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ABSTRACT 

This dissertation is structured around the development of a micro and nano-

rheological instrument capable of measuring mPa·s-level viscosity of nanoliter droplets 

and micron thick films in a 10-20 second timeframe and using it to study the kinetics of 

formation of a blood clot in insects. To understand the materials science behind this clot 

formation, we enrich the microrheological study with studies of extensional rheology of 

various maturity stages of clots as well as studies of the surface tension isotherms, 

dynamic surface tensions, and surface rheology. To study the rapidly changing structure 

of the clots, we employ high magnification microscopy and scanning electron 

microscopy. Overall, we perform a detailed study of physical materials properties and 

structure of the material, which helps us better understand its outstanding performance.  

In Chapter 1, we introduce an engineering reader to the biological aspect of the 

problem and discuss the functionality of the material in an insect body. In Chapter 2, we 

discuss the importance of understanding multiscale rheology of the material and review 

the current methodologies available and their limitations with regards to the study of 

changing insect blood. In chapter 3, we discuss the principle of our methodology and the 

realization of the device with which we study the nanorheology with high precision and 

temporal resolution. In chapter 4, we present nanoscale viscosity measurements of blood 

of adult butterflies and moths: Manduca sexta, Vanessa cardui, and Danaus plexippus 

and discuss the significant deviations of the viscosities from the viscosity of water. In 

chapter 5, we present the nanorheological measurements of forming and maturing clots in 
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the blood of M. sexta caterpillars and present the discovery of characteristic times of 

formation of these clots. In chapter 6, we present and discuss the fibrous and cellular 

structures of the forming blood clots of M. sexta caterpillars. In chapter 7, we study 

extensional rheology of forming blood clots of M. sexta caterpillars. In chapter 8, we 

discuss the structure formed in the clots in response to our extensional experiments and 

relate that to the functions of the clot constituents. Finally, in chapter 9, we study the 

materials properties of the surface of hemolymph of adult M. sexta, V. cardui, D. 

plexippus, and caterpillar M. sexta and relate them to the nano and microrheological 

measurements we performed on the material. We thus characterize the time-dependent 

structure-properties-performance triangles of blood and the forming blood clots in the 

studied insects.   
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CHAPTER I

INTRODUCTION: BLOOD IN INSECTS (HEMOLYMPH)

In this chapter, we introduce an engineer reader to the physiological role of 

hemolymph –insect blood – in Lepidoptera – an order of butterflies and moths – at 

different developmental stages of the insect. We will cover the peculiarities of the 

circulation system, the primary function of hemolymph, and the role of hemocytes – 

blood cells.  

1.1 RELEVANCE OF STUDY OF INSECTS TO HUMAN LIVES 

There are more insects on our planet than any other macro-organisms. Over several 

hundred million years, evolution diversified this class of animals to become pollinators, 

soil fertilizers, and plant harvesters. The feeding habits of some insects made them rely 

on the blood of mammals, which enabled them to transmit diseases harmful to humans 

and domesticated animals. Blood-feeding insects that transmit parasites are responsible 

for more human deaths and sicknesses than any other group of macro-organisms and 

exert a significant socioeconomic burden. The alarming statistics of insect-borne diseases 

call for a paradigm shift in methodologies and approaches to significantly broaden and 

complement the research efforts currently dominated by a molecular-centric insect 

immunology. 

Insects have an open circulatory system underneath a rigid exoskeleton, which 

means that the blood flow is not constricted by blood vessels. This, in addition to its 

small volume, means that when an insect gets damaged, it is at a great risk of desiccation 
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and infection. To combat this issue, insects developed rapid and localized activation 

mechanisms of hemolymph to halt blood loss and infection that involve coagulation and 

clot formation (1). An understanding of these mechanisms is vital for developing 

countermeasures to control insect-borne diseases and pest outbreaks. The response to 

injury varies across species and life stages and can involve cellular or humoral reactions 

mediated by macromolecules in plasma (2-5).  

We will focus our study on Lepidoptera – an order of butterflies and moths – and 

will henceforth discuss this order exclusively. Wax moths (Galleria mellonella) and 

tobacco hawk moths (Manduca sexta) have been serving as model systems for biologists 

and biochemists (6, 7) in analyses of hemolymph coagulation (4, 8-13) and other 

important biomolecular studies. Since M. sexta is native to our region, we will focus our 

studies on this species and complement it with two other native species: Monarch 

butterflies (Danaus plexippus), and painted lady butterflies (Vanessa cardui). 

1.2 FUNCTIONS OF LIPIDS AND LIPOPROTEINS

Generally, animals store energy in the form of lipids, and Lepidoptera is no 

different. During muscular activity, these lipids are released and delivered to the muscles. 

Flying muscular activity is highly demanding in terms of energy. Unlike mammals that 

can increase the blood flow to the muscles during activity, insects, which have an open 

circulatory system, have developed an alternative control method for fuel deli. In this 

section, we outline the role of hemolymph constituents in fuel transport from fat tissue to 

muscle tissue. (For more detailed reviews, see (14) (15)). 
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The path of energy particles from storage to utilization is illustrated in Figure 1 and is as 

follows. In insects, the lipids are stored in the form of triglycerides (TAG) (esters derived 

from glycerol and three fatty acids), transported in the form of diglycerides (DAG) (esters 

derived from glycerol with two fatty acids) and used in the form of free fatty acids (FFA). 

DAGs are never transported by themselves due to the fact that any contact of a free-

flowing DAG with water immediately hydrolyzes it and creates FFAs, which are readily 

absorbed by the muscles. Instead, a particle – called lipophorin – acts as a reusable 

shuttle and transports the DAGs from the fat body to the muscle. This particle consists of 

two proteins (called apolipophorin-I and apolipophorin-II), and other building blocks 

(lipids, sterols, and hydrocarbons). This particle has a relatively high density and is 

conventionally called a High Density Lipophorin (HDLP). The HDLP serves as an initial 

binding site for DAGs. Because DAGs have hydrophobic fatty acid end groups, they 

attract a surfactant-like protein called apolipophorin-III, which is freely available in 

hemolymph. When apolipophorin-III is unbound, it is coiled into an prolate particle; 

when it is bound, it uncoils, exposing its hydrophobic groups (16). A bound 

apolipophorin-III can serve as a new landing site for another DAG, which in turn is 

covered by another apolipophorin-III. This new structure – the HDLP covered with 

DAGs and apolipophorin-III has a lower density and is consequently named Low Density 

Lipophorin (LDLP). 
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Figure 1. Diagram of energy transport mechanism in hemolymph of flying insects. 

Adapted from (14)and (15). 

Particle 

Molecular 

weight, Mw 

(kDa) 

Density, 

ρ (g/ml) 

Concentration in 

hemolymph of M. 

sexta adults, C 

(mg/ml) 

Estimated 

volume 

fraction1, φ 

Structural 

properties 

Apolipophorin-I 240 (17, 18) N/A N/A N/A Is associated with 

HDLP and LDLP 

Apolipophorin-II 240 (17, 18) N/A N/A N/A Is associated with 

HDLP and LDLP 

1 Calculated as: φ= C/ ρ 
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Apolipophorin-III 18.1 (19) 1.372 

(19) 

Total: 17±5 3 

Estimated as: 

Relaxed: 9 

Flying: 0 

Relaxed 

0.0062 

(lower-end 

estimate) 

Flying: 0 

Surfactant-like 

When in bulk, 

folded on itself 

[η] = 6 (16)  

HDLP 600(20) 1.15 (21) Estimated as:  

Relaxed: 30 

Flying: 0 

 

Relaxed: 

0.026 

Flying: 0 

Spherical 

particle(22)  

LDLP 1560 (23) 1.03 (23) Estimated as:  

Relaxed: 7.8 

Flying: 92 

Relaxed: 

0.0078 

Flying: 

0.092 

Spherical 

particle(22)  

LTP 900 - 1400 (24) 1.23 (25) Trace amounts (26) ~0 Spherical head 

with a long tail 

Table 1. Physical properties of some hemolymph constituents in M. sexta.  

 

Another particle, called Lipid Transfer Particle (LTP), is present in hemolymph 

and is thought to take part in the transfer of lipids from the fat body to the muscle tissue 

(reviewed in (14)). LTP has similar building blocks to the HDLP (source), but has a 

different structure. It has a large spherical head (~ 13 nm in diameter) and a long 

                                                 

2 Lower-end estimate, calculated from amino acid composition 

3 About half of it is free and half of it is associated with lipophorins, when insect is relaxed 
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cylindrical tail (~ 6 nm in diameter and 38 nm in length) with a hinge in the middle (14). 

Its role in the context of DAG transfer has been investigated in specific scenarios. It 

facilitates the transfer of DAGs from the fat body to the LDLP and HDLP particles(20). 

At the same time, it does not facilitate the transfer of DAGs from LDLP to the fat (20). It 

has never been observed in transferring the DAGs from LDLP to the HDLP. LTP 

originating from caterpillars, however, has been observed to facilitate the transfer of 

DAGs from LDLP to a human LDL (27). As such, LTP from adults can receive DAGs 

from the fat body and donate DAGs to LDLP and HDLP. It is unclear, however, whether 

LTP from adults is able to redistribute the DAGs between LDLP and HDLP away from 

the fat body. 

In principle, by having more apolipophorin-III, the system is able to transport 

more DAGs. There is a limit, however, to how many apolipophorin-III molecules can 

associate with an LDLP particle. In adult M. sexta, that number was determined to be 16 

– two are a part of the HDLP particle, and 14 associate along with the DAGs to form the

LDLP (23). 

The LDLP travels through the body of the insect until it reaches an enzyme that 

can strip the DAGs from it. This enzyme, called lipase, is found on the walls of the 

muscular tissue. As such, the DAGs are stripped off of the LDLP near the muscle tissue, 

undergo hydrolysis, become FFA, and are absorbed into the muscle tissue.  

Overall, flying insects have an energy deli system that can deliver high amounts 

of energy stored in DAG molecules by having a low amount of HDLP (foundation 

particles) and a high amount of apolipophorin-III (mortar material). Therefore, an insect 
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that has higher energy demand will have a higher concentration of HDLP and 

apolipophorin-III. 

1.3 FUNCTION OF CELLS (HEMOCYTES) IN CLOTTING/ DEFENSE

MECHANISM   

In Lepidoptera, the hemocyte count differs dramatically across life stages – while 

caterpillars have these cells in abundanc, adults have almost none (4, 5, 7, 28, 29). In 

Lepidoptera, six kinds of hemocytes have been found: plasmatocytes, granulocytes, 

oenocytoids, spherulocytes, coagulocytes, and prohemocytes (see (30) and (31) for 

reviews). Oenocytoids contain chemicals that are required for production of melanin – a 

dark biopolymer that is found at wound sites. These chemicals are released into plasma 

when oenocytoids burst at the wound site relatively quickly. Granulocytes are adhesive 

cells and are the first cells that make contact with a foreign object. They are thought to 

aid plasmocytes in the formation of shells around foreign objects and melanized material. 

plasmatocytes form barriers by interlinking via desmosomes – cell-to-cell junctures that 

are randomly arranged on the membranes.(31-33) Due to a tubular structure of the 

cytoplasm of plasmatocytes, these formations effectively make a tubular barrier.(30) 

Spherule cells are slightly larger than granulocytes. Coagulocytes resemble granulocytes; 

they are fragile and lead to the release of cytoplasmic materials, which precipitates in 
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various morphologies. Finally, prohemocytes are small, round cells that are thought to be 

stem cells. (31) 

1.4 CLOTTING 

Different insects exhibit different clotting mechanisms of hemolymph. Some 

demonstrate no apparent coagulation, others demonstrate hemocyte aggregation, and 

some exhibit both hemocyte aggregation as well as plasma aggregation with formation of 

fibrin-like fibers! (34) 

Clotting of hemolymph of Lepidoptera caterpillars consists of four steps (35-37). 

First, the hemocytes undergo degranulation and disintegration. At the same time, 

plasmatocytes and granulocytes extrude thread-like pseudopodias in response to foreign 

surfaces (38, 39). This leads to production of extracellular aggregates, which consist of 

hemocytes, cell debris, and an extracellular matrix. These aggregates form the primary 

soft clot, thus sealing the wound. Second, a cascade reaction is activated to cross-link the 

proteins in the soft clot, forming a hard clot. The hard clot is reinforced by a fibrous 

network, which first appears after 8 minutes and fully covers the wound and all involved 

cells after 20 minutes (40). This network consists of material different from the 

pseudopodia. Hemolymph extracted through a needle (thus bypassing the wound) does 

demonstrate pseudopodial extensions of hemocytes, but does not grow the fibrous 

network (39-41). This suggests that the triggers for the network formation are released 

into hemolymph from the hard tissue via the wound. Third, the plasmatocytes are 
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attracted to the hard clot. They spread across the clot and form a scab. Finally, the 

epidermis is regenerated, growing across the wound and replacing the scab. 

The fibrous structure formation is particularly interesting as it is could be compared 

to fibrin formation in humans. Work by Minnick et al (1986) (39)describes the filament 

formations in the clotting hemolymph of early 5th instar M. sexta caterpillars as extracted 

via a 2mm incision immediately anterior to the horn of the caterpillar (42). According to 

this study, fibrous strands only form in hemolymph in the presence of M13 protein – a 

glucose-specific lectin – and with glucose concentration below 5*10-4 M. Two relevant 

scenarios were discussed: 1. Hemolymph required an incubation time of 30 minutes 

before strands became observable; 2. Hemolymph with added M13 concentrate (obtained 

by fractionation of hemolymph from bacteria-treated caterpillars) started forming these 

strands within 10 seconds.  

Geng et al (1988) (41) further explore this phenomenon. Hemolymph that was 

collected from an incision in the tip of an abdominal proleg on a glass coverslip formed 

fibrous structures in both untreated and bacteria-treated caterpillars. Hemolymph of 

untreated caterpillars that was collected via a hypodermic needle from pericardial space, 

however, did not produce these structures while observed for several hours. Furthermore, 

even when this hemolymph was exposed to a glass substrate, no fibers were observed. 

The hemocytes in this hemolymph did not aggregate in the bulk, but adhered to glass 

substrate when exposed to it. Geng also observed that hemolymph that was extracted via 

a hypodermic needle and never contacted the wound did not form these filaments in 

healthy caterpillars, but did form them in bacteria-treated caterpillars. When the fibrous 
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structure was fractioned using HPLC and incubated by itself, no filaments were reformed. 

When the fractions were incubated in hemolymph, however, fibrous structure quickly 

reformed. The fibrous structures also rapidly formed when isolated M13 protein was 

added to hemolymph collected with a needle. The structures also formed when M13 was 

added to cell-free hemolymph as well as to a mixture of salts, amino acids, sugars, and 

vitamins (GICCM). This suggests that cells do not contribute any building blocks for the 

fibrous structure and are only involved in the early stages of clot formation. 

Due to the low volumes and fast kinetics of clotting, little attention has been given 

to the primary clot formation in Lepidoptera. Due to the heavy involvement of hemocytes 

in the early stages of clotting kinetics and drastically different hemocyte counts at 

different life stages in Lepidoptera, it is fair to expect the clotting kinetics in adults to be 

different from the clotting kinetics in caterpillars.  

1.5 CONCLUSION AND HYPOTHESIS 

Hemolymph is a complex liquid that acts across multiple scales to facilitate 

locomotion, nutrient transport, and wound healing in Lepidoptera. While its physiology 

has been investigated by both classical and micro-biologists, its physical properties – 

such as viscosity, elastic modulus, or surface tension – have not been investigated. Due to 

the varying components, these properties should differ across species and life stages. 

During clotting, these properties are also expected to drastically change.  
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CHAPTER II

INTRODUCTION: MECHANICAL CHARACTERIZATION OF

HEMOLYMPH 

2.1 IMPORTANCE OF UNDERSTANDING OF PHYSICAL PROPERTIES OF

HEMOLYMPH

As discussed in the previous chapter, Lepidoptera hemolymph is only available in 

minute amounts (5-20 μl from adults and 200-300 μl from M. sexta caterpillar) and 

rapidly changes its properties when extracted from the body under normal conditions. 

Characterization of such rapidly changing materials is particularly challenging. In this 

chapter, we introduce the concept of microrheology, explain its importance with regards 

to hemolymph, review the state-of-the-art methodologies, and describe our approach for 

this study.  

2.1.1 Introduction to viscosity, elasticity, and nano-rheology 

Rheology is the study of how matter responds to external mechanical 

perturbation. The response can dissipate the injected energy into heat via friction between 

molecules or store the energy by elastically deforming the molecules or molecule 

linkages. The primer is referred to as viscous response, conceptually represented by a 

dashpot, and the material property that characterizes it is called viscosity, η. The former 

is referred to as the elastic response, conceptually represented by a spring, and the 

material property that characterizes it is called the elastic modulus, E. Liquids that have 

elasticity are called viscoelastic liquids.  
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Viscosity is the ratio between the load and the deformation rate of the material. For 

instance, shear viscosity of the material, ηs, is defined as a ratio of the shear stress, σ, and 

the shear rate,  , 

s



 (2.1) 

Viscosity can be dependent or independent of the shear rate. In Newtonian liquids, 

viscosity is independent of the shear rate. In shear-thinning liquids, viscosity decreases 

with shear rate. In shear-thickening liquids, viscosity increases with shear rate.  

Elastic modulus is the ratio between the load and the deformation and is difficult to 

define in liquids due to its flow. There are several models that aim to describe a viscoelastic 

material in terms of viscosity and elastic modulus. The Maxwell model describes the 

majority of polymer solutions that are not gels, is conceptually represented by a dashpot 

and a spring in series and has the following equation: 

E

 



  (2.2) 

The Kelvin-Voigt model describes a gel, is conceptually represented by a spring 

and a dashpot in parallel and has the following equation: 

E    (2.3) 

These two models can be generalized with the standard linear solid model to more 

accurately describe loading and unloading of the material as well as the generalized 

Maxwell model to include a distribution of response times of the material.  

In liquids, viscosity is typically a function of the solvent-solvent molecule 

interactions and may be increased by adding solutes. Different models aim to predict the 
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viscosity increase as a function of volume fraction of solutes, φ, (1, 2) solute particle 

shape (3-7) or charge of solutes in an ionic solution (8). We will discuss these models in 

more detail in Chapter 4. Viscosity in a liquid can be independent of the shear rate, such 

as in Newtonian liquids Elasticity is typically observed in liquids with long chain 

molecules that stretch in response to deformation.  

The response of the material is dependent on the scale at which it is being probed. 

For example, a suspension of cells in plasma might behave like a Newtonian suspension 

of solid microbeads on a macroscale. When the probe is comparable in size to a cell and 

the loads are small, however, the elastic properties of the individual cells become 

important and the material response might be that of a gel. For multiscale processes, such 

as wound healing, it is important to understand the rheological properties of the material 

on all scales. As such, it is important to study the nanorheology and microrheology of the 

material as it changes.  

2.2 LITERATURE REVIEW OF NANORHEOLOGICAL METHODS 

Small volumes of available material make its study on a small scale of its rapidly 

changing properties particularly challenging. To address the challenges of in situ 

characterization of rheological properties of materials, different experimental methods 

have been proposed and developed (see (9) for a review). In many cases, rheological 

characteristics of materials are inferred by comparing the translational and/or rotational 

motions of different tracers against available models of particle-medium interactions (10, 

11).  
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The tracer - or probe - is considered passive when its motion is caused by the forces 

exerted by the surrounding medium. The probe is considered active when it actively 

deforms the medium and is used to transfer the load onto the medium(12-14). Small 

passive tracers are subject to thermal excitations and hence randomly move through the 

surrounding material. The mean squared displacement (MSD) of probes can be directly 

measured using the light-scattering techniques (15, 16). The rheological properties of the 

material are therefore extracted from the MSD by using a model of Brownian motion(17, 

18). For example, applying the Stokes-Einstein relation for a spherical tracer moving in a 

Newtonian fluid, one can infer fluid viscosity. Advanced passive microrheological 

techniques have been used in studies of complex fluids (see (11) for review) and various 

biological media (see (19) for review) by applying models of particle motion in viscous 

or viscoelastic media. The method, however, assumes a purely diffusive motion of the 

probes and the analysis of experimental data is significantly complicated by the presence 

of flow, heterogeneity of the sample, or proximity to the substrate (20). 

Active microrheological techniques have an advantage of controlling the load on 

the probes, allowing for the stress-controlled studies. The methods of force application 

range from atomic force microscopy tips for surface probing (21, 22), to optical tweezers 

on highly refractive probes in highly transparent materials (23-26), to magnetic actuation 

or rotation of magnetic probes (27-37). The latter two methods are able to apply the load 

remotely and without any mechanical contact with the probe. Optical tweezers, however, 

rely on high-intensity light to apply the force, which can significantly increase the local 

temperature near the probe and alter the sampled medium. Magnetic actuation, 
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meanwhile, is able to apply a load directly on the magnetic probes without any 

disturbance of the medium, making this technique non-destructive and thus highly 

attractive. 

Many materials can be made magnetic by dispersing magnetic micro and 

nanoparicles in them. These micro and nanoparticles are available on market or can be 

produced in the laboratory (see, for review, Refs. (38)). Magnetic particles can be 

considered active probes because they can be put in motion by applying an external 

magnetic field. The idea of using magnetic tracers to probe rheological properties of 

materials was originated from the pioneering work of Crick and Hughes(37, 39-46). 

Crick and Hughes used magnetic particles to probe viscosity and elastic reaction of 

cytoplasm. An applied rotating magnetic field exerts a torque on a magnetic particle, 

which is balanced by the viscous and elastic torques acting from the medium. Crick and 

Hughes studied the reaction of the medium on a step-like pulse of the external magnetic 

field. They monitored the particle relaxation to its equilibrium position. Following their 

ideas, magnetic tracers, mostly spherical micro- and nano-particles, have been used in 

different applications (47-49).  

Magnetic tracers are typically tracked by either directly filming the tracer 

movement or using some indirect methods of the particle detection. Examples of indirect 

methods include measurements of AC susceptibility (50), coercivity (39, 51, 52) or 

remanence (10, 31, 37, 40, 41, 43, 45, 46, 53-58). The rheological properties of materials 

are obtained by comparing experimental data with predictions of appropriate models of 

particle/medium interactions (31, 53, 55-66). Anisotropic particles such as wires, rods, 
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and chains have attracted attention of nanorheologists only recently (67). Magnetic 

nanorods have several advantages over spherical nanoparticles: due to their anisotropic 

shape, rotational motions of nanorods can be easily tracked and analyzed from the 

microscope images. Moreover, magnetization of a rod-like particle is often codirected 

with the rod axis(55, 68, 69). This fact significantly simplifies the models of nanorod 

rotation making rheological measurements reliable. (For a review of various nanowires, 

see (70)) 

Magnetic rotational spectroscopy (MRS) takes advantage of a distinguishable behavior of 

rotating tracers as the frequency of applied rotating field changes. Unlike many methods 

based on the analysis of small amplitude oscillations, MRS with magnetic nanorods 

enjoys analysis of the full revolutions of magnetic tracers, which are much easier to track 

using inexpensive microscopes. Nanorods can be kept strictly in the focal plane of the 

microscope by controlling the applied magnetic field. Moreover, nanorods as thin as 

hundreds of nanometers in diameter can be seen with dark field imaging. Therefore, the 

MRS with magnetic nanorods provides accurate data on submicron rheology of 

materials(71).  

As first shown by Frenkel (7, 72), rotation of a rod-like particle in a Newtonian 

fluid changes from synchronous, when the rod continuously follows the rotating field, to 

asynchronous, when the rod periodically swings back and forth. This transition occurs at 

a certain frequency of the rotating magnetic field. Frenkel’s effect was actively employed 

in the last century to study rod-like polymers and liquid crystals(68). Direct observations 

of the critical behavior of rod-like particles, however, were lacking, and all measurements 
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were conducted indirectly. The critical transition from synchronous to asynchronous 

rotation was first visualized only in 2005 when carbon nanotubes filled with magnetic 

nanoparticles were used for these purposes(68). Transition from synchronous to 

asynchronous rotation of magnetic nanotubes was used to estimate the magnetic 

properties of the composite nanotubes (31, 42, 43, 55, 61, 69, 73-76). (For a detailed 

review of MRS, see (34, 77).) 

With the recent progress in nanotechnology and microfluidics, MRS has 

experienced a growing interest in the community of researchers dealing with the analysis 

of small samples (29-32, 61, 78-87). Recent studies show that accurate tracking of a 

single probe can yield accurate rheological measurements (27-34). While such 

measurements are successfully used to study highly viscous liquids, they are difficult to 

perform with low viscous liquids, such as dilute aqueous solutions of biopolymers, 

surfactants, and salts. For such liquids, the torque applied on the probes must be low – 

e.g, for a nickel nanorod of 200 nm in diameter and 10 μm in length in water of 1 mPa·s

viscosity, the torque needs to be roughly 10-17 N·m. To apply such a torque on such a rod, 

the applied magnetic field must be on the order of 100 μT. When magnetic fields are 

microTesla weak, control over the movement of magnetic probe is hindered by the 

presence of Earth’s magnetic field, which ranges from 50 μT to 100 μT. The applied 

magnetic field is disturbed by this bias thus significantly affecting the readings of 

magnetic sensors that pick up the responses of magnetic probes. Therefore, for accurate 

measurements, the magnetic field needs to be accurately controlled and Earth’s magnetic 

field needs to be actively cancelled. 
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Moreover, to collect the spectral data at different frequencies of rotation, a lot of 

time is needed. This does not allow the study of a rapidly changing material as the time 

required to gather statistics on a measurement is on the order of minutes – by the time a 

measurement is performed, a clot may already have been formed. We modify this 

technique to significantly reduce the temporal resolution to below 10 seconds, making it 

appropriate for this study. We discuss these modifications further in the next chapter.   

2.3 LITERATURE REVIEW OF EXTENSIONAL MICRORHEOLOGY 

The methodologies for microscale rheological characterization range from 

microfluidic methods in the low viscosity limit to liquid filament (88-93) stretching and 

capillary breakup rheometers at medium and high viscosities (94) (95-97) (see (98) for 

review). We will focus on the latter due to the possibility of quick sample deli for 

measurement.  

The kinetics of liquid column disappearance have been studied in liquids of 

different rheological properties. (94, 98-115). Main applications of this research are inkjet 

printing (116), liquid faucets and dispensers (116-118), and rheological characterization 

of liquids available in small quantities (98, 99, 112). The latter application is of particular 

interest to us, since we are interested in rheological characterization of hemolymph.  

A simple and attractive method of studying rheology of a liquid in response to 

extension was developed by Entov, Bazilevskii and Rozhkov later adopted by other 

groups. (94, 99-104). The method is based on creating a liquid column between two 

surfaces and tracking the decrease of the diameter of its neck as a function of time. The 
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methodology has been used to study low viscosity liquids(98, 105, 107), high viscosity 

liquids(94, 106, 107), viscoelastic liquids (98, 105, 107-109), suspensions (107, 110, 119, 

120), liquid crystals(111), as well as various biological fluids (112) and has been 

thoroughly reviewed (110, 113-115). The decay kinetics of the liquid bridges with 

different rheological properties exhibit distinguishing characteristic features. For 

instance, Newtonian liquids demonstrate a linear decay of the thinnest part of the liquid 

bridge. A Maxwell viscoelastic liquid develops a uniform liquid filament with an 

exponential time decay of its radius. A high molecular weight polymer, meanwhile, 

might develop droplets on the surface of the liquid filament. We use this method to study 

hemolymph of caterpillars, which is available in amounts sufficient for this method.  

2.4 CONCLUSION 

To understand the behavior of hemolymph during wound clotting, it is important to 

study its rheology at multiple scaled. We have introduced the methodologies for nano- 

and micro-rheological characterization of liquids. The nanorheological method of MRS 

in the state at which it is described in the literature cannot perform measurements quickly 

enough to track the rapidly changing properties of hemolymph. We have thus modified 

and improved the method to allow for measurements at high temporal resolution of less 

than 10 seconds.  
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CHAPTER III

MODIFICATION OF MAGNETIC ROTATIONAL SPECTROSCOPY AND

DEVELOPMENT OF MAGNETIC STAGE FOR HIGH-SPEED NANO- AND

MICRORHEOLOGY 

3.1 INTRODUCTION 

In the previous chapter, we introduced the current challenges of nanorheological 

characterization of rapidly changing samples available in minute amounts. In this chapter, 

we address all these challenges by offering a new design of a magnetic microTesla stage 

for optical microscopy of droplets and films within a controlled environment. The earlier 

publication by our group dealt with a rotation stage providing some milliTesla magnetic 

fields (1). Here we discuss a new design, integrating magnetic coils with a 3D magnetic 

sensor with the feedback control, which allows us to significantly decrease the field. At the 

same time, the stage offers the user flexibility to control the 3D field configuration and is 

able to create a locally uniform field within the focal plane of the microscope objective. 

The optical cell equipped with the environment control circuit is fit under the Olympus 

BX51 upright microscope. We illustrate robustness of this stage by studying viscous 

properties of liquids with a high-speed rheological technique based on Magnetic Rotational 

Spectroscopy (2-5), using magnetic nano- and microrods as the probes.  
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3.2 DESIGN OF THE MAGNETIC STAGE 

3.2.1 Design overview 

The following challenges need to be addressed, when designing a stage for 

manipulation of magnetic probes with a microTesla rotating magnetic field in the focal 

plane of the microscope stage. 

1) The magnetic field of Earth is three-dimensional (3D). It has to be cancelled in the focal

plane of the microscope with an equal and opposite field. The cancelling 3D field has to be 

controlled on demand to guarantee that at different geographic locations with different 

Earth’s magnetic field the stage will work correctly. 

2) The magnetic field in the region of interest must be uniform and the magnetic gradient,

which may cause a translational motion of magnetic probe, must be minimized. 

3) The composition and humidity of the gas around the sample must be maintained to be

the same during measurements or changed on demand in a controlled fashion using an 

environmental chamber. 

The design that addresses all three challenges is schematically presented in Figure 

1. Five independently driven magnetic coils surround the magnetic sensor, which measures

the three orthogonal components of magnetic field. It thus becomes convenient to work in 

a Cartesian coordinate system with the origin located at the sensor center and axes aligned 

with the axes of the sensor. The xy plane thus becomes parallel to the ground. Coils 1 and 

3 are placed in tandem and equidistant from the sensor, such that their axes are parallel to 

the x-axis. Similarly, the axes of coils 2 and 4 are parallel to the y-axis. Due to the spatial 

constraints associated with the need to accommodate an objective of a microscope and an 
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environmental chamber, coil 5 is positioned directly underneath the sensor with its axis 

parallel to z-axis. The produced 3D magnetic field satisfies all three criteria. 

Figure 2. (A) A schematic of 5 independent magnetic coils each producing its own 

magnetic field (B1-B5). The sensor (green square) measures and records the resultant 

three vector components of the magnetic field (Bx, By, Bz). Coils 1 and 3 are aligned 

relative to the x-axis, coils 2 and 4 are aligned relative to the y-axes, and coil 5 is aligned 

relative to the z-axis (B) Basic elements of the magnetic stage with the environmental 

control. 

The design of the stage was implemented in an instrument presented schematically 

in Figure 2. Five coils with a magnetic sensor create the required magnetic field at the 

location of the sample (Figure 2 A, B). The coils are driven by a signal generator software 

written in LabView for a NI-DAQ voltage generator coupled with a power amplifier. The 

produced magnetic field is measured by the magnetic sensor and fed to the software in a 

feedback loop; the software calculates what signal to send to each magnet. This way, any 

constant magnetic field can be created to counter any ambient field. This constant 

component is superimposed with a rotating magnetic field of a desired amplitude and 

frequency to rotate magnetic probes. By observing the motion of the probes with a camera 

coupled with a microscope, the magnetic field can be adjusted in real time to induce the 
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desired mode of rotation. For further analysis of the probe rotations, LabView VISION 

package algorithms are used. 

The humidity and temperature of the sample on the magnetic stage are stabilized with an 

environment control system that pumps a gas of desired composition and humidity over 

the surface of the sample at a low flow rate. During the experiment, a droplet of the sample 

is placed in the chamber allowing evaporation to occur. The vapor mixes with supplied 

humidified nitrogen and exits the chamber. The sample thus evaporates until its equilibrium 

vapor pressure becomes equal to the vapor pressure of the supplied nitrogen-vapor mixture. 

Figure 3. Schematics (A, C) and a photograph (B) of the magnetic stage with 

environmental control. (A) Basic elements of the magnetic stage with the environmental 

control. (B) A photograph of the optical cell with environmental control surrounded by 

five magnetic coils mounted under a microscope. (C) A cross-section schematic of the 

supply system of nitrogen of controlled humidity to the optical cell (not to scale). The 

inner chamber consists of an open-ended cylinder; the wall of this cylinder is 

schematically; the height of the inner chamber is slightly smaller than that of the outer 
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chamber, leaving a small gap for the gas to flow through. As the gas moves over the inner 

cylinder, it gets mixed with the water vapor form the sample.  

