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ABSTRACT 

As digital information technologies continue to evolve at much faster rates than the 

growth of Si-based processors, the encroachment of light-based technologies into 

computing seems inevitable. With the advent of lasers, photonic crystals, and optical 

diodes, photonic computing has made significant strides in information technology over 

the past 30 years. This continuing integration of light into all-optical computing, 

optoelectronic components, and emerging optogenetic technologies demands the ability to 

control and manipulate light in a predictable fashion, or by design. Of particular interest, 

is the passive control and manipulation of light in all-optical switches, photonic diodes, 

and optical limiting which can be achieved by leveraging intrinsic non-linear optical 

properties of low dimensional materials. 

The reverse saturable absorption in fullerenes has been widely used to realize 

excellent passive optical limiters for the visible region up to 650 nm. However, there is still 

a need for passive optical switches and limiters with a low limiting threshold (<0.5 J/cm2) 

and higher damage limits. The electronic structure of fullerenes can be modified either 

through doping or by the encapsulation of endohedral clusters to achieve exotic quantum 

states of matter such as superconductivity. Building on this ability, we discuss in Chapter 

2 that the encapsulation of Sc3N, Lu3N or Y3N in C80 alters the HOMO-LUMO gap and 

leads to passive optical switches with a significantly low limiting threshold (0.3 J/cm2) and 

a wider operation window (average pulse energy >0.3 mJ in the ns regime). 

In addition to extraordinary and strongly anisotropic electronic properties, two 

dimensional (2D) materials such as graphene and boron nitride, exhibit strong light-matter 
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interactions despite their atomic thickness. The nonlinear light-matter interactions in 2D 

materials are well suited for several applications in photonics and optoelectronics, such as 

ultrafast optical switching and optical diodes. Unlike most 2D materials that display 

nonlinear saturable absorption or increased light transmission at higher fluences, hexagonal 

boron nitride nanoplatelets (BNNPs) exhibit enhanced opaqueness with increasing light 

fluence. A two-photon absorption (2PA) process was previously proposed to explain the 

intrinsic non-linear absorption in BNNPs at 1064 nm or 1.16 eV (Kumbhakar et al., 

Advanced Optical Materials, vol. 3, pp. 828, 2015); which is counter-intuitive because a 

2PA process at 1.16 eV cannot excite electrons across the wide band gap of BNNPs (~5.75 

eV). Here, through a systematic study of the non-linear properties of BNNPs we uncover 

a notoriously rare non-linear phenomenon, viz., five-photon absorption (5PA) at 1064 nm 

for low laser input fluences (below 0.6 J/cm2) that irreversibly transforms to a 2PA for 

higher laser input fluences (above 0.6 J/cm2). Our detailed experimental and theoretical 

findings delineated in Chapter 3 provide compelling evidence that the high laser fluence 

generates defects in BNNPs (e.g., oxygen/carbon doping), which support a 2PA process by 

inducing new electronic states within the wide band gap of BNNPs. 

MXenes comprise a new class of two-dimensional (2D) transition metal carbides, 

nitrides, and carbonitrides that exhibit unique light-matter interactions. Recently, 2D 

Ti3CNTx (Tx represents functional groups such as –OH and –F) was found to exhibit 

nonlinear saturable absorption (SA) or increased transmittance at higher light fluences that 

is useful for mode locking in fiber-based femtosecond lasers. However, the fundamental 

origin and thickness-dependence of SA behavior in MXenes remains to be understood. We 
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fabricated 2D Ti3C2Tx thin films of different thicknesses using an interfacial film formation 

technique to systematically study their nonlinear optical properties. Using the open 

aperture Z-scan method, we find that the SA behavior in Ti3C2Tx MXene arises from 

plasmon-induced increase in the ground state absorption at photon energies above the 

threshold for free carrier oscillations. The saturation fluence and modulation depth of 

Ti3C2Tx MXene was observed to be dependent on the film thickness. Unlike other 2D 

materials, Ti3C2Tx was found to show higher threshold for light-induced damage with up 

to 50% increase in nonlinear transmittance. Lastly, building on the SA behavior of Ti3C2Tx 

MXenes, we demonstrate in Chapter 4 a Ti3C2Tx MXene-based photonic diode that breaks 

time-reversal symmetry to achieve non-reciprocal transmission of nanosecond laser pulses. 

Finally, in Chapter 5, we discuss the equilibrium and non-equilibrium free carrier dynamics 

in a 16 nm thick Ti3C2Tx film. High (~2 x 1021 cm-3) intrinsic charge carrier density and 

relatively high (~34 cm2/Vs) mobility of carriers within individual nanoplates (that 

comprise the Ti3C2Tx film) result in an exceptionally large (~ 46 000 cm-1) absorption in 

the THz range, implying the potential use of Ti3C2Tx for THz detection. We also 

demonstrate that Ti3C2Tx conductivity and THz transmission can be manipulated by 

photoexcitation, as absorption of near-infrared 800 nm pulses is found to cause transient 

suppression of the conductivity that recovers over hundreds of picoseconds. The possibility 

of controlling THz transmission and conductivity via photoexcitation makes 2D MXenes 

suggests a promising material for application in THz modulation devices and variable 

electromagnetic shielding.  
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CHAPTER ONE 

 

INTRODUCTION TO NONLINEAR OPTICS 

 

Light-matter interactions are ubiquitous in nature. Many commonly observed phenomena 

such as light scattering, reflection, refraction, and fluorescence result from light-matter 

interactions. From a classical standpoint, light-matter interactions can be viewed as a result 

of an oscillating electromagnetic field interacting with charged particles in matter. When 

an electromagnetic wave interacts with a material, the charges in medium are displaced 

from their equilibrium positions, so that positive nuclei move slightly (due to heavier mass) 

in the direction of the field, while the negatively charged electrons move in the opposite 

direction. Thus, dipole moments are created because of the displacement between positive 

and negative charges, and the dipole moment per unit volume describes the induced 

polarization (P) of the medium.  At low light intensities, the dielectric polarization (P) of 

materials responds linearly to the electric field (E) of the light. However, at higher light 

intensities, the relationship between P and E becomes nonlinear. At high light intensities, 

when one or more electromagnetic waves propagate in a material, the atoms and molecules 

oscillate not only at the frequencies of the electric field applied, but also at different 

combinations of those frequencies as a result of the nonlinear response of the medium. 

Nonlinear optics (NLO) is the study of material phenomenon in which intense light induces 

a nonlinear response (e.g., nonlinear relationship between P and E) in the medium, and in 

return, the medium modifies the optical fields in a nonlinear way. In fact, all media are 
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nonlinear to a certain degree. Several fundamental properties of materials such as non-

linear absorption, refraction, second harmonic generation, as explained later in this chapter, 

can be probed using NLO spectroscopy [1], [2]. In general, nonlinear behavior of any 

media can be unveiled only with the help of highly intense light beams generated by lasers 

[1], [2]. The demonstration of second-harmonic generation by Franken et al. (1961) [3], 

shortly after the invention of laser is often considered as the birth of NLO spectroscopy.  

In recent years, the discovery of low dimensional materials such as fullerenes (zero 

dimensional)[4], [5], carbon nanotubes (one dimensional)[6], [7], graphene (two 

dimensional)[8], [9] and other emerging nanostructures have been found to show 

interesting nonlinear optical phenomena[1], [10]. Knowledge of electronic transitions is 

critical in order to interpret the linear and nonlinear optical properties of nanomaterials. 

Very often, the energy levels in nanostructures are investigated by “linear” spectroscopic 

techniques such as optical absorption, photoluminescence, photoacoustic- and x-ray 

photoelectron spectroscopy[10]–[13]. However, nonlinear interaction of light plays 

important role in probing the higher electronic levels in low dimensional materials[12], 

[14]. Nanomaterials exhibit quantum confinement effects that alter their electronic energy 

levels, electronic density of states, phonon anharmonicity and bottlenecks[14]–[18], which 

lead to interesting changes in nonlinear properties with many promising applications such 

as ultrafast optical switching, optical limiting, passive mode locking, frequency up-

conversion lasing, optical data storage, and multi-photon based laser microscopy. 

Interestingly, nanomaterials exhibit distinct intensity dependent nonlinear responses for 

laser excitation that depend on parameters such as the laser wavelength, pulse duration, 
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and repetition rate[19]–[21]. The physical basis of observed nonlinear optical responses in 

nanostructures is briefly elucidated in the following sections along with an outline for 

various experimental techniques used for probing their photophysical properties. 

 
Figure 1.1. The illustration of various nonlinear optical (NLO) phenomenon and their 

applications. SA = saturable absorption, 2PA = two photon absorption, 3PA = three photon 

absorption. χ2 and χ3 are associated with light-induced nonlinear effects. n2 is the nonlinear 

refractive index. 
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Table 1.1. Various nonlinear optical (NLO) phenomena and their applications.

 

 

 

1.1 Nonlinear Optical Processes 

When the applied electric field is sufficiently small (e.g., < 108 V/m), the electric 

polarization, 𝑷 is approximately linearly proportional with the applied electric field E  

 𝑷 = 𝜒 ∙ 𝑬, (1.1) 

where 𝜒 is the electric susceptibility tensor. This is the case of linear optics.  

However, when the applied electric field is greater than 108 V/m, the induced polarization 

has a nonlinear dependence on the electric field and can be expressed as a power series 

with respect to the electric field as:  

 𝑷 =  𝜒1 ∙ 𝑬 + 𝜒2 ∙ 𝑬𝑬 + 𝜒3 ∙ 𝑬𝑬𝑬 (1.2) 

 𝑷 = 𝑷𝟏 + 𝑷𝟐 + 𝑷𝟑. (1.3) 
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The first term χ1 is responsible for linear absorption and refraction, while the remaining 

terms are associated with light-induced nonlinear effects.  

   In nonlinear optics, the product of two or more oscillating fields generates 

oscillations at different combinations of the incident frequencies. In order to account for 

this and to have a complete description of the process, the following notation is used:  

 𝑷(𝝎) = 𝜒1(−𝜔; 𝜔) ∙ 𝑬(𝜔) + 𝜒2(−𝜔3; 𝜔1𝜔2) ∙ 𝑬(𝜔1)𝑬(𝜔2) +

                           𝜒3(−𝜔4; 𝜔1𝜔2𝜔3)𝑬(𝜔1)𝑬(𝜔2)𝑬(𝜔3)+..   

 

(1.4) 

This notation also reflects the conservation of energy for each nonlinear process: 

            𝜔3 =  𝜔1 + 𝜔2 = 𝜔  for 𝜒2, (1.5) 

 𝜔4 =  𝜔1 + 𝜔2 + 𝜔3 = 𝜔 for 𝜒3. (1.6) 

In order to find the wave equation for a beam that propagates through a nonlinear optical 

medium, one starts with the Maxwell's equations (1.7-1.10): 

 𝜵 ∙ 𝑫 = 𝜌 (1.7) 

 
𝛻 × 𝑬 = − 

𝜕𝑩

𝜕𝑡
 

(1.8) 

 𝜵 ∙ 𝑩 = 0  (1.9) 

 𝛻 × 𝑯 =  𝑱 + 
𝜕𝑫

𝜕𝑡
. (1.10) 

Assuming nonmagnetic materials with no free charges or currents, i.e.  ρ = 0 and  𝑱 = 0 , 

we get: 

 𝑫 = 𝑷 + 𝜀𝑬. (1.11) 

Using the above conditions and Maxwell's equations, we can determine the wave 

equation as: 
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 𝛻 ×  𝛻 ×  𝑬 =  − (
𝜕

𝜕𝑡
) 𝛻 ×  𝑩 =  − (

𝜕

𝜕𝑡
) 𝛻 ×  𝑯 =  −(𝜕/𝜕𝑡) [𝑬 +

 (𝜕/𝜕𝑡)𝑬 + (𝜕/𝜕𝑡)𝑷𝑵𝑳] , 

 

(1.12) 

where PNL is the nonlinear part of P. Using the general vector notation   𝛻 ×  𝛻 ×  𝑬 =

 𝛻(𝛻 ∙ 𝑬) − 𝛻2 𝑬, we have for charge free medium: 

 𝛻2 𝑬 = µ𝜎 (
𝜕

𝜕𝑡
) 𝑬 +  µ𝜀 (

𝜕2

𝜕𝑡2) 𝑬 +  µ (
𝜕2

𝜕𝑡2) 𝑷𝑵𝑳. (1.13) 

 

Therefore, the nonlinear wave equation becomes: 

 
𝛻2 𝑬 − µ𝜎 (

𝜕

𝜕𝑡
) 𝑬 −  µ𝜀 (

𝜕2

𝜕𝑡2
) 𝑬 =  µ (

𝜕2

𝜕𝑡2
) 𝑷𝑵𝑳 

(1.14) 

 𝛻2 𝑬 +
1

𝑐2 (
𝜕2

𝜕𝑡2) 𝑬 =  
−1

𝑐2𝜀
 (

𝜕2

𝜕𝑡2) 𝑷𝑵𝑳. (1.15) 

The equation is inhomogeneous, and the nonlinear response of the medium represents the 

source term, which is included as the right-hand term. This means that P drives the electric 

field E. This is responsible for many nonlinear optical phenomena like second harmonic 

and higher harmonic generation, sum and difference frequency generation, etc. 

Second order effects are primarily parametric in nature (interactions between light waves 

and matter do not involve transfer of energy to, or from, the medium). They are in general 

called three wave-mixing and include: 

 Second harmonic generation (SHG) 
    ,;22

 

 Optical refraction
    ,;02

 

 Parametric mixing
   2121

2 ;    
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 Pockel’s effects
   0,;2   

These phenomena occur through electric dipole interactions. Because of symmetry 

restrictions, the even order electric dipole susceptibilities are zero in materials with optical 

inversion symmetry. As a result, the second order nonlinear interactions are observed most 

commonly only in certain classes of crystals which lack center of inversion. However, 

some second order processes (due to electric quadrupole interactions) have been observed 

in gases and in solids that have center of inversion. The second order frequency conversion 

process is primarily used to produce coherent radiation in wavelength regions where 

radiation from direct laser sources is not available, or to obtain radiation in a given 

wavelength range with properties, such as tunability, that are not available with existing 

direct laser sources[22]. Radiation ranging from 185 nm (ultraviolet) to 2 µm (microwave) 

has been generated with different crystals and lasers. 

The third order effects involving 
 3  do take place in all materials irrespective of their 

possessing inversion symmetry. Third order parametric processes are also used for 

frequency conversion. They have been used to generate radiation ranging from 35 nm, 

almost in the soft x-ray range to 25 µm in the infrared. Third order processes can be 

observed with electric dipole interactions in materials with any symmetry, such as gases, 

liquids, and some solids. Since, these materials have the lowest order non-zero 

nonlinearities allowed by electric dipole interactions. Some important third order effects 

are:  

 Third harmonic generation (THG)    3
3 ; , ,     
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 Optical Kerr effect      0,0,;Re 3   

 Non-degenerate four-wave mixing     321321

3 ,,;     

 Stimulated Raman scattering (SRS)  
      ,,;3   

 Stimulated Brillouin Scattering (SBS)  
      ,,;3

  

 Degenerate four-wave mixing       ,,;Re 3      

 Two photon absorption (2PA)      ,,;Im 3   

 DC induced harmonic generation     0,,;2Re 3   

SBS[23], SRS[24], [25] and degenerate four wave-mixing processes are widely used third 

order techniques for generating phase conjugate beams. The magnitude and the response 

of these higher order effects can be compared only by evaluating their corresponding 

nonlinear coefficients χ2, χ3, etc.  The χ2 term is present only in non-centrosymmetric 

materials possessing inversion symmetry[26]. Therefore, materials that are isotropic and 

homogeneous (such as liquids & gases) have the lowest nonlinear response as the third 

order nonlinear processes. Thus this third order effect is widely investigated.  

