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Abstract

Diffuse Optical Tomography (DOT) is an emerging modality for soft tissue

imaging with medical applications including breast cancer detection. DOT has many

benefits, including its use of non ionizing radiation and its ability to produce high

contrast images. However, it is well known that DOT image reconstruction is unstable

and has low resolution. DOT uses near infra-red light waves to probe inside a body;

for example, DOT can be used to measure the changes in the amount of oxygen

in tissues, which can detect early stages of cancer in soft tissues such as the breast

and brain. In this thesis, we perform dimensional analysis to obtain a dimensionless

form of the ODE for the 1-d DOT model and the PDE for the 2-d DOT model. We

later solve the 1-d cases using the finite element method (FEM) in MATLAB. We

investigate whether the inverse problem using the dimensionless scaled forward DOT

model will improve the ill-posedness of the image reconstruction problem in the 1-d

case. We solve the inverse problem for DOT image reconstruction by reformulating

the inverse problem as a variationally constrained non-linear optimization problem

and compare solving the optimization problem for specific cases of the 1-d DOT model

with Newton’s iteration versus the traditional Gauss-Newton method. We observe the

effects of different regularization parameters and step lengths on the reconstructions

for Newton’s iteration. We also observe the effect of moving the inclusion away from

the boundary during image reconstruction. Using the optimally derived regularization
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parameter from the noise-free data, we reconstructed the parameter space by adding

different levels of noise to the synthetic data. Based on our simulations in 1-d, we

conclude that the scaled inverse problem is still ill-posed but that the variational

approach provides a better reconstruction than the Gauss-Newton method.
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a Left end point of interval
b Right end point of interval
J Cost Functional
Q Location of observation
L Lagrangian
λ Vector of Lagrangian parameters
nf Number of mesh points for the forward problem
nI Number of mesh points for the inverse problem
A Discretized matrix

[a, b] Ω
p Number of experiments
D∗ Background distribution of D
p̂ Column vector of unknown exponent
q∗ Optimal Value of optical parameters
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Chapter 1

Introduction

Over the last decades, research in the field of bio-medical imaging has ex-

panded a lot. There has been considerable new research development in bio-medical

imaging using optical tomography, in particular diffuse optical tomography. Optical

imaging/tomography is a technique for non-invasive imaging inside the body, similar

to X-ray imaging. But, unlike X-rays, which use ionizing radiation, optical tomogra-

phy uses low-energy visible or near infra-red light (NIR) and the special properties

of photons to obtain detailed images of bodily organs and tissues. A few advantages

of optical imaging are the following: (i) the low energy light is non-ionizing and thus

not harmful to tissues; (ii) the medical imaging devices cost less than the existing

devices; and (iii) the optical parameters are helpful in providing functional rather

than anatomical information [1]. As the tissues have different absorption and scat-

tering properties within the wavelength, other imaging techniques fail to distinguish

different kinds of soft tissues. Optical tomography uses the absorption and scattering

properties, which has the advantage of being able to detect the deformities or abnor-

malities in soft tissues.

Due to its effectiveness in detecting abnormalities in soft tissues, one of its most im-
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portant applications is in breast cancer detection or mammography, where light can

penetrate more easily.

However, diffuse optical tomography (DOT) uses lower doses of X-rays than

other medical imaging techniques, which causes these X-rays to not easily penetrate

the tissues and requires the use of plates to spread the tissue apart by compressing the

breasts. Although X-rays have harmful radiation and are expensive, it is considered

one of the most useful techniques because of its stability during inversion. Optical

tomography, on the other hand, reduces the use of X-rays; however, the inverse prob-

lem suffers from ill-posedness, non-uniqueness and instability due to the noise in the

data. Overcoming these issues during inversion in optical imaging has posed a major

hurdle in the process of making DOT more accessible in practice rather than just

attractive in theory. The derivation of the DOT forward model and its boundary

conditions has already been established in many existing literature.

The physical behavior of a system for a given set of known input parameters is pre-

dicted by solving forward problem of a mathematical model. However, the inverse

problem is to predict the input parameters of the physical system by using observed

data from the system that is modeled with the given forward problem. Inverse prob-

lem appears in a vast number of different major areas, such as medical imaging,

geophysics, astronomy, oceanography, weather prediction, non destructive testing,

and many more but in most cases suffers from ill-posedness.

Definition 1.1 (Hadamard’s definition of well-posed) A problem is well-posed if

(i) a solution exists,

(ii) the solution is unique, and

(iii) the solution depends continuously on the data. If a solution is not well-posed,

then it is called ill-posed.
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Computed Tomography (CT), widely known as the CT Scan, is another branch of

medical imaging. This process uses X-rays to produce 2-d cross sectional images of

the body’s bones, soft issues, and blood vessels. These images are then stacked to

create 3-d models of specific areas within the body. CT imaging is a nice example of a

linear inverse problem, but, unfortunately, X-rays can damage body cells, which can

actually increase the risk of cancer. Hence, it is desirable to find new non-invasive

medical imaging methods for early detection of cancer. In this thesis, we propose

DOT as a potential non-invasive alternative to CT imaging [7]. In contrast to CT

inverse problem, DOT inverse problems are neither linear nor well-posed, which makes

solving the inverse problem more challenging than other medical imaging techniques.

The outline of the thesis is as follows. In Chapter 2, we introduce the DOT problem,

which contains the analytic setting and framework of the DOT forward and inverse

problems; we provide background on the existence and uniqueness of the forward and

the inverse problems. In Chapter 3, we use the method of dimensional analysis to

develop a scaled version of the 1-d and 2-d DOT models. Here, we consider several

cases using constant and variable parameters for the DOT model. In chapter 4, we

introduce the variational formulation of the DOT inverse problem, suggest a cost

functional for the minimization problem and describe the algorithm for solving the

variational approach for the 1-d DOT model. In chapter 5, we compare the solution

of the scaled and non-scaled 1-d DOT models, and we also compare the FEM for the

regular DOT and dimensionless DOT model. In this chapter, we present the solution

to the DOT inverse problem using simulated data. In chapter 6, we conclude with a

summary and propose future work for this thesis.
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Chapter 2

Diffuse Optical Tomography:

Forward and Inverse Formulation

Diffuse Optical Tomography, well-known as DOT, is a method of imaging that

uses near infrared light waves to create 3-d pictures of tissues inside the body. In this

chapter, we derive the basic setup for the DOT forward and inverse models. We

then present an analytic discussion on the existence and uniqueness of an inverse

and a forward solution to the DOT model and, hence, show the well-posedness of

the forward problem. Finally, we formulate the inverse problem that provides the

foundation for the simulations and experimental verification in Chapter 5. These

formulations are well-known results that can be found in many references and, for a

comprehensive description, see [7, 16, 5].

2.1 Basic Setup of DOT

In optical tomography, an image is constructed by reconstructing the opti-

cal parameters, usually the optical scattering and absorption coefficients, within a
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medium. These optical parameters are determined by illuminating the medium with

a flash of near-infrared light and taking measurements on the surface. Typically this

source is laser light in the visible (about 400 to 700 nm) or near infrared range. By

“near-infrared”, we are referring to wavelengths between 700 and 1000 nanometers

(nm) with most experimental techniques usually falling between 700 nm and 850 nm

[7].

Basically, DOT is a type of optical tomography that involves imaging the interior of

an object in 2-d or 3-d cross sections using optical waves. Biological tissues are a

highly scattered medium, so, as the collimated laser beam passes through the tissue,

some of the light is absorbed by chromophores (such as hemoglobin, lipid and water)

but most of it is scattered. In fact, in the near infrared range, it has been shown that

absorption of light by biological tissue is minimized, so it can penetrate up to about

6 cm in breast tissue and about 2 to 3 cm in the brain and joints [11].

Figure 2.1: Diffuse optical tomography basic set up

The scattered beams are collected at detectors placed on the boundary, and these

surface measurements provide a 2-d image (cross-sectional slice) of the object. The
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data is used to reconstruct the parameters in the form of a spatial map of the tissue’s

absorption and scattering coefficients [11] as demonstrated in Figure 2.1. The reduced

scattering coefficient is the reciprocal of the the average distance traveled by a photon

before its direction is randomized by interaction with another object. The absorption

coefficient is the reciprocal of the average distance traveled by a photon before it is

absorbed. Usually the tumor cells have higher absorption coefficients than normal

cells due to an increased water or ionic concentration. Hence, the absorption and

scattering coefficients of the cells being imaged are the most important parameters

to be determined in most medical applications [11, 17].

The DOT forward problem will be applied to problems, like breast cancer detection,

to determine the measurements, g on the boundary ∂Ω of the medium Ω given a

light source f on the boundary for the given absorption and scattering coefficients µa

and µs. The relationship between these variables is most often described using the

radiative transport equation (RTE):

1

c

∂I

∂t
+ ŝ · ∇I + (µa + µs)I = µs

∫
p(ŝ′, ŝ)I(x, ŝ′)dŝ′, (2.1)

where I(x, ŝ, t), the variable of interest, is the specific intensity, also known as the

spectral radiance (number of photons per unit volume), at position x, in the direction

ŝ at time t [3, 14].

An approximation to the RTE is usually used since it is computationally expensive

and the most common approximation is the diffusion approximation. The model is

very well-known as diffuse optical tomography (DOT). In the time domain mode of

DOT, the forward problem is expressed using the photon diffusion model

− ñ
c

∂u(x, t)

∂t
+∇ ·D∇u(x, t)− µau(x, t) = −S(x, t), (2.2)
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where u is the photon density, ñ is the refractive index of the medium, c is the speed

of the light in a vacuum, S is the strength of the source, D is the diffusion coefficient,

expressed as D = 1
3(µa+µ′s)

, where µa is the absorption coefficient and µ′s is the reduced

scattering coefficient. The diffusion model is a first order approximation to the RTE,

assuming µ′s >> µaand the detector and source are not too close together [3, 11].