3.2.2  Details of the engineering implementation 

The above design is implemented in the following way (Figure 2.A). A microscope-

compatible acrylic base plate holds the four driving coils (HobbyEngineering) firmly 

attached, each facing the center of the stage. Resting in the center of the stage is a 3D 

printed mount that holds the fifth out-of-plane coil directly underneath the magnetic sensor 

(HMC5883L, Adafruit), which measures the three components of the magnetic field. The 

sensor is covered by a thin cover glass, serving as a floor of the measuring chamber. A 

slide with magnetic probes suspended in the studied sample is placed directly on the 

chamber floor, thus ensuring the distance between the sample and the sensor is under 1 

mm. Thus, the field measured by the sensor has the same magnitude and direction as the

field that propagates through the sample and acts on the probes. The chamber is covered 

by a transparent cap with the inlet and outlet ports for the circulating gas. This cap seals 

the environmental chamber and allows one to observe the motion of magnetic probes with 

a microscope. 

The dimensions of the system were designed with the following spatial constraints. 

To produce the smallest gradient with a tandem two-coil configuration, the distance 

between the coils must be minimized. At the same time, however, the magnetic sensor 

(19x20 mm) and a microscope objective of diameter (dobjective = 32mm) must be able to fit 

between the coils. For that reason, the driving coils of diameter (dcoils = 25 mm) were 

mounted 33 mm apart. The mount, which has to hold the out-of-plane coil and the sensor, 

had the diameter of 29 mm. The diameter and the height of the environmental chamber 
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were limited by the diameter of the mount and the working distance of the objective, 

respectively. To fit the mount, the diameter of the chamber was chosen to be 25 mm. The 

working distance of a 50x Olympus lens is 10mm; thus the height of the chamber was made 

to be 9 mm; the height of the inner chamber cylinder was 8.5 mm.  

To verify whether the coil separation distance yields an acceptable field with 

minimal gradient, finite element analysis was performed with COMSOL software. Two 

coils of radius Rcoils, identical in geometry to the coils used in the setup, were placed 

uniaxially with a separation distance dcoils. The magnetic field and its gradient generated 

by the coils were calculated for different dcoils/Rcoils ratios. For the ratio used in the 

instrument (dcoils/Rcoils=2.6), both variables were plotted on a 2D slice through the central 

axis (Figure 4A). For other values of dcoils/Rcoils, the magnetic field and the magnetic 

gradient along the center axis were plotted in Figure 4 B and C, respectively. It is clear that 

the coil configuration used in the instrument yields zero gradient at the center between the 

two coils and a uniform magnetic field for several millimeters around the center point.  

A similar analysis was performed to verify that a single z-coil produces an 

acceptable region of uniform field at the sample (Figure 4D). The analysis demonstrates 

that at a distance of 0.08·Rcoils away from the coil, which is the distance between the coil 

and the sample in the instrument, the field is uniform over roughly 0.2·Rcoils. In the 

instrument, this corresponds to a region of 5mm in diameter, which is larger than the size 

of a typical sample droplet. This analysis demonstrates that the magnetic field produced by 

the magnetic stage is uniform and gradient-free in in all three directions at the sample 

location.  
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Figure 4. Results of a finite element analysis of magnetic field generated by (A-C) a pair 

of coils and (D) a single coil. (A) An arrow plot of the magnetic field superimposed with a 

heatmap plot of the magnetic gradient generated by a pair of coils of radius Rcoils separated 

by a distance dcoils=2.6·Rcoils. The geometry is similar to the coil configuration of the 

instrument. The arrows in the arrow plot are scaled logarithmically with a range quotient 

of 100. (B) Plots of the magnetic field in the axial direction along the axis of the coils for 

several separation distances. The position is normalized by dcoils/2 and the zero coordinate 

is the midpoint between the coils. (C) Plots of the magnetic gradient in the axial direction 

along the axis of the coils for several separation distances. The position is normalized by 

d/2 and the zero coordinate is the midpoint between the coils. (D) Plots of a magnetic field 

created by a single coil in the axial direction along a radial coordinate. The radial coordinate 

is normalized by the coil radius. This analysis demonstrates that at a distance of 0.08·Rcoils 

away from the coil, the field is uniform over roughly 0.2·Rcoils. For a coil of 25mm in 

diameter, this corresponds to a 5x5 mm area 2 mm away from the coil. 

To control the environment around the studied sample, an environmental control 

module was implemented. The environmental control of the sample is performed by 

flowing a gas of controlled composition and humidity through the environmental chamber 
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(Figure 2C). After passing through the chamber, the gas is released directly into the 

atmosphere through an aperture of diameter (dapperture = 2mm) that simultaneously serves 

as an access point for the user to the sample. The smallest allowable flow rate of the gas 

through the environmental chamber is thus controlled by the diffusive flux of air from the 

atmosphere back into the chamber. The evaluation of Peclet number and an experimental 

verification (details in Supplementary Information 1) place the low-end constraint of the 

flow rate at 1 Standard Cubic Foot per Hour (1 SCFH = 7.8 ∙ 10−6 𝑚3/𝑠 ). The upper

constraint of the flow rate is due to the induced flow in the sample at the liquid-gas 

interface. To lower the effect of the induced flow, we separated the environmental chamber 

into two – inner and outer in Figure 2.C - with a cylindrical wall. The wall lowers the flow 

of gas directly over the surface of the sample, yet still allows the sample vapors to mix with 

the supplied gas. With this wall, the maximum flow rate was experimentally determined to 

be 2 SCFH or 15 ∙ 10−6 𝑚3/𝑠. The workable range of the flow rates of supplied gas was

thus determined to be between 1 and 2 SCFH (7.8 ∙ 10−6 𝑚3/𝑠 and 15 ∙ 10−6 𝑚3/𝑠,

respectively). 

In the current study, the environmental chamber was supplied with a nitrogen gas – 

water vapor mixture. For this purpose, the design of Ref.(6) was adapted and fitted with a 

humidity sensor (HIH-3040, Sparkfun) at the input to the environmental chamber. The 

details of the supply system are discussed in Supplementary Information 1.  

By introducing a heating element into the environmental chamber, we are also able 

to set the temperature of the sample. A polyimide film-based flexible heating element (KA-

808, Omegalux) was placed underneath the sample. A DC regulated power supply 
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(CSI12001X, Circuit Specialists) was connected to the heating element and controlled with 

a LabView program to maintain the temperature on the glass slide. The temperature on the 

slide was measured with a thermocouple connected to a temperature controller (TC-3300, 

CAL Controls LTD) and used for feedback control of the temperature. The details on this 

system can be found in Refs. (1, 7). During heating, the magnetic field generated by the 

current in the heating element was negligible and was not detected by the magnetic sensor. 

3.2.3 Communication with a computer 

A LabVIEW program produces the signal for the magnetic coils via an analog PCI 

board (NI-PCI 6722). The signal then gets amplified by five magnetic drivers. Our setup 

uses custom-made magnetic drivers that are based on the power operational amplifiers 

(PA02, Apex); alternatively, commercially available magnetic drivers can be used. 

The magnetic sensor communicates with the LabView program via the I2C protocol 

and is able to record up to 75 measurements per second. The humidity sensor 

communicates with the programs via analogue voltage and is able to produce a 

measurement e two seconds.  

3.2.4 Magnetic Signal Generator Software 

To create a desired magnetic field, the magnetic controller program calculates the 

voltage to apply over each magnetic coil. Five coils create a magnetic field; the 3D 

magnetic sensor measures its three orthogonal components in the X, Y, and Z directions at 

the location right under the sample. (Figure 1A).  

The naïve approach for setting the magnetic field is to assume identical coils 

andperfect alignment along their respective axes, and ignore the ambient field. We 
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demonstrate in Figure 6A that this approach yields unacceptably inaccurate results at low 

fields.  

The coils cannot be perfectly aligned relative to their axes and are not perfectly identical. 

Therefore, one cannot a priori assume field uniformity; each coil contributes differently to 

all three components of the field. Due to the Biot–Savart law, these contributions are linear 

with respect to the voltage over the coil. Assuming that any ambient magnetic field is 

constant and does not depend on the voltages over the coils, each component of the 

magnetic field is expressed as the sum of the ambient field and a linearly scaled voltage 

over the coil: 

0 1 1 2 2 3 3 4 4 5 5

0 1 1 2 2 3 3 4 4 5 5

0 1 1 2 2 3 3 4 4 5 5

X X

Y Y

Z Z

B B aV a V a V a V a V

B B bV b V b V b V b V

B B cV c V c V c V c V

     

     

     

(4) 

where Bx, By, and Bz are the components of the total magnetic field measured by the sensor, 

Bx0, By0, and Bz0 are the components of the constant ambient magnetic field, 

, 1,2,3,4,5nV n  are the voltages supplied to the magnetic drivers, and , and n n na b c are 

the calibration coefficients for the five coils. 

To find the coefficients , and n n na b c , the program communicates with the 3D magnetic 

sensor and performs the following series of steps: 

1. Sends a zero voltage over each coil and collects a magnetic field measurement. We

thus obtain the value of ambient magnetic field (BX0, BY0, and BZ0).

2. Incrementally increases voltage over each coil, while keeping all other voltages

zeroed (e.g , V1= 0.1V, 0.2V, 0.3V… 1V, while V2 = V3 = V4 = V5 =0V). At each
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step, the program collects a magnetic field measurement. It thus obtains a linear 

plot of each component of the magnetic field versus voltage applied over each coil. 

3. Linearly fits each plot, thus finding each of the coefficients (an bn and cn) in

equation (1) (Figure 4).

Figure 5. (Top) A typical example of calibration plots of each component of the magnetic 

field versus voltage applied over each coil obtained as a result of the calibration 

algorithm. (Bottom) The table of the results of linear regressions of each plot. B0 is the 

average y-intercept and is interpreted as the ambient magnetic field in a given direction. 

mn is the slope of the field produced vs. voltage supplied to coil n in a given direction. mn 

in x-, y-, and z- directions correspond to an, bn, and cn coefficients in equation 1.  

Once the coefficients are obtained, equations (4) must be solved for V1, V2, V3, V4, and V5 

at given values of Bx, By, and Bz. This provides a challenge, however, since there are three 

equations and five unknowns. The number of unknowns is reduced to three by taking into 

account that for the magnetic gradient to be minimal, the voltage over the coils must be 

applied so that both coils contribute equal components of the magnetic field in the direction 
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of their alignment axis (i.e. the axis specified by the magnetic sensor). Mathematically, this 

statement is expressed as 

1 1 2 2
1 1 3 3 2 2 4 4 3 4

3 4

aV b V
aV a V b V b V V V

a b
     (5) 

Substituting equation (5) into equation(4) , and solving the resulting system of 

equations, the supplied voltages in terms of components of the desired magnetic field are 

obtained as 
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(6) 

The user is then free to specify any magnetic field. The software then calculates the 

voltages to send to each coil to create this field. The profile of the time-dependent 

components of the desired magnetic field is created using a built-in LabVIEW algorithm 

called “Basic Function Generator.” The user has a choice of a sine, square, sawtooth, or a 

triangle wave with adjustable parameters, such as the amplitude, frequency, and bias. This 

feature allows the user to quickly and accurately define the desired spatial and time profile 

of the magnetic field. Furthermore, the program can merge a series of waveforms with 

different parameters together – e.g. a sine wave with an increasing frequency. 
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In many applications, a 2D rotating field is required to manipulate magnetic particles 

(3, 5, 8-10). We thus demonstrate the applicability of the calibration algorithm by 

cancelling out the ambient magnetic field of 38μT (Earth’s magnetic field in Clemson, SC) 

and imposing a rotating field of 100μT in the XY plane (Figure 5 B). With the applied 

calibration, the system is able to set a precisely defined magnetic field, accounting for 

Earth’s magnetic field and the slight misalignment of magnetic coils.  

Figure 6. Demonstration of effectiveness of elimination of the ambient magnetic field. 

(A) A measured profile of a generated magnetic field with a1=a3=b2=b4, all others = 0.

The offsets are caused by Earth’s magnetic field and unwanted oscillations in the z-

component are caused by an imperfect alignment of magnets. (B) A measured profile of

the generated 100μT rotating magnetic field in the xy-plane after calibration. The offsets

and unwanted oscillations are removed.

3.3 MATERIALS AND METHODS: PROBING FLUID VISCOSITY WITH

MAGNETIC RODS

We demonstrate the robustness and variability of the instrument by performing 

microrheological measurements of the viscosity standards under different conditions. To 

demonstrate the effectiveness of the temperature control, we vary the temperature of the 

sample, while controlling sample evaporation. To demonstrate the effectiveness of 
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humidity control, we vary the environmental humidity, while maintaining a constant 

temperature.  

To determine the viscosity of the sample, we modify the method of magnetic rotational 

spectroscopy (MRS) with ferromagnetic rod-like probes. The method allows to accurately 

detect viscosity changes of the liquid medium by tracking the changes of frequency of 

rotation of magnetic probes. The experiment consists of measuring the probe rotation 

frequency at the known viscosity and environmental conditions, then changing the 

environmental conditions, and tracking the changes in rotation behavior of the probe. We 

thus obtain the plots of viscosity as a function of temperature and humidity (Section 3.3.6). 

3.3.1 Measuring viscosity 

A magnetic field B acting on a ferromagnetic rod with a magnetic moment, m, exerts 

a mechanical torque m  τ m Β (11, 12). If the rod is suspended in a viscous medium of 

viscosity η, the medium responds to the rod rotation with a torque ˆvτ e opposing its 

rotation, where   is the angular velocity of the rod,   is the angle that the magnetic 

moment m makes with a fixed axis x, ê  is the unit vector pointing perpendicularly to the 

plane of rotation, and γ is the drag coefficient, which is defined for a rod of length 𝑙 and 

diameter 𝑑, 𝑙/𝑑 >> 1, as(13, 14) :   
1

32 6ln 2 3ll
d

 


  . After writing the balance of 

magnetic and viscous torques as  m Β ˆe  and solving this equation, one obtains 

trajectories of the rod endpoints during rotation. These trajectories depend on the viscosity 

of the medium. Knowing the rod parameters and m  and knowing the angular frequency 

of the applied field and B , one can identify the viscosity of the liquid (3). This model and 
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experiments reveal a complex behavior of a magnetic rod in the 2D rotating magnetic 

field(3). For the in-plane rotation, the torque balance is reduced to the following 

equation(15-18): 

sin( )c t      (7) 

where / ( )c mB   is the critical frequency of the rod rotation(3). When the frequency 

of the rotating magnetic field is below this critical frequency, the probe is synchronously 

rotating with the field at frequency  , and magnetic moment makes a constant angle with 

the field,  = t   . The angle   is obtained by solving transcendental equation 

sinc   . When the frequency of the rotating magnetic field is set above the critical 

frequency, / 1c    the transcendental equation does not make any sense, i.e. the solution

const  does not satisfy equation (4), suggesting that the probe cannot rotate

synchronously with the field. The rod keeps rotating in the same plane, but the trajectory 

of the rod end acquires an oscillatory time periodic component. In this asynchronous 

rotation, the rod keeps revolving periodically with the period of the rod oscillation r

depending on the frequency of applied field,  r r   . Recently, equation (4) was 

generalized on viscoelastic fluids and gels assuming the same form of the drag coefficient 

(4, 19-21). 

Traditionally, the Magnetic Rotational Spectroscopy relies on the analysis of 

spectrum  r r   (3, 20) when one needs to change the frequency of a rotating field 

in a broad range of frequencies from below to above the critical frequency covering all the 

features of rod rotation (16, 17, 19, 20, 22). The major shortcoming of this methodology is 
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the inability to probe rheology of materials with the properties rapidly changing with time. 

If the critical frequency of the system is 1Hz, which is typical for many liquids-probe 

systems (3, 20), and each data point is collected during at least 10 revolutions of the rod, a 

single measurement would take at least 10 seconds. To study the spectrum  r r   ,

one needs at least 10 measurements at 10 different frequencies; this requires, 10 × 10 =

100 seconds. To collect statistics, i.e. repeating the experiment 10 more times, one needs 

~ 17 minutes. This is a lower-end estimate, which assumes that no time is required to switch 

between frequencies; a realistic experiment will take longer. Thus, while the methodology 

is viable for probing liquids with non-changing properties, it does not work for liquids that 

change their properties at this time scale. There are many examples where such viscosity 

characterization is challenging, including evaporating solutions and samples undergoing 

chemical reactions55,(23, 24).  

 One can significantly speed up the measurements by developing a particle tracking 

algorithm and fitting the experimental trajectories of magnetic rods with the theoretical 

ones predicted by equation (4). A single fitting parameter in this model, / ( )c mB  , 

allows one to make this analysis straightforward. For a system with a critical frequency of 

1Hz, a single measurement would take only 10-20 seconds. Using few visible rods rotating 

simultaneously in the focal plane of observation, one can gather statistics in one video. 

This allows for tracking the viscosity of a rapidly changing liquid – something impossible 

to do with MRS. We have used this idea and a first generation of the 5-coil setup to study 

the magnetic properties of ferromagnetic probes (15). This idea was further developed and 

is now illustrated here using the magnetic stage with environmental control. We 
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demonstrate the effectiveness of a single frequency measurement in both stable liquids and 

in liquids with rapidly changing properties. The probes of different length can be 

effectively used with this stage; we studied probes with the length ranging from several 

micrometers to millimeters. Nanorods were prepared from nickel using electro-chemical 

template synthesis in accordance with the protocol outlined in Ref. (15). As an example of 

nanoprobes, the 340nm diameter and 15-20μm length nanorods are used in this paper. As 

an example of microprobes, the 50μm diameter and 1-2mm length rods are used; a stainless 

steel SUS304 wire (Tokusen) was cut in pieces to make these microprobes.  

3.3.2 Video analysis 

An optical microscope equipped with a camera allows one to track the 100 nm thick 

and a few microns long nanorods(3). The imaging is often complicated by non-uniform 

backgrounds and foreign objects, which are abundant in microrheologically complex 

samples such as biofluids. Moreover, in samples with an open liquid-air interface, one often 

encounters fluid flows drifting the probes through the sample. Thus, one has to follow not 

only the probe rotation, but also its translation movement. All these challenges are resolved 

with a custom code based on LabVIEW Vision Development Module. This is a convenient 

solution, since the user can adjust video analysis parameters on the fly to obtain best results. 

The nanorod image extraction algorithm is as follows. First, the user specifies the 

region of interest where the software should find the nanorod; all objects outside of this 

region are disregarded. A binarized image is then created using either constant threshold 

values or background correction via IMAQ Local Threshold algorithm. Binarization of the 

image sometimes causes artificial holes to appear in objects; these holes are automatically 
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filled in using IMAQ FillHole algorithm to insure correct further analysis. Any analysis of 

objects that are not fully imaged (i.e. located at the edge of the frame) would result in faulty 

results; such objects are deleted using IMAQ RejectBorder algorithm. Foreign objects, 

such as cells or dust, or noise in the image may result in faulty analysis; these imperfections 

are typically either smaller or larger than the nanorod and are thus filtered out by size using 

IMAQ RemoveParticle algorithms. As a result of these steps, a new image is created where 

only the nanorods of interest remain. For these nanorods, the orientation angle, the position, 

and the length are extracted using IMAQ Particle Analysis Report and IMAQ Clamp Max 

algorithms, respectively. To prepare for the analysis of the next frame, the region of interest 

is programmatically shifted to the coordinates of the nanorod and rotated to align with the 

orientation of the nanorod.  

This process is applied to e frame in the specified segment of the video. The 

algorithm tracks the nanorod in each frame of the video and rejects any undesirable objects. 

The measurements of apparent length of the nanorod image in each frame provide a metric 

for analysis of the angle of declination of the nanorod axis from its original plane of 

rotation. The effectiveness of the algorithm is illustrated in Figure 7. In this example, the 

angle of rotation 𝜑 increases and periodically oscillates with time. The apparent length of 

the nanorod remains constant suggesting that the nanorod rotates in the focal plane. The 

program struggled with one frame (number 134) and produced a shorter length than 

expected. The algorithm, however, was able to successfully analyze all the consequent 

frames providing all necessary data for further analysis.   
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Once the data is extracted, the angular trajectory of the rod 𝜑(𝑡) is fitted with 

equation (7) using the Levenberg–Marquardt function in LabView with c as an adjustable 

parameter. The volume and the γ parameter of the probe are calculated using the average 

nanorod length 𝑙 extracted from the video and diameter d . The magnetic moment 𝑚 of the 

probe is then calculated from the calculated volume and the saturation magnetization 𝑀𝑠 

of the material as 𝑚 = 4𝜋𝑑2𝑙𝑀𝑠 . The viscosity is then calculated as / ( )cmB   . For

this particular example in Figure 7, the viscosity was measured to be 2.8 mPa·s. 
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Figure 7. (A) An example image of the nanorod superimposed with the measured results 

for that particular frame. (B) A binary image of the frame with imperfections due to 

noise, uneven background, and present particles; the imperfections are removed by the 

developed software. (C) A gallery of frames showing a drifting nanorod with several 

foreign objects; (D) The extracted angle φ, (E) apparent length l, and (F) the in-plane 

coordinates (x,y) (in pixels) of the rod center mass for each frame.  
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3.3.3 Control of the out-of-plane rotation 

During experimental observations of asynchronous rotation of ferromagnetic probes, 

we have detected that sometimes the apparent length of the observed nanorod changes. 

This implies that the nanorod declines out of the plane of rotation of the magnetic field 

(Figure 8). This behavior was most often observed when the coil calibration became 

inaccurate, as a result of either a change in the ambient magnetic field – due to accidental 

rotation of the set-up or movement of a magnetic object in the lab – or heating of the coils 

due to an overly high current. This, in turn, led to an inaccurate cancelation of the ambient 

magnetic field and resulted in a slight bias of the rotating field. The problem was easily 

resolved by recalibrating the system and did not significantly hamper the rheological 

measurements. It did, however, allow us to document an interesting regime of nanorod 

rotation that was theoretically predicted for soft magnetic nanorods (25), but never 

experimentally observed.  

The explanation of this phenomenon is as follows. The net magnetic torque on the 

nanorod is always directed along the shortest path between the nanorod and the magnetic 

field. When the vectors of magnetic moment and external rotating field form an angle θ 

that is much smaller than 180 degrees, the net torque sin m Β drives the nanorod to 

rotate in the focal plane as shown in Figure 8 A and B. When the magnetic moment is 

antiparallel to the applied field, the magnetic torque is sin 0  m Β , and any out-of-

plane bias field changes the torque direction causing the nanorod to decline from the focal 

plane as shown in Figures 7 C, D, and E. When a nanorod rotates near its critical frequency, 

it spends a relatively long time in the direction antiparallel to the magnetic field. At this 

position, the nanorod is sensitive to any small out-of-plane perturbations of magnetic field. 
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Figure 8. (Bottom) A gallery of snapshots of a ferromagnetic nanorod rotating at the 

onset of the out-of-plane rotation regime. (Top) A series of schematics to explain the 

behavior of the rod by illustrating the 3D orientations of the magnetic field B (orange), 

the orientation of the magnetic moment of the nanorod m (blue), the angle θ along the 

shortest path between m and B, the projection of m on a plane parallel to the rotation of 

the field (grey), and the angle φ that the projection makes with a stationary axis. The 

magnetic field rotates in the focal plane, while the nanorod and associated magnetic 

moment vector comes out of plane. The more the nanorod comes out of plane, the shorter 

its projection on the focal plane becomes. (A, B) the angle θ is relatively small and lies in 

the focal plane, so the nanorod rotates in the same plane. (C) As the angle θ approaches 

180, a small out-of-plane bias magnetic field makes the angle θ come out of the plane, 

causing the nanorod to stick out of the plane. (D) Once the nanorod gets out of the focal 

plane, it follows the shortest path to the magnetic field. (E) The nanorod orientation 

approaches the focal plane, but never makes it exactly in-plane again.  

An extracted trajectory 𝜑(t) and associated apparent length 𝑙(𝑡) of the nanorod are 

shown in Figure 9. In contrast to Figure 7 where the apparent length does not change during 

the observation time, in Figure 9, the apparent length of the nanorod changes with time. 

Quantitatively, one can characterize the level of nanorod deviation from the plane of field 

rotation by introducing the declination angle 𝛽 = arccos(𝑙𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡/𝑙), where 𝑙𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 is 

the length of visible projection of the nanorod on the focal plane, i.e. the plane of field 
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rotation and 𝑙 is the actual length of the nanorod. The shorter the apparent length, the 

greater the inclination angle of the nanorod axis with respect to the plane of field rotation; 

the angle 𝛽 approaches 𝜋/2 as the apparent length 𝑙𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 goes to zero and approaches 

zero as the apparent length approaches the actual length, 𝑙𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 ≈ 𝑙 implying that the 

rod is closer to the plane of rotating field. The graphs in Figure 9 confirm that the nanorod 

is subject to the out-of-plane precession. The plots reveal that until frame 400, the nanorod 

asynchronously rotates in plane of the field rotation. At frame 400, out-of-plane oscillations 

(oscillation in angle 𝛽) appear and increase until frame 650, when the nanorod apparently 

switches to the out-of-plane synchronous rotation: the trajectory 𝜑(t) looks linear as it 

should be for a synchronous rotation of the nanorod with a rotating field. After frame 650, 

however, the apparent length of the nanorod oscillates around a declination angle of 50 

degrees. Thus, after frame 650, the nanorod rotation has a precession component as well 

as an oscillatory component around the precession cone.  
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Figure 9. (Top) in-plane angle of the rotating nanorod. (Bottom) apparent length of the 

nanorod along with extracted out-of-plane declination angle. 

A qualitatively similar out-of-plane rotation of a nanorod driven by a planar rotating 

magnetic field was predicted for a magnetically soft nanorod (25). As shown in Ref. (25), 

the nanorod magnetic moment does not have to align with the nanorod long axis and is able 

to decline under the influence of an external 2D magnetic field, i.e. a planar rotation of the 

nanorod is inherently unstable and no bias field is needed to push the nanorod out of plane. 

The tendency of the magnetic moment to align with the long axis of the rod is quantified 

by the materials parameter, the energy of magnetic anisotropy, K(26). When the material 
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is magnetically soft, K is small, the direction of the magnetic moment relative to the long 

axis of the rod can be easily changed; when the material is magnetically hard, K is large, 

and the direction of the magnetic moment can only be changed with a strong applied 

magnetic field. The nanorods used in this study were shown to be magnetically hard with 

the energy of magnetic anisotropy K=22*103 J/m3 (15). 

Cimurs and Cebers showed that the out of plane rotation of a magnetically soft 

nanorod describes a cone of the angle γ with the normal vector to the focal plane (25). This 

angle is related to the K parameter as (25): 

22

21 cos 1c

H a

B

B






   
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(8) 

where H is the frequency of rotating magnetic field, B is the magnitude of the applied 

magnetic field, Ba=K / Mr, , and Mr is the remanent magnetization of the nanorod material. 

Using the experimental values of the presented case – 𝜔𝑐 = 1.14 𝐻𝑧, 𝜔𝐻 = 2 𝐻𝑧 , B = 100 

𝜇T, Mr = 140*103 A/m , and K=22*103 J/m3 – we solve equation (5) to obtain the cone 

angle 𝛾 = 34° . This theoretical angle differs from the experimentally observed cone angle, 

= 90° − 𝛽 = 40° . Moreover, if we attempt to solve equation (5) for (B/Ba)
2, using 𝛾 =

40° , and the same experimental parameters, we obtain (B/Ba)
2 < 0, which is physically 

impossible. 

This discrepancy between theory and experiment comes from the assumption that 

the field is rotating in plane without any bias and the nanorod is magnetically soft. Thus, 

the Cimurs - Cebers theory is not sufficient to explain these experiments: there is a slight 

bias in the field and the nanorod material is magnetically hard. To understand the 
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contributions of both magnetic anisotropy and an out-of-plane magnetic field, a thorough 

study needs to be conducted to analyze the nanorod behavior as a function of these 

parameters. 

3.3.4 Supply system for nitrogen gas - water vapor mixture 

Figure 10. A schematic of the supply system of nitrogen of controlled humidity with a 

humidity sensor. 

To supply the nitrogen/water vapor mixture of controlled humidity to the 

environmental chamber, the design of Ref.(6) was adapted to our case (Figure 10). Initially, 

a pressurized dry nitrogen gas is split between two rotameters that allow for manual control 

of the flow through them. The gas that is fed through one rotameter is fed into a sealed 

flask and is bubbled through a deionized water reservoir to reach a saturation humidity. It 

is then mixed with dry gas fed through the second rotameter and led into a sealed chamber, 

where a humidity sensor (HIH-3040, Sparkfun) measures its humidity. The HIH-3040 
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humidity sensor was calibrated on the aqueous glycerol solutions of known concentrations 

according to the tabulated values of humidity.(27) By changing the relative flow through 

the two rotameters and reading the measured humidity from the sensor, one gains a 

complete control of the humidity of the fed nitrogen gas. Finally, the nitrogen gas of known 

humidity is fed to the environmental chamber with the sample. Due to the low heat capacity 

of the air, the gas temperature in the chamber is equal to the temperature in the room, which 

is measured with a thermometer (Traceable, Fisher Scientific).  

3.3.5 Determination of the lower bound of the flow rate in the environmental 

chamber.  

The supplied nitrogen leaves the environmental chamber (Figure 2.C.) through the 

outlet port directly into the atmosphere. Therefore, the possibility of counter diffusion of 

air from the atmosphere back into the environmental chamber was a concern. To diminish 

this counter diffusion, one has to ensure that the flow of gas leaving the chamber through 

the outlet port via advection is significantly greater than its flow due to molecular diffusion. 

The outlet diameter dout sets a characteristic scale for this transport problem: one can 

estimate whether advection prevails over molecular diffusion in an imaginary hemisphere 

of diameter dout adjacent to the outlet by calculating the Peclet number 𝑃𝑒 =  𝑈 ∙  𝑑𝑜𝑢𝑡/𝐷, 

where U is the mean flow velocity of nitrogen and D is the diffusion coefficient of the air 

or water molecules in nitrogen. The diffusion coefficients of the most important air 

components in nitrogen at 25C are known (28): the water vapor - D=0.21*10-4 m2/s ; 

carbon dioxide (CO2) – D=0.14*10-4 m2/s , nitrogen oxide (NO) D=0.18*10-4 m2/s. Thus, 

these individual gas components of air have roughly the same diffusion coefficient in 
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nitrogen. We take D=0.2*10-4 m2/s for the estimates of Peclet number. The mean velocity 

is calculated through the given flowrate Q as 𝑈 = 4𝑄/(𝜋𝑑𝑜𝑢𝑡
2 ) . With the flowrate Q = 1

Standard Cubic Foot per Hour (1 SCFH = 7.8 ∙ 10−6 𝑚3/𝑠 ), the Peclet number is roughly

𝑃𝑒 = 2.5 ∙ 102, suggesting that convective diffusion of the water vapor prevails over its

molecular diffusion in the chamber. Therefore, at the nitrogen flow rates above 1 SCFH, 

the air outside the chamber should not drastically change the partial vapor pressure in the 

chamber; one expects that the humidity measured in the supply system is about the same 

as that measured in the chamber.  

To verify this statement, a secondary humidity sensor (HIH-4030, Sparkfun) was 

temporarily placed directly inside the outer environmental chamber (Figure 3.C), nitrogen 

of various humidities and flow rates was passed through the system, and the readings from 

both sensors were compared (Figure 11). In the first experiment, a range of humidities was 

supplied at two flow rates 1 SCFH and 0.5 SCFH (7.8 ∙ 10−6 𝑚3

𝑠
and 3.9 ∙ 10−6 𝑚3/𝑠,

respectively). The humidity measured by the sensor embedded in the system was plotted 

against the humidity measured directly in the chamber for both cases (Figure 11.A) The 

black line represents a perfect correlation in humidities between the two locations. The 

blue and red points show the actual measurements and demonstrate the discrepancy in the 

humidities between the two locations. At the higher flow rate, the discrepancy is contained 

under 5% in the low humidity limit, while at low flow rate, the discrepancy reaches up to 

15%. Thus, for the uncertainty of the humidity measurement to be contained within 5%, 

the flow rate of at least 1 SCFH ( 7.8 ∙ 10−6 𝑚3

𝑠
) must be used. 
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In the second experiment, nitrogen of 0% humidity was supplied to the system at 

different flow rates. The measured values from both sensors are plotted against the flow 

rate in Figure 11.B. In an ideal situation, both sensors should measure 0%. Due to counter 

diffusion, however, the discrepancy between the sensors increases as flow rate is decreased. 

The discrepancy at 1 SCFH (7.8 ∙ 10−6 𝑚3

𝑠
) flow rate is roughly 5%, which is consistent 

with the estimations and the first experiment. We thus confirm the lower bound for the 

supplied gas flow rate to be 1 SCFH( 7.8 ∙ 10−6 𝑚3

𝑠
). 
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Figure 11. A. Calibration of the humidity in the environmental chamber with the system 

humidity. The high flow rate data correspond to the Peclet number of about 250, and the 

low flow rate data correspond to the Peclet number of about 125. B. Dependence of the 

water vapor content in the supplied system and in the chamber on the flow rate. The 

measurements were taken after the system had reached equilibrium and the values no 

longer changed. 

3.3.6 Micro and nanorheology 

The developed magnetic stage is able to work with different magnetic particles 

ranging from hundreds of nanometers to millimeters. Stainless steel microrods (50 μm in 

diameter) were used to replicate the tabulated viscosity of aqueous ethylene glycol 
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solutions of varying concentrations providing viscosities ranging from 1 mPa·s to 10 

mPa·s. The probes were placed in deionized water and the critical frequency 𝜔𝑐𝑟 was 

measured. Since the viscosity of water is known,  = 1 mPa·s, and applied magnetic field 

is known as well, this measurement has served as a reference specifying the 𝑚/𝛾 ratio. 

