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Abstract

A classical result of MacMahon shows the equidistribution of the major index and inversion

number over the symmetric groups. Since then, these statistics have been generalized in many ways,

and many new permutation statistics have been defined, which are related to the major index and

inversion number in may interesting ways. In this dissertation we study generalizations of some

newer statistics over words and labeled forests.

Foata and Zeilberger defined the graphical major index, majU , and the graphical inversion

index, invU , for words over the alphabet {1, . . . , n}. In this dissertation we define a graphical sorting

index, sorU , which generalizes the sorting index of a permutation. We then characterize the graphs

U for which sorU is equidistributed with invU and majU on a single rearrangement class.

Björner and Wachs defined a major index for labeled plane forests, and showed that it has

the same distribution as the number of inversions. We define and study the distributions of a few

other natural statistics on labeled forests. Specifically, we introduce the notions of bottom-to-top

maxima, cyclic bottom-to-top maxima, sorting index, and cycle minima. Then we show that the

pairs (inv,BT-max), (sor,Cyc), and (maj,CBT-max) are equidistributed. Our results extend the

result of Björner and Wachs and generalize results for permutations.

Lastly, we study the descent polynomial of labeled forests. The descent polynomial for per-

mutations is known to be log-concave and unimodal. In this dissertation we discuss what properties

are preserved in the descent polynomial of labeled forests.
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Chapter 1

Introduction

Given a set of combinatorial objects S, a combinatorial statistic associates with each element

of S a nonnegative integer. Studying the distributions of combinatorial statistics over S allows

us to gather more information from the set than simply counting the number of objects in S.

Additionally, knowing the distributions of a certain statistic over S sometimes reveals similarities

with other combinatorial objects, which in turn can be exploited to learn about their structure. This

dissertation focuses on several statistics on words and labeled forests motivated by knowledge we

have about permutations. In Chapter 2 we discuss the results for permutations that motivated this

work.

In 1915, MacMahon [33] came to the surprising conclusion that two classical permutation

statistics, inversion number (inv) and major index (maj), are equidistributed over the symmetric

group Sn. Due to his discovery, the family of permutation statistics with this distribution is called

Mahonian. Since his discovery, many more Mahonian statistics have been found, including Denert’s

statistic [12], the Rawlings major index [38], Kadell’s weighted inversion number [29], the statistics

introduced by Clarke [10], the maj-inv statistics of Kasraoui [30] and the sorting index [36]. Some

of the aforementioned statistics have analogues over other combinatorial structures, among them

Young tableaux, set partitions, and ordered partitions. In this thesis we discuss generalizations of

Mahonian statistics over words and labeled forests.

It is natural to consider generalizing permutation statistics over words, otherwise known

as multiset permutations. When MacMahon originally studied inv and maj, he showed that they

have the same distribution over all permutations of a given multiset [33]. A natural question to
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consider is what happens to the distribution of these statistics if we consider a different ordering

of the integers. Motivated by this question, Foata and Zeilberger defined a graphical inversion

number (invU ) and major index (majU ) [21]. These new statistics compute the classical statistics

with respect to a given relation, U , possibly different from the natural order of the integers. If we

consider the natural ordering for the integers, then these statistics are equivalent to the classical

statistics over permutations. Foata and Zeilberger showed that these statistics are equidistributed

over all permutations of all multisets if and only if the relation U is bipartitional [21].

In Section 4.2, we define a graphical sorting index (sorU ) that reduces to the permutation

statistic over Sn with the natural order of the integers. When the relation U is the natural ordering

of the integers, sorU defines a sorting index for words that is equidistributed with maj and inv over

all permutations of a given multiset. Unfortunately, the statistics invU , majU , and sorU are not

equidistributed over permutations of a given multiset for every bipartitional relation U . However,

in Theorem 3.1.2 we classify the relations U for which the three statistics are equidistributed over

the set of permutations of a given multiset. In order to prove Theorem 3.1.2, we first strengthen

the result of Foata and Zeilberger to show that the statistics invU and majU are equidistributed

over all permutations of a single multiset, as opposed to all multisets, if and only if U is essentially

bipartitional (Theorem 3.1.1).

In [11], Mallows and Riordan define an inversion number for rooted labeled forests, and

in [4], Björner and Wachs define a descent set and major index for rooted labeled forests. A forest of

size n is labeled by assigning to each vertex an integer label from the set {1, . . . , n}, with each label

used exactly once. Björner and Wachs showed that maj and inv are equidistributed over all possible

labelings of a given forest. In Section 4.2, we define a sorting index for rooted labeled forests using a

sorting algorithm, and show that it is equidistributed with inv and maj over all labelings of a given

forest. These statistics are equivalent to the permutation statistics when they are considered on a

straight tree.

The statistics right-to-left minima and number of cycles belong to a family of permutation

statistics called Stirling statistics because their distribution is given by the unsigned Stirling numbers

of the first kind. For permutations, it is known that the pairs (inv, RL-min), (maj, RL-min), and

(sor, Cyc) are equidistributed over Sn [5, 36, 37]. These pairs of statistics are called Mahonian-

Stirling statistics, and in Chapter 4 we discuss generalizations of these pairs of statistics to labeled

forests. We define analogous statistics BT-max, Cyc, and CBT-max for labeled forests and, through
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a series of bijections, show that the pairs (inv, BT-max), (maj, CBT-max), and (sor, Cyc) are

equidistributed over all labelings of a given forest F .

Many of these permutation statistics have been generalized over colored permutations, i.e.

members of the generalized symmetric group Skn [1]. The group Skn is the wreath product, Ck o Sn,

where Ck is the cyclic group on {0, 1, . . . , k − 1}. An element of Skn, a colored permutation, is a

permutation σ ∈ Sn with a “color” ci ∈ {0, 1, . . . , k − 1} assigned to each letter σ(i). In Chapter 4,

we generalize the statistics sor, right-to-left minima, and number of cycles for signed permutations,

i.e. the case where k = 2, to signed labeled forests. This extends the work of Chen, Gao, and

Guo [8], who defined an inversion number and major index for signed labeled forests. Unfortunately,

the signed pair (majB , CBT-maxB) is not equidistributed with (invB ,BT-maxB) and (sorB,CycB)

over all signed labelings of a forest F , but in Section 4.4, we conjecture that by using the sorting

algorithm to define an inverse tree, we can consider the major index of the inverse tree (imaj) paired

with BT-max to better generalize the results for permutation statistics.

Lastly, in Chapter 5 we discuss the descent polynomial for labeled trees. This polynomial is a

generalization of the Eulerian polynomial, a polynomial known to have only real roots, which in turn

implies log-concavity and unimodality of its coefficients. In Section 5.1, we prove the unimodality

of the descent polynomial of a forest F . Then in Section 5.2 we discuss a conjecture about the

log-concavity of these polynomials, and finally in Section 5.3 we show that the descent distribution

for a tree T converges to the standard normal distribution under certain assumptions about the

maximum degree of the tree.
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Chapter 2

Background

In this chapter, we discuss the results for permutations that motivate the work in this

dissertation. We begin by defining the Mahonian statistics inv, maj, and sor for permutations

and discussing their distributions over Sn. Then in Section 2.2 we define the Stirling statistics

RL-min and Cyc, and state the equidistribution results of the Mahonian-Stirling pairs (inv,RL-min),

(maj,RL-min), and (sor,Cyc). In Section 2.3, we introduce the Eulerian polynomial and discuss

some of its properties. Lastly, in Section 2.4, we discuss how some of the Mahonian and Stirling

statistics we have defined for permutations have been generalized for signed permutations.

2.1 Mahonian Statistics

A permutation σ ∈ Sn is a bijection of the set S = {1, . . . , n} to itself. We typically write

the permutation σ in one-line notation, σ(1)σ(2) · · ·σ(n). For example, the permutation in S3 given

by σ(1) = 2, σ(2) = 1, and σ(3) = 1 is written as 213. In general, the identity permutation of Sn is

123 · · ·n.

An inversion in a permutation σ is a pair (σ(i), σ(j)) where i < j and σ(i) > σ(j). In other

words, it is a pair of numbers where the larger one appears to the left of the smaller one in one-line

notation. For example, if σ = 235416, the pairs (2, 1), (3, 1), (5, 4), (5, 4) and (4, 1) are inversions,

meaning that the inversion number of σ is 5. This is written as inv(σ) = 5.

In 1915, MacMahon defined a new statistic that he called the greater index, now commonly

called the major index [35]. For a permutation σ ∈ Sn, the position i is a descent of σ if σ(i) >
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σ(i+ 1). The set of descents of σ is denoted by Des(σ). The major index of σ is the sum of its

descents. For example, if σ = 235416 we have Des(σ) = {3, 4} and maj(σ) = 3 + 4 = 7. MacMahon

surprisingly showed that the major index and the inversion number have the same distribution over

Sn. The distribution of these statistics over all permutations in Sn is given by the generating function

∑
σ∈Sn

qinv (σ) =
∑
σ∈Sn

qmaj (σ) = [n]!,

where [n] denotes the polynomial 1 + q+ q2 + · · ·+ qn−1 and [n]! = [1][2] · · · [n] = (1)(1 + q)(1 + q+

q2) · · · (1 + q+ q2 + · · ·+ qn−1). In his honor, permutation statistics with this distribution are called

Mahonian [3].

A newer Mahonian statistic of interest in this work is the sorting index, defined by Petersen

in [36] and studied independently by Wilson in [45]. A permutation σ ∈ Sn can be uniquely

decomposed into a product of transpositions, σ = (i1, j1)(i2, j2) · · · (ik, jk), such that j1 < · · · < jk

and i1 < j1, . . . , ik < jk. The sorting index of σ is defined by sor(σ) =
∑k
r=1(jr − ir). It can

also be described as the total distance traveled by the elements of σ when σ is sorted using the

Straight Selection Sort algorithm [31]. This algorithm first places n in the nth position by applying

a transposition, then places n − 1 in the (n − 1)st position by applying a transposition, etc. For

example, consider the permutation σ = 2413576. We have

2413576
(67)→ 2413567

(24)→ 2314567
(23)→ 2134567

(12)→ 1234567.

Therefore, sor(σ) = (2− 1) + (3− 2) + (4− 2) + (7− 6) = 5.

The aforementioned statistics have analogues over many combinatorial structures such as

Young tableaux [25], set partitions [40], and ordered partitions [43]. In [34], MacMahon generalized

the statistics inv and maj to words in the following ways. Let α = (α1, . . . , αn) be a sequence of non-

negative integers. We will denote byR(α) the set of permutations of the multiset {1α1 , 2α2 , . . . , nαn},

i.e., R(α) is the set of all words over the alphabet {1, . . . , n} containing αi occurrences of the letter

i for all i = 1, 2, . . . , n. For w = x1 . . . xm ∈ R(α), the inversion number is defined as

inv(w) =
∑

1≤i<j≤m

X (xi > xj),
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and the major index is defined as

maj(w) =

m−1∑
i=1

iX (xi > xi+1),

where X is the characteristic function defined as X (A) = 1 when A is true and X (A) = 0 when A

is false. The set of all positions i such that xi > xi+1 is known as the descent set of w, Des(w), and

its cardinality is denoted by des(w). So, maj(w) =
∑
i∈Des(w) i.

MacMahon showed that maj and inv are equidistributed on R(α) [33, 35] . Namely,

∑
w∈R(α)

qinv(w) =
∑

w∈R(α)

qmaj(w) =

 α1 + α2 + · · ·+ αn

α1, α2, . . . , αn


where

 α1 + α2 + . . .+ αk

α1, α2, . . . , αk

 =
[α1 + α2 + · · ·+ αk]!

[α1]![α2]! . . . [αk]!

is the q-multinomial coefficient.

The sorting index can also be naturally extended to words w ∈ R(α) by using a stable

variant of Straight Selection Sort which reorders the letters into a weakly increasing sequence. At

each step transpositions are applied to place all the n’s at the end, then all the n− 1’s to the left of

them, etc., so that for each x ∈ X, the αx copies of x stay in the same relative order they were right

before they were “processed”. Then we define sor(w) to be the sum of the number of positions each

element moved during the sorting. For example, applying this sorting algorithm to w = 143123123

yields

143123123→ 133123124→ 133122134→ 131122334→ 121123334→ 111223334 (2.1)

and thus sor(w) = 7 + 2 + 4 + 4 + 2 = 19.

In Chapter 3, we discuss a generalization of these statistics for words due to Foata and

Zeilberger [21]. They defined graphical statistics (graphical inversions and graphical major index)

parametrized by a general directed graph U and they described the graphs U for which these statistics

are equidistributed on all rearrangement classes. We begin by strengthening their result to classify
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the graphs U such that the graphical major index and graphical inversions are equidistributed for a

fixed rearrangement class. We then define a graphical sorting index and classify the graphs U that

give equidistribution of all three statistics over a fixed rearrangement class.

The statistics inv and maj have a symmetric joint distribution over Sn [20]. This means

that the pairs of statistics (inv,maj) and (maj, inv) are equidistributed over Sn. In [17], Foata

defined a bijection commonly referred to as ϕ : Sn → Sn such that maj(σ) = inv(ϕ(σ)). Let

σ = σ(1) · · ·σ(n) ∈ Sn and construct words w1, . . . , wn such that wk is a permutation of the set

{σ(1), . . . , σ(k)} in the following way.

• Let w1 = σ(1).

• Assume that the word wk has been defined.

• If the last letter in wk (which is the same as σ(k)) is greater than σ(k+ 1), split wk after each

letter greater than σ(k + 1).

• If the last letter in wk is less than σ(k + 1), split wk after each letter less than σ(k + 1).

• Cyclically shift each section of wk one unit to the right.

• Place σ(k + 1) at the end and call this new word wk+1.

Now set ϕ(σ) = wn.

Example 2.1.1. Let σ = 21435.

w1 = 2 σ(2) = 1

w2 = 2|1| σ(3) = 4

w3 = 214| σ(4) = 3

w4 = 4|2|1|3| σ(5) = 5

Thus, ϕ(σ) = 42135 and maj(σ) = 4 = inv(ϕ(σ)).

This bijection also has the property that imaj(σ) = imaj(ϕ(σ)) [20], where the statistic imaj

is defined as

imaj(σ) = maj(σ−1).

7



The statistics (maj, imaj) have a symmetric joint distribution since taking the inverse of a permu-

tation maps maj to imaj and vice versa. Applying the map ϕ takes maj to inv and preserves imaj,

thus we deduce that (inv, imaj) has a symmetric joint distribution. Finally, taking the inverse of a

permutation preserves inv and maps imaj to maj so we get that (inv,maj) has a symmetric joint

distribution. In other words,

(inv,maj) ∼
i

(inv, imaj) ∼
ϕ−1

(maj, imaj) ∼
i

(imaj,maj) ∼
ϕ

(imaj, inv) ∼
i

(maj, inv)

where i : Sn → Sn is the inverse map.

In Chapter 4 we discuss the generalization of the Mahonian statistics maj, inv, and sor

to labeled forests. The statistics inv and maj do not have a symmetric joint distribution over all

labelings of a forest F , but in Section 4.4 we discuss a generalization of imaj to labeled forests and

discuss some properties that are preserved.

2.2 Sterling Statistics

Another family of permutation statistics are the Stirling statistics, i.e., permutation statistics

whose distribution is governed by the unsigned Stirling numbers of the first kind. Two well-known

Stirling statistics are the number of cycles, cyc, and the number of right-to-left minimum letters,

rl-min. It is well known that

∑
σ∈Sn

tcyc(σ) =
∑
σ∈Sn

trl-min(σ) =

n−1∏
k=0

(t+ k).

In [5], Björner and Wachs showed that the pairs of statistics (inv,RL-min) and (maj,RL-min)

are equidistributed over Sn, and they have the following generating function:

∑
σ∈Sn

qinv (σ)
∏

i∈RL-min

ti =
∑
σ∈Sn

qmaj (σ)
∏

i∈RL-min

ti = t1(t2 + q) · · · (tn + q + · · ·+ qn−1),

where RL-min(σ) is the set of right-to-left minimum letters in σ.

In [36], Peterson showed that the pair (sor,Cyc) is equidistributed with (inv,RL-min) and

(maj,RL-min), where Cyc(σ) is the set of minimal elements in the cycles of σ. There is a canonical

bijection that maps a permutation σ with k cycles to a permutation σ̂ with k right-to-left minima
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by writing the permutation σ in cycle notation with the smallest element of each cycle written last,

and then removing the parentheses to get the permutation σ̂ in one-line notation. For example

consider the permutation σ = 541263 = (5631)(42). Removing the parentheses gives σ̂ = 563142,

and cyc(σ) = 2 = rl-min(σ̂). To reverse the map simply insert “)” to the right of each right-to-left

minimum and “(” before the first element of σ̂ and after each inserted “)”. While this bijection gives

the equidistribution of cyc and rl-min, it does not map sor to inv. In the example above, sor(σ) = 9

and inv(σ̂) = 11.