2.2 The DOT Forward Problem

The time independent DOT forward problem involves solving an elliptic partial

differential equation with Robin boundary conditions where µa and D are known. The

solution u describes the photon density of the scattered light arriving at the detectors.

The complete DOT experiment is given in the frequency domain by using the Fourier

transform as

−∇ · (D∇u) + (µa + ik)u = 0 in Ω, (2.3)

u+ 2D
∂u

∂n
= f on ∂Ω, (2.4)

−D∂u
∂n

= g on ∂Ω, (2.5)

where D is the diffusion coefficient; µa is the absorption coefficient; k is the wave

number of the modulation frequency of the laser; f is the source; g is a vector of

measurements of the scattered photons on the boundary. Here, Ω ⊂ Rn, n = 2, 3

is assumed to be a bounded, connected Lipschitz domain. Furthermore, in the time

independent (DC) case, for k = 0, the DOT model is given by

−∇ ·D∇u+ µau = 0 in Ω. (2.6)
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Note that D, µa, u are all functions of the spatial variable x. Considering D, µa are

bounded, i.e., there exists constants D0, D1 and µ0, µ1, such that

0 < D0 ≤ D ≤ D1 <∞, 0 < µ0 ≤ µa ≤ µ1 <∞, (2.7)

we can define the parameter space as

Q̃ := {(D,µa) ∈ L∞(Ω)× L∞(Ω) : 0 < D0 < D < D1 0 < µ0 < µ1 < µ1}.

The Dirichlet trace, Robin trace and the Neumann trace can be defined as the fol-

lowing way, respectively.

γD : H1(Ω)→ H1/2(∂Ω) (2.8)

u 7−→ u|∂Ω

γR : H1(Ω)→ H−1/2(∂Ω) (2.9)

u 7−→
(
u+ 2D

∂u

∂n

)
|∂Ω

γN : H1(Ω)→ H−1/2(∂Ω) (2.10)

u 7−→ −D∂u
∂n
|∂Ω

8



The spaces used above are defined as

H1(Ω) := {v ∈ L2(Ω)|
∫

Ω

(|∇v|2 + v2)dx <∞}, (2.11)

H1
0 (Ω) := {v ∈ H1|

∫
∂Ω

vds = 0}, (2.12)

H1/2(∂Ω) ' {γD(v)|v ∈ H1(Ω)/H1
0 (Ω)}, (2.13)

H−1/2(∂Ω) ' {γN(v)|v ∈ H1(Ω)/H1
0 (Ω)}. (2.14)

Typically, these spaces are known as Sobolev spaces. The Sobolev space W k
p (Ω) is the

set of all functions in Lp(Ω) whose weak partial derivatives are also in Lp(Ω). Here

we are considering W k
2 (Ω) = Hk(Ω). Also, H1

0 (Ω) ↪→ H1(Ω) ↪→ L2(Ω), H−1/2(∂Ω) is

the dual space of H1/2(∂Ω).

Now, the inner product for the space H1(Ω) is

〈u, v〉H1(Ω) =

∫
Ω

(∇u∇v + uv)dx. (2.15)

For DOT measurement, g is considered to be in the Sobolev space H−1/2(∂Ω), where

the source is also in H−1/2(∂Ω) and the photon density is inside the medium in the

Sobolev space H1(Ω); although, in practice, L2(∂Ω) and L2(Ω), respectively, are used

in their place [5, 10]. The measurements of g are actually discrete and noisy, so we

cannot truly say g ∈ H−1/2(Ω) [10]. Thus, this replacement is important, but it has

theoretically been shown that for electrical impedance tomography (EIT) and DOT

the choice of inner product does make a difference in the reconstruction [10, 12].

Similarly, although the coefficients D(x), µa(x) are generally assumed to be in L∞(Ω),

in practice D is considered to be in H1(Ω) and µa ∈ L2(Ω) for easier analysis of the

uniqueness arguments [5]. In this chapter, we assume Q̃ ⊆ L∞(Ω) × L∞(Ω) but for

inverse problem we restrict the parameter space Q̃ = H1(Ω)×L2(Ω). Also, the results
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presented here can be extended more generally for D,µa ∈ Lp(Ω) and u ∈ W 1,q [5].

To show the first two conditions in definition 1.1 hold, we use the Lax-Milgram

theorem for bi-linear forms.

Definition 2.1. (Bi-linear form) A map B : V × V → F, where V is a vector

space and F is a field of scalars, is called a bi-linear form if

(i)B(a1u1 + a2u2, v) = a1B(u1, v) + a2B(u2, v) and

(ii)B(u, a3v1 + a4v2) = a3B(u, v1) + a4B(u, v2)

where, u1, u2, v1, v2 ∈ V , a1, a2, a3, a4 ∈ F.

Theorem 2.1. ( Lax Milgram Theorem):

Let B : H × H → R be a bi-linear form on a Hilbert Space, H and 〈., .〉 an inner

product. If B satisfies

1. |B(u, v)| ≤ c1||u||H ||v||H for all u, v ∈ H and some constant, c1 > 0 (bounded)

and

2. B(u, u) ≥ c2||u||2H for all u,∈ H and some constant c2 > 0, (Coercive)

and if F (.) : H → R is a bounded linear functional, then F (v) ≤ c3||v||H .

Then, there exists a unique u, such that B(u, v) = F (v) for all u, v ∈ H.

To obtain the form required in the Lax Milgram Theorem, we find the weak formula-

tion of (2.6). In fact, the weak formulation is necessary to ensure the existence of the

required derivatives. That is we can not guarantee the appropriate smoothness of u

to guarantee the existence of ∇u and ∇· (D∇u) in the strong sense [5, 6]. We require

u to be the Sobolev space H1(Ω) in order to guarantee the appropriate smoothness

for this weak formulation that is the existence of a derivative of u in L2(Ω) [5].
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2.2.1 Well-Posedness of the DOT Problem (Robin Boundary

Condition)

Here, we are considering the DOT problem which is to solve

−∇ · (D∇u) + µau = 0 in Ω (2.16)

u+ 2D
∂u

∂n
= f on ∂Ω (2.17)

for u ∈ H1(Ω). First in order to use Theorem 2.1. we find the weak formulation of

the problem.

−
∫

Ω

(∇ · (D∇u) + µau)vdx =

∫
Ω

0 · vdx∫
Ω

D∇u∇vdx−
∫
∂Ω

D
∂u

∂n
vds+

∫
Ω

µauvdx = 0∫
Ω

D∇u∇vdx+

∫
Ω

µauvdx =

∫
∂Ω

1

2
(f − u)vds∫

Ω

D∇u∇vdx+

∫
Ω

µauvdx+

∫
∂Ω

1

2
uvds =

∫
∂Ω

1

2
fvds

through integration by parts and applying the Dirichlet trace (2.8). From the weak

formulation we define,

B(u, v) =

∫
Ω

D∇u∇vdx+

∫
Ω

µauvdx+

∫
∂Ω

1

2
uvds (2.18)

F (v) =

∫
∂Ω

1

2
fvds. (2.19)

To apply theorem 2.1 we need to prove that B(u, v) has a bi-linear form.

Lemma-2.2. B(u, v) is a bi-linear form.

11



Proof. Let us consider, u, v, u1, u2, v1, v2 ∈ H1, a1, a2, a3, a4 ∈ R are scalars.

B(a1u1 + a2u2, v) =

∫
Ω

D∇(a1u1 + a2u2)∇vdx+

∫
Ω

µa(a1u1 + a2u2)vdx

+

∫
∂Ω

1

2
(a1u1 + a2u2)vds

=

∫
Ω

Da1∇u1∇vdx+

∫
Ω

µaa1u1vdx+

∫
∂Ω

1

2
a1u1vds

+

∫
Ω

Da2∇u2∇vdx+

∫
Ω

µaa2u2vdx+

∫
∂Ω

1

2
a2u2vds

= a1B(u1, v) + a2B(u2, v).

Similarly we can show that

B(u, a3v1 + a4v2) = a3B(u, v1) + a4B(u, v2)

which proves B(u, v) is a bi-linear form.

Next we need to show B(u, v) is bounded and coercive. To make the proof easier, we

define a norm that is more intuitive than the H1 norm to use with our bi-linear form.

Definition 2.2

||u||H1
∗ = (

∫
Ω

(D|∇u|2 + µa|u|2)dx+
1

2

∫
∂Ω

|u|2ds)1/2. (2.20)

Now we will prove the equivalence of this norm to the H1 norm,

Lemma 2.3. The norms ||u||H1 = (
∫

Ω
(|∇u|2 + |u|2)dx)1/2 and ||u||H1∗ are equivalent.

Proof. Recall that, D and µa are bounded on Ω, i.e., D ≤ D1 and µa ≤ µ1. Let

C1 = maxΩ{D,µa}. Also we are using the fact that for a constant C, 1
2

∫
∂Ω
|u|2ds ≤

12



C
∫

Ω
|∇u|2 + |u|2dx, Then

||u||2H1
∗

=

∫
Ω

(D|∇u|2 + µa|u|2)dx+
1

2

∫
∂Ω

|u|2ds

≤
∫

Ω

(C1|∇u|2 + C1|u|2)dx+
1

2

∫
∂Ω

|u|2ds

≤ C1

∫
Ω

(|∇u|2 + |u|2)dx+ C

∫
Ω

|∇u|2 + |u|2dx

= (C1 + C)||u||H1

Next, since D0 ≤ D and µ0 ≤ µa in Ω,

||u||H1 =

∫
Ω

(|∇u|2 + |u|2)dx

≤ 1

D0

∫
Ω

D|∇u|2dx+
1

µ0

∫
Ω

µa|u|2dx

≤ max{ 1

D0

,
1

µ0

}
(∫

Ω

(|∇u|2 + |u|2)dx

)
+

1

2

∫
∂Ω

|u|2ds

≤ max{ 1

D0

,
1

µ0

}
(∫

Ω

(|∇u|2 + |u|2)dx+
1

2

∫
∂Ω

|u|2ds
)

= C2||u||H1
∗ .

