on distance R from each other. The random geometric graphs closely
represent the graphs generated by percolation process through various porous materials and
therefore these graphs are extensively utilized by physicists to study continuum percolation
models. Random geometric graphs also have application in communication networks [3].
Planar ErdosRenyi graph. In 1959, Erdos and Renyi [12] introduced a method to gen-

erate a random graph with N nodes and m edges by connecting the edges randomly with



independent probability p. The Erdos-Renyi planar graph generator generates random pla-
nar graph with uniform probability [11] by rejecting the non planar edges thereby preserving

planarity [11, 13, 24, 3].

2.3 Domain Specific Network generators: Water Distribu-

tion System Generator

WaterNetGen WaterNetGen [26] developed by Murano et al. is an interactive application
developed as an extension to well-known WDS optimization tool EPANET [38], which could
generate small as well as large network topologies by interconnecting subsystems. Water-
NetGen offers an interactive interface through which users can assign WDS components
such as pipes, pumps, tanks, reservoirs etc. to the generated topology. The additional
parameters such as elevation of tanks or nodes and pipe sizes can also be defined by the
user.

Water Distribution System Designer In 2013, Sitzenfrei [47] developed a software
package, Water Distribution System Designer that can generate realistic synthetic water
networks using GIS data such as population density, housing density and elevation as input
data. Sitzenfrei introduced the newly developed graph concatenation approach (GCA) to
generate layout of WDSs. The model concatenates different blocks from a database while
meeting the requirements of the underlying GIS data. The software provided an interactive
GUI to modify all the design parameters by user. The software could generate synthetic
WDSs that reflected geometrical properties such as pipe length and diameter of a real-world

WDSs.

2.4 Optimization of Water Distribution Network Design

The WDS design optimization is a discrete non-linear NP hard computational prob-
lem. Due to the limitation of computational algorithms the problem is tackled using stochas-

tic approach such as genetic algorithm, simulated annealing, shuffled frog-leaping, tabu

10



search algorithm etc.

11



Chapter 3

Generation of Planar Graph

3.1 Multiscale Planar Graph (eneration

Multiscale network generation (MNG) introduced in [15] is an editing model that
generates realistic networks. The proposed multiscale planar graph generator follows the
main ideas of MNG and makes them applicable on planar graphs.

MNG follows a multilevel coarsening/uncoarsening scheme shown in Figure 3.1. We
start with an input graph G and generate a hierarchy of next coarser graphs, Go, G1, ..., G,
where k is the number of coarsest level. The number of coarsened levels depends on the
structure and size of G. If it is too small or too dense at some level then the hierarchy
construction is terminated (i.e., the coarsest level is reached). The definition of coarsened
level is generic and based on the weighted aggregation method for combinatorial optimiza-
tion problems [40, 36, 41, 22]. Currently, it does not depend on the application predefined
aggregates in the network such as knowledge about real communities. However, this process
can be adjusted as we did in [50]. In order to generate a synthetic graph, we introduce a
series of local randomizations at different levels whose numbers can be specified by user
input. If user is interested in only local changes without destroying the global structure
of the network, only fine levels are specified for randomizations. Otherwise, any realistic

changes in global structure will require randomizations at coarse levels. During the un-

12



coarsening, these randomizations are carried forward to the next finer level in the hierarchy.
In Algorithm 1, we describe the sequence of steps in generating planar graph. We will now
discuss each phase and notation in detail and our approach to generate planar graphs using

multiscale method.

Algorithm 1 Multiscale Planar Network Generator MPNG(G;)
1: if G; is not small or too dense or perturbations are required for G; at level i by user
then
Gi+1 < create aggregated network from G; (see Alg. 2)
GY,, < MPNG(Gj41) > Return coarser edited network from recursive call

2

3

4 G;-i/ + interpolateUnedited Aggregates from GY 1
5 G¢ «+ interpolateEdited Aggregates(GY H,ngrl)
6: end if

7: @Q; < measure properties of G;

8: QY «+ editing Gfl preserving ();

9: Return GY

3.1.1 Coarsening

Since the input graph Gj is planar, the coarsened graphs G; are also planar, so we
follow the same coarsening scheme as that in the original MNG. Algorithm 2 describes the

steps involved for generating coarse level graph G, from G;.