In Chapter 4, we look at generalizations of these Mahonian-Stirling pairs over labeled forests.

Mallows and Riordan [11] generalized inv to labeled trees, and Björner and Wachs [4] generalized

maj, and showed the two statistics are equidistributed over all possible labelings of a fixed forest. We

define the statistics sor, BT-max, Cyc, and CBT-max for labeled forests, and in Sections 4.1 through

4.3, we construct bijections to show that the pairs (inv,BT-max), (sor,Cyc), and (maj,CBT-max)

are equidistributed over all labelings of a fixed forest, and we compute the generating function. In

Section 4.4, we wrap up the Chapter with a discussion about a conjecture using the idea of an

“inverse” tree to better generalize the pair of statistics (maj,RL-min) to labeled forests.

2.3 Eulerian Polynomial

The nth Eulerian polynomial is

An(q) =
∑
σ∈Sn

qdes(σ)+1 =

n∑
k=1

A(n, k)qk,

where A(n, k) is the number of permutations σ ∈ Sn with exactly k− 1 descents, called an Eulerian

number.

The Eulerian polynomials were first introduced by Euler in the form

∞∑
k=0

(k + 1)nqn =
An(q)

(1− q)n+1

to evaluate values of the alternating zeta function at negative integers [15]. The combinatorial

interpretation given above has led to many interesting combinatorial proofs of properties of these

polynomials. In this thesis, we discuss two properties of the coefficients: unimodality and log-
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concavity.

Definition 2.3.1. A sequence a0, a1, . . . , an is unimodal if for some j with 0 ≤ j ≤ n we have

a0 ≤ a1 ≤ · · · ≤ aj ≥ · · · ≥ an and is log-concave if a2
i ≥ ai−1ai+1 for all i such that 1 ≤ i ≤ n− 1.

We say a polynomial a0 +a1q+ · · ·+anq
n is unimodal if the sequence of its coefficients is unimodal,

and similarly the polynomial is log-concave if the sequence of its coefficients is log-concave.

The log-concavity of the Eulerian polynomial has been proven in many different ways [41,

7, 22]. For example, it is known that the Eulerian polynomial has only real roots which implies

log-concavity [42, 41]. For a nonnegative sequence log-concavity implies unimodality, and thus the

Eulerian polynomial is unimodal. In Chapter 5, we define and study the descent polynomial of

labeled forests, a generalization of the Eulerian polynomial.

2.4 Signed Permutations

Let ī denote −i. Signed permutations are permutations of {1, . . . , n, 1̄, . . . , n̄} such that

σ(−i) = −σ(i). Note that the permutation σ is determined by the values σ(1), . . . , σ(n). As usual

we will let Bn denote the group of signed permutations, also known as the hyperoctahedral group

of rank n, or the Coxeter group of type Bn.

For a permutation σ ∈ Sn, its length `(σ) as an element in a Coxeter group with the standard

generators is equal to the number of inversions, i.e., `(σ) = inv(σ) = #{(i, j) : 1 ≤ i < j ≤ n, σ(i) >

σ(j)}. For an element σ ∈ Bn, the length function is given by

`B(σ) = inv(σ) + n1(σ) + n2(σ),

where

n1(σ) = #{i : 1 ≤ i ≤ n, σ(i) < 0},

and

n2(σ) = #{(i, j) : 1 ≤ i < j ≤ n, σ(i) + σ(j) < 0}.

The type B right-to-left minimum letters for σ ∈ Bn are defined by

RL-minB(σ) = {σ(i) : 0 < σ(i) < |σ(j)| for all j > i}.

10



A signed permutation σ uniquley factors as a product of signed transpositions,

σ = (i1, j1) · · · (ik, jk), where is < js for 1 ≤ s ≤ k and 0 < j1 < · · · < jk. In [36], Peterson

defined the type B sorting index by

sorB (σ) =

k∑
r=1

jr − ir −X (ir < 0)

where X is the characteristic function defined in Section 2.1. As before, this can be interpreted as

the sum of distances traveled by the elements of σ as it is sorted.

For example, consider the permutation σ = 42̄153̄. We have

42̄153̄
(45)→ 42̄13̄5

(14)→ 3̄2̄145
(1̄3)→ 1̄2̄345

(2̄2)→ 1̄2345
(1̄1)→ 12345.

Therefore σ = (1̄1)(2̄2)(1̄3)(14)(45), and thus sorB(σ) = (1− (−1)−1)+(2− (−2)−1)+(3− (−1)−

1) + (4− 1) + (5− 4) = 11.

Signed permutations can be decomposed into two different types of cycles. Cycles of the

form (a1, . . . , am) which also takes ā1 to ā2, . . . , ām−1 to ām, and ām to ā1 are called balanced and

cycles of the form (a1, . . . , am, ā1, . . . , ām) are called unbalanced.

For a signed permutation σ, we let CycB (σ) = {|k| : k is a minimal number in absolute value

of a balanced cycle} [36, 37]. For example in the signed permutation σ = 24̄513 = (124̄1̄2̄4)(35), the

first cycle is unbalanced and the second is balanced. Thus CycB (σ) = {3}.

Signed permutation statistics that are equidistributed with the length function `B are called

Mahonian. Two such statistics are the flag major index and the R-major index, generalizations of

the major index for permutations. In [1], Adin and Roichman defined the statistic flag major index,

fmaj, in terms of the Coxeter elements, and it can be expressed as

fmaj(σ) = 2 maj(σ) + n1(σ)

for σ ∈ Bn where maj(σ) =
∑

1≤i≤n−1
σ(i)>σ(i+1)

i, analogous to the definition for unsigned permutations. In

[18] Foata and Han give a bijective proof of the equidistribution of fmaj and `B .

Now we define a second Mahonian statistic generalizing the major index, called the R-major

index, which appears implicitly in [39] and is defined explicitly in [8]. Let DesB = {1 ≤ i ≤ n :

11



σ(i) > σ(i + 1)} with σ(n + 1) = 0, majB =
∑
i∈DesB(σ) i, and p(σ) be the number of positive

elements of σ, then

rmaj(σ) = majB(σ) + p(σ).

In [8] Chen, Gao, and Guo generalized the statistics inv, fmaj, and rmaj to signed labeled

forests. As mentioned in Section 2.2 in Chapter 4 we generalize Mahonian-Stirling pairs and when-

ever possible we work with signed labeled forests.
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Chapter 3

Statistics on Words

A directed graph or a binary relation on X = {1, . . . , n} is defined by any subset U of the

Cartesian product X × X. For each such directed graph U , Foata and Zeilberger [21] defined the

following statistics on each word w = x1 · · ·xm over the alphabet X:

invU (w) =
∑

1≤i<j≤m

X ((xi, xj) ∈ U),

DesU (w) = {i : 1 ≤ i ≤ m, (xi, xi+1) ∈ U},

desU (w) = |DesU (w)|,

majU (w) =
∑

i∈DesU (w)

i.

An ordered bipartition of X is a sequence (B1, . . . , Bk) of nonempty disjoint subsets of X such that

B1 ∪ · · · ∪ Bk = X, together with a sequence (β1, . . . , βk) of elements equal to 0 or 1. If βi = 0 we

say the subset Bi is non-underlined, and if βi = 1 we say the subset Bi is underlined.

A relation U on X × X is said to be bipartitional, if there exists an ordered bipartition

((B1, . . . , Bk), (β1, . . . , βk)) such that (x, y) ∈ U if and only if either x ∈ Bi, y ∈ Bj and i < j, or x

and y belong to the same underlined block Bi. Bipartitional relations were introduced in [21] as an

answer to the question “When are invU and majU equidistributed over all rearrangement classes?”.

Theorem 3.0.1 ([21]). The statistics invU and majU are equidistributed on each rearrangement

class R(α) if and only if the relation U is bipartitional.
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In particular, if U is bipartitional with blocks ((B1, . . . , Bk), (β1, . . . , βk)) then

∑
w∈R(α)

qinvU (w) =
∑

w∈R(α)

qmajU (w) =

[
|α|

m1, . . . ,mk

] k∏
j=1

(
mj

α(Bj)

)
qβj(mj

2 ). (3.1)

Here and later we use the notation

|α| = α1 + · · ·+ αn,

mi = |Bi|,

α(B) = (αi1 , . . . , αil) if Bi = {i1, · · · , il} with i1 < · · · < il.

A similar result was proved in [19], where the definition of graphical inversions and major

index is modified to allow different behavior of the letters at the end of the word. Hetyei and

Krattenthaler [27] showed that the poset of bipartitional relations ordered by inclusion has nice

combinatorial properties. Han [26] showed that bipartitional relations U can also be characterized

as relations U for which both U and its complement are transitive. In particular, we will use Han’s

formulation of this characterization as stated in [26].

Theorem 3.0.2 ([26]). U is bipartional if and only if the following two properties hold:

(i) (x, y) ∈ U, (y, z) ∈ U =⇒ (x, z) ∈ U

(ii) (x, y) ∈ U, (z, y) /∈ U =⇒ (x, z) ∈ U .

Here we do two different things. First, we strengthen Foata and Zeilberger’s result by

showing that the equidistribution of invU and majU on a single rearrangement class R(α) implies

that U is essentially bipartitional (Theorem 3.1.1). Second, we define a graphical sorting index on

words, a statistic which generalizes the sorting index for permutations [36]. We then describe the

directed graphs U for which sorU is equidistributed with invU and majU on a fixed class R(α)

(Theorem 3.1.2).

In the next section we define the terminology we need and state the main results. Then we

prove Theorem 3.1.1 and Theorem 3.1.2 in Section 3.2 and Section 4.2, respectively. The results in

this Chapter are published in the Electronic Journal of Combinatorics [24].
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3.1 Preliminaries and Main Results

It will be convenient to refer to U ⊆ X × X as a directed graph and a binary relation

interchangeably and use language related to both terms. For example, in some places we will use

the notation x ≥U y or x → y to represent the directed edge (x, y) ∈ U . Also, we will say x is

related to y if (x, y) ∈ U or (y, x) ∈ U .

We will be considering the distribution of invU and majU over a fixed rearrangement class

R(α). Notice that if the multiplicity αx of x ∈ X is 1, then the pair (x, x) contributes neither to

invU nor to majU . Therefore, omitting or adding such pairs to U doesn’t change these two statistics

over R(α). For that purpose, we define U to be essentially bipartitional relative to α if there are

disjoint sets I ⊆ X and J ⊆ X such that

(1) αx = 1 for all x ∈ I ∪ J and

(2) (U \ {(x, x) : x ∈ I}) ∪ {(x, x) : x ∈ J} is bipartitional.

Theorem 3.1.1. The statistics invU and majU are equidistributed over R(α) if and only if the

relation U is essentially bipartitional relative to α.

In view of the comment preceding the theorem, the “if” part of Theorem 3.1.1 follows from

Theorem 3.0.1. We prove the “only if” part in Section 3.2.

We define a graphical sorting index that depends on U using the same sorting algorithm but

at each step, when sorting x, we only count how many elements y satisfying (x, y) ∈ U it “jumps

over”. More formally, to compute sorU (w) for w = x1x2 . . . xm:

• Begin with i = m, and sorU (w) = 0.

• Consider the largest element in the first i letters of w with respect to the integer order. If

there are multiple copies of the largest element, let xj , j ≤ i be the rightmost one.

• For each h = j + 1, j + 2, . . . , i, if (xj , xh) ∈ U increase sorU (w) by 1.

• Interchange xj with xi and keep using the notation w = x1x2 · · ·xm.

• Repeat this process for i = m− 1, . . . , 1.

For example, consider the sorting index of the word w = 143123123 under the relation

U = {(4, 3), (3, 3), (3, 1), (2, 3), (1, 1)}. The sorting steps are the same as given in (2.1) and thus
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sorU (w) = 3 + 1 + 2 + 2 + 0 = 8. In particular, if U is the natural integer order U = {(x, y) : x > y},

then sor(w) = sorU (w). Our second main result follows.

Theorem 3.1.2. The statistics sorU , invU and majU are equidistributed on a fixed rearrangement

class R(α) if and only if the relation U has the following properties.

1. U is bipartitional with no underlined blocks.

2. If (x, y) ∈ U then x > y.

3. All but the last block of U have size at most 2.

4. If U has blocks B1, . . . , Bk and |Bi| = 2 for some 1 ≤ i ≤ k − 1, then αmaxBi
= 1.

We give the proof of Theorem 3.1.2 in Section 4.2.

3.2 The Proof of Theorem 3.1.1

The proof of Theorem 3.1.1 is based on a series of seven lemmas that we prove next. The

first two describe how the distribution of majU and invU over R(α) are related for general U . This

will lead us to define special words in R(α) which we call maximal chain words. Then we will show

that when invU and majU are equidistributed over R(α), the chains that are the building blocks of

the same maximal chain word are nicely related to each other. We use this to show that U and U c

have to satisfy the properties of Theorem 3.0.2 modulo some relations (x, x) with αx = 1.

We begin with a simple but very useful observation.

Lemma 3.2.1. The statistics majU and invU are equidistributed on R(α) if and only if majUc and

invUc are equidistributed on R(α).

Proof. This follows from the fact that for every w ∈ R(α),

majU (w) + majUc(w) =

(
|α|
2

)
= invU (w) + invUc(w).

Lemma 3.2.2. For any α = (α1, . . . , αn) and any relation U on X = {1, . . . , n},

max
w∈R(α)

majU w ≥ max
w∈R(α)

invU w.

16



Proof. We will use induction on |α|. It is clear that the statement holds when |α| = 1. Assume that

it holds for all α with |α| ≤ m.

Consider a rearrangement class R(α) such that |α| = m+1, and a relation U on {1, . . . , n}.

Let (α, U) be a directed graph with vertex set {1α1 , . . . , nαn} and a directed edge x→ y whenever

(x, y) ∈ U . Let x1 → x2 → · · · → xn be a directed path in (α, U) of maximal possible length. This

means we have a descending chain x1 ≥U x2 ≥U · · · ≥U xl of maximal possible length that uses at

most αi copies of each i ∈ {1, . . . , n}. Set α′ = (α′1, . . . , α
′
n) where

α′i = αi −
l∑

j=1

X (xj = i).

Let u′ be a word that maximizes majU on the rearrangement class R(α′). One can easily verify that

for the word u = u′x1x2 · · ·xl in R(α) we have

majU u = majU u
′ +

(l − 1)(2m+ 2− l)
2

. (3.2)

To bound maxw∈R(α) invU w, first suppose there is an element y ∈ (α′, U) such that for all

i = 1, . . . , l we have (y, xi) ∈ U or (xi, y) ∈ U . If (y, x1) ∈ U , then y → x1 → x2 → · · · → xl is a

longer directed path in (α, U), therefore (y, x1) /∈ U and (x1, y) ∈ U . Similarly, if (xl, y) ∈ U , we can

form the longer directed path x1 → x2 → · · · → xl → y in (α, U); thus we must have (xl, y) /∈ U and

(y, xl) ∈ U . However, this implies that there are elements xi and xi+1 such that (xi, y), (y, xi+1) ∈ U ,

which yields a longer directed path x1 → x2 → · · · → xi → y → xi+1 → · · · → xl. Therefore, every

y ∈ (α′, U) is related to at most l − 1 elements in the chain x1 → · · · → xl.

Now consider a word v ∈ R(α) and the corresponding word v′ ∈ R(α′) obtained by deleting

x1, . . . , xl. By the argument in the previous paragraph, the m + 1 − l letters in v′ create at most

(m+1−l)(l−1) graphical inversions with x1, . . . , xl. Therefore, by (3.2) and the induction hypothesis,
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max
w∈R(α)

invU w ≤ max
w′∈R(α′)

invU w + (m+ 1− l)(l − 1) +

(
l

2

)
(3.3)

= max
w′∈R(α′)

invU w +
(l − 1)(2m+ 2− l)

2
(3.4)

≤ max
w′∈R(α′)

majU w +
(l − 1)(2m+ 2− l)

2
(3.5)

≤ max
w∈R(α)

majU w. (3.6)

The proof of Lemma 3.2.2 also shows that a word w = wkwk−1 · · ·w1 with the property

majU (w) ≥ maxv∈R(α) invU v can be constructed by greedily “peeling off” directed paths (i.e. de-

scending chains) of maximal length from (α, U) and ordering them from right to left, forming the

subwords w1, . . . , wk in that order. These kind of words will be used in the proofs that follow and

when the relation U is understood; we will call them maximal chain words in R(α).

Moreover, if invU and majU are equidistributed on R(α), equalities hold in (3.3), (3.5),

and (3.6). Exploiting this, one can derive conclusions of how the elements from different chains in

the maximal chain words are related to each other if majU and invU are equidistributed on R(α).

We list the properties that will be important later in a series of three lemmas.