Then, the same probes were used to measure the critical frequency of solutions with 

different concentrations of ethylene glycol. Each solution gives its own critical frequency 

𝜔𝑐𝑟
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 from which the solution viscosity was calculated. The results of these

experiments are summarized in Figure 12 A, where the tabulated viscosity is shown as a 

solid line. The experimental points fall on this line confirming the validity of the developed 

protocol.  
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Figure 12. A) Profile of the measured viscosity of prepared aqueous ethylene glycol (EG) 

solutions using stainless steel SUS304 microrods. Tabulated values are taken from(29) 

and interpolated for the room temperature. The error bars indicate the standard deviation 

calculated from several measurements. (insert in A) A micrograph of a stainless steel 

SUS304 microrod in the studied solution. (B) The measured viscosity of aqueous 

glycerol solutions measured with nickel nanorods versus equilibrium humidity. The 

tabulated values are taken from Refs. (27) and(30) and interpolated for the room 

temperature during the experiment. Three probes were used to measure each point. (insert 

in B) A micrograph of a nickel nanorod in the studied solution. (C) The temperature 

dependence of viscosities of the Viscosity Standard S60 and 65% aqueous glycerol 

solutions. The dotted lines represent the tabulated values of viscosities. The solid symbols 

represent the data measured with nickel nanorods. Three probes were used for a Viscosity 

Standard S60 measurement and a single probe was used to probe viscosity of glycerol 

solution.    
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To illustrate the capabilities of the humidity control system, the aqueous glycerol 

solutions of various concentrations were studied by pumping the nitrogen-water vapor 

mixture through the chamber while keeping the temperature constant. The humidity of 

nitrogen gas was varied and, simultaneously, the solution viscosity was measured with 

nickel nanorods. Since the solvent (water) was free to condense or evaporate from the 

solution, the concentration of water changed in the sample until it reached equilibrium with 

the humid gas around it. Thus, by controlling the humidity around the sample, one controls 

the water concertation in the sample. Using rotating probes, one can directly relate the 

equilibrium humidity to viscosity. This is an important advancement for characterization 

of aqueous droplets and thin films, as it eliminates an unnecessary step of relating both of 

those parameters to concentration – a significant challenge for small samples. The 

interpolated tabulated values of equilibrium humidity as a function of concentration(27, 

31) and viscosity as a function of concentration(30) were used as the references.

The experimental protocol was as follows: nickel nanorods were prepared using

electro-chemical template synthesis and characterized in accordance with the protocol 

outlined in Ref. (15): the diameter and the magnetization were measured to be 340 ± 30 

nm and 160 ± 40 kA/m, accordingly; the length which changes after sonication of the 

prepared suspension, was extracted from the video analysis. An aqueous solution of 

glycerol of 50% by weight (79% equilibrium humidity at 22°C) was prepared, in which 

nickel nanorods were suspended. The humidity in the chamber was then altered to a desired 

value, thus initiating evaporation of water from the droplet. The critical frequency 

𝜔𝑐𝑟
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 was measured as a function of time, until the droplet reached equilibrium. The
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viscosity of solution at equilibrium was then calculated from the critical frequency and 

recorded for a given humidity and the process was repeated for a different humidity. The 

measured values of equilibrium viscosity as a function of humidity of the supplied gas are 

presented in Figure 12 B. Value for the viscosity for 100% humidity was measured by 

suspending nanorods in deionized water. Again, the experimental points fall on the 

tabulated curve, confirming the validity of the developed protocol.  

To demonstrate the effectiveness of the temperature control, we performed 

experiments with nickel nanorods in two temperature-dependent viscosity standards – 

Viscosity Standard S60 (Cannon Instrument Company) and 65% aqueous glycerol 

solution. To prevent liquid evaporation, all experiments were conducted in a closed 

container – a glass slide with a cover slip.  

The experimental protocol was as follows: the nickel nanorods were suspended in a 

sample, which was heated to a desired temperature at which the critical frequency 

𝜔𝑐𝑟
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 was measured, from which the viscosity was calculated and then correlated with

the tabulated value. The sample was then heated to a new temperature, and a new critical 

frequency was measured and viscosity was calculated. In Figure 12 C, the measured 

viscosities vs temperature of the S60 viscosity standard and the glycerin solution are 

presented along with the tabulated values of the viscosity standards.  

The developed magnetic stage with environmental control system is a convenient tool 

to study complex solutions undergoing different phase transportations upon solvent 

evaporation. As an illustration, we show a complex behavior of the viscosity of a 

surfactant-cosurfactant solution - cetylpyridinium chloride-sodium salicylate-brine (CPCl-
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NaSal). A phase diagram for this ternary system in the 2D cetylpyridinium chloride-sodium 

salicylate plane has been characterized structurally as well as rheologically in Refs.(32-

37). These papers dealt with the liquid phases only. The drying kinetics of this system and 

phase behavior, however, have not been investigated due to the difficulty of tracking of the 

rheological properties of a drying sample under varying conditions. Here, we present a 

comparison of the time-dependent microscopic viscosity as well as final morphology of 

two drop-casted samples of 2% CPCl-NaSal in 0.5% NaCl brine as they dry up in nitrogen 

of 0% and 57% humidity.  

The sample viscosity can depend on the probe location. The viscosity is measured at 

the location of the probe starting from deposition of the sample until complete 

encapsulation of the probe by a crystal dendrite. The period of probe rotation (τ = 5s) was 

chosen to be much greater than the relaxation time of the solution (τ = 0.14 ± 0.01s)(5); 

thus, the Newtonian model of liquid, eq. (4), accurately predicts the nanorod behavior 

(Figure 10, B) and no elastic contribution is detected. The time dependence of viscosity 

(Figure 10, A) of the two drying samples demonstrates some differences in the drying 

kinetics.  

When the film evaporates, the viscosity of both samples increases until it hits a plateau 

at relative viscosity of 2. The viscosity of both solutions remains almost constant for some 

time. This suggests that as both samples evaporate, they reach a phase in which either 

evaporation significantly slows down or the viscosity stops being dependent on the 

concentration of water. The local viscosity of a sample that was dried at 0% humidity, 

however, gets to the plateau more quickly and increases more sharply several seconds 
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before the crystal consumes the nanorod. The nanorod does not drift during the dendrite 

approach until the crystal embraces the nanorod completely.  

In contrast to this behavior, the local viscosity of the sample dried at 57% humidity 

leaves the plateau phase more slowly and takes several minutes to gradually increase its 

value. During the crystal growth, two nanorods were captured on the video. The nanorod 

that is positioned closer to the dendrite moves towards it significantly quicker than the one 

located farther away. This suggests that some flow has been developed in the crystal 

vicinity. The final microstructure of the sample (Figure 10, D, left) appears drastically 

different from that formed at 0% humidity (Figure 10, C, left).  
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Figure 10. (A) The time dependence of viscosity in a thin film of CPCl-NaSal drying in 

pure nitrogen (0% humidity) and in nitrogen of 57% humidity. The viscosity is measured 

at the location of the probe starting from the moment of film deposition until complete 

encapsulation of the probe by a crystal dendrite. (B) An extracted trajectory along with its 

fit by eq. (4) for the nanorod in the film held at 57% humidity. To avoid any elastic 

contribution to the probe rotation, the period of rotation was chosen to be much lower 

than the relaxation time of the solution. [55] (C left) A polarized micrograph of a sample 

dried at 0% humidity. A multidomain structure with cracks or grain boundaries is 

observed. (C right) A gallery of snapshots showing a nanorod in the vicinity of a growing 
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dendrite. The dendrite grows relatively fast and the nanorod does not drift in the sample. 

(D left) A polarized micrograph of a sample dried at 57% humidity. Multiple dendrites 

are ordered in arrays. (D right) A gallery of snapshots showing a nanorod near a growing 

dendrite. As the crystal grows near the nanorod, the nanorod gets pulled towards the 

crystal, indicating that the growing crystal generates a flow. 

3.4 CONCLUSION 

A multifunctional magnetic stage for optical microscopy with temperature and 

humidity control was developed. It addresses the challenges associated with magnetic 

probing of materials at the hundreds of microTesla magnetic fields. By applying a special 

procedure to zero out a bias ambient magnetic field and apply a uniform rotating field to 

rotate magnetic probes, the stage was used for analysis of rheological properties of fluids 

of viscosities ranging from mPa·s to Pa·s with measurements carried out in as little as 10 

seconds. To demonstrate the reliability and robustness of the instrument, the rotation of 

magnetic probes of various sizes has been tracked to study a wide range of solutions with 

different viscosities in different environmental conditions. By performing viscosity 

measurements on samples of aqueous glycerol solutions with a free surface in a controlled 

humidity, it has been demonstrated for the first time that viscosity as a function of humidity 

can be directly measured without explicitly linking viscosity through concentration of a 

volatile component. The technique also allows one to study kinetics of evaporation and 

solidification of a model for different complex fluids. A surfactant-cosurfactant system 

(CPCl-NaSal) was used as an illustration of its complex phase behavior at different 

humidities.  

We envision that this multifunctional magnetic stage will be useful not only for the 

environmentally controlled nano- and microrheological studies, but also for various 
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applications where optical tracking of response of material or probes to low magnetic fields 

is critical. 
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CHAPTER IV

VISCOSITY OF HEMOLYMPH OF ADULT BUTTERFLIES AND MOTHS

4.1 INTRODUCTION 

As reviewed in chapter 1, one of the primary roles of hemolymph in adult 

Lepidoptera is the transport of nutrients from the fat body to the muscles. This process is 

aided by special multifunctional polymer particles working as the shuttles first taking the 

fuel in from the fat body and then carrying it to the muscles through the circulating 

hemolymph. These nanoparticles are identified as the high-density lipophorins (HDLP), 

low-density lipophorins (LDLP), apolypophorin-III (apoL-III), and lipid transfer particles 

(LTP) (1, 2). Typically, lipoproteins are charged (3). It has been hypothesized that apoL-

III uses its charges to stabilize its coiled configuration in polar hemolymph (1, 2).  

The three-dimensional atomic structure of apoL-III found in L. migratoria was 

determined using X-ray scattering (4). This analysis reveals that the apoL-III nanoparticle 

in the globular state is an elongated ellipsoid with an aspect ratio of about 3. HDLP and 

LDLP are spherical particles (5). From the data on their molecular weight, Mw, and 

density, D, we can estimate their volume, V, as: MwV
D

  and diameter, d, as

1/3
6V

d


 
  
 

. For HDLP, using MwHDLP = 600 kDa (6) and DHDLP = 1.15 g/ml (7), we 

estimate the diameter dHDLP ≈ 12 nm. This is smaller than what was reported by Ryan as 

measured from SEM images, dHDLP ≈ 17 nm (8). For LDLP, using MwLDLP = 1560 kDa 

(7, 9) and DLDLP = 1.03 g/ml (7, 9), we estimate the diameter dLDLP ≈ 16 nm, which is 
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considerably smaller than that has been measured in Locusts migratora, dLDLP ≈ 30 nm 

(10). 

Figure 13. (left) Three-dimensional structure of apoL-III as reproduced from X-ray 

scattering analysis with 2.4 angstrom resolution (4). (Image reproduced from (11)) (right) 

SEM image of Lipid transfer particles (labeled with a red arrow) and HDLP, spherical 

particles of diameter d ≈ 17 nm (labeled with a blue arrow) (Image reproduces from (8)). 

Concentrations of most of these constituents in hemolymph are largely 

documented for M. sexta. The mass concentration of apoL-III in adults, is 
, 3A aC  = 17±5 

mg/ml (12). Roughly half of apoL-III, 
, 3, , 3,A a free A a asC C  ~ 8.7 mg/ml are freely 

dispersed in hemolymph, and half of it is associated with LDLP. For comparison, the 

concentration of apoL-III in caterpillars is 
, 3C aC = 0.46 mg/ml and none of it is associated 

with lipophorins (12). Stoichiometrically in adults of M. sexta, 2 apoL-III particles are 

associated with HDLP and 16 apoL-III are associated with LDLP, so the molarity M of 

these particles can be expressed as , 3, 16 2A a as LDLP HDLPM M M  . Concentrations of 

HDLP and LDLP in hemolymph vary and depend on the particular activity of an insect. 

To the best of my knowledge, their total concentration has not been yet reported. When 
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the insect is at rest, however, a molar ratio of 10 HDLP : 1 LDLP particles is maintained, 

10HDLP LDLPM M (13). 

The concentration of LTP is be low in Locusta migratoria; only 160 μg was found 

in 400 mg of extracted protein (14). This suggests that it only serves as a catalyst and has 

no rheological consequences. 

Summarizing available data from the literature on resting M. sexta, the following 

estimates are calculated. 

From the concentration 
, 3A aC and molecular weight 

, 3w aM  of apoL-III in adults, 

we calculate its molarity as: 
, 3

3

3

17

0.94

18100

A a

a

a

g

C mmolL
M

gMw L

mol

 
           
 
 

. Since half of it 

is associated, 
, 3, 0.5A a as

mmol
M

L

 
  

 
. 

Since , 3, 16 2A a as LDLP HDLPM M M   and 10HDLP LDLPM M , 

, 3, 16 20 36A a as LDLP LDLP LDLPM M M M   and thus, 0.015LDLP

mmol
M

L

 
  

 
 and 

0.15HDLP

mmol
M

L

 
  

 
. 

We can then estimate the mass concentration of each particle as 

C M Mw  (4.1) 

and the estimated mass concentrations of HDLP, and LDLP are 90HDLPC   mg/ml, and 

23LDLPC   mg/ml. 
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We can then estimate the volume fraction of each particle as 

p
C

D
  (4.2) 

And the estimated volume fractions of apoL-III, HDLP, and LDLP are 
3, 0.01a free  , 

0.08HDLP  , and 0.02LDLP  . 

Table 2. Literature values and our estimations of the molecular weight, density, 

concentration, volume fraction and particle diameter of constituents of hemolymph. 

Particle 

Molecular 

weight, Mw 

[kDa] 

Density, D 

[g/ml] 

Concentration 

in hemolymph 

of M. sexta 

adults, C 

[mg/ml] 

Estimated 

volume 

fraction, φp 

Estimated 

particle 

diameter, d 

[nm] 

Apolipophorin-I 240 (15, 16) N/A N/A N/A N/A 

Apolipophorin-II 240 (15, 16) N/A N/A N/A N/A 

Apolipophorin-III 18.1 (17) 1.374 (17) Total: 17±5 

(12) 

Free: ~ 9 

Associated: ~ 

9 

Free, 

estimated as: 

0.01 

1.8 

Aspect ratio: 3 

(Breiter, 

Kanost et al. 

1991) 

HDLP 600(6) 1.15 (7) Estimated as: 

90 

Estimated as: 

0.08 

Estimated: 12 

Measured: 17 

(8) 

LDLP 1560 (9) 1.03 (9) Estimated as: 

23 

Estimated as: 

0.02 

Estimated: 17 

Measured in L. 

migratora: 30 

(10) 

LTP 900 - 1400 

(18) 

1.23 (19) Trace amounts 

(14) 

~ 0 6.4-7.5 

Similarly to the vertebrates, different salts are dissolved in the blood of insects. 

Estimated from the Bombyx mori data, total concentration of salts is 2.9 g/l (20). 

4 Lower-end estimate, calculated from amino acid composition 
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Hemolymph contains many other biopolymers carrying different functions; however, 

concentration of these biopolymers is much smaller and hence their contribution to 

viscosity is presumably insignificant. Dissociated salt ions and proteins affect the 

conductivity of hemolymph and significantly influence the rheological behavior of 

hemolymph through long range electrostatic interactions sometimes leading to the protein 

folding/unfolding and self-assembly into macromolecular networks.  

In this chapter, we use the microrheological methodology developed in the previous 

chapter to probe viscous and surface properties of minute volumes of hemolymph and use 

them to study three species: Monarch butterfly (Danaus plexippus), Painted Lady butterfly 

(Vanessa cardui), and Hawkmoth (Manduca sexta). We hypothesize that the viscosity of 

hemolymph across species will increase with the volume fractions of solid particulates as 

well as with the amount of charged hemolymph constituents.  

To evaluate this effect, we estimate the Debye length by measuring the resistivity 

of the liquid and apply theory described in Chapter 14 of (21). To evaluate the 

contribution of the other proteins in M. sexta, meanwhile, we assume that they constitute 

all currently unaccounted components with the average density of 1.37proteinsD   g/cm3 

(22). Using the results from Table 4, this means that the concentration of these proteins is 

Cprotein,other = 0.04 g/ml, and the contributing volume fraction is φproteins,other = 0.03. 

4.2 THEORETICAL VISCOSITY OF A SUSPENSION 

For a more comprehensive review of this topic, see (23) 
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Addition of particles to a liquid carrier typically increases the macroscopic 

viscosity of the suspension. Einstein was the first to quantitatively describe this effect 

considering a dilute suspension of spherical particles; then great progress has been done 

generalizing this theory to more concentrated dispersions (24, 25) . Elongated (26) and 

dumbbell-shaped (26, 27) particles significantly increase the drag force and torque, 

disturbing larger liquid volume during the motion. Therefore, even if present in a minute 

amount, elongated particles may significantly alter viscosity. 

 Insects, including butterflies and moths, generate minute shear stresses during 

locomotion and flight. Consequently, reviewing the existing theories of suspension 

viscosities, the zero-shear rate limit is of the main importance for us. Moreover, the 

volume fraction of biopolymer particles in hemolymph of adult Lepidoptera is of the 

order of 0.1 (Table 1). Therefore, only the limit of small concentration of spherical and 

elongated particles is of interest. 

If a liquid carrier without particles has viscosity 𝜂𝑠, after addition of particles of the 

volume fraction φp, the viscosity of suspension, η, increases as  

  1s p     (4.3) 

where   is called the intrinsic viscosity (23). The intrinsic viscosity contribution arises

from the viscous dissipation produced by the flow around a single particle. As the 

concentration of particles increases, the particles start to interact with each other and hence 

viscosity increases, which can be described by the following equation (23) 

  21s p pk       (4.4) 

where coefficient k depends only on the particle geometry. 



78 

Hemolymph contains both spherical particles, such as LDLP and HDLP, as well 

as elongated particles, such as Apol-III and LTP. To specify the constants   and k in

eqs. (4.3) and (4.4). We therefore review the existing viscosity theories for dispersions 

with spherical and elongated particles  

4.2.1.1 Spherical particles 

For spherical particles, the intrinsic viscosity was calculated by Einstein in 1906 (24) 

to be   5
2sphere

   . The second order coefficient for a scenario where convective flow 

was more important than Brownian motion was calculated by Batchelor in 1977 (25) as k 

= 6.2, making the resultant expressions for viscosity,

2  51 6.2
2 p p

s


 


   (4.5) 

This equation well describes the data obtained for sterically stabilized polystyrene 

spheres of diameter d=430 nm and 870 nm up to φp < 0.1. In 1989, de Kruif (28) showed 

that a semi-empirical equation  

2

1 p

m
s






 
  
 

(4.6) 

explains viscosity of colloidal dispersions with the volume fraction of particles less than 

0.6, φp < 0.6, irrespective of the particle size; here φm is the maximum packing fraction. 

For the low shear rate limit of interest, φm = 0.63 (φm = 0.71 for the high shear rate limit). 

Taylor expanding the de Kruif equation up to the 4th order  

2 3 4

2 3 4

2 3 4 5
1 p p p p

s m m m m


   

    
     (4.7) 
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and comparing it with equation (4.6), we confirm that equation (4.7) satisfactorily 

describes all models for the volume fraction of particles less than 𝜑𝑝 < 0.25 (Figure 14). 

Figure 14. Dependence of relative viscosity on the volume fractions of spherical particles 

according to three models: Einstein, Batchelor, and de Kruif, as well as the de Kruif 

equation which has been Taylor expanded to the 4th order with respect to φp. The y-axis 

(/
s
) is logarithmic.

4.2.1.2 Elongated particles 

Consider an elliptical spheroid with an aspect ratio /p l d , where d is the diameter 

of the particle and l  is its length. Hinch and Leal (29) calculated the intrinsic viscosity to 

be   5 0.777
2

   for a spheroid of a small aspect ratio, p=1+ε, where 𝜀 < 1 and 

 
 

24

15ln

p

p
   for p . Following Doi and Edwards (30) we can find the intrinsic 

viscosity for cylindrical particles to be 

 
1

2 2 1/2
2

4 2 1/2 2 1/2

1 2 1 ( 1)
1 l

5
n 1

2 ( 1)4 ( 1)

8 p p p
p

p p p p p








 
  

  
  

  
  (4.8) 
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For elongated particles, the particle-particles interactions are expected to play a 

role when the particles can no longer rotate freely, or when the number concentration of 

rods v reaches a value proportional to L3, where L is the length of the particle. It has been 

experimentally shown (31) that the proportionality constant is roughly 30, meaning that 

the transition occurs when  
22 230 / 4 24 /p d L d L   . The concentration of known

elongated particles present in hemolymph (apoL-III ) is lower than the expected transition 

concentration; thus no particle-particle interactions will be considered. 

The intrinsic viscosity of isolated M. sexta apoL-III particles in a sodium 

phosphate buffer of pH 7.0 has been previously measured to be apoLIII    = 5.98± 0.09

(32). This value corresponds to a cylinder with the aspect ratio of 4.1 using the Doi 

Edwards model (4.8). The discrepancy between the direct measurement and the inferred 

measurement via intrinsic viscosity could be due to the effect of surface charge of the 

particle, which would increase the apparent size and volume fraction of the particle. We 

discuss this phenomenon in the next section.  

4.2.1.3 Effect of charge of spherical particles on viscosity 

Any surface charge present on the suspended particles changes the viscosity of the 

liquid. This happens because the charge changes the effective size of the particles 

suspended in the liquid, which, in turn, changes the effective maximum packing factor. 

Following the logic of Ref. (21), we arrive at the conclusion that the maximum packing 

factor and the effective volume fraction of charged particles at low shear rates scale as  
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 

 

3

3

0.63 2 /

2 /

m

eff p

r b

r b



 





(4.9) 

respectively, where r is the particle radius, and 

  
 

1

2 2

0

ln / ln / ln / ...

4 exp 2 /s s B

b

r r k T

   

     

   


(4.10) 

where 
1 0

22

s

A

kT

N e I

 
    is the Debye length, 

0 is the permittivity of free space, 
s is the 

dielectric constant of the solvent, 
s is the surface potential, kB is the Boltzmann constant, 

and T is the temperature, NA is the Avogadro’s number, e is the elementary charge, and I is 

the ionic strength of the liquid. For aqueous solutions at room temperature, 
1 0.304

I
  

and the ionic strength is expressed in mol/L. In an unknown solution, the Debye length can 

be calculated from the measured resistivity, ρ, as (33): 

1

0 iD    (4.11) 

where Di is the diffusion coefficient of the ions, which in aqueous solutions ranges 

between 0.6*10-9 to 2*10-9 m2/s (34). 

At p m   the system follows equation (4.6) with a corrected effective packing 

fraction fairly well (21) : 

   
 arg 2 3

3 62

2 3
1

2 / 2 /

ch ed

p p p

s m m

O
r d r d


  

  
    (4.12) 

We can numerically analyze the dependence of the relative viscosity on the volume 

fraction at different resisivities of the solution (Figure 15, left) and on the surface charge 

of the particles at different volume fraction of charged particles (Figure 15, right).  
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Figure 15. (Left) A plot of relative viscosity as a function of volume fraction of charged 

particles at different resisitivities of the liquid and surface potential ψs = 50 mV. (Right) 

A plot of relative viscosity as a function of surface charge on the particles at different 

volume fractions of the charged particles and resistivity ρ= 2 (Ω-m). All calculations 

performed for the particles of radius r =10 nm,  

At the volume fractions above the threshold packing fraction, 
p m   , a phase 

transition occurs, and the dispersion behaves like a viscoelastic solid with the shear 

modulus dependent on the volume fraction, particle size, and ionic strength. (21) This 

behavior lies outside the scope of this work and will not be described further. 

4.2.2 Expected viscosity of hemolymph 

As discussed, hemolymph is a mixture of different particles that differ in size, aspect 

ratio, and surface charge. When spherical and elongated charged particles, are mixed 

together in a suspension, each particle interacts with the liquid and sometimes with other 

particles. The interaction between the particle and the liquid depends on the shape and the 

surface charge of the particle as well as the Debye length of the liquid.  

According to (25), these particle-particle interactions cause second – or higher – order 

dependencies of φp. The coefficient of interaction between spherical particles is 

irrespective of the size (25). Determination of the interaction coefficient between 
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elongated and spherical particles requires analysis of interparticle polarization and 

collisions, which is out of the scope of this work. Instead, we assume that the coefficient 

of particle-particle interaction is the same across all particles. We apply this logic to the 

Taylor expanded de Kruif model, and assume that any interactions of O(φp
2) or higher 

follow the rules of spherical particle interactions. Thus, the expression for the estimated 

viscosity of hemolymph, 
h , thus becomes 

   

  2 3 4

2 3 4

1

3 4 5

h
i i tot

iw

tot tot tot tot

m m m

f

f


  



   
  

  

  


(4.13) 

where φtot is the total volume fraction of particles. Since hemolymph has multiple 

components of different mass fractions and densities, the challenge now becomes finding 

the values of all φi and φtot. Since a lot of data is available for the composition of the lipid 

transfer system in M. sexta, we are able to specify the contribution of HDLP, LDLP, and 

apoLIII explicitly. For the estimation purposes, we can treat the rest of the constituents as 

black-box ‘protein’. The prediction for viscosity of hemolymph of M. sexta disregarding 

all charge effects thus becomes: 

   1h
sphere HDLP LDLP protein apoLIII apoLIII tot

w

f


      


            (4.14) 

where 2 3.17sphere
m




     and apoLIII   = 5.98± 0.09 (32).

Some proteins in hemolymph are charged and are believed to use their charge to 

stabilize themselves (15, 35, 36). Since the surface charge of spherical particles changes 
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the effective particle size (21), the same argument can be made for elongated particles 

with a small aspect ratio, such as apoliopophorin-III. The surface charges of individual 

particles have not been determined. Instead, we will assume that all particles have some 

average surface charge. Thus, for the particles in hemolymph, the effective volume 

fraction of each type of particle will be adjusted as  
3

, 2 /i eff i i ir b 


 .

Thus, the expression for the viscosity of hemolymph in terms of its known 

constituents is: 

     

   

3 3 3

3 3

1
2 / 2 / 2 /

2 / 2 /

proteinh HDLP LDLP
sphere

w HDLP HDLP LDLP LDLP protein protein

apoLIII tot
apoLIII

apoLIII apoLIII average average

r b r b r b

f
r b r b
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



 


 
        
 

 
      
 

(4.15) 

where raverage is the average radius of particles in the sample and baverage is a function of 

raverage. 

4.3 EXPERIMENTAL RESULTS 

Viscosity of hemolymph droplets of two butterflies (D. plexippus and V. cardui) 

and one moth (M. sexta) were measured. The droplets were placed on the MRS stage and 

covered with a cap; a nitrogen gas of 100% water vapor humidity was continuously 

flashed through the chamber as discussed in Chapter 3. To verify the hemolymph stability 

against coagulation or droplet evaporation, the viscosity was measured as a function of 

time for 35 minutes. The stability experiment (Figure 16, insert) revealed that the 

viscosity remains stable for about 17 minutes before it started rapidly increasing. The 
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viscosity that was measured during this stable time period was considered as the viscosity 

of the unchanged hemolymph and was compared across the species; the data that were 

obtained after the stable period were disregarded. The number of measurements that were 

performed is presented in Table 3. 

Table 3. The number of adult specimens studied, number of probes used, and the number 

of measurements performed during the whole study as well as during the time, in which 

the sample was stable. 

D. plexippus

(Monarch)

V. Cardui

(Painted Lady) 

M. sexta

(Hawkmoth) 

Collected within the 

stable time segment 

# of insects 5 8 10 

# of nanorods 9 11 16 

# of 

hemolymph 

droplets 90 22 94 

Total samples 

collected within the 

stable and the 

unstable segments 

# of insects 6 8 10 

# of nanorods 12 12 16 

# of 

hemolymph 

droplets 134 45 120 

The hemolymph viscosity during the stable regime of D. plexippus and V. cardui, 

and M. sexta was η = 1.4± 0.5 mPa*s, 1.6± 0.5 mPa*s, and 2.4± 1 mPa*s respectively. 

The results are demonstrated in Figure 1.b. The error bars represent the standard 

deviation of the measurements, calculated from the statistical distribution of the results. 

The statistical significance of the results against the viscosity of DI water (results 

obtained in chapter 3) was determined using the 1-way t-test and the results are presented 

above the bar graphs in Figure 16. 
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Figure 16. Comparison of the measured hemolymph viscosity values for adult M. sexta, 

V. cardui, and D. plexippus. All measurements were made during the stable viscosity

window of time. (insert) The relative viscosity vs time of hemolymph of the three

species. The viscosity remains stable during the first 17 minutes of testing. Statistical

significance was analyzed with a 1-way t-test against DI water measured with the same

method at the same conditions. # - no statistical difference (p’ > 0.05). * - statistical

difference with p’ < 0.05. ** - statistical difference with p’ < 0.01.

To determine the causes of increased viscosity of hemolymph in different species, 

we analyzed the solute mass fraction w, the resistivity ρ, the concentration of proteins Cp, 

and the particle size distribution. The results are presented in Table 4. 
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Table 4. The solute mass fraction obtained from drying of hemolymph samples, the 

concentration of proteins obtained from a UV-vis spectrum, average particle radius 

obtained from dynamic light scattering, and the resistivity of hemolymph of adults of 

three species of Lepidoptera: M. sexta, V. cardui, and D. plexippus. The total number of 

samples produced from the number of specimen studied is indicated under the results.  

D. plexippus

(Monarch)
V. cardui

(Painted Lady) 
M. sexta

(Hawkmoth) 

Solute mass fraction, w 
(wt%) 

0.108±0.009 0.127±0.013 0.150±0.015 

N (insects : droplets) (3:9) (3:9) (3:10) 

Concentration of 
proteins, Cp (UV-Vis) 
[mg/ml] 

90±40 Not studied 130±10 

N (insects : droplets) (1:1) (0:0) (1:1) 

Average particle 
diameter, d (DLS) [nm] 

6.1±0.3 7±0.5 8.2±0.6 

N (insects : droplets) (2:8) (2:8) (3:28) 

Resistivity, ρ [ohm-m] 
Not studied 1.3 1.6±0.1 

N (insects : droplets) (4:6) (1:1) (0:0) 

Due to the adherent nature of some hemocytes, they sometimes attached 

themselves to the probes. When that happened, the hemocyte began rotating with the 

probe. Figure 17 A, illustrates an example of such a behavior in the hemolymph of 

painted ladies where six hemocytes adhered to two probes. One batch of the studied D. 

plexippus had an increased cell count, which was most likely caused by a disease. In 

those samples, the cells have been adhering to the probes and to each other, forming large 

networks; an example of this in presented in Figure 17 B. This phenomenon is 

predominant in clotting of hemolymph of caterpillars, where the hemocyte count is much 

higher than that in adults. We study this in detail in the next chapter.  
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Figure 17. Hemocytes adhering to the nanoprobes in samples of hemolymph of (A) adult 

V. cardui, (B) presumably diseased adult D. plexippus, exhibiting an abundancy of

hemocytes.

4.4 DISCUSSION 

Having measured the viscosity and resistivity of hemolymph, the average size of 

particles and the concentration of proteins for three species of Lepidoptera, we can 

evaluate the significance of several physical parameters on the overall viscosity. Namely, 

we calculate the expected viscosity for the three species using Batchelor’s and de Kruif’s 

approximations (equations (4.5) and (4.6)), which assume that all particles are spherical. 

To allow for comparison across species, we assume that the density of all the solutes is 

the same, 1.37solutes proteinsD D  mg/ml, as suggested by (22). The models describe the 

measured viscosities in D. plexippus and V. cardui well, but fall short in describing the 

viscosity of M. sexta (Table 5).  
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Table 5. Estimated viscosity of the three species, according to the Batchelor and the De 

Kruif models. The mass fractions were converted to volume fractions by assuming that 

all constituents are proteins with a density of 1.37 mg/ml (22). The units of calculated 

viscosity are mPa-s. 

D. plexippus V. cardui M. sexta

(Monarch) (Painted Lady) (Hawkmoth) 

Batchelor, equation (4.5) 1.4 1.5 1.6 

de Kruif, equation (4.7) 1.4 1.6 1.7 

Better knowledge of the constituents of hemolymph in M. sexta that are responsible 

for energy transfer allows us to better estimate the viscosity of hemolymph of that species 

and look closely at the contributions of each constituent to the total viscosity. We first use 

equation (4.14) along with the densities and the estimated volume fractions from Table 2 

and the intrinsic viscosity of apoL-III obtained by Kawooya et al. to be apoLIII    = 5.98 ±

0.09 (32). Overall, the model does not predict the viscosity of M. sexta any better than the 

simplified Batchelor or De Kruif models.   

Using the same parameters, but taking into account the conductivity of the liquid 

and the surface charge of the particles with equation (4.15) yield much more promising 

results. Due to the lack of information on the surface charges of the constituent particles 

in hemolymph, we cannot directly use the charged particle model to predict the viscosity. 