From the above discussion, one can invariably understand that the determination of 

the magnitude and response of third-order nonlinear susceptibility are vital parameters in 

characterizing and quantifying the applicability of any material as a nonlinear optical 

device. In general, the nonlinear index of refraction is defined as a variation of the index 

of refraction of the material caused by the intensity of light waves propagating through the 

medium. The third order nonlinear susceptibility is related to the nonlinear index of 
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refraction, similar to the relationship of the linear susceptibility to the linear index of 

refraction. 

The intensity dependent nonlinear refractive index for an isotropic centrosymmetric 

material with a third order nonlinearity is given as, 

 𝑛 = 𝑛0 + 𝑛2𝐼 , (1.16) 

where n2 is the contribution to change in  the refractive index due to 3 as we have  I ∝ E2. 

This nonlinear contribution to the refractive index causes the phenomena of self-action. It 

is called self-action since the nonlinear polarization caused by the incident beam affects 

the propagation of the beam through the medium. In the case of a Gaussian beam where 

the beam is more intense at the center than at the edges, and if the material has a positive 

nonlinear refractive index, then the medium acts as a positive lens focusing the beam. If 

the material has a negative nonlinear refractive index, then the material acts as a negative 

lens. As in the case of the refractive index the nonlinear absorption coefficient is given as 

 𝛼 = 𝛼0 +  𝛽 𝐼 , (1.17) 

where 𝛼0  is the linear coefficient of absorption and  is the nonlinear coefficient of 

absorption. Such nonlinear processes occur in a nonlinear material only when the optical 

field incident on the material is quite strong, i.e., at high intensities. 

 The third order susceptibility can be considered as combination of real and imaginary parts 

as  

 𝜒3 =  𝜒𝑅
3 + 𝜒𝐼

3.  (1.18) 

The real part 𝜒𝑅
3, accounts for all the effects that are transient and consume no energy such 

as molecular orientation, electrostriction, etc. The imaginary part 𝜒𝐼
3, accounts for 
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processes that involve losses such as the one due to bleaching, nonlinear absorption, etc. 

The most important χ3 processes for optical limiting are nonlinear absorption and the 

electronic Kerr effect, which are respectively associated with the imaginary part of χ3 and 

the real part of χ3. 

A Feynman diagram is useful for picturizing corresponding physical processes 

when photons are absorbed or emitted,[27] which can be used to evaluate a nonlinear 

process to various orders of perturbation. It also allows one to write down a mathematical 

expression associated with that particular process. Thus it is a convenient tool for 

evaluating complicated higher order nonlinear optical responses. 

The elements of a Feynman diagram include: 

• a wavy line representing a photon 

• a vertex representing absorption (or emission) of a photon 

• a diagonal line representing a specific state 

• a vertical line representing many possible states which do not necessarily 

conserve energy through a vertex 
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Fig. 1.2. Feynman diagram of sum frequency generation. This can represent two photon 

absorption if 1 = 

 

 

1.2 Nonlinear Absorption 

Nonlinear absorption refers to the nonlinear change in the material transmittance as a 

function of input laser light fluence (usually given in units of J/cm2). As mentioned above, 

the nonlinear absorption coefficient of a third-order nonlinear medium can be written 

as 𝛼 = 𝛼0 + 𝛽𝐼, where  is the nonlinear coefficient of absorption.  usually refers to two-

photon absorption coefficient. However, two-step phenomena like excited state absorption 

(ESA) and free carrier absorption (FCA) may also contribute to nonlinear absorption. Such 

phenomena are collectively referred to as reverse saturable absorption (RSA).  
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Figure 1.3. A schematic diagram of a) two-photon absorption, b) three-photon absorption 

and, c) excited state absorption. The blue solid lines represent real states and the green 

dashed lines represent virtual states, purple arrows represent electronic transitions. 

 

1.2.1 Multiphoton absorption 

In an insulator or semiconductor, due to the conservation of energy, linear electronic 

absorption can occur only if the photon energy is equal or greater than the bandgap energy. 

However, at high optical intensity it is possible to bridge the bandgap by simultaneous 

absorption of two or more lower-energy photons, only if the sum of photon energies 

exceeds the bandgap energy. Such processes are called multiphoton absorption (MPA)[28]. 

Many semiconducting and insulating nanomaterials exhibit MPA[29]. Since two- and 
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three-photon absorption (2PA and 3PA, respectively) processes are more common, we 

limit our discussion of MPA to these two cases. As shown in Fig. 1.3a, 2PA involves the 

simultaneous absorption of two photons to promote an electron from an initial state to a 

final state through a virtual intermediate level (represented by green dashed lines). With 

usually a lower transition probability, 3PA (see Fig. 1.3b) involves three photons and two 

intermediate states. Since the intermediate level is virtual, energy only needs to be 

conserved in the final state. MPA is an instantaneous process occurring in femtosecond 

timescales. Two- and three- photon absorption-based nanomaterials can be used for 

applications such as frequency conversion lasing, optical limiting, pulse stabilization, and 

reshaping. By assuming only one type of MPA dominates at any given time, the optical 

intensity I can be described as[10]: 

 

 𝑑𝐼

𝑑𝑧
= −𝛼𝐼 − 𝛾𝑛𝐼𝑛, (1.19) 

 

where  is the linear absorption coefficient, z is propagation distance of light within the 

sample andn is the n-photon absorption coefficient. For example, 2 represents the 2PA 

coefficient while 3 denotes 3PA. While the rate for linear absorption is simply proportional 

to the optical intensity, for MPA processes of order n, the absorption rate is proportional to 

the nth power of the optical intensity. This implies that such absorption rates can be very 

small for low or moderate optical intensities, but can become dominant for very high 

optical intensities, which can be achieved with focused laser pulses.  
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Multiphoton absorption processes in transparent media are often accompanied by laser-

induced damage/oxidation. Transparency of such medium means that linear electronic 

absorption is not possible for the considered optical wavelength; therefore, material 

remains virtually transparent to light with low optical intensity. However, MPA can 

become substantial at high enough optical intensity, so that energy can be deposited and a 

run-away process can start, which ultimately leads to optical damage of the material. This 

is also exploited in laser material processing on transparent materials such as BN, which is 

described in details in Chapter 3. 

Another example is multiphoton fluorescence microscopy, where MPA (mostly two-

photon or three-photon absorption) is often utilized and the excitation light from a 

femtosecond laser is strongly focused[30]. Compared with linear excitation, the practical 

advantage of multiphoton excitation is that a laser source with longer emission wavelength 

can be used, which in some cases is less harmful to live tissues. Also, longer-wavelength 

light can more easily propagate deeper into the material without being strongly absorbed, 

as long as the beam radius is large enough. The multiphoton fluorescence microscopy 

utilizes that intensity which is present only in the beam focus, where the optical intensities 

are substantially higher, and multiphoton absorption processes become strong. The 

preferential illumination in the beam focus helps one to obtain a higher longitudinal image 

resolution and less interference from fluorescence light generated in the beam path[30]. 
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1.2.2 Excited state absorption 

The mechanism of excited state absorption (ESA) can be viewed as analogous to a 2PA 

process with a real intermediate excited state instead of the virtual state, where the electron 

has sufficient lifetime to stay after been excited from ground state. In this process, the 

absorption cross section of the intermediate excited state is higher than the ground state, 

which leads to an enhanced absorption at higher input intensities. Typically, the ESA 

process is much stronger than 2PA, because the electrons stay at a real state during the 

excitation process[10]. The excited state absorption exists in fullerene systems, and it can 

be used in optical limiting due to its strong ESA coefficient [10]. Details will be explained 

in Chapter 2. 

1.2.3 Saturable absorption 

Saturable absorption is a property of a material where the transmission of light increases 

with increasing light intensity. Given sufficiently high intensity of photon-excitation, 

electrons in the ground state of a saturable absorber can be transferred to an excited state. 

During the very short time period (picoseconds) before electrons decay back to the ground 

state, the material stays transparent to the same wavelength of light. With its ground state 

bleached by the high intensity light beam, the material can no longer absorb additional 

photons leading to a saturation in its absorption. The key parameters for a saturable 

absorber are the range of working wavelength, the dynamic response, and its saturation 

intensity and fluence. Saturable absorbers commonly used for passive Q-switching in laser 

cavities. In particular, saturable absorption is only one of several mechanisms that produces 

self-pulsation in lasers, especially in semiconductor lasers[10]. Most materials show some 
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saturable absorption, but are often limited to higher optical intensities (sometimes close to 

the optical damage threshold). As described later in this thesis, many 2D materials exhibit 

strong SA.  

The nonlinear light propagation equation is given below as: 

 

 𝑑𝐼

𝑑𝑧
= − 

𝛼𝐼

1+
𝐼

𝐼𝑠

, (1.20) 

where  is the linear absorption coefficient, Is is the threshold saturable intensity where the 

absorption is 50% of linear absorption. To characterize the SA, an open aperture Z-scan is 

usually employed, which is explained in section 1.4 of this chapter. 

Semiconducting materials can only absorb photons of energy equal or higher than 

its energy band gap. However, graphene is a gapless semiconductor with unique electronic 

properties where charge carriers show linear dispersion relation for visible light (less than 

3 eV).[31] This enables graphene to function as a wide bandwidth saturable absorber. The 

optical nonlinearities are directly related to photocarrier density and carrier relaxation time. 

As shown in Fig. 1.4, the saturable absorption process can be depicted as follows. 

Absorption of light in graphene first leads to the electron excitation from its valence band 

to conduction band. When first arrived at conduction band, the hot electrons undergo a 

cooling process and attain a Fermi-Dirac distribution. The hot electrons can be further 

cooled through intraband phonon scattering, and eventually the electrons and holes 

recombine. If graphene is exposed to an intense light beam, the photo-generated carriers 

will quickly fill the band edge states and graphene will be unable to further absorb light; 

or in other words graphene attains the state of saturation absorption. As electron must obey 
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Pauli’s principle, the photo-generated carrier prevent graphene from further absorption of 

photons, a property also known as Pauli blocking. Under low intensity light illumination, 

graphene exhibits a strong absorption of light.  As the light intensity increases, graphene 

attains a state of saturation absorption and become transparent. This principle has been 

used in Q switching and mode-locking applications[8], [32].  

 

 

Figure 1.4. Saturable absorption process in graphene. a) Schematic of the excitation process 

responsible for absorption of light in graphene. The vertical arrow indicates optical 

interband transition. b) The photo-generated carriers thermalize and cool down within sub-

picoseconds to form a hot Fermi–Dirac distribution. An equilibrium electron and hole 

distribution is attained through intraband phonon scattering and electron-hole 
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recombination. c) At high excitation intensity, the photo-generated carriers cause the states 

near the edge of the conduction and valence bands to fill, blocking further absorption. [32]  

 

1.3 Nonlinear Refraction 

Nonlinear refraction is described by the second term n2 of the equation 1.16. It represents 

the material’s refraction index that responds to light intensity nonlinearly. The dominant 

physical mechanism driving nonlinear refraction in a given medium can vary depending 

on the material, which is usually caused by optical Kerr effect. When a focused beam 

passes through the materials, a light intensity dependent refraction index is developed. The 

material will exhibit a spatially uneven distribution of refracted light, and the effect is 

equivalent to that of a lens and is also referred to as Kerr lensing. The nature of Kerr lensing 

is used in several applications including optical switching and laser mode-locking, 

especially in the ultrafast regime.  

Nonlinear refraction can also occur due to thermal effects (usually referred to as thermal 

lensing), which is typically caused by the laser beam heating at the focal point, it builds up 

with a relatively long response time of a few milliseconds. Thermal nonlinearity can be 

dominant for continuous-wave (cw) laser excitation and significant for nanosecond laser 

pulse excitation. The nonlinear index of refraction can be determined using a closed 

aperture Z-scan measurement. 
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1.4 Experimental setup 

The Z-scan technique is a sensitive and simple method for measuring nonlinear absorption 

and nonlinear refraction properties of a material. It has been used extensively to study the 

optical nonlinearity of various materials like semiconductors, nanocrystals, semiconductor-

doped glasses, liquid crystals, organic materials, and biomaterials. Introduced by Sheik-

Bahae et al.[10], [33] in the early 1990s, this widely used technique has many advantages 

over other nonlinear spectroscopic methods. In a typical Z-scan, the light-induced change 

in transmittance of the material due to optical nonlinearity is measured as a function of 

input light energy density (fluence) or intensity. A continuous variation of the input fluence 

is achieved by translating the sample under study (translation direction is along the z 

direction) through the focal region (z = 0) of a focused laser beam, and hence the name “Z-

scan”). As the sample is translated in and out of the focal region, it is subjected to a 

consequent increase and decrease of the incident light intensity, resulting in wave front 

distortions (created by nonlinear optical effects in the sample). There are two types of Z-

scan techniques, namely, the “closed aperture” Z-scan and the “open aperture” Z-scan. In 

the open aperture Z-scan, which is used for studying nonlinear absorption, the transmitted 

beam is collected by a detector, for different values of sample position z. In the closed 

aperture Z-scan, which is used for studying nonlinear refraction, the transmitted beam is 

passed through an aperture placed in the far field and then measured by a detector. 
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1.4.1 Open aperture Z-scan 

 

 

Figure 1.5. A schematic illustration of an open aperture Z-scan setup. 

 

   All Z-scan measurements described in this thesis were performed with linearly 

polarized 7 ns optical pulses from a Q-switched frequency-doubled Nd:YAG laser at 1064 

nm. In our open aperture Z-scan setup (see Fig. 1.5), the laser beam was focused by a 

converging lens with a focal length of 20 cm on to a stable dispersion that was held in the 

1 mm quartz cuvette (100-QS Hellma® Analytics) or a solid thin film and translated across 

the focal plane (z = 0) in the beam direction (z direction). At each z position, the position 

dependent transmittance was measured using a calibrated photodetector B (RjP-7620, 

Laserprobe, Inc.). A similar detector A was used for measuring the reference signal, and 

the sample signal was computed as the ratio of intensity measure by B compared to that of 

A (in order to minimize the influence from the laser intensity fluctuation). The open 
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aperture Z-scan is sensitive only to nonlinear absorption (NLA), which is the intensity 

induced transmission change. The absorptive nonlinearity will be maximum at the focal 

plane, where the intensity is highest. Thus, the open aperture scheme is employed to 

characterize materials that exhibit NLA, such as excited state absorption, two-photon 

absorption and saturable absorption. 

 

1.4.2 Closed aperture Z-scan 

 

Figure 1.6. A schematic illustration of closed aperture Z-scan setup. A is for aperture. 

 

Instead of using a lens to collect all the transmitted light, in a closed aperture Z-scan setup 

an aperture is used to selectively let the light pass at a certain solid angle (see Fig. 1.6). 

The sensitivity to nonlinear refraction results from the vital role played by aperture (Fig. 

1.6). Even though closed aperture Z-scan is used mainly for measuring NLR properties, in 

practice, depending on the nature of the sample the closed aperture Z-scan data may also 
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contain contributions from NLA. To obtain the NLR coefficient in such a case, it is 

sufficient to normalize the closed aperture data using the open aperture data before 

analysis.  
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CHAPTER TWO 

NONLINEAR OPTICAL PROPERTIES OF FULLERENES 

Yongchang Dong, et al. “Passive Optical Switches Based on Endohedral Fullerenes”. 