Lemma 3.2.3. Suppose majU and invU are equidistributed on R(α). Let w = wkwk−1 · · ·w1 ∈

R(α) be a maximal chain formed from the maximal chains w1, w2, . . . , wk. Then:

(i) For each of the maximal descending chains wj = xij−1+1xij−1+2 · · ·xij ,

(xr, xs) ∈ U or (xs, xr) ∈ U for all ij−1 + 1 ≤ r < s ≤ ij . (3.7)

(ii) Each letter y in a maximal descending chain wi, i > j, is related to exactly |wj | − 1 elements

from wj = xij−1+1xij−1+2 · · ·xij , i.e., there is a unique r ∈ {ij−1 +1, . . . , ij} such that (y, xr) /∈

U and (xr, y) /∈ U . Moreover, (xs, y) ∈ U for ij−1 + 1 ≤ s < r and (y, xs) ∈ U for r < s ≤ ij.

Proof. Condition (i) is necessary for equality to hold in (3.3). The property (ii) also follows from

the fact that equality holds in (3.3) and the definition of a maximal chain word which implies that

the chain wj is the longest one that can be formed among the letters in wkwk−1 · · ·wj .
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The following lemma shows that if majU and invU are equidistributed onR(α), the elements

in the maximal chains can be reordered, if necessary, so that within each of them the following

property holds: if x precedes y in the same chain of a maximal chain word, then (x, y) ∈ U .

Lemma 3.2.4. If majU and invU are equidistributed on R(α), then there exists a maximal chain

word w = wkwk−1 · · ·w1 ∈ R(α) with subwords wi formed from descending chains such that for any

wj = xij−1+1xij−1+2 · · ·xij we have

(xr, xs) ∈ U for all ij−1 + 1 ≤ r < s ≤ ij . (3.8)

Proof. Since the equality in (3.3) holds, the elements x1, . . . , xl in the maximal chain can be arranged

so that they form
(
l
2

)
graphical inversions, which implies the lemma.

Lemma 3.2.5. Suppose majU and invU are equidistributed on R(α). Let w = wkwk−1 · · ·w1 be a

maximal chain word in R(α) for U with maximal chains w1, . . . , wk. If (x, y) ∈ U and (y, x) ∈ U

for some x 6= y, then the αx copies of x and the αy copies of y are all in the same chain wi.

Proof. Without loss of generality, suppose x that appears in chain wj1 and y appears in chain wj2 ,

j1 > j2. Consider the chain wj2 : b1 ≥U b2 ≥U · · · ≥U bl−1 ≥U y ≥U bl+1 ≥U · · · ≥U bm. By

Lemma 3.2.3, there is exactly one i ∈ {1, . . . ,m} such that (x, bi), (bi, x) /∈ U , (b1, x), . . . , (bi−1, x) ∈

U , (x, bi+1), and . . . , (x, bm) ∈ U . If l < i, then the chain b1 ≥U · · · > bl−1 ≥U x ≥U y ≥U bl+1 ≥U

· · · ≥U bm is longer than wj2 and if l > i, then b1 ≥U · · · ≥U bl−1 ≥U y ≥U x ≥U bl+1 ≥U · · · ≥U bm

is longer than wj2 . This contradicts the definition of a maximal chain word.

The remaining two lemmas are devoted to proving that the relations U and U c are transitive

modulo some relations (x, x) with αx = 1.

Lemma 3.2.6. Suppose majU and invU are equidistributed on R(α). If (x, y), (y, x) ∈ U and αx > 1

then (x, x) ∈ U .

Proof. Since (x, y), (y, x) ∈ U , by Lemma 3.2.5, all the copies of x and y must be in the same

maximal chain of a maximal chain word. In particular, since two x’s are in the same chain, part (i)

of Lemma 3.2.3 implies that (x, x) ∈ U .
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Lemma 3.2.7. Suppose majU and invU are equidistributed over R(α) and let x and y be distinct

elements of X such that (x, y), (y, x) ∈ U . For every z ∈ {1α1 , . . . , nαn} \ {x, y}, we have

(z, x) ∈ U if and only if (z, y) ∈ U

and

(x, z) ∈ U if and only if (y, z) ∈ U.

Proof. If z = x then αx > 1 and the claim follows from Lemma 3.2.6. The same is true if z = y. So,

suppose z 6= x, z 6= y. By symmetry, it suffices to prove

(z, x) ∈ U =⇒ (z, y) ∈ U (3.9)

(x, z) ∈ U =⇒ (y, z) ∈ U. (3.10)

To see (3.9), suppose that (z, x) ∈ U , but (z, y) /∈ U . We consider two cases.

Case 1: (y, z) /∈ U . Let w = wtwt−1 · · ·w1 ∈ R(α) be a maximal chain word that sat-

isfies (3.8). By Lemma 3.2.5, x and y are in the same chain wi of w. By Lemma 3.2.3, z is

in a different chain wj and by Lemma 3.2.5, (x, z) /∈ U . If j > i, notice that by Lemma 3.2.3,

x cannot precede y in wi, so wi must be of the form wi = b1 · · · bkybk+1 · · · blxbl+1 · · · bm.

Then b1 · · · bkzbk+1 · · · blxybl+1 · · · bm is a descending chain longer than wi. If j < i, then

wj = b1 · · · bkzbk+1 · · · bl. By Part (ii) of Lemma 3.2.3, (bk, x), (y, bk+1) ∈ U , which implies that

b1 · · · bkxybk+1 · · · bl is a descending chain longer than wj .

Case 2: (y, z) ∈ U . By Lemma 3.2.1, majUc and invUc are equidistributed on R(α). Let

w = wtwt−1 · · ·w1 ∈ R(α) be a maximal chain word for U c that satisfies (3.8). Suppose x, y, z

are in the chains wi, wj , wk, respectively. By Lemma 3.2.3, i 6= j and i 6= k. If i < j, k and

wi = b1 · · · blxbl+1 · · · bm, then a different maximal chain word w′ could be constructed by taking

the same chains w1, . . . , wi−1 as in w and replacing wi by b1 · · · blybl+1 · · · bm. Since (z, y) ∈ U c,

it follows from Lemma 3.2.3 that z is not in relation U c with some br, meaning there is some br

such that (z, br) /∈ U c, r ≤ l and therefore (z, x) ∈ U c, which contradicts (z, x) ∈ U . A similar

argument holds if j < i, k. If k < i, j and wk = b1 · · · blzbl+1 · · · bm then y is not in relation U c

with some br, r > l, and a different maximal chain word for U c could be formed by replacing wk
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with b1 · · · blzbl+1 · · · br−1ybr+1 · · · bm. Part (ii) of Lemma 3.2.3 now implies that (z, x) ∈ U c, which

contradicts (z, x) ∈ U . Finally, if j = k < i, then Lemma 3.2.3 implies that (x, z) ∈ U c and y

precedes z in wj since (z, x), (x, y), (y, x) /∈ U c. Therefore, (y, z) ∈ U c, which contradicts (y, z) /∈ U .

The implication (3.10) can be proven by considering completely analogous cases, so we omit

it here.

Proof of Theorem 3.1.1 . Assume invU and majU are equidistributed on R(α). Define the sym-

metric part of U to be

S(U) = {(x, y) ∈ X ×X : (x, y), (y, x) ∈ U for some y 6= x}

and let

XU = {x ∈ X : (x, y) ∈ S(U) for some y ∈ X}.

Let

U ′ = (U ∪ {(x, x) : x ∈ XU , αx = 1}) \ {(x, x) : x /∈ XU , αx = 1}.

We will show that U ′ is bipartitional using the characterization given by Theorem 3.0.2,

which will imply that U is essentially bipartitional relative to α.

To show that U ′ is transitive, suppose (x, y), (y, z) ∈ U ′.

First consider the case when x, y, z are all different. If (y, x) ∈ U or (z, y) ∈ U , then

(x, z) ∈ U by Lemma 3.2.7. Hence (x, z) ∈ U ′. If (y, x), (z, y), (x, z) /∈ U then let w ∈ R(α) be a

maximal chain word for U c. If x, y, z all appear in the same chain wi, by Lemma 3.2.4, the elements

in wi can be reordered to give a sequence z1, . . . , zl such that (zr, zs) /∈ U for all 1 ≤ r < s ≤ l.

This is possible only if z precedes x and (z, x) /∈ U . Applying Lemma 3.2.7 to U c, we get that

(x, y), (y, z) /∈ U which contradicts the starting assumption. If not all x, y, z appear in the same

maximal chain wi, assume without loss of generality that x is the one that appears in the rightmost

chain of the maximal chain word w ∈ R(α) for U c. Suppose y does not appear in wi. Let ty be

the unique letter in wi (guaranteed by Lemma 3.2.3) not related to y in U c. Then another maximal

chain word can be constructed in which ty in the maximal chain wi is replaced by y. Repeating this

argument, we see that one can construct a maximal chain word for U c in which x, y, z are all in the

same maximal chain, which we saw is impossible.

If not all x, y, z are different, one only needs to consider the case x = z 6= y. Then x ∈ XU .
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If αx = 1, then (x, x) ∈ U ′ by definition. Otherwise, αx > 1 and (x, x) ∈ U by Lemma 3.2.6.

To show that U ′ has the second property from Theorem 3.0.2, assume that (x, y) ∈ U ′ and

(z, y), (x, z) /∈ U ′. If all x, y, z are different, then by the previous argument applied to U c, we get

(x, y) /∈ U , which contradicts the assumption (x, y) ∈ U . The only case left to be considered is

x = y 6= z. Then (x, x) ∈ U ′ and (x, z), (z, x) /∈ U . If αx > 1, then Lemma 3.2.6 applied to U c yields

(x, x) /∈ U , which contradicts (x, x) ∈ U ′. If αx = 1, then by the definition of U ′, x ∈ XU . This

means that (x,w), (w, x) ∈ U for some w 6= x. Then x, z, w, are all different and by the preceding

argument we get that (w, x) ∈ U and (z, x) /∈ U , which implies (w, z) ∈ U . But then Lemma 3.2.7

applied to U yields (x, z) ∈ U , a contradiction.

3.3 Graphical Sorting Index

In this section we will prove Theorem 3.1.2. The “if” part follows from the following

proposition and (3.1), while the “only if” part follows from Lemma 3.3.3 and Lemma 3.3.5.

Assume U satisfies the properties of Theorem 3.1.2 and has blocks B1, . . . , Bk. To each

word w ∈ R(α), we associate a pair of two sequences: a sequence of partitions and a sequence of

nonnegative integers. This map is a generalization of the B-code defined for permutations [8, 37].

Precisely, we define a map φ : R(α) −→ A, where A is a set of pairs

((b1,1 ≥ . . . ≥ b1,m1 ; b2,1 ≥ · · · ≥ b2,m2 ; . . . ; bk,1 ≥ . . . ≥ bk,mk
), (p1, . . . , pk))

satisfying

(1◦) for i < k in each partition bi,1 ≥ . . . ≥ bi,mi
≥ 0 each part has size bi,j ≤ mi+1+mi+2+· · ·+mk,

1 ≤ j ≤ mi, while bk,j = 0 for 1 ≤ j ≤ mk,

(2◦) pi = 0 if |Bi| = 1 and 1 ≤ pi ≤ mi if |Bi| = 2.

For w = x1 · · ·xl ∈ R(α), φ(w) is computed as follows.

(1) Set j = 1.

(2) If Bj = {y1, y2} has two integers y2 > y1 then let pj = i be the position of y2 in the subword

of w formed by the elements of Bj . Otherwise set pj = 0.
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(3) Sort the elements of the block Bj and form the partition bj,1 ≥ . . . ≥ bj,mj ≥ 0 from the

contributions to sorw (listed in nonincreasing order) by the elements of Bj . Keep calling the

partially sorted word w.

(4) If j < k increase j by 1 and go to step (2). Otherwise stop.

Consider, for example, the bipartitional binary relation

U = {(5, 3), (5, 2), (5, 1), (4, 3), (4, 2), (4, 1), (3, 2), (3, 1)}

with blocks B1 = {5, 4}, B2 = {3}, B3 = {2, 1} and β1 = β2 = β3 = 0. Take the word w =

42345411 ∈ R(2, 1, 1, 3, 1). Since the subword formed by the 4’s and the 5 is 4454, we have p1 = 3.

The steps for sorting the 4’s and the 5 are

4234541
+1−→ 42341415

+1−→ 42341145
+2−→ 42311445

+4−→ 12314445

and, therefore, the first partition in φ(w) is 4 ≥ 2 ≥ 1 ≥ 1. Then p2 = 0 and sorting the 3 yields

12134445, therefore the second partition is 1. Finally, p3 = 2 and

φ(w) = ((4 ≥ 2 ≥ 1 ≥ 1; 1; 0 ≥ 0 ≥ 0), (3, 0, 2)).

Since the parts of the partitions in the φ(w) represent contributions to the sorting index,

the bound for their size bi,j ≤ mi+1 + · · ·+mk easily follows. Therefore, the φ(w) is clearly a map

from R(α) to the set of pairs of sequences of partitions and integers which satisfy (1◦) and (2◦),

which we claim is a bijection. For describing the inverse, the crucial observation is that for blocks

of size 2, Bj = {y1 < y2}, the contribution to the sorting index is given by bj,pj . Then given

((b1,1 ≥ · · · ≥ b1,m1
; b2,1 ≥ · · · ≥ b2,m2

; . . . ; bk,1 ≥ · · · ≥ bk,mk
), (p1, . . . , pk))

which satisfies (1◦) and (2◦), the corresponding word w ∈ R(α) is constructed as follows.

(1) Let j = k and w be the empty word.

(2) Add to the end of w the elements of Bj with their multiplicities, listed in nondecreasing order

xj,1xj,2 · · ·xj,mj
.
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(3) If |Bj | = 1, then for i = 1, . . . ,mj , swap xj,i with the element of w which is bj,i places to the

left of xj,i.

(4) If Bj = {y1 < y2}, then let b
′

j,1 ≥ · · · ≥ b
′

j,mj−1 be the partition obtained from bj,1 ≥ . . . ≥

bj,mj
by deleting the part bj,pj . Then for i = 1, . . . ,mj − 1, swap xj,i with the element of w

which is b
′

j,i places to the left of xj,i. Finally, swap xj,mj
= y2 with the element in w which is

bj,pj +mj − pj positions to its left. (After this step there are bj,pj elements from Bj+1, . . . , Bk

and mj − pj elements from Bj to the right of y2.)

(5) If j > 1 decrease j by 1 and go to step (2). Otherwise stop.

Proposition 3.3.1. If U satisfies the properties of Theorem 3.1.2 and has blocks B1, . . . , Bk then

∑
w∈R(α)

qsorU (w) =

[
|α|

m1, . . . ,mk

] k∏
j=1

(
mj

α(Bj)

)
.

Proof. The φ(w) is designed so that sorU w =
k∑
i=1

mi∑
j=1

bi,j . The bijection described above then yields

the generating function for sorU . Let p(j, k, n) denote the number of partitions of n into at most

k parts, with largest part at most j. It is known that
∑
n≥0 p(j, k, n)qn =

[
j+k
j

]
. The block Bj

contributes

(
mj

α(Bj)

)∑
n≥0

p(mj+1 + · · ·+mn,mj , n)qn =

(
mj

α(Bj)

)[
mj +mj+1 · · ·+mn

mj

]

to
∑
w∈R(α) q

sorU (w), where the leading binomial coefficient counts the number of possible values of

pj . Thus we have

∑
w∈R(α)

qsorU (w) =

k∏
j=1

(
mj

α(Bj)

)[
mj +mj+1 · · ·+mn

mj

]
=

[
|α|

m1, . . . ,mk

] k∏
j=1

(
mj

α(Bj)

)
.

In particular, we get the generating function for the standard sorting index for words.

Corollary 3.3.2. ∑
w∈R(α)

qsor(w) =

[
|α|

m1, . . . ,mk

]
.
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Finally, we prove the “only if” part of Theorem 3.1.2 via the following few lemmas.

Lemma 3.3.3. If sorU , majU , and invU are equidistributed over a fixed rearrangement class R(α)

then the relation U must be a subset of the integer order modulo relations (x, x).

Proof. Suppose the statistics sorU , majU , and invU are equidistributed on R(α). By Theorem 3.1.1,

U must be essentially bipartitional relative to α. That means that there are subsets I, J ⊂ {x : αx=1}

such that U ′ = (U \ {(x, x) : x ∈ I})∪ {(x, x) : x ∈ J} is bipartitional. Without loss of generality we

may assume that I, J are chosen so that U ′ does not have underlined blocks {x} of size 1 such that

αx = 1. We claim that U ′ is a subset of the natural order.

First we will show that there are no underlined blocks in U ′. Suppose the contrary. Then

there exist elements x and y such that (x, y), (y, x) ∈ U ′ (x 6= y, or y is a second copy of the same

element with αx > 1). Because we have both (x, y) and (y, x) in U ′, every word w ∈ R(α) has at

least one U ′-inversion. Therefore the minimum invU over the rearrangement class R(α) is 1. On

the other hand, sorU 11 · · · 122 · · · 2 · · ·nn · · ·n = 0. This is a contradiction, and thus there are no

underlined blocks in U ′.