Instead, we use the measured viscosity and conductivity of hemolymph of M. sexta and 

assume that an average particle surface potential is in the millivolt range (Figure 18). We 

then find the surface potential that results in the average measured value of viscosity to 
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be 7 mV, which is similar to the surface charge of serum lipoproteins (3). The 

contributions of the known constituent particles are presented in Table 6. According to 

this model, the interactions between the energy carriers and the liquid constitute roughly 

80% of the viscosity increase.  

Table 6. Estimated viscosity from equations (4.14) and (4.15). The units of calculated 

viscosity are mPa-s 

apoL-III 

(ηapoLIII)

HDLP 

(ηHDLP) 

LDLP 

(ηLDLP) 

remaining 

protein (ηprotein) 

particle-

particle f(φtot) 

total 

(ηhemolymph) 

Non-charged, 

eq (4.14) 

0.03 0.25 0.07 0.09 0.19 1.6 

Charged, eq 

(4.15) 

0.10 0.42 0.10 0.14 0.64 2.4 

Figure 18. Dependency on the predicted viscosity of hemolymph of M. sexta – as well as 

partial viscosity contributions of the hemolymph constituent particles – on the average 
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surface charge of the particles. The measured value of viscosity (2.4) corresponds to 7 

mV average charge.  

The fact that the viscosity of the two butterflies, V. cardui, and D. plexippus, can 

be described by a model that ignores charged particles leads one to believe that the 

average charge of the particles is low. This could either be due to the charged particles 

themselves having a structure that leads to a lower surface charge than that in M. sexta or 

that the charged particles having the same structure, but with the concentration of the 

charged particles much lower. The second scenario is more likely and could be explained 

by a supposition that the lipid carrying particles are the main source of surface charge. 

Then, since the heavier M. sexta moth requires more energy to fly than the lighter 

butterflies, the concentration of charged lipoproteins is higher. We check this hypothesis 

in chapter 10 by studying the surface properties of hemolymph: since lipoproteins are 

surface active, their higher amount should more greatly affect the surface tension of the 

liquid. 

4.5 CONCLUSION 

We have measured the micro-scale viscosity of hemolymph of three species of 

Lepidoptera, M. sexta, V. cardui, and D. plexippus, using modified MRS. We have used 

several rheological models to describe the measured viscosity in the context of what is 

known about hemolymph constituents. To aid these theoretical descriptions, we have also 

measured the mass fraction of solutes in hemolymph by evaporating water from 

hemolymph, the concentration of proteins from UV-Vis spectral analysis, and the Debye 

length of the liquid from resistivity measurements. We have found out that the viscosity 
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of hemolymph of lighter butterflies, V. cardui, and D. plexippus, can be described using 

models of solid particle suspensions, while the viscosity of hemolymph of heavier M. 

sexta moths can only be explained by taking the charge of these particles and the Debye 

length of the liquid into account. This leads to a supposition that the concentration of 

charged particles in the hemolymph of the moth is much higher that of lighter butterflies, 

presumably due to higher energy requirements for flight. 

4.6 MATERIALS AND METHODS 

4.6.1 Viscosity measurement of hemolymph 

The measurement of viscosity of hemolymph was performed with the modified 

MRS method (discussed in detail in chapter 3), which is capable of measuring a mPa·s 

level viscosity of nanoliter droplets and micron thick films in a 10-20 second timeframe. 

The method is based on tracking and analyzing the rotation of nickel nanoprobes 

suspended in the liquid sample and rotated with a rotating magnetic field. 

4.6.2 Sample preparation for MRS 

To prepare a sample of hemolymph for MRS, a slide with a well was cleaned and 

placed in the magnetic stage. A 20 μL of methanol with suspended nanorods was 

sonicated and placed on the side. The methanol was allowed to evaporate, leaving the 

nanorods on the slide. The environmental chamber was then fastened to the stage and one 

hundred percent humid nitrogen was passed through it. After allowing the chamber to 

come to equilibrium, hemolymph was pipetted from a capillary tube onto the glass slide 

with the nanorods. Special care was taken to ensure that no air bubbles were created in 
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the sample during this deposition. The hemolymph was agitated to evenly disperse the 

rods using a clean glass rod. 

4.6.2.1 Extraction of hemolymph 

Traditionally, extraction of hemolymph for biochemical analysis was done by first 

decapitating the insect, placing the insect into the desired solution, and centrifuging the 

insect. For the study of physical properties, it was necessary to extract undiluted 

hemolymph and either work with it as such, or dilute it at known dilutions. Furthermore, 

it was important to minimize the contamination of the sample with scales. Thus, new 

extraction procedures were developed for each species.  

Insects were restrained at the wings with a clothes pin to prevent excessive 

movement and scale contamination. An incision was made and the hemolymph was 

collected using capillary action of a 5 μl or 20 μl capillary tube (Durmmond, 1-000-0050 

or 3-000-210, respectively) immediately upon exiting the body. The details of extraction 

protocol for both butterflies and moths are presented in Figure 1.  

Typically, in both species of butterflies studied, hemolymph began exiting the 

body immediately after the incision and forms a small droplet at the wound. The flow rate 

of hemolymph and the volume of the droplet, however, varies between specimens. This 

produces a challenge during collection. When the volume of the droplet is not sufficient 

to form a meniscus on the internal wall of the capillary tube, capillary action does not 

occur and no hemolymph can be collected. In that case, a capillary tube with a smaller 

inner diameter needs to be used. Once the meniscus forms and capillary action occurs, 

however, 0.5-3 microliters of hemolymph can be collected. This process can take 
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between 5 seconds to several minutes, depending on the flow rate of hemolymph as it 

exits the body. Once inside the capillary tube, the collected hemolymph is not exposed to 

the atmosphere and does not change its color or properties for tens of minutes, suggesting 

that it undergoes no evaporation or oxidation. 

The measurements for M. sexta moths were particularly challenging due the 

moth’s inability to re-hydrate in lab conditions. This led to a quick dehydration of the 

specimen and, consequently, a low success rate of its hemolymph extraction; it was only 

possible to extract hemolymph from roughly 30% of specimens within 2-3 days from 

emergence. Extractable volumes of hemolymph ranged from 0.5𝜇l to 30 𝜇l for this 

specie. 

Color of hemolymph varied across insects. In Painted ladies, the color varied 

between dark green and light yellow; in monarch, the color varied between light blue and 

green; in M. sexta, the color was light green.  

Figure 19. (A-E) Extraction protocol for hemolymph from M. sexta moths. (A) The 

moths were restrained with their wings down, exposing the dorsal thorax. (B) The 

tegulum was removed with surgical scissors, thus removing scales and exposing (C) the 

sclerotized thorax. (D) An incision was made between the sclerotized thorax and the wing 

at the wing articulation membrane using a razor blade. (E) Hemolymph was collected by 

placing the tip of the capillary tube underneath the articulation membrane through the 

insision. (F-G) Extraction protocol for hemolymph from painted lady and monarch 



95 

butterflies. (F) The butterflies were restrained with their wings pointing up exposing the 

base of the wing. The incision was then performed at the base of the wing with surgical 

scissors. (G) Hemolymph was collected using a capillary tube from the beading 

hemolymph at the wound cite. (H) Hemolymph was delivered from the capillary tube to 

the experimental setup using a capillary micropipette (Drummond, 1-000-0050). (I) A 

photograph of M. sexta hemolymph in a 5µl capillary tube. 

4.6.2.2 Dispersion of probes in the sample 

To perform a measurement, magnetic nanorods needed to be dispersed in 

hemolymph in the following manner. The nanorods were first dispersed in methanol by 

sonication. A droplet of nanorod-methanol suspension was placed on a glass slide and 

allowed to dry at room conditions. The nanorods remained, weakly attached to the glass 

slide with Van der Waals forces. Hemolymph was then deposited on the glass slide from 

the capillary tube and stirred with a glass rod, dispersing the nanorods. A rotating 

magnetic field of 300 𝜇T in amplitude and 9-15 Hz in frequency was applied to rotate the 

probes in their asynchronous regime. The rotation was recorded and analyzed to extract 

the critical frequency ωc, from which the viscosity was calculated using (equation).  

4.6.2.3 Stabilization of the sample during viscosity measurement 

To control for oxidation and evaporation of the sample during measurement, two 

methods were used. The first method consisted of placing the sample between a glass 

slide with a 40 um well and a cover slip. This method relied on the fact that surface 

interaction only happened at the edges of the sample; far away from the edge of the 

sample, however, the sample demonstrated no color, texture, or viscosity change for 

almost two hours. This method was used only for preliminary studies as it yielded low 

success rates of the measurement.  
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The second method consisted of placing the sample in a custom-made 

environmental chamber designed to fit together with the magnetic stage (see chapter 2 for 

details). The chamber had an inlet port for a supplied gas of controlled composition to 

enter and an outlet port for the gas to exit. The outlet port also acted as an access 

aperture, allowing one to have access to the sample during the operation of the chamber. 

During the operation, a flow of pure nitrogen gas was bubbled through DI water to 

saturate it with water vapor and passed through the environmental chamber and over the 

surface of the sample. As a result of this, no oxidation occurred, which was verified by 

the absence of color change in the sample during experiment. Due to the water vapor in 

the nitrogen, evaporation was also significantly slowed down. This was verified by 

relative viscosity vs. time plot (Figure 16), which indicates no viscosity change over a 20-

minute period.  

Even though the second method provided a shorter time frame of sample stability, 

it was the method of choice, because it resulted in a sample of larger thickness. This 

allowed the nanorods to rotate farther away from the substrate, preventing their undesired 

adhesion to it. In cases when nanorods did adhere to the substrate, the open surface of the 

sample and the access aperture allowed for additional stirring of the sample to re-disperse 

the nanorods. Thus, the second method of sample control yielded more successful 

measurements. All M. sexta, D. plexupus, and V. cardui and monarch as well as most 

painted lady samples were measured with this method. Two samples of painted lady were 

measured using the first method during the preliminary study; since the age of those 

specimen was not tracked, however, the measurements of those two specimen are of 



97 

limited use to the biological community. Nevertheless, the viscosity of the painted lady 

hemolymph was the same across both methods.  

4.6.3 Solute mass concentration and volume fraction measurement 

To evaluate whether the viscosity could be simply explained by the Batchelor or 

the de Kruif relations, the mass fraction of the solute in hemolymph was measured and 

the volume fraction was estimated. For these models, these estimations were used instead 

of more accurate data presented in Table 5; the more accurate data are not available for V. 

cardui and D. plexippus. This approximation thus allows us to compare all three species.  

The mass fraction is calculated by first measuring the mass of a sample of 

extracted hemolymph, mh, dehydrating the sample, and measuring the mass of the solid 

remains, ms. The mass of the water is then equal to w h sm m m   and the mass fraction of 

the solute is then calculated as s
s

h

m

m
  . 

The volume fraction was estimated from the assumption that polymers constitute 

most of the solute mass in hemolymph and have the average density of 1.37proteinsD   

g/cm3 (22). With this assumption, the volume fraction was calculated from the mass of 

water and the mass of the solute as 

p

proteins

p
p H

proteins H

m

D

m m
D D

 



 where mp and mH are the 

masses of protein and water in a given sample of hemolymph, respectively; Dproteins and 

DH are the densities of protein and water, respectively.  
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4.6.3.1 Evaporation under vacuum 

To determine the masses of water and solute in samples of hemolymph across 

species, the following procedure was used. First, hemolymph was extracted using a 

capillary tube. A metal TGA pan was weighted on a microbalance (Sartorius, MP210S). 

A droplet of hemolymph was placed on the pan and weighted within 10 seconds of 

deposition, providing the initial wet mass of the sample, mh. The sample was placed in 

vacuum overnight and weighted again, providing the mass of the solid material, ms.  

At least nine samples from three specimens of each species were measured in this 

manner.  

4.6.3.2 Dry sample thermal gravimetric analysis (TGA) 

Thermal gravimetric analysis is a thermal analytic technique that tracks the mass of the 

sample in response to a changing ambient temperature. The thermally calibrated 

microbalance is located in a temperature-controlled environmental chamber actively 

flushed with dry nitrogen. As the temperature in the chamber is increased, the sample 

vaporizes and changes in mass. The temperature and the mass of the sample are tracked 

as a function of time. In our case, TGA was performed on the samples that underwent 

evaporation under vacuum overnight. This measurement was used to quantify how much 

water remained trapped in the sample after evaporation in vacuum. AutoTGA 295 was 

used to perform this analysis.  
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Figure 20. Illustrative TGA profiles of hemolymph of each of the studied species. 

4.6.4 Conductivity measurement 

The sample resistivity was measured in the AC regime using a high-performance 

potentiostat (Gamry Instruments, Reference 3000) in the following way. Hemolymph 

from M. sexta moths was collected into capillary tubes (Drummond, 3-000-210-G) using 

the method described in Section 4.6.2.1. Copper wires (360 um in diameter) were 

inserted into the capillary tube from each end, such that one of their stripped ends rested 

in the liquid and acted as electrodes. The other ends of the wires were attached to the 

potentiostat in an open circuit configuration. Care was taken to make sure that no air 

bubbles were formed between the two copper wire electrodes. During the measurement, 

the resistivity was measured as the function of frequency of the applied potential across 

the electrodes.  

The response was measured as a complex value of impedance, where the reactive 

impedance is the imaginary component and the resistive impedance is the real 
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component. The measured signal was a sum of the impedances of both the electrode and 

the liquid. At higher frequencies, the response of the electrodes contributed both 

imaginary and real components of impedance. As the frequency was lowered, the 

response of the electrode decreased until 0. Since the liquid does not have any reactive 

impedance, when the measured reactive impedance was 0, the signal was known to only 

be a representation of the liquid response. The resistance was measured at that frequency. 

The sample conductivity was then calculated as A l  , where ρ is resistivity of the 

sample, A is the cross-sectional area of the sample and l is the distance between the two 

copper wire electrodes. 

Figure 21. (A) A sample measurement of resistivity of the hemolymph of adult M. sexta. 

The vertical grey dashed line indicated the resistance of the liquid, while the curve to the 
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right of the dashed line indicates the complex response of the probe-liquid system. The 

dashed arrow shows the direction of the measurement during the frequency decrease. (B) 

A photograph of the experimental set-up. (a) and (b) mark the two copper wire 

electrodes, whose ends are submerged in (c) hemolymph inside the capillary tube. The 

distance between the ends of the electrodes is determined using image analysis in ImageJ. 

4.6.5 Dynamic Light Scattering to determine the size of particulates 

4.6.5.1 Methodology 

Dynamic light scattering was performed to measure the size and verify the 

concentration of protein coils in hemolymph. DLS was performed on M. sexta 

hemolymph samples using Malvern Zetasizer Nano ZS. Hemolymph was extracted and 

diluted in water and 7.2pH phosphate buffer solution (PBS). When diluted with water, the 

proteins precipitated and made the measurement impossible. When diluted with PBS, no 

precipitation occurred and the coil radius was successfully measured. A total of 5 samples 

were measured from 3 specimens of M. sexta moths, 3 samples were measured from 3 

specimens of V. cardui butterflies, and 3 samples were measured from 3 specimens of D. 

plexippus butterflies.  

4.6.5.2  Sample preparation 

For each sample, 10-15 microliters of hemolymph were diluted in 2 ml of PBS, thus 

yielding the dilution ratio, Dr, ranging from 130 to 200. Since the DLS experiment yields 

a measure of the volume fraction of proteins of a given size in the diluted sample, φd, the 

volume fraction of these proteins in the undiluted hemolymph, φp, can be calculated as 

p d rD  . 
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4.6.6 UV-VIS Spectroscopy to determine the relative concentration of proteins 

4.6.6.1 Methodology 

UV-visible absorption spectrum was measured for diluted hemolymph of each species 

to determine the concentration of protein in the sample, following the methodology 

described in (37). The method is based on the tendency of proteins to absorb light at 205 

and 280 nm. At ranges of absorbance below 2, the concentration of polymer scales 

linearly with the absorbance, A, following the following relations: 

280protein nmC A (4.16) 

205

31protein

A
C  (4.17) 

Where Cprotein is the concentration of protein in mg/ml and A is the absorbance of the 

sample at that wavelength. 

Figure 22. Absorbance spectra of diluted samples of M. sexta and D. plexippus 

hemolymph. Dr is the dilution ratio of the measured sample  

Note: There appears to be a misprint in the book (37), where it reads 
20531proteinC A , 

which is not logical, since the peak at 205 is roughly 30 times larger than the peak at 280. 
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The reference (38) cited in the book also leads one to believe that the equation in (37) is a 

misprint.  

4.6.6.2 Sample preparation 

Hemolymph was extracted from the insect as described in section 4.6.2.1 and 

diluted in 3 ml of PBS and placed in quartz cuvettes. An absorption spectrum was taken 

with pure PBS as reference at wavelengths between 800 and 190 nm. If any peaks 

registered as having absorption of above 2, two milliliters of sample were removed from 

the cuvette and two milliliters of pure PBS were added. A new dilution ratio was 

calculated and a new spectrum was measured.  
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CHAPTER V

NANORHEOLOGY OF HEMOLYMPH OF CATERPILLARS

5.1 INTRODUCTION 

As discussed in Chapter 1, hemolymph plays an important role in insects’ lives, 

serving as a medium for energy transfer, as a medium for insect locomotion hydraulics, 

as a first line of defense against invading microorganisms, and as a healing agent after 

wounding. While its physiological roles have been studied in the past, its physical 

properties, such as rheology and surface tension have never been studied. In the previous 

chapter, we discussed the rheology of hemolymph of adults of several species of 

Lepidoptera. In this chapter, we will focus on rheology of hemolymph of larva 

(caterpillars) of M. sexta.  

Larval hemolymph has a different composition from adult hemolymph with the 

most notable difference being an abundance of free cells called hemocytes (1-3). 

Estimated from the cell count, assuming an average diameter of a single cell to be 5 μm, 

the hemocytes constitute roughly 0.1-03 vol% (3, 4). Some of these hemocytes are inert, 

while others are adhesive and rapidly attach to foreign surfaces and invaders (5-13). 

Recent efforts of measuring viscosity of larval hemolymph with cone-and-plate 

rheometers proved difficult presumably due to structures that these hemocytes form after 

extraction from the body (14).  
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5.1.1 Methodology and hypothesis. 

In this study, we use the modified MRS technique with nickel nanorods to study the 

shear rheology of hemolymph of M. sexta caterpillars during clotting after extracting it 

from a wound. The goal is to perform these experiments with minimal interaction with 

the sample to not disrupt the clotting process. We hypothesize that the nanorods will be 

able to probe the rheology of the material. Since larval hemolymph is abundant with 

hemocytes, we expect it to have different properties from the adult hemocyte-free 

hemolymph discussed in the previous chapter.  

5.2 RESULTS AND DISCUSSION 

To gain insight into the behavior of hemolymph in response to shear perturbations, 

we suspended magnetic probes in incubating droplets of hemolymph, rotated them with a 

magnetic field, and tracked the response of the material. Hemocytes quickly adhered to 

the probes and drastically changed the local properties.  

5.2.1 Nanoscale rheology and rigidification of cellular aggregates 

The nanoscopic rheological behavior of cell-rich hemolymph is different from the 

behavior of hemolymph of adults. Whereas in adult hemolymph the nanorods were able 

to rotate freely, the nanorods in caterpillar hemolymph were almost immediately 

occluded by the cells, changing their mode of rotation. This behavior is presented in 

Figure 23. An aggregate of nickel nanorods was rotated in a 1.5 mT magnetic field with a 

1 Hz frequency. Initially, the probes either fully rotated or rotated with some oscillations 

around the mean direction of rotation, similarly to how they behaved in the hemolymph 

of adults. This happened for several seconds after initial dispersion of the probes in the 
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sample. Next, hemocytes began adhering to each other and to the probes. As this 

happened, the probes changed their rotation mode. The probes continued to oscillate with 

a high amplitude, but the mean orientation no longer changed. As time went on, the 

amplitude of these oscillations decreased non-linearly with time, approaching zero.  

Figure 23. Rotation of an agglomerate of magnetic nanoprobes adhered to by hemocytes. 

(A-F) A gallery of snapshots during various stages of cross-linking of the clot. (A-C) 5 

minutes after the wound is made. The cells form a large clump that is relatively soft. The 

black probe oscillates with a large amplitude. (D) A full profile and (inserts) zoomed in 

segments of orientation of a single probe agglomerate as a function of time. The 

amplitude of the periodic motion decreases with time, which signifies an increased 

rigidity of the material. 

As discussed in the previous chapter, the cellular aggregates grow during the first 

two minutes of the clot formation. With time, the aggregates stop growing and begin 

shrinking in size. During this stage, the cells appear to pack more closely and the 

aggregates darken. This behavior is accompanied by a decrease in amplitude of periodic 
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motion of the nanoprobe aggregate. This is indicative of a viscoelastic material with 

changing rheological properties (15, 16).  

We propose two scenarios describing exponentially fading oscillations of a 

magnetic probe. In the first scenario, the probe might be hinged to the cell aggregate, 

remaining partially exposed to the fluid, as the two-dimensional image of the cell 

aggregate cannot guarantee that the probe is not sticking out of the aggregate in the z-

direction. Thus, when the probe is forced to rotate in response to the magnetic torque, it 

experiences an elastic reaction from the aggregate and a viscous drag from the fluid 

(Figure 24, A). This scenario can be modeled with the Maxwell model, where the spring 

models the elastic reaction of the aggregate matrix and the dashpot models the viscous 

friction of the fluid (17, 18). 

Figure 24. Schematics of the two scenarios of material response to the probe oscillation. 

The original orientation of the rod is in translucent black and the current position of the 

probe is in black. The probe is surrounded by the cells and proteins. (A) The probe is 

exposed to the elastic aggregate and the viscous plasma, which respond as an elastic and 

a viscous torques in series. (B) the probe is completely embedded in the gel-like 

aggregate, which responds as an elastic and a viscous torques in parallel.   

In the second scenario, the probe might be completely embedded in a gel-like 

material formed by the cells and the connecting medium (Figure 24, B). The gel-like 
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material responds elastically to the applied oscillating magnetic torque. Upon 

deformation of the matrix, a gel-like aggregate squeezes out plasma from its pores. This 

plasma flow contributes to a viscous drag on the magnetic probe, which is modeled as a 

dashpot (Figure 24, B) 

Thus, in the second scenario, a dashpot modeling viscous friction and an elastic 

spring modeling elastic response of the gel, both set in parallel, oppose the magnetic torque. 

This second scenario corresponds to the Kelvin-Voigt model of viscoelasticity (16, 19).  

In the Maxwell model, the viscous, τη , elastic, τG , and magnetic, τm , torques are 

equal to each other τη = τG = τm . Introducing the drag coefficient γ, which is proportional 

to viscosity, η , and an effective shear modulus of the aggregate, G, the viscous and elastic 

torques are written as τη = γdφη/dt , τG = γG φG/η, where φη and φG are the rotation angles 

associated with the spring and dashpot displacements, respectively, and t is time. The 

angular displacement of the probe satisfies the relation φη + φG = φ. Thus, the torque 

balance provides the equation governing probe rotation (17):  

m mdd

d dt G t

  

 
  (5.1) 

In the Kelvin-Voigt model, when the dashpot and the spring are in parallel, the 

torques satisfy the relation τm=τη+τG, and the angular displacements are the same for the 

spring and dashpot, φη=φG=φ. The torque balance for the Kelvin-Voigt model is thus: 

md

d

G

t




 
  (5.2) 
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When the second term in equations (5.1) and (5.2) is absent, these two models become 

identical and describe the probe behavior in a Newtonian liquid, which does not sustain 

any shear stress and hence does not show any elastic response. 

5.2.2 Numeric analysis of rigidifying medium of Newtonian, Maxwell and Kelvin-

Voigt models 

According to the three introduced rheological models, the rotation of the probe, is 

described by the following equations 

Newtonian medium 

 

 

sin
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c
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d
t

dt

d
t
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Maxwell medium 
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(5.4) 

Kelvin-Voigt medium 
 

 

c r

r

sin

sinc

d
t

dt
d

t
dt


   


  

  

  
(5.5) 

where φ is the angle that the rod makes with a stationary reference axis, t is time, 

1

c  , η is viscosity, r

G



 , G is the elastic modulus and the normalized values are 

as follows. 
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






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(5.6) 

In our experiments, we observe that the cell aggregates mature with time and their 

properties change sufficiently fast. We will thus consider the probe behavior as the 

viscosity and/or the elastic modulus of the media increase exponentially fast. In 

particular, we will consider two cases which can be written in normalized form as:  

   0 expc c
tt 


  ; c

r

G const



  (5.7) 

   0 expc c
tt 


  ; r const  , i.e.  exp tG


 (5.8) 

In the case of equation (5.7), the critical frequency ωc exponentially decreases, 

which corresponds to the viscosity η exponentially increasing, and c

r




remains 

constant, which corresponds to the elastic modulus G remaining constant. In the case of 

equation (5.8), ωc again exponentially decreases, which corresponds to the viscosity 

exponentially increasing, and ωr remains constant, which corresponds to the elastic 

modulus G exponentially increasing as well. In both cases, we set the numerical 

parameters such that the characteristic time of the oscillation of the probe is much lower 

than the characteristic time of the materials parameters change.  

The first case implies that the viscosity of the liquid increases exponentially and 

the elastic modulus remains constant. The probe behavior for each of the three models is 
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presented in Figure 25. The oscillations around the mean exhibit a decreasing amplitude 

in Newtonian and Kelvin-Voigt models and do not change in the Maxwell model. The 

slope of the mean in Newtonian and Maxwell models decreases and approaches 0. The 

mean for the Kelvin-Voigt model does not change and remains at 0. 

Figure 25. Illustration of the behavior of a ferromagnetic probe rotated with a magnetic 

field with ω=1 in (blue) Newtonian, (orange) Maxwell, and (yellow) Kelvin-Voigt media 

with a constant ωc/ωr = 0.5 and (purple, right axis) exponentially decreasing ωc. The 

oscillations around the mean exhibit a decreasing amplitude in Newtonian and Kelvin-

Voigt models and do not change in the Maxwell model. The mean angle in Newtonian 

and Maxwell models approaches a constant. The mean angle for the Kelvin-Voigt model 

does not change and remains at 0. 

The second case implies that the viscosity and the elastic modulus of the liquid 

increase exponentially fast, but at the same rate. The probe behavior for the three models 

is presented in Figure 26. The behavior of the probe for the Newtonian model is identical 

to the first case, since ωr for it is not defined. The probe in Maxwell fluid, however, 

experiences a decreasing amplitude of oscillation around the mean and the slope of the 

mean decreases and approaches 0. The behavior of the Kelvin-Voigt probe, while not 

quantitively identical to the first case, does not seem to have any qualitatively 

distinguishing features from it. In the second case at low values of ωc (to the right of the 

blue dashed line in Figure 26), both Maxwell and Kelvin-Voigt models show decreasing 
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oscillations with a non-changing mean angle. In this scenario, both models represent 

similar materials that are elastic and do not flow and it is difficult to qualitatively 

distinguish between the two models.  

Figure 26. Illustration of the behavior of a ferromagnetic probe rotated with a magnetic 

field with ω=1 in (blue) Newtonian, (orange) Maxwell, and (yellow) Kelvin-Voigt media 

with a constant ωr = 0.5 and (purple, right axis) exponentially decreasing ωc. The 

oscillations around the mean exhibit a decreasing amplitude in all three models. The 

slope of the mean in Newtonian and Maxwell models decreases and approaches 0. The 

mean for the Kelvin-Voigt model does not change and remains at 0. 

Thus, it seems from this preliminary analysis that three scenarios are relevant to 

the experiment at hand: the Kelvin-Voigt model where the viscosity of the material 

increases exponentially and the elastic modulus remains constant, the Kelvin-Voigt 

model where the viscosity and the elastic modulus of the material increase exponentially, 

and the Maxwell model where the viscosity is high initially and both viscosity and the 

elastic modulus of the material increase exponentially. It remains unknown, however, 

whether the two seemingly different equations describe a non-flowing, rigidifying 

material similarly. To answer this question, we first linearize the equations to find the 

dependency of the amplitude of the angular oscillations on the changing ωc and ωr.
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5.2.3 Linearization of the Maxwell model at high viscosity. 

Beginning with normalized equation (5.4), and seeing from experiment that as 

time increases indefinitely, t   angle φ of the probe approaches a constant value, 

0  . Thus, at large times, we can write 0     , where 1  is the amplitude of 

an oscillation. From experiment, we can set the value of 0 0  . The trigonometric 

functions components from these equations can thus be rewritten as: 

   sin sint t    (5.9) 

   cos cost t    (5.10) 

Applying a trigonometric identity and Taylor expansion over ξ equation (5.9) takes the 

form of 

     sin sin cost t t    (5.11) 

Similarly, equation (5.10) takes the form of 

       2cos cos sint t t O      (5.12) 

Substituting equations (5.11) and (5.12) into Maxwell equation (5.4) and factoring out ξ, 

we obtain  
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(5.13) 

Since at large time t , the amplitude ξ is small and the viscosity is high (ωc is 

low), both terms inside the brackets are small, leaving the declination from the mean 

dependence as 
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   
 
 

 sin cos
c

c

r

td
t t t

dt t





  (5.14) 

Now, considering only the case of exponentially increasing viscosity and constant 

elastic modulus (equation (5.7)), the behavior of the oscillations takes the form of 

     0 exp sin cosc

d t t K t
dt





   (5.15) 

where K is a constant. This relation can now be integrated to find the dependency of the 

angle of the probe as a function of time for this scenario. 
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(5.16) 

Since during experiment, we track the amplitude of these oscillation ξA, we are 

interested in the prefactors of the periodic function and not the phase. Thus, we aim to 

obtain he form of the expression, where the amplitude is easily observable. Since 

     2 2sin cos sinA x B x A B x     (5.17) 

where  arctan /B A  , equation (5.16) can be rewritten as
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(5.18) 

Furthermore, the amplitude of the sum of amplitudes of two sine functions with 

an arbitrary phase shift,    sin sinA x B x  , can be shown to equal

 2 2 2 cosA B AB a  . Thus, the amplitude of the oscillations for the current case is 

expressed as 
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Since in experiment, 1  , the expression can be Taylor expanded\ to  
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  (5.20) 

The kinetics of the amplitude of oscillation of a probe rotating in a Maxwell liquid 

with properties changing according to (5.7), thus develop as follows. Initially, when t  is 

small, depending on the elastic modulus and thus K,
0c contributes a significant portion 

to the amplitude. As time goes on, the contribution of 
0c  becomes less and less 

significant and the amplitude approaches K. This is consistent with the behavior of the 

Maxwell model presented in Figure 25 and does not represent the experimental data. 

Thus, this case will no longer be considered.  

Let us now consider the behavior of amplitude in the case of exponentially 

increasing viscosity and exponentially increasing elastic modulus (equation (5.8). 

Starting with equation (5.14), we substitute the explicit relations of 
c and 

r in time, 
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0 exp sin exp cosc

c

r

d t tt t
dt




 
    (5.21) 

Again, we integrate to find the dependency of the angle of the probe as a function 

of time for this scenario. 
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Applying equation (5.17), 
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 Writing the dependence of the amplitude as a function of time, we get 
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Since in experiment 1  , the expression can be simplified to 
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(5.25) 

And algebraically expanded to 
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The exponent and 2

0c  terms can be factored out to 

  0 2 2 2 2

2 1 2 2
exp 1A c

r r r

t 
      

        (5.27) 

5.2.4 Linearization of the Kelvin-Voigt model 

Similar steps as above will be performed for the Kelvin-Voigt model for material 

changing according to equations (5.7) and (5.8). Beginning with normalized equation 

(5.5), we write the expression for deviations of the angle φ from the mean   at large t as  

          r cos sinc c

d
t t t t t

dt


           (5.28) 

Since at large time t , amplitude ξ is small and the viscosity is high ( c is low), 

the second bracketed term can be neglected. Thus,  

      r sinc

d
t t t

dt


      (5.29) 

Now, let us consider only the case of exponentially increasing viscosity and 

constant elastic modulus (equation (5.7)). At large time t , the amplitude ξ and 
r are 

small. The first term can thus be ignored as well. Plugging in the relation from equation 

(5.7), the profile of the oscillations takes the form of 

    0 exp sinc

d t t
dt





     (5.30) 
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This relation can now be integrated to find the dependency of the angle of the 

probe in a Kelvin-Voigt medium as a function of time for this scenario. 
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(5.31) 

Using equation (5.17), we can write the behavior of the amplitude as 
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Since in experiment 1  , the expression can be simplified to 
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1
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t O 
 
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(5.33) 

Performing similar analysis for the second case, where viscosity and the elastic 

modulus increase exponentially, and starting with equation (5.29) and plugging equations 

(5.8) for 
c and 

r , 

   r 0 exp sinc

d t t
dt


 


    (5.34) 

Integrating, we get 

     0 exp cos expc r
t t t  


    (5.35) 

Again, keeping only the amplitude of the oscillating component, we have 

   0 exp expA c r
t t  


   (5.36) 
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When 1
r 
 , the positive left term decreases more slowly than the negative left term. 