Optical Materials (2016) 53: 14–18. Reproduced in part with permission of Elsevier. 

 

2.1 Excited state absorption in nanomaterials 

As digital information technologies continue to evolve at much faster rates than the 

growth of Si-based processors, the encroachment of light-based technologies into 

computing seems inevitable.[34]–[36] With the advent of lasers, photonic crystals, and 

optical diodes[36], [37] photonic computing has made significant strides in information 

technology over the past 30 years. This continuing integration of light into all-optical 

computing, optoelectronic components, and emerging optogenetic technologies demands 

the ability to control and manipulate light in a predictable fashion, or by design.[38] 

Although there are different dynamic methods (e.g., Faraday rotator) to manipulate light, 

the presence of multiple optical components and the necessity for active feedback/control 

(e.g., magnetic fields in Faraday rotator) impedes their immediate utilization in many 

technologies.[38] Alternatively, passive control and manipulation of light in all-optical 

switches, photonic diodes, and optical limiting could be achieved by directly using intrinsic 

non-linear optical properties of materials[37], [38]. Of particular interest, in this chapter, is 

the use of all-optical switches and optical limiters for laser pulse-shaping and sensor 

protection. While an ideal optical switch is a nonlinear optical device that abruptly turns 

opaque (zero transmission) above a certain threshold intensity, an ideal optical limiter 
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exhibits a linear (/non-zero and constant) transmission below (/above) the threshold (Fig. 

2.1). In reality, when the leading edge of a fast optical pulse is comparable to the electron-

electron scattering times (hundreds of fs to sub-ps) of the optical switch material, the pulse 

may partially pass through the optical switch material before the material is non-linearly 

activated[38]–[40]. This yields a realistic switch/limiter response that is intermediate 

between an ideal limiter and an ideal switch, as shown in Fig. 2.1.  

 

 

Fig. 2.1.  A schematic showing the optical response of an ideal optical limiter (dashed black 

line), an ideal optical switch (red dashed line), and a realistic passive optical switch as a 

function of input fluence. 
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Table 2.1.  Optical limiting threshold of various low dimensional nanostructures in 

comparison with Sc3N@C80, Lu3N@C80, Y3N@C80 and C60. 

 

  

Nanostructure 

(diameter size) 

Pulse width: 

sample 

length 

Linear 

transmission 

(%) 

Threshold 

value (J/cm2) 

Reference 

Pd nanowires 

(50nm) 

7ns:1mm 80 0.9 Pan et al.[41] 

Cu nanowires 

(50nm) 

8ns:5mm 80 2.5 Pan et al.[41] 

Ni nanowires 

(50nm) 

7ns:1cm 80 1.2 Pan et al.[41] 

Pt nanowires 

(50nm) 

7ns:1cm 80 1.3 Pan et al.[41] 

Ag nanowires 

(50nm) 

7ns:1cm 80 1.7 Pan et al.[41] 

Co nanowires 

(50nm) 

7ns:1cm 80 4.2 Pan et al.[41] 

CdS nanowires 

(4.5nm) 

6ns:1mm 76 1.42 to 0.42 Muthukumar et 

al. [42] 

CdS/Ag2S 

nanoparticles 

(3.5nm) 

4.1ns:2mm 68 0.5 Jia et al.[43] 

Au NPs (22nm) 7ns:1mm 70 9.0 Pradhan et 

al.[44] 

Au-graphene 7ns:1mm 70 0.4 Pradhan et 

al.[44] 

C60 (0.7nm) 7ns:1mm 80 1.0 This work 

Sc3N@C80 

(0.7nm) 

7ns:1mm 75 0.5 This work 

Lu3N@C80 

(0.7nm) 

7ns:1mm 80 0.3 This work 

Y3N@C80 (0.7nm) 7ns:1mm 80 0.4 This work 
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Realistic optical switches/limiters are useful in several applications, some of which 

include: i) pulse shaping where a long optical pulse with intensity spikes can be smoothed 

by selectively attenuating the high-intensity spikes that exclusively elicit non-linear 

responses in the switch[38], and ii) sensor protection for extending the dynamic range of 

the sensor by mitigating light-induced damage.[38], [43]–[47] With regards to sensor 

protection, the extensive deployment of lasers poses a serious threat for sensitive optical 

and electronic components/devices including eyes, now more than ever. Indeed, the strong 

absorption of biomolecules in the near-infrared (NIR) region exacerbates the possibility of 

NIR laser-induced injuries and accidents, making the need for effective protection against 

lasers a priority.[48], [49] The emergence of various nanomaterials and their 

heterostructures with unique non-linear properties (e.g., reverse saturable absorption in 

C60) led to the realization of enhanced optical limiting materials.[39], [41]–[47], [50]–[57] 

Although nanomaterials display an improved optical limiting threshold (the input fluence 

at which the transmittance falls to 50% of its initial value) at higher input fluences  >1 J/cm2 

(Table 1.1), it is challenging to achieve excellent optical limiting capability in the low 

fluence regime (<1 J/cm2).[44] Furthermore, realistic optical switches should also exhibit 

a rapid decrease in transmission (ideally, the transmission should abruptly drop to zero 

above the threshold intensity, as shown in Fig. 2.1) in addition to a low-threshold.[38] In 

this regard, others and we previously found that tailoring the electronic band structure of 

nanomaterials via dopants & defects (e.g., oxidized graphene/B- or N-doping), and 

modulating electron scattering mechanisms through heterostructured geometries (e.g., Au 

nanoparticles of reduced graphene oxide) shows excellent promise for controlling non-
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linear optical properties.[44], [58]–[61] Building on these results, in this article, we 

demonstrate the use of thermally stable endohedral cluster fullerenes (Sc3N@C80, 

Lu3N@C80 and Y3N@C80) as potential passive realistic optical switch/limiter materials 

with low-fluence threshold and high-damage limits for pulsed ns 1064 nm wavelength. The 

excellent match between the HOMO-LUMO gap energy in Lu3N@C80 and 1064 nm 

excitiation energy leads to the realization of a threshold as low as ~0.3 J/cm2, which is at 

least an order of magnitude lower compared to that exhibited by many nanomaterials, 

particularly C60 (Table 1.1). More importantly, the non-linear transmission through 

Lu3N@C80 decreases much more rapidly than for other nanomaterials, making it an ideal 

candidate for realistic optical switching. In addition to the low-fluence, our experiments 

show that Sc3N@C80, Lu3N@C80, and Y3N@C80 can withstand high nanosecond pulsed-

laser energies >0.5 mJ (average pulse energy) which is at least 10-100 times higher than 

for other metallic and dielectric materials[62], [63] and is on par with high-power Er/Yb 

doped optical fibers.[64]–[67]   

 

2.2 Characterization of endohedral fullerenes 

 C60 (Carbon 60, 99.95+ %, ultra pure Vacuum oven dried) was purchased from 

SES research, Houston, TX. Sc3N@C80, Lu3N@C80 and Y3N@C80 were obtained using an 

arc-discharge process described earlier.[68] To gauge the non-linear optical performance 

of C60, Sc3N@C80, Lu3N@C80 and Y3N@C80 we used a conventional open aperture Z-scan 

technique described in Chapter 1.[44], [69] All measurements were performed with linearly 

polarized 7 ns optical pulses from a Q-switched frequency-doubled Nd:YAG laser at 1064 
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nm. For our Z-scan setup, the laser beam was focused by a converging lens with a focal 

length of 20 cm on to a stable dispersion that was held in the 1 mm quartz cuvette (100-QS 

Hellma® Analytics) and translated across the focal plane in the beam direction (z direction). 

At each z position, the position dependent transmittance was measured using a calibrated 

photodetector (RjP-7620, Laserprobe, Inc.) to obtain the Z-scan curves shown in Figs. 2.2 

and 2.3. C60, Sc3N@C80, Lu3N@C80 and Y3N@C80 were suspended in toluene at 0.5 mg/ml 

concentration using aqueous bath sonication (Branson Aquasonic) for 30 minutes.  
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Fig. 2.2.  Z-scan curves for C60 (a) and Sc3N@C80 (b) at different energies clearly show a 

valley indicating reverse saturable/two-photon response. The markers represent the 

experimental data and the solid lines are experimental fits obtained by solving a non-linear 

light propagation equation (cf. eqn. 2.2).  
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2.3 Excited state absorption in endohedral fullerenes 

The open aperture Z-scan curves (shown in Fig. 2.2) often emerge from one or 

multiple non-linear phenomena (e.g., saturable, reverse saturable, or multi-photon 

absorption) occurring simultaneously in the photo-excited material under study. For 

instance, the nonlinear transmission for a sample exhibiting exclusively reverse saturable 

or two-photon absorption (RSA or 2PA) processes (e.g., C60 in Fig. 2.2a) is given by 

equation (1) 

 
𝑇 = (1 − 𝑅)2𝑒

−𝛼0𝐿

√𝜋𝑞0 ∫ 𝑙𝑛 (1 + 𝑞0
2𝑒−𝑡2

+∞

−∞

)𝑑𝑡 

 

(2.1) 

 

where L and R are the sample length (1 mm) and surface reflectivity, respectively. 

In eqn. 2.1, α0 is the unsaturated linear absorption coefficient, q0 is given by β(1 − R)I0Leff, 

where β is the absorption coefficient for a RSA/2PA process. The effective length Leff is 

given by (1−exp(−α0L))/α0. For materials that simultaneously exhibit more than one NLO 

process, such as saturable absorption competing with a RSA/2PA process (e.g., Sc3N@C80, 

Lu3N@C80 and Y3N@C80 in Fig. 2.2b, c, d), the nonlinear transmission of the sample is 

best described by the propagation equation as 

 

 𝑑𝐼

𝑑𝑧′ = −
𝛼0𝐼

1+
𝐼

𝐼𝑠

− 𝛽𝐼2,  

(2.2) 
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where Is is the saturation absorption intensity. RSA is a non-linear optical phenomenon, 

which occurs when the photoexcited state exhibits higher absorption cross-section than the 

ground state. As shown in Fig. 2.2a, it is well known that C60 exhibits RSA,[39], [45], [56] 

when exposed to ns pulses, due to the excitation of ground-state electrons (in singlet state 

So) to the long-lived lowest triplet state T1 (which has a higher absorption cross-section 

than So) through a fast and efficient intersystem crossing via a singlet state S1. Our Z-scan 

curves for C60 (Fig. 2.2a) could be fitted well using a two-photon absorption process (eqn. 

2.1) with β~4.5 x 10-9 cm/W, concurring with the previously observed properties of 

C60.[70] Although the strong linear optical absorption of So-S1 states (see Fig. 2.3a) leads 

to efficient RSA and optical limiting up to ~650 nm, the optical switching/limiting behavior 

of C60 is poor for near-infrared wavelengths such as 1064 nm (1.16 eV): a very commonly 

used ns pulsed laser wavelength.[71] To overcome this apparent challenge, we used 

Trimetallic Nitride Endohedral Fullerenes (TNEFs) which exhibits a HOMO-LUMO gap 

~1.9-2.1 eV that can near-resonantly couple to 1064 nm (~1.16 eV) through 2PA.[68] The 

difference in linear absorption characteristics of TNEFs and C60 is clearly evident from the 

photographs of C60 and TNEFs solutions in toluene shown in the inset of Fig. 2.3a. 

Previously, it was demonstrated that the electronic structure of fullerenes could be modified 

through nitrogen, alkali and rare-earth alkali metals doping or by the encapsulation of 

endohedral atoms/clusters to achieve exotic quantum states of matter such as 

superconductivity.[72]–[74] These changes in the electronic properties could then also be 

used to realize passive optical switches, as demonstrated in Fig. 2.3b. The Z-scan curves 

for Sc3N@C80, Lu3N@C80 and Y3N@C80 (Fig. 2.2b-d) exhibited 2PA with some saturable 
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absorption (i.e., higher transmittance at non-linear intensities) with high Is values 

(numerically fitted using eqn. 2).  The 2PA coefficient β for Sc3N@C80 was found to be 

~5x10-9 cm/W, (for Lu3N@C80 ~6x10-9 cm/W and Y3N@C80 ~7x10-9 cm/W) which are 

higher than that of C60. This increase in β may be attributed to the lower HOMO-LUMO 

gap of Sc3N@C80, ~1.9 eV[68], Lu3N@C80, ~2.05 eV, and Y3N@C80, ~2.04 eV compared 

to that for C60, ~2.48 eV. It should be noted that the HOMO-LUMO gaps were obtained 

from the density functional theory calculations described in Ref. 29. The non-linear 

transmission of TNEFs decreases much more rapidly than for C60 (Fig. 2.3b) closer to the 

behavior of a realistic optical switch (Fig. 2.1). This rapid change in non-linear 

transmission could plausibly be attributed to: i) fast carrier relaxation rates (~ 100 ps 

resulting from the presence of tri metallic nitrides) compared to C60 (1.5 ns),[75] which in 

turn can lead to multiple excitation/de-excitations within the ns pulse width, and ii) the 

charge transfer between photo-excited fullerene cage to Sc3N which rapidly depletes the 

excited state population to promote more electrons from the ground state through photo-

excitations.[76] A very weak saturable absorption component (Is ~1013-1014 W/m2) was 

observed for Sc3N@C80 (Fig. 2.3b). Previously, Chemla et al. proposed that Is in quantum 

wells and dots is mainly determined by a carrier-relaxation time through an inverse 

relation.[77] Although the exact electronic states involved in saturable absorptions cannot 

be identified solely through the Z-scan, the high-magnitude of Is for TNEFs (in particular, 

Sc3N@C80) suggests that a short-lived LUMO excited state is involved in the saturable 

absorption, concurring with the data above. Symmetry breaking has been recently observed 

in the endofullerenes manifesting in the splittings of the three-fold degenerate ground states of 
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the endohedral[78]. The splitting of the ground states could give rise to the stronger absorption 

of photon energy between HOMO-LUMO gap. Interestingly, the optical switching/limiting 

response of TNEFs is highly prominent and exceeds the performance of C60 at 1064 nm 

despite the presence of a saturable absorption component. As shown in Fig. 2.4a, we 

observed that the linear transmittance at 1064 nm of Sc3N@C80 exhibits a rapid decrease 

as a function of concentration while it remains fairly in the same range for C60 and other 

TNEFs. This trend indicates possible intermolecular interactions in Sc3N@C80 that could 

increase the absorption at 1064 nm. In order to account for such concentration dependent 

effects, we also performed Z-scan experiments (Fig. 2.4b) at similar linear transmittance 

(~75 ± 5%) for all samples, in addition to the data at 0.5 mg/ml concentration (cf. Fig. 2.2). 

We found optical limiting in TNEFs ~0.3 - 0.5 J/cm2 at 75% linear transmission while C60 

did not exhibit <50% transmittance concurring with the results described in Fig. 2.2 (i.e., 

at 0.5 mg/ml concentration).  
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Fig. 2.3. (a) UV-Visible absorption spectrum for C60, Sc3N@C80, Lu3N@C80 and 

Y3N@C80. The inset shows a digital photograph of C60, Sc3N@C80, Lu3N and Y3N (from 

left to right) exhibiting different colors due to different HOMO-LUMO gaps. (b) The non-

linear optical response curve obtained (same concentration, 0.5 mg/ml) using the Z-scan 

method (1064 nm, 7 ns) shows a rapid decrease in transmission for Sc3N@C80, Lu3N@C80 

and Y3N@C80 relative to C60 at higher intensities similar to a realistic optical switch (cf. 
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Fig. 2.1). The dashed line indicates 50% transmittance of the incident light. Sc3N@C80, 

Lu3N@C80 and Y3N@C80 reach the 50% transmission (shown by dashed line) around a 

low threshold 0.3~0.5 J/cm2 while C60 does not exhibit optical limiting (i.e., normalized 

transmittance remains >50%) below 1 J/cm2. The arrow in (b) shows saturable absorption 

(normalized transmittance > 100% relative to linear transmittance) for Sc3N@C80. 
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Fig. 2.4. (a) Linear Transmittance (measured with 1064nm, 7 ns laser) vs Concentration. 