Now assume that U ′ is not a subset of the natural integer order. Then there exist at least

two elements such that (x, y) ∈ U ′, but y > x with respect to the natural order. Let B1, B2, . . . , Bk

be the blocks of U ′. Now consider the words created by placing the elements of B1 in some order

followed by the elements of B2 placed to the right of B1 and continue the process until the elements

of Bk in some order are the last elements of the word. The words of this type will have invU equal

to the number of edges in the graph (α, U ′) as defined in the proof of Lemma 3.2.2. Therefore, the

maximum invU is bounded below by the number of edges in (α, U ′) (it is in fact equal to the number

of edges in (α, U ′)). In the sorting algorithm, however, elements are only sorted over elements that

are smaller than them with respect to the natural order. Therefore x will never jump over y, and

thus the relation (x, y) will never contribute to the sorting index. Since each edge of the graph

(α, U ′) contributes at most 1 to sorU , we conclude that the maximum of sorU on R(α) is less than

the maximum of invU . This is a contradiction, and so U ′ must be a subset of the natural order.

The next inequality will be used to prove the remaining part of Theorem 3.1.2.

Lemma 3.3.4. For a, b ∈ Z≥1,
min{a,b}∑
i=0

(
a

i

)
≤
(
a+ b

b

)
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and equality holds if and only if b = 1.

Proof. If a ≤ b, then using the Vandermonde identity we have

min{a,b}∑
i=0

(
a

i

)
=

a∑
i=0

(
a

i

)
≤

a∑
i=0

(
a

i

)(
b

a− i

)
=

(
a+ b

b

)

and equality holds if and only if a = b = 1. Similarly, if a > b then

min{a,b}∑
i=0

(
a

i

)
=

b∑
i=0

(
a

i

)
≤

b∑
i=0

(
a

i

)(
b

b− i

)
=

(
a+ b

b

)
.

Lemma 3.3.5. Suppose U is a bipartitional relation with blocks B1, . . . , Bk, none of which are

underlined, such that sorU , majU , and invU are equidistributed over R(α). Then for every 1 ≤ i < k,

|Bi| ≤ 2 and if the equality |Bi| = 2 holds then αmaxBi
= 1.

Proof. By Lemma 3.3.3, the blocks B1, . . . , Bk are consecutive intervals with n ∈ B1 and 1 ∈ Bk. If

k = 1 there is nothing to prove, so suppose k > 1.

Let i(B1, . . . Bk) and s(B1, . . . , Bk) denote the number of words in R(α) that maximize invU

and sorU , respectively. Let B1 = {s, s + 1, . . . , n}, s ≤ n − 1. The words in R(α) that maximize

invU are exactly those formed by a permutation of the elements of B1 (with their multiplicities)

followed by a permutation of the elements from B2, etc. So, i(B1, . . . , Bk) =
∏k
i=1

(
mi

α(Bi)

)
.

On the other hand, if w ∈ R(α) maximizes sorU then after sorting the n’s, one obtains a

word w′ ∈ R(α′) that maximizes sorU for α′ = (α1, . . . , αn−1). The map w → w′ is not one-to-one.

One can write w′ = uv where u is the longest prefix of w′ formed by elements of B1. Then the

number of words w that yield w′ is at most
∑min{|u|,αn}
i=0

(|u|
i

)
. Namely, such a w can be obtained

by appending the αn copies of n to w′ and then swapping the leftmost i copies of n with i letters

from u and the remaining αn − i copies of n with the first αn − i letters of v.

Since, by Lemma 3.3.4,

min{|u|,αn}∑
i=0

(
|u|
i

)
≤
(
|u|+ αn
αn

)
≤
(
αn + αn−1 + · · ·+ αs

αn

)
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with equality when αn = 1, we have

s(B1, . . . , Bk) ≤
(
αn + αn−1 + · · ·+ αs

αn

)
s(B1 \ {n}, . . . , Bk),

where s(B1 \ {n}, . . . , Bk) is the number of words in R(α′) that maximize sorU . Inductively, we get

s(B1, . . . , Bk) ≤
(
αn + αn−1 + · · ·+ αs
αs, . . . , αn−1, αn

)
s(B2, . . . , Bk) ≤

k∏
i=1

(
mi

α(Bi)

)
= i(B1, . . . , Bk).

Since we have equalities everywhere, αn = 1. We also get that s(B1 \ {n}, . . . , Bk) = i(B1 \

{n}, . . . , Bk) and by the same argument, αn = αn−1 = · · · = αs+1 = 1.

Now consider a permutation p of the multiset {1α1 , 2α2 , . . . , (s − 1)αs−1} which maximizes

sorU . By appending αs copies of s to p and then swapping them with the first αs letters of p we get

the word

ss · · · s︸ ︷︷ ︸
αs

p′.

One can readily see that the word

w′ = (n− 1) ss · · · s︸ ︷︷ ︸
αs−1

p′s(s+ 1)(s+ 2) · · · (n− 2) ∈ R(α′)

maximizes sorU over R(α′). Also, there are exactly αs + 1 words w in R(α) that maximize sorU

which can be obtained from w′, namely,

n ss · · · s︸ ︷︷ ︸
αs−1

p′s(s+ 1)(s+ 2) · · · (n− 2)(n− 1),

(n− 1)n ss · · · s︸ ︷︷ ︸
αs−2

p′s(s+ 1)(s+ 2) · · · (n− 2)s,

(n− 1)sn ss · · · s︸ ︷︷ ︸
αs−3

p′s(s+ 1)(s+ 2) · · · (n− 2)s,

...

(n− 1) ss · · · s︸ ︷︷ ︸
αs−2

np′s(s+ 1)(s+ 2) · · · (n− 2)s,

(n− 1) ss · · · s︸ ︷︷ ︸
αs−1

np′′s(s+ 1)(s+ 2) · · · (n− 2)a,
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where a is the first letter of p′. However, as we saw above, if sorU and invU are equidistributed on

R(α), each word w′ corresponds to exactly
(
αn+αn−1+···+αs

αn

)
words w. So,

(
αn + αn−1 + · · ·+ αs

αn

)
= αs + 1

and therefore s = n− 1.

This proves that either B1 = {n− 1, n} with αn = 1 or B1 = {n}. Since the block is of this

form, reasoning as in the proof of Proposition 3.3.1 one can see that

∑
w∈R(α)

qsorU (w) =

(
m1

α(B1)

)[
m1 + · · ·+mn

mj

] ∑
w∈R(α′′)

qsorU (w),

where R(α′′) is the set of all permutations of the elements of B2, . . . , Bk with the multiplicities given

by α. Since ∑
w∈R(α)

qinvU (w) =

(
m1

α(B1)

)[
m1 + · · ·+mn

mj

] ∑
w∈R(α′′)

qinvU (w),

we conclude that sorU and invU are equidistributed on R(α′′) and inductively, we get that each

of the remaining blocks B2, . . . , Bk−1 has either size 1 or size 2 with the multiplicity of the largest

element being 1.

This completes the proof of Theorem 3.1.2.
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Chapter 4

Mahonian Stirling Pairs for

Labeled Forests

As we saw in the Introduction, the Mahonian-Stirling paris (maj,RL-min), (inv,RL-min),

and (sor,Cyc) are equidistributed over Sn. In this chapter, we generalize these results over labeled

forests. We begin with some notation and background.

A forest is an acyclic graph, and throughout this dissertation we will be considering planer

rooted forests. Let F be a plane forest with vertex set V (F ) = {v1, . . . , vn}. We will draw F with

the roots on top and think of it as a Hasse diagram of the poset (V (F ), <F ) with the root as the

maximal element. Throughout this chapter, we assume that the vertices of F are naturally indexed.

That is, if vi <F vj , then i < j.

A labeling w of F is a bijection

w : V (F )→ {1, . . . , n}.

Let W(F ) be the set of all labelings of a forest F . For each vertex v ∈ V (F ) the hook length of x,

denoted by hv, is the number of vertices of the subtree of F rooted at v. In other words, hv is the

size of the principal order ideal generated by v.

Mallows and Riordan [11] generalized inversions to labeled forests in the following way:

inv(F,w) = #{(u, v) : u <F v, w(u) > w(v)}.
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If the forest F is a linear tree, this is simply the inversion index of the corresponding permutation

obtained by reading the labels of F from bottom to top. Mallows and Riordan [11] studied the

inversions of unordered labeled trees, but we will be discussing the distribution of inversions over all

labelings of a fixed ordered forest F .

Björner and Wachs [4] extended the major index to labeled forests. Namely, they defined

the descent set of a labeled forest as

Des(F,w) = {v ∈ V (F ) : w(v) > w(u), u is the parent of v},

the major index as

maj(F,w) =
∑

v∈Des(F,w)

hv,

and they showed that the major index has the same distribution as the inversion index on labeled

forests of fixed shape (see [32] for a bijective proof):

∑
w∈W(F )

qmaj(F,w) =
∑

w∈W(F )

qinv(F,w) =
n!∏

v∈V (F ) hv

∏
v∈V (F )

[hv].

v1

v3

v5

v4

v2

(a) A tree F with naturally indexed vertices

3

1

2

4̄

5̄

(b) A signed labeling of F

Figure 4.1: A forest F with a signed labeling

A signed labeling of the forest F of size n is a one-to-one map

w : V (F )→ {±1, . . . ,±n}

such that if i ∈ w(V (F )) then −i /∈ w(V (F )). We denote −i with ī, see Figure 4.1 for an example.

The set of all signed labelings of F will be denoted by WB(F ). Chen et al. [8] extended the

notion of inversions and major index to signed labeled forests, the latter one in two different ways.

The inversion number invB for signed labelings is motivated by the length function for signed
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permutations, while the major indices fmaj and rmaj are based on the major indices of signed

permutations introduced by Adin and Roichman [1] and Reiner [39], respectively, which we defined

in Section 2.4. The authors in [8] showed that

∑
w∈WB(F )

qfmaj(F,w) =
∑

w∈WB(F )

qrmaj(F,w) =
∑

w∈WB(F )

qinvB(F,w) =
n!∏

v∈V (F ) hv

∏
v∈V (F )

[2hv].

Precise definitions of the statistics BT-max, CBT-max (cyclic bottom-to-top maximum

positions), sor (sorting index), and Cyc (minimal elements in cycles) will be given below. Our main

result is that these three pairs of statistics are equidistributed over all (signed) labelings of a forest

F . We give a bijective proof of this fact by mapping the labelings to certain integer sequences in

three different ways. This also gives us an explicit formula for the generating function of each of the

three pairs. Explicitly, we prove that

∑
w∈W(F )

qinv(F,w)
∏

v∈BT-max(F,w)

tv =
∑

w∈W(F )

qsor(F,w)
∏

v∈Cyc(F,w)

tv =
∑

w∈W(F )

qmaj(F,w)
∏

v∈CBT-max(F,w)

tv

=
n!∏

v∈V (F ) hv

∏
v∈V (F )

([hv]− 1 + tv) ,

and

∑
w∈WB(F )

qinvB(F,w)
∏

v∈BT-maxB(F,w)

tv =
∑

w∈WB(F )

qsorB(F,w)
∏

v∈CycB(F,w)

tv

=
n!∏

v∈V (F ) hv

∏
v∈V (F )

([2hv]− 1 + tv) .

When the forest is a linear tree, we show how these statistics specialize to known permutation statis-

tics, and we discuss how our results are a generalization of some results for (signed) permutations.

Sections 4.1, 4.2, and 4.3 deal with each of the pairs (inv,BT-max), (sor,Cyc), and

(maj,CBT-max) separately. Whenever possible, we work with signed labeled forests and in our

results we keep track of the negative signs in the labeling, so that the results for unsigned labeled

forests are a corollary. At places, we also discuss the case of even signed labeled forests, which is

related to the case of even signed permutations.

As one can see above the pair (maj,CBT-max) has not been generalized over signed labeled

forests. In Section 4.4, we define a new statistic imaj using the sorting algorithm given in Section 4.2
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and discuss a conjecture that may better generalize the result for permutations some of the results

in this Chapter are published in Advances of Applied Mathematics [23].

4.1 Inversions and Bottom-To-Top Maxima

Recall that a signed labeling of a forest F is a one-to-one map w : V (F ) → {±1, . . . ,±n}

such that if i ∈ w(V (F )) then −i /∈ w(V (F )). As usual, we denote −i by ī. A labeling is even-signed

if the number of negative labels used is even. We will useWB(F ) andWD(F ) to denote the set of all

signed labelings and the set of all even-signed labelings of a forest F , respectively. The type B and

type D analogues of the inversion number of a labeled forest, introduced by Björner and Wachs [4],

was proposed by Chen et al. [8]. The definition follows. Let n1(F,w) be the number of negative

labels in w, and define

n2(F,w) = #{(x, y) : x <F y, w(x) + w(y) < 0}.

The inversion number of a signed labeled forest is given by

invB(F,w) = inv(F,w) + n1(F,w) + n2(F,w),

while for w ∈WD(F ), the type D inversion number is defined by

invD(F,w) = inv(F,w) + n2(F,w).

For example, for the even signed labeled forest (F,w) from Figure 4.1, invB(F,w) = 2 + 2 + 3 = 7

and invD(F,w) = 2 + 3 = 5. Note that if a signed labeling w is in fact in W(F ), then invB(F,w) =

inv(F,w). Chen et al. [8] showed that for a forest F with n vertices,

∑
w∈WB(F )

pn1(F,w)qinvB(F,w) =
n!∏

v∈V (F ) hv

∏
v∈V (F )

(1 + pqhv )[hv].

As a corollary, they derived

∑
w∈WB(F )

qinvB(F,w) =
n!∏

v∈V (F ) hv

∏
v∈V (F )

[2hv]
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and ∑
w∈WD(F )

qinvD(F,w) =
n!

2
∏
v∈V (F ) hv

∏
v∈V (F )

(1 + qhv−1)[hv].

In this section, we refine these results by looking at the joint distribution of inversions and bottom-

to-top maxima.

Definition 4.1.1. Let F be a forest. For w ∈ W(F ), we define the bottom-to-top maximum positions

to be

BT-max(F,w) = {v : w(v) > w(u) for all u <F v}.

For w ∈ WB(F ), we define the signed bottom-to-top maximum positions to be

BT-maxB(F,w) = {v : w(v) > 0 and w(v) > |w(u)| for all u <F v}.

Finally, for w ∈ WD(F ), we define the even signed bottom-to-top maximum positions to be

BT-maxD(F,w) = {v : v is not a leaf, w(v) > 0 and w(v) > |w(u)| for all u <F v}.

For example, for the signed labeled forest (F,w) from Figure 4.1, BT-maxB(F,w) = {v1}

and BT-maxD(F,w) = ∅. In this and following sections we make use of maps between labeled forests

and certain sequences that in the case of the symmetric group reduce to inversion tables. We will

use SEF and SEBF to denote the type A and type B subexcedent sequences that correspond to a

forest F , respectively:

SEF = {(a1, . . . , an) : ai ∈ Z, 0 ≤ ai ≤ hvi − 1},

SEBF = {(a1, . . . , an) : ai ∈ Z, 0 ≤ ai ≤ 2hvi − 1}.

For a forest F and w ∈ WB(F ), we define its A-code(F,w) to be the sequence (a1, . . . , an) ∈

SEBF given by

ai = #{u : u <F vi and w(u) > w(vi)}+ #{u : u <F vi and w(u) + w(vi) < 0}+ χ(w(vi) < 0),

where χ is the truth indicator function. For example, for the tree F with labeling w in Figure 4.1,
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A-code(F,w) = (0, 1, 2, 1, 3).

Lemma 4.1.2. Let w ∈ WB(F ) and suppose A-code(F,w) = (a1, a2, . . . , an). Then

1. invB(F,w) =
∑n
i=1 ai

2. BT-maxB(F,w) = {vi : ai = 0}

3. w(vi) < 0 if and only if hvi ≤ ai ≤ 2hvi−1 and therefore n1(F,w) = #{i : hvi ≤ ai ≤ 2hvi−1}.

Proof. It is clear from the definition of the map A-code that invB(F,w) =
∑n
i=1 ai because each ai

is a sum of the amounts that the vertex vi contributes to inv(F,w), n1(F,w), and n2(F,w). Now, by

definition, vi is a signed bottom-to-top maximum position if and only if w(vi) > 0 and w(vi) > |w(u)|

for all u <F vi. Furthermore, w(vi) > |w(u)| for all u <F vi if and only if vi does not create any

inversions with vertices below it and w(vi) + w(u) > 0 for all u <F vi. Therefore, vi is a signed

bottom-to-top maximum position if and only if ai = 0. This proves the second part of the lemma.