Equations (5.27), (5.33), and (5.36) that describe the amplitude of the oscillations 

of the probe in the Maxwell and Kelvin-Voigt liquids with exponentially increasing 

viscosity and elastic modulus, as well as the Kelvin Voigt liquid exponentially increasing 

viscosity and non-changing elastic modulus exhibit some similarities. Namely, all contain 

the exponentially decaying term  0 expc
t


 . Equation (5.27) contains terms where

1


competes with 1
r

. Since from experiment we see that the time it takes the 

amplitudes to decay is large, 1  and 1 1

 . In order for the 1

r
terms to be 

significant, 
r  needs to be small, which would constitute a  soft material – a property we 

do not expect from a blood clot. Similarly, equation (5.36) contains a positive exponential 

with the decay rate 1


 and a negative exponential with a decay rate 
r . When 1

r 
 , 

the positive left term decreases more slowly than the negative left term and dictates the 

kinetics of the equation. We would expect this from a relatively elastic material, which a 

clot likely is. Thus, the driving term in all three cases is  0 expc
t


 and the amplitude

in all three cases is described by 

 0 expA c
t 


 (5.37) 

In the context of this experiment, the three cases are thus indistinguishable from 

each other and are equivalent in their description of the physical phenomenon studied.  
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5.2.5 Analysis of probe motion 

The analysis of the probe motion in hemocyte-rich hemolymph has experimental 

challenges that prevent us from analyzing the rotating trajectories directly with MRS 

theory as we did in the study of adult hemolymph. In adult samples, for instance, the 

probe aggregates can be broken manually with a large glass rod shortly after their 

dispersion in the sample. In cell-rich hemolymph, the cells begin adhering to the surfaces 

and forming the structures almost immediately, rendering any manual manipulation of the 

sample destructive. The probes thus have a complex geometric shape as they consist of 

nanorod agglomerates. We are thus unable to determine the magnetic torque applied on 

the probes and as a result calculate the absolute viscosity and elastic modulus of the 

material. Thus, only the relative properties of the cell aggregate can be determined versus 

time. 

Another experimental challenge is that the probes are obstructed by hemocyte 

aggregates. This makes the algorithm for extraction of the orientation of the probe less 

precise and prevents us from looking at the fine features of probe behavior. We thus 

resolve to tracking only the amplitude 
A  of these oscillations to infer the changing 

material properties. 
A  is extracted from the raw data in two steps. First, the data is 

filtered with a frequency filter. And second, the envelope of the oscillating function is 

numerically extracted.   

The frequency filter is first applied to remove slow drift in the average orientation 

of the aggregate and sharp noise spikes that occur during image analysis. The apparent 

drift in the mean orientation, which can be seen from panel G in Figure 1, is caused by 



125 

the structural change of the aggregate, which does not reflect the response of the material 

to our manipulation. The random spikes in the extracted data, which can be seen in the 

inserts of panel G, are created during the video analysis and also do not represent the 

response of the material to external perturbation. Both types of signal defects can be 

corrected for by applying a frequency filter on the data. 

A frequency filter is a method of data manipulation that removes undesired 

frequencies form the signal. In our case, the oscillations of the probe due to the magnetic 

field have the frequency of 1 Hz. Relative to these oscillations, the drift in the baseline is 

a low frequency process and the noise is a high-frequency defect. Thus, by applying a 

band-pass filter, we can eliminate all undesired effects. The filter was created using the 

MATLAB filter designer to create a narrow band filter that removes any oscillating 

components of the signal that are not within the 0.5 – 1.5 Hz region. The specific 

parameters of the filter are presented in the methods section. Once the data is passed 

through the filter, only the relevant data of the motion due to the magnetic perturbation 

remains (Figure 27, green) and 
A  can be extracted. 

The amplitude of the oscillations 
A  as a function of time was obtained by 

extracting the envelope of the filtered data (Figure 27, blue). An envelope of an 

oscillating function is a curve tracing its maxima. The envelope was obtained using the 

MATLAB envelope() function, which calculates the upper and lower envelopes using a 

discrete Fourier transform of the data. The function creates a smooth curve, connecting 

the maxima. The insert in Figure 27 shows a close-up of the resultant envelope.  
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 The extracted envelope of the data was then fitted with an exponential function 

 0 exp /A A t    . An example of the fit of a dataset from a single sample with the 

decay time of   = 77.1s is presented in Figure 27. Time-evolution of three samples from 

three caterpillars was successfully analyzed in this fashion to obtain the value of   = 86 

±17. Since   and in the experiment 1  Hz, the characteristic time of the soft clot 

exponential rigidification is  = 86 ± 17s. 

  

Figure 27. The (green) filtered oscillation of the magnetic probe embedded in an 

aggregate of hemocytes during clotting in response to the applied rotating magnetic field. 

The data has been (blue) enveloped, and (red dashed) fitted with an exponential function. 

5.3 CONCLUSION 

We have performed modified MRS experiments of hemocyte-rich hemolymph of 

M. sexta larvae using nanoprobes. Upon suspension on the probes in hemolymph, the 

hemocytes readily adhered to each other and the probes. This allowed us to probe the 

rheology of cellular aggregates as a function of time. We found that the probes oscillate 

with an exponentially decreasing amplitude. This behavior can be explained with a 

Kelvin-Voigt model of a material with an exponentially increasing viscosity and either a 

constant or an exponentially increasing elastic modulus as well as a Maxwell model of a 
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material with an exponentially increasing viscosity and elastic modulus. Due to the 

complex shape of the probes, it is impossible to measure the exact magnetic and response 

torques on the probe and thus calculate the exact rheological properties. Instead, we 

determine the characteristic time of exponential rigidification of the cellular aggregates in 

the clotting hemolymph as   = 86 ± 17s. 

5.4 MATERIALS AND METHODS

5.4.1 Dispersion of nanorods in the sample 

Nickel nanorods, 200 nm in diameter and roughly 10 μm in length, were deposited in the 

caterpillar hemolymph samples in a similar fashion to the adult hemolymph samples with 

a few major distinctions. First, the nanorods suspended in methanol were deposited onto 

a glass slide. The methanol was allowed to evaporate, leaving the nanorods on the slide. 

An incision was then made on the 3rd proleg of the caterpillar and several droplets of 

hemolymph was dripped onto the slide. No additional interaction with the sample was 

performed to preserve any structure present in hemolymph. The sample was then 

transferred to an environmental chamber (described in Chapter 3) under nitrogen of 100% 

humidity inside the magnetic rotator, the rotating magnetic field was turned on and the 

sample was imaged under bright-field microscopy.  

5.4.2 Filtering of data 

The filter was implemented using the MATLAB filter() function, for which a 

custom filter was created using the MATLAB Filter Designer. The designed filter was a 

narrow band band-pass filter that removes any undesired oscillations not within 0.5 – 1.5 

Hz region. We chose a Butterworth filter as it has a maximally flat frequency response 
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and does not disrupt the useful signal. The parameters specified for the function are 

presented in Table 7 and the frequency response of the filter is presented in Figure 28. 

The band width of the filter was chosen to minimize the irrelevant data, while minimizing 

the frequency-response delay of the filter. Typically, a small band gap introduces a phase 

shift of the filtered signal and makes the filtration process difficult at the edges of the 

dataset. (For further information about time-domain filters, see (20)). We demonstrate 

this in Figure 29 on a generated sine curve. The filtered sine wave exhibits a phase-shift 

relative to the original signal. The first four periods of the filtered signal (to the left of the 

red dotted line) do not have the same amplitude as the original sine wave. The same 

behavior can be observed with the actual dataset in Figure 30. For the analysis of the 

amplitude as a function of time, we are not concerned with the phase of the data. To 

reconcile the misrepresented amplitude, however, we discard the initial 4 oscillations of 

the filtered data prior to further analysis.  

Table 7. Parameters of the used filter and their description.  

Parameter Value Description 

First Stopband Frequency 0.5 Hz Frequencies below this are filtered out 

First Passband Frequency 0.8 Hz Frequencies between these two values are 

kept. Second Passband Frequency 1.2 Hz 

Second Stopband Frequency 2.0 Hz Frequencies above this are filtered out 

First Stopband Attenuation 60 dB 

(default) 

Minimum factor to divide the signal by at 

the first stopband frequency 
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Passband Ripple 1 dB 

(default) 

factor to multiply the signal by between 

the passband frequencies 

Second Stopband Attenuation 60 dB 

(default) 

Minimum factor to divide the signal by at 

the second stopband frequency 

Sampling Frequency 10 Hz Sampling rate of the data. Equals to the 

framerate of the video  

Figure 28. Frequency response of the band-pass filter used to process the oscillatory data 

of probe oscillation. The inner vertical dashed lines represent the passband frequencies, 

indicating the stable region of the response. The outer dashed lines represent the stopband 

frequencies; all signal outside this region gets filtered out.  
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Figure 29. Demonstration of the artifact caused by the filter at the edge of the dataset. 

(Orange) a generated sine wave and (blue) a filtered sine wave plotted next to each other. 

The filtered sine wave exhibits a phase-shift relative to the original signal. The first four 

periods of the filtered signal (to the left of the red dotted line) do not have the same 

amplitude as the original sine wave.  

Figure 30. The initial several oscillations of the probe. The filtered data superimposed 

with the raw data. Due to the frequency response of the filter, a small phase-shift is 

present and the first several oscillations are not adequately represented. We thus remove 

the first four oscillations from the dataset.  

The envelope was extracted from the filtered data using the MATLAB envelope() 

function. The function returns the upper and lower envelopes of the input data as the 

magnitude of its analytic signal. The analytic signal is calculated using the discrete 

Fourier transform of the data. For more information on the envelope() function, refer to 

MATLAB documentation.  
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CHAPTER VI

STRUCTURAL IMAGING OF HEMOLYMPH OF CATERPILLARS

6.1 INTRODUCTION 

6.1.1 Adhesive and non-adhesive cells 

Hemocyte-rich hemolymph of caterpillars exhibits a distinguishable 

microrheological behavior compared to hemocyte-poor hemolymph of adults. 

The composition of plasma in lepidopteran larvae (caterpillars) is complex. Sodium, 

potassium, calcium, magnesium, chloride, phosphate, amino acids, and various 

biopolymers and other organic and inorganic compounds make up 8 to 16 gm total per 

100 ml of water (1, 2). Estimated from the cell count, assuming the average diameter of a 

single cell to be 5 µm, the cells constitute roughly 0.1-0.3 vol% of hemolymph (3, 4). 

These cells, called hemocytes, vary in size, shape and function (5-7). Six types of 

hemocytes have been identified (6, 8, 9). They can be broken into two groups: adhesive 

and non-adhesive (6, 9, 10). The adhesive hemocytes are more abundant. These 

hemocytes – called granular cells and plasmatocytes – are involved in wound healing and 

phagocytosis, engulfing a foreign particle by forming a vesicle around it (5, 6, 9-15). As 

first observed by Wigglesworth, during wound healing, these hemocytes accumulate at 

the wound cite and aid the regrowth of the epidermal (skin) cells (16). Non-adherent 

hemocytes include oenocytoids, which synthesize prophenoloxidase (proPO) – precursors 

for clots, and other types of cells (5, 6, 9, 11). The importance of different adhesive 

behavior of cells in the context of clot formation was predicted a long time ago by 

Steinberg (17-19) based on preliminary experimental work of Holtfreter (20-25).  
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6.1.2 Steinberg’s differential adhesion hypothesis for cell aggregates 

Steinberg’s differential adhesion hypothesis (DAH) draws a parallel between 

cellular adhesion and the attraction of liquid molecules. A liquid on a macroscopic scale 

is a continuous medium with macroscopic mechanical properties, such as viscosity and 

surface tension. These macroscopic properties arise as a direct result of particle-to-

particle interactions on the molecular scale. In multicomponent liquid mixtures, 

properties such as miscibility arise due to strong or weak interactions between molecules. 

Consider, for instance, a perfectly mixed mixture of hexane in water. The polar water 

molecules – while are not repelled form the non-polar hexane molecules – prefer to be 

surrounded by other polar water molecules and vice versa. As a result, distinct water and 

hexane droplets form in the mixture. As time goes on, like droplets combine to form two 

pure phases of water and hexane.  

Tissues and cellular structures can also be treated as continuous media consisting 

of much smaller components – adhesive cells. The idea to treat cellular structures in such 

a way was inspired by cell sorting experiments performed by Holftreter, where he 

observed a tendency of alike cells to sort out and associate with each other (21, 23, 25). 

Steinberg hypothesized that this universal sorting is due to adhesive cells behaving in a 

similar fashion to liquid molecules - individual cells of the same type are more adhesive 

to each other than to other types of cells (17). Similar to the hexane/water example above, 

a uniformly mixed aggregate of two types of cells self-segregates into two distinct 

groups. The equilibrium configuration depends on the surface and interfacial tensions of 

the cell populations (26). These surface tensions have been experimentally demonstrated 

to be dependent on the adhesive properties of the cells (27, 28). Steinberg’s DAH has 
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gathered extensive experimental and theoretical support for both vertebrates (19, 29-31) 

and invertebrates (32-35) and is currently widely accepted (36) . For a more detailed 

discussion of the DAH as well as other models of tissue growth, see (29).  

In this chapter, we will attempt to provide a qualitative analysis of Steinberg’s 

DAH in application to the clot formation in wounded caterpillars. If the DAH is indeed 

the driving mechanism behind the self-assembly of cells during the formation of the soft 

clot, we should expect adhesive cells to form drop-like aggregates in the plasma. It has 

been hypothesized that the hemocytes become adhesive after they are exposed to 

precursors in the epidermis (skin layer) of the caterpillars (8, 37). This means that 

hemocyte aggregates should only appear in the hemolymph extracted through a wound 

and not form in hemolymph extracted without contact with the wound.  

6.1.3 Extracellular gelation 

Hemocyte aggregation is not the only manifestation of hemolymph coagulation. 

Humoral reactions caused by the self-assembly of lipids and proteins, such as gelation 

and fibrin-like formations have been observed (37, 38). Gelation of extracellular material 

occurs during the soft clot formation, when the proteins become glycosylated and form 

fibrous strings (8, 39-41). In Drosophila, the soft clots were shown to be removable from 

the bulk of hemolymph by the ‘pullout method’ (39). The method consisted of 

suspending paramagnetic beads in the forming clot. These beads were coated with 

chemical anchors, allowing the clot to adhere to the beads. When the paramagnetic 

particles attach to the clot, the latter can be pulled out using a magnet. The formation of 

the clot was accompanied by thickening of the liquid and formation of fibers, which are 
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invisible with light microscopy but can be targeted with fluorescent labels (39). The 

magnetic pullout method is a great simple method for isolating the clot material, as it 

allows one to wash and purify the fibrous structure after extraction. It is a destructive 

method, as it requires extensive swirling to mix the soft clot with the magnetic beads. The 

soft clot is adherent and readily attaches itself to metal surfaces. As was shown in (42), 

this allows a soft clot filament to be drawn out from a droplet of hemolymph by dipping a 

needle in it. This indicates that this soft clot is a separate phase of hemolymph that forms 

inside the liquid. This behavior is consistent with the DAH, as adherent hemocytes and 

proteins self-assemble and sort themselves out into a gel-like material. The material 

organization in the clot has never been discussed in the literature and thus needs to be 

explored.  

6.1.4 Formation of extracellular fibers 

Extracellular fibrin-like filaments have also been observed in hemolymph of 

larval M. sexta and were able to be artificially produced in cell-free hemolymph (37, 38). 

Work by Minnick et al (43) describes the filament formations in the clotting hemolymph 

of early 5th instar M. sexta as extracted via a 2mm incision immediately anterior to the 

horn of the caterpillar (44). According to this study, fibrous strands only form in 

hemolymph in the presence of M13 protein – a glucose-specific lectin – and with glucose 

concentration below 5*10-4 M. Two relevant scenarios were discussed: 1. As-is 

hemolymph required an incubation time of 30 minutes before strands became observable; 

2. Hemolymph with the added M13 concentrate (obtained by fractionation of hemolymph

from bacteria-treated caterpillars) started forming these strands within 10 seconds. Work 
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of Geng et al (37) further explored this phenomenon. Hemolymph that was collected 

from an incision in the tip of an abdominal proleg on a glass coverslip formed fibrous 

structures in both untreated and bacteria-treated caterpillars. Hemolymph of untreated 

caterpillars that was collected via a hypodermic needle from pericardial space, however, 

did not produce these structures while observed for several hours. Furthermore, even 

when this hemolymph was exposed to a glass substrate, no fibers were observed. The 

hemocytes in this hemolymph did not aggregate in the bulk, but adhered to glass 

substrate when exposed to it.  

The fibrous structures rapidly formed when the isolated M13 protein was added to 

hemolymph. The structures also formed when M13 was added to the cell-free 

hemolymph as well as to a mixture of salts, amino acids, sugars, and vitamins ((45) for 

mixture composition). This suggests that cells do not contribute any building blocks for 

the fibrous structure. The contribution of these fibers to the clot formation is not clear and 

will be explored further in this chapter.  

6.1.5 Challenges in studying of soft clots 

Studies of the structure of the soft clot are challenging for several reasons. First, 

the clot begins to form within a minute after extraction of hemolymph from the body. The 

experimental protocols thus must be rapid. Second, the clot is highly adhesive to foreign 

surfaces, so the interaction with the material must be minimal. Third, the hemolymph 

must not be contaminated from internal (e.g. gut) or external sources. The extraction 

procedure thus must be rapid. Finally, the amount of analyzable materials is small – a 

single caterpillar can only provide several hundreds of microliters. This amount is higher 
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than what we have obtained from adults, but this material cannot be handled with 

capillary tubes, due to the aforementioned adhesiveness to foreign surfaces, which makes 

handing it challenging. The analytical methods thus must be adjusted accordingly. 

6.1.6 Goals of the study 

In this chapter, we aim to describe the structure of the self-assembled cellular and 

humoral clot material in incubated hemolymph. Wigglesworth’s clotting scenario(16) 

coupled with Steinberg’s differential adhesion hypothesis imply that highly anisotropic 

fibrous structures could form during early stages of wound healing. Thus, we follow 

Wigglesworth’s scenario and Steinberg’s DAH to explain the formation of these 

structures. We will also consider changes in clot materials as a function of incubation 

time.  

We analyze the structure of the hemolymph using phase-enhanced microscopy, 

dye-labeled florescent microscopy, scanning electron microscopy, and microCT. We 

perform these studies for hemolymph after incubation at high humidity and in-vitro 

during incubation. The three-dimensional structures of the clots required all optical 

microscopy to be conducted with no cover slip to preserve the structures. Due to the 

instability of hemolymph after extraction, and the precision required to obtain clean 

samples, special procedures were developed to undertake this study. To better visualize 

certain aspects of the clot, the material was manipulated with and without probes and 

stretched into liquid filaments similar to those described in section 6.1.3 for Drosophila. 

To capture the time evolution of the sample with SEM, the material was rapidly 

frozen in liquid nitrogen after certain incubation time and freeze-dried prior to imaging. 
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6.2 RESULTS 

6.2.1 Hemocyte aggregation and densification 

Optical observation under a bright field microscope (Olympus, BX-51) of in-vitro 

incubating hemolymph reveals that hemocytes self-assemble into large aggregates at the 

glass substrate. Figure 31 captures an example of such behavior. In panels A-E, the cells 

(visible as bright and dark circles) can be observed freely floating in the plasma (the grey 

background) as well as consisting as a part of the aggregate, which is labeled with purple 

on the images for illustration (Photoshop); ti is the incubation time of the sample. The 

area of the purple-labeled aggregate was analyzed for several points and plotted versus 

incubation time in panel F. At ti = 2 minutes, the area of the aggregate appears smaller 

than that at ti = 2.9 minutes. This is most likely due to the fact that during that time, new 

cells adhere to the aggregate, increasing its size. After the 2.9-minute mark, the area can 

be seen to decrease at an initially high, but decreasing rate. After 10 minutes, the area 

seems to stop decreasing. Another observable dynamic is that initially, the aggregate 

appears to have a loosely packed structure and a branchy shape. As time goes on, 

however, the aggregate becomes less branchy and denser. This dynamic is consistent with 

the DAH hypothesis as it can be explained with an apparent surface tension of the 

aggregate. The apparent surface tension of the aggregate occurs since the aggregate 

effectively forms a separate phase from the plasma. This surface tension tends to squeeze 

the aggregate into a sphere, pushing out all of plasma from the inside. This is similar to 

the water-hexane example described above.  
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Figure 31. (A-E) A gallery of bright field micrographs of an in-vitro incubating droplet of 

M. sexta larva hemolymph during. The hemocytes can be seen as bright and dark circles

both as freely floating in the plasma (grey background) and as a part of the aggregate

(labeled with purple). t is the incubation time of the sample. Initially, the aggregate is

loosely packed and has branchy structure. With time, the aggregate appears to become

less branchy and denser. (F) The area of the purple aggregate is plotted versus incubation

time, t, for three aggregates from different caterpillars. Initially, the area increases, likely

due to the fact that new hemocytes adhere to the clot. At certain point, the area begins

quickly decreasing. The decrease rate seems to approach 0 at around 10 minutes of

incubation.

6.2.2 Time-lapse study of cellular dynamics using phase-enhanced microscopy 

To obtain a clear understanding of the mechanisms behind the hemocyte 

migration, a time-lapse under high magnification in an inverted transmitted-light phase-

enhanced microscope (Nikon Eclipse Ti) was recorded. Two snapshots are presented in 

Figure 32. Snapshots A and B are of the same location in the sample with timestamps of 

10 and 60 minutes of incubation time, respectively. It appears that the hemocytes in A are 

loosely packed with amorphous material filling up space in the aggregates between the 

cells. This amorphous material is presumably pseudopodia – thread-like protrusions of 

the cell membrane of certain hemocytes. As time goes on and the clot matures, the 
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hemocytes appear to pack more closely with the amorphous material becoming 

significantly darker and denser. The average distance between the centers of any two 

adhered cells, l, decreases; at ti = 2 minutes is l = 8.9±1.5 μm (N = 27) and at ti = 7 

minutes is l = 7.6 ± 1.1 μm (N = 37). The entirety of the movie is presented in 

supplementary material.  

Figure 32. Two snapshots of a time-lapse (ti = 2 and 7 minutes after extraction) under 

high magnification in an inverted transmitted light phased enhanced microscope. 

Aggregation of hemocytes, where hemocytes are connected with amorphous dark grey 

material, is visible. As incubation time increases, the hemocyte aggregates become closer 

packed and the connective grey material darkens. The average distance l between two 

adjacent hemocytes at ti = 2 minutes is l = 8.9±1.5 μm (N = 27) and at ti = 7 minutes is l = 

7.6 ± 1.1 μm (N = 37). 

6.2.2.1 Role of pseudopodia in hemocyte aggregation 

Careful analysis of the time-lapse allows for the kinetics of the behavior of the 

pseudopodia to be studied. Figure 33 demonstrates the kinetics of growth of a single 

pseudopodium thread. The thread can be seen to extend from the mother cell and bend. 

This likely occurs to help the thread find a different cell surface to adhere to. Figure 34 

presents a time-lapse gallery of the effect of pseudopodia on the development of a 

hemocyte aggregate. The pseudopodia (outlined in blue) can be seen to originate from 
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only a few cells and drastically change its shape with time. This is presumably to adhere 

to remote hemocytes and pull them closer to the mother cell of the pseudopodia. This 

way, the aggregates are able to grow larger, merge with nearby aggregates, and change 

their shape.  

Figure 33. Growth of a single pseudopodium thread labeled with a red arrow. It can be 

seen that the thread bends as it extends. This possibly helps the thread find a different cell 

surface to adhere to.   

Figure 34. A time-lapse of the development of the pseudopodal extensions (outlined in 

blue). It can be seen that the extensions originate from only a few hemocytes and can 

extend for tens of microns.  



143 

6.2.2.2 Surface interaction between hemocytes 

The surface behavior of hemocytes is an important parameter in the process of 

aggregation. When two hemocytes are in contact with each other, their surfaces interact. 

This surface interaction is dependent on the surface energies of the hemocytes and the 

medium around them. The opening angle that the cell membranes form when two cells 

are attached to each other (angle θo on Figure 35, D) is an important indicator of the 

surface energies of these interactions. This opening angle can be related to a 

conventionally defined contact angle (angle θc on Figure 35, D) as 180
2

o
c


   , but in 

this context, it is more convenient to work with the concept of the opening angle. If the 

opening angle is small, the two cells prefer to maximize the cell-cell interfacial area and 

minimize the cell-medium area; this means that the cells are phobic towards the medium. 

Conversely, if the opening angle is large, the cells prefer to maximize the cell-medium 

area; this means that the cells are philic towards the medium. We consider three opening 

angle cases: angle α when three cells are touching (depicted in Figure 35, top-left); angle 

β when two cells are touching surrounded with plasma (depicted in Figure 35, middle-

left); and angle γ when two cells are touching surrounded with pseudopodia (depicted in 

Figure 35, bottom-left). The number of measurements for each scenario is nα=12, nβ = 14, 

and nγ = 7 and the values were determined to be α = 120 ± 5°, β = 70 ± 11°, γ = 113 ± 6°, 

as is depicted in the bar graph in Figure 35. The angle α is as expected and serves as a 

reference. Angle β indicates that the hemocytes are phobic towards plasma and tend to 

minimize the cell/plasma interfacial area. Angle γ is greater than α, which indicates that 
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cell/pseudopodium interface is preferred to the cell/plasma interface, but smaller than β, 

which indicates that the cell/cell contact is preferential to the cell/pseudopodium contact. 

From the measured opening angles, it is possible to extract the interfacial tensions 

of cell-plasma and cell-pesudopodia relative to the cell-cell interfacial tension. Consider a 

free-body-diagram in Figure 35.D Figure 35. The interfacial tension force between two 

identical cells sharing a flat interface, cell cell  , is balanced by two interfacial tension 

forces between the cell and the medium, cell medium  , as: 

0cell medium cell medium cell cell       (1.38) 

Writing the x-components of the force balance, we obtain 

cos( ) cos( )
2 2

o o
cell medium cell medium cell cell

 
      (1.39) 

where θ is the opening angle between the two cells measured from image analysis. 

Introducing a parameter * cell medium
medium

cell cell









 , we rewrite the equation as: 

* 1

2cos( )
2

medium
o




 (1.40) 

Thus, the relative interfacial tensions between a cell and either another cell ( *

cell ),

pseudopodia ( *

pseudopodia ), and plasma ( *

plasma ) were calculated and are presented in the 

table in Figure 35. 
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Figure 35. (A-C) The opening angle between two cells in three scenarios: (A) when three 

cells are in contact, two cells make a contact angle α; (B) when two cells are in contact 

with plasma, they make a contact angle β; (C) when two cells are in contact with 

pseudopodia, they make contact angle γ. (D) The free body diagram, in which we define 

the interfacial tensions σ, the opening angle θ, and the contact angle φ between two cells 

with a flat interface suspended in a medium. (E) A bar graph of measured opening angles. 

The number of measurements for each scenario is nα=12, nβ = 14, and nγ = 7. The error 

bars are the standard deviation of the measurement. (F) the table of calculated surface 

tension ratios according to equation (5.3) 

The implication of the relative contact angles is that it is energetically preferential 

for the hemocyte to be surrounded by other hemocytes, it is slightly less preferential to be 
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surrounded with pseudopodia, and it is the least preferential to be surrounded by plasma. 

Consider a free-flowing hemocyte. As soon as a pseudopodium of another cell makes 

contact with this hemocyte, the pseudopodium wants to spread along its surface. This 

creates a pulling force between the two cells. As the hemocyte is pulled towards the 

mother cell of the pseudopodium, it may encounter another hemocyte attached to the 

same pseudopodium. As soon as the two hemocytes touch, they form an interface, which 

spreads since it is energetically preferable to the cell-plasma interface. The process may 

repeat for many hemocytes, leading to large aggregates.  

A similar scenario to the one described above is observed in Figure 36, which 

presents a gallery of time-lapse frames, depicting a 4-cell cluster of an aggregate of 

hemocytes. The cells are colored in red, yellow, purple and pink and the involved 

pseudopodia are colored in blue. Initially (panel A), the red and yellow cells are lightly 

touching, and the pink cell is free-flowing near an extending pseudopodium. With time 

(panels B, C) the interface between red and yellow increases, while the pseudopodium 

attaches to the pink cell and drags it to the right. In panel D, the purple cell, which is 

attached to both red and pink cells, comes into focus, while the pseudopodium continues 

to drag the pink cell to the right. In panel E, the red/purple and the pink/purple interfaces 

grow and the pink cell, which is half-engulfed in pseudopodia, first touches the red cell. 

As the cell-cell interaction is energetically preferred to the cell-pseudopodia interaction, 

the pink cell disconnects from the pseudopodia and attaches to the red and yellow cells 

(panel F). In panel G, the red and pink cells disconnect and the cells temporarily form a 

diamond configuration. It appears that this happens due to the fact that the red cell 
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adheres to an aggregate on the top out of the frame and the pink cell adheres to an 

aggregate on the bottom. The two aggregates thus stretch the 4-cell aggregate vertically. 

In panel H the purple and yellow cells form an interface and the four cells remain in this 

configuration until the end of the observation.  

Figure 36. A close observation of a 4-cell segment of an aggregate developing. The cells 

are labeled with red, yellow, purple and pink and the involved pseudopodia are labeled 

with blue. See discussion in text.  

The observations thus far are consistent with a long-standing hypothesis that 

plasmatocytes and granulocytes extrude pseudopodia in response to foreign surfaces and 

the other hemocytes adhere to the formed network (8, 10). The nature of the adhesion 

between the hemocytes, however, remains unclear. Are the cell membranes inherently 

adhesive or is there an adhesive agent in the plasma? Moreover, why do the cells often 

adhere and detach from each other during the early stages of the soft clot formation and 

remain adhered during the late stage? One explanation is that the initial adhesion between 

the cells is weak, but with time is facilitated by a protein from the plasma. We explore 

this hypothesis in the next section with targeted florescent staining. 
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6.2.3 Targeted staining and florescent imaging of glycosylated proteins 

To gain insight into the nature of the material connecting the hemocytes in the 

aggregates, a florescent staining study was performed. Rhodamine-labeled peanut 

agglutinin (PNA) was chosen for this study, which was shown to efficiently label the 

clots of Drosophila (39, 41, 42) and Galleria (46) by binding to the clotting proteins, 

which are known to be highly glycosylated in many species (40). To verify the feasibility 

of this approach and to determine the optimal amount of dye to use, 0, 5, 10, and 15 μl of 

50 μg/ml rhodamine-PNA dye solution were added to a 80-100 μl sample of hemolymph 

and imaged with a Nikon Ti-Eclipse fluorescent microscope (20X MImm with water, 

NA= 0.75, TRITC filter). The results (Figure 37) indicate that the PNA dye successfully 

labels the material between the cells in the aggregates and that optimal concentration of 

dye is between 5 and 10 μl of 50 μg/ml rhodamine-PNA solution per 100 μl of 

hemolymph. On the image, the brighter red region indicates a larger dye amount and 

therefore presence of the glycosylated proteins. A histogram stretch was performed for 

best visualization. The red background does not necessarily represent presence of extra 

dye. Instead, the highest brightness difference between the background and the object of 

interest is desired. 

The uncertainty of the hemolymph volume in each sample comes from the 

necessity to minimize the interaction between hemolymph and foreign surfaces due to 

extreme adhesiveness of the hemocytes. Thus, hemolymph was bled directly from the 

caterpillar into the incubation wells and its volume could only be approximated by the 

number of drops that fell from the wound into each well. The volume of each drop was 

measured to be roughly 20 μl and each incubation well received 4-5 droplets.  
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Figure 37. Hemolymph of M. sexta larvae stained and incubated for 10 minutes with the 

PNA dye. A.The phase-enhanced and B-C the fluorescent images of the cells and 

structures adhered to the substrate dyed with 0, 5, 10, and 15 μl of PNA, respectively. 

The brighter red region indicates a larger dye amount and therefore presence of the 

glycosylated proteins. The brightness and contrast of the images were adjusted for the 

best visibility, so the red background does not necessarily represent the presence of dye. 

Instead, the highest brightness difference between the background and the object of 
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interest is desired. The optimal dye volume per 100 μl of hemolymph is between 5 and 10 

μl. 

6.2.4 Florescent imaging of filamentous structure in incubated hemolymph – 

swirling and pullout 

Following the successful labeling of the soft clot proteins, we checked the 

applicability of the soft clot pullout experiments in Drosophila (42) for the M. sexta 

larvae. The hemolymph was incubated with the dye and stirred with a needle. During 

stirring, the soft clot material adhered to the needle and was pulled out from the bulk of 

the sample along with the needle. The needle was then placed under a fluorescent 

microscope and the material that adhered to it was imaged using phase-enhanced and 

fluorescent microscopy. These images were compared with the images of the bulk 

hemolymph that remained after the stirring.  

The images of the soft clot are presented in Figure 38. Panels A, C, and E depict 

the material unperturbed by the stirrer and panels B, D, and F depict the material adhered 

to the stirrer and pulled out from the hemolymph. Panel A is a composite image of a 

phase-enhanced (greyscale) and a fluorescence (red) micrographs. The phase-enhanced 

portion of the image reveals hemocyte aggregates and the fluorescent portion of the 

image reveals glycosylated proteins inside the aggregates. The glycosylated proteins do 

not appear outside of the aggregates. From panel C, which presents only the fluorescent 

micrograph from panel A, it appears that the proteins line the outer walls of the 

hemocytes inside the aggregates. Presumably, these proteins act as an adhesive for the 

hemocytes.  