Thus we have,

1

C1 + C
||u||2H1

∗
≤ ||u||H1 ≤ C2||u||H1

∗ .

Therefore the two norms are equivalent.

Lemma 2.4. B(u, v) is bounded and coercive.

13



Proof. We use Cauchy-Schwartz inequality to prove B(u, v) is bounded.

|B(u, v)| = |
∫

Ω

D∇u∇vdx+

∫
Ω

µauvdx+

∫
∂Ω

1

2
uvds|

≤
(∫

Ω

|D∇u|2dx
)1/2(∫

Ω

|∇v|2dx
)1/2

+

(∫
Ω

|µau|2dx
)1/2(∫

Ω

|v|2dx
)1/2

+
1

2

(∫
∂Ω

|u|2ds
)1/2(∫

∂Ω

|v|2ds
)1/2

≤ D1

(∫
Ω

|∇u|2dx
)1/2(∫

Ω

|∇v|2dx
)1/2

+ µ1

(∫
Ω

|u|2dx
)1/2(∫

Ω

|v|2dx
)1/2

+ C

(∫
∂Ω

|u|2ds
)1/2(∫

∂Ω

|v|2ds
)1/2

≤ D1

(∫
Ω

|∇u|2 + |u|2dx
)1/2(∫

Ω

|∇v|2 + |v|2dx
)1/2

+ µ1

(∫
Ω

|∇u|2 + |u|2dx
)1/2

(∫
Ω

|∇v|2 + |v|2dx
)1/2

+ C

(∫
∂Ω

|∇u|2 + |u|2dx
)1/2(∫

∂Ω

|∇v|2 + |v|2dx
)1/2

= (D1 + µ1 + C)

(∫
Ω

|∇u|2 + |u|2dx
)1/2(∫

Ω

|∇v|2 + |v|2dx
)1/2

= (D1 + µ1 + C)||u||H1||v||H1 .

Thus B(u, v) continuous if D,µa ∈ L∞. Next, by using Lemma 2.3 we prove coerciv-

ity.

|B(u, u)| = |
∫

Ω

D∇u2dx+

∫
Ω

µ2
adx+

∫
∂Ω

1

2
uds|

= ||u||2H1
∗(Ω)

≥ 1

C2

||u||H1 .

Then we need to show F (v) is a bounded functional of v. Since we have chosen a

closed and bounded domain for our work, it is obvious that F (v) is bounded.

Thus, we have shown all the conditions of Theorem (2.1) are satisfied, so we can

14



conclude that there exists a unique solution u to the DOT forward model. It can be

shown that the third condition of Definition 1.1 is also satisfied, i.e. the solution de-

pends continuously on the data [7, 3], so we can conclude that DOT forward problem

is well-posed.

2.3 Analytical Formulation of the Inverse Problem

We encounter inverse problems in many ways in our daily life. For example,

while buying fruits from a grocery shop, we try to pick the best product looking at it

from outside, i.e., the boundary data, and then we analyze it before deciding which

one to pick. Inverse problems, therefore, are important because of their various forms

of application. A general inverse problem can be represented mathematically with

the equation F (x) = y, where the output y is known as well as the transformation

function F , but the input data x are unknown. If F has an inverse, such problems

are relatively straight forward to solve. However, we know the inverse often does not

exist or can only be approximated numerically. In addition, these approximations are

very unstable, which can lead to a large change in the output from a small change in

the parameters. Thus, inverse problems are often sensitive and do not depend contin-

uously on the data, thereby violating the third condition of Hadamard (see Definition

1.1) and resulting in ill posed problems.

Medical imaging is a natural application of inverse problems as the unknown param-

eters are the geometry and physiological properties of the tissue being imaged. In the

case of optical imaging, like DOT, the “output data” y is the data about the scattered

photons read by the detectors at the boundary of the tissue. Due to the sensitivity of

the unknown parameter values to small perturbations in the data measurements at

the boundary, this problem is ill posed and can only be solved through numerical op-
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timization. Furthermore, due to sensitivity of the solution, regularization is needed.

Here we will discuss, analyze, and solve the inverse problem for DOT.

2.3.1 The DOT Inverse Problem

In the time independent case, also known as the DC case, the model can be

represented as

−∇ ·D∇u+ µau = 0 in Ω, (2.21)

u+ 2D
∂u

∂n
= f on ∂Ω. (2.22)

It has been shown that the unique recovery of the diffusion and absorption coefficients

cannot occur simultaneously [2].

The inverse problem involves estimating the unknown optical parameters, D and

µa, and reconstructing a spatial map of given by boundary data of the scattered

photons collected at the detectors. The DOT inverse problem can be stated as follows:

given data g on ∂Ω, find (D,µa). Thus, if F̃ (q̃) is the forward operator and g are

measurements, then we wish to find q̃ = (D,µa), such that F̃ (q̃) = g, ||F̃ − gδ|| ≤ δ

and gδ is the vector of perturbed measurements from the data given by

gδ = γN F̃ (q∗) + ε,

where γN is the Neumann trace; q∗ are the true optional parameters; ε is the data

noise; and, δ is an upper bound on the noise. Experimentally, this problem is ill-

posed for a finite data set since it is an under-determined system. Now, q̃ is denoted

as the values of optical parameters (D,µa), and q̃0 is denoted as their values on a

homogeneous background (D0, µ0) as their values on a homogeneous background, such
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as healthy tissue. Thus, the image reconstruction problem is to determine q̃ knowing

the complete Robin to Neumann map given by

−∇ · (D∇u) + µau = 0 in Ω, (2.23)

u+ 2D
du

dn
= f on ∂Ω, (2.24)

−Ddu
dn

= g on ∂Ω. (2.25)

Reconstruction is done by minimizing the cost functional,

minq̃∈Q̃J(q̃) =
1

2
||γnF̃R(0, f)− g||2L2(∂Ω) + β||q̃ − q̃0||2, (2.26)

where F̃R(0, f) is forward Robin operator. The second term β||q̃− q̃0||2 in the sum is

the smoothing term, which helps smooth the final image with regularization parameter

β.

2.3.2 Existence and Uniqueness

The inverse problem for DOT is ill-posed because it violates Hadamard’s third

condition of well-posedness. Experimentally (for the finite case), this is due to the

under-determined problem, and theoretically (for the infinite case), the problem is

still unstable because of the noise in the data. Since the forward problem of DOT

is well-posed, it was sufficient to consider q̃ ∈ Q̃. Moreover, we also consider q̃ ∈

{H2(Ω) × L2(Ω), 0 < D0 ≤ D ≤ D1 < ∞, 0 < µ0 ≤ µa ≤ µ1 < ∞}, this assumption

will bring more smoothness in the parameter space and become useful to prove the

uniqueness of the solution to the inverse problem. This existence and uniqueness is

thoroughly discussed in [10], so we do not include the details here.
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Chapter 3

Dimensional Analysis for DOT

3.1 Dimensional Analysis

Dimensional Analysis, also known as Unit-factor method, is a problem solving

method that uses the fact that any number or expression can be multiplied by one

without changing it’s value. This involves the analysis of the relationships between

different physical quantities by identifying their base quantities, such as mass, length,

time etc.

In the initial modeling stage of a problem, one of the simple techniques that is use-

ful is the analysis of the relevant quantities and the dimensional relationship among

them. For example, oranges cannot equal grapes plus apples; equations must have

consistency to them to make a meaningful relationship among the variables. That is,

equations must be dimensionally homogeneous. The methods of dimensional analysis

have led to important results in determining the nature of physical phenomena, even

when the governing equations were not known. This has been especially true in con-

tinuum mechanics out of which the general methods of dimensional analysis evolved.

The major benefits from formulating a dimensionless equation of a problem are (i) the
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formula is independent of the set of units used, and (ii) there are fewer dimensionless

quantities than quantities with dimesions; thus, this formulation is economically more

efficient.

The method of dimensional analysis is based on Pi theorem, which is stated as follows:

if there is a physical law that gives a relation among a certain number of dimensional

physical quantities, then there is an equivalent law that can be expressed as a rela-

tion among certain dimensionless quantities (often noted by π1, π2, ..., and hence the

name) [15]. In the early 1990s, E.Buckingham formalized the original method used

by Lord Rayleigh and gave a proof of the Pi theorem for special cases.

3.1.1 The Pi Theorem [15]

A physical law

p̃(q1, q2, . . . , qm) = 0 (3.1)

that relates to the m dimensional quantities q1, q2, q3, . . . , qm is equivalent to another

physical law

P̃ (π1, π2, . . . , πk) = 0 (3.2)

that relates to k dimensionless quantities π1, π2, . . . , πk that can be formed from q1,

q2, q3, . . . , qm.

Now let L1, L2, . . . , Ln(n < m) be fundamental dimensions. In general, for some

choice of exponents a1i, a2i, ...ani the dimensions of qi, denoted by the square bracket
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notation [qi], can be written in terms of the fundamental dimensions as,

[qi] = La1i1 La2i2 ......Lanin .