For the third part, note that if w(vi) > 0, each vertex u such that u <F vi belongs to at most one of

the sets {vj : vj <F vi and w(vj) > w(vi)} and {vj : vj <F vi and w(vj) + w(vi) < 0}. Therefore,

in this case ai < hvi . On the other hand, if w(vi) < 0, each vertex u such that u <F vi belongs to

at least one of these two sets and therefore ai ≥ hvi .

A labeling w ∈ W(F ) is said to be natural if it preserves the order <F . The map A-code is

not a bijection between WB(F ) and SEBF , but it can be used to define the following bijection φ from

WB(F ) to the set {(w′, (a1, . . . , an)) : w′ ∈ W(F ) is a natural labeling and (a1, . . . , an) ∈ SEBF }.

First we set A-code(F,w) = (a1, . . . , an). The natural positive labeling w′ is obtained by a sequence

of n modifications applied to w in the following way. Start with wn = w. If the labeling wi has been

defined for i > 0, construct wi−1 as follows. Set Ai = {|wi(u)| : u ≤F vi}. Find the largest element

in Ai, say it is |wi(vj)|, and define the new labeling wi−1 of F so that

1. wi−1(vi) = |wi(vj)|

2. for all u ≮F vi, wi−1(u) = wi(u)

3. in wi−1, the absolute values of the labels of the vertices below vi are given by Ai\{|wi(vj)|} so

that for all u, u′ <F vi, |wi−1(u)| < |wi−1(u′)| if and only |wi(u)| < |wi(u′)| and sgnwi−1(u) =

sgnwi(u) for all u <F vi.
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(f) A tree F with labeling w0

Figure 4.2: Example of the algorithm used to find the natural positive labeling of the A-code

Finally, we set w′ = w0. See Figure 4.2 for an example.

Lemma 4.1.3. If A-code(F,w) = (a1, . . . , an), then A-code(F,wk), defined in the previous para-

graph, is (a1, . . . , ak, 0, . . . , 0), 1 ≤ k ≤ n. Thus w′ has no inversions and is a natural positive

labeling.

Proof. Assume that A-code(F,wi) = (a1, . . . , ai, 0, . . . , 0). In both wi and wi−1, all vertices u with

u ≮F vi form the same number of inversions with vertices below them. So, the corresponding entries

in A-code(F,wi) and A-code(F,wi−1) are equal. Furthermore, the choice of the label wi−1(vi) is

such that it is clear that the i-th entry of A-code(F,wi−1) is 0. What remains is to show that the

entries in A-code(F,wi) and A-code(F,wi−1) corresponding to the vertices vj below vi are the same.

The third property of wi−1 directly implies #{u : u <F vj and wi−1(u) > wi−1(vj)} = #{u : u <F

vj and wi(u) > wi(vj)} and χ(wi−1(vj) < 0) = χ(wi(vj) < 0). So, we only need to check that

#{u : u <F vj and wi−1(u) + wi−1(vj) < 0} = #{u : u <F vj and wi(u) + wi(vj) < 0}.
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Note that from wi to wi−1, the labels below vi can stay the same, can increase by 1 (in which

case they were negative), or can decrease by 1 (in which case they were positive). Therefore,

|(wi(u)+wi(vj))−(wi−1(u)+wi−1(vj))| ≤ 2. Thus, a change in the sign of the sum of two labels can

possibly occur only when wi(u) + wi(vj) ∈ {−2,−1, 1, 2}. In case when wi(u) + wi(vj) ∈ {−2,−1},

we have that one of wi(u), wi(vj) is positive while the other one is negative. So wi−1(u)+wi−1(vj) ≤

wi(u) + wi(vj) + 1 ≤ 0. Since all labels are different in absolute value, wi−1(u) + wi−1(vj) < 0.

Similarly, if wi(u) + wi(vj) ∈ {1, 2}, then wi−1(u) + wi−1(vj) must be positive as well.

Theorem 4.1.4. Let F be a forest with n vertices. The map

φ :WB(F )→ {(w′, (a1, . . . , an)) : w′ ∈ W(F ) is a natural labeling and (a1, . . . , an) ∈ SEBF }

is a bijection.

Proof. First note that by Lemma 4.1.3 the map φ is well defined. We now describe the inverse of

φ. Given a pair (w′, (a1, . . . , an)) where w′ ∈ W(F ) is a natural labeling and (a1, . . . , an) ∈ SEBF ,

the corresponding labelings wi from the definition of φ can be obtained in the following way. First,

w0 = w′. If wi−1 has been constructed for i ≤ n, let Ai = {|wi−1(u)| : u ≤ vi}. If ai < hvi , find the

(ai+1)-st largest element in Ai, say it is |wi−1(vj)|, and set wi(vi) = |wi−1(vj)|. If hvi ≤ ai ≤ 2hvi−1,

find the (ai−hvi +1)-st smallest element of Ai, say it is |wi−1(vj)|, and set wi(vi) = −|wi−1(vj)|. In

either case, relabel the vertices below vi with the elements from Ai\{|wi−1(vj)|}| while preserving

the order of the original labels in absolute values as well as the signs at the vertices in wi−1 (similar

to the third property in the definition of φ above), and call this new labeling wi. The desired

labeling w that corresponds to (w′, (a1, . . . , an)) is simply wn constructed in this process. Note

that like in Lemma 4.1.3, one can show that the A-code(F,wi) = (a1, . . . , ai, 0, . . . , 0) and therefore

A-code(F,w) = (a1, . . . , an).

Corollary 4.1.5. Given a forest F of size n and a sequence (a1, . . . , an) ∈ SEBF , there are n!∏
v∈V (F ) hv

signed labelings w of F such that A-code(F,w) = (a1, . . . , an).

Proof. This follows from Theorem 4.1.4 and the well-known fact that there are n!∏
v∈V (F ) hv

natural

labelings of the forest F .
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Theorem 4.1.6. Let F be a forest of size n. Then

∑
w∈WB(F )

pn1(F,w)qinvB(F,w)
∏

v∈BT-maxB(F,w)

tv =
n!∏

v∈V (F ) hv

∏
v∈V (F )

(
(1 + pqhv )[hv]− 1 + tv

)
. (4.1)

Proof. This is a direct consequence of Lemma 4.1.2, Theorem 4.1.4, and Corollary 4.1.5.

As a corollary, we obtain a generalization of the results of Björner and Wachs [4] and Chen,

Gao, and Guo [8].

Corollary 4.1.7. Let F be a forest of size n. Then

∑
w∈W(F )

qinv(F,w)
∏

v∈BT-max(F,w)

tv =
n!∏

v∈V (F ) hv

∏
v∈V (F )

([hv]− 1 + tv) , (4.2)

∑
w∈WB(F )

qinvB(F,w)
∏

v∈BT-maxB(F,w)

tv =
n!∏

v∈V (F ) hv

∏
v∈V (F )

([2hv]− 1 + tv) , (4.3)

∑
w∈WD(F )

qinvD(F,w)
∏

v∈BT-maxD(F,w)

tv =
n!× 2#leaves in F−1∏

v∈V (F ) hv

∏
v∈V (F )

v is not a leaf

(
(1 + qhv−1)[hv]− 1 + tv

)
.

(4.4)

Proof. For w ∈ WB(F ) which is actually in W(F ), inv(F,w) = invB(F,w) and BT-max(F,w) =

BT-maxB(F,w). Therefore, (4.2) follows from (4.1) by setting p = 0. The equation (4.3) is obtained

by setting p = 1 in (4.1). To get (4.4), let

Dn(p, q, t) =
∑

w∈WB(F )

pn1(F,w)qinvD(F,w)
∏

v∈BT-maxD(F,w)

tv.
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Then

Dn(p, q, t) =
∑

w∈WB(F )

pn1(F,w)qinv(F,w)+n2(F,w)
∏

v∈BT-maxB(F,w)

tv

∣∣∣∣
tv=1

v is a leaf

=
∑

w∈WB(F )

(
p

q

)n1(F,w)

qinvB(F,w)
∏

v∈BT-maxB(F,w)

tv

∣∣∣∣
tv=1

v is a leaf

(4.1)
=

n!∏
v∈V (F ) hv

∏
v∈V (F )

(
(1 + pqhv−1)[hv]− 1 + tv

) ∣∣∣∣
tv=1

v is a leaf

=
n!∏

v∈V (F ) hv
(1 + p)#leaves in F

∏
v∈V (F )

v is not a leaf

(
(1 + pqhv−1)[hv]− 1 + tv

)
.

Since F has at least one leaf, Dn(−1, q, t) = 0, which implies

∑
i is even

[pi]Dn(p, q, t) =
∑

i is odd

[pi]Dn(p, q, t),

where [pi]Dn(p, q, t) denotes the coefficient in Dn(p, q, t) in front of [pi]. Therefore,

∑
w∈WD(F )

qinvD(F,w)
∏

v∈BT-maxD(F,w)

tv =
∑

i is even

[pi]Dn(p, q, t)

=
Dn(1, q, t)

2

=
n!× 2#leaves in F−1∏

v∈V (F ) hv

∏
v∈V (F )

v is not a leaf

(
(1 + qhv−1)[hv]− 1 + tv

)
.

Now, we show how Corollary 4.1.7 generalizes results for permutations. Let F be a tree

of size n with one leaf whose vertices are naturally indexed and w ∈ WB(F ). Let σ be the signed

permutation obtained by reading the labeling w of F from bottom to top, i.e., σ = w(v1) · · ·w(vn).

Then clearly inv(F,w) = inv(σ), n1(F,w) = n1(σ), and n2(F,w) = n2(σ). Therefore, if σ ∈ Sn, then

`(σ) = inv(F,w); if σ ∈ Bn, then `B(σ) = invB(F,w); and if σ ∈ Dn, then `D(σ) = invD(F,w).

The statistic RL-min is related to BT-max in the following way.

Lemma 4.1.8. Let F be a linear tree with n vertices. Let w ∈ WB(F ) and let σ = w(v1) · · ·w(vn)

be the corresponding signed permutation. Then BT-maxB(F,w) = RL-minB(σ−1). Moreover,

if w ∈ W(F ) then BT-max(F,w) = RL-min(σ−1) and if w ∈ WD(F ) then BT-maxD(F,w) =
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RL-minD(σ−1).

Proof. Assume that the first statement holds for all linear trees of size at most n. Let F be a linear

tree of size n + 1 and let w ∈ WB(F ). Now let F ′ be the tree of size n obtained by removing the

root vn+1 of F , and let w′ ∈ WB(F ′) be the corresponding standardized labeling obtained from

w by decreasing the absolute values of all labels larger than |w(vn+1)| by 1 and preserving the

signs. Note that vn+1 ∈ BT-maxB(F ) if and only if w(vn+1) = n + 1. Therefore, if w(vn+1) 6=

n + 1 then BT-maxB (F,w) = BT-maxB (F ′′, w′), and if w(vn+1) = n + 1 then BT-maxB (F,w) =

BT-maxB (F ′, w′)∪{vn+1}. Let σ = w(v1) · · ·w(vn+1), and σ′ = w′(v1) · · ·w′(vn). The permutation

σ′ can be obtained from σ by deleting the last letter w(vn+1) and standardizing, and therefore, σ′−1 is

obtained by removing n+1 or (n+ 1) from σ−1. Since w(vn+1) determines the position of n+1 in σ−1,

n+ 1 ∈ RL-minB(σ−1) if and only if w(vn+1) = n+ 1. Applying this and the induction hypothesis,

we have that if w(vn+1) 6= n + 1 then RL-minB (σ−1) = RL-minB (σ′−1) = BT-maxB (F ′, w′) =

BT-maxB (F,w), and if w(vn+1) = n + 1 then RL-minB (σ−1) = RL-minB (σ′−1) ∪ {n + 1} =

BT-maxB (F ′, w′) ∪ {n+ 1} = BT-maxB (F,w). Therefore BT-maxB (F,w) = RL-minB (σ−1).

If there are no signed letters, the same argument shows that BT-max(F,w) = RL-min(σ−1).

Since inv(σ) = inv(σ−1) and the corresponding statement is also true for signed and even

signed permutations, as a direct consequence of Lemma 4.1.8 and Corollary 4.1.7 we get the following

results for permutations.

Corollary 4.1.9. ∑
σ∈Sn

qinv(σ)
∏

i∈RL-min(σ)

ti =

n∏
i=1

([i]− 1 + ti), (4.5)

∑
σ∈Bn

qinvB(σ)
∏

i∈RL-minB(σ)

ti =

n∏
i=1

([2i]− 1 + ti) , (4.6)

∑
σ∈Dn

qinvD(σ)
∏

i∈RL-minD(σ)

ti =

n∏
i=2

(
(1 + qi−1)[i]− 1 + ti

)
. (4.7)

Equation (4.5) was first shown in [5], while (4.6) and (4.7) can be found in [37], where a

more general case of restricted permutations was also studied.
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4.2 Sorting Index and Cycles

In this section, we introduce two new statistics for labeled forests, sorting index and cycle

minima, and we study their joint distribution. They are motivated by corresponding permutation

statistics sorB and CycB , or in the unsigned case, sor and Cyc, which we discussed in the introduction.

We begin by introducing the sorting index for signed labeled forests, which is computed

via a sorting algorithm related to Straight Selection Sort. To describe it we introduce the following

notation. For a signed forest (F,w), and a vertex v, let wv denote the labeling of the subtree of

F rooted at v which is induced by w. The algorithm for computing the sorting index of type B,

sorB(F,w), is as follows:

• Begin with i = n and sorB(F,w) = 0.

• Let v be the vertex with |w(v)| = i and let u be the largest vertex such that u ≥F v and

|w(u)| ≤ i. If w(u) > 0, then let sorB(F,w) = sorB(F,w) + |wu(v)| − wu(u). Otherwise let

sorB(F,w) = sorB(F,w) + |wu(v)| − wu(u)− 1

• If w(v) > 0, interchange the labels on the vertices u and v, and if not, first multiply w(u) and

w(v) by -1, and then interchange the labels on the vertices u and v.

• Call this new labeling w, and repeat this process for i = n− 1, . . . , 1.

For w ∈ W(F ), we will define the type A sorting index sor(F,w) to be the same as sorB(F,w).

Since in this case there are no negative labels, the sorting algorithm can be simplified and we present

it here for convenience.

• Begin with i = n and sor(F,w) = 0.

• Let v be the vertex with |w(v)| = i, and let u be the largest vertex such that u ≥F v and

w(u) ≤ i, then sor(F,w) = sor(F,w) + wu(v) - wu(u).

• Interchange the labels on the vertices u and v, and call the new labeling w.

• Repeat this process for i = n− 1, . . . , 1.

An example of sorting a signed labeled tree is given in Figure 4.6. For this tree we have

sor(F,w) = (5− 2) + (1 + 1− 1) + (3− 1) + (1 + 1− 1) + (1− 1) = 7.
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Figure 4.3: Sorting of the signed labeled tree from Figure 4.1.

The sorting algorithm applied to a labeling w produces a positive natural labeling w′ of F .

Though for signed labelings w, the map w ◦ (w′)−1 is technically a map {1, . . . , n} → {±1, . . . ,±n},

it can be uniquely extended to a signed permutation in Bn.

Definition 4.2.1. For w ∈ W(F ), we define the minimal cycle vertices of (F,w) to be

Cyc(F,w) = {v : w′(v) ∈ Cyc(w ◦ (w′)−1)}.

For w ∈ WB(F ), we define the type B minimal cycle vertices of (F,w) to be

CycB(F,w) = {v : w′(v) ∈ CycB(w ◦ (w′)−1)}.

For example, the signed permutation that corresponds to the signed labeled tree from Fig-

ure 4.1 is w ◦ (w′)−1 = 35̄14̄2 = (13)(25̄2̄5)(44̄). Therefore, CycB(F,w) = {v1}.

Note that each vertex in F plays the role of u in the sorting algorithm exactly once. We define

the map B-code(F,w) = (b1, . . . , bn) ∈ SEBF where bi is equal to the amount added to the sorting

index in the step of the algorithm when u = vi, (i.e. bi = |wu(v)|−wu(u)−1 or bi = |wu(v)|−wu(u)).

One can think of bi as the amount contributed to the sorting index by the vertex vi. For example,

for the tree in Figure 4.1, B-code(F,w) = (0, 1, 2, 1, 3).

Lemma 4.2.2. Let w ∈ WB(F ) and suppose B-code(F,w) = (b1, . . . , bn). Then

1. sorB(F,w) =
∑n
i=1 bi

2. CycB(F,w) = {vi : bi = 0}

3. w ∈ W(F ) if and only if bi < hvi for all i.

Proof. The first part follows from the way bi is defined.
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For the second part, we will use induction on the size of F . Suppose that the statement is

true for all forests of size less than n. First, assume F is a forest with trees T1, . . . , Tk for some k > 1.