 Similarly, panel B is a composite image of a phase-enhanced (greyscale) and a 

fluorescence (red) micrographs of the stirred and pulled-out soft clot. The phase-
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enhanced portion of the image reveals a large structure of hemocytes in the lower and the 

right parts of the image and a lack of such structure on the top-left part of the image. The 

fluorescent portion of the image indicates that the hemocyte structure contains a large 

amount of the glycosylated proteins, which are absent outside of the structure on the top-

left part of the image. The structure of the glycosylated proteins is better visualized on a 

fluorescent micrograph without the phase-enhanced portion (Figure 38 C). Due to a non-

uniform background of the florescent image caused by the three-dimensionality of the 

large clot, it may be challenging to see the fibrous structure by eye. To guide the reader, 

the following analysis was performed.  

The original image was broken into columns of pixels in a direction perpendicular 

to the fibers (vertically). The intensity profiles were extracted for each pixel column, and 

local maxima for each intensity profile were found. Each intensity profile was plotted 

with an offset corresponding to the pixel column location; the colors were varied for 

easier visualization. The locations of the profile intensity maxima were superimposed on 

the plot in blue (Figure 38 F). The intensity maxima form chains, corresponding to the 

fibers in the image. It can thus be clearly seen that the proteins form long fibrous 

structures inside the hemocyte clot similar to the one found in Drosophila and described 

as a soft clot (41). These fibrous structures are likely a result of stretching of the soft clot 

material during swirling and pulling out, as no well-developed fibrous structure can be 

seen on the unperturbed sample (Figure 38 E). We hypothesize that the protein material 

that forms the fibrous structure during stirring/pulling-out is initially stored between the 

hemocyte walls in the hemocyte aggregates. During stirring, the hemocyte aggregates 



152 

break up and the stresses induced by the stirrer stretch the proteins into long fibers. We 

address this further in chapter 9, where we discuss the structures formed in the liquid 

bridges during the pulling out of the soft clot from hemolymph.  
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Figure 38. Hemolymph from M. sexta larvae stained with Rhodamine-labeled PNA and 

incubated for 8-15 minutes. (A, C, E) depict material unperturbed by the stirrer and 

(B,D,F) depict the material adhered to the stirrer(A and B) Composite imaged of phase-

enhanced (greyscale) and fluorescence (red) micrographs of the unperturbed hemocyte 

aggregated and a ‘pulled out’ soft clot, respectively. The phase-enhanced portion of the 

image reveals hemocyte aggregates and the fluorescent portion of the image reveals 

glycosylated proteins inside the aggregates. The glycosylated proteins do not appear 
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outside of the aggregates. (C and D) The fluorescent micrographs of the unstirred 

material, and the ‘pulled-out’ clot, respectively. The labeled proteins line the outer walls 

of the hemocytes inside the unperturbed aggregates. The labeled proteins stretch into long 

fibers in the ‘pulled-out’ soft clot. (E) Extracted intensity profiles for the pixel columns 

of the florescent image with labeled local maxima of the profiles to represent fibers. No 

fibrous structure is visible in the unperturbed material and long fibers are apparent in the 

‘pulled-out’ material.  

As a control, hemolymph obtained from the pericardial puncture method was 

used. Since only several microliters of hemolymph could be obtained from this method, 

the amount of dye was also lowered by diluting the solution to 0.5 μg/ml and adding 10 

μl of it to the sample. The rest of the procedure was the same. The results indicated no 

fibrous structure in the bulk. Furthermore, no clot adhered to the stirrer and thus it could 

not be imaged.  

6.2.5 Rapidly frozen incubated hemolymph 

There are two limitations to the optical microcopy techniques used thus far. First, 

the magnification is limited to the optical range, with the feature size larger than 400 nm. 

Second, the working distance at higher magnification is short (e.g. a 60x water-

immersion objective used in this study had a working distance less than a millimeter) and 

only allows imaging next to the substrate. The study of structure far away from the 

substrate or interface thus calls for a different approach.  

Scanning electron microscopy (SEM) offers a much improved resolution with a 

higher working distance. A downside of most SEM systems is the necessity for vacuum 

around the sample and relatively large signal accumulation time, which makes liquid 

state imaging of dynamic systems difficult. A countermeasure to this challenge is to 

rapidly freeze the sample, thus arresting all reactions, and to consequently freeze-dry the 
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sample by slowly sublimating the ice away, thus preserving the structure of the solutes 

during freezing. The freeze-dried sample can be easily observed under SEM. This 

technique has been used by biologists for decades (47). Additionally, the freeze-dried 

samples can be observed under x-ray microCT – a technique for imaging three-

dimensional structure inside a solid sample.  

6.2.5.1 SEM imaging of freeze-dried hemolymph 

SEM images of freeze-dried hemolymph revealed a porous polymeric structure 

with bridges between the pores. In samples of hemolymph dripped via the wound for 

incubation times smaller than 10 minutes, the pores typically originate at the substrate 

and propagate upwards (Figure 39 A, C, D, E). This type of directional porosity is 

characteristic of directionally frozen polymeric solutions of high molecular weight, such 

as aqueous poly(vinyl alcohol) Mw = 10,000 g/mol , and ~10%wt concentration (48). For 

incubation times of 20 minutes or higher, the structure changes to lamellar (Figure 40 A, 

B, C, D and Figure 41 C, D). The structure in samples extracted with a pericardial 

method is also porous, but exhibits no directionality (Figure 43 and Figure 44). The 

pericardial sample with a smaller incubation time demonstrated a lower density uniform 

structure throughout the droplet (Figure 43), while the sample with higher incubation 

times demonstrate a higher density patchy structure (Figure 44).  
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Figure 39. SEM image of a freeze-dried hemolymph from M. sexta larvae droplet. The 

sample was bled directly on a cold substrate. Extraction method: wound; incubation time: 

none. A piece of the sample was broken off to image the internal structure. The substrate 

is labeled with white text. The pore direction is labeled with a green arrow. The edge of 

the sample along the break separating the internal pore structure from the surface 

structure is labeled with a yellow dashed line. (A, D) The pores propagating from the 

substrate to the surface are apparent. (B) Zoomed-in micrograph of the surface segment 

from A. (C) Zoomed-in micrograph of the pores segment from A. (E) Zoomed-in 

micrograph of the surface segment from D. (F) A broken-off piece of sample from the 

main droplet demonstrating its structure.  
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Figure 40. SEM image of the residue that remined on the substrate after the sample broke 

off during freeze-drying. Extraction method: wound; incubation time: 60 minutes. The 

substrate is labeled with black text. The pore direction is labeled with a green arrow. The 

edge of the sample along the break separating the internal pore structure from the surface 

structure is labeled with a yellow dashed line. (A) The substrate, the lamellar pores, and 

the smooth surface are visible. The pores do not seem to propagate from the substrate to 

the surface. The smooth surface is possibly an artifact of the sample preparation. (B-D) 

Zoomed-in images of the pores. Many small fibers propagating along the lamellae are 

visible.  
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Figure 41. SEM image of a freeze-dried hemolymph droplet. Extraction method: wound; 

incubation time: 20 minutes. The substrate is labeled with white text. (A) The cracked 

droplet with a smooth porous surface. The pores are difficult to see. The smooth surface 

is possibly an artifact of the sample preparation. (B) A zoomed-in image of the surface. 

(C) A zoomed-in image of the crack. (D) A zoomed-in image of a broken segment of the

sample. The lamellar structure underneath the surface is evident. The pores seem to

propagate towards the surface of the sample. Fibers oriented perpendicularly to the

lamellas appear.
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Figure 42. SEM image of the residue on the substrate after the sample broke off during 

freeze-drying. Extraction method: wound; incubation time: 20 minutes. The substrate is 

labeled with black text. (A) Small patches of the material were left behind after the 

sample droplet (imaged in Figure 41) broke off during freeze-drying. (B) A spherical 

object with a diameter of 15 μm, presumably a hemocyte. (B) Residue left on the 

substrate after the sample broke off. (C) Porous structure left on the substrate after the 

hemolymph droplet broke off. The pores propagate perpendicularly to the substrate.  



160 

Figure 43. SEM image of a freeze-dried hemolymph droplet. Extraction method: 

pericardial space needle; incubation time: 40 seconds. The sample dripped with a 

pericardial method and frozen after 40 seconds after extraction. The substrate is labeled 

with white text. (A) The overview of the entire droplet against the substrate. The solid 

material is porous with no preferential direction to the pores. (B, C, D) Zoomed-in 

images of the pores. (E, F) Zoomed-in images of broken pores, demonstrating that the 

material inside pore walls is not hollow.  
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Figure 44. SEM image of a freeze-dried hemolymph droplet. Extraction method: 

pericardial space needle; incubation time: 6 minutes. The substrate is labeled with black 

text. (A) The overview of the entire droplet against the substrate. The solid material is 

porous with no preferential direction to the pores. (B - F) Zoomed-in images of the 

porous surface structure of the sample.  

The formation of pores by directional freezing (known as freeze-casting) is a 

well-known method for formation of porous materials (49, 50). The porous structure is 

controlled primarily by the morphology of the solvent crystals and by the ability of the 

solutes to pack between the crystals (50). While no rigorous models exist yet to predict 

the structure of the freeze casted material, some empirical data is available. The solvent 

in all samples of hemolymph is water, which produces hexagonal crystals and typically 

results in lamellar structure of the dry material (50). Since the solvent is the same in all 

samples, the difference in structure is controlled by the mobility of the solutes. Typically, 

higher mobility leads to larger pores. For instance, that an increased concentration of 

polystyrene in an aqueous hydroxyapatite ceramic slurries results in smaller pore sizes 
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(51). Small additions of gelatin have also been shown to change the morphology and 

make the pores more cylindrical (52), while addition of poly(vinyl alcohol) makes pores 

more branchy. Perhaps the most relevant study was performed on the morphology of 

freeze-casted dispersion of cellulose nanocrystals (CNC), which can form a fibrous 

material, and hydrazone cross-linked poly(oligoethylene glycol methacrylate) 

(POEGMA) (53). By changing relative concentrations of CNC with POEGMA and total 

concentrations, the authors were able to produce fibrillary, cylindrical, and lamellar 

structures. The transition between the cylindrical to lamellar structures – similar to those 

we observed in hemolymph dripped from the wound and incubated for short and long 

time periods, respectively – was achieved by increasing the amount of cross-linked 

material. This is consistent with our hypothesis that the soft clot cross links as it matures 

and the incubation time increases above 20 minutes.   

Some samples broke off from the metal substrate during freezing/drying, which 

allowed us to look closely at the material that remained adhered to the substrate (Figure 

42). Imaging of this material revealed fibers throughout the samples that were incubated 

for longer than 20 minutes. These fibers are similar to those described by Geng et al (37, 

38). Unlike in Geng’s study, however, where the fibers were isolated and washed out, our 

samples preserved the original spacing of the fibers, which seems to be uniform 

throughout the samples. These fibers were not observed in samples incubated for less 

than 20 minutes or in the pericardial hemolymph.  
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6.2.5.2 Density mapping with x-ray microCT 

One freeze-dried sample of hemolymph was imaged with X-ray microCT 

(Skyscan 1176) to determine the density distribution of the solutes after freeze-drying. 

The methodology can be summarized as follows. An X-ray source in tandem with a 

detector are rotated around the sample and take projection images of the sample. The 

resultant images are digitally reconstructed into a three-dimensional structure. The cross-

sections of the three-dimensional structure can then be visualized. The resolution of the 

instrument is 9 μm per pixel, which is not enough to observe the internal structure of the 

freeze-dried clots but is enough to determine the internal distribution of relative material 

density.  

A sample of hemolymph was rapidly frozen on the metal block in liquid nitrogen, 

freeze-dried under vacuum, detached from the metal block, mounted on a low-density 

Styrofoam block, and imaged with this technique (Figure 45). The images were 

reconstructed and are presented as a series of cross-sections of the sample from the side 

and top views in Figure 45 A and B. On the images, the yellow color represents higher 

density, purple represents lower density, and black represents absence of material. It can 

be seen that in all cross-sections, the material around the interface is of higher density. 

This implies that surface active material adheres to the interfaces, which is consistent 

with the DAH hypothesis.  
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Figure 45. Cross-sections of a microCT scan of a freeze-dried hemolymph sample. The 

yellow color represents higher density, purple represents lower density and black 

represents absence of material. (A) A series of side view cross-sections of the freeze-

dried droplet. (B) A series of top view cross-sections of the freeze-dried droplet. Left 

image corresponds to the bottom of the droplet, and the right image corresponds to the 

top of the droplet. On both images, the outer layer appears to have a larger density of the 

material. (C) A diagram depicting the sample preparation and the locations of the 

presented side and top-view cross-sections. The sample of hemolymph was rapidly frozen 

on the metal block in liquid nitrogen, freeze-dried under vacuum, detached from the 

metal block, mounted on a low-density Styrofoam block, and imaged with x-ray 

microCT. The image was then digitally reconstructed and the cross-sections were studied. 

6.3 DISCUSSION AND CONCLUSIONS 

Steinberg’s differential adhesion hypothesis predicts aggregation and consolidation 

of adhesive hemocytes and proteins into close-packed structure. Our findings are 

consistent with the DAH hypothesis. We find that during the soft clot formation in the 

initial 10-20 minutes since wound creation, the aggregation of hemocytes occurs 

simultaneously with glycosylation of proteins and integration of the latter into the 
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hemocyte aggregates. Some hemocytes connect with others via pseudopodia to draw 

them closer, while others appear inert. Over time, these aggregates become more closely 

packed and more round in shape. Staining revealed that glycosylated proteins appear 

inside the cellular aggregates, possibly acting as an adhesive for hemocytes. This 

structure is highly adherent and readily sticks to foreign surfaces. When stirred with a 

needle, the proteins stretch into fibers and together with hemocytes form a large 

aggregate – constituting the soft clot – around the needle. These structures were not 

observed in hemolymph that was never in contact with the wound, indicating that the soft 

clot only forms in response to hemolymph contact with the wound.  

These fibers appear to be of a different nature from the fibers discovered by Geng 

et al. SEM imaging of rapidly frozen freeze-dried incubated hemolymph samples indicate 

no presence of these fibers at incubation times lower than 20 minutes – during the soft 

clot formation. The fibers only become first visible in samples with incubation times 

higher than 20 minutes and become abundant at incubation times of 30 minutes or more. 

The formation of these fibers also corresponds in time with a change of morphology of 

the pores of the frozen sample near the substrate, which indicates a change in the way ice 

crystals grew through the sample and thus a change in the rheology and structure of the 

clot, most likely associated with the clot maturity. Neither fibers nor the structure were 

observed in hemolymph that was never in contact with the wound. This leads to the 

question of how the rheology of the clot changes with time. We will discuss this in 

chapters 8-10.  
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At the same time, we found that the density of freeze-dried sample of hemolymph 

frozen seconds after extraction is higher at the interface, suggesting that highly surface 

active material is present. This surface activity will be explored further in chapter 7.  

6.4 MATERIALS AND METHODS 

6.4.1 Caterpillars upkeep 

M. sexta larvae were obtained from Carolina Biological Supply

(https://www.carolina.com) or reared in house. In house larvae were mostly reared on 

food from Great Lakes Hornworms (https://www.greatlakeshornworm.com/) with a few 

feeding ad libitum on hornworm food from Carolina Biological Supply. Deposited eggs 

were from adults that emerged in a net enclosure (humidity ca. 65% and temperature ca. 

27°C). Rearing containers were wide-mouth quart-size (liter) glass canning jars with 

strips (ca. 3x15 cm) of plastic gutter guard (Frost King Model VX620) inside as a 

climbing substrate and food support. Larvae were kept at controlled room temperature 

(about 25°C) and 24h. artificial light. To provide gas exchange the jar lids were replaced 

with aluminum window screen cut to fit the jar bands. Food (ca. 10ml) was added in the 

first three instars as needed. In later instars larvae were removed from jars and placed in 

clean jars with more food as food was consumed. The amount of larvae per jar was 

decreased as they grew, with 10 or fewer last instars per jar. Larvae that were moving to 

prepupation stage were not used for hemolymph as its composition changes rapidly 

during this stage. Prepupation larvae had a more yellowish thorax, stopped eating, and 

went into wandering behavior. 
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6.4.2 Hemolymph extraction 

Manduca sexta larvae, 1-2 days before pre-pupation and weighting above 8.5 g, 

were washed free of contaminants with DI water and dried with a paper towel. To prevent 

movement of the caterpillars, they were placed into specially designed containers, which 

tightly grip the caterpillar along the whole length of the body while leaving the second 

and third proleg exposed. Once the caterpillar was secured, an incision was made with a 

razor blade on the third proleg. Hemolymph exiting the wound freely was either collected 

on a glass slide or probed directly on the body.  

Hemolymph was extracted only once from a single specimen. All experiments 

were conducted at temperatures between 20 and 22°C. 

6.4.2.1 Pericardial-puncture method 

The pericardial puncture method is adapted from (38). A siliconized needle stock 

(Exel), obtained from a 30-gauge hypodermic needle by removing the plastic connector 

was inserted into the pericardial space of the larvae. The hemolymph was allowed to flow 

freely from the wound onto a glass slide. This method extracts a considerably smaller 

amount of hemolymph, and only several microliters of hemolymph could be extracted 

from each caterpillar with this method.  

6.4.3 Peanut agglutinin (PNA) labeled fluorescent imaging 

Rhodamine-labeled peanut agglutinin (PNA) was chosen for this study and the 

protocol was adapted form (39). The dye was shown to efficiently label the clots of 

Drosophila (39, 41, 42) and Galleria (46) by binding to the clotting proteins, which are 

known to be highly glycosylated in many species (40).  
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Fluorescence imaging was performed using an inverted microscope (Nikon Eclipse 

Ti) with 20x and 60x objectives and a DAPI cube. Phase enhanced microscopy was 

performed using the same set-up without the DAPI cube. Images were recorded with a 

black and white camera (Photometrics CoolSnap HQ2). For all images, the exposure was 

set to auto and the contrast look-up tables was adjusted manually for the best visibility.  

To determine the amount of dye to be added to the sample for optimal contrast of 

stained images, the procedure in (39) for Drosophila was modified in the following 

manner. Hemolymph was extracted via the proleg wound method directly into a 8 well 

incubation optical cell. 4-5 droplets (80-100 ul) of hemolymph were placed into each of 

the four wells used. 5, 10 and 15 ul of 50 μg/ml of rhodamine-PNA solution in PBS 

buffer was added into three of the wells. One well was left without any dye as a control. 

The fluorescent and the phase-enhanced images of the cells and structures adhered 

to the substrate from all four chambers are presented below. It was determined that the 

optimal amount of dye is between 5 and 10 ul of 50 μg/ml rhodamine-PNA solution per 

100ul of hemolymph (Figure 46). 
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Figure 46. Hemolymph incubated with (A) 0 μl, (B) 5 μl, (C) 10 μl, and (D) 15 μl of 50 

μg/ml rhodamine-PNA solution per 100ul of hemolymph. The best contrast between the 

labeled features and the background is obtained at 5 and 10 μl. Thus, the best amount of 

dye is between these two values.  

6.4.3.1 Imaging of filamentous structure in incubated hemolymph – swirling and pullout. 

To visualize fibrous structure in M. sexta larval hemolymph, the following 

procedure was used. 

Four to five droplets (80-100 μl) of hemolymph were dripped from the wound on 

a caterpillar proleg directly onto a glass cover slip. 5 μl of 50 μg/ml rhodamine-PNA 

solution was added to the droplet. The mixture was lightly stirred using the micropipette 

tip. The mixture was then incubated and imaged at 8th and 15th minutes from the moment 

of extraction. At the 16th minute since extraction, the mixture was repeatedly stirred. The 
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material that adhered to the stirrer – presumably the coagula – was then placed on a glass 

cover slip and imaged.  

As a control, hemolymph obtained from the pericardial puncture method was 

used. Since only several microliters of hemolymph could be obtained from this method, 

the amount of dye was also lowered by diluting the solution to 0.5 μg/ml and adding 10 

μl of it to the sample. The rest of the procedure was the same.  

6.4.4 Rapidly frozen freeze-dried hemolymph 

As hemolymph undergoes clotting, the material properties change as a function of 

time. By rapidly freezing the sample and slowly sublimating the water away, we are able 

to arrest the changes and preserve the sample for further analysis. This methodology is 

called freeze-drying.  

The procedure to freeze-dry the samples is as follows. First, a 2cm x 10 cm x 20 cm 

steel block was suspended in liquid nitrogen, such that the top face of the block is 

exposed to air. The block was thus maintained at -190°C and aqueous droplets placed on 

its surface froze in under a second. Hemolymph was extracted from the caterpillar onto 

methanol-treated razor blades. After extraction, if incubation is necessary, the samples 

were incubated in a closed chamber with a water bath to maintain humidity. Once the 

appropriate incubation time had passed, the razor blades along with the samples were 

placed on the cold metal block. The samples froze within 1-2 seconds. After all samples 

were frozen, they were transferred to a freeze-drier, where the temperature is kept at -

60°C and the low pressure is controlled, and are left overnight. Before the samples are 

exposed to the atmosphere, it is important to heat them up to at least 50°C to prevent 



171 

atmospheric vapor from depositing on the samples (47). To heat up the samples, they 

were irradiated with a standard desk lamp for 15 minutes. 

After preparation, the samples were kept under 100% dry nitrogen at room 

temperature and transported in a desecrator.  

6.4.4.1 Scanning electron microscopy of rapidly frozen freeze-dried hemolymph 

The freeze-dried samples were sputter-coated with platinum for two minutes prior to 

imaging. During sample preparation and mounting, some cracks appeared along the 

sample. The SEM imaging was performed with a (Hitachi TM3000) microscope.  

6.4.4.2 MicroCT 

The freeze-dried sample was imaged with microCT (Skyscan 1176) to determine 

the density distribution of the solutes after freeze-drying. The methodology can be 

summarized as follows. An X-ray source in tandem with a detector are rotated around the 

sample. The resultant images are digitally reconstructed into a three-dimensional 

structure. The resolution of the instrument is 9 μm per pixel, which is not enough to 

observe the internal structure but is enough to determine the internal distribution of 

material density.  
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CHAPTER VII

EXTENSIONAL RHEOLOGY OF HEMOLYMPH OF CATERPILLARS

7.1 INTRODUCTION 

In the previous two chapters, we have discussed the structure of the soft clot of M. 

sexta caterpillars and its rigidification kinetics. We have observed that after wounding, 

the hemocytes aggregate into large aggregates taking advantage of their adhesive 

properties and using pseudopodia to connect and hold the cells together. These 

aggregates adhere to foreign surfaces and quickly rigidify. We have also established that 

the walls of the hemocytes in the aggregates are lined with glycosylated proteins. When 

we stirred the clotting hemolymph with a stirrer, the aggregates broke apart, and the 

hemocytes in large numbers adhered to the stirrer, while the proteins stretched into long 

fiber-like structures. During the process of pulling out the stirrer from the hemolymph 

droplet, we could observe a liquid bridge formed between the stirrer and the droplet. This 

liquid bridge did not quickly disappear, as one would expect with water or other liquids 

of low viscosity. Instead, the liquid bridge remained for tens of seconds, slowly thinning 

out into a thin filament. The bottom end of the filament formed a liquid meniscus with 

the mother droplet. By moving the stirrer, the filament attached to it remained intact. 

During a lateral movement, the meniscus slid across the surface of the hemolymph 

droplet preventing additional filament stretching and breakup. By moving the stirrer up 

and down, the filament could be stretched into a longer one. When a clean stirrer was 
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dipped in the same drop after the first filament had disappeared, no new long-lived 

filaments formed upon pulling out the stirrer like before. 

Similar behavior was observed previously by Theopold et al in the hemolymph of 

larvae of fruit flies (Drosophila melanogaster) (1, 2). When the authors stirred the 

incubated hemolymph and the stirrer pulled out, a filament formed. The study measured 

the draw-out length of the filament in samples with abundant phenoloxydase protein 

(PO), which is thought to participate in the cross-linking and hardening of the soft clot, 

and inhibited PO. In samples with abundant PO, the filaments could only be drawn out to 

0.5 cm, while in the samples with inhibited PO, the filaments could be stretched to up to 

2 cm. The kinetics of the filament thinning and disappearance were not studied by the 

authors. These kinetics, however, require special attention, since they are controlled by 

the rheology of the soft clot and the surface tension of hemolymph.  

In this chapter, we provide a classification of observed filaments and relate the 

thinning behavior with the hemolymph structure.  

7.1.1 Physics of filament disappearance 

Break-up of a liquid bridge (also referred to as a liquid filament (3, 4) or a fluid 

thread (5-7)) is a process by which a single continuous liquid body breaks up into 

multiple liquid bodies. The most common example of this process is water flowing out of 

a tap: the flowing water forms a cylinder near the tap, but by the time it reaches the sink, 

the cylinder breaks up into droplets. A similar behavior is observed when a droplet of 

liquid is placed between two flat surfaces and the surfaces are quickly brought apart. The 

liquid first stretches into a liquid column which then breaks apart. Such a liquid column is 
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unstable. The argument is based on the Young-Laplace Law of capillarity, which states 

that the pressure differential, P , is the difference between the pressure in the liquid 

filament and atmospheric pressure:  

 
1 1

1 1
P

R R

 
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 

  (1.1) 

where σ is the surface tension of the liquid and R1 and R2 are the radii of the principal 

curvatures of the surface (8). Consider a straight cylindrical liquid column and draw two 

mutually perpendicular grid lines with the straight lines parallel to the cylinder axis as the 

parallels and the circles lying perpendicularly to the parallels as the meridians. The radius 

of curvature of parallels goes to infinity; hence the associated curvature in equation (1.1) 

does not contribute to the pressure differential; the radius of curvature of meridians is 

finite resulting in a finite contribution to equation (1.1) The pressure differential is 

positive hence the pressure in the cylinder is higher than the atmospheric pressure. The 

liquid thus tends to move out of the cylinder toward the base droplets. When some liquid 

escapes from the cylinder and the cylinder radius further decreases, the pressure 

increases. Eventually, the liquid bridge thins down and breaks up. In other words, the 

surface tension squeezes out the liquid from the liquid bridge. The molecules in the bulk 

of the liquid, meanwhile, tend to resist this motion. If the liquid is viscous, the resistance 

comes from the dissipative interactions between the molecules. If the liquid is elastic, 

additional resistance comes from deformation of the elastic components in the liquid.  
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The details of the liquid filament breakup via such capillary thinning depend on 

the following parameters of the system: the Reynolds number (Re), the capillary number 

(Ca), the Weber number (We), and the Deborah number (De).  

The Reynolds number is a dimensionless parameter, estimating the role of the 

inertial forces relative to the viscous forces: 

Re
DuL


 (1.2) 

where D is the fluid density, u is the fluid velocity, L is the characteristic length, and η is 

the fluid viscosity. 

The capillary number is a dimensionless parameter, estimating the effect of 

viscous forces relative to the surface tension force: 

u
Ca




 (1.3) 

where σ is the surface tension of the liquid. 

The Weber number is a dimensionless parameter, estimating the effect of inertial 

forces relative to the surface tension forces: 

2Du L
We


 (1.4) 

The Deborah number is a dimensionless parameter, estimating the effect of elastic 

forces in viscoelastic fluids relative to viscous forces: 

r

p

De



 (1.5) 

where τr is the relaxation time, which characterizes the time needed for the material to 

adjust to the applied deformation and τp is the characteristic time of the flow process.  



179 

For Newtonian viscous fluids, when Re << 1, Ca ~ 1, We << 1, the radius of the 

thinnest part of the liquid bridge called the neck decreases linearly with time and the life-

time of the bridge is proportional to the viscosity of the liquid (9-11). The radius of the 

thinnest part – the neck – of such a liquid bridge depends on surface tension and viscosity 

as (9-11) 

0
3

R R t



  (1.6) 

where R0 is the initial radius of filament and t is the time. 

For viscoelastic Maxwell fluids, when Re << 1, Ca ~ 1, We << 1, and De ~1, the 

fluid elasticity stabilizes cylindrical filament over the time period comparable with the 

relaxation time τr. The radius decreases exponentially with time, and the decay constant is 

proportional to the relaxation time of the liquid (10-13):

0 exp
3 r

t
R R



 
  

 
(1.7) 

where r

G



  is the relaxation time and G is the elastic modulus of the fluid. 

We estimate the Reynolds number, the capillary number, and the Weber number 

for liquid bridges created from three substances: water, viscoelastic hemolymph with a 

water-like viscosity assuming a millisecond relaxation time, and soft clot with viscosity 

as measured in Chapter 3 and a relaxation time of 1s. The details of the calculations are 

presented in Table 8. In the case of water, the characteristic numbers sit outside of the 

acceptable parameters of equations (1.6) and (1.7) and the material thus cannot be studied 
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with the currently established theory. In experiment, we would see extensive oscillatory 

motion of the material during the entire decay of the liquid bridge. In the two supposed 

hemolymph cases, the characteristic numbers sit within the acceptable bounds and thus, 

equations (1.6) and (1.7) can be used to analyze such liquid bridges. 

Table 8. Estimations of the Reynolds, capillary, and Weber numbers for the hemolymph 

extension experiments 

Description Parameters Reynolds number, 

02

Re
p

R
D d





 
 
 

Capillary 

number,  

02
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R
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




 
 
 

Weber number, 

We
2

0
2 0

2
2

p

R
D R

We




 
 
 

Water 310  Pa s  
3 310  kg/mD 

370 10  N/m  
4

02 10  mR 
310  sp


10 10-1 10-2

Hemolymph 

of water-

like 

viscosity, 

some 

elasticity 

310  Pa s    

3 310  kg/mD 
370 10  N/m  

4

02 10  mR 
110  sp


110  sr


 De ~ 1 

10-1 10-3 10-6

Soft clot, as 

measured in 

Chapter 3 

20 Pa s  
3 310  kg/mD 

370 10  N/m  
4

02 10  mR 

1 sp 

1 sr 

~1De

10-6 10-1 10-8
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7.1.2 Review of kinetics of filament breakup 

The kinetics of liquid column disappearance have been studied in liquids of 

different rheological properties. (9, 10, 14-30). Main applications of this research are 

inkjet printing (31), liquid faucets and dispensers (13, 31, 32), and rheological 

characterization of liquids available in small quantities (10, 14, 22). The latter application 

is of particular interest to us, since we are interested in rheological characterization of 

hemolymph.  

A simple and attractive method of studying rheology of a liquid in response to 

extension was developed by Entov, Bazilevskii and Rozhkov later adopted by other 

groups. (14-20). The method is based on creating a liquid column between two surfaces 

and tracking the decrease of the diameter of its neck as a function of time. The 

methodology has been used to study low viscosity liquids(21-23), high viscosity 

liquids(9, 15, 23), viscoelastic liquids (21-25), suspensions (11, 23, 26, 33), liquid 

crystals(27), as well as various biological fluids (10) and has been thoroughly reviewed 

(26, 28-30). The decay kinetics of the liquid bridges with different rheological properties 

exhibit distinguishing characteristic features. For instance, Newtonian liquids 

demonstrate a linear decay of the thinnest part of the liquid bridge. A Maxwell 

viscoelastic liquid develops a uniform liquid filament with an exponential time decay of 

its radius. A high molecular weight polymer, meanwhile, might develop droplets on the 

surface of the liquid filament. To understand extensional rheological properties of 

hemolymph, in this chapter, we study the decay kinetics of the hemolymph liquid 

bridges. In the next chapter, we study the internal structure of these liquid bridges.  
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7.2 RESULTS 

7.2.1 Methodology 

The experiments were configured such that the studied hemolymph was 

observable with a high frame rate camera. The caterpillar was placed in a tubular holder 

with an opening for the wound and positioned between a camera and a light source. The 

light source was positioned to function as a backlight with a diffusor. The camera was 

positioned such that the caterpillar wound was at the edge of the screen and the studied 

hemolymph traveled across the screen. Depending on the experiment, either a high frame 

rate – low resolution camera (IDT Technologies MotionProX3, 200-900 fps, 512-640 

pixels) or a low frame rate – high resolution camera (Grasshopper, Point Grey, 100 - 140 

fps, 1920-1200pixels) were used.  

Three types of experiments were performed. First, the caterpillar was positioned 

with the wound pointing up and a metal ball, attached to a long cantilever, was placed on 

the wound. The experiment consisted of quickly lifting the metal ball via the cantilever 

and observing the liquid bridge between the ball and the hemolymph at the wound cite. 

Second, the caterpillar was suspended in air in such a way, that the hemolymph exiting 

the wound would form a droplet and drip under gravity, similar to how water would drip 

from the tap. The experiment consisted of the observation of the liquid bridge between 

the falling droplet and the hemolymph remaining at the wound cite. Third, the 

hemolymph was drained form the wound onto a methanol-cleaned glass slide and a metal 

ball probe was dipped in the sample. The experiment again consisted of quickly lifting 

the metal ball and observing the liquid bridge between the ball and the hemolymph on the 
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slide. The details of the experimental protocol are described in the Materials and Methods 

section.  



184 

Figure 47. (A, C, E) schematics and (B, D, F) photographs of the extensional 

experiments.  