Linear Transmittance of Sc3N@C80 appears to drop faster than C60, Lu3N@C80 and 

Y3N@C80. (b) Non-linear optical response curve (same linear transmittance, 75%) 
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2.4 Conclusion 

In summary, the lower HOMO-LUMO gap and intermolecular interactions in 

TNEFs allows strong non-linear absorption of 1064 nm wavelength in the ns regimen. 

Furthermore, the presence of the previously described charge transfer between the fullerene 

cage and trimetallic nitride is expected to increase the non-linear absorption at rates fast 

enough to provide a realistic optical switch response in TNEFs. Our results show that the 

TNEFs are excellent optical limiters with a low limiting threshold ~0.3 J/cm2 at 1064 nm, 

high damage threshold >0.3 mJ, and can function as a realistic passive optical switches 

with a fast increase in absorption with increasing intensity.  
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CHAPTER THREE 

NONLINEAR OPTICAL PROPERTIES OF BORON NITRIDE  

Yongchang Dong, et al. “Conversion of intrinsic 5PA behavior in BN nanoplatelets to 

2PA through photo-induced defects”. Reproduced in part from a submitted manuscript. 

 

3.1 Multiphoton absorption in nanomaterials 

Two–dimensional (2D) materials exhibit unique optical properties that are different 

from their bulk. A testament to this fact is the recent rise of 2D materials in solar cells, 

light-emitting devices, photodetectors, and ultrafast lasers[79]–[82]. An interesting feature 

of light-matter interactions in many 2D materials[83]–[85] (e.g., graphene, transition metal 

dichalcogenides, and phosphorene) is their increased transparency at higher light input 

fluences or the so-called nonlinear saturable absorption (SA)[37], [86]–[88]. The SA 

phenomenon is a direct consequence of dynamical interactions between electrons in 2D 

materials with the incident laser pulses, which allow for resonant or near-resonant 

excitation through single-photon absorption[37], [86]–[88]. In many 2D materials, the 

excited state absorption cross-section was experimentally found to be lower than that of 

the ground state absorption[86], [89]–[92]. Consequently, the absorption saturates at an 

input fluence that is sufficiently high for bleaching the ground state electrons. While this 

phenomenon is well-known in bulk materials (e.g., Cr:YAG), the threshold SA fluence of 

2D materials is significantly higher: a critical requirement for ultrafast laser pulse shaping. 

Many 2D materials (e.g., graphene and MoS2) are now being used as SA in mode locking 

and pulse-shaping in ultrafast lasers[84], [91], [93], [94]. Interestingly, other intriguing 
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nonlinear optical effects such as multi-photon or reverse saturable absorption, often 

exhibited by other nanomaterials (e.g., C60[37], [88], metal-oxide nanoparticles[95]–[97]) 

are rarely observed in the nonlinear optical (NLO) properties of 2D materials.  

The recent realization of single/few-layer h-BN, which is an isostructural cousin to 

graphene with a wide band gap of ~5.5-6 eV[98], has opened new vistas for studying 

multiphoton absorption (MPA) in 2D materials. Previously, Kumbhakar et al.[99] reported 

a strong two photon absorption (2PA) in few-layer h-BN sheets when exposed to 

nanosecond pulses of a Nd:YAG at 1064 nm (corresponding to a single-photon energy of 

~1.16 eV). This effect was attributed to the large transition dipole moment resulting from 

the electronegativity difference between B and N atoms. Furthermore, they reported an 

anomalously large value for 2PA cross-section at 1064 nm: ~52 times larger than the well-

known efficient squaraine-bridged porphyrin dimer[100]. From a theoretical standpoint, h-

BN should exhibit five-photon absorption (or 5PA) when excited with 1064 nm excitation 

via the simultaneous absorption of five photons corresponding to an energy ~5.80 eV. 

Given that the band gap of h-BN is ~5.5-6 eV, the conclusions drawn by Kumbhakar et 

al.[99] are peculiar because the energy of two photons from a 1064 nm Nd:YAG laser 

(two-photon energy ~2.32 eV) is insufficient to excite electrons across the band gap. Thus, 

a fundamental understanding of the nonlinear light-matter interactions in h-BN is still 

lacking.  

Materials exhibiting a 5PA process (either at the bulk or nanoscale) have rarely 

been investigated in the literature due to the extremely low transition probability associated 

with a 5PA process[101]–[103]. Often, the necessary fluence for eliciting 5PA using 
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nanosecond pulses is well beyond the output of conventional lasers. In this study, we show 

that pristine h-BN nanoplatelets (BNNPs) inherently exhibit a high transition probability 

for 5PA when excited with 7 ns pulses of 1064 nm. Thus, BNNPs provide a unique platform 

for studying exquisite higher-order nonlinearties such as 5PA at low laser fluences (~0.2 

J/cm2) accessible through a ns pulsed Nd:YAG laser. Moreover, it is well known that MPA 

at higher fluence can either initiate photo-polymerization at the microscopic scale[104] or 

induce defects in the material under study via multiphoton ionization[105]. In case of 

BNNPs, we observed that a suspension of BNNPs in isopropyl alcohol (IPA) photo-

transforms into doped BNNPs with altered configurations of N atoms when excited by a 

1064 nm laser at high fluence. While BNNPs inherently exhibited 5PA at low laser fluence 

(< 0.6 J/cm2), they instantaneous photo-transformation at high laser fluence and lead to 

2PA. We used finite-element methods (COMSOL Multiphysics) to uncover that the high 

laser fluence raises the temperature of BNNPs to ~960 °C, which consequently promotes 

doping at the edge sites of BNNPs. In a separate experiment, we prepared O/C doped 

BNNPs via an alternate route, such as the high-energy ball-milling process, to confirm the 

influence of laser-induced transformation of the NLO properties in BNNPs, viz., the 

switching from 5PA to 2PA. Moreover, a clear evidence for the laser-induced doping which 

promotes the formation of B-O and C-N bonds was elicited through X-ray photoelectron 

spectroscopy of photo-transformed BNNPs. Lastly, the O/C induced electronic states 

obtained from our density-functional theory (DFT) calculations, provide a rationale 

explanation for the experimentally observed switching in the NLO properties of BNNPs at 

high laser fluences.  
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3.2 Characterization of boron nitride 

Dispersion of BNNPs: The BNNPs (~1 mg/ml) were dispersed in IPA using a 

aqueous bath sonicator (Branson Aquasonic) for 5 minutes. Such dispersions were found 

to be stable for more than an hour, which enabled collection of reliable Z-scans for 

evaluating the NLO properties of BNNPs. 

Sample preparation of ball milled BNNPs: Hexagonal boron nitride powder (1 μm, 

98%) was purchased from Sigma Aldrich. For preparing doped BNNPs, BNNPs were ball 

milled with graphite (9:1 weight ratio) by a high-energy ball mill machine (MSK-SFM-3, 

MTI Corp.) for 2 hours.  

Characterization: Raman spectroscopy was performed using a Renishaw in Via 

Raman Microscope equipped with a diode pumped laser source of 532 nm (CrystalLaser, 

Inc). High resolution X-ray diffraction (HR-XRD) was performed using a RIGAKU Ultima 

a standard Al sample holder. Quantitative analysis using Rietveld refinement was 

performed on the XRD peaks using PDXL software. TEM images were obtained using a 

Hitachi H-9500. X-ray photoelectron spectroscopy (XPS) studies were performed using a 

Kratos Axis Ultra DLD instrument, and the spectra were calibrated by the C1s line present 

at 284.6 eV.   

Z-scan technique: For our Z-scan setup (see Fig. 3.1), a linearly polarized 7 ns 

optical pulsed beam from a Q-switched frequency-doubled Nd:YAG laser (a LabVIEW 

program synchronized the single-shot laser pulses with the moving stage and the resulting 
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repetition rate was ~1 Hz) at 1064nm, was focused by a converging lens (focal length of 

~20 cm) to form an optical field of gradually changing laser intensity. The BNNP 

dispersions were found to have ~80% linear transmittance (0.8 mg/ml) at 1064 nm. The 

BNNPs/IPA dispersions were held in the 1 mm thick quartz cuvettes (100-QS Hellma® 

Analytics) and translated across the focal plane in the beam direction (z-direction). With 

the sample dispersions experiencing different optical intensities at each z position, the 

corresponding transmittance was recorded by a calibrated photodetector (RjP-7620, 

Laserprobe, Inc) placed on the sample translation axis (see Fig. 3.1). A photodetector was 

placed off-axis for obtaining nonlinear scattering data. A detailed description of the Z-scan 

technique can be found elsewhere[33], [37], [88], [106]–[110]. 

In our experiments, the open aperture Z-scan MPA coefficients were calculated 

from spectra under the assumption that only one type of MPA dominates at any given time. 

The optical intensity I can be described as[98] 

 𝑑𝐼

𝑑𝑧′
= −𝛼𝑁𝐼𝑁−1, (3.1) 

where z’ is propagation distance of light within the sample and αN is the N-photon 

absorption coefficient. For example, α2 represents the 2PA coefficient while α5 denotes 

5PA.  



 44 

 
Figure. 3.1. As shown in the schematic of the experimental Z-scan setup, a sample is moved 

through the focal region (z = 0 mm being the focal point) of the incident laser beam focused 

by a converging lens.  A reference photodetector (Detector A) is used for monitoring the 

fluctuations in the incident intensity. The changes in nonlinear transmission are recorded 

by an on-axis detector B while an off-axis detector C is used for measuring the nonlinear 

scattering.  
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Figure. 3.2. a) XRD pattern of BNNPs held on an Al sample holder. b) Raman spectrum 

of pristine BNNPs using the 532 nm laser excitation. HRTEM images of BNNPs c) side 

view and d) top view. The inset of d) is the selected area electron diffraction of the BNNP. 

 

 

3.3 Multiphoton absorption process in boron nitride 

BNNPs (Sigma Aldrich) were characterized by X-ray diffraction (XRD), Raman 

spectroscopy, high-resolution transmission electron microscopy (HRTEM) and X-ray 

photoelectron spectroscopy (XPS). The four XRD peaks at ∼26°, ∼42°, ∼50° and ∼55° 

(Fig. 3.2) are due to diffraction from the (002), (100), (102) and (004) planes, and the 
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additional diffraction peaks at ~38° and ~44° stem from the Al sample holder. A lattice 

constant of 3.29 Å was deduced from the pattern in Fig. 3.2a for BNNPs, and its Raman 

spectrum (Fig. 3.2b) showed the characteristic E2g band at 1366 cm-1 (FWHM = 11 cm-1). 

The dynamic light scattering (DLS) measurements (Nanosizer S90, Malvern Instruments) 

revealed a lateral size of BNNPs as 745 ± 92 nm. HRTEM images of the BNNPs are shown 

in the Figs. 3.2c and d. We found that BNNPs were an average of ~20-25 layers in thickness 

which exhibited a hexagonal electron diffraction pattern indicating high crystallinity.  
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Figure 3.3. a) UV-Vis spectrum of BNNP dispersion in IPA. b) The linear transmittance of 

BNNP in IPA in different concentration measured at1064 nm. 
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We used the open aperture Z-scan method (see experimental section and Fig. 3.1 

for a detailed description) for investigating the NLO properties of BNNPs (suspended in 

IPA) under varying 1064 nm (1.16 eV) laser fluences. The UV-Vis spectrum of BNNP is 

shown in Fig. 3.3. Fig. 3.4a shows a typical normalized transmission (T/T0, where T and T0 

are the nonlinear and linear transmittance values) curve for BNNPs when excited with a 

laser energy of ~220 J (corresponding to a fluence of ~0.4 J/cm2 at the focal point), which 

could be best fit to a 5PA process (solid trace in Fig. 3.4a). See Fig. 3.5 for the fitting 

accuracy. This observation suggests that the electrons at the valence band maximum in 

BNNPs (band gap of 5.5-6 eV[111]) can be excited to the conduction band through 5PA at 

input energies ~220 J. It should be mentioned that the possibility of nonlinear light 

scattering (NLS) leading to the response in Fig. 3.4a was ruled out by measuring the off-

axis scattered light intensities (see Supplementary Information Fig. 3.6). Interestingly, 

when the laser fluence was increased to ~350 J (corresponding to a fluence of ~0.6 J/cm2 

at the focal point), an abrupt change in the lineshape of BNNPs’ normalized transmittance 

past the focal point (Z= 0 mm) became evident (Fig. 3.4b). The pre-focus Z-scan data for 

350 J in Fig. 3.4b, obtained as the sample approached the focal point (see blue arrow in 

Fig. 3.1), was best fitted to 5PA. However, the past-focus data (receding from the focal 

point, green arrow in Fig. 3.1) showed the presence of two-photon absorption or 2PA.  

  



 49 

 

 

 
 

Figure 3.4. a) A dispersion of pristine BNNPs in IPA exhibits a 5PA response in a Z-scan 

curve collected with a laser fluence of 220 J. b) Upon increasing the laser fluence to 350 

J, a 5PA response is observed, signaling an onset of photo-induced doping of BNNPs 

with carbon from the IPA. The coefficients for 2PA and 5PA found from the numerical fits 
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were 12 cm GW −1 and 2500 cm7 GW−4, respectively.  A schematic inset showing the O/C 

dopant levels introduced into the wide band gap of h-BN. The presence of such levels at 

~2-2.5 eV enable 2PA in the photo-transformed BNNPs. 
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Figure 3.5. a) The 2PA, 3PA, 4PA and 5PA fitting of BNNP at 220 J experimental data. 

b) The reduced chi square value for each fitting in a), and suggests that the 5PA gives the 

best fit to the data.  
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Figure 3.6. The Z scan transmission and scattering curves for a suspension a) BNNPs at 

220 J & b) ball-milled BNNPs (BNNP BM) at 100 J. No scattering was observed in 

these cases. Our instrument was calibrated and tested using other nanomaterials, such as c) 

single-walled nanotubes (SWCNTs) and d) C60, which are well-known for their nonlinear 

transmission properties[112]–[114]. 
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Figure 3.7. As discussed in Fig. 3.4b, BNNPs suspension exhibited 5PA as it was translated 

from z=-30 to 0 mm while an abrupt change to 2PA was observed upon passing the focal 

point (from z=0 to +30 mm) at an input fluence ~350 J. The BNNPs in the beam path 

a) 

b) 



 54 

were photo-transformed through O/C doping at the focal point (z=0 mm). The same 

suspension was scanned in the reverse direction (z=+30 to 0 mm) and a 2PA was observed 

until the focal point. a) After the sample passed just beyond the focal point (z=-5 mm), the 

suspension was gently stirred (see red arrow) displacing the photo-transformed BNNPs 

away from the beam path. Subsequent Z-scan (z=-5 to -30 mm) showed that the intrinsic 

5PA was recovered (data indicated by the red circles labeled as BNNP recover) confirming 

the effects of laser-induced doping. Panel b) shows the plot of normalized transmission as 

a function of input fluence, which was calculated from Fig. 3.5a using equation (1) 

described in the text.  