The sequence B-code(F,w) is a concatenation of the sequences B-code(T1, w1), . . . ,B-code(Tk, wk)

(with possible rearrangements depending on the indexing of the vertices), where wj is w restricted

to Tj . The vertex vi is in CycB(F,w) if and only if for some j ≤ k, vi ∈ CycB(Tj , wj). By the

induction hypothesis, vi ∈ V (Tj) is an element of CycB(Tj , wj) if and only if bi = 0. Therefore i is

an element of CycB(F,w) if and only if bi = 0.

Now assume that k = 1, i.e., F is a tree. Let F1 be the forest obtained by removing the

root vn from F , and let w1 be the labeling obtained by restricting w to F1 and replacing the label

n with w(vn). Now let w′ and w′1 be the labelings of F and F1, respectively, obtained by sorting

w and w1, respectively. The permutation w1 ◦ w′−1
1 can be obtained from w ◦ w′−1 by deleting the

elements n and n in the cycle notation of w ◦ w′−1. Thus for i = 1, . . . , n− 1, vi ∈ CycB(F1, w1) if

and only if vi ∈ CycB(F,w). Applying the induction hypothesis we see vi ∈ CycB(F,w) if and only

if bi = 0 for all i = 1, . . . , n − 1. The value n is a minimal element of a balanced cycle in w ◦ w′−1

if and only if it is in a cycle by itself, and thus w(vn) = n, which happens exactly when bn = 0.

Therefore, CycB(F,w) = {vi : bi = 0}.

For the third part, note that the value |wu(v)| that appears in the sorting algorithm is equal

to hu. Therefore, the contribution of u to sorB(F,w) is less than hu if and only if the current label

of the vertex u is positive. Because of the rule of interchanging the signs of the labels during the

sorting process, if the starting labeling w has at least one negative sign, there will be a step in the

process in which u has a negative label. On the other hand, if w ∈ W(F ), then all the labels remain

positive throughout the sorting.

Similarly to the A-code, the B-code also induces a map ψ from WB(F ) onto the set of pairs

(w′, (b1, . . . , bn)) of a natural positive labeling w′ of F and a sequence (b1, . . . , bn) ∈ SEBF . The

natural labeling w′ is the one obtained by sorting w, while (b1, . . . , bn) = B-code(F,w).

Theorem 4.2.3. Let F be a forest with n naturally indexed vertices v1, . . . , vn. The map

ψ :WB(F )→ {(w′, (b1, . . . , bn)) : w′ ∈ W(F ) is a natural labeling and (b1, . . . , bn) ∈ SEBF }

is a bijection. Restricted to positive labelings, ψ is a bijection from W(F ) to the set of pairs
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(w′, (b1, . . . , bn)) where w′ ∈ W(F ) is a natural labeling and (b1, . . . , bn) ∈ SEF .

Proof. We describe the inverse of ψ. Given a pair (w′, (b1, . . . , bn)) of a natural labeling w′ ∈ W(F )

and (b1, . . . , bn) ∈ SEBF , the original labeling w can be recovered in the following way. Begin with

i = 1, and let j be such that |w′(vj)| = i. Let Bi = {|w′(v)| : v ≤F vj}. If bj < hvj , let u be the

vertex so that |w′(u)| is the (bi + 1)-st largest element in Bi. Then if w′(u) > 0, simply interchange

the labels of u and vj . Otherwise, first change the signs of the labels of u and vj and then interchange

them. Otherwise, if hvj ≤ bj < 2hvj , let u be the vertex so that |w′(u)| is the (bj − hvj + 1)-st

smallest element of Bi. Then if w′(u) < 0, simply interchange the labels of u and vj . Otherwise,

first change the signs of the labels of u and vj and then interchange them. Keep calling the new

labeling w′. Repeat for i = 2, . . . , n. The final labeling is the desired w ∈ WB(F ).

The second part of the theorem follows from the third part of Lemma 4.2.2.

Corollary 4.2.4. Let F be a forest of size n, then

∑
w∈W(F )

qsor(F,w)
∏

v∈Cyc(F,w)

tv =
n!∏

v∈V (F ) hv

∏
v∈V (F )

([hv]− 1 + tv) , (4.8)

∑
w∈WB(F )

qsorB (F,w)
∏

v∈CycB (F,w)

tv =
n!∏

v∈V (F ) hv

∏
v∈V (F )

([2hv]− 1 + tv) . (4.9)

Proof. This is a direct consequence of Lemma 4.2.2 and Theorem 4.2.3. The products on the

right-hand side of (4.8) and (4.9) are the generating functions for the sequences in SEF and SEBF ,

respectively, according to total sum of elements and positions of zeros. The factor n!/
∏
v∈V (F ) hv

is due to the fact that the B-code is a (n!/
∏
v∈V (F ) hv)-to-1 map.

Our definition of sor and Cyc for labeled forests was motivated by corresponding permutation

statistics. Petersen [36] showed that

∑
σ∈Bn

qsorB(σ)tcycB(σ) =
∑
σ∈Bn

qinvB(σ)trl-minB(σ).

This equidistribution was later generalized to include r-colored permutations and, instead of just sor

and cyc, the result was refined in terms of set-valued statistics RL-min and Cyc as well as additional

statistics that allow us to deduce results for restricted permutations [37, 9, 14].
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The following two theorems reveal the relation of the statistics sor and Cyc for labeled

forests with the corresponding permutation statistics.

Theorem 4.2.5. Let F be a linear tree of size n and w ∈ WB(F ). Let σ = w(v1) · · ·w(vn) be the

corresponding signed permutation, then sorB(F,w) = sorB(σ−1). Consequently, if w ∈ W(F ), then

sor(F,w) = sor(σ−1).

Proof. Assume that the theorem holds for all linear trees of size at most n. Let F be a linear tree

of size n+ 1 and let F1 be the tree of size n obtained by removing the root vn+1 of F .

Consider first the case when n + 1 appears as a label in w. Let w1 be the labeling of

F1 obtained by restricting w to F1 and replacing the label n + 1 with w(vn+1). If w(vn+1) < 0,

then sorB(F,w) = sorB(F1, w1) + (n + 1) − w(vn+1) − 1, and if w(vn+1) > 0 then sorB(F,w) =

sorB(F1, w1) + (n+ 1)−w(vn+1). Now let σ = w(v1) · · ·w(vn+1), and σ1 = w1(v1) · · ·w1(vn). Note

that σ−1
1 is the permutation obtained from σ−1 by performing the first step of the Straight Selection

Sort Algorithm and deleting n + 1. Moreover, w(vn+1) is the position of n + 1 in σ−1. Therefore,

if w(vn+1) < 0 then sorB(σ−1) = sorB(σ−1
1 ) + (n + 1) − w(vn+1) − 1, and if w(vn+1) > 0 then

sorB(σ−1) = sorB(σ−1
1 )+(n+1)−w(vn+1). The claim follows by applying the induction hypothesis.

The proof in the case when n+ 1 appears as a label in w is similar. We set w1 to be

the labeling of F1 obtained by restricting w to F1 and replacing the label n+ 1 with w(vn+1). If

w(vn+1) < 0 then sorB(F,w) = sorB(F1, w1) + (n + 1) − w(vn+1) − 1, and if w(vn+1) > 0 then

sorB(F,w) = sorB(F1, w1) + (n+ 1)− w(vn+1). So, we can continue as above.

Finally, note that if a labeling or a permutation is in fact positive, then the type B and type

A sorting indices coincide.

Theorem 4.2.6. Let F be a linear tree with naturally indexed vertices v1, . . . , vn. Let w ∈ WB(F )

and let σ = w(v1) · · ·w(vn) ∈ Bn. Then vi ∈ CycB (F,w) if and only if i ∈ CycB(σ−1). Conse-

quently, if w ∈ W(F ), then vi ∈ Cyc(F,w) if and only if i ∈ Cyc(σ−1).

Proof. By definition, CycB (F,w) = {vi : w′(vi) ∈ CycB(w ◦ w′−1)}. For a linear tree the sorted

labeling w′ is given by w′(vi) = i. Thus for every w ∈ WB(F ), w ◦ w′−1 = σ, and hence vi ∈

CycB(F,w) if and only if i ∈ CycB(σ). The claim now follows from the fact that CycB(σ) =

CycB(σ−1).

As a corollary to Corollary 4.2.4, Theorem 4.2.5, and Theorem 4.2.6, we get the following
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result.

Corollary 4.2.7 ([9, 37]).

∑
σ∈Sn

qsor (σ)
∏

i∈Cyc (σ)

ti =

n∏
i=1

([i]− 1 + ti)

∑
σ∈Bn

qsorB (σ)
∏

i∈CycB (σ)

ti =

n∏
i=1

([2i]− 1 + ti).

4.3 Major Index and Cyclic Bottom-To-Top Maxima

While for permutations it is true that

∑
σ∈Sn

qinv(σ)trl-min(σ) =
∑
σ∈Sn

qmaj(σ)trl-min(σ),

for a general forest F , (inv,# BT-max) and (maj,# BT-max) are not equidistributed over W(F ).

In this section, we find a suitable Stirling partner for maj for labeled forests and then discuss the

case of signed labelings.

Definition 4.3.1. Let (F,w) be a labeled forest. A vertex v is a cyclic bottom-to-top maximum if

its label is a bottom-to-top maximum with respect to the cyclic shift of the natural ordering of the

integers 1, . . . , n beginning with the label of the parent of v, p. Precisely, if w(v) < w(p), then v is

a cyclic bottom-to-top maximum if

{u : u <F v, w(u) ∈ [w(v), w(p)]} = ∅.

If w(p) < w(v), then v is a cyclic bottom-to-top maximum if

{u : u <F v, w(u) /∈ [w(p), w(v)]} = ∅.

Let CBT-max(F,w) denote the set of all cyclic bottom-to-top maxima of the labeled forest (F,w).

Let F be a forest of size n with naturally indexed vertices {v1, . . . , vn}. We will denote

by pi be the parent of vi, and while for a root vj , pj is not defined, we will use the convention
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Figure 4.4: For this tree F with labeling w, we have Cyc(F,w) = {v1, v2, v3} and M-code(F,w) =
(0, 0, 0, 3, 4). Also, Des(F,w) = {v1, v3, v4} and therefore maj(F,w) = 1 + 2 + 4 = 7.

w(pj) = n+ 1. Define M-code(F,w) = (m1, . . . ,mn) as follows (see Figure 4.4):

mi = #{u : u <F vi, w(u) ∈ [w(vi), w(pi)]} if w(vi) < w(pi)

mi = #{u : u <F vi, w(u) /∈ [w(pi), w(vi)]} otherwise.

The special case of this code for permutations was used under the name “McMahon code” in [44],

where its relationship to the Lehmer code was explained.

Theorem 4.3.2. Let M-code(F,w) = (m1, . . . ,mn), then
∑n
i=1mi = maj (F,w), and mi = 0 if and

only if vi ∈ CBT-max (F,w).

Proof. The second part follows directly from the definitions.

For the first part, assume that the statement holds for all forests of size less than n. Suppose

first that F is a forest of size n with trees T1, . . . , Tk for k > 1. It is clear that maj (F,w) =∑n
i=1 maj (Ti, wi), where wi is the labeling of Ti induced by w. Also, the sequence M-code(F,w)

is just a concatenation of the sequences M-code(T1, w1), . . . ,M-code(Tk, wk), with reordering as

necessary. Therefore
∑n
i=1mi = maj (F,w).

Now suppose k = 1. Note that vn−1 is a child of vn. Let F ′ be the forest obtained

by deleting the edge (vn−1, vn) from F . Let M-code(F ′, w) = (m′1, . . . ,m
′
n), A = {u : u <F

vn−1 and w(u) < w(vn−1)}, B = {u : u <F vn−1 and w(vn−1) < w(u) < w(vn)}, and C = {u :

u <F vn−1 and w(vn) < w(u)}. We will consider two cases.

Case 1. w(vn−1) < w(vn)

In this case, Des(F,w) = Des(F ′, w) and hence maj(F,w) = maj(F ′, w). Comparing the two M-
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codes, we have m′n−1 = mn−1 + #C, m′n = mn −#C, and m′i = mi for all i 6= n− 1, n. Therefore,

n∑
i=1

mi =

n∑
i=1

m′i = maj(F ′, w) = maj(F,w).

Case 2. w(vn−1) > w(vn)

In this case, Des(F,w) = Des(F ′, w)∪{vn−1} and hence maj(F,w) = maj(F ′, w)+hvn−1
. Comparing

the two MacMahon codes, we have m′n−1 = hvn−1
− 1−#A, m′n = mn − 1−#C, and m′i = mi for

all i 6= n− 1, n. For the code of (F,w), we notice that

mn−1 = #{u : u <F vn−1 and w(u) > w(vn−1)}+ #{u : u <F vn−1 and w(u) < w(vn)}

= (hvn−1
− 1−#A) + (hvn−1

− 1−#C).

Therefore,
n∑
i=1

mi =

n∑
i=1

m′i + hvn−1
= maj(F ′, w) + hvn−1

= maj(F,w).

The M-code induces a map θ from W(F ) to the set of pairs (w′, (m1, . . . ,mn)), where w′

is a natural labeling of F and (m1, . . . ,mn) ∈ SEF is defined in the following way. For w ∈ W(F ),

the corresponding subexcedent sequence (m1, . . . ,mn) is M-code(F,w). The natural labeling w′ is

obtained in n steps by sorting w as follows. Start with i = n. Let `1 < · · · < `hvi
be the labels of

the subtree rooted at vi. Replace each label `j by `j+mi
, where the addition is performed modulo

hvi . Note that after this, the vertex vi is a cyclic bottom-to-top maximum in the new labeling, while

the other cyclic bottom-to-top maxima remain unchanged. It is not difficult to see that the M-code

of the new labeling is (m1, . . . ,mi−1, 0 . . . , 0). Decrease i by 1 and repeat until i = 0. This will

produce a labeling w′ with an M-code of (0, . . . , 0) so it is natural. Because of this discussion, it is

not difficult to see that the steps are reversible and therefore θ is a bijection. We summarize this in

the following theorem.

Theorem 4.3.3. The map

θ :W(F )→ {(w′, (m1, . . . ,mn)) : w′ ∈ W(F ) is a natural labeling and (m1, . . . ,mn) ∈ SEF }
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described above is a bijection.

As a corollary to Theorem 4.3.3 and Theorem 4.3.2 we get the following result.

Theorem 4.3.4.

∑
w∈W(F )

qmaj(F,w)
∏

v∈CBT-max(F,w)

tv =
n!∏

v∈V (F ) hv

∏
v∈V (F )

([hv]− 1 + tv) , (4.10)

Liang and Wachs [32] constructed a bijection on labeled forests to prove that the enumerator

for the inversion index on labeled forests is identical to the enumerator for the major index on

labeled forests. For the symmetric group, their bijection reduces to a map similar to Foata’s second

fundamental transformation. Note that as a consequence of the properties of the A-code and B-code

for labeled forests, the map θ−1◦φ :W(F )→W(F ) has the stronger property: it takes (inv,BT-max)

to (maj,CBT-max). This map is different from the one in [32].

In [8], Chen, Gao, and Guo defined two major indices for signed labeled forests and showed

that they are equidistributed with invB . The first one is based on the flag major index for signed

permutations introduced by Adin and Roichman [1]. The second one is based on a Mahonian statistic

for signed permutations that implicitly appears in [39].

Definition 4.3.5 ([8]). For a signed labeled forest (F,w),

fmaj(F,w) = 2 maj(F,w) + n1(F,w).

For a signed forest (F,w) let

DesB(F,w) = Des(F,w) ∪ {u ∈ F : u is a root of F with a positive label}

and

majB (F,w) =
∑

u∈DesB(F,w)

hu.

Let p(F,w) be the number of positive labels of w.

Definition 4.3.6 ([8]). For a signed labeled forest (F,w),

rmaj(F,w) = 2 majB(F,w)− p(F,w).
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As observed in [8], there is a simple map that sends fmaj to rmaj, so here we will discuss

only finding a Stirling partner for fmaj. One could define a generalization of CBT-max for signed

labelings as follows.

Definition 4.3.7. Let (F,w) be a signed labeled forest of size n. A vertex v is a cyclic bottom-to-top

maximum if its label is positive and is a bottom-to-top maximum with respect to the cyclic shift of

the natural ordering of the integers −n, . . . ,−1, 1, . . . , n beginning with the label of the parent of v,

p. Precisely, for a vertex v with a positive label, if w(v) < w(p), then v is a cyclic bottom-to-top

maximum if

{u : u <F v, w(u) ∈ [w(v), w(p)]} = ∅.

If w(p) < w(v), then v is a cyclic bottom-to-top maximum if

{u : u <F v, w(u) /∈ [w(p), w(u)]} = ∅.

Let CBT-maxB F,w denote the set of all cyclic bottom-to-top maxima of the signed labeled forest

(F,w).

Unfortunately, the pairs (fmaj,# CBT-max) and (invB ,# BT-max) are not equidistributed

over WB(F ). It would be interesting to see if there is a better definition of CBT-max(F,w) or if

there is another natural Stirling partner for fmaj. Here we will only show that there is an analogue

of Theorem 4.3.2 for signed forests.