(A, B) The M. sexta caterpillar (d) was placed in the holder (i) with the prolegs facing up 

and an incision (c) was made on the third proleg. The hemolymph exited the caterpillar 

and collected around the wound. The probe (f), attached to a long cantilever, was placed 

on the wound in the hemolymph. The probe was lowered down into the sample quickly 

lifted up during the experiment. The liquid bridge (e) was formed between the probe and 

the wound. The light source (a) and a diffusor (b) provided the backlighting for the 

camera (h) with the lens (g) to enhance contrast between the liquid and the background.  

(C, D) The caterpillar (d) was placed in the holder (i) with the prolegs facing down and 

an incision (c) was made on the third proleg. The hemolymph exited the wound and 

formed pendant droplets and drip directly from the wound. As the hemolymph dripped, it 

formed liquid bridges (e) between the droplets ad the wound. The light source (a) and a 

diffusor (b) provided the backlighting for the camera (h) with the lens (g) to enhance 

contrast between the liquid and the background. 

(E, F) The hemolymph (d) was dripped to form a large droplet on a clean glass slide (c). 

The probe (f) was lowered down into the hemolymph droplet and quickly lifted up during 

the experiment. The liquid bridge (e) was formed between the probe and the droplet. To 

probe an untested incubated material, the sample was moved laterally relative to the 

probe. The light source (a) and a diffusor (b) provided the backlighting for the camera (h) 

with the lens (g) to enhance contrast between the liquid and the background.  
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7.2.2 The first method – probing hemolymph directly from the wound with a 

stainless-steel ball  

In the first method, the probe was placed directly on the wound. After performing 

a cut on the third proleg of the caterpillar, and placing the probe on the wound and lifting 

the probe, the first liquid bridge assumed a shape of a filament and took a long time (1-40 

seconds) to thin down and break up (Figure 48). We call these liquid bridges ‘long-lived 

filaments’ (LLF) indicating that their life-time is greater than 1 second. These LLFs 

would sometimes develop a single or multiple droplets on them, which either remained 

on the filament until break-up or moved to one side and reabsorbed into the wound or 

droplet attached to the steel ball.  

In the second attempt to form a filament, when the probe was lowered back on the 

wound, the second liquid bridge could behave in two ways. Sometimes, another LLF 

would form; much more often, however, liquid bridges would assume the shape of a 

filament and break up in less than 1 second (Figure 49). We called these liquid bridges 

‘short-lived filaments’ (SLF).  

In the other cases, when the wound was touched by the probe and the probe was 

raised, the formed liquid bridge was so thin that upon stretching by moving the probe 

upward, the liquid bridge broke up even before the probe had reached its equilibrium 

position (Figure 50). In those cases no filament was formed between the wound and the 

final equilibrium position of the probe and we call those cases ‘no filament’ (NF). 
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Figure 48. A series of frames illustrating the features of the formation and breakup of the 

long lived filament (LLF). The filament has been formed between a stainless steel probe 

(p) and a wound of the caterpillar (c). The probe is on the top, the caterpillar is on the

bottom of this series of frames. The wound is not visible in the video. The caterpillar is

constantly moving causing the filament to move with it.
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Figure 49. A series of frames illustrating the features of the formation and breakup of the 

short lived filament (SLF). The filament has been formed between a stainless-steel probe 

(p) and a wound of the caterpillar (c). The probe is on the top, the caterpillar is on the

bottom of this series of frames. The wound is not visible in the video.
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Figure 50. The no filament (NF) case when the liquid bridge between the stainless-steel 

probe (p) and the caterpillar (c) broke before the probe reached its equilibrium position 

(H). 

At total of 18 caterpillars were probed with this method and 117 liquid bridges 

were made between the wound cite and the probe. Of those, 53 liquid bridges were made 

in the timespan of 1 to 3 minutes after the cut was made and 64 were made in the 

timespan of 8 to 48 minutes after the cut was made. Of the ones made in the first 3 

minutes, 13 were LLF, 18 were SLF, and 22 were NF. Of the 64 liquid bridges that were 

formed after 8 minutes, only a single LLF, 11 SLF, and 52 NF were formed. 

A natural question arose regarding the reason for this drastic change in the liquid 

bridge behavior. This method, however, provided too little control over the studied 

system to answer this question. The biggest limitation was that we could not control the 

volume of the material under the probe. First, we had no control over how much the 

insect bled. Second, the hemolymph that exited the wound quickly, left the wound cite 

due to gravity. Third, sometimes the caterpillar would simply move too much and shift 
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the position of the wound relative to the probe without our knowledge, leaving us to 

measure the extension of a thin hemolymph film over healthy skin. We thus believe that 

some of the NF and SLF measurements were erroneous and were a result of too little 

hemolymph under the probe.  

To test the hypothesis that those NF and SLF were erroneous, we performed 

extensional experiments on viscosity standards (Cannon instrument company, S600) and 

well-characterized viscoelastic liquids (aqueous CPCl-NaSAL: 0.1 wt%, 0.5 wt%, 1 wt% 

and 2 wt% (34-37)) at low volumes in an environmental chamber to prevent evaporation. 

We found that at low viscosity and relaxation times and at sample volumes lower than 15 

μl, the kinetics of liquid bridge disappearance significantly change as a full filament 

cannot form between the probe and the substrate during extension. Thus, when the 

volume of the liquid is too small, it produces an NF measurement not due to the rheology 

of the liquid, but due to the low volume. 

Thus, to characterize the material more carefully, we had to adjust the 

methodology. 

7.2.3 The second method – Probing hemolymph dripping from the wound 

In the second method, the wound was pointed down and the hemolymph was free 

to drip from the wound. This method allowed us to start probing the hemolymph several 

seconds after the wound was made as it did not require any probes to form the liquid 

bridge. Due to the activity of the live insects shortly after the incision, however, it was 

difficult to focus on the liquid droplet, so success rate of the experiment was roughly 5%. 

Using this method, we observed the following. During the first several seconds after the 
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cut was made, the liquid bridges typically did not form filaments of uniform radius and, 

instead, exhibited a thin neck and produced satellites Figure 51. This behavior is typically 

observed with non-elastic liquids of low viscosity (38-40), suggesting that mostly water-

like plasma was dripping from the wound. 

 After 10-15 seconds, the uniform radius filaments begin forming, indicating that 

hemolymph has either thickened or became elastic. The lifetimes of these early filaments 

are ~ 20-30 microseconds, similar to the SLF we discussed in the first experiment (Figure 

52). As time goes on, the lifetime of these filaments increases. For instance, a droplet 

produced 75 seconds after the incision has a lifetime of 240 microseconds.  

Figure 51. Hemolymph dripping from the wound of a caterpillar several seconds after the 

wound was made. No filament can be observed, which indicates that the hemolymph at 

this time scale is not highly viscous or elastic.  
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Figure 52. Hemolymph dripping from the wound of a caterpillar. This set of frames was 

taken in the time span of 10-15 seconds after the wound was made. A clear filament can 

be seen, indicating that the hemolymph has changed its rheological properties. 

Figure 53. Hemolymph dripping from the wound of a caterpillar. This set of frames was 

taken in the time span of 75 seconds after the wound was made. A clear filament can be 

seen and its lifetime is at least 10 times longer than that of the filaments formed at earlier 

incubation time, indicating further change of the hemolymph rheology.  

Typically, the bleeding stops and hemolymph stops dripping from the wound after 

60-90 seconds. In roughly 5% of the cases, the last droplet falling off the wound produces

a LLF. Due to the rareness of the LLF formation in such a way, we were not able to 

record this event on the video.  
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In the other cases, the flow of hemolymph stops before the LLF-forming droplet 

could be detached and thus no LLFs can be formed. If that last hanging droplet, however, 

is collected with a glass rod or a pipette tip, a LLF forms between the wound and the 

collected droplet. These results indicate that the properties of hemolymph quickly 

change: hemolymph starts seeping as water-like almost inviscid fluid, then it quickly 

changes its rheological properties. Since this method relies on the natural flow of 

hemolymph from the wound, it does not allow for control of when to perform the 

measurement. Since the rheology of hemolymph quickly changes, such control is 

strongly desirable. 

7.2.4 The third method – probing hemolymph collected on a glass slide with a 

stainless-steel ball 

In the third method, the hemolymph was pooled on a glass slide and a stainless-

steel ball attached at the tip of a cantilever was used as a probe. This method offers a 

controlled stretching of the liquid bridge. By noting the time passed between the 

extraction of the hemolymph from the wound and the hemolymph extension experiment, 

we were able to track a correlation between the changes of rheological properties of 

hemolymph and its incubation time, τi. Another advantage of this method was that it did 

not require imaging of moving insects, so the experiments were much more controlled. 

Finally, this methodology also allowed us to test the same material multiple times by 

dipping the probe back into the tested material and repeating the measurement. 

Alternatively, by making a wide pool of hemolymph on the substrate, we could test one 

part of it, while leaving the other parts undisturbed for further incubation and testing. All 
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of the time-dependent data were produced using this method. Thus, from now on, we will 

only talk about the results obtained with this experimental setup.  

Typically, it took roughly 1-1.5 minutes to collect hemolymph from the bleeding 

caterpillar on the slide, to set-up the probe, and begin the measurement. Thus, we were 

not able to study the behavior of liquid bridges observed with the second method in the 

first minute since the hemolymph extraction. Instead, we focused on the behavior of the 

LLF probed from the droplets after incubation time of τi = 1-1.5 minutes and longer. We 

conducted experiments on nine caterpillars, in which we tracked the time since the 

hemolymph extraction. In these, we did not strictly control the location on the surface of 

hemolymph puddle where the filament was taken from: the puddle was probed at various 

locations until a LLF was observed.  

We noticed that during the first 8-10 minutes, the LLF was typically produced 

only once at the first time a particular surface area of hemolymph puddle was probed. 

The consequent times that the same surface area was probed, only SLFs were produced. 

These results were the same regardless of whether the probe was cleaned or not.   

To investigate this pattern more rigorously, a series of experiments was 

performed, where the location of the probe was noted and a distinction was made 

between the first time that the hemolymph puddle was probed and consequent times it 

was probed. The ‘location probed’ was considered to be as a 5x5 mm area of the 

hemolymph puddle centered at the probe. Hemolymph from 10 caterpillars was tested 

using this method and 119 liquid bridges were made between the substrate and the probe. 

In the experiments, where the hemolymph was incubated for less than 10 minutes, the 
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first liquid bridge formed at a particular location in the sample was typically LLF and 

more rarely SLF. The consequent liquid bridges at the same location in the sample were 

typically SLF (Table 9). This drastic change of liquid properties indicates that the 

material that is present in the stretched sample during the first run is not present in the 

second run.  

Table 9. The statistics on the filament creation on the first and the consecutive times the 

same location was probed in a pooled sample during the first 10 minutes of incubation 

and during the following three minutes of incubation. 26 of liquid bridges created for the 

first time in the sample were LLF, 17 were SLF, and 8 were NF. Of the runs that yielded 

LLF on the first run, the consequent runs at the same location produced 6 LLF, 20 SLF, 

and 0 NF. Of the runs that yielded SLF on the first run, the consequent runs at the same 

location produced 0 LLF, 12 SLF, and 0 NF. If the first run produced NF, the consequent 

runs at the same location only produced NF and were not recorded. 

Created for the first time After an initial LLF After initial SLF 

Incubation time, τi LLF SLF NF LLF SLF NF LLF SLF NF 

1- 10 min [N] 26 17 8 6 20 0 0 17 0 

1- 10 min [%] 51 33 16 23 77 0 0 100 0 

10-13 min [N] 1 11 0 0 1 0 0 12 0 

10-13 min [%] 8 92 0 0 100 0 0 100 0 

After the initial 10-13 minutes of incubation, LLFs became less frequent and 

SLFs were produced almost exclusively (Table 9). The SLFs exhibited similar breakup 

kinetics. The LLFs, however, exhibited distinct types of instabilities, which we will 

discuss in larger detail in the next section.  
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As a control for interaction of hemolymph with the epidermal level, we probed 

the hemolymph extracted via a needle from the pericardial space. Due to the low volume 

of hemolymph that could be extracted with this method (50-100 μl), to prevent 

evaporation, we performed the measurements in an environmental chamber. The 8 

samples from 3 caterpillars were tested in this manner at different incubation times. All 

tested samples demonstrated the SLF behavior.  

7.2.5 Types of filaments observed with the ball-puddle method 

As discussed above, the hemolymph incubated for more than a minute formed 

either SLF of LLF. This dichotomy indicates that two different materials are being 

probed. To understand the nature of these materials, we will look closely into the kinetics 

of disappearance of both types of filaments. We will first look at the LLF. 

7.2.5.1 Types of LLF instabilities 

All filaments may have two common features: all of them have cylindrical core or 

‘backbone’ and ‘droplets’ formed on this backbone. In different filaments the backbone 

may either be of a constant radius along its length (Figure 54, D-F), or have one side 

thicker and the other side thinner Figure 54, A-C). During the filament thinning, some 

filaments develop non-uniformities in the radius (Figure 54, G-I). Some of these non-

uniformities develop into distinct droplets (Figure 54, I) characterized by a symmetrical 

shape and a finite length, while others have more complex shape (Figure 54, H). In those 

LLF that exhibit a non-uniform backbone, one can see the flow of the material inside the 

filament following the movement of the backbone non-uniformities (Figure 55).  
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Figure 54. Sketches and images of the filament thinning examples. (A, D, G) The 

sketches depict the shape of the backbone (solid line) as well as droplets that may or may 

not appear on the backbone (dotted line). The sketches depict a single droplet for 

illustration purposes, but actual filaments may host a single or multiple droplets. The 
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backbone was either of a uniform diameter, d1= d2, or wider on one side d1≠ d2. (B, E, H) 

The examples of filaments without a droplet. These examples correlate to the sketches on 

their left (C, F, I) The examples of filaments with one or multiple droplets. The examples 

correlate to the sketches on their left. 

Figure 55. Movement of a droplet and non-uniformities during filament thinning. The red 

arrow points in the direction of movement of the uniformities labeler with red dashed 

lines. The blue arrow points to the part of the filament with the smallest radius. 
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Two distinct mechanisms of the filament breakup have been revealed on all 

observed LLFs.  

In the first breakup scenario, (Figure 56) the filaments undergo a capillary 

Plateau-Rayleigh instability with formation of either a single or multiple droplets. The 

capillary Laplace pressure spontaneously set as soon as a cylindrical filament has been 

formed. This pressure forces the liquid to move from the filament toward the droplets 

sitting at the filament ends where the pressure is much lower.  

According to the Plateau criterion of stability of straight liquid cylinders (41, 42), 

a long cylindrical filament is always unstable and tends to form a system of capillary 

waves. In Newtonian fluids, fluid density and viscosity significantly affects the wave 

pattern; however, for the low Reynolds numbers, viscosity is the main limiting factor 

affecting the wave development (42, 43). In non-Newtonian viscoelastic fluids such as 

polymer solutions, polymer elasticity affects the wave development  

As illustrated in Figure 56, some waves with infinitesimally small amplitudes 

spontaneously form on the initially uniform cylindrical surface (Figure 56, B). With time, 

the waves develop into distinct droplets (Figure 56, C-E).  

The probe was fixed at its equilibrium position and the thickness of hemolymph 

puddle was not significantly changed. However, the droplets can be seen slightly moving 

(Figure 56, C-E); the droplets marked with the red and yellow dashed lines move slightly 

upward, while the droplet marked with the blue dashed line moves slightly downward. 

This indicates that the fluid in the filament moves in the opposite directions with respect 

to the filament center. Thus, there is a net flow of the liquid in this Plateau-Rayleigh 
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scenario. Accordingly, the filament length does change in these experiments but not 

appreciably. 

Figure 56. A set of frames illustrating a LLF developing the Plateau-Rayleigh instability. 

The liquid is being squeezed out of the filament and moves in both directions towards the 

base droplets. The blue arrow points to the part of the filament with the smallest radius.  

In the second breakup scenario, (Figure 56) the filaments undergo a convective 

capillary Plateau-Rayleigh instability when the liquid is pumped from one end to the 

other during the filament thinning and breakup. This behavior, when either some parts of 

the filament (Figure 55, A-E) or the entire filament emerging from one end droplet 

(Figure 57) being absorbed by the other end droplet, was observed with only some LLFs 

after a certain point in their thinning. In the LLFs where the entire backbone moved from 

one base droplet to the other, the droplets moved along with the backbone. Thus, the 

waves are transferred together with the entire filament simultaneously growing into 

droplets. Therefore, the term convective capillary Plateau-Rayleigh instability reflects 

this effect of the movement of wave packet.  
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Figure 57. A set of frames illustrating a LLF developing the convective Plateau-Rayleigh 

instability. The liquid is being squeezed out of the filament and moves in one direction 

towards the base lower droplet. The local non-uniformities and droplets are labeled with 

the dashed lines of different colors. On neighboring panels, the same color pertains to the 

same non-uniformities. The direction of the movement of the features is indicated with 

the red arrow. The blue arrow points to the part of the filament with the smallest radius.  
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7.2.6 Tracking of the change of the neck thickness of the filaments 

We define the neck of the filament as its part with the thinnest diameter. This part 

of the filament is thus easy to find algorithmically and is well defined. Due to its 

definition, the location of the neck may sometimes jump during the filament evolution, 

especially in the convective Plateau-Rayleigh filaments. In Figure 55, Figure 56, and 

Figure 57, the neck is marked with a blue arrow. The details of the algorithm that 

determines the diameter of the thinnest segment of the filament are presented in the 

Materials and Methods section.  

The time changes of the thinnest diameter of the LLFs undergoing convective and 

non-convective Plateau-Rayleigh instabilities are distinguishable. During the first 0.5 

seconds of the process, the change of the filament radius 𝑟 follows an exponential time 

dependence, 
0 exp

3 r

tR R


   
 

 Afterwards, the filament radius follows a linear time 

dependence 0R R mt  , where
3

m 


  . The slope 𝑚 of the decay in the linear 

regime was measured for 6 filaments to be m = 2.9 ± 0.5 *10-5 m/s (Figure 58). 
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Figure 58. The radius of the filament as a function of time for six LLFs decaying via 

capillary thinning.  

One way to interpret the linear kinetics of the radius decrease due to capillary 

thinning is by using equation (1.6) for a Newtonian liquid, where the slope is inversely 

proportional to the viscosity, 
3

m 


 . Thus, to relate the slope to the viscosity, we 

measured the surface tension of the M. sexta caterpillar hemolymph using the pendant 

droplet method to be σ = 62 ± 3 mN/m. The measurements as well as their time-

dependence will be discussed in Chapter 9. Here, we estimate the viscosity of the 

material composing the LLF decaying due to capillary thinning to be η = 600 ± 100 Pa*s. 

This estimate suggests that the hemolymph material is highly viscous, about six orders of 

magnitude greater than that of water! 

The LLFs undergoing convective Plateau-Rayleigh instability also demonstrate an 

almost linear decay of the filament radius with a decay rate similar to that of the filaments 
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decaying via capillary thinning. To see this, we analyzed seven such filaments, and the 

slope of the linear region was similar, m = 2.8 ± 1 *10-5 m/s (Figure 59).  

Figure 59. The kinetics of the bridge breakup in the case of development of a convective 

instability on LLFs. Seven filaments were analyzed, and the slope of the linear region 

was m = 2.8 ± 1 *10-5 m/s.  

It is also instructive to classify only the first filament produced at a particular 

location in an incubating hemolymph puddle, when the structure of the soft clot inside it 

is not previously perturbed. We performed 30 experiments on the hemolymph puddles 

collected from 7 caterpillars and the filaments were classified as either following the 

convective or non-convective Plateau-Rayleigh instability. We found that out of these 30 

LLF, seven filaments followed non-convective Plateau-Rayleigh instability and 23 

filaments demonstrated the material pumping and developed convective Plateau-Rayleigh 

instability. All but one of those filaments that developed non-convective Plateau-

Rayleigh instability typically did not break and dried out leaving behind a string with 

several droplets on it; one of those filaments broke. Those filaments that developed 



204 

convective Plateau-Rayleigh instability, however, broke in 18 out of the 23 cases and 

remained intact in 5 cases.  

For the LLF following convective Plateau-Rayleigh instability, the incubation 

time of the hemolymph puddle was τi = 4 ± 3 minutes. The LLF following non-

convective convective Plateau-Rayleigh instability were obtained from the hemolymph 

puddles incubated for the longer time, τi = 12 ± 5 minutes. In other words, the younger 

liquid bridges seem to carry some mobile soft clots which were suspended in the 

hemolymph puddle; the older liquid bridges seem to be formed by a homogeneous highly 

viscous clot.  

7.2.6.1 Kinetics of disappearance of SLF 

The filaments with a lifetime smaller than 1 second (classified as SLF) exhibited a 

reproducible pattern with little variation in the development of the filaments. Shortly after 

a filament of a uniform radius was formed, its radius quickly decreased to zero, at which 

point the filament broke, Figure 60. No droplets or other features were formed on the 

filament during this time, i.e. the filaments were straight cylindrical. The radius of the 

cylindrical filaments decreased exponentially with time for all filaments. To fit the 

experimental data, we modeled these filament materials as Maxwell fluids, see equation 

(1.7). The relaxation times were calculated for 65 samples and the results are presented in 

a histogram in Figure 62. The relaxation time 𝜏𝑟 varied drastically across the samples. 

The distribution of the relaxation times ranges between τr = 10-3 and τr = 0.5 seconds.
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Figure 60. An example of an SLF decaying via a capillary thinning. 

Figure 61. Examples of exponential decays of the radii of SLF. 
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Figure 62. Histogram of relaxation times of SLF. 

7.3 DISCUSSION 

The analysis of the breakup kinetics of the liquid bridges that hemolymph forms 

upon extension led to several important findings. First, it was found that in the first 90 

seconds after wounding, hemolymph rigidifies and the primary clot forms to stop the 

bleeding. This was also evident from the gradual elimination of capillary instability and 

drops-on-string patterns as the hemolymph was dripping from the wound and formation 

of the straight cylindrical filaments indicative to either high viscosity or inherent 

elasticity in the stretched fluid. After 90 seconds, hemolymph at the wound exhibits a 

dichotomy of properties – the dripping fluid forms either LLFs or SLFs, indicating that 

two types of materials are present.  

The material that produces SLFs can be an elastic Maxwell fluid with a range of 

relaxation times.  
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The material that produces LLF behaves differently, depending on how long it has 

been incubated. If hemolymph was incubated for less than 7 minutes, the resulting LLF 

follows convective Plateau-Rayleigh instability. That is, the liquid is continuously moved 

along the filament in one direction and, simultaneously, a system of capillary waves 

develops. If incubated for longer than 7 minutes, the filament undergoes non-convective 

Plateau–Rayleigh instability forming a periodic system of droplets. Typically, these 

filaments do not completely break and dry out leaving behind a thin string with droplets 

suspended on it.  

The formation of the droplets on the LLFs deserves separate attention. The 

scenario of liquid bead formation on a solid string was explored in a classical work by 

Boys (44). In it, he demonstrates that the driving mechanism of this phenomenon is 

capillary thinning of a liquid film. Subsequent experiments and simulations have shown 

the capillary instability of the liquid film leads to the breakup of the liquid layer into 

droplets (45-47). The process is slowed down by the viscous interaction between the 

substrate and the thinning liquid layer. The process leads to an interactive instability that 

results in droplets that form on the solid fiber. In our case, however, there is no solid 

backbone to form fibers on, so a different physical phenomenon must be present.  

The scenario of bead formation on the surface of a liquid filament with no solid 

string backbone has been experimentally studied by Oliveira et. al. (48) and numerically 

studied by Bhat et. al. (49)in the context of Deborah and Reynolds numbers. According 

to their analysis, at high Reynolds numbers, a single bead can form on a filament if the 

De ~ 0.1 and multiple beads can only form if the De ~ 0.01. At low Reynolds numbers, 
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such as in our experiment, only a single bead can form De ~ 0.01 and multiple beads 

cannot form at all!  

We hypothesize that the resolution to the paradox is that the LLF consists of two 

parts: a relatively rigid or gel-like backbone and a liquid plasma that forms droplets, 

similarly to how water forms droplets on a string in the work by Boys (44) and obtains 

the shape originally described by Plateau (50) (Figure 63). This hypothesis is consistent 

with the observations of the convective Plateau-Rayleigh instability, where the backbone 

seems to move in the same direction along the LLF, rather than away from the center of 

the filament. This motion can thus be explained by the fact that the material is too strong 

to be broken apart and is moved to one side or the other by the forces of surface tension 

or differential adhesion of the backbone to the substrates. This is consistent with the 

nanorheological experiments from the previous chapters, which showed that the clot is a 

strong adherent material with an exponentially increasing viscosity with time.  

Also, as shown in the previous chapters, as incubation time increases and the clot 

matures, it becomes less adhesive. When the stainless-steel probe is lowered into this 

mature hemolymph, less of the clot material adheres to it. Since it is less adherent, the 

backbone no longer travels in one direction and remains stationary stretched between the 

probe and the substrate. Instead, it serves as a strong backbone for the droplets to develop 

over and for plasma to travel along to leave the filament due to the capillary thinning.  

 

This would also explain the dichotomy of the SLF and the LLF formations at the 

same location in the hemolymph puddle one after the other: if the probe destroys or 
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adheres to the soft clot material that forms the LLF during the first run of the experiment, 

the soft clot material does not get stretched during the second experiment and the SLF 

forms only from the plasma. To verify the hypothesis of the complex structure in the 

filaments, we capture the filaments and study their structure with microscopy in the next 

chapter.  

 

Figure 63. The shape of a droplet of liquid on a solid substrate. (a) and (b) mark the edges 

of the droplet. (Copied form original work by Plateau(50)) 

7.4 MATERIALS AND METHODS 

7.4.1 Video analysis 

To analyze the behavior of the liquid bridges as a function of time, their profiles need 

to be extracted. We created a custom software using LabVIEW Vision Development 

Module to extract and analyze the profile of the liquid bridges at each frame. 

The profile image extraction algorithm is as follows. Each step of the algorithm 

with user interaction is illustrated in Figure 64.  
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Figure 64. Key steps of the image analysis algorithm. (A) The parameters of the image 

analysis. The user manually selects the acceptable parameters.(B)The extracted contour 

of the filaments superimposed with the image. (C) The extracted contour data, rotated 

around the symmetry line. The minimum diameter is labeled with a blue arrow. (D) A 

plot of the radius minima of the filament for all frames in the video. The user moves the 

cursers on the plot to encapsulate the data of interest. (E) The selected data is fitted with 

the desired model. (F) An example of a failed contour extraction, where the thickness of 

the filament is too small for the program to detect.  

First, the user rotates the image using the controls in Figure 64, A, so that the 

filament is vertical. The user then specifies the region of interest where the software 

should find the liquid bridge; all information outside of this region is disregarded (Green 

box in Figure 64, B).  

 Depending on the quality of the image, it may be more efficient to either binarize 

the image (make it black-white) or use the grayscale gradient to detect the edge of the 

liquid bridge. If the image needs to be binarized, it is done using either constant threshold 
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values or background correction via IMAQ Local Threshold algorithm. Binarization of 

the image sometimes causes artificial holes to appear in objects; these holes are 

automatically filled in using IMAQ FillHole algorithm to insure correct further analysis. 

Another prominent issue occurs when the diameter of the neck is too small for the 

program to resolve. The algorithm then fails to correctly separate the left edge from the 

right edge of the droplet and cannot analyze it further (Figure 64, F). If the binarization is 

successful and produces an artifact-free image, the contour is extracted using the IMAQ 

Extract Contour algorithm. The user looks at the extracted contour superimposed on the 

image (Figure 64, B) and makes a judgement call on the quality of the extraction. If the 

extraction is poor, the user has an option to change the properties of the extraction 

(Figure 64, A). 

If the background is non-uniform or the liquid bridge has a low contrast, it is better 

to use the IMAQ Extract Contour algorithm without prior binarization of the image; in 

this case, the algorithm finds and extracts the contour of an object with a highest 

grayscale gradient in the region of interest.  

Once the liquid bridge profile is extracted, it needs to be analyzed to extract the 

width of the neck. To perform this or any other analysis, the contour needs to be rotated, 

such that it is oriented along a common axis – in this case, the x-axis (Figure 64, C). To 

do that, the centerline of the liquid bridge needs to be found. The process is as follows. 

First, the contours for the left and right edges are separated. The data points in the left 

and right profiles are then interpolated, such that each data point in one profile has a 

sister data point in the other profile. This ensures that two profiles are symmetric. The 



 

 212 

data is then fitted with a line; due to the fact that both curves are symmetric, the best fit 

line is the centerline of the two profiles. The angle of the best fit line is then extracted and 

the profiles are rotated by the angle of the best fit line. The data is thus oriented along the 

x-axis (Figure 64, C). 

The radius of the neck of the liquid bridge is then easily found as the minimum of 

one of the profiles (Figure 64, C, blue arrow). This is done for each frame of interest in 

the video. To select the region of interest in the data for further analysis, the user moves 

the markers on a plot (Figure 64, D). The user then fits the selected data with the selected 

model, and is presented with the fitted results (Figure 64, E). 

The data is stored for any future analysis as a spreadsheet, in which the profile of 

the liquid bridge at each frame is stored. 

7.5 REFERENCES 

1. Bidla G, Lindgren M, Theopold U, Dushay MS. Hemolymph coagulation and 

phenoloxidase in Drosophila larvae. Developmental and Comparative Immunology. 

2005;29:669-79.10.1016/j.dci.2004.11.007 

2. Lesch C, Theopold U. Methods to study hemolymph clotting in insects. Insect 

Immunology. 2008:1-12,  

3. Castrejon-Pita AA, Castrejon-Pita JR, Hutchings IM. Breakup of liquid filaments. 

Physical review letters. 2012;108(7):074506,  

4. Ledesma-Aguilar R, Nistal R, Hernández-Machado A, Pagonabarraga I. 

Controlled drop emission by wetting properties in driven liquid filaments. Nat Mater. 

2011;10(5):367,  

5. Kawano S. Molecular dynamics of rupture phenomena in a liquid thread. Physical 

review E. 1998;58(4):4468,  

6. Kwak S, Pozrikidis C. Effect of surfactants on the instability of a liquid thread or 

annular layer: Part I: Quiescent fluids. Int J Multiphas Flow. 2001;27(1):1-37,  

7. Thompson J. Stability of a liquid thread and stability and nonlinear evolution of 

multi-layer fluid flow: University of East Anglia; 2016. 

8. De Gennes P-G, Brochard-Wyart F, Quéré D. Capillarity and Gravity. Capillarity 

and Wetting Phenomena: Springer; 2004. p. 33-67,  



 

 213 

9. McKinley GH, Tripathi A. How to extract the Newtonian viscosity from capillary 

breakup measurements in a filament rheometer. Journal of Rheology. 2000;44(3):653-

70.Doi 10.1122/1.551105 

10. Bazilevsky AV, Entov VM, Rozhkov AN. Breakup of a liquid bridge as a method 

of rheological testing of biological fluids. Fluid Dynamics. 2011;46(4):613-

22.10.1134/S0015462811040119 

11. Alexandrou AN, Bazilevskii AV, Entov VM, Rozhkov AN, Sharaf A. Breakup of 

a Capillary Bridge of Suspensions. Fluid Dynamics. 2010;45(6):952-

64.10.1134/S001546281006013x 

12. Clasen C, Plog JP, Kulicke WM, Owens M, Macosko C, Scriven LE, Verani M, 

McKinley GH. How dilute are dilute solutions in extensional flows? Journal of Rheology. 

2006;50(6):849-81.10.1122/1.2357595 

13. Tuladhar TR, Mackley MR. Filament stretching rheometry and break-up 

behaviour of low viscosity polymer solutions and inkjet fluids. Journal of Non-

Newtonian Fluid Mechanics. 2008;148(1-3):97-108.10.1016/j.jnnfm.2007.04.015 

14. Bazilevsky AV, Entov VM, Rozhkov AN, editors. Liquid filament 

microrheometer and some of its applications. The Golden Jubilee Meeting of the British 

Society of Rheology and Third European Rheology Conference; 1990; Edinburgh, UK. 

15. McKinley GH, Sridhar T. Filament-stretching rheometry of complex fluids. Annu 

Rev Fluid Mech. 2002;34:375-415.10.1146/annurev.fluid.34.083001.125207 

16. Marshall KA, Liedtke AM, Todt AH, Walker TW. Extensional rheometry with a 

handheld mobile device. Exp Fluids. 2017;58(6). 10.1007/s00348-017-2351-9 

17. Anna SL, Rogers C, McKinley GH. On controlling the kinematics of a filament 

stretching rheometer using a real-time active control mechanism. Journal of Non-

Newtonian Fluid Mechanics. 1999;87(2-3):307-35.Doi 10.1016/S0377-0257(99)00072-5 

18. Campo-Deano L, Clasen C. The slow retraction method (SRM) for the 

determination of ultra-short relaxation times in capillary breakup extensional rheometry 

experiments. Journal of Non-Newtonian Fluid Mechanics. 2010;165(23-24):1688-

99.10.1016/j.jnnfm.2010.09.007 

19. Niedzwiedz K, Buggisch H, Willenbacher N. Extensional rheology of 

concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER). 