Algorithm 2 Coarsening(G;)
1: if @) is not the coarsest graph then
2 Find set of seeds (C') for coarse network G
3 Find fine-level nodes that belong to each aggregate
4: Calculate weight of edges connecting aggregates and weights of coarse nodes
5
6

Return G;11
: end if

We start with finding set of seeds C' and its complement fine-level nodes F' which is
based on two rules, first, nodes with high volume and connectivity (i.e., major aggregates)
are more likely to be included in C' and the nodes in F' should be “strongly” coupled to

enough neighbors in C. To generate coarse level nodes for G; 1 we begin with C' = () and
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Figure 3.1: The V-model for multiscale planar network generation. The original input
planar network is coarsened to generate a hierarchy of coarse networks, the process is then
reversed generating fine-level networks. The number of level (here 5) depends on the size
of input network or the user input.
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F =V, where V; is set of nodes in fine level GG;. Next, we iteratively transfer nodes from F'
to C, such that currently visited node ¢ € F' is added to C' if it is not well connected to those
already chosen to C [40]. The connection strength between nodes i and j is determined
by means of normalized weight of edge ij with respect to C, namely, if node ¢ € F' is not
connected strong enough to currently chosen C, i.e.,

Ejec w(ij)

m < a, (3-1)

then we move ¢ to C. The connection strength is parametrized using threshold o which is
in all experiments 0.5.

The final phase of coarsening is computing the connection strength between the
coarse nodes. Here we define the algebraic multigrid interpolation matrix P of size |V| x |C]|
(for details see [40]) in which P;; represents the likelihood of i to belong to the j* aggregate.
The Laplacian of the coarse graph G411, Lit1, can be calculated by the algebraic multigrid

coarsening operator L;,1 < PTL;P where, L; is the Laplacian of ith level graph, and
Pi; ={1, fori € C,j =0, otherwise. (3.2)
The edge ij connecting two coarse nodes 7 and j, is assigned with the weight

and the volume of the i*" coarse aggregate is > v(J) P

To this end the (i+ 1)th level graph is generated, and we can measure the properties
of ¢th level graph and store them in @);. In general, this step is application dependent as
in different applications the preserved properties may vary. Because, in planar graphs
of infrastructures it is important to generate realistic path lengths (e.g., not to create
shortcuts that connect distant regions in a graph), we are sampling using random walks the

distribution of path lengths and shortcuts (second shortest distance between nodes) and
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store them in @; (see [15] for details).

3.1.2 Uncoarsening

Once the coarsest level is reached, we start the uncoarsening. During this process,
at each level 7 + 1 we choose nodes and edges to be edited (randomized while keeping some
properties preserved), to generate edited network GY 1 at level ¢ + 1 and then project the
newly created graph to generate the next finer level GY. The projection is done in two
steps. First, we interpolate the unedited aggregates (nodes and edges) in interpolate-
Unedited Aggregates (Step 3) from GY 41 to generate graph Gf/. This process is just a
reverse interpolation of aggregates based on aggregation data stored in P during the coars-
ening phase, because the input network is planar the interpolation edges do not create
crossing any crossing over edges. This helps in preserving structural properties of original
input network, as after this step we have a subgraph Gf-l/ of original network coarsened at
level ¢ 4 1.

In the next step, we interpolate edited aggregates, by first interpolating nodes and
adding edges that were trapped within aggregated (or coarse) nodes connecting the fine
nodes, i.e., these are edges that connect fine nodes that are coarsened within of same coarse
node. Next we interpolate edges in function interpolateEdited Aggrregates to generate
graph Gf by adding new edges to graph generated at step 3. The pseudocode for the
function is presented in Algorithm 4. This interpolation is likely to introduce crossing over
edges, therefore, when we add an edge ¢j to G?, we check if the network is still planar. If
it is not, the edge is discarded. If an edge is discarded, we perform several iterations and
find an edge which is similar to the edge ij using properties stored in (); during coarsening
in Algorithm 1.

After the interpolation is complete and we have a fine-level graph G¢, on which
we introduce randomizations or editing (discussed below in detail) specified by the user at
level i to generate a finer-level random planar network network GY. The topology of the

final network depends on the level at which the changes are introduced and the number
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Algorithm 3 interpolateUnEdited Aggregates (G;)

1: Gf/ + uncoarsen nodes from GY 41 using data stored in P! during coarsening at level
GY

2: Ggl < uncoarsen unedited edges GY 1 using data stored in P? during coarsening at level
GY

3: G¢ + interpolateUnEdited Aggregates(G? 1 G4

4: Return GY

Algorithm 4 interpolateEdited Aggregates (G, , G4)

1: G¢ + uncoarsen nodes from GY,

2: G + uncoarsen edited edges GY,

3: G « interpolateEdited Aggregates(GY, ; , G
4: Return GY

of edited network elements both dependent on user input. At the coarsest level, every
network element is an aggregate which interpolate of many network elements at fine level, a
small change introduced at this level may generate high-entropy changes which are carried
forward to the next fine level, whereas addition of an element at fine levels may introduce
elements to the final synthetic network. In general, the changes introduced to deeper levels

of aggregation, the more significant changes are introduced in the topology.