For a signed labeled forest (F,w) with naturally indexed vertices {v1, . . . , vn}, we define

M-code(F,w) to be the sequence (m1, . . . ,mn) given by

mi = 2#{u : u <F vi, w(u) ∈ [w(vi), w(pi)]}+ χ(w(vi) < 0) if w(vi) < w(pi)

mi = 2#{u : u <F vi, w(u) /∈ [w(pi), w(vi)]}+ χ(w(vi) < 0) otherwise.

Here we use the same convention that pi is the parent of vi and if vi is a root of F , then w(pi) = n+1.

Theorem 4.3.8. For a forest F with signed labeling w and M-code(F,w) = (m1, . . . ,mn),
∑n
i=1mi =

fmaj (F,w), and mi = 0 if and only if vi ∈ CBT-maxB(F,w).

Proof. It is clear from the definitions that mi = 0 if and only if vi ∈ CBT-maxB (F,w).
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For the first part, we use induction on n, the number of vertices of F . If F is a forest,

the claim follows the same way as in the unsigned case (Theorem 4.3.2). Therefore, suppose that

F is a tree. Then vn is the root of F . Consider the child of vn, vn−1, and let F ′ be the forest

obtained from deleting the edge (vn−1, vn) from F . Let (m′1, . . . ,m
′
n) be the signed MacMahon code

of F ′. We will use the sets A = {u ∈ F : u <F vn−1 and w(u) < w(vn−1)}, B = {u ∈ F : u <F

vn−1 and w(vn−1) < w(u) < w(vn)}, and C = {u ∈ F : u <F vn−1 and w(vn) < w(u)}.

Case 1. w(vn−1) < w(vn).

In this case, vn−1 /∈ Des(F,w) and therefore maj(F,w) = maj(F ′, w). So, fmaj(F,w) = fmaj(F ′, w).

Note that m′n−1 = mn−1 + 2#C, m′n = mn − 2#C, and m′j = mj for all j 6= n− 1, n. Thus

n∑
i=1

mi =

n∑
i=1

m′i = maj(F ′, w) = maj(F,w).

Case 2. w(vn−1) > w(vn).

In this case, Des(F,w) = Des(F ′, w) ∪ {vn−1} and therefore maj(F,w) = maj(F ′, w) + hvn−1
. This

implies fmaj(F,w) = fmaj(F ′, w) + 2hvn−1
. Note that m′n−1 = mn−1 − 2(hvn−1

− 1 −#C), m′n =

mn − 2− 2#C, and m′j = mj for all j 6= n− 1, n. Thus

n∑
i=1

mi =

n∑
i=1

m′i + 2hvn−1
= maj(F ′, w) + 2hvn−1

= maj(F,w).

The difference between the signed and the unsigned case is that the map from WB(F ) →

SEBF given by the M-code is not onto.

4.4 Inverse Major Index and Bottom-To-Top Maxima

As we discussed in the previous section, the statistics maj and CBT-max do not generalize

over signed forests in a straightforward way. Additionally, they do not generalize the equidistribution

result (inv, rl-min) ∼ (maj, rl-min) for permutations. As we mentioned in Section 2.2, the pairs of

statistics (inv,RL-min) and (maj,RL-min) are equidistributed over Sn. Recall that in Section 2.1,

we discussed that inv and maj have symmetric joint distributions over Sn, but this is not true for
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Figure 4.5: Sorted and Inverse labelings of (F,w) from Figure 4.4

labeled forests. For example, for the tree F in Figure 4.1,

∑
w∈W(F )

qinv(F,w)tmaj(F,w) −
∑

w∈W(F )

qmaj(F,w)tinv(F,w) =

4q5t4 − 4q4t5 − 2q5t3 + 2q3t5 − 4q4t3 + 4q3t4 + 4q3t2 − 4q2t3 + 2q3t− 2qt3 − 4q2t+ 4qt2 6= 0.

Foata’s bijection also preserves RL-min, and therefore the statistics (inv,RL-min), (maj,RL-min)

and (imaj,RL-min) are all equidistributed over Sn. In this section, we define iDes and imaj for

labeled forests and discuss the properties that hold for trees, and state a conjecture that would

generalize parts of this result to trees.

Recall that in Definition 4.2.1 we used the permutation that arises from w ◦ (w′)−1 where

w′ is the positive decreasing labeling obtained from sorting the labeling w.

Definition 4.4.1. For w ∈ W(F ) with sorted labeling w′, we define the inverse labeling, winv, to

be the labeling (w ◦ (w′)−1)−1.

For example, consider the forest F with labeling w in Figure 4.4. Figure 4.5a gives the

sorted labeling w′, and thus w ◦ (w′)−1 = 53421. Therefore, the inverse labeling winv shown in

Figure 4.5b is given by the permutation (w ◦ (w′)−1)−1 = 54231.

Proposition 4.4.2. For a labeling w ∈ W(F ), (winv)inv = w.

In other words, taking the inverse labeling is an involution.

Proof. Let F be a forest of size n with a labeling w. First assume that w and winv sort to the same

labeling w′ and let σ = w ◦ (w′)−1. Then winv is the labeling given by σ−1 and thus (winv)inv is
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given by (σ−1)−1 = σ. Therefore (winv)inv = w. So, it suffices to show that w and winv do in fact

sort to the same tree. We do this by induction on the size of the tree.

For the base case, when T is a tree with only one vertex, the statement is clearly true. Thus

assume that for all trees of size less than n a labeling and its inverse sort to the same labeling.

Consider a forest F of size n with labeling wF and sorted labeling w′F . Perform the first step

of the sorting algorithm to get the new labeling w̃F . Now remove the root labeled n and adjacent

edges from F to form a forest F1 of size n− 1 with the labeling w̃F1 defined by w̃F1(v) = w̃F (v) for

all v ∈ V (F1). Let w̃′F1
be the labeling that w̃F1

sorts to, and by the induction hypothesis w̃inv
F1

sorts

to w̃′F1
as well. Note that the forest F1 with the labeling w̃′F1

is the same labeled forest found from

removing the root from the original forest F with the sorted labeling w′F . Let σ = w̃F ◦ (w̃′F )−1,

τ = wF ◦ (w′F )−1, and i = wF (vn) where vn is the root of F we removed to get F1. To get the

labeling w̃F from wF the labels i and n are interchanged. Therefore τ = (i n)σ. Now let j be the

label such that σ(j) = i. In other words, if you let v be the vertex in F such that wF (v) = n then

j = w̃F (v). Consider the forest F1 with labeling w̃inv
F1

and add the root with a label of n to get the

original forest F with the labeling w̃inv
F . Now interchange the labels j and n to get a new labeling

lF ∈ W(F ). By construction the labelings wF and lF both sort to w′F , and we need to show that

lF = winv
F . Since σ = w̃F ◦ (w̃′F )−1 we know σ−1 = w̃inv

F ◦ (w̃F )−1. To get the labeling lF , we started

with the labeling w̃inv
F and interchanged j and n. Therefore the permutation lF ◦(w′F )−1 = (j n)σ−1.

Now we show that the permutations τ and lF ◦ (w′F )−1 are inverses. Since σ(j) = i and σ(n) = n

we get

τ ◦ (lT ◦ (w′T )−1) = (i n)σ(j n)σ−1 = (1) · · · (n).

Therefore τ−1 = lF ◦ (w′F )−1 and thus lF = winv
F .

Definition 4.4.3. For a forest F and labeling w ∈ W(F ), the inverse descent set is defined as

iDes(F,w) = Des(F,winv) and the inverse major index is imaj(F,w) = maj(F,winv).

For example, consider (F,w) in Figure 4.4 and its inverse given in Figure 4.5b. Then

iDes(F,w) = Des(F,winv) = {v4, v1, v2}, and imaj(F,w) = maj(F,winv) = 6.
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Conjecture 4.4.4. For a forest F of size n,

∑
w∈W(F )

qinv(F,w)
∏

v∈BT-max(F,w)

tv =
∑

w∈W(F )

qimaj(F,w)
∏

v∈BT-max(F,w)

tv

=
n!∏

v∈V (F ) hv

∏
v∈V (F )

([hv]− 1 + tv) .

If Conjecture 4.4.4 is true, then it generalizes the result for permutations in the following

way. Let F be a linear tree with n vertices. Let w ∈ W(F ) and let σ = w(v1) · · ·w(vn) be

the corresponding permutation. As we noted before in Lemma 4.1.8 inv(w,F ) = inv(σ−1) and

BT-max(F,w) = RL-min(σ−1). By definition of imaj we have imaj(w,F ) = imaj(σ) = maj(σ−1).

We have tested this Conjecture on trees with up to 8 verticies. In the examples that we have

run, there is evidence suggesting the following inductive argument. For a forest F of size n− 1 with

labeling wF , add a root labeled n to get a tree T with a labeling w1. Let w′1 be the labeling that w1

sorts to. Now there is a permutation σw with σwF
(1) = n and a way to manipulate the labeling w1 to

create n−1 new labelings w2, . . . , wn such that the root of wi is σw(i), imaj(T,wi) = imaj(F,wF )+i,

wi sorts to w′1 for all i = 1, . . . , n, and BT-max(T,wi) = BT-max(T,w1) \ {vn} where vn is the root

of T . In other words, we can write the generating function in the following way:

∑
w∈W(T )

qimaj(T,w)yw(vn)

∏
v∈BT-max(T,w)

tv =

∑
w̃∈W(F )

qimaj(F,w)(tnyσw̃(1) + qyσw̃(2) + · · ·+ qn−1yσw̃(n))
∏

v∈BT-max(F,w̃)

tv

 .

We have found a way to construct σw and the desired labelings w2, . . . wn when we begin

with a decreasing labeling for the forest F which we explain next. However, we have not been able

to extend this construction for nondecreasing labelings and complete the proof of Conjecture 4.4.4.

Consider a forest F of size n− 1 with a decreasing labeling and add a root labeled n to the

forest by connecting this new root to the root of each tree in the forest, creating a tree T of size n

with a decreasing labeling that we call w. Notice that the tree T with labeling w sorts to itself, and

therefore winv = w. Also note that imaj(w, T ) = maj(w, T ) = 0, and every vertex is a bottom-to-top

maximum. Now we will create n− 1 new labelings for the tree T such that imaj(wi) = i, and every
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Figure 4.6: Example of the inductive argument for the Conjecture 4.4.4 beginning with a decreasing
labeling.

vertex of wi is a bottom-to-top maximum except the root.

• Begin with i = 1 and let S be the set of all vertices in T .

• Start from the root and move down the tree using only elements of S and always choosing the

child with the largest label.

• When a vertex v that is a leaf or has no children in the set S is reached, stop. Let the label

of v be ri, remove v from S, and let Si be the set V (T ) \ S.

• Move the label ri to the root of T by interchanging ri with the label of its parent and repeating

this process until ri “slides” all the way to the root. Call this new labeling wi.

• Continue this process for i = 2, . . . , n.

Note that each new labeling wi will be decreasing upon removing the root so it is clear that

every vertex except the root will be a bottom-to-top maximum. An example of this construction is

given in Figure 4.6.

Next, we will show that imaj(T,wi) = i by proving the following slightly stronger statement:

the vertices in the set Si are exactly the vertices counted when calculating imaj(T,wi).

To begin, consider a tree T of size n with decreasing labeling w found by adding a root

labeled n to a forest F with a decreasing labeling as before. Now consider the new labeling w1

found using the algorithm described above. Let vi1 · · · vik , for n = i1 > · · · > ik, with labelings
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n = w(vi1) > · · · > w(vik) = r1 be the path traversed in the tree T with labeling w to find the

label r1. Note that in the labeling w1 this path is now labeled r1 < n > w(vi2) > · · · > w(vik−1
)

from the root to the leaf vik . Notice that the labeling w1 will sort to the labeling w and that

σ = w1 ◦ (w−1) = (r1 w(vik−1
) · · ·w(vi3) w(vi2) n). Therefore, σ−1 = (n w(vi2) · · ·w(vik−1

) r1) and

we see that the path traversed in the algorithm will be labeled w(vi2) > · · · > w(vik−1
) > r1 < n

(from root to leaf) in the labeling winv
1 and the labels on the vertices not on this path do not change.

Thus imaj(T,w1) = 1, since the pair r1 and n create the only descent and the vertex vk is a leaf.

Now, assume that for all i < j the vertices in Si are the ones counted when computing

maj(T,winv
i ) and thus maj(T,winv

i ) = imaj(T,wi) = i. Use the algorithm to find rj and the new

labeling wj . Let vjl ∈ V (T ) be the vertex such that w(vjm) = rj . Suppose that rj appears on

the path vj1 · · · vjl−1
vjlvjl+1

· · · vjm for n = j1 > · · · > jl−1 > jl > jl+1 > · · · > jm with the labels

n = w(vj1) > · · · > w(vjl−1
) > w(vjl) > w(vjl+1

) > · · · > w(vjm) where vjm is a leaf in T . Note that

from the way the algorithm is defined we get the following properties:

1. every descendent of the vertex vjl must be in the set Sj ,

2. if a vertex vjs for s = 1, . . . , jl−1 has a child y ∈ Sj , then w(y) > w(vjs+1
) and all of the

descendants of y are in Sj , and

3. the vertices vj1 , . . . , vjl−1
are not in Sj .

Sorting the tree T with labeling wj gives σ = wj ◦ (w−1) = (rj w(vjl−1
) · · ·w(vj2) n).

Therefore σ−1 = (n w(vj2) · · ·w(vjl−1
) rj) and thus the same branch in T with the labeling winv

j is

now labeled w(vj2) > · · · > w(vjl−1
) > rj < n > w(vjl+1

) > · · · > w(vjm) from root to leaf.

The pair rj and n create a descent, and when we add the hook length to the imaj(T,wj),

the vertex vjl and all of its descendants are counted. Then for any vertex vjs for s = 1, . . . , l − 1

with a child y ∈ Sj , winv
j (vjs) = w(vjs+1

) < w(y) = winv
j (y) by property 2 above. Therefore, the pair

winv
j (vjs) and winv

j (y) create a descent in winv
j and adding this to maj(T,winv

j ) counts the vertex y

and all of its descendants. Thus we have counted all of the vertices in Sj .
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Chapter 5

Descents

In this chapter we will generalize the Eulerian polynomials by considering the descent poly-

nomials of labeled rooted forests.

Definition 5.0.1. For a rooted forest F , the descent polynomial is AF (q) =
∑
l∈W(F ) q

des(F,l).

In Section 5.1 we prove that the descent polynomial of a forest F is unimodal and in Section

5.2 we discuss log-concavity. Then in Section 5.3 we prove that the distribution of descents converges

to the normal distribution as the size of the tree grows to infinity if we place a restriction on the

maximum degree of the tree.

5.1 Unimodality

In this section, we prove that the descent polynomial of a rooted forest is unimodal. The fol-

lowing result on the product of symmetric unimodal polynomials is used in the proof. A polynomial

f(x) =
∑n
i=0 aix

i is symmetric, or palindromic, if ai = an−i for i = 0, 1, . . . , n.

Proposition 5.1.1 ([42]). If A(q) and B(q) are symmetric unimodal polynomials with nonnegative

coefficients, then so is A(q)B(q).

First we show that AF (q) is symmetric.

Lemma 5.1.2. For a forest F , the descent polynomial AF (q) is symmetric.

Proof. Let F be a forest and consider a labeling w ∈ W(F ). Let w′ ∈ W(F ) be defined as w′(x) =

n+ 1− w(x). Then for a vertex x with a child y, clearly w(x) < w(y) if and only if w′(x) > w′(y).
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Therefore every descent in (F,w) corresponds to an ascent in (F,w′) and vice versa. Therefore, the

number of labelings with k descents is equal to the number of labelings with n− k descents.

Now we are ready for the main result of this section.

Theorem 5.1.3. For a forest F , the descent polynomial AF (q) is unimodal.

Proof. Suppose AF (q) is unimodal for all forests F of size less than or equal to n. Consider a forest

F of size n+ 1 that consists of trees T1, . . . , Tm. We will consider the cases when m > 1 and m = 1

seperatly.

First suppose that m > 1, or in other words, F is not a tree. Then

AF (q) =

(
n

k1, . . . , km

)
AT1(q) · · ·ATm(q)

for ki = |V (ti)|. ATi(q) is unimodal for all i = 1, . . . ,m by the inductive hypothesis, and thus by

Proposition 5.1.1 AF (q) is unimodal.

Now suppose that m = 1, or in other words F , is a tree with n+ 1 vertices. For a vertex v,

let Fv = F − v, or in other words, Fv is the tree F with vertex v and incident edges removed. For

l ∈ W(F ), let v be the vertex such that l(v) = 1. Consider the map defined by removing the vertex

v to get the forest Fv and the labeling l′ ∈ W(Fv) defined by l′(y) = l(y) − 1 for all vertices y in

Fv . This defines a bijection from W(F ) to the set of pairs of a vertex v and a labeling l′ ∈ W(Fv).