Now, if π is a quantity of the form, [π] = qp11 q
p2
2 .....q

pm
m , which is a monomial in the

dimensioned quantities. We need to find all exponents for which [π] = 1, i.e. π is

dimensionless.

[π] = [q1]p1 [q2]p2 .....[qm]pm ,

= (La1i1 La2i2 ......Lanin )p1 .....(La1i1 La2i2 ......Lanin )pm ,

= 1.

The powers of Li must sum to zero to make the quantity dimensionless, and, thus, we

obtain a homogeneous system of n equations in m unknowns p1, p2, p3, ...., pm given

in matrix form by

Ãp̂ = 0

where,

Ã =



a11 . . . . a1m

a21 . . . . a2m

. . . . . .

. . . . . .

an1 . . . . anm


Ã is the n × m matrix, known as the dimension matrix and p̂ = [p1, .....pm]T is a

column vector of the unknown exponents. Solving this system, we get the number
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of independent solutions m− r, where r is the rank of Ã, which follows from a very

well-known result of linear algebra. Recall that, the rank of a matrix is the number of

linearly independent rows, which is the number of non zero rows when the matrix is

reduced to row echelon form. So, the number of independent dimensionless variables

that can be formed from q1, q2, ......, qm is m− r.

We are assuming (3.1) is unit free in the sense that it is independent of a particular

set of units chosen to express the quantities q1, q2, ......, qm.

Definition 3.1 Unit free

The physical law (3.1) is unit free if for all choices of real positive numbers b1, b2, ......, bn,

we have p̃(q̄1, q̄2, ...., q̄m) = 0 if and only if p̃(q1, q2, ......, qm) = 0, where q̄ = bp11 b
p2
2 .....b

pn
n .

Thus, finally we can restate Pi theorem by letting

p̃(q1, q2, ......, qm) = 0 (3.3)

be a unit free physical law that relates to the dimensional quantity q1, q2, q3, ... ,

qm. And, we can let L1, L2, ....Ln(n < m) be the fundamental dimensions. If we form

a matrix Ã (dimensional matrix) with rank r, then there exists m − r independent

quantities π1, π2, .....πm−r that can be formed from q1, q2, q3, ... , qm, and the physical

law is satisfied

P̃ (π1, π2, .....πm−r) = 0. (3.4)
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3.1.2 Proof of the Pi Theorem [15]

We will consider two propositions to prove Pi theorem.

(i) There are (m − r) independent dimensionless variables that can be formed from

q1, q2, ...qm dimensional quantities, where m is the number of dimensional physical

quantity and r is the rank of the dimension matrix Ã.

(ii) If π1, π2, .....πm−r are the m − r dimensionless variables, then two physical laws

(3.3) and (3.4) are equivalent.

The proof of (i) has been outlined earlier. It makes use of the familiar results in linear

algebra that the number of linearly independent solutions of a set of n homogeneous

equations in m unknowns is m− r, where r is the rank of the coefficient matrix. For

example, let π be a dimensionless quantity. Then,

π = qp11 q
p2
2 .....q

pm
m (3.5)

for some p1, p2, .......pm, in terms of the fundamental dimensions L1, .....Ln.

π = [q1]p1 [q2]p2 .....[qm]pm

= (La1i1 La2i2 ......Lanin )p1(La1i1 La2i2 ......Lanin )p2 .....(La1i1 La2i2 ......Lanin )pm

= L
(a11p1+a12p2+......+a1mpm)
1 ...........L(an1p1+an2p2+......+anmpm)

n .

Because [π] = 1, the exponent vanishes, or

a11p1 + a12p2 + ...+ a1mpm = 0,

...

an1p1 + an2p2 + ...+ anmpm = 0.
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By the aforementioned theorem in linear algebra, this homogeneous system has ex-

actly m − r independent solutions [p1, .....pm] that form a basis for the null-space or

kernel of Ã. Each solution gives rise to a dimensionless variables via (3.5). The inde-

pendence of the dimensionless variables is based on linear algebraic independence.

The proof of (ii) makes strong use of the hypothesis that the law is unit free. The

argument is difficult to analyze but for particular case it can be made almost trans-

parent.

3.1.3 Characteristic Scales

To formulate a mathematical model another useful tool is scaling. By scaling

one can reformulate a problem in terms of new, usually dimensionless variables. This

is a very useful procedure, especially when comparisons of the magnitudes of various

terms in an equation are made in order to neglect small terms. This idea is partic-

ularly crucial in the application of perturbation methods to identify small and large

parameters in a problem. Scaling simplifies the problems by reducing the parameters

and also identifies what combination of parameters are important. The characteristic

quantities are formed by taking combinations of the various dimensional quantities

and should be roughly the same order of magnitude of the quantity itself. The model

can then be reformulated in terms of the new variables for the both independent and

dependent variables. The result will be a model in dimensionless form, where all the

variables and parameters in the problem dimensionless. The process is called non-

dimensionalization, or scaling a problem.
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3.2 Dimensional Analysis of 1-d DOT

3.2.1 One Dimensional Form of DOT Model

1-d form of DOT equation can be written as,

− d

dx

(
D
du

dx

)
+ µau = 0, (3.6)

u+ 2D
du

dx
= f. (3.7)

More precisely we can write the equations as

− d

dx

(
D
du

dx

)
+ µau = 0, for a < x < b, (3.8)

u− 2D
du

dx
= f1, for x = a, (3.9)

u+ 2D
du

dx
= f2, for x = b. (3.10)

3.2.2 Dimensional Analysis of 1-d DOT

In the one dimensional DOT model, we are considering the model with respect

to independent variable x, variable of interest photon density u. Also in the model

we have two parameters absorption coefficient µa and diffusion coefficient D. For di-

mensional analysis we can consider a physical law p̃, which relates to four dimensional
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quantities x, u, D, µa where,

p̃(x, u,D, µa) = 0. (3.11)

We are looking for an equivalent physical law that relates to k dimensionless quantities

π1, π2, .....πk that can be formed from x, u, D, µa. The fundamental dimensions of all

of these quantities are:

[x] = L, [u] = L−1, [D] = L, [µa] = L−1. (3.12)

We might proceed as follows: If π is a quantity of the form,

[π] = xp1up2Dp3µa
p4

a monomial in the dimensioned quantities, we want to find all exponents p1, p2, p3, p4

for which π is dimensionless, or [π] = 1. Then,

[π] = [xp1 up2 Dp3 µp4a ] = [Lp1 L−p2 Lp3 L−p4 ] = [Lp1−p2+p3−p4 ]. (3.13)

Now, to make π dimensionless, we write, p1 − p2 + p3 − p4 = 0, i.e, p1 = p2 − p3 + p4.

Thus we obtain a homogeneous system of four equations,



p1

p2

p3

p4


= p2



1

1

0

0


+ p3



−1

0

1

0


+ p4



1

0

0

1


(3.14)
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From this system we have three independent dimensionless variables that can be

formed from x, u, D, µa ,

π1 = xu, π2 =
D

x
, π3 = xµa.

Thus we have the equivalent Physical law of (3.11)

P̃ (π1, π2, π3) = 0. (3.15)

Scaling: We can re-scale π1, π2, π3 where the new dimensionless variables π′1, π′2 are

still form a set of independent quantity, where,

π′1 =
π1

π2

=
xu

xµa
=

u

µa
(3.16)

π′2 =
1

π2

=
x

D
(3.17)

and we can re-write the physical law (3.17) as,

P̃ (π′1, π
′
2) = 0. (3.18)

In terms of our original dimensional variable we than express equation (3.18) as,

u

µa
= h(π′2) (3.19)

=⇒ u = µah(
x

D
) (3.20)

=⇒ u = µah(s) (3.21)

where, s = x
D

is our new variable of interest.
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3.2.3 Dimensionless DOT Model for Constant D, µa

Here we are considering both of the parameters D and µa as constant for the

dimensionless form of DOT model. Now from (3.21) we are calculating the derivatives

of u to rewrite original DOT as a dimensionless form,

ds

dx
=

1

D
,

du

dx
=

d

dx
(µah(s)) =

d

ds
(µah(s)).

ds

dx
= µa

dh

ds

(
1

D

)
=
µa
D

dh

ds
,

D
du

dx
= µa

dh

ds
,

d

dx

(
D
du

dx

)
= µa

d

dx

(
dh

ds

)
= µa

d

ds

(
dh

ds

)
ds

dx
=
µa
D

d2h

ds2
.

Thus equation (3.8) becomes,

−µa
D

d2h

ds2
+ µ2

ah = 0

=⇒ d2h

ds2
− µaDh = 0 (3.22)

with boundary conditions:

µah− 2µa
dh

ds
= f1, for s =

a

D
, (3.23)

µah+ 2µa
dh

ds
= f2, for s =

b

D
. (3.24)
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3.2.4 Dimensionless DOT Model for Constant µa, and Vari-

able D

In this section we have tried to find out dimensionless form of original DOT

for known µa and variable D. Two types of scaling are used here to form a solvable

ODE.

Case 1.

First we try with the same scaling that we used for constant parameters, i.e.

π1 = xu, π2 =
D

x
, π3 = xµa.

We have from (3.21), u = µah(s), where, s = x
D

.

Now we are calculating derivative of s with respect to x, considering D variable

ds

dx
=

1

D
− x 1

D2

dD

dx
=

1

D
− x

D

1

D

dD

dx
=

1

D
− s

D

dD

dx
.

Here details derivation of the derivatives are given step by step.

du

dx
=

d

dx
(µah(s)) =

d

ds
(µah(s)).

ds

dx
= µa

dh

ds

(
1

D
− s

D

dD

dx

)
= µa

dh

ds

(
1

D
− s

D
D′
)
.