 

In reality, BNNPs support 5PA as long as the input fluence is below the threshold 

value 0.6 ± 0.012 J/cm2 - an inherent property of BNNPs which was overlooked in the 

study reported by Kumbhakar et al. Given that the laser beam radius at the focal point was 

~100 m, only a small amount of BNNPs within the beam path is expected be photo-

transformed. To confirm this, we repeated the Z-scan on the same BNNPs dispersion after 

gently stirring it. As expected, the inherent 5PA response of BNNPs was recovered (Fig. 

3.7) implying that photo-transformed BNNPs were no longer present in the beam path. 

Furthermore, we also ruled out NLS effects arising from micro-bubbles at high laser 

fluence by using an off-axis detector (see Fig.s 3.1 and 3.3). Based on the data presented 

in Fig. 3.4, we conclude that the much higher laser fluence used in the previous study by 

Kumbhakar et al[99] (3.9 J/cm2, 1064 nm) precluded the authors from uncovering the 

inherent 5PA in h-BN.  
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3.4 Influence of dopants on NLO properties of boron nitride 

We hypothesize that the high laser fluence promotes heteroatomic doping of 

oxygen/carbon (from IPA) into BNNPs, possibly at the edge sites due to its low formation 

energy[115], [116]. The presence of O/C dopants in BN lattice is known to introduce new 

electronic states within the band gap[117]–[121], which could explain the observation of  

2PA at high laser flunces[122]. Indeed, recent spectroscopic studies (cathodo- and photo-

luminescence, UV absorption, and scanning tunneling spectroscopy) on defected/doped h-

BN crystals and nanostructures found clear spectral features at lower energies (~2-4 eV) in 

addition to the band gap ~5.75 eV due to the presence of dopant-induced electronic 

states[121], [123]. Similarly, our theoretical studies using density functional theory (see 

Fig. 3.8) along with earlier investigations employing local density approximation and GW 

approximation confirmed the presence mid-gap states for C/O dopants at ~1-4 eV. Based 

on our Z-scan results and existing spectroscopic studies[42], [58], [85], [88], we posit that 

the ground state electrons in doped BNNPs when excited with 1064 nm (or ~1.16 eV) 

photons are promoted to the C/O-dopant induced states present ~2-2.5 eV through a 2PA 

process (inset panel in Fig. 3.4b).  
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Figure 3.8. Building on previous research[124], we too conducted the first-principles 

calculations using Density Functional Theory (DFT), which included the van der Waals 

interaction in DFT-D2 approach under Generalized Gradient Approximation (GGA), to 

examine the electrical properties of pristine and carbon-doped h-BN. The density of states 

for the carbon doped h-BN showed the presence of new mid-gap states, which are 

responsible for the change in the non-linear optical properties from 5PA to 2PA. These 

mid-gap states have also been observed earlier from other DFT studies. Given that the 

energy cost for doping C into BN lattice is very high, O/C atoms are expected to bind at 

the edges of BN. The density of states of a) pure BNNP and b) carbon doped BNNP. The 

inset figures in a) and b) show the lattice of BNNP wherein the blue and purple colored 

atoms represent the boron and nitride atoms, respectively. The yellow colored atom in the 

BNNP (Panel b) represents an impurity atom, viz., a carbon atom. The inset schematics 

represent the 5PA and 2PA processes in pure and carbon-doped BNNPs, and orange 

colored energy level represents the mid-gap states induced by the carbon dopants. 
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Figure 3.9.  Finite element simulations of a BNNP (100× 100×10 nm3) in IPA liquid 

suspension after being exposed to a laser fluence of ~0.6 J/cm2 for 7 ns.  

 

 

We used finite-element method (COMSOL Multiphysics) with a heat transfer 

module to simulate the conditions at high laser fluence that could result in doping of O/C 

into BNNPs. The BNNPs were modeled as platelets with average dimensions 100× 100

×10 nm3 (as gleaned from TEM images such as the one presented in Fig. 3.2c) and the 

laser fluence was matched to threshold values for eliciting a 2PA response, i.e., ~7 ns pulse 

with energy density of ~0.6 J/cm2 (cf. Fig. 3.4b). The temperature distribution of the BNNP 

Laser beam  
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platelets after exposure to a single laser pulse is shown in Fig. 3.9. Our COMSOL 

simulation revealed that the laser rapidly (~7 ns) heats the surface of the BNNP and 

increases its temperature to 950-966 °C. The top surface edges of the BNNP were raised 

to a higher temperature relative those on the bottom layer because the heat diffusion rate is 

much faster in the lateral (6 W cm-1 °C-1) than in the vertical (0.3 W cm-1 °C-1) direction 

for h-BN[125]. The laser-induced increase in the temperature at the edges of BNNP 

platelets is much higher than the decomposition temperature of IPA (~400 °C), which 

possibly leads to IPA carbonization and a subsequent doping of BNNPs with carbon at its 

edge sites.  
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Figure 3.10. a) and b) show the XPS spectra of pristine and ball milled BNNPs. A new 

peak is observed ~193 eV in the B 1s spectrum, which is indicative of B-O bonds or the 

incorporation O atoms into BN lattice. The N 1s spectrum was found to broaden and 

downshift by ~0.2 eV possibly due to C doping. c) Z-scan curves for BNNP BM dispersion 

in IPA, which exhibits a 2PA response (red circles). The mixture of BNNPs and graphite 

powder, prior to ball milling, exhibited a 5PA response as expected (blue circles).  
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Figure 3.11. a) Ball milling of BNNPs with graphite for 2 hours was found to broaden the 

featured peaks in addition to slightly shifting to a lower angle, when compared to 

corresponding features of pristine BNNPs. This indicates that the doping of carbon in the 

h-BN lattice creates stress in the lattice as well as decreases of the particles size. b) The 

Raman spectra of BNNPs and graphite powder mixture before and after ball milling. After 

ball milling, the 1366 cm-1 band in BN was suppressed suggesting a change in the crystal 

structure. As described in Figs. 3.10a and b, our XPS data showed clear evidence for O/C 

dopants that may have altered the crystal symmetry.  
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While conventional XPS is an excellent tool for confirming the presence of dopants 

in BNNPs, it is plagued by the presence of O/C peak of the IPA solvent used in this study. 

Moreover, only a small amount of BNNPs that are present within the beam path are photo-

transformed. Thus, to confirm our hypothesis that BNNPs switch their NLO properties 

from 5PA to 2PA due to laser-induced doping of it edges with O/C, we intentionally doped 

BNNPs with O/C by ball milling a mixture of BNNPs and graphite powder. To this end, 

we mixed BNNPs and graphite in 9:1 weight ratio, which we refer to as “BNNP MIX”. 

The Z-scan curves for BNNP MIX sample (discussed later in Fig. 3.10c), prior to ball 

milling, showed a clear 5PA signal intrinsic to BNNPs at a low laser fluence 100 J (~0.2 

J/cm2 at the focus). Next, the BNNP MIX sample was ball milled for 2 hours for doping 

O/C into the BN lattice. An extensive characterization toolset including XRD, Raman 

spectroscopy (Fig. 3.11) and XPS (Fig. 3.10) confirmed doping of both O and C atoms (~1-

2 at. % as evinced from XPS in Figs. 3.10a and b) in ball milled BNNPs[118], [120], [126], 

which we henceforth refer to as BNNP BM sample. As shown in Figs. 3.10a and b, the B 

1s and N 1s spectra from pristine and doped BNNPs show primary binding energies of 

190.7 and 398.3 eV, respectively. We observed an extra peak ~192.8 eV in the B 1s 

spectrum (Fig. 3.10a), which is known to arise from B–O bonds, confirming O-doping in 

BNNP BM samples. Furthermore, we also found that the N 1s spectrum was slightly 

downshifted from ~398.3 to 398.1 eV, which was previously attributed to C-doping. [118], 

[126] As shown in Fig. 3.10c, we observed a 2PA response in the Z-scan curve for BNNP 

BM sample in IPA even at a low laser energy of 100 J (~0.2 J/cm2 at the focus) while 
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BNNP MIX samples (prior to ball milling) exhibited the intrinsic 5PA response. The values 

of 2PA coefficients for BNNP BM and photo-transformed BNNPs in IPA were found to 

be very similar (Table 3.1). This implies that the mid-gap states supporting a 2PA response 

in BNNP BM and photo-transformed BNNPs are similar viz., O/C dopant-induced 

electronic states present ~2-2.5 eV within the band gap of BN (cf. inset of Fig. 3.4b).  

 

Table 3.1. The values of 2PA and 5PA coefficients for all the samples in this study.  

 

sample Laser Intensity 2PA 5PA 

BNNPs 350 J 12 cm GW−1 2500 cm7 GW−4 

BNNPs BM 100 J 8 cm GW−1 N/A 

 

 

3.5 Conclusion 

In summary, we report the discovery of a rarely observed nonlinear phenomenon, 

i.e., five-photon absorption (5PA) in a 2D material, such as few-layer h-BN nanoplatelets 

(BNNPs). Importantly, through a systematic study we show that the nonlinear optical 

response of BNNPs dispersed in isopropyl alcohol (IPA) switches from a 5PA to a 2PA 

response when the laser fluence exceeds 0.6 J/cm2 (at the focus or z=0) due to photoinduced 

O/C doping (from IPA) of BNNPs. Previous studies on the nonlinear optical properties of 

BNNPs (Kumbhakar et al. [99]) used very high laser fluence (~3.9 J/cm2) and thus failed 

to uncover the inherent 5PA phenomenon in BNNPs. Our finite-element calculations using 
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COMSOL Multiphysics showed a rapid increase in the temperature of edge sites in BNNPs 

(> 960 oC) suitable for carbonizing IPA and doping of O/C atoms at edge sites in BNNPs. 

We associate the observation of a 2PA response at a high laser fluence in BNNPs with to 

the NLO properties of O/C doped BNNPs. This correlation was independently confirmed 

from Z-scan spectra of BNNPs doped with O/C atoms via ball milling with graphite. While 

XPS presented clear evidence of B-O and C-N bonds in the ball milled BNNPs, Z-scan 

spectra at low laser fluence showed a 2PA response, akin to the Z-scan spectra of photo-

transformed BNNPs. Lastly, the 2PA coefficients in ball milled BNNPs and photo-

transformed BNNPs were found to be similar, further confirming our hypothesis.  
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CHAPTER FOUR 

NONLINEAR OPTICAL PROPERTIES OF MXENEs 

 

Yongchang Dong, et al. “Saturable absorption in 2D Ti3C2 MXene thin films for passive 

photonic diodes”. Advanced Materials (2018) 30, 1705714. Reproduced in part with 

permission of Wiley. 

 

4.1 Saturable absorption in 2D materials 

The unique light-matter interactions in two-dimensional (2D) materials are ideal for a wide 

range of applications in photonics, photovoltaics, and flexible electronics[127]–[129]. In 

the nonlinear regime, many 2D materials are known to exhibit increased transmittance with 

increasing light intensities through saturable absorption (SA)[130]–[142]. When the 

ground state absorption coefficient of a material is higher than that of its excited states, 

bleaching of the ground state electron population occurs at high light intensities and pump 

rates, leading to SA behavior. This could be understood in terms of a fluence-dependent 

absorption coefficient for a SA material (SAM) as  (eqn 1.20), where α0 is 

the linear absorption coefficient, I represents the incident fluence, and Is is the saturation 

fluence. Is is defined as the incident fluence at which the absorption coefficient is half of 

the linear absorption coefficient (α0/2). The maximum change in absorption of a SAM for 

a given wavelength determines the modulation depth (T). SA behavior in materials can 

be beneficial for photonic applications such as passive mode locking, Q-switching of lasers 

a(I ) =
a0

1+ I
Is( )
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for the generation of short optical pulses, nonlinear filtering for pulse shaping, optical 

isolation, and optical signal processing[8], [127], [132], [135]. For example, a SAM placed 

in a laser cavity attenuates low-intensity leading and trailing parts of a pulse more 

effectively than the high-intensity pulse center due to increased transmittance (determined 

by the modulation depth) at higher light intensities. To produce lasers with short pulse-

width (up to fs) and high repetition-rate (many pulses per second), a SAM that becomes 

easily and quickly saturated (i.e., low saturation fluence and fast recovery time) with a 

large modulation depth and a high damage threshold is imperative. Although 

semiconductor-based SAMs are widely available, they are plagued with many challenges 

such as low damage thresholds, slow recovery, and limited lifetime[143]–[146].  

Alternatively, 2D materials such as graphene and transition metal dichalcogenides 

(e.g., MoS2) that exhibit saturable absorption (SA) with an increased modulation depth up 

to ~ 20% and a fast recovery time of ~100 fs have been shown to outperform bulk SAMs 

for ultrafast pulse generation[84], [130]–[142], [147], [148]. Nonetheless, many challenges 

in 2D SAMs still exist, such as the need for a high modulation depth, low non-saturable 

loss, and high threshold for optical damage. Recently, Jhon et al. demonstrated that 2D 

titanium carbonitride MXene (Ti3CNTx) could be utilized as a material for femtosecond 

mode locking applications[149]. MXenes are 2D transition metal carbides and nitrides with 

the chemical formula Mn+1XnTx (n = 1-3), where M is an early transition metal, X is carbon 

and/or nitrogen, and Tx represents surface termination groups such as =O, –OH, –F, 

etc.[150]–[152]  Although Jhon et al. found that drop-casted Ti3CNTx films exhibited a 

relatively low modulation depth ~1.7%, the work shows the potential of MXenes in 
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photonic applications as SAMs[149]. In this regard, a fundamental understanding of the 

SA behavior in MXenes in dependence on thickness and film quality is necessary to 

engineer better SAMs for pulse shaping and mode locking applications.  

In this Chapter, we experimentally show that Ti3C2Tx MXene thin films, prepared 

using a new solution-processing technique, are excellent SAMs with high modulation 

depth of up to ~50% and high threshold ~70 mJ/cm2 for optical damage. Ti3C2Tx is the first 

MXene and the most studied which is synthesized by selective etching of Al from sputter-

deposited epitaxial Ti3AlC2 MAX phase films. [153] The ability to intercalate and 

delaminate MXenes into a colloidal state has opened the door to fabricating MXene films 

via common solution processing techniques[154]. Recently, MXene films have been 

fabricated for various applications using spin/drop-casting[155], spray coating[156], and 

rolling[157]–[159]. However, the variability in the film uniformity and thickness prohibits 

a systematic study of SA behavior in MXenes. To overcome this challenge and produce 

very thin and uniform films, we implemented a simple and efficient interfacial film 

technique between two immiscible liquids (viz., water and toluene), previously used for 

other nanomaterials [160]–[163], to prepare thin Ti3C2Tx MXene films (thickness h in the 

range of ~5 - 100 nm). Our nonlinear optical studies using the Z-scan method suggest that 

the SA behavior at 1064 nm in Ti3C2Tx films arises from plasmon-induced increase in the 

ground state absorption. More importantly, the nonlinear optical absorption and the 

saturation fluence of Ti3C2Tx films were found to vary with film thickness. This implies 

that nonlinear optical properties of Ti3C2Tx films can be controllably tuned by varying their 

thickness to enable applications in Q-switching and mode locking. Lastly, we fabricated a 
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passive photonic diode by stacking Ti3C2Tx MXenes with C60 (a reverse saturable absorber) 

in tandem to achieve nonreciprocal transmission of light, which is useful for optical isolator 

applications in fiber-based femtosecond lasers. We achieved a non-reciprocity factor as 

high as ~4 dB using Ti3C2Tx MXenes/C60 bilayer structure for optical isolation without any 

phase-matching constraints or magnetic fields used in conventional optical isolators such 

as Faraday rotators.  