3.1.3 Editing

In the final phase we measure the properties of the generated graph Gf and compare
with the properties of original graph G; coarsened at level ¢ which is stored in @);, thus
preserving the local topological structure of the network and preventing addition of edges
between nodes which were separated by long distance in original network at coarse level
G; stored in @);. We then use an editing process which introduces randomizations in the
network to generate a synthetic network. This is a process of deleting and adding new edges
both dependent on user input for level i (namely, how much randomization is requires in
scale from 0 (no randomization) to 1 (everything is randomized)), however the network
elements are carefully chosen based on the structure of unedited network at level i. The

number of new edges introduced is dependent on the edge edit parameter. When we insert
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a new edge we preserve the structural properties of the original network in the coarse level.

In particular, we are interested in two properties, namely, second shortest path
length distribution and planarity. The first property is measured and verified similar to
previously introduced [15]. The second property is critical for planarity. If inserting the
new edge makes the network non-planar we discard it and find an alternate edge that pre-
serves the desired structural properties (in this case the first property) as well as planarity.
Technically, it is done by verification of existence of Kuratowski subgraph after adding a new
edge. This step is repeated until we find a non-crossing edge that preserves the planarity

of the network and thus generating synthetic planar graph GY at coarse level 1.

3.1.3.1 Rescaling

Rescaling is a part of the editing phase in which we add new elements (edges and
nodes) to the synthetic network. The scaling factor and the coarsened level at which the
network is rescaled is controlled by node growth parameter which is provided as an input
from the user depending on the user requirement. In general, rescaling at coarsest levels
will preserve the local structure of the input network, i.e. the generated network will have
increased number of communities whereas rescaling at finer levels will increase the size of
communities. The scaling factor ranges from 0 to 1 which decides the percentage of new
nodes that are to be added at the level 7. This is a two step process, first we introduce a new
node (u) and connect to an existing node (v) in the network deleting an existing edge from
v to restore the degree of node v. In the next step, we find neighbors of v iteratively over
increasing distance from v and connect the newly added node u to the neighbors of node v
thus preserving the local topological structure of the network at coarse level G; stored in
Q;. The process is terminated when the desired number of network elements are added and

a rescaled network GY is generated at coarse level i.
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3.2 Computational Experiments

In this section we show the computational results summarizing the performance
of our multiscale planar network generator in replicating the original and also generating
rescaled networks. To test the variability of the generator we used real-world infrastructure
networks such as water distribution system, power grid and road network that are either
planar or have very few edge crossings that we removed. We used the water network from
“The Battle of the Water Networks I1“ [32] and for road network we used a sub graph of
Texas [21] road network from [20]. We also used a finite element large planar sub-graph of
a finite-element graph from Boeing collection in [9]. In case of the power grid [20] which
was not planar, we generated approximate maximal planar subgraph of the network using

Open Graph Drawing Framework (OGDF) [8] to be used as an input to our algorithm.

3.2.1 Replication

We tested our implementation on three sets of parameters, namely, “Musketeer
Coarse” (at only two coarsest levels 5% randomizations are allowed), “Musketeer Fine”
(at only two finest levels 5% randomizations are allowed), and “Musketeer All” (small 1%
randomizations are allowed at all levels). Because randomizations and editing are introduced
at all levels, even very little changes at the coarse levels will result in significant changes at
the finest level in generated synthetic graph.

We generated 30 network replicas for each network and compared the replicas with
the original network based on the following metrics: number of nodes and edges, number of
components, clustering coefficient, average degree, total degree-degree assortativity, average
harmonic distance, modularity, pagerank and average betweenness centrality. We also com-
pared our results with the existing generative models implemented in [48], namely, ReCoN,
RMAT and BTER and stochastic Kronecker graphs by generating replicas of same input
network. Since, these models do not necessarily generate planar network, we post-processed

the generated networks to find the maximal planar subgraph of the replicas using OGDF
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library which uses edge removing technique, i.e., it adds one edge at a time while preserving
planarity, if addition of the edge results in a non-planar graph then the edge is discarded thus
generating a planar subgraph. We compared the generated planar graphs with the original
graphs for the structural properties mentioned above. Clearly, one may argue that these
generators were not developed to planar networks. We, however, note that these meth-
ods with planarization post-processing were chosen because there is no other acceptable
solution to generate more or less realistically looking planar network that is similar to the
original. As mentioned earlier, the available planar graph generators are generative models
which either create specific classes of graphs with restricted values for minimum degree
and connectivity (e.g., plantri and fullgen or Delaunay triangulation methods) or generate
random realistic spatial networks based on give probability p (e.g., planar ErdosRenyi, and
spatial Watts-Strogatz generator). Other examples include domain specific generators for
road networks (e.g., StreetGen) and power grid random networks that are not necessarily
planar networks. To the best of our knowledge, there is no domain independent generator
whose goal is to preserve similarity with the input network.