Which implies,

D
du

dx
= µa(1− sD′)

dh

ds
.
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Thus we have,

d

dx

(
D
du

dx

)
=

d

dx

(
µa(1− sD′)

dh

ds

)
=

d

ds

(
µa(1− sD′)

dh

ds

)
· ds
dx

=
d

ds

(
µa(1− sD′)

dh

ds

)
· ds
dx

= µa(1− sD′)
d2h

ds2

ds

dx
+ µa

dh

ds
(−D′)ds

dx

= µa(1− sD′)
(

1

D
(1− sD′)d

2h

ds2

)
+ µa(−D′)

(
1

D
− s

D
D′
)
dh

ds

= µa(1− sD′)
(

1

D
(1− sD′)d

2h

ds2
− D′

D

dh

ds

)

finally we can express (3.8) as,

−µa
D

(1− sD′)
(

(1− sD′)d
2h

ds2
−D′dh

ds

)
+ µ2

ah = 0 (3.25)

also the boundary conditions (3.9) and (3.10) becomes,

µah− 2µa(1− sD′)
dh

ds
= f1, for s = a/D, (3.26)

and

µah+ 2µa(1− sD′)
dh

ds
= f2, for s =

b

D
. (3.27)
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Thus, our original DOT model can be expressed as the following dimensionless form

(1− sD′)
(

(1− sD′)d
2h

ds2

)
−D′dh

ds
)− µaDh = 0, (3.28)

h− 2(1− sD′)dh
ds

=
f1

µa
for s =

a

D
, (3.29)

h+ 2(1− 2sD′)
dh

ds
=
f2

µa
for s =

b

D
. (3.30)

Case 2.

In this case we are considering a new scaling for dimensionless variables. Using three

independent dimensionless variables i.e.,

π1 = xu, π2 =
D

x
, π3 = xµa

where, non-dimensional physical law,

P̃ (π1, π2, π3) = 0.

Scaling: We can re-write π1, π2, π3 in the following way assuring independence of the

new variables:

π′1 = π1π2 = uD (3.31)

π′2 = xµa (3.32)

such that

P̃ (π′1, π
′
2) = 0.
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Thus we can write,

uD = h(π′2) (3.33)

=⇒ u =
1

D
h(xµa) (3.34)

=⇒ u =
1

D
h(s) (3.35)

where, s = xµa,

ds

dx
= µa

du

dx
=

d

dx

(
1

D
h(s)

)
=

d

ds

(
1

D
h(s)

)
.
ds

dx
= µa

d

ds

(
1

D
h(s)

)
D
du

dx
= Dµa

d

ds

(
1

D
h(s)

)
d

dx

(
D
du

dx

)
=

d

dx

(
Dµa

d

ds

(
1

D
h(s)

))
= µ2

a

d

ds

(
D
d

ds

(
1

D
h(s)

))
.

Thus equation (3.8) becomes,

−µ2
a

d

ds

(
D
d

ds

(
1

D
h(s)

))
+
µa
D
h(s) = 0 (3.36)

and the boundary conditions (3.9) and (3.10) become,

1

D
h− 2Dµa

d

ds

(
1

D
h(s)

)
= f1, s = aµa, (3.37)

1

D
h+ 2Dµa

d

ds

(
1

D
h(s)

)
= f2, s = bµa. (3.38)

We have solved this dimensionless form of DOT using finite element method and the

results are discussed in details in chapter 5.

31



In the following section we derive the dimensionless form of 2-d DOT model.

3.3 Dimensional Analysis of 2-d DOT Model

In this section we have derived the dimensionless form of 2-d DOT equation

stated in equation (2.21). In two dimensional DOT model we are considering the

model with respect to independent variable x, y and variable of interest is photon

density u. Also in the model we have two parameters absorption coefficient µa and

diffusion coefficient D. For dimensional analysis, we can consider a physical law p̃

which relates to four dimensional quantities x,y u, D, µa where,

p̃(x, y, u,D, µa) = 0 (3.39)

we are looking for a equivalent physical law that relates to k dimensionless quanti-

ties π1, π2, .....πk that can be formed from x,y, u, D, µa. And let the fundamental

dimensions of this quantities are:

[x] = L, [y] = L, [u] = L−2, [D] = L, [µa] = L−1. (3.40)

Now, we might proceed as follows: if π is a quantity of the form,

[π] = [xp1 yp2 up3 Dp4 µp5a ] = [Lp1 Lp2 L−2p3 Lp4 L−p5 ] = [Lp1+p2−2p3+p4−p5 ] (3.41)

a monomial in the dimensional quantities, we want to find all exponents p1, p2, p3, p4, p5

for which π is dimensionless, or [π] = 1. Then, for the dimensionless quantity we need,

p1 + p2 − 2p3 + p4 − p5 = 0,

i.e, p1 = −p2 + 2p3 − p4 + p5.
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Thus we obtain a homogeneous system of five equations



p1

p2

p3

p4

p5


= p2



−1

1

0

0

0


+ p3



2

0

1

0

0


+ p4



−1

0

0

1

0


+ p5



1

0

0

0

1


(3.42)

from this system we have,

π1 =
y

x
, π2 = x2u, π3 =

D

x
, π4 = xµa

where,

P̃ (π1, π2, π3, π4) = 0. (3.43)

Scaling:

π′1 =
π1

π3

=
y

D

π′2 = π4 = xµa

π′3 =
π2π3

π4

=
x2uD

xxµa
=
uD

µa
.
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Thus we can rewrite (3.43) as,

π′3 = h(π′1, π
′
2) (3.44)

uD

µa
= h

(
xµa,

y

D

)
(3.45)

u =
µa
D
h(s1, s2) (3.46)

where s1 = xµa and s2 = y
D

.

Thus, considering both D and µa constant, we have,

∂s1

∂x
= µa,

∂s1

∂y
= 0,

∂s2

∂x
= 0,

∂s2

∂y
=

1

D

∂u

∂x
=

∂u

∂s1

· ∂s1

∂x
+
∂u

∂s2

· ∂s2

∂x
= µa

∂u

∂s1

+ 0 = µa
∂u

∂s1

= µa
∂

∂s1

(µa
D
h
)

=
µ2
a

D

∂h

∂s1

,

∂u

∂y
=

∂u

∂s1

· ∂s1

∂y
+
∂u

∂s2

· ∂s2

∂y
= 0 +

1

D

∂u

∂s2

=
1

D

∂u

∂s2

=
1

D

∂

∂s2

(µa
D
h
)

=
µa
D2

∂h

∂s2

.

Thus

(D∇u) =

(
µ2
a

∂h

∂s1

µa
D

∂h

∂s2

)
. (3.47)

Hence

∂

∂x

(
µ2
a

∂h

∂s1

)
=

∂

∂s1

(
µ2
a

∂h

∂s1

)
· ∂s1

∂x
+ 0 = µ2

a

∂h

∂s1

µa = µ3
a

∂2h

∂s2
1

∂

∂y

(
µa
D

∂h

∂s2

)
= 0 +

∂

∂s2

(
µa
D

∂h

∂s2

)
· ∂s2

∂y
=
µa
D

∂2h

∂s2
2

· 1

D
=
µa
D2

∂2h

∂s2
2

.
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Thus we have,

∇ · (D∇u) = µ3
a

∂2h

∂s2
1

+
µa
D2

∂2h

∂s2
2

.

Finally we can reform our original 2-d DOT as,

−µ3
a

∂2h

∂s2
1

− µa
D2

∂2h

∂s2
2

+ µa
µa
D
h = 0 (3.48)

or we rewrite as,

Dµ2
a

∂2h

∂s2
1

+
1

D

∂2h

∂s2
2

− µah = 0 (3.49)

and the boundary condition becomes,

µa
D
h+ 2

(
µ2
a

∂h

∂s1

,
µa
D

∂h

∂s2

)
· n̂(s1, s2) = f. (3.50)
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Chapter 4

Variational Approach of DOT

The inverse problem of DOT is to recover the parameters from observed op-

tical properties represent a major computational challenge. Most of the traditional

strategies employing Gauss-Newton method are computationally slow, mostly due to

the formulation and inversion of a large sensitivity matrices. Variational approach

using constraint is a good approach to overcome the model error and adaptive inver-

sion using refinement. The inverse problem is formulated as constrained nonlinear

optimization problem in [8, 9] by directly working with the governing differential

equation. In this chapter, we briefly discuss and reformulate the 1-d DOT inverse

problem as constrained optimization problem. To validate the method, numerical

results are also presented.

4.1 General Setup

Consider any model ,

F̄ (D, u) = 0
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where D is a parameter and u is the variable of interest. We want to recover the

parameter D based on observations u which is related to D by a forward model, F̄ ,

which after weak formulation in a discretized form can be written as,

A(u) = V

where A is a square, nonsingular matrix. and V is the right hand side vector.

Denoting the data vector by z and the location of the observations by Q, the problem

is to find D such that the above equation holds and

||Qu− z|| ≤ Tol (4.1)

where Tol depends on the noise level. Due to the noisy data and ill-posedness of

the inverse problem, there is no unique model which generates the data. Therefore

regularization is introduced and a nearby well-posed problem is solved to recover a

stable and relatively smooth solution which is unique, at least locally. In practice, we

reconstruct D by minimizing the the following least squares residual vector where a

regularization term is added,

J(D, β) =
1

2
||Qu− z||2 +

β

2
||W (D −D∗)||2 (4.2)

s.t. F̄ (D, u) = 0

where β > 0 is the regularization parameter, D∗ is the background distribution of D

and W is a weighing matrix usually the identity matrix.