4.2 Characterizations of MXene thin films 

General characterization methods: The transmission spectra were measured from 200-

1000 nm (UV-vis spectrometer QE Pro, Ocean Optics) using a bare cover glass as a 

baseline. X-ray diffraction patterns of film and MXene powder were measured by a powder 

diffractometer (PANalytical, Phillips MPD) with Cu K<α> radiation (λ = 1.5425 Å, U = 45 

kV, I = 40 mA). The morphology of the prepared MXene films was characterized using 

scanning electron microscope (SEM, HELIOS NANO LAB 600). AFM measurements 

were performed in a non-contact mode using AIST-NT SPM Smart system and cantilevers 

(HQ: NSC14/Al BS-50) from Micromasch. AIST-NT image analysis and processing 

(Version 3.2.14) software was used for AFM images analysis. 

Synthesis of Ti3C2Tx MXene 

Ti3C2Tx was synthesized by selective etching of aluminum atomic layers in Ti3AlC2 by 

MILD etching method described previously.[159], [164], [165] To synthesize MILD 

Ti3C2Tx, 1 g of lithium fluoride (LiF) was added to 20 mL of 6M hydrochloric acid (HCl) 

while stirring with a Teflon magnetic stir bar. Over the course of a few minutes, 1 g of 

Ti3AlC2 MAX phase was added to the LiF/HCl mixture and the reaction proceeded for 24 
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hours at 35 °C. After etching, the mixture was repeatedly washed with deionized water by 

centrifugation at 3500 rpm for 3 minutes and decanting of the acidic supernatant until a 

supernatant was obtained with a pH ~6. The supernatant was decanted, deionized water 

was added to the sediment, and the mixture was subjected to manual shaking for 5 minutes 

to delaminate the Ti3C2Tx flakes. The solution was centrifuged for 1 hour at 3500 rpm and 

the supernatant was used for fabrication of Ti3C2Tx films by the interfacial thin film 

technique. 

Fabrication of MXene films by the interfacial thin film technique 

About 50 mL of DI water was poured into a 100 mL glass beaker with a Teflon coated 

magnetic stir bar (Fig. 4.1). While vigorously stirring the DI water, a predetermined volume 

of Ti3C2Tx aqueous colloid in the range 0.05, 0.1, 0.2, and 0.3 mL, was added into the glass 

vial for preparing thin films of different thicknesses. Under continued stirring, 4-6 mL of 

toluene was added into the vial and stirred vigorously for 20 minutes (Fig. 4.1a). Clean 

cover glass and silicon substrates (sonicated in acetone at room temperature for 40 minutes 

and dried) were hydrophilized by immersing into freshly prepared Piranha solution (3 parts 

of H2SO4 96% + 1 part of H2O2 30%) for 12 hours. After that, the substrates were rinsed 

with DI water, attached to a glass rod handle, and placed near the bottom of another 600 

mL glass beaker filled with 400 mL water. The stirred Ti3C2Tx MXene-toluene-water 

dispersion was quickly poured into the 600 mL glass beaker with the substrate attached to 

a glass rod and immersed in DI water. The beaker was left still for 20 minutes to allow 

layering out of the emulsion and the formation of the interfacial film (Fig. 4.1b). After the 

formation of Ti3C2Tx thin film at the interface between water and toluene, the substrate was 
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slowly lifted toward the top of the beaker while keeping its surface oriented parallel to the 

interface. The MXene film coated the glass when it passed through the water-organic 

solvent interface. The coated substrate (with Ti3C2Tx film on both sides, Fig. 4.1c) was 

detached from the glass rod and dried at ambient conditions in air for 12 hours. In the final 

step, the back side of the substrate was carefully rubbed with alcohol wetted paper to 

remove Ti3C2Tx film so that only one side of the substrate remains coated (Fig. 4.1d). 

Z-scan measurements and simulations: In our Z-scan setup (see Fig. 4.5a), a linearly 

polarized beam (7 ns, 1064 nm) from a Q-switched frequency-doubled Nd:YAG laser was 

focused by a converging lens (focal length of ~20 cm) to form an optical field of gradually 

changing laser intensity. The glass supported Ti3C2Tx films were translated across the focal 

plane in the beam direction (z-direction) by placing them on a moving stage (PI 

instruments). A LabVIEW program synchronized the single-shot laser pulses with the 

moving stage and the resulting repetition rate was ~1 Hz. With the sample experiencing 

different optical intensities at each z position, the corresponding transmittance was 

recorded by a calibrated photodetector (RjP-7620, Laserprobe, Inc) placed on the sample 

translation axis. A more detailed description of our Z-scan technique can be found 

elsewhere[37], [59], [142], [166]. As described in the article, the space-time slicing model 

was performed by iteratively solving light propagation equations in MATLAB using 

Runge-Kutta method. All the parameters for the model including linear transmittance, 

pulse energy, pulse width, Is, and  were extracted from experimental datasets.  
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Figure 4.1. a-c) Procedure for preparing Ti3C2Tx thin films with varying thicknesses (~ 5 – 

67 nm) on glass and Si substrates via the interfacial film formation technique. d) The optical 

photograph shows transparent Ti3C2Tx film (right side) uniformly covering a large area of 

1 x 1 cm2 glass substrates. Bare uncoated glass slide is shown on the left for comparison. 
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Figure 4.2. a) The average thicknesses and surface roughness of Ti3C2Tx thin films were 

determined using atomic force microscopy (AFM). The white line represents the direction 

of the line scan, and the corresponding film thickness is shown in the panel below the AFM 

image. b) The UV-Vis spectra of the Ti3C2Tx films with different thicknesses. Sample 

names are same as in Table 4.1. 

 

Table 4.1. Parameters of Ti3C2Tx thin films 

 

Sample 

name 

Thickness 

h, (nm) 

Saturation fluence 

Is, (W/cm2) 

Surface roughness, 

(nm) 

Transmittance at 

1000 nm (%) 

Ti3C2Tx -1 5 5.00E+9 3.6 93 

Ti3C2Tx -2 16 2.80E+9 4.2 89 

Ti3C2Tx -3 38 1.10E+9 8.7 77 

Ti3C2Tx -4 67 3.00E+8 11.8 69 
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Figure 4.3. Low magnification scanning electron microscopy (SEM) image of the 

Ti3C2Tx−2 film shows smooth and uniform coverage of a large (~1 cm x 1 cm) area of the 

substrate (a). It also reveals micron-wide cracks in the film with the underlying Si wafer 

visible in the background. These large cracks were formed during film transfer from the 

liquid-liquid interface onto a solid support. Higher magnification SEM (b) shows thin 

individual semitransparent Ti3C2Tx flakes of 1-2 micrometer lateral dimensions laying all 

in horizontal orientation, and touching or overlapping one another.  

 
 

Figure 4.4. XRD pattern of Ti3C2Tx−2 film on cover glass shows the loss of registry in all 

directions except parallel to the glass surface. In contrast to multilayer Ti3C2Tx there are 

no peaks in the 30 – 65 degrees range of 2θ. The disappearance of these peaks is indicative 
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of fully exfoliated Ti3C2Tx flakes laying horizontally without any extended stacking in the 

vertical direction, i.e., forming a very thin film. The (002) peaks at 6.0° gives average 

separation distances of dhkl = 1.48 nm for the deposited film. 

 

4.3 Saturable absorption in MXene thin films and optical diode action 

        Ti3C2Tx thin films were prepared on glass and Si substrates with varying thicknesses 

(h ~ 5 – 100 nm) using the interfacial film formation technique (Fig. 4.1). The films were 

characterized using scanning electron microscopy (SEM), atomic force microscopy 

(AFM), X-ray diffraction (XRD), and ultraviolet-visible (UV-vis) transmittance to 

evaluate their uniformity, thickness, composition, and linear optical absorbance, 

respectively (Fig. 4.2). As shown in Fig. 4.1d and SEM images (see Supporting 

Information, Fig. 4.3), the interfacial Ti3C2Tx MXene films smoothly and uniformly 

covered large (~1 x 1 cm2) area substrates. High magnification SEM (Fig. 4.3) showed thin 

individual transparent Ti3C2Tx flakes of 1-2 m lateral dimensions overlapping one another 

without any extended stacking in the vertical directions, which was also confirmed using 

XRD (see Fig. 4.4) and AFM (Fig. 4.2a). The average thicknesses and surface roughness 

of Ti3C2Tx thin films were deduced from multiple AFM line scans (Fig. 4.2a and Table 

4.1), which showed that the surface roughness of the Ti3C2Tx thin films increased with 

increasing film thickness.  

The linear optical transmittance of the Ti3C2Tx films correlates well with their 

thicknesses (Fig. 4.2b, Table 4.1), and the transmittance at 1000 nm (relevant for nonlinear 

optical excitation ~1064 nm) is listed in Table 4.1. The Ti3C2Tx films displayed a broad 
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valley in their optical transmission spectra ~780-800 nm. This is attributed to surface 

plasmon resonance in Ti3C2Tx centered at 780 nm and was previously used for surface 

enhanced Raman spectroscopy with Ti3C2Tx MXene substrates.[167] Previously, Dillon et 

al. measured the real and imaginary components of the dielectric constants, given 

by ε1 and ε2, for Ti3C2Tx films using ellipsometry[168]. The imaginary component ε2, was 

found to exhibit a peak ~ 800 nm, which concurs with the observed valley in the 

transmission spectra shown in Fig. 4.2b. Furthermore, Dillon et al. found a crossover from 

positive to negative values for ε1 at wavelengths greater than 1130 nm, indicating the onset 

of free carrier oscillations at low photon energies (<1 eV) [168]. The crossover point for ε1 

was observed to be dependent upon film thickness with ε1 in thinner films attaining 

negative values at longer wavelengths. This suggests that the nonlinear optical properties 

may also exhibit thickness dependence similar to linear transmission (Fig. 4.2b). 

Mauchamp et al. observed that Ti3C2Tx films exhibit two surface plasmon peaks with an 

intense sharp peak ~0.3 eV (~4100 nm) and a broader shoulder ~1.2 eV (~1030 nm) using 

electron energy-loss spectroscopy[169]. In this work, we hypothesize that the SA behavior 

in Ti3C2Tx MXene films arises from plasmon-induced increase in the ground state 

absorption at 1064 nm.  

    It is well known that surface plasmon resonances in noble metal nanoparticles 

such as Au and Ag strongly enhance light-matter interactions. In these materials, a strong 

plasmon-induced increase in the local electric field is known to enhance SA by increasing 

the absorption cross section of the ground state[170]–[173]. However, the observation of 

SA is often precluded due to a concomitant increase in free carrier oscillations and 
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excited state absorption in Au and Ag nanoparticles. The observation of SA behavior in 

metal nanoparticles necessitates careful tuning of size below 2 nm[174]. On the other 

hand, Ti3C2Tx thin films exhibit increased ground state absorption at ~1064 nm (1.16 eV) 

due to the plasmon resonance, while free carrier oscillations (as evidenced from ε1 

crossover point[168]) occur at longer wavelengths or lower energies ~1130 nm (<1.1 

eV). Thus, unlike noble metal nanoparticles, SA behavior arising from plasmon-induced 

increase in ground state absorption is visible in Ti3C2Tx films with different thicknesses, 

as described below.  

  



 80 

 

 

Figure 4.5. a) The Ti3C2Tx thin films experience varying laser intensities when translated 

across the focal plane as illustrated by a COMSOL simulation of the field intensity. b) The 

position-dependent changes in the non-linear transmittance or the modulation depth (T) 

of the Ti3C2Tx films as measured by the Z-scan method. c) Nonlinear transmission of 

Ti3C2Tx films plotted as a function of intensity at each sample position. 
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The open aperture Z-scan method was used to characterize the nonlinear optical 

properties of Ti3C2Tx thin films. In the setup, a Q-switched frequency-doubled Nd:YAG 

laser beam (1064 nm, 7 ns) was focused using a converging lens (lens 1 in Fig. 4.5a, focal 

length: 20 cm) to a spot size of 100 m onto a glass supported Ti3C2Tx film mounted on a 

moving stage (Fig. 4.5a). The transmitted beam, whose intensity is dependent on the 

sample position, was focused using another converging lens (lens 2 in Fig. 4.5a) onto a 

photodetector, as shown in Fig. 4.5a. As shown in Fig. 4.5b, the Z-scan experiment 

measures the position-dependent change in the non-linear transmittance or the modulation 

depth of the Ti3C2Tx films , where TNL is the nonlinear transmission 

and T0 is the corresponding linear transmittance at 1064 nm (plotted as T vs. sample 

position or z). The Ti3C2Tx thin films experience varying laser intensities when translated 

across the focal plane as illustrated by a COMSOL simulation of the field intensity in Fig. 

4.5a, which is given by , where I0 is the intensity at the focal point 

(corresponding to z=0), z is the sample position, and w0 is the laser beam width. Combining 

the equations for T(z) and I(z), the nonlinear transmission of Ti3C2Tx films for a fluence 

of 40 mJ/cm2 is calculated and plotted as a function of intensity at each sample position 

(Fig. 4.5c). The experimental data in Figs. 4.3b-c were fitted using the nonlinear light 

propagation equation,  to obtain the saturation fluence for Ti3C2Tx films of 

DT(z) =
TNL (z)-T0

T0

I(z) =
I0

1+ z
w0

( )
2

dI

dz
= -a(I )I
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different thicknesses (see Table 4.1). The following observations can be deduced from 

experimental data in Figs. 4.3b-c and the Is extracted by fitting the data: i) the SA behavior 

is universal in Ti3C2Tx irrespective of the film thickness, ii) the modulation depth is directly 

dependent upon the film thickness with higher T for thicker films, and iii) Is varies 

inversely with the film thickness (see Table 4.1 and Fig. 4.6a).  

    The universal observation of SA behavior for different thicknesses can be 

understood in terms of plasmon-induced increase in the ground state absorption at 1064 

nm. Given that free carrier oscillations are more favorable at longer wavelengths >1130 

nm (or lower energies <1.1 eV) in MXenes, the depletion of ground state population is 

more dominant at 1064 nm (~1.16 eV) resulting in increased nonlinear transmittance at 

higher fluences or SA behavior. Importantly, the modulation depth or ΔT for the thicker 

Ti3C2Tx MXene thin films was found to be 30% at 40 mJ/cm2, which is nearly five times 

the ΔT of a few-layer graphene (FLG exhibits ΔT ~6% at 40 mJ/cm2, Fig. 4.7)[91], [175] 

measured in the same experimental setup. The large modulation depth of Ti3C2Tx is highly 

useful for applications in mode locking and Q-switching.  
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Figure 4.6. a) The saturation fluence (Is) for Ti3C2Tx thin films (at 40 mJ/cm2) decreases 

significantly with increasing film thickness. Is for two additional samples Ti3C2Tx-2 and 

Ti3C2Tx-3 are also shown in the plot (indicated by blue arrows). b) The SA behavior of 

Ti3C2Tx-1 and Ti3C2Tx-4 as a function of increasing laser energies. Refer to Table 4.1 for 

sample names. 
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Figure 4.7. Normalized Z-scan transmittance of FLG and Ti3C2Tx-4.  