The structural properties of the replicas were normalized such that 1 denotes the
property of original network. We performed 30 experiments for each set of parameters
the results for which is graphically represented in Figures 3.2-3.9. Our results indicate
that multiscale planar graph generator can generate replicas that preserve almost all the
properties of the original networks with relatively small deviation. Also, we observe that
graphs generated by BTER and RMAT after planarization are close to original network
(within 0 — 2, where 1 represents the property of original input network after normalization)
for properties such as average degree and mean harmonic distance whereas the properties
for networks generated by stochastic Kronecker graphs (SKG) are far from those in the
original graphs. As such the plots for properties for the networks generated by SKG are not
represented in the plots. However, we note that the distortion of properties on the replicas
by other network generators may have been the result of the post-processing step (maximal

planar sub-graph of the generated replica), which often created more than one connected
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Figure 3.2: Computational results on performance of planar Musketeer on power grid graph
opsahl-powergrid with 4941 nodes and 6211 edges for clustering coefficient, number of edges,
mean eccentricity, total degree *degree assortativity, modularity and average degree.

components.

3.2.2 Rescaling

Our second set of experiments was designed to generate rescaled networks. We tested
our implementation on three sets of parameters, namely, “Musketeer Coarse” (30% edge
and node addition on 4 coarsest levels are allowed), “Musketeer Fine” (30% edge and node
addition on 4 finest levels are allowed), and “Musketeer All” ( 15% edge and node addition
at all levels are allowed). The parameters are chosen such that the generated network has
3 — 4 times the number of nodes and edges than the original network. We generated 30
rescaled replicas for the same dataset as used in our previous experiment and compared the
generated networks with the original network based on the following metrics: number of

components, clustering coefficient, average degree, total degree-degree assortativity, average
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Figure 3.3: Computational results on performance of planar Musketeer on power grid graph
opsahl-powergrid with 4941 nodes and 6211 edges for number of nodes, harmonic mean path,
number of components, average shortest path and average betweenness centrality.

harmonic distance, modularity, pagerank and average betweenness centrality.

The structural properties of the replicas were normalized such that 1 denotes the
property of original network. The comparison for 30 experiments is presented in Figures 3.9-
3.12. As depicted in the plots we are able to preserve almost all the properties of original
network even when the network is rescaled to more than 3 times the original network.
Also, there is no significant variance observed in properties for the three different sets of
parameters (coarse,fine and all) used to generate rescaled networks. However, we observed
that rescaling by introducing elements at finer levels results in high clustering coefficient in
generated network. This is because the planarity constraint restricts addition of long edges
(edges between nodes which are far from each other) which in turn forces the algorithm to
connect new elements locally at each level . In case the network elements are introduced
at coarsest levels, the locally added edges and nodes are uncoarsened to several finer edges
and nodes over the V-cycle of coarsening and uncoarsening, and the near neighbors at level
i are drifted apart at level ¢ + 1.However, network elements added at fine levels are not

drifted as a result of levels of coarsening and uncoarsening as described above, and the
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Figure 3.4: Computational results on performance of planar Musketeer on finite-element
graph with 4704 nodes and 13427 edges for clustering coefficient, number of edges, mean
eccentricity, total degree *degree assortativity, modularity and average degree.

edges still connect the nodes locally. Hence, we observe an increased number of triangles
(Figure 3.10) or high clustering coefficient (Figures 3.11 - 3.14) for networks generated
by introducing elements at fine level as compared to coarse level. As depicted in Figure
3.10 when the network is rescaled by introducing new elements at only coarse levels, we find
larger communities (e.g., mesh structures in case of our input road network) in the generated
network, whereas if the network is rescaled at fine level we observe smaller communities.
The amount of new introduced elements can be controlled by user input which is provided
as node growth parameters (from 0 to 1) at certain levels. In our experiment we used 0.3 as
node growth rate for coarsest and finest level and 0.10 when introducing network elements

at all levels.
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Figure 3.5: Computational results on performance of planar Musketeer on finite-element
graph with 4704 nodes and 13427 edges for number of nodes, harmonic mean path, number
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Figure 3.7: Computational results on performance of planar Musketeer on real water net-
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Figure 3.8: Computational results on performance of planar Musketeer on road network
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(b) Rescaled by introducing network
elements at all levels