The problem (4.2) is a nonlinear constraint optimization problem. Thus the con-
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strained optimization problem can be rewritten as,

J(D, β) =
1

2
||Qu− z||2 +

β

2
||W (D −D∗)||2, (4.3)

s.t. A(D)u = V.

Introducing the Lagrangian,

L(u,D, λ) =
1

2
||Qu− z||2 +

β

2
||W (D −D∗)||2 + λT [A(D)u− V ] (4.4)

where λ is a vector of Lagrange multipliers. By first order necessary condition at

optimality we have,

Lu = QT (Qu− z) + ATλ = 0 (4.5)

LD = βW TW (D −D∗) +GTλ = 0 (4.6)

Lλ = Au− V = 0 (4.7)

where G = ∂(Au)
∂D

. We consider Newton’s method for solving the system. At a given

iteration u,D, λ, the Newton correction directions δu, δD, δλ are given by,


QTQ K AT

KT βW TW +R GT

A G 0



δu

δD

δλ

 = −


Lu

LD

Lλ

 (4.8)

where K = K(D,λ) = ∂(ATλ)
∂D

and R = R(u,D, λ) = ∂(GTλ)
∂D

. Updated iterations are:

u 7→ u+ αuδu, D 7→ D + αDδD, λ 7→ λ+ αλδλ, and 0 < αu, αD, αλ < 1 are the step

sizes determined by line search method.

In next section, we formulate the 1-d DOT problem with a known absorption coeffi-
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cient µa in the above setting to reconstruct the diffusion coefficient D.

4.2 1-d DOT Model

Consider the 1-d DOT problem (3.8) − (3.10), Multiplying any v ∈ H1[a, b]

with (3.8) and integrating over [a, b], we have

−
∫ b

a

d

dx

(
D
du

dx

)
vdx+

∫ b

a

µauvdx = 0

Using integration by parts we have,

(
D
du

dx
v

)b
a

+

∫ b

a

Du′v′dx+ µa

∫ b

a

uvdx = 0

Using the boundary conditions, we get the weak formulation of 1D DOT as,

∫ b

a

Du′v′dx+ µa

∫ b

a

uvdx+
1

2
u(a)v(a) +

1

2
u(b)v(b) =

1

2
f1v(a) +

1

2
f2v(b)

4.2.1 Finite Element Discretization

Let nf be the number of mesh points of [a, b], with x1 = a < x2 < ... < xnf = b

and {Φi(x)}nfi=1 be the set of basis functions such that Φi(xj) = δij.

Thus u(x) =
∑nf

i=1 ΘiΦi(x), then setting v = Φj(x) in the weak formulation we get a

system of linear equation in matrix form :

AΘ = V (4.9)
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where,

Θ = (θ1, θ2, ....θnf )
T

V (j) =
1

2
f1Φj(a) +

1

2
f2Φj(b), for j = 1, ..., nf

A(i, j) =

∫ b

a

DΦ′iΦ
′
jdx+ µa

∫ b

a

ΦiΦjdx+
1

2
Φi(a)Φj(a) +

1

2
Φi(b)Φj(b)

where i, j = 1, ..., nf .

4.3 Formulation

In order to avoid the inverse crime, we redescritized Ω into nI < nf number

of mesh points. To solve the inverse problem, the photon density u is measured

for multiple experiments. Suppose, p number of experiments are performed and

the Neumann data D du
dn

at x = a and x = b are measured for each experiment.

The Neumann data at the boundary is, (D ∂u
∂n

(xi))
T
i={1,nI} = (

u(a)−f l1
2

,− (u(b)−f l2)

2
)T =

Q(u− f l), using the boundary conditions (3.9− 3.10) for the l-th experiment, where

Q is the (2× nI) sparse matrix with Q11 = 1
2
, Q2nI = −1

2
. Thus the cost functional

J(D, β) becomes,

J(D, β) =
1

2

p∑
l=1

||Q(u− f l)− zfl ||2 +
β

2
||W (D −D∗)||2 (4.10)

Our goal is to minimize the above functional for D that satisfies,

Alul = V l, for l = 1, ..., p. (4.11)
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We compose the following block matrix,

A = diag{A1, ..., Ap}

where Al, l = 1, ..., p are the discretized matrix whose elements are given as,

Alij = D̄ij + M̄ij + P̄ij

with,

D̄ij =

∫ b

a

DΦ′i(x)Φ′j(x)dx,

M̄ij =

∫ b

a

µaΦi(x)Φj(x)dx,

P̄ij =
1

2
[Φi(b)Φj(b)− Φi(a)Φj(a)].

We approximate the infinite dimensional parameter D with the function,

D(x) =
N∑
i=1

dkΦ̂i(x)

where Φ̂i are the basis functions may be on a different set of grid points N than the

grid points for the basis functions Φi. Then D is approximated by the vector,

D = (d1, ..., dN)T .

Then the Lagrangian function in (4.4) can be written as,

L(D, u, λ) =
1

2
||Q(u− f)− z||2 +

β

2
||W (D −D∗)||2 +

p∑
l=1

λTl [Al(D)ul − V l] (4.12)
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where λ1, ..., λp are the vector of Lagrange multipliers, the vector u is written as,

u = (uT1 , ..., u
T
p )T

where ul, l = 1, ..., p is a vector of length nI and represents the photon density for

each of the p experiments. Using the first order necessary conditions at optimality,

we have,

Lul = QT (Qu− zl) + Al
T
λl = 0, for l = 1, ..., p (4.13)

LD = βW TW (D −D∗) +GT
l λl = 0, for l = 1, ..., p (4.14)

Lλl = Alul − Vl = 0, for l = 1, ..., p (4.15)

where Gl = ∂Al(D)
∂D

ul. The nonlinear system (4.13 - 4.15) can be solved using the

Newton’s method. At a given iterate ul, D, λl the Newton correction can be obtained

by the solution of the following linear system,


Q K AT

KT βW TW +R GT

A G 0



δu

δD

δλ

 = −


Lu

LD

Lλ

 (4.16)

where Q = diag(QTQ) is the (nIp × nIp) block matrix, G = (GT
1 , ..., G

T
p )T is a

(nIp×N) block matrix, K = (KT
1 , ..., K

T
p )T is a (nIp×N) block matrix, with Kl =

∂(ATl λl)

∂D
, and R =

∑p
l=1 Rl with Rl =

∂(GTl λl)

∂D
. We also have, Lu = (LTu1 , ..., L

T
up)

T and

Lλ = (LTλ1 , ..., L
T
λp

)T .
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4.3.1 Computing the Sensitivity Matrices

Now we derive the discrete sensitivity relations which will be used to construct

the linear system of equations (4.16). Using the finite dimensional approximation of

D(x) we get,

D̄ij =
N∑
m=1

dmD̄m,ij (4.17)

where,

D̄m,ij =

∫ b

a

Φ̂m(x)Φ′i(x)Φ′j(x)dx. (4.18)

Now differentiating (4.11) with respect to dm and assuming V l is independent of dm,

we get,

Al
∂ul
∂dm

+
∂Al

∂dm
ul = 0.

Thus we have,

∂ul
∂dm

= −(Al)−1 ∂A
l

∂dm
ul, 1 ≤ m ≤ N (4.19)

here, ∂Al

∂dm
= D̄m is the (nI × nI) matrix whose elements are given by D̄m,ij and ∂Al

∂dm
ul

represents m-th column of the (nI × nI) matrix Gl, i.e., Gl = (∂A
l

∂d1
ul, ...,

∂Al

∂dN
ul) for

l = 1, ..., p.

Kl = ∂(Al)Tλl
∂D

is a (nI × nI) matrix with m-th column is the partial derivative of Kl

with respect to dm.
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Now differentiating j-th column of Gl = ∂Al

∂dj
ul with respect to dm, we get,

∂Gl

∂dm
=

∂2Al

∂dm∂dj
ul +

∂Al

∂dj

∂ul
∂dm

=
∂Al

∂dj

∂ul
∂dm

(4.20)

using definition of ∂Al

∂dm
= D̄m, we have ∂2Al

∂dm∂dj
= 0. Using (4.20), Rl can be easily

computed.

4.3.2 Solving KKT System

This system (4.16), also known as the KKT system must be solved at each

iteration. From the last block of (4.16), we can write,

δu = −A−1(Lλ + GδD). (4.21)

Substituting δu in the first block of rows gives,

δλ =
(
A−TQTQA−1G − A−TK

)
δD + A−TQTQA−1Lλ − A−TLu. (4.22)

Finally, from the second block rows, we obtain a linear system for δD alone as,

C δD = −y (4.23)
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where,

C = JTc Jc + βW TW +R− S − ST , (4.24)

Jc = −QA−1G, (4.25)

S = KTA−1G, (4.26)

y = βW TW (D −D∗) + JTc (QA−1V − b)−KT (u− A−1V ). (4.27)

Note that, if K = R = 0, then the above method is known as the Gauss-Newton

method.

From (4.11) and (4.13), we can write,

ul = (Al)−1V l for l = 1, ..., p; (4.28)

λl = ((Al)T )−1QT (Qul − zl) for l = 1, ..., p. (4.29)

These formulas yield alternatives to the use of (4.21) and (4.22), respectively. Using

these formulas one can update the parapmeter D in one of the following four ways:

1. Calculate δu, δλ and δD, using (4.21-4.23), and update u, λ and D simultane-

ously.

2. Calculate δD and δu from (4.23) and (4.21), and update D and u. Then use

(4.29) to update λ. It is assumed that (4.29) holds for the initial iterate.

3. Calculate δD and δλ from (4.23) and (4.22), and update D and λ. Then update

u by (4.11). It is assumed that (4.11) holds for the initial iterate.