 

 

 As shown in Fig. 4.6a, we note that Is for Ti3C2Tx decreases significantly with 

increasing film thickness, which may be understood in terms of stronger optical absorption 

(cf. Table 4.1) and higher imaginary component of the dielectric constant for thicker 

Ti3C2Tx films[168], as described below. The saturation carrier density (Ns) in 2D materials 
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could be estimated using a simplified approximation given by Bao et al. as 𝑁𝑠 =
𝛼𝐼𝑠τ

ħ𝜔
, 

where α is the absorption coefficient, τ is the carrier relaxation time, ħ is reduced Planck’s 

constant and ω is the excitation frequency[8]. Chemla et al. argued that in the case of 2D 

electron gas, absorption saturation occurs when photo-generated carrier density is about 

one charge carrier per exciton volume 4πao
3/3 where 𝑎0  is the Bohr radius[77]. 

Accordingly, Is can be approximated as Is=3ħω⁄(4πao
3ατ). It then follows that for a given 

excitation, Is is related to α through an inverse relation. Dillon et al.[168] experimentally 

showed that the imaginary component of the dielectric constant is higher for thicker films 

suggesting that Is decreases with increasing thickness concurring with the data presented 

in Fig. 4.6a. A low saturation fluence allows SAMs inside the laser cavities to work 

effectively for pulse shaping applications. Although other 2D materials such as graphene 

and MoS2 exhibit lower Is than Ti3C2Tx [149], they cannot withstand higher laser energies. 

On the other hand, the SA behavior in Ti3C2Tx was found to be resilient at high laser 

energies (Fig. 4.6b), and the modulation depth increases with increasing laser energies 

similar to FLG. A maximum modulation depth ~50% was observed at 70 mJ/cm2 for a 67 

nm thick Ti3C2Tx film. While the clear degradation of FLG was observed when the laser 

energy reached ~40 mJ/cm2, both ~5 and 67 nm thick Ti3C2Tx films were able to withstand 

high laser energy ~70 mJ/cm2 (Fig. 4.6b). In Q-switched lasers, the laser-induced damage 

of the SA will lead to a severe instability of Q switching. In this regard, the use of Ti3C2Tx, 

and possibly other MXenes, as SAMs is more favorable compared to other 2D materials 

due to their higher damage threshold.  
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Figure 4.8. The mechanism of photonic diode action from a SA/RSA bilayer can be 

understood as follows. In the forward bias configuration of a photonic diode, when incident 

light intensity (Io) is above the threshold (Is), transmission through SA (ISA) is increased 

beyond linear transmission (ILT). The RSA layer then attenuates ISA resulting in an output 

intensity ~ILT. However, in a reverse bias configuration, the RSA attenuates light below IS 

eliciting only a linear response in SA. Thus, the output intensity is lower than the intensity 

in the forward bias case.  

We demonstrate that the SA behavior in Ti3C2Tx MXene can be used to fabricate a 

photonic diode that exhibits nonreciprocal transmission of light similar to current flow in 

an electronic p-n junction diode. The time-reversal symmetry in the electromagnetic wave 

equation implies intrinsic reciprocity in light transmission, i.e., swapping the light source 
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and detectors while keeping the sample fixed should not alter the transmission. We 

previously showed that the time-reversal symmetry could be broken using a bilayer 

structure containing a SAM and a reverse saturable absorption material (RSAM)[37]. 

While a SAM or RSAM exhibits spatially reciprocal light transmission, the transmission 

characteristics become non-reciprocal when a laser pulse with input fluence Fin > Is 

propagates sequentially through a SAM/RSAM bilayer (see supporting information Fig. 

4.8). Here, we used C60 as a RSAM [71] and Ti3C2Tx MXene as the SAM for achieving a 

photonic rectification (photonic diode) function. In the forward direction (Ti3C2Tx MXene 

followed by C60), input pulse shows an increased transmission through Ti3C2Tx MXene (a 

SAM) when its input fluence Fin>Is. Subsequently, this transmitted pulse is attenuated by 

C60 (a RSAM) through multi-photon absorption. The overall response is an increase in light 

transmission (higher than linear transmittance) if the SA effects overwhelm RSA. On the 

other hand, in the reverse direction (C60 followed by Ti3C2Tx MXene), the input laser pulse 

with same fluence as in the forward direction (Fin > Is) is attenuated below Is by C60 due to 

multi-photon absorption[71], [166]. The transmitted laser pulse (Ftransmitted < IS) from C60 

does not elicit a high transmittance through the Ti3C2Tx film leading to decreased 

transmission (Fig. 4.8). We used a “space-time slicing” model to capture the diode action 

of the MXene/C60 bilayer on the basis of the following nonlinear light propagation equation 

  with no a priori assumptions, wherein for Ti3C2Tx MXene as 

stated noted previously in the discussion of Fig. 4.5. For C60,  wherein is 

the two-photon absorption coefficient of C60. Our model extracts transmission 

dI

dz
= -a(I )I a(I ) =

a0

1+ I
Is

a(I) =a0 +bI
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characteristics of Ti3C2Tx MXene/C60 bilayers using experimentally determined 

parameters such as Is and , without the need to introduce free parameters. In forward bias 

(see Fig. 4.9a), a 7 ns Gaussian pulse was first sliced in time with equal width ~70 ps. Each 

temporally sliced part of the Gaussian pulse first propagates through SA (sliced in space 

with ~1 nm thickness for each slice) and the output intensity is calculated by solving the 

propagation equation for SA via Runge-Kutta method. The transmitted pulse from nth space 

slice serves as the input pulse for n+1th slice. At the end of MXene layer (e.g., 67 nm in 

Ti3C2Tx-4), the output intensity is calculated by solving the propagation equation for ~50 

slices of RSA (with ~1 nm thickness). In the reverse bias case, the order of solving the 

propagation equations was reversed. As observed in Fig. 4.9b, the output pulses from the 

Ti3C2Tx MXene/C60 bilayer show different intensities in forward and reverse bias 

directions. Nonlinear transmission curves for the photonic diode (similar to Fig. 4.5c), 

generated by using different input pulse intensities in the space-time slicing model (Fig. 

4.9c), showed that the transmission for Ti3C2Tx MXene/C60 bilayer increases with intensity 

in the forward direction while it decreases in the reverse direction above 4 mJ/cm2. Our 

experimental data for Ti3C2Tx/C60 bilayer concurs with the space-time slicing model 

showing nonreciprocal light transmission >1 mJ/cm2 with an increasing difference between 

forward and reverse transmission characteristics (Fig. 4.10 and Table 4.2). We observed 

that the non-reciprocity factor (defined as the gain in dB = 10 log (Tforward/Treverse), where 

Tforward and Treverse are the nonlinear transmission values for forward and reverse directions 

shown in Fig. 4.9) could be tuned by varying Ti3C2TX MXene thickness and linear 

transmission (Table 4.2 and supporting information Fig. 4.11). Indeed, we achieved a 
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maximum nonreciprocity factor as high as ~4 dB with ~100 nm Ti3C2TX MXene/C60 

bilayers. Unlike magneto-optical isolators in fiber-coupled lasers that are constructed based 

on Faraday rotators, MXene/C60 bilayers exhibit nonreciprocal transmission irrespective of 

angle of incidence or polarization in addition to being ultra-compact (~100 nm). Although 

the nonreciprocity factor is only moderate ~4 dB compared to traditional optical isolators 

that could achieve ~30-40 dB, the demonstrated photonic diode characteristics provide the 

basis for the use of a wide range of MXene compositions with better SA properties (e.g., 

Ti2CTx, Mo2CTx, Ti3CNTx, etc.) in photonic diodes and optical isolators without the need 

for bulky components or magnetic fields.  

  



 91 

 

 

Figure 4.9. a) The non-reciprocal transmission characteristics are simulated by a “space-

time slicing” model shown in the schematic, which solves the pulse propagation equations 

for Ti3C2Tx MXene and C60 sequentially. The 7-ns laser pulse and the sample length are 

sliced in order to take into consideration the temporal and spatial variations in the input 

intensity, respectively. Each temporal slice passes through each of the sample slices 

whereby its intensity gets modified due to nonlinear as well as linear absorptions (SA in 

Ti3C2Tx MXene slices and RSA in C60 slices). The output pulse is reconstructed from the 

modified temporal slices and the transmittance is calculated. b) An incident laser pulse with 

20 J energy (40 mJ/cm2
 at z = 0) and 7 ns pulse width reconstructed after transmission in 
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forward (Ti3C2Tx MXene/C60) and reverse (C60/Ti3C2Tx MXene) directions using the 

space-time slicing model. c) Simulated nonlinear light transmission for a Ti3C2Tx 

MXene/C60 bilayer using the space-time slicing model by varying the incident pulse 

energy.  

 

Figure 4.10. Optical diode action in a Ti3C2Tx-MXene/C60 bilayer. a) and b) show the 

schematics for forward and reverse bias configurations for the Ti3C2Tx-MXene/C60 

bilayer. c) Experimental nonlinear transmission data obtained from the Z-scans on a 
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Ti3C2Tx-4 MXene/C60 bilayer. A ~40% change in transmittance was evident for an 

incident fluence of 5 mJ/cm2.  

 
 

Figure 4.11. (a-d) Experimental nonlinear transmission data obtained from the Z-scans on 

Ti3C2Tx MXene/C60 bilayers (at 5 mJ/cm2) in which the thickness of the MXene was 

varied. 
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Table 4.2. Non-reciprocity factors for photonic diodes with different Ti3C2Tx thicknesses 

 

Sample name Thickness h, (nm) Non-reciprocity factor, at 5 mJ/cm2 (dB) 

Ti3C2Tx -1 5 0.46 

Ti3C2Tx -2 16 0.63 

Ti3C2Tx -3 38 0.92 

Ti3C2Tx -4 67 1.80 

Ti3C2Tx -5 ~100 4.13 

 

 

4.4 Conclusion 

In summary, this study identifies plasmon-induced increase in the ground state 

absorption well above the free carrier oscillation energy as the primary mechanism for SA 

in Ti3C2Tx thin films fabricated by the interfacial technique. Our observations suggest that 

Ti3C2Tx films are ideal for applications in modelocking and Q-switching because: i) 

Ti3C2Tx films exhibited a significantly higher modulation depth up to ~50% (at least five 

times higher compared to FLG at 40 mJ/cm2), ii) the saturation fluence of Ti3C2Tx films is 

easily tunable by changing the film thickness, iii) MXenes are more resilient than other 2D 

materials with high damage thresholds ~70 mJ/cm2. Lastly, the SA behavior in MXenes 

leads to the possibility of fabricating passive photonic diodes that are ultra-compact, 

independent of phase-matching and polarization conditions needed for conventional 

Faraday rotator based optical isolators.  
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CHAPTER FIVE 

 

THZ SPECTROSCOPY STUDY OF MXENEs 

 

Guangjiang Li, et al. “Equilibrium and non-equilibrium free carrier dynamics in two-

dimensional Ti3C2Tx MXenes: THz spectroscopy study”. Reproduced in part from 

submitting manuscript. 

 

5.1 The principle of THz spectroscopy 

The recent emergence of two-dimensional (2D) materials facilitated the realization 

of novel optoelectronic and nanophotonic applications. In addition to extraordinary and 

strongly anisotropic electronic properties, many 2D materials exhibit strong light-matter 

interactions despite their atomic thickness [112], [133], [137], [140], [176]–[178]. Indeed, 

the strong optical absorption of single-layer graphene ~2.3% in visible and infrared regions 

was critical to the initial observations of exfoliated monolayers under an optical 

microscope [179]. Following the discovery of strong light-matter interactions in graphene, 

it was found that monolayers of other 2D materials such as MoS2 and WSe2 exhibit even 

higher optical absorption,  ~10% in the visible region [180]. While the electronic and 

optical properties of graphene, MoS2, and WSe2 can be engineered by doping or through 

fabrication of layer-by-layer heterostructures, their applications in high-power lasers has 

been limited by low damage thresholds[149]. In this regard, others and we recently 

demonstrated that an emerging class of 2D titanium carbides and carbonitride, MXenes, 

are ideal for femtosecond mode locking and optical isolation applications due to their high, 
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≈70 mJ cm−2 threshold for light-induced damage with up to 50% modulation depth[178]. 

MXenes are 2D transition metal carbides and nitrides with the chemical formula Mn+1XnTx 

(n = 1-3), where M is an early transition metal, X is carbon and/or nitrogen, and Tx 

represents surface termination groups such as =O, –OH, –F, etc [150], [152], [155], [164], 

[165], [168], [181]–[183]. MXene surfaces are passivated during synthesis without any 

dangling bonds, which allows for easy integration with photonic structures such as 

waveguides and cavities[149]. In addition to potenial photonic applications, layered 2D 

titanium carbides are actively researched as novel precious-metal-free conductive materials 

for electrochemical energy storage, with demonstrated ultrahigh volumetric capacitance up 

to 900 F/cm3[150], transparent conductive electrodes and efficient photothermal 

convertors[155], [168]. Recent studies have demonstrated that efficiency of light-to-heat 

conversion in MXenes including Ti3C2Tx can reach 100%, suggesting their applications in 

photothermal solar energy conversion devices as well as in novel photothermal tumor 

ablation approaches in oncology[184]. High electrical conductivity of Ti3C2Tx results in a 

strong absorption across the microwave and terahertz (THz) range and makes it a promising 

new material for electromagnetic shielding[185]. Combined with thermoelectric properties 

of Ti3C2Tx MXenes, rivaling those of carbon nanotube films, large THz absorption also 

suggests potential application in THz detectors[149], [186]. Considering a wide range of 

potential photonic, electronic and electrochemical applications of MXenes, it is imperative 

to address exisiting knowledge gap to elucidate intrinsic carrier zero-field mobility within 

individual nanosheets and in thin conductive films and understand the effects of 
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photoexcitation on conductivity and ultrafast nonequilibrium dynamics of photoexcited 

carriers.  

We have used terahertz (THz) spectroscopy to study both equilibrium and non-

equilibrium free carrier dynamics in a 16 nm thick Ti3C2Tx MXene film. Picosecond-

duration THz pulses with the bandwidth of 0.25-2 THz, or 1-10 meV, are uniquely suited 

for probing microscopic conductivity and free carrier dynamics. We report native 

frequency-dependent complex THz sheet conductivity, as well as the impact of 

photoexcitation with near-IR, 800 nm pulses on sheet conductivity and carrier mobility.  

We find that the mobility of intrinsic carriers is within the individual metallic 

Ti3C2Tx nanoplatelets is ~ 80 cm2/Vs.  Long-range mobility within the film appears to be 

strongly suppressed by grain boundaries between the nanoplatelets. We observe that 

photoexcitation with 800 nm pulses results in a transient suppression of conductivity that 

persists for hundreds of picoseconds. Like in graphene and other metallic systems, 

photoexcitation raises the temperature of the entire free carrier population, which then 

cools by emission of phonons and increasing the lattice temperature. Increased lattice 

temperature manifests in enhanced carrier scattering rate which leads to a suppressed 

conductivity. The conductivity recovers as the lattice cools by transfering heat both to the 

glass substrate underneath (vertically) and to the unexcited nanosheets within the sample 

(laterally). This process is significantly slower in Ti3C2Tx film than in metallic graphene, 

lasting for hundreds of picoseconds compared to picoseconds time scale in graphene due 

to inherently lower thermal conductivity in a film composed of Ti3C2Tx nanoplatelets with 

100-500 nm lateral dimensions.  
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5.2 THz spectroscopy setup 

5.2.a Ti3C2Tx film 

The fabrication Ti3C2Tx film is described in 4.2. Representative atomic force 

microscopy images of the film studied here, labeled as Ti3C2Tx-4 (Fig. 5.1 (a-c)) show that 

it consists of crystalline platelets of the average height ~16 nm and lateral dimensions 

~100-500 nm. Optical transmittance of the film is shown in Fig. 5.1(d). Despite the small 

thickness, the film is highly absorptive, with ~ 15% of incident light around 800 nm being 

absorbed.  
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Figure 5.1. AFM characterization of Ti3C2Tx films on glass substrates: individual 

nanosheets are ~ 16 nm thick (a,b) and have lateral dimensions of 2-5 µm (c). UV-VIS 

spectroscopy: film transmittance at 800 nm is ~ 85% (d). 