(c) Rescaled by introducing network (d) Rescaled by
elements at coarsest levels introducing network
elements at fine levels

Visualization of subgraph (900 nodes) of network generated
rescaling by introducing network elements at finest levels (Fig.d)

Figure 3.10: Visualization of a road network from roadNet-TX with 2001 nodes and 2957
edges rescaled to at least 5900 nodes and 7000 edges.
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Figure 3.13: Computational results for finite-element graph with 4704 nodes and 13427
edges rescaled to at least 12700 nodes and 36000 edges.
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Figure 3.14: Computational results for power grid graph opsahl-powergrid with with 4941
nodes and 6211 edges rescaled to at least 16500 nodes and 27000 edges.

29



Chapter 4

Generating WDS from Planar

Topology

A practical representation of an infrastructure network that can be used by the
domain experts requires not only the network topology, but also its physical and operational
characteristics. In this thesis we generate a synthetic Water Distribution System (WDS)
with realistic topology as well as physical design features such as pipes, pumps, tanks
and reservoirs. We try to replicate the input WDS, as such the physical features such as
number of tanks and reservoir and parameters such as demand and elevation are based on
the input WDS. However, features such as location of tanks and reservoir are based on
specific characteristics often found real-world water networks. The generated WDS is in
“.inp“ format and can be interpreted by various available hydraulic solvers such as EPANet.
In the following section we will discuss each feature and the parameter values for each in

detail.

4.1 Assigning coordinates

This is the first step in the generation of WDS from a planar topology. Planar

embedding of planar graphs is a well known problem with a variety of applications such as
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circuit design and infrastructure networks. There are various drawing methods for planar
embedding [29] such as straight-line drawing and polyline drawing. There exist a number
of algorithms such as [33], and [44]) for constructing planar embedding in O(n?) or faster
time. In our model, we use popular visualization algorithms neato [30] and Forceatlas2 [19]
to generate nearly planar layout of the generated planar graph. The number of iterations
of graph visualization algorithms can be controlled by user. The returned positioning map
in x,y coordinate space for nodes are written as ”"Coordinates” in the generated file. At

the end of this step we have a network representation of an geographical area.

4.2 Reservoirs

A Reservoir represents an unlimited source that provides the network with water.
In order to assume that the generated water network is a potential valid network, it must
have at-least one reservoir/ tank. In case the generated network is rescaled such that it is
larger than the original network then we increase the number of reservoirs by the rescaling
factor while also introducing a decreasing probability factor 8 which adds a randomization
factor and also restricts assignment of improbable or unrealistic number of reservoirs in the
generated network.

Since in reality, a reservoir is more often a lake or river which is connected to the
entire network, we make an assumption for a border location for the reservoir and find a
node in our generated topology which lies on the boundary of the network and is connected
to the remaining network with a single edge. In order to find the boundary nodes we use the
position coordinates generated in previous step and create a set R, such that coordinates of
nodes in R are boundary points in the previously generated layout. Our next step is based
on the assumption that a reservoir is connected to network through single pipe/pump, as
such we filter the selected nodes based on degree, namely, if the degree is greater than 1
the node is removed from R. Next, we randomly choose nodes from the set R and label

the node as reservoir and repeat the process until we have allocated the required number
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of reservoirs. Finally, we assign some user specified value to various reservoir parameters

such as “head”.

4.3 Tanks

Tanks play a significant role in the WDS design and operation. Using tanks storage
capability, the WDSs design to be redundant, resourceful, and reliable in case of contin-
gencies. In our model we assign tanks by first dividing the network into clusters such that
they mimic the real-world WDS, this is achieved by minimum edge cut partitioning graph
algorithm [6]. We use graph partitioning recursively such that the number of partitions is
equal to number of tanks to be allocated. The partitions can be considered as clusters or
communities found in real-world water networks, where each cluster has a tank.

Next, we introduce randomness using factor '3’ (a random value between 0—1) which
controls addition of unrealistic number of tanks. We select a random node in each partition
which has degree 1 and random value between . If 8 is greater than some defined value p,
we assign the selected node as tank, otherwise no tank is assigned in the partition. We then
repeat the process for each partition assigning tanks in each partition with probability p.

Finally, we assign specified values to parameters such as the minimum level, maxi-
mum level, diameter and elevation tank. For generalization we assign elevation as maximum
elevation of all junctions plus some specified value. The remaining parameters values are
optimized later by our optimization algorithm discussed later. The addition of tanks will al-
low the network to be optimized in terms of operation to secure water delivery to customers

during 24 hour operation period while saving energy and cost of pumps operation.