4. Calculate δD from (4.23) and update D; then update u by (4.11) and λ by

(4.29).
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In this thesis, we have used the 3rd variant to update D,λ, then u. A numerical

experiment for the reconstruction of D is discussed in the next chapter. The algorithm

for the parameter reconstruction is also given next:

4.3.3 Algorithm

1: Start with an initial guess for D and λ.
2: Solve the forward problem for u using the current guess of D.
3: Stop, if ||Qu− z|| ≤ Tol.
4: Calculate Lu, LD and Lλ for the current guess of u,D and λ.
5: Calculate the sensitive matrices G,K and R for the current guess of u,D and λ.
6: Construct the system (4.16) and solve for δu, δD and δλ.
7: Update D and λ.
8: Repeat step 3 - 7.
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Chapter 5

Results and Discussion

In this thesis, we consider the 1-d DOT model described in (3.8)− (3.10). In

this chapter, we summarize the simulated results that includes the cost functional

for the inverse problem with constant D and µa, photon density profile u obtained

by using FEM and dimensionless equation, and the reconstruction of the profile of

the diffusion coefficient D obtained by solving the inverse problem using the method

described in the previous chapter. For convenience, this chapter is divided into three

sections. In first section, we considered both D and µa as constant. To show the

existence of the solution of the corresponding inverse problem, the cost functionals,

both scaled and non scaled, are plotted. We also verified the FEM solution by com-

paring with the analytic solution. For the forward FEM solution, Ω is descretized into

nf = 200 mesh points. In the following section, we discuss the results considering a

non-constant D and a constant µa. The reconstruction of the parameter D, obtained

by using the variational method, is presented here. All the reconstructions are done

using nI = 100 mesh points to avoid the inverse crime. Finally, we presents the re-

constructed image of D, where both D and µa are considered to be non-constant and

compared the solution with that by the Gauss-Newton method.
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5.1 Results for Constant D and µa

5.1.1 Cost Functional for 1-d DOT Model

For a simple example, we consider the case where D and µa are constants.

Then (3.8)− (3.10) can be written as,

d2u

dx2
− µa
D
u = 0 in Ω = [a, b] (5.1)

u− 2D
du

dx
= f1 at x = a (5.2)

u+ 2D
du

dx
= f2 at x = b

(5.1) has the solution of the form,

u(x;D,µa) = c1e
−
√

µa
D
x + c2e

√
µa
D
x (5.3)

where c1 and c2 are obtained, using the boundary conditions (5.2), as

c1 =
f1(1− 2

√
µaD)e−

√
µa/Db − f2(1 + 2

√
µaD)e−

√
µa/Da

(1− 2
√
µaD)2e−

√
µa/D(b−a) − (1 + 2

√
µaD)2e

√
µa/D(b−a)

,

c2 =
f2(1− 2

√
µaD)e

√
µa/Da − f1(1 + 2

√
µaD)e

√
µa/Db

(1− 2
√
µaD)2e−

√
µa/D(b−a) − (1 + 2

√
µaD)2e

√
µa/D(b−a)

.

Setting q2 = µa
D

, the above solution can be rewritten as,

u(x; q) = c1e
−qx + c2e

qx (5.4)
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where c1 and c2 become,

c1 =
f1(1− 2Dq)e−qb − f2(1 + 2Dq)e−qa

(1− 2Dq)2e−q(b−a) − (1 + 2Dq)2eq(b−a)
,

c2 =
f2(1− 2Dq)eqa − f1(1 + 2Dq)eqb

(1− 2Dq)2e−q(b−a) − (1 + 2Dq)2eq(b−a)
.

If we measure D du
dn

at x = a and x = b, then the inverse problem is to estimate D

and q from the parameter to output map given by, in terms of D,

Qu(x;D) = (D
du

dn
(a,D), D

du

dn
(b,D))T

and in terms of q,

Qu(x; q) = (D
du

dn
(a, q), D

du

dn
(b, q))T .

We plot the cost functions, J(D) and J(q) for a homogeneous background with

µa = 0.012mm−1 and D = 0.33 mm. We computed the cost functional J(D) =

1
2
||Qu(x;D)− z||2, over a range of D values within 25 percent of original value range.

We also computed, J(q) = 1
2
||Qu(x; q)−z||2, within 25 percent of original value range.

For constant D and µa cost function of both scaling and non scaling looks similar.

Figure 5.1: Non scaled cost functional J(D), with µa = 0.012 and minimum at
D = 0.33
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Figure 5.2: Scaled cost functional J(q), with µa = 0.012 and D = 0.33 and minimum
at q = 0.19

5.1.2 Comparison of Forward Solution for DOT and Dimen-

sionless DOT Model

In chapter 3, we have derived the dimensionless 1D DOT problem as,

d2h

ds2
− µaDh = 0 (5.5)

with boundary conditions,

µah− 2µa
dh

ds
= f1, for s =

a

D
, (5.6)

µah+ 2µa
dh

ds
= f2 for s =

b

D
. (5.7)

The equation in (5.5) has the solution of the form,

h(s) = c1e
√
µaDs + c2e

−
√
µaDs. (5.8)
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Thus, the derivative of h with respect to s is,

dh

ds
= c1

√
µaDe

√
µaDs − c2

√
µaDe

−
√
µaDs. (5.9)

from (5.6) and (5.7), we get the following system,

c1(1− 2
√
µaD)e

√
µa
D
a + c2(1 + 2

√
µaD)e−

√
µa
D
a =

f1

µa

c1(1 + 2
√
µaD)e

√
µa
D
b + c2(1− 2

√
µaD)e−

√
µa
D
b =

f2

µa

solving for c1 and c2,

µac1 =
f1(1− 2

√
µaD)e−

√
µa
D
b − f2(1 + 2

√
µaD)e−

√
µa
D
a

(1− 2
√
µaD)2e−

√
µa
D

(b−a) − (1 + 2
√
µaD)2e

√
µa
D

(b−a)
(5.10)

µac2 =
f2(1− 2

√
µaD)e−

√
µa
D
a − f1(1 + 2

√
µaD)e−

√
µa
D
b

(1− 2
√
µaD)2e−

√
µa
D

(b−a) − (1 + 2
√
µaD)2e

√
µa
D

(b−a)
(5.11)

thus,

h(s) = c1e
√
µaDs + c2e

−
√
µaDs. (5.12)

Applying the scaling defined as s = x
D

, we get the explicit formula for the electric

potential as,

u(x) = µac1e
√

µa
D
x + µac2e

−
√

µa
D
x (5.13)

which is the same solution described in (5.3), as expected.
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In this thesis, we solved the one dimensional forward DOT model using finite

element method (FEM). For all the numerical computations and simulations, we

consider Ω = [0, 43]. Ω is discretized using nf = 200 equally spaced mesh points. In

Figure 5.3, we illustrated a comparison of the true solution given by (5.3) and the

FEM solution, considering D and µa to be constant, and Figure 5.4, demonstrates

the validity of the FEM solution.

Figure 5.3: Photon density u profile for exact (Both dimensional and non-
dimensional) and the FEM solution, for D = 0.33, µa = 0.012

Figure 5.4: Absolute error, |Exact u− FEM u|, for D = 0.33, µa = 0.012
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5.2 Results for Non-constant D and Constant µa

5.2.1 Comparison of the Forward Solutions of Dimensional

and Non-dimensional Equation

We have also performed the dimensional analysis for one dimensional DOT

model, with variable D and constant µa, and formulated the dimensionless DOT

model described in (3.22)− (3.24). The diffusion coefficient D is defined as, D(x) =

0.12, for 1 ≤ x ≤ 6, 0.55 everywhere else, as shown in Figure 5.7. The absorption

(a) (b)

Figure 5.5: (a) Profile of both dimensional and dimensionless photon density, u(x)
obtained by FEM for constant µa = 0.006 and variable D, (b) Absolute error between
the dimensional and dimensionless solutions

coefficient µa is chosen to be constant as 0.006. We set f1 = 2.42 and f2 = 0, for the

input.

While choosing the dimensionless scaling described in chapter 4, in case 1, we found

that the dimensionless form of the governing equation consists of the term D′ = dD
dx

.

Due to this difficulty, we solve the dimensionless forward problem obtained from case

2 using FEM. Figure 5.5(a), illustrates both the profiles of the photon density u(x)

obtained from the dimensional and the dimensionless model and figure 5.5(b) shows
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the similarity between the dimensional and dimensionless solution. We observe that

making the DOT model dimensionless does not have any significant effect to the

forward solution.

5.2.2 Reconstruction of D Using Variational Method for Di-

mensionless and Dimensional DOT Model (µa Constant)

We solve the inverse problem for both dimensionless and dimensional 1-d DOT

model using variational method. Here, µa is considered to be constant, so for the

inverse problem, we reconstructed the diffusion coefficient D only. We generate syn-

thetic data for our simulation with the diffusion coefficient D described in Figure

5.7, and absorption coefficient µa = 0.006. For a posteriori stopping of the iterations

the generalized discrepancy principle, [4, 13], is implemented, i.e., the iterations were

stopped at the first index k, for which the residual ||R(D)||2 = ||Qu(Dk, f) − z||2 is

less than or equal to ρδ, ρ > 1.