 

5.2.b THz spectroscopy 

We investigated native conductivity of the Ti3C2Tx film using THz time-domain 

spectroscopy in the transmission configuration[187]–[189]. THz probe pulses were 

generated by optical rectification of 100 fs, 800 nm pulses in 1 mm thick [110] ZnTe 

crystal. A combination of three off-axis parabolic mirrors collimated and focused the 

emitted THz pulses into a ~ 2 mm spot. The sample was placed behind the 1.5 mm aperture 

in the center of the THz spot. At normal incidence, THz pulse probes conductivity in the 

basal plane of Ti3C2Tx film. Transmitted THz pulses were detected using free-space 

electrooptic sampling in the second 1 mm thick [110] ZnTe crystal. Coherent detection of 

the amplitude and phase of THz probe pulses in the time domain allows extracting the 

frequency-dependent complex conductivity of the sample by comparing the THz pulses 

transmitted through the substrate alone and the sample of the substrate. We have also 

examined the effect of photoexcitation of conductivity and carrier dynamics using optical 

pump – THz probe measurements[189]–[193]. The sample was excited by 100 fs duration, 

800 nm pulses. Optical pump beam was focused to a ~ 5 mm spot at the sample location, 

ensuring that the probe THz pulse interrogates optically-induced changes in the uniformly 

photoexcited portion of the MXene film.  
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Figure 5.2. THz waveforms transmitted through the glass substrate ((black curve) and 

through the Ti3C2Tx film on the substrate (red). Photoinduced change in THz waveform 

transmission 3 ps after photoexcitation with 280 µJ/cm2, 800 nm, multiplied by 100 for 

clarity, is shown in blue. Inset shows expanded view of the same waveforms. 

 

 

5.3 Probing MXene thin films with THz spectroscopy 

5.3.1 THz time-domain spectroscopy: native native conductivity. 

THz time domain spectroscopy is a non-contact probe of conductivity, as 

absorption of THz radiation is directly related to how conductive material is. Fig. 5.2 shows 

THz pulses transmitted through a glass substrate alone (black curve) and through a ~16 nm 
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thick Ti3C2Tx film on a glass substrate. It also shows the change in transmission through 

the Ti3C2Tx film induced by the photoexcitation, which will be discussed later. Assuming 

that the absorption in the film is responsible for the observed attenuation of the transmitted 

THz radiation which is estimated to be ~ 7.7% at the peak of THz waveform, we calculate 

the average absorption coefficient for stacked Ti3C2Tx in the 02. – 2.0 THz range to be 46 

000 cm-1, in excellent agreement with theoretically predicted 45 000-60 000 cm-1 

range[186]. Conductivity of the sample in the frequency domain can be calculated using a 

thin film approximation from the relation 
𝐸𝑠𝑎𝑚𝑝𝑙𝑒 (𝜔)

𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝜔)
=

𝑛+1

𝑛+1+𝑍0𝜎(𝜔)
,  where 𝑍0 = 377 Ω is 

the impedance of the free space, and n is the substrate refractive index in THz range[189]. 

For glass, n≈1.96 and can be treated as dispersionless in the frequency range of 

interest[194]. 

Resulting complex sheet conductivity spectrum is shown in Fig. 5.3 (a). It exhibits 

suppression of the real conductivity at low frequencies and negative imaginary 

conductivity. These features are characteristic of a system where free carriers motion on 

the mesoscopic length scales is constrained by potential barriers, such as often seen in 

nanocrystalline or granular systems. Conductivity in such systems can be well-described 

by a classical Drude-Smith model, a modification of the free carrier Drude conductivity 

that accounts for localization of the mobile carriers on the length scales commensurate with 

their mean free path[187], [192], [195]–[201].  
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Figure 5.3. (a) Complex THz conductivity of the 16 nm Ti3C2Tx film. Symbols 

represent experimental data extracted from THz waveforms in Fig. 5.2, and lines – global 

fit of the real and imaginary conductivity to the Drude-Smith model (solid red line –fit to 

σ1, dashed blue line – fit to σ1). (b) Drude-Smith fits to σ1 and σ2 without excitation (as 
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shown in (a)) and 3 ps following excitation with ~ 280 µJ/cm2, 800 nm pulse. (c) Change 

in complex THz conductivity at different times after excitation. 

 

In the Drude-Smith formalism, complex frequency-resolved conductivity is given 

as  �̃�(𝜔) =
𝜎𝐷𝐶

1−𝑖𝜔𝜏𝐷𝑆
(1 +

𝑐

1−𝑖𝜔𝜏𝐷𝑆
).  Here,  𝜎𝐷𝐶 = 𝜎(0) =

𝑁𝑒2𝜏𝐷𝑆

𝑚∗  is Drude weight, or the 

conductivity in DC limit, 𝜏𝐷𝑆 is a phenomenological carrier scattering time which takes 

into account both the bulk scattering 𝜏𝑏𝑢𝑙𝑘 and characteristic time associated with grain 

boundary scattering 𝜏𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 as  
1

𝜏𝐷𝑆
=

1

𝜏𝑏𝑢𝑙𝑘
+

1

𝜏𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
, N is the charge carrier density, 

and m* is the carrier effective mass. Phenomenological c-parameter is a measure of carrier 

localization over the probed length scales. When c=0, the system is fully percolated and 

carriers free to move throughout the sample, as described by the Drude model. For c=-1, 

DC conductivity is suppressed as the carriers are localized over short distances. In Fig. 

5.3(a), solid red symbols depict experimentally determined real conductivity, and open 

blue symbols – imaginary conductivity. Nearly dispersionless real conductivity at 

frequencies < 1.7 THz and a negative imaginary conductivity indicates a free carrier system 

with a short scattering time and localization over mesoscopic length scales due to the 

presence of the nanoplate boudaries that impede free carrier motion within the film. It 

should be noted that such complex conductivity spectra cannot be well-reproduced by the 

Lorentz conductivity model used to describe plasmon- and phonon-related effects, as 

frequency-dependent negative imaginary conductivity in the Lorentz model is 

accompanied by a significant dispersion in the real conductivity component[193]. Lines in 
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Fig. 5.3 (a) represent a global fit of real and imaginary conductivity to the Drude-Smith 

model with 𝜏𝐷𝑆=6±1 fs, and c=-0.97±0.03. Drude-Smith c-parameter that is close to -1 

indicates that long-range conductivity in the film is strongly suppressed. However, even 

given this significant suppression of long-range transport, overall conductivity of the film 

is very high and extrapolates to ~ 300 (Ω cm)-1 at ω=0 due to a very large, ~ 2x1021 cm-3 

carrier density, calculated from the Drude-Smith fit to the THz conductivity using zone-

center electron effective mass of 0.2845me[202]. Intrinsic carrier density determined from 

THz measurements is in reasonable agreement with the value determined from electrical 

measurements on individual nanosheets, 8±3 x 1021 cm-3[203]. Underestimation of carrier 

density in THz measurements results from averaging over a large ~ 1.5 mm in diamater, 

area of the film that does not completely cover the surface (Fig. 5.1 (c)). We calculate 

intrinsic carrier mobility, or mobility of carriers over mesoscopic length scales within 

individual grains to be 𝜇𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 =
𝑒𝜏𝐷𝑆

𝑚∗  ≈34 cm2/Vs. However, the long range mobility in 

this film is strongly suppressed, and can be estimated from the intrinsic mobility as 

𝜇𝑙𝑜𝑛𝑔 𝑟𝑎𝑛𝑔𝑒 = 𝜇𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐(1 + 𝑐).  This calculation yields 𝜇𝑙𝑜𝑛𝑔 𝑟𝑎𝑛𝑔𝑒 ≈1 cm2/Vs. It is in 

agreement with room temperature mobility within a singe nanosheet of 0.7±0.2 cm2/Vs 

determined from electrical measurements[203] and supports our hypothesis that the free 

carrier motion is mainly impeded by the grain boundaries between different nanosheets 

within the thin film.  

5.3.2 Optical pump - THz probe spectroscopy: non-equilibrium carrier dynamics 

Many proposed applications for the MXenes involve their optical excitation. We 

have studies the effects of photoexcitation with ~ 100 fs, 800 nm pulses on THz 
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conductivity of the film.  Linear optical absorbance of the film at 800 nm is  ~ 15% based 

on UV-VIS measurements (Fig. 5.1 (d))[178]. At optical fluence of 280 µJ/cm2, the 

absorbed photon flux is 17x1013 cm-2. Resulting change in the THz pulse transmission at a 

given fixed time delay between the optical pump and THz probe was detected by 

modulating the optical pump beam using a chopper and recording the differential electric 

field Δ𝐸 . Resulting change in transmission of the THz probe pulse 3 ps after 

photoexcitation with ~ 280 µJ/cm2 pulse compared to the transmission through the 

unpumped film are shown as a blue curve in Fig. 5.2, multiplied by 100 for clarity. While 

the change is small (<0.3%), it is clear that photoexcitation enhances THz transmission. 

Photoinduced transient changes in complex THz conductivity are summarized in Figure 

5.3 (b,c). For a small differential change in transmission, complex differential change 

conductivity at a fixed pump-probe delay time was calculated as Δ𝜎(𝜔) ≈

−
𝑛+1

𝑍0

Δ𝐸(𝜔)

𝐸(𝜔)
, where 𝐸(𝜔) is the electric field of the THz pulse transmitted through the 

unexcited film. Examples of the differential conductivity at 3 ps, 5 ps, and 10 ps after 

excitation with ~ 280 µJ/cm2 pulse are shown in 3 (c). Transient real photoconductivity is 

negatice at all these three time points, and in the entire sampled frequency range, 

demonstrating that photoexcitation suppresses conductivity of the film. This behavior is 

characteristic of metallic rather than semiconducting systems, and has been observed in 

graphene, thin metallic films and metallic RuO2[9], [196], [199], [200], [204]–[208]. 

We analyze the temporal evolution of the complex conductivity following 

photoexcitation by fitting transient real (σ1(t)=σ1+Δσ1(t)) and imaginary (σ2(t)=σ2+Δσ2(t)) 

to the Drude-Smith model. Lines in Fig. 5.3 (b) represent the best fit to σ1(t) and σ2(t) at 3 
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ps following photoexcitation along with the best fit to THz conductivity in the unexcited 

film (Fig. 5.3 (a)). Like the intrinsic conductivity of unexcited sample described above, 

conductivity of the photoexcited sample is well-described by the Drude-Smith model with 

unchanged c-parameter c=-0.97±0.03, indicating that carriers in the remain localized by 

grain boundaries between different nanoplates even after photoexcitation. The observed 

change in carrier density is minimal, and can’t be reliably determined within the error of 

our measurement. Intraband photoexcitation of metallic materials does not result in a free 

carrier density increase, but rather increases carrier scattering due to lattice heating as hot 

carriers couple to phonon modes[199].  Indeed, we find that the scattering time in the 

investigated time range 3-10 ps after optical excitation shows small but discernable 

decrease (Fig. 5.4), suggesting that increased carrier scattering in the major reason behind 

conductivity suppression. Improving the precision of both carrier density and the scattering 

rate would require THz measurements in the significantly broader spectral range. 
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Figure 5.4. Change in the carrier scattering rate as a function of time following 

photoexcitation with ~ 280 µJ/cm2, 800 nm pulse. 
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Figure 5.5. (a) Photoinduced change in the THz peak transmission as a function of time 

after photoexcitation with 280 µJ/cm2, 800 nm pulse. Solid line shows the fit of THz 

transmission enhancement to a double-exponential decay. (b) Expanded view of transient 

peak THz transmission at different excitation fluence values from 120 µJ/cm2 to 280 

µJ/cm2, and (c) the corresponding peak THz transmission change as a function of 

excitation fluence. 
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The dynamics of the observed conductivity suppression are examined in Fig. 5.5. 

By monitoring the transient change in the transmission of the THz pulse peak as a function 

of the pump-probe delay time, we have characterized the duration of the observed 

conductivity suppression. Instrument-limited rise time of conductivity suppression is 

followed by the long, slow decay that persists for 200 ps and possibly beyond, to the time 

scale not accessible in our experiments. Fig. 5.5 (a) shows transient enhancement of THz 

peak transmission following photoexcitation with ~ 280 µJ/cm2 pulse. It can be fit to a bi-

exponential decay (red solid line) with the fast component ~ 7±1 ps, a slower component 

~ 22 ±2 ps, and a nearly constant offset that represents the long-lived component that we 

cannot reliably extract. This long decay of photoinduced conductivity suppression is 

similar to that observed in metallic (gold and chromium) thin films, and is significantly 

longer than in photoexcited graphene, which recovers within only a few picoseconds[9], 

[142], [196], [200], [205]–[208]. Decreasing excitation fluence to ~ 120 µJ/cm2 linearly 

reduces the amplitude of the observed response but doesn’t change the dynamics (Fig. 

5.5(b,c)). In metallic materials with static density of free carriers, photoexcitation does not 

significantly increase free carrier density. Strong electron-phonon coupling facilitates 

rapid, over the sub-picosecond time scales, equilibration of hot free carrier population with 

the lattice, resulting in a transient increase of lattice temperature. Carrier scattering is 

increased at elevated lattice temperatures, and recovery of background conductivity over 

time scales of hundreds of picoseconds represents lattice cooling as heat is transferred to 

the substrate and laterally – to the unexcited portions of the film. 
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5.4 Conclusion 

We have investigated equilibrium and non-equilibrium dynamics of charge carriers 

in Ti3C2Tx nanoplates. We find that the nanoplates are metallic, with a high (~ 2x1021 cm-

3) intrinsic charge carrier density and relatively high (~34 cm2/Vs) mobility of carriers

within individual nanoplates. High carrier density gives rise to exceptionally large, ~ 46 

000 cm-1 absorption in the THz range, putting Ti3C2Tx forth as a potential THz detector 

material. Photoexcitation results in a transient reduction of conductivity, as hot carriers 

rapidly heat the lattice, and the elevated lattice temperature enhances carrier scattering. As 

the lattice cools over the time scales of hundreds of picoseconds by transferring heat to the 

substrate and to the unexcited portions of the film, conductivity of Ti3C2Tx nanoplate film 

recovers. The possibility to suppress conductivity and enhance THz transmission in 

Ti3C2Tx by photoexcitation makes this new 2D material an attractive candidate for THz 

modulation devices and variable electromagnetic shielding applications.  
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CHAPTER SIX 

SUMMARY AND FUTURE WORK 

 

In this thesis, we examined the excellent optical limiting properties of fullerenes. 

We also explored the SA properties of MXene (Ti3C2Tx) and successfully constructed an 

optical diode, which plays a key role in the realization and development of many photon 

technologies. Furthermore, novel nonlinear optical materials with an ultrafast response 

time, high resistance to bulk and surface laser damage, and low two-photon absorption 

were fabricated with a view to examine their optical nonlinearities. This thesis serves as a 

platform for advancing the design and fabrication of optoelectronic and photonic devices 

at nanoscale. For example, more than 60 possible members exisit in the MXene family of 

materials, and only 15 of them have been synthesized todate. They exhibit metallic to 

semiconducting behaviors, and their NLO properties are poorly understood.  
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