4.4 Junctions

Junctions will denote the network demand nodes which WDS need to satisfy. After
the Reservoirs and Tanks are assigned, we label the remaining nodes in the graph as junc-

tions. In our generation model, we assign values for junction parameters such as demand
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and elevation that are based on the original input water network. This guarantees that the
generated water network has similar demand nodes and geographical features as the input
network.

We first, create sets E and D which contain elevation and demand values in the
input network, respectively. Next, we assign elevation and demand values to junctions by
randomly choosing values from set £ and D. However, this causes an uneven distribution
of elevation and demand, e.g., a low elevation (demand) node can be in a cluster which has
all high elevation (demand) nodes and may result in an unrealistic network. To solve this
problem, we apply iterative smoothing, such that the neighboring junctions have similar
demand and elevation such that the generated network mimics characteristic of real-world

network.

4.5 Pumps

Pumps are essential component to keep the WDS functional by providing an ade-
quate amount of energy needed for WDS operation. An important property typically found
in real world water networks is that the pumps are often located near the supply nodes
such as reservoirs, and tanks. Our generator replicates this property by utilizing the same
recursive partitioning as used for assigning tanks and assigning pumps by selecting edges
in a partition which has a tank or reservoir, thus guaranteeing the location of pumps is
near the tanks. It should be noted that the direction of flow for the pumps is based on the
assumption that the system is filling water from the reservoirs to the tanks. Finally, we
assign a user defined value to parameters such as pump curve and pattern, which can be

optimized later by our optimization algorithm discussed in next chapter.

4.6 Pipes

Pipes are the veins of the WDSs that carry water through the network. After we

assign pumps, the remaining edges are labeled as pipes. The assigned base values are based
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Network Junctions | Pipes | Pumps | Tanks | Reservoirs
Net1_Rossman 9 14 1 1 1
d-town 399 443 11 7 1
Charleston Network 1533 3401 5 4 1

Table 4.1: Input Networks

on the original input network but can also be provided as user input for pipe parameters
length, diameter, roughness, minorloss and status. We optimize pipe diameter later using
genetic optimization solver discussed in the next chapter.

9y

After assignment of physical features is complete, we write the network in ’.inp

format to generate a network file which can be exported to any hydraulic solver.

4.7 Experiments and Results

In this section we show the computational results summarizing the performance of
our WDS generator in replicating the original and also generating rescaled networks. To test
the variablity of our generated we used 3 different water networks, namely, Net1_Rossman
[37], d-town network from “The Battle of the Water Networks II* [32], and Charleston area
network details for which are provided in Table 4.7.

We tested our model on 2 different parameters, first replication by introducing
1% edits at all levels and second rescaling by introducing 15% growth at each level of
uncoarsening. In case of replication, the generated network has similar number of WDS
components as that is original network, whereas in rescaling the number of components was
rescaled to meet the needs of larger sized network with random probability parameter § = 1
and minimum probability p = 0.5 (discussed in previous section). Since, Net1 Rossman is a
small network (11 nodes and 15 edges), we generated a much larger network by recursively
4.7 generating rescaled networks from the original Network such that the final generated
network is rescaled to at least 22 times the original network. We then ran the hydraulic

simulation for these networks using EPANet software. The summary and visualization of

34



Iteration Junctions | Pipes | Pumps | Tanks | Reservoirs
Original Network 9 14 1 1 1
1 56 76 1 1 1
2 126 169 2 2 1
3 231 308 1 1 1
Table 4.2: Summary of WDS Components in synthetic WDS generated from Net1_Rossman
Network
Network Junctions | Pipes | Pumps | Tanks | Reservoirs
Original Network 399 443 11 7 1
Replicated Network 401 464 2 5 1
Rescaled Network 814 1048 6 11 1

Table 4.3: Summary of WDS Components in synthetic WDS generated from d-town Net-
work

generated WDSs is represented in Tables 4.7-4.7 and Figures 4.7-4.7

Our results indicate that our Water Distribution system can generate synthetic WDS
that preserve the topological as well as physical design of the original WDS. The generator
is also successful in replicating the small communities with similar degree, elevation and

demand junctions as found in real-world network which is used as the input to our model.
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Network Junctions | Pipes | Pumps | Tanks | Reservoirs
Original Network 1533 3401 5 4 1
Replicated Network 1496 1664 3 3 1
Rescaled Network 3130 3833 3 6 1