(a) Dimensionless model (b) Dimensional model

Figure 5.6: Reconstructed profile of the diffusion coefficient for different values of β
for constant µa = 0.006 and variable D

Since the problem is ill-posed, the proper choice of the regularization parameter is
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very important for the numerical simulations. Figure 5.6 illustrates the effect of the

regularization parameter in the reconstruction of D. For each of the reconstructions,

the iteration starts with the natural guess of D = 0.55, the background value, and the

step size αD, αλ both are chosen to be 0.1. In Table 5.1, we summarize the measured

β Iteration Relative error Residual
Dimensionless model

0.05 8 0.1155 0.0023
0.08 10 0.1051 0.0030
0.1 11 0.0993 0.0035
0.5 20 0.0802 0.0040

Dimensional model
0.05 8 0.1153 0.0024
0.08 10 0.1051 0.0032
0.1 11 0.0992 0.0036
0.5 20 0.0801 0.0042

Table 5.1: αD = 0.1, αλ = 0.1, D non-constant, µa constant, ρδ = 5.0E − 3

accuracy in the reconstructions for different values of β. In all the cases, the itera-

tions stops if either the number of iterations exceeds 25 or the residual is less than

ρδ = 5.0E − 3. We observe that, the variational method converges faster for lower

β, however if β is too small or too large, then the method diverges. For example, in

this case, we found that, for β < 0.01 and for β > 0.5, the method diverges.

5.3 Results for Non-constant D and µa, Dimen-

sional DOT Model

To validate the method for solving the inverse problem described in chapter

4, we solve the inverse problem for 1-d DOT model described in (3.8) − (3.10). For

convenience, we reconstructed the diffusion coefficient D only and considered the

absorption coefficient µa to be known. In this section we discuss the results obtained
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for non constant D and µa. We had two different discrete diffusion and absorption

coefficient inside Ω as, D = 0.55 and µa = 0.006 in the background and D = 0.12,

µa = 0.012 for 1 ≤ x ≤ 6.

Figure 5.7: Non constant diffusion coefficient D

5.3.1 Reconstruction of D for Different β for Step size αD =

0.1 and αD = 0.01

We observe the effect of the regularization parameter and the step length αD

on the reconstructions.

β Iteration ||D−Dtrue||
||Dtrue|| Residual

|| · ||2 || · ||∞
0.05 6 0.1101 0.7267 0.0034
0.08 8 0.1041 0.7119 0.0035
0.1 9 0.1012 0.6923 0.0037
0.5 18 0.0916 0.5285 0.0039

Table 5.2: αD = 0.1, αλ = 0.1, D, µa both non-constant, ρδ = 5.0E − 3

In Table 5.2, we summarize the measured accuracy of the reconstructed profiles, that

are shown in figure 5.8. Here we choose αD = 0.1, αλ = 0.1 and for each β, the

solution obtained before the maximum number of iterations is reached.
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Figure 5.8: Reconstructed D for different β with non constant µa and αD = 0.1

To observe the effect of the step length αD on the reconstruction, we solve the inverse

problem for αD = 0.01 and the results are summarized next.

β Iteration ||D−Dtrue||
||Dtrue|| Residual

|| · ||2 || · ||∞
0.05 82 0.1187 0.6584 0.0049
0.08 95 0.1033 0.6254 0.0049
0.1 114 0.1114 0.7095 0.0049
0.5 160 0.0799 0.4486 0.0049

Table 5.3: αD = 0.01, αλ = 0.1, D, µa both non constant

Figure 5.9: Reconstructed D for different β with non-constant µa and αD = 0.01

Clearly, for smaller step length, convergence rate gets slower, which is expected. In
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both cases, we implemented the generalized discrepancy principle as stopping crite-

rion and chose ρδ = 5.0E − 3. We observe that the reconstructed images of D for

different β capture the inclusion better than that of the larger αD. From Table 5.2

and 5.3, the optimal D is obtained for β = 0.5, with the minimum relative error in

the reconstruction.

As stated earlier, we found that the method converges faster with smaller values of

β, but diverges when β is too small or too large.

5.3.2 Convergence in the Reconstruction at Different Itera-
tions

(a) (b)

Figure 5.10: Convergence in the reconstruction of (a) the diffusion coefficient D and
(b) photon density u(x), at different iterations for β = 0.5 and αD = 0.01

Convergence of the reconstruction ofD and the photon density profile u(x) are demon-

strated in Figure 5.10 at various iterations.

5.3.3 Comparison with Gauss-Newton Approach

We have also compared our results with the classical Gauss-Newton method for

nonlinear optimization problem. The inverse solution has a relative error of 0.2468.

In compared to the variational method described in this thesis, we can claim that the
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variational method produces better reconstruction.

5.3.4 Reconstruction at Different Noise Level

We have also tried adding noise to the simulation, to see the robustness of

the variational method. We added 5% and 10% Gaussian noise and noted that the

reconstructions are still comparable to that without noise. We chose β = 0.5 for

which we got better reconstruction in noise free setting and to improve the rate of

convergence we have chosen αD = 0.1. We observed that, relative error gets higher

with the noise level added to the synthetic data.

noise level Relative error
0% 0.0916
5% 0.0973
10% 0.1190

Table 5.4: Relative error in reconstruction of D at different noise levels, with β = 0.5,
αD = 0.1

5.3.5 Effect of Taking the Inclusion Away from the End-

points

We have also redefined D and µa by taking the inclusion away from the end-

point, e.g. 4 ≤ x ≤ 10. However, we noted that, as the inclusion gets away from

the endpoints of Ω, the inverse solution loosely capture the inclusion, thus the recon-

struction is getting worse.
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Chapter 6

Conclusions and Future Work

In this thesis, we described the DOT formulation and provided theoretical jus-

tification for well-posedness of both the forward and inverse problem. We formulated

the dimensionless form of 1-d and 2-d DOT model. We derived the dimensionless

form for constant and variable diffusion coefficient D(x) with µa constant. We also

discussed the forward and inverse problem in both dimensional and non-dimensional

form. We find that scaling does not alleviate the ill-posedness of the problem. We

solved the forward problem for both the dimensional and non-dimensional version

of the DOT problem using the well-known finite element method. We also used the

variational constrained method to formulate the inverse problem in DOT. We devised

a numerical algorithm to reconstruct the 1-d diffusion coefficient D(x) by solving the

inverse problem as a constrained nonlinear optimization problem. The nonlinear sys-

tem of equations obtained by applying the first order necessary conditions are solved

using Newton’s method. The inverse problem using the scaled forward model still

suffers from ill-posedness. We investigated the effects of the regularization parame-

ters and the step lengths on the reconstruction. The values of these parameters were

chosen so that the algorithm converges as well as to produce a better reconstruction.
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We take the most suitable value of the regularization parameter and the step length

obtained from noise free data and use them to solve the inverse problem in different

noisy environments. We note that the relative error gets higher with the noise level

added to the synthetic data. We have also considered the inclusion to be taken inside

the body. However, due to the ill-posedness of the problem, the method does not

detect the inclusion properly.

The numerical simulations seem to indicate the proposed algorithm regularizes the

parameter estimation problem and converge numerically. We used MATLAB for the

simulations and numerical computations.

Based on the work presented in this thesis, one can further explore analysis of con-

vergence and stopping criterion of the variational approach, including reconstruction

of both D and µa with variable µa, and extend the algorithm for two and higher

dimensional DOT.
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Appendix A

In this appendix, we provide the MATLAB codes we used for computing the

forward solution using finite element method. MATLAB codes for FEM

function [sol,K,M,Q,q] = DOTforward(x,DT,muT,sm,h)

n = length(x);

K = zeros(n,n); M = zeros(n,n);

Q = zeros(n,n);

ns = length(sm(1,:));

for i = 1:n-1

zz = linspace(x(i),x(i+1),100);

DD = spline(x,DT,zz);

K(i,i+1) = - trapz(zz,DD)/h2;

K(i+ 1, i) = K(i, i+ 1);

end

fori = 2 : n− 1

zz1 = linspace(x(i− 1), x(i), 100);

DD1 = spline(x,DT, zz1);

zz2 = linspace(x(i), x(i+ 1), 100);

DD2 = spline(x,DT, zz2);

K(i, i) = trapz(zz1, DD1)/h2 + trapz(zz2, DD2)/h2;

end

zz = linspace(x(1), x(2), 100);

DD = spline(x,DT, zz);
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K(1, 1) = trapz(zz,DD)/h2;

Q(1, 1) = 0.5;

zz = linspace(x(n− 1), x(n), 100);

DD = spline(x,DT, zz);

K(n, n) = trapz(zz,DD)/h2;

Q(n, n) = 0.5;

zz = linspace(x(1), x(2), 100);

mu = spline(x,muT, zz);

mufn = (mu. ∗ (x(2)− zz).2)/h2;

M(1, 1) = trapz(zz,mufn);

fori = 1 : n− 1

zz1 = linspace(x(i), x(i+ 1), 100);

mu1 = spline(x,muT, zz1);

mufn1 = (mu1. ∗ (x(i+ 1)− zz1). ∗ (zz1− x(i)))/h2;

M(i, i+ 1) = trapz(zz1,mufn1);

M(i+ 1, i) = M(i, i+ 1);

end

for i = 2:n-1

zz1 = linspace(x(i-1),x(i),100);

mu1 = spline(x,muT,zz1);

mufn1 = (mu1.*(zz1-x(i-1)).2)/h2;

zz2 = linspace(x(i),x(i+1),100);

mu2 = spline(x,muT,zz2);

mufn2 = mu2.*(x(i+1)-zz2).2/h2;
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M(i, i) = trapz(zz1,mufn1) + trapz(zz2,mufn2);

end

zz = linspace(x(n− 1), x(n), 100);

mu = spline(x,muT, zz);

mufn = (mu. ∗ (zz − x(n− 1)).2)/h2;

M(n, n) = trapz(zz,mufn);

F = zeros(n,ns);

for i = 1:ns

F(1,i) = sm(1,i)/2;

F(n,i) = sm(n,i)/2;

end

sol = (K+M+Q);

q = F;

return
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