Notice that v creates a descent with all of its children since l(v) = 1 so we have

AF (q) =
∑

l∈W(F )

qdes(l,F ) =
∑
v∈F

∑
l′∈W(Fv)

qdes(l′,Fv)+dv

where dv is the down-degree of v, i.e. the number of children of v.

Let AF (q) = a0 + a1q + · · · + anq
n and consider ak and ak+1 for some k < bn2 c. Let

v1, . . . , vn+1 be the vertices of F , and let AFvi
(q) = ai,0 + ai,1q + ai,2q

2 + · · ·+ ai,eiq
ei , where ei is

the number of edges in Fvi . The coefficient ai,j is the number of labelings of the forest Fvi with j

descents. Using the bijection described above, we can count the number of labelings of F with k

descents by counting the number of labelings of Fvi with k − dvi descents for all i = 1, . . . , n. This

means that

ak = a1,k−dv1 + · · ·+ an,k−dvn ,
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v1 v2 v3

v4v5

v6

Figure 5.1: A tree T with a descent polynomial that does not have all real roots.

and similarly,

ak+1 = a1,k−dv1+1 + · · ·+ an,k−dvn+1.

Let us consider a fixed i. If Fvi has less than k − dvi edges, then ai,k−dvi = ai,k−dvi+1 = 0. If

instead Fvi has exactly k − dvi edges, then ai,k−dvi > 0 = ai,k−dvi+1. We will consider the case

where Fvi has more than k − dvi edges. Since we have k < bn2 c we get k + 1 ≤ bn2 c, and thus

2k ≤ n− 2 = ei + dvi + 1− 2 = ei + dvi + 1. We have 2k − 2dvi < 2k − dvi ≤ ei − 1 < ei and thus

k − dvi < ei
2 . By the induction hypothesis, we have ai,k−dvi ≤ ai,k−dvi+1. This holds for all i and

thus we get ak ≤ ak+1. By symmetry we get that AF (q) is unimodal.

5.2 Log-Concavity Conjecture

As we mentioned in the introduction, there are several different types of proofs of the

fact that the classical Eulerian polynomial is log-concave [42, 41]. It is known that the Eulerian

polynomial has all real roots which implies that it is log-concave. The descent polynomials AF (q)

do not in general have all real roots. For example, for the tree T in Figure 5.1, AT (q) = 20q5 +

90q4 + 250q3 + 250q2 + 90q + 20 which has only one real root, q = −1.

The log-concavity of the Eulerian polynomial has also been proven combinatorially. Two

examples are by Gasharov in [22] and by Bóna and Ehrenborg in [7]. These proofs use bijections

between permutations of size n with k descents and the set P(n, k) of labeled northeastern lattice

paths with n edges, exactly k of which are vertical. They construct a map from P(n, k−1)×P(n, k+1)

to P(n, k) × P(n, k) that is injective but not surjective. Therefore we get A(n, k)A(n, k + 2) =
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Figure 5.2: Some of the trees tested for log-concave descent polynomials

|P(n, k − 1)||P(n, k + 1)| ≤ |P(n, k)|2 = A(n, k + 1)2.

Another method used to prove log concavity of a sequence is by interpreting the values in

the sequence as mixed volumes of convex bodies. For convex bodies K and L in Rn, the Minkowski

sum is K + L = {x + y : x ∈ K, y ∈ L} and for a real number γ, the dilation of K by γ is the

set γ ·K = {γx : x ∈ K}. Let V denote the n-dimensional volume. Minkowski showed that there

are real numbers Vi(K,L) ≥ 0 satisfying V (γK + µL) =
∑n
i=0

(
n
i

)
Vi(K,L)γn−iµi [42]. The number

Vi(K,L) is called the ith mixed volume of K and L, and it has been proven by Aleksandrov [2] and

Fenchel [16] independently that the sequence V0(K,L), . . . , Vn(K,L) is log-concave. Therefore, any

sequence of numbers that can be interpreted as mixed volumes of some convex bodies is log-concave.

Ehrenborg, Readdy, and Steingŕımsson use this technique in [13] to prove that a refinement of the

Eulerian numbers A(n, k, i) is log-concave, where A(n, k, i) is the number of permutations in Sn

ending with i an having k descents.

The following conjecture is based on running examples on randomly generated trees up to

size 11.

Conjecture 5.2.1. For a forest F the descent polynomial AF (q) is log-concave.

Some of the trees we have checked are shown in Figure 5.2, and all of them had a log-concave

descent polynomial. We have looked at generalizing the techniques mentioned above, but have not

yet found a proof for this Conjecture.
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5.3 Central Limit Theorem

We begin with some definitions and notation. For a random variable Z, let Z̄ = Z − E(Z),

Z̃ = Z̄√
Var(Z)

, and we write Zn → N(0, 1) to mean that Zn converges in distribution to the standard

normal distribution as n grows.

Consider the random variable Xn which is counting the number of descents in a randomly

generated labeling of a tree of size n. In this section, we show in the main Theorem given below

that under some assumptions on the maximum degree of a tree, X̃n → N(0, 1) as n→∞.

Theorem 5.3.1. Let {Tn} be a sequence of trees of size n and Xn be the random variable that

counts the number of descents in a random labeling of Tn. If Dn ≤ Cn
1
2−ε for some constant C and

some 0 < ε < 1
2 where Dn is the maximum down degree in the tree Tn, then X̃n → N(0, 1).

The main result used in the proof is Janson’s dependency theorem, a central limit theo-

rem. This method is related to the method used by Bóna to prove that the distribution of certain

generalized descents on Sn also converges to the normal distribution [6].

Definition 5.3.2. Let {Yn,k | k = 1, 2, . . .} be an array of random variables. Then a graph G is a

dependency graph for {Yn,k | k = 1, 2, . . .} if the following conditions are satisfied:

1. There exists a bijection between the random variables and the vertices of G, and

2. if V1 and V2 are disjoint sets of vertices of G such that no edge of G has one endpoint in V1

and the other in V2, then the corresponding sets of random variables are independent.

Note that the dependency graph for an array of random variables is not unique because if

the graph is not complete one can add another edge to obtain a new dependency graph. We can

now state Janson’s dependency criterion.

Theorem 5.3.3 ([28]). Let Yn,k be an array of random variables such that for all n, and for all

k = 1, . . . , Nn, the inequality |Yn,k| ≤ An holds for some real number An, and that the maximum

degree of a dependency graph of {Yn,k|k = 1, . . . , Nn} is ∆n. Set Yn =
∑Nn

k=1 Yn,k and σ2
n = Var(Yn).

If there is a natural number m so that

Nn∆m−1
n

(
An
σn

)m
→ 0, (5.1)
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Figure 5.3: Dependency graph G of the tree T in Figure 5.1

then

Ỹn → N(0, 1).

Fix an ordering of the edges of a tree Tn of size n. To apply Janson’s criterion, let Yn,k be

the indicator random variables Xn,k of the event that the edge k is a descent in a randomly selected

labeling of Tn. Thus Nn = n− 1, the number of edges in a tree of size n. By the definition of Yn,k,

we have |Yn,k| ≤ 1 so we will set An = 1.

Now we will look at a dependency graph G for the random variables Xn,k to get a bound

on ∆n. Certainly, the variables Xn,k1 and Xn,k2 are independent if and only if the edges k1 and k2

do not share a vertex. Therefore we can let the vertices of the dependency graph G be the edges

of the tree Tn, and connect the edges that share an endpoint. Each vertex in G corresponds to an

edge from the tree Tn and two vertices of G are adjacent if the corresponding edges of Tn share an

endpoint. In other words, G is the line graph of the tree Tn. For example, Figure 5.3 shows this

dependency graph for the tree in Figure 5.1. Let Dn denote the largest down-degree of a vertex in

the tree T , then ∆n ≤ 2Dn.

Lemma 5.3.4. For a tree T with size n,

Var(Xn) =
2dr +

∑
v∈T d

2
v

12

where dv is the down-degree of vertex v, and dr is the down-degree of the root.
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Proof.

Var(Xn) = E(X2
n)− (E(Xn)2) (5.2)

= E

(n−1∑
k=1

Xn,k

)2
−(E

(
n−1∑
k=1

Xn,k

))2

(5.3)

= E

(n−1∑
k=1

Xn,k

)2
−(n−1∑

k=1

E(Xn,k)

)2

(5.4)

=
∑
k1,k2

E(Xn,k1 , Xn,k2)−
∑
k1,k2

E(Xn,k1) E(Xn,k2), (5.5)

where the sums run over all ordered pairs (k1, k2) ∈ {1, . . . , n− 1} × {1, . . . , n− 1}.

Now, E(Xn,k) = 1
2 because as we saw in the proof of Corollary 5.1.2, an edge is a descent

in half of the labelings of a given tree T , and therefore the E(Xn,k1) E(Xn,k2) terms appearing in

(5.5) are all equal to 1
4 . We will now calculate the values for the E(Xn,k1 , Xn,k2) terms in (5.5). If

the edges k1 and k2 do not share a vertex, then they are independent and we get E(Xn,k1 , Xn,k2) =

E(Xn,k1) E(Xn,k2) = 1
4 , and if k1 = k2 then E(Xn,k1 , Xn,k2) = E(X2

n,k1
) = E(Xn,k1) = 1

2 . Let k1 be

the edge vivj and k2 be the edge vrvs. There are three cases left to consider: if i = r we have the case

shown in Figure 5.4a, if i = s we have the case in Figure 5.4b, and if j = r we have the case shown in

Figure 5.4c. If i = r, then E(Xn,k1 , Xn,k2) = 1
3 since Xn,k1 = Xn,k2 = 1 if and only if w(vi) < w(vj)

and w(vi) < w(vs). There are 6 ways to order those labels and two of them satisfy that requirement,

so E(Xn,k1 , Xn,k2) = 2
6 = 1

3 . Similarly, if i = s or j = r we see E(Xn,k1 , Xn,k2) = 1
6 .

Next, we will count how many of the terms E(Xn,k1 , Xn,k2) are 1
2 , 1

3 , or 1
6 .

• We know that E(Xn,k1 , Xn,k2) = 1
2 only when k1 = k2 and therefore this occurs n − 1 times,

once for each edge.

• Next, if E(Xn,k1 , Xn,k2) = 1
3 , we have the case from Figure 5.4a. For each vertex v in the tree

T this will occur dv(dv − 1) times since we have dv choices for the first child and then dv − 1

choices for the second. This occurs a total of
∑
v∈T dv(dv − 1) times in the tree T .

• Lastly, if E(Xn,k1 , Xn,k2) = 1
6 , we have the cases shown in Figures 5.4b and 5.4c. If r is the

root of T , then for each vertex vi 6= r in T this occurs 2dv times. There are dvi choices for the

child vr and one choice for vj and the edges could appear in either order. Therefore this case

appears
∑
v∈T 2dv times throughout the tree T .
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Figure 5.4: The cases where the edges k1 = vivj and k2 = vrvs are adjacent

Plugging this information into (5.5), we get

Var(Xn) =

(
1

2
− 1

4

)
(n− 1) +

(
1

2
− 1

6

)∑
v∈T

dv(dv − 1) +

(
1

2
− 1

3

)∑
v∈T
v 6=r

2dv (5.6)

=
1

4
(n− 1) +

1

12

∑
v∈T

dv(dv − 1)− 1

12

∑
v∈T
v 6=r

2dv (5.7)

=
3(n− 1) + 2dr +

∑
v∈T d

2
v −

∑
v∈T dv −

∑
v∈T 2dv

12
(5.8)

=
3(n− 1) + 2dr +

∑
v∈T d

2
v − 3

∑
v∈T dv

12
(5.9)

=
3(n− 1)− 3(n− 1) + 2dr +

∑
v∈T d

2
v

12
(5.10)

=
2dr +

∑
v∈T d

2
v

12
. (5.11)

Using the variance calculated above and the values we found for Nn, ∆n, and An we can

now apply Janson’s criterion to prove the following theorem.

Proof of Theorem 5.3.1. In Lemma 5.3.4, we showed that Var(Xn) =
2dr+

∑
v∈T d

2
v

12 . At least one of

the vertices in the tree must have down-degree Dn. If v∗ is one such vertex, then we get

Var(Xn) =
2dr +

∑
v∈T d

2
v

12
=

2dr +D2
n +

∑
v 6=v∗ d

2
v

12
≥

2dr +D2
n +

∑
v 6=v∗ d

2
v

12

=
2dr +D2

n + (n− 1−Dn)

12
≥ D2

n + n− 1−Dn + 2

12
=
n+D2

n −Dn + 1

12
.

(5.12)

Note that this bound is tight when the maximum degree does not appear at the root, and the rest
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of the vertices have down-degree one.

To apply Janson’s criterion with Nn = n− 1, ∆n ≤ 2Dn, An = 1, and the estimate (5.12),

we need to show there is a natural number m such that

(n− 1)(2Dn)m−1

(
12

n+D2
n −Dn + 1

)m
2

→ 0.

It suffices to show that there is a natural number m such that

nDm−1
n

(n+D2
n −Dn + 1)

m
2

=

nDm−1
n

n
m
2

(1 +
D2

n

n −
Dn

n + 1
n )

m
2

→ 0. (5.13)

Clearly lim
n→∞

1

n
= 0, and so we have

Dn

n
≤ D2

n

n
≤ C2(n

1
2−ε)2

n
→ 0

for 0 < ε < 1
2 . This means that

nDm−1
n

n
m
2

=
Dm−1
n

n
m
2 −1

≤ Cm−1n( 1
2−ε)(m−1)

n
m
2 −1

→ 0 (5.14)

if m
2 − 1 > ( 1

2 − ε)(m− 1) = 1
2m−

1
2 − ε(m− 1). In other words, (5.14) holds if ε > 1

2(m−1) .

Note that 1
2(m−1) approaches 0 as m → ∞ and thus for any 0 < ε < 1

2 , there will be some

m ≥ 3 such that (5.13) holds. Therefore, by Janson’s criterion, we get that X̃n → N(0, 1).
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Chapter 6

Conclusion and Future Directions

In this thesis we studied many different generalizations of permutation statistics.

In Chapter 3, motivated by Foata and Zeilberger’s graphical major index and inversions [21],

we defined a graphical sorting index. We began by strengthening Foata and Zeilberger’s result

and showing that the graphical major index and inversion number are equidistributed for a fixed

rearrangement class if and only if the relation U is conditionaly bipartitional, and the main result

of the chapter is the classification of the types of relation U that give rise to the equidistribution

of all three statistics. There are still many open questions with regards to the graphical statistics.

One future direction is generalizing these statistics to signed or colored permutations of multisets.

Another question to investigate, is how we could define generalizations of the Stirling statistics,

and study the joint distributions of the graphical Stirling statistics with the graphical Mahonian

statistics.

We defined the statistics sor, BT-max, Cyc, and CBT-max for labeled forests in Chapter 4.

Björner and Wachs [4] defined maj for labeled forests, and showed that it is equidistributed with inv,

defined by Mallows and Riordan [11], over all labelings of a fixed forest. Our main results show that

the pairs (inv,BT-max), (sor,Cyc), and (maj,CBT-max) are equidistributed over all labelings of a

forest, and that the pairs (inv,BT-max) and (sor,Cyc) are equidistridued over all signed labelings of

a forest. In Section 4.4 we discussed the conjecture that the pair (imaj,BT-max) is equdistributed

with (inv,BT-max) and (sor,Cyc) over all labelings of a forest. There are many other open questions

such as generalizing other Mahonian statistics, or considering statistics for labelings of more general

posets.
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Lastly, in Chapter 5 we discussed the properties of the Eulerian polynomial that are pre-

served in the descent polynomial of labeled forests. We proved that the descent polynomial of a

forest is unimodal, and discussed a conjecture that it is log-concave. In Section 5.3 we proved for a

sequence of random trees with a bound on the maximum degree of each tree that as the size of the

tree approaches infinity, the descent distribution converges to the normal distribution.
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[37] S. Poznanović. The sorting index and equidistribution of set-valued statistics over restricted
permutations. J. Combin. Theory Ser. A, 125:254 – 272, 2014.

[38] D. Rawlings. The r-major index. J. Combin. Theory Ser. A, 31(no. 2):175–183, 1981.

[39] V. Reiner. Signed permutation statistics. Electron. J. Combin., 3:181–197, 1982.

[40] B. Sagan. A maj statistic for set partitions. European J. Combin., 12(1):69–79, 1991.

[41] R. Simion. A multiindexed Sturm sequence of polynomials and unimodality of certain combi-
natorial sequences. J. Combin. Theory Ser. A, 36(15-22), 1984.

[42] R.P. Stanley. Log-Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry.
Ann. N.Y. Acad. Sci., 576(1 Graph Theory):500–535, Dec 1989.
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