Table 4.4: Summary of WDS Components in synthetic WDS generated from Charleston
Network
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75.00 75.00
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Flow s . . Flow
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[ ] [ ] @
a i » b

Figure 4.1: Visualization of input network Net1_Rossman and generated synthetic networks
on EPANet software. (a) Original Input Network (b) Synthetic WDS rescaled to at least 7
times (c¢) Synthetic WDS rescaled to at least 7 times (b) Synthetic WDS rescaled to atleast
14 (d) Synthetic WDS rescaled to atleast 22.
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% Elevation

Figure 4.2: Visualization of input network d-town and generated synthetic networks on
EPANet software. (a) Original Input Network (b) Synthetic WDS by replication (c) Syn-
thetic WDS rescaled to at least 2 times.
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Figure 4.3: Visualization of input network Charleston Network and generated synthetic net-
works on EPANet software. (a) Original Input Network (b) Synthetic WDS by replication
(c) Synthetic WDS rescaled to at least 2 times.
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Chapter 5

Optimizing Water Distribution

System Components

The WDS design is a discrete non-linear NP-hard optimization problem. The con-
straints are functions of decision variables such as pipe and tank diameters, pump sizes and
operation status (ON and OFF) and is calculated by hydraulic simulation which requires
solving conservation of mass and energy. Also, the objectives such as cost and reliability
are multi modal convex function. As such we rely on evolutionary algorithms such as ge-
netic algorithm, evolution strategy , differential evolution etc. to find an optimal solution
to such a problem. In this thesis, we used NSGAII [10] genetic algorithm to solve WDS

optimization problem.

5.1 Objectives

In this thesis, we optimize the generated water network for two objectives, maximum
resilience and minimum cost.

Resilience: In this thesis, a weighted metric called resilience is utilized where the
reliability of the WDS is measured and maximized. This metric is weighted for the case

study since the hydraulic simulation is associated with extended period of 24 hours and

39



Diameter (in) 6 8 10 12 14 16 18 20 24

30

Cost (USD) | 137.76 | 191.552 | 242.064 | 314.224 | 389.664 | 469.04 | 554.32 | 646.816 | 828.528

1135.208

Table 5.1: Diameter of Pipe vs Cost

Tank Volume (cubic ft) | 50000 | 100000 | 250000 | 500000 | 1000000
Cost (USD) 115000 | 145000 | 325000 | 425000 | 600000

Table 5.2: Volume of Tank vs Cost

there is a demand pattern involved at an hourly intervals. The resilience is the ratio of
total energy of the demand nodes and energy provided by the source nodes. The energy of
a node is a product of head and demand. In our energy quantification we consider a tank
as demand node when it is filling whereas when it is considered source when it is providing
water to the system.

Cost: In our optimization model we include design as well as operational cost. The
design cost is the summation of cost of pipes, pumps and tanks whereas the operational
cost is calculated based on the energy used by the system over 365 days of operation period.
The cost of pipe and tank is calculated from the diameter of pipe and volume of tank based

on Table 5.1 and Table 5.1

5.2 Constraint

The main constraint for the WDSs design is that an adequate amount of pressure
is delivered that would satisfy customers demand. The evaluation of each design solution
is performed through EPANET solver for an extended period hydraulic simulation to de-
termine the pressures at all the WDS nodes for all design conditions, and the accumulated
sum of the nodal pressure shortfalls (NPS) is used as the pressure deficit constraint. In
addition, in this work, the tank characteristics are treated as independent design variables.
In particular, the design top and bottom water levels for all tanks are specified for each trial

solution. All tanks should empty and fill over their operational ranges during the specified
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Design Pipe Pump | Pump | Tank Min. | Tank Max. Tank
Variable | Diameter Size Control level level Diameter
Value 0-10 1-10 0-1 9-10 25-40 25-100
Type Integer | Integer | Integer Real Real Real

Table 5.3: Decision Variables

average demand day, leaving the specified emergency volumes untouched. The actual max-
imum and minimum water levels are then identified for each tank during a 24 h simulation
(over a 24 h operation time). There will in general be a mismatch between the top and
bottom water levels specified and those resulting from the simulation, and also a mismatch
The accumulated sum of the mismatch in levels is

between initial and final water levels.

used as the operating level difference (TLD) constraint.

5.3 Decision Variables

Depending on the final generated network components, design decision variables
would be assigned accordingly. The range of each type of variable is given in Table 5.3.
For each pipe, the integer values in the pipe sizes, 1 to 10 correspond to the 10 available
discrete pipe diameters: 152.4, 203.2, 254, 304.8, 355.6, 406.4, 457.2, 508, 609.6, and 762
mm (6, 8, 10, 12, 14, 16, 18, 20, 24, and 30 inches). For each pump design variable, the
integer values in the pipe sizes, 1 to 10 correspond to the 10 available discrete pump curves
5.3. In addition, given a 24 h operation cycle and 1 h time step, the control variables for
pump status ( 0 OFF, 1 ON) give a further 24 design variables for each pump in the WDS.
Since cylindrical storage tank where used to supply water to the network, For each tank, the
design variables for the new tanks are overflow and minimum normal day elevations, bottom
of tank from minimum normal day elevation, and diameter of each tank (4 design variables
each). Minimum and maximum boundary values for the decision variables of overflow and
minimum normal day elevation, diameter, and bottom of tank from minimum normal day

elevation are also given in Table 5.3.
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Variable | Flow | Head
1 1000 | 180
2 2000 | 200
3 3000 | 220
4 4000 | 240
5 5000 | 260
6 1000 | 200
7 2000 | 220
8 3000 | 240
9 4000 | 260

10 5000 | 280

Table 5.4: Values for Pump Curve

Iteration | Number of Decision Variable Resilience Cost
1 104 0.353230515057 | 68873157.0349
2 225 0.731463304832 | 156375658.068
3 336 No solution No solution

Table 5.5: Computational Results for Optimization Solver for synthetic network generated
by rescaling Net1l_Rossman Network

5.4 Experiments and Results

In this thesis, we tested our optimization model by recursively rescaling and opti-
mizing the Netl_Rossman network 4.7 such that the size of generated network is at least
22 times original input network. We used Python implementation of NSGAII [10] genetic
algorithm available in Platypus [16] optimization library. We ran our genetic algorithm
for 1000 generation where each generation has the population size 20000. We further vali-
dated our solution, by importing the solution WDS in EPANet [38] software and running
a 24 hours hydraulic simulation. The computational results for our optimization algorithm
are represented in Table 5.4 and result of EPANet hydraulic simulation are represented in
Figure 5.4

As shown in Table 5.3 our optimization algorithm is successful in finding a feasible
solution for small networks. However, the algorithm fails to obtain a feasible solution as

the number of decision variables is increased. One of the main reasons for this is the
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a b

Figure 5.1: Visualization of solution networks for Optimization algorithm on EPANet soft-
ware with link flow and junction head values after 24 hr simulation. (a) Synthetic WDS
with 76 pipes and 1 pump, tank and reservoir (b) Synthetic WDS with 169 pipes, 2 pumps
and tanks and 1 reservoir

interdependence of decision variables such as pipe diameter and pump size which is not

taken into consideration by a genetic algorithm in which selection of variable values at each

run is based on a random generator.
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Chapter 6

Conclusions

In this thesis, we introduced a multiscale planar graph generation framework and
its implementation using Musketeer framework [15]. We then generated realistic synthetic
Water Distribution Systems by adding physical design features to planar topology generated
by our planar graph generator. Finally, we used genetic algorithm to optimize physical
design and operational features of the generated WDS to obtain a cost efficient and reliable
synthetic WDS. While there are clearly enough space for the improvement of this method,
our 3 step algorithm provides a flexible and fast way to generate functional synthetic from
a known real-world WDS with no manual intervention. Also, the mutiscale planar graph
generator introduced in this thesis, to the best of our knowledge, is the first general purpose
synthetic planar graph generation method that is able to produce realistic instances.

The Water Distribution System generation and optimization pipeline introduced in
this thesis provides several future research directions that can be explored. First, the planar
graph generation method proposed in this thesis offers a generic method to generate planar
graphs across domains while preserving topological properties. However, the generator can
be customized to replicate specific characteristics found in water networks such as maximum
degree, size and number of communities, number of cycles etc. by controlling the size of
aggregates during coarsening and introducing specific editing instead of random editing.

In this thesis, the assignment of WDS components such as pipes, pumps, tanks,
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reservoir etc. to nodes and edges of the generated graph is based on various assumptions
and specific characteristics found in real-world water networks. In addition, we currently
determine the values to the physical design parameters such as pipe diameter and tank
diameter, tank sizes etc. randomly. This however often generates a non-feasible WDS. As a
future research direction we propose an algorithm that iteratively assigns components and
the physical design parameters based on the network requirements.

As discussed in Section 5.4 as the size of decision variables increases the genetic
algorithm fails to find a feasible solution further work needs to be done to improve the op-
timization solver. As a possible next step we would like to investigate the inter-dependency
of various decision variables e.g. pipe diameters vs pump sizes to reduce the number of

decision variables.
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