Rheol Acta. 2010;49(11-12):1103-16.10.1007/s00397-010-0477-2 

20. Roche M, Kellay H, Stone HA. Heterogeneity and the Role of Normal Stresses 

during the Extensional Thinning of Non-Brownian Shear-Thickening Fluids. Physical 

Review Letters. 2011;107(13). 10.1103/PhysRevLett.107.134503 

21. Dinic J, Zhang YR, Jimenez LN, Sharma V. Extensional Relaxation Times of 

Dilute, Aqueous Polymer Solutions. Acs Macro Letters. 2015;4(7):804-

8.10.1021/acsmacrolett.5b00393 

22. Galindo-Rosales FJ, Alves MA, Oliveira MSN. Microdevices for extensional 

rheometry of low viscosity elastic liquids: a review. Microfluidics and Nanofluidics. 

2013;14(1-2):1-19.10.1007/s10404-012-1028-1 

23. Mackley MR, Butler SA, Huxley S, Reis NM, Barbosa AI, Tembely M. The 

observation and evaluation of extensional filament deformation and breakup profiles for 



 

 214 

Non Newtonian fluids using a high strain rate double piston apparatus. Journal of Non-

Newtonian Fluid Mechanics. 2017;239:13-27.10.1016/j.jnnfm.2016.11.009 

24. Bazilevskii AV, Rozhkov AN. Dynamics of capillary breakup of elastic jets. Fluid 

Dynamics. 2014;49(6):827-43.10.1134/s0015462814060143 

25. Bazilevskii AV. Dynamics of horizontal viscoelastic fluid filaments. Fluid 

Dynamics. 2013;48(1):97-108.10.1134/s0015462813010110 

26. Hubbe MA, Tayeb P, Joyce M, Tyagi P, Kehoe M, Dimic-Misic K, Pal L. 

Rheology of Nanocellulose-rich Aqueous Suspensions: A Review. Bioresources. 

2017;12(4):9556-661. 

27. Godinho MH, Pieranski P, Sotta P. Hygroscopic study of hydroxypropylcellulose 

Structure and strain-induced birefringence of capillary bridges. European Physical 

Journal E. 2016;39(9).10.1140/epje/i2016-16089-2 

28. Haward SJ. Microfluidic extensional rheometry using stagnation point flow. 

Biomicrofluidics. 2016;10(4).10.1063/1.4945604 

29. Petrie CJS. One hundred years of extensional flow. Journal of Non-Newtonian 

Fluid Mechanics. 2006;137(1-3):1-14.10.1016/j.jnnfm.2006.01.010 

30. Hou YY, Kassim HO. Instrument techniques for rheometry. Review of Scientific 

Instruments. 2005;76(10).10.1063/1.2085048 

31. Basaran OA, Gao HJ, Bhat PP. Nonstandard Inkjets. In: Davis SH, Moin P, 

editors. Annual Review of Fluid Mechanics, Vol 45. Annual Review of Fluid Mechanics. 

452013. p. 85-113.10.1146/annurev-fluid-120710-101148 

32. Hoath S, Martin G, Tuladhar T, Mackley M, Hutchings I. Links between fluid 

rheology and drop-on-demand jetting and printability. Nip24/Digital Fabrication 2008: 

24th International Conference on Digital Printing Technologies, Technical Program and 

Proceedings. 2008:130. 

33. Mathues W, McIlroy C, Harlen OG, Clasen C. Capillary breakup of suspensions 

near pinch-off. Phys Fluids. 2015;27(9). 10.1063/1.4930011 

34. Berret JF, Roux DC, Porte G. Isotropic-to-Nematic Transition in Wormlike 

Micelles under Shear. J Phys Ii. 1994;4(8):1261-79. 

35. Walker LM, Moldenaers P, Berret JF. Macroscopic response of wormlike 

micelles to elongational flow. Langmuir. 1996;12(26):6309-14.DOI 10.1021/la960662v 

36. Chevry L, Sampathkumar NK, Cebers A, Berret JF. Magnetic wire-based sensors 

for the microrheology of complex fluids. Physical Review E. 

2013;88(6).10.1103/PhysRevE.88.062306 

37. Loosli F, Najm M, Berret JF. Viscoelasticity of model surfactant solutions, 

determined by magnetic rotation spectroscopy. Colloids and Surfaces a-Physicochemical 

and Engineering Aspects. 2016;510:143-9.10.1016/j.colsurfa.2016.06.019 

38. Castrejón-Pita JR, Castrejón-Pita AA, Thete SS, Sambath K, Hutchings IM, 

Hinch J, Lister JR, Basaran OA. Plethora of transitions during breakup of liquid 

filaments. Proceedings of the National Academy of Sciences of the United States of 

America. 2015;112:4582-7.10.1073/pnas.1418541112 

39. Day RF, Hinch EJ, Lister JR. Self-similar capillary pinchoff of an inviscid fluid. 

Physical Review Letters. 1998;80(4):704-7.DOI 10.1103/PhysRevLett.80.704 



 

 215 

40. Collins RT, Harris MT, Basaran OA. Breakup of electrified jets. J Fluid Mech. 

2007;588:75-129.10.1017/S0022112007007409 

41. Plateau JAF. Statique expérimentale et théorique des liquides soumis aux seules 

forces moléculaires: Gauthier-Villars; 1873.  

42. Michael DH. Meniscus Stability. Annu Rev Fluid Mech. 1981;13:189-215.DOI 

10.1146/annurev.fl.13.010181.001201 

43. Rayleigh L. XVI. On the instability of a cylinder of viscous liquid under capillary 

force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of 

Science. 1892;34(207):145-54,  

44. Boys CV. Soap bubbles and the forces which mould them. 1st American ed. 

Garden City, N.Y.,: Doubleday Anchor Books; 1959. 156 p,  

45. Goren SL. The Instability of an Annular Thread of Fluid. J Fluid Mech. 

1962;12(2):309-19.Doi 10.1017/S002211206200021x 

46. Goren SL. Shape of Thread of Liquid Undergoing Break-Up. J Coll Sci Imp U 

Tok. 1964;19(1):81-&.Doi 10.1016/0095-8522(64)90009-1 

47. Kalliadasis S, Chang HC. Drop Formation during Coating of Vertical Fibers. J 

Fluid Mech. 1994;261:135-68.Doi 10.1017/S0022112094000297 

48. Oliveira MSN, Yeh R, McKinley GH. Iterated stretching, extensional rheology 

and formation of beads-on-a-string structures in polymer solutions. Journal of Non-

Newtonian Fluid Mechanics. 2006;137(1-3):137-48.10.1016/j.jnnfm.2006.01.014 

49. Bhat PP, Appathurai S, Harris MT, Pasquali M, McKinley GH, Basaran OA. 

Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat 

Phys. 2010;6(8):625-31.10.1038/Nphys1682 

50. Plateau FlAJ. Experimental and Theoretical Statics of Liquids Subject Only to 

Molecular Forces. Paris: Gauthier-Villars; 1873.  

 



216 

CHAPTER VIII

8. STRUCTURE OF LONG-LIVED AND SHORT-LIVED FILAMENTS

8.1 INTRODUCTION 

8.1.1 Complex structure, consisting of proteins and hemocyte aggregates in 

untouched hemolymph and pulled out clots 

As discussed previously, hemolymph of M. sexta is a complex liquid, which consists of 

adhesive and non-adhesive cells suspended in plasma. After exiting the body via a 

wound, the cells aggregate by using pseudopodia and differential adhesion to form 

clusters. These clusters presumably form the soft clot on the wound. These structures 

rigidify with time on the scale of minutes. The structures are partly held together with 

glycosylated proteins, which could be observed after staining, lining the walls of the cells 

inside the cellular aggregates. After swirling the sample with a stirrer and ‘pulling out’ 

the clot, the glycosylated proteins stretched into long fibers, which were surrounded with 

large cellular aggregates.  

When probed with extensional methods, the hemolymph exhibited a dichotomy of 

properties – the same droplet of hemolymph, when probed twice back-to-back could 

produce a liquid filament that decayed in tens of seconds (long-lived filament, LLF) 

followed by a filament that decayed in less than a second (short-lived filament, SLF). 

This suggests that the two consecutive experiments may actually probe different 

materials.  
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8.1.2 Hypothesis 

Based on the fact that the soft clot is highly adherent and was shown to be able to 

be ‘pulled out’ with a glass stirrer, we hypothesize that the material that constitutes the 

LLF at least in part consists of the soft clot. If this hypothesis is correct, the observations 

can be explained as follows. When the probe is lowered into the sample, the soft clot, due 

to its adhesive nature, adheres to the probe. Then the probe is raised, the soft clot is partly 

pulled out of the droplet along with the liquid around it. The liquid then wants to leave 

the liquid column as it is squeezed out by its surface tension. This leaves the soft clot 

behind, which does not break up, but rather pulls itself to one side (either to the probe or 

the droplet) in a large patch. If it moves towards the metal probe, it likely adheres to it 

and does not get detached next time the probe is lowered. Hence during the second 

measurement, we only probe the liquid hemolymph and not the soft clot and observe the 

SLF. 

In this chapter, we collect the LLF and SLF during their lifetime on glass and 

plastic substrates to image any internal structure that they exhibit and relate it to the 

rheological measurements.  

8.1.3 Methodology 

To image the structure in the filaments with microscopy, the material has to be 

collected during the lifetime of the filament. The LLF were collected using two methods. 

The first method allowed us to collect the LLF exactly as they were during the 

experiment. It relied on first creating the LLF between a glass substrate and the metal ball 

probe and then sliding a glass slide between the two surfaces to collect the material on the 

slide. The material would remain adhered to the slide and could be covered with a cover 
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slip for microscopy. The second method allowed us to first dye the glycosylated proteins 

with a fluorescent rhodamine-PNA dye prior to making the LLF. It consisted of mixing 

the extracted hemolymph with the dye with minimal interaction on a glass slide, 

incubating the sample, producing the LLF with a metal probe, and then touching the 

metal ball to the glass slide. The LLF material would thus adhere to the glass slide and 

remain in place for further imaging.  

Collection of the SLF was a challenge due to their short lifetime which prevented 

any manual manipulation of the collectors or the filaments. Instead, we used electrostatic 

attraction to collect the material. We were only able to make this technique work with the 

hemolymph that was dripping from the wound of the caterpillar. The method relied on 

placing a charged plastic microscopy slide next to future trajectory of the droplet. When 

the droplet fell and the SLF was formed, the liquid became attracted to the slide and the 

SLF flew towards it. By aligning the plastic coverslip just right and removing it 

immediately after a successful collection, we were able to obtain only the relevant 

material from the SLF and not the droplet itself.  

8.2 RESULTS 

8.2.1 Long fibrous protein structure in LLF 

Hemolymph collected from the LLF with and without staining demonstrates 

similar structure: long thin oriented fibers along with hemocytes propagate along the 

length of the filament. Figure 65 shows such structure from a filament collected without 

staining with roughly 1.5 minutes of incubation after wounding. Panel (A) shows the 

entire length of the collected filament is over 3 mm. The fibrous structure is in the center 
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of the image and the light grey plasma surrounds it. This fibrous structure is what forms 

the backbone of the LLF. Panel (B) is zoomed in on the center region of the fibrous 

backbone. Cellular aggregates are located along the backbone and the concentration of 

cells outside of the backbone is low. Panels (C) and (D) are even further zoomed in on 

two regions of the filament. A structure, which consists of multiple thin long fibers with 

embedded cellular aggregates and individual cells is evident. These observations are 

consistent with our hypothesis of a backbone structure in the LLF.  
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Figure 65. A phase-enhanced image of an LLF captured on a glass slide created from 

hemolymph incubated for approximately 1.5 minutes after wounding. (A) The entire 

length of the collected filament is over 3 mm. The fibrous structure is in the center of the 

image and the light grey plasma surrounds it. (B) A closer look at the same filament. 

Cellular aggregates are located along the backbone and the concentration of cells outside 

of the backbone is low. (C) and (D) are even further zoomed in on two regions of the 

filament. Hemocyte aggregates and single hemocytes are seen adhered to a bundle of 

fibers 
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To gain insight into the material composing the fibers, we perform staining of the 

glycosylated proteins with a florescent rhodamine-PNA dye prior to formation of an LLF 

with a metal probe. This labeling was challenging, since the labeling procedure (outlined 

in chapter 5) called for stirring of the sample to mix the dye in and incubation for 10 

minutes to let the dye adhere to the protein. In our experiment (and as reported in the 

previous chapter), however, the LLF change their behavior and typically stop appearing 

altogether after 10-12 minutes of incubation. The incubation time prior to the LLF 

formation was thus lowered to 5 minutes to remain in the time window during which 

liquid filament can be formed. We also saw that stirring led to the adhesion of the soft 

clot to the stirrer and consequential removal of the soft clot from the sample. We thus had 

to eliminate the destructive stirring step from the protocol. Because of this, the quality of 

the staining suffered, but the fibrous material is nevertheless visible.  

Images of the stained hemolymph after the LLF was formed are presented in 

Figure 66. The bulk of the sample was similar to the bulk images presented in Chapter 5. 

In the vicinity of the liquid filament, however, a clear fibrous structure composing of 

glycosylated proteins (Figure 66 B and D) surrounded with aggregated hemocytes 

(Figure 66 A and C) is visible. There are two parallel fibrous structures visible in panels 

(A and B). This suggests that during the LLF evolution, multiple strands of the stretched 

soft clot can come together under the effects of the surface tension and adhere together to 

form the backbone of the LLF. These results strongly support the hypothesis that the 

fibers are comprised of the same glycosylated proteins observed in the soft clot. 
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After incubation of more than 40 minutes, fibers became darker and more visible 

under phase-enhanced microscopy (Figure 66 E and F). These fibers propagated through 

the liquid filament. The fact that the orientation of these darker fibers is the same as that 

of the glycosylated proteins and cellular aggregates suggests a connection between the 

two structures.  



223 

Figure 66. Fluorescent and phase-enhanced micrographs of a liquid filament made from 

hemolymph mixed with PNA dye and incubated for 5 minutes; liquid filament was 

collected during its initial second of lifetime. (A, C) phase enhanced overlayed with (B, 

D) fluorescent images of the fibrous structure in the sample near the liquid filament. The

structure composed of cells and glycolated proteins is apparent. (E, F) Phase enhanced
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images of the liquid filament, demontrating oriented fibrous structure. The amount of dye 

in this region was too high to produce a fluorescent image 

8.2.2 No observable microstructure in SLF 

The collected SLF exhibited none of the structure found in the SLF. First, it did not 

contain any fibers – aligned along the direction of stretching or otherwise. Second, there 

were no hemocyte aggregates – there were few hemocytes at all (around 10 per filament). 

Typically, the collected SLF looked like a homogeneous liquid sample with no 

distinguishing features under phase-enhanced microscopy. For that reason, no images of 

it are presented.  

8.3 DISCUSSION 

Long-lived and short-lived liquid filaments produced from hemolymph of larval M. 

sexta were collected and imaged under phase-enhanced and fluorescent microscopy. The 

LLF contain multiple bundles of fibrous glycosylated proteins with adhered aggregates of 

hemocytes oriented in the direction of stretching. The SLF, however, do not contain any 

visible microstructure or hemocytes. This is consistent with our hypothesis and means 

that the LLF consist of the soft-clot material at the core with plasma surrounding it. The 

SLF, meanwhile consist of just the plasma and while the liquid at the onset of the SLF 

may contain individual or aggregates of hemocytes, they are all squeezed out of the 

filament during the later stages of thinning.   
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8.4 MATERIALS AND METHODS 

8.4.1 Collection of an LLF on glass slide with no dying 

For imaging of material inside of LLF without dying, the collected liquid 

filaments were extended with a probe from a large hemolymph droplet on a substrate as 

described in section 7.2.4. Since the LLF can exist for seconds, one can carefully swipe a 

small piece of glass coverslip over the filament to collect it. Because of a small working 

distance of several mm between the probe and the droplet, however, there is a high 

chance of contamination of the sample with the material from the bulk. Another 

challenge arises that if the filament breaks during the collection, the material will all 

collect at the edge of the cover slip and would be impossible to image. Figure 67 

illustrates this issue. In it, the leading edge of the collector slide attached to the LLF, the 

large liquid bead was collected on the slide, and the material that was between the edge 

and the bead was collected. The filament that was between the liquid bead and the metal 

ball, however, broke and flew to the probe or the bead. Due to these two challenges, only 

four LLF were successfully collected and imaged.  
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Figure 67. A gallery of frames illustrating a partially successful collection of LLF, 

depicting the metal probe, the LLF with a liquid bead, and the glass collector. (A - C) The 

leading edge of the collector slide is brought in contact with the LLF. A part of the LLF 

adheres to the leading edge and can be moved. (D) The LLF is stretched during the 

collection. (E) The LLF is broken near the metal probe. The liquid bead adheres to the 

collector and the segment of the LLF between the bead and the leading edge of the 

collector adheres with it. The part of the LLF between the bead and the probe gets either 

absorbed into the bead or adhered to the probe. In either case, its structure is not 

observable under the microscope. The blue arrow points to the segment that was 

captured. The red arrow points to the absence of a captured filament between the liquid 

bead and the probe, because it broke during collection.  

The procedure for the collection with this method was as follows. Prior to 

collection, glass cover slips were cut into 5 mm wide strips and cleaned with methanol. 

The caterpillar was mounted in its tubular holder and an incision was made on the third 

proleg. The hemolymph was allowed to drain onto a glass slide and incubated for 2 

minutes. A metal probe was then lowered into the sample and raised to a height of 5-10 

mm. In an LLF formed, the pre-cut cover slip strip was then swiped across the LLF to
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collect it. Immediately after the attempt, the sample was covered with another cover slip 

to prevent evaporation and imaged under a phase-enhanced microscope.  

8.4.2 Collection of a dyed LLF 

For florescent imaging of glycosylated proteins inside the LLF, the procedure was 

as follows. A caterpillar was placed in the tubular container and an incision was made on 

the third proleg. Four to five droplets (80 – 100 ul) of hemolymph was dripped directly 

onto a glass cover slip. 5 ul of 50 μg/ml rhodamine-PNA solution was added to the 

droplet. The mixture was not stirred to prevent the destruction of the structure and was 

incubated for 5 minutes. A metal ball was then dipped in the droplet and lifted out, thus 

forming a liquid filament between the ball and the droplet. While the liquid filament was 

still present, the bottom of the ball was touched to the glass slide roughly 5 mm away 

from the edge of the droplet. The liquid filament was thus adhered to the slide. The 

sample was then imaged under a fluorescent microscope with an environmental chamber 

(name) under 100% humidity.  

8.4.3 Collection of SLF on a plastic slide 

For imaging of the material inside of the SLF, the collected liquid filaments were 

created using the dripping method, described in section 7.2.3. As discussed earlier, this 

method produces SLF with a lifetime of under 1 second. Such a short lifetime makes the 

filament collection challenging. Moreover, additional care had to be taken to collect the 
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liquid just from the filament itself and not the droplet or the wound. This was important, 

as the structure in the bulk was possibly different than the structure in the filament. Since 

the rate with which the droplets fell from the wound was fast (initially after wounding: 

several droplets per second, and after a minute of incubation: a droplet e 10 seconds) and 

could not be controlled, the collection technique had to be swift. We used the force of 

electrostatic attraction to pull the liquid filament towards the substrate and collect it.  

 A plastic microscopy slide was used as a charged collector for the filament. The 

slide was mounted vertically in a specially designed holder (schematic in Figure 68 F-J). 

The holder consisted of a thin slit for the plastic slide and a well for the droplet to fall 

into. The depth of the well was approximately 1 cm and served to make sure that the 

droplet never touched the plastic slide, thus preventing the contamination of the sample 

with bulk material (hemolymph from the drop). To improve the efficiency of the 

collection method three such slit-wells were used in each experiment. Thus, each time a 

caterpillar was cut, three attempts at filament collection could be made. In order to make 

sure that the collected sample was indeed an SLF, the collection process had to be 

monitored by a high-speed camera. The process is illustrated from the side view in Figure 

68 and the front view in Figure 69. 
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Figure 68. (A-E) A gallery of frames depicting the caterpillar and the top of the SLF as 

wells as (F-K) schematics depicting the caterpillar, the wound, the hemolymph, and the 

plastic collector in the holder with a well during the process of SLF collection from the 

side view. (A, F) The droplet is hanging from the wound. (B, G) The droplet begins 

falling, stretching the liquid bridge into a filament. (C, H) The droplet flies by the 

collector and falls into the well. (D, I) The filament is left behind, attracted to the plastic 

collector. (E, I) The filament snaps to the plastic collector due to the electrostatic 

attraction force. The droplet does not touch and contaminate the sample.  
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Figure 69. A gallery of frames of the SLF collection from the front view. (A) The droplet 

hemolymph is hanging from the wound of the caterpillar. (B) The droplet is falling and 

the liquid bridge is stretching into a filament. (C) The droplet fell and the filament 

attached to the plastic slide collector.  

The procedure for the collection was as follows. First, the caterpillar was placed 

in a plastic tubular container to restrict its motion, as described in the previous chapter. 

The container had an opening for a proleg, where the incision would be made. A plastic 

collector slide was then mounted into each of the three slits in the holder. The first plastic 

slide was aligned such that it was directly underneath the opening of the caterpillar 

container. The high-speed camera (Point Grey, Grasshopper) was then focused on the 

plastic slide to monitor the collection of the sample. Since immediately after the incision, 

hemolymph comes out under pressure, the container with the caterpillar was temporarily 

brought away from the collection set-up to make the incision. After 5-10 seconds after 

the incision, the caterpillar was brought back to its original position over the collector 

slide. To collect the produced SLF, the slide had to be close enough to the trajectory of 

the droplet to attract the filament. On the other hand, if the trajectory of the droplet was 
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too close to the collector slide, the edge of the droplet would contaminate the sample. 

Thus, after each falling droplet of hemolymph, the position of the collector slide was 

adjusted – if no filament was collected, the slide was moved closer to the wound; if the 

droplet touched the collector, it would be discarded and the next collector was moved 

under the wound to attempt to collect the next sample. After a successful collection, the 

plastic slide is removed from the holder, and covered with a glass cover slip for 

observation under the microscope. Five SLF were collected and studied in this manner. 
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CHAPTER IX

9. SURFACE PROPERTIES OF HEMOLYMPH OF ADULTS AND

CATERPILLARS 

9.1 INTRODUCTION 

In Chapter 3, we discussed microrheology of hemolymph of adult butterflies and 

moths and found that the viscosity of M. sexta moth is significantly higher than that of V. 

cardui and D. plexippus butterflies. We hypothesized that it was due to M. sexta needing 

more energy as it spends more time flying and hovering during feeding and thus requires 

more fuel. The fuel is transported from the fat body to the muscles with the carrier 

particles. These particles are amphiphilic and are surface active. We showed that a 

reasonable surface charge of the particles could explain the viscosity increase. Since 

some of the energy carriers were shown to be surface active (1) and since we have 

observed this surface activity during the crust formation of a hemolymph sample between 

two cover slips, a study of the surface tension isotherms of hemolymph would be an 

important step in the validation of this hypothesis. In this chapter, we study the surface 

tension isotherms of hemolymph of adult M. sexta, V. cardui, and D. plexippus, as well as 

caterpillar M. sexta by diluting the extracted hemolymph in buffer at different dilution 

ratios, measuring the surface tension of the solution, and thermodynamically analyzing 

the data.  

Furthermore, as discussed in Chapter 7, the phenomenon of the droplet formation 

on a filament formed from hemolymph could be facilitated by changing surface 

properties of incubating hemolymph. We investigate these properties to shed light on that 
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phenomenon. In particular, we study how the surface tension and surface viscosity of 

caterpillar hemolymph change with time during the aging of surface.  

When the surface-active solutes adhere to the surface, their local concentration 

increases and the surface tension is expected to decrease. With that, we expect the local 

viscosity to increase. The surface rheology is difficult to measure using conventional 

methods as it requires precise measurement of delicate interactions between the surface 

and a probe. We propose to probe it by placing a magnetic microwire (50 um in diameter 

and several mm in length) on the surface of the sample and rotating it with a magnetic 

field. It is impossible to measure the surface rheology independently from the bulk 

rheology, as it would require complete isolation of the probe from the bulk, which is 

impossible to accomplish experimentally. Because of that, to adequately probe the 

surface rheology, the interaction of the probe with the bulk needs to be characterized. 

That interaction is dependent on how much of the probe is submerged under the surface, 

which is in turn dependent on the contact angle of the liquid with the probe. This contact 

angle may be dependent on the amount of the solute adsorbed to the surface and thus 

needs to be carefully characterized. This is challenging to do, due to the small size of the 

meniscus on the thin cylindrical probe and has not been accomplished yet. Here, we limit 

the analysis to extracting the apparent viscosity of the surface-probe system and use it to 

qualitatively describe the surface process.  

9.2 THEORETICAL BACKGROUND 

9.2.1 Surfactants 

(For a full overview of surfactants, see the following books: (2) and (3)) 
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Surfactants (short for surface active agents) are soluble in the fluid carrier and are 

strongly adsorbed to surfaces. In the aqueous environment such as hemolymph, 

surfactants have both hydrophilic and lyophilic parts and are thus called amphiphilic. The 

adsorption is driven by the amphiphilic properties of surfactants. For instance, at the 

water-air interface, a surfactant molecule aligns such that its hydrophilic part is immersed 

in water, while its hydrophobic part is surrounded by air. When the concentration of 

surfactants at the interface is sufficient to cover the surface, surfactants form a 2D 

continuum, a monolayer called the Gibbs monolayer.  

9.2.1.1 Effect of surfactants on surface tension 

When surfactants are added to water, they adhere to the surface, forcing the 

surface tension to decrease. 

Due to adhesion, the concentration of surfactants at the interface, Cσ, is different 

from that in the bulk, Cα. Here, by the ‘surface’, we mean a mathematical surface of zero 

thickness at the boundary of the bulk material. For a two-phase system (α and β) such as 

a liquid and surrounding gas coexisting in equilibrium and separated by a flat interface 

(marked by σ) between them, the measure of the difference of solute concentration in the 

bulk and a surface layer is the surface excess of surfactant or adsorption, defined as 

total aC C C

A


  

  , where A is the area of the surface, aC is the surfactant 

concentration in the phase a , C is the surfactant concentration in the phase b and totalC is 

the total surfactant concentration.  
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At lower concentrations, the surface tension 𝛾 decreases almost linearly. With 

increase of concentration, the surface tension decreases logarithmically; in this region, 

the adsorption 
  is almost constant. At a certain surfactant concentration, the surface 

tension stops changing. This is due to the fact that the surface becomes saturated with the 

surfactant and no new surfactants can adsorb to the surface any longer. Instead, 

surfactants begin forming structures in the solutions called micelles. For this reason, the 

surfactant concentration at which the surface tension stops changing is called the critical 

micelle concentration.  

9.2.1.2 Gibbs surface tension isotherm and adsorption 

Before considering the adsorption of surfactants to a surface, we need to introduce 

the concept of the Gibbs surface tension isotherm originally derived by Gibbs [The 

collected works of J.W. Gibbs, 191. P219]. It relates the surface tension, adsorption, and 

temperature. In the differential form, this relation is written as  

1 i
i T

i

d dC
RT C






   (9.8) 

where R is the gas constant, T is the temperature, and the index i corresponds to the 

surface active component i in a multicomponent solution. In solutions with a predominant 

population of one surface active component, say a b component, at a constant 

temperature, 𝐶𝑏 ≫ 𝐶𝑖 , 𝑖 ≠ 𝑏this equation is simplified to  

1 b
b

b

d dC
RT C






   . (9.9) 
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The adsorption of a surfactant to the surface is characterized by its surface excess, 

which is a function of how fast the surface tension changes with concentration and is 

calculated by the rearranged equation (9.9): 

 b
b

b

C d

RT dC

 
    , (9.10) 

or  

 
1

ln
b

b

d

RT d C

 
    . (9.11) 

9.2.1.3 Kinetics of adsorption 

 When a new surface forms, the solute concentration in the subsurface region is initially 

the same as that in the bulk. This concentration drops to near-zone, however, due to its 

adsorption to the surface. The concertation drop causes diffusion of the particles from the 

bulk towards the subsurface region, where they immediately adhere to the surface. 

During this time, the adsorption of the solute to the surface is controlled by this diffusion 

as:  

 

1/2

1/2b i
b s

s

d D
C t

dt





  
  
 

  (9.12) 

so that 

  
1/2

2 /b b i sC Dt     (9.13) 

where D is the diffusion coefficient of the solute and ts is the age of the surface, i.e. the 

time the solute takes to get to the surface. During the early stages of maturation of the 

surface, when the surface tension can be related to the diffusion by combining equations 

(9.11) with (9.13) and integrating to obtain 
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 
1/2

0 2 i s
b

D t
t RTC 



 
   

 
(9.14) 

With time, as the adsorbed amount of material increases and more solute remains in the 

subsurface layer, the back diffusion of the solute from the subsurface to the bulk becomes 

significant. At this time, the simple diffusion begins to overestimate the rate of adsorption 

and a more complex model has to be used (4). Eventually, the surface and the bulk reach 

an equilibrium, no new solute gets adsorbed to the surface, and the surface tension ceases 

to change. 

9.2.2 Thermodynamics of a Gibbs monolayer 

This section follows the logic of (2). 

The behavior of monolayers is best described in an analogy to the osmotic 

pressure. The concept of osmotic pressure is best visualized by placing a membrane that 

is permeable to the solvent and impermeable to the solute between a container of the 

solution and a pure solute. The surplus of the solvent molecules on the side of pure 

solvent will create a net flux of solvent into the solution, increasing its hydrostatic 

pressure until an equilibrium is reached. The osmotic pressure is then defined as 

osm lP D gh , where
lD is the density of the liquid, h is the difference between the height 

of the levels of solution and water, and g is the acceleration due to gravity. The osmotic 

pressure can be measured directly if the semipermeable membrane in the experiment is 

replaced with an impermeable membrane and the pressure across it is measured.    
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A parallel can be drawn between osmotic pressure (3D) and the surface pressure 

(2D) in a surface-active solution. The surface pressure can be measured if the two liquids 

are separated with an impermeable membrane, but the pressure drop is measured across a 

thin float, separating two surfaces. The first device to measure the film pressure in such a 

way is called the Pockels-Langmuir-Adam-Wilson-McBain trough or a PLAWM trough 

(2). This device confirmed the relationship between the surface pressure in the film, πs, 

and the surface tensions of the two liquids, 
solvent  and 

solution , as 
s solvent solution    . 

This relationship allows the surface pressure to be measured indirectly, by measuring the 

surface tensions of both liquids using the Wilhelmy plate method. Moreover, by 

physically controlling the total area that the film occupies, it is possible to measure the 

surface pressure as a function of the exclusion area of the surface-active molecules. Such 

a device is called the Langmuir – Blodgett (LB) trough (2).  

Consider a dilute monolayer of a surface-active material. In this case, the solute-

solute interactions are not important and the variation of surface tension with the 

concentration is linear with slope m, 

solvent bmC   (9.15) 

Thus, 

b

d
m

dC


  (9.16) 

The slope m can be measured in experiments. Combining equation (9.16) with Gibbs 

equation (9.10) and solving for 

b



 provided that concentration bC  is known, we get 
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/ ( )b bmC RT  (9.17) 

On the other hand, due to definition of the surface pressure, we have 

s b bmC RT    (9.18) 

Adsorption 

b



 has the units of moles / surface area. Areas that a mole of material and an 

individual molecule occupy at the surface could be defined from adsorption as 1

b

A 


and 1
m

A b

A
N 


, respectively, where NA is Avogadro’s number. 

At low concentrations of the surfactant, 1s A
RT


 . As surfactant concentration 

increases, the ratio s A
RT


 deviates from 1. The Amagat-type Law known for gasses at 

high pressure (2) is typically used for this range of concentrations (1, 2, 5)

0

s

qRT

A A
 


(9.19) 

where A0 has the aspect of an excluded area per mole and q is a constant reflecting effect 

of measuring intermolecular interactions. Taking q=1, one reduces this equation to the 

Volmer-Mahnert equation(6): 

0( )s A A RT   (9.20) 

9.2.2.1 Surface thermodynamics of a monolayer of Apolypophorin-III 

One constituent in the lipid transfer cascade is apolypophorin-III (ApoL-III). The 

surface adsorption of ApoL-III – was previously studied in Ref. (1). Figure 70 shows the 

data for ApoL-III from source (7). At low surface pressures, the behavior follows a linear 

pattern, but deviates away from it at higher surface pressures. This indicates a phase 

transition in the surfactant behavior.  
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ApoL-III is a long chain with hydrophobic and hydrophilic regions. In its free 

configuration, it is folded over on itself such that the hydrophobic parts are not exposed 

to water. It is relatively unstable in this configuration, when compared to other globular 

proteins(8). When it binds to a lipid or a water surface, it unfolds, exposing its 

hydrophobic parts (9). In the lipid bound form, it was found to be significantly more 

stable than in the free form (10). That suggests that it is energetically preferable for it to 

adsorb to a lipid or a free surface than to remain in the free coiled from.  

To determine the molecular area of ApoL-III in the bound regime, ApoL-III, was 

isolated from adult M. sexta using a protocol described in (11) and studied using a 

Langmuir-Blodgett trough. A powder of isolated ApoL-III was found to be poorly 

soluble in water and formed a stable film on water surface. This allowed the ApoL-III 

film to be dispersed on a LB trough and form a monolayer. The monolayer was stable for 

at least 30 minutes. The area of the monolayer surface was constricted and the resultant 

surface pressure was measured (Figure 3). The shape of the curve was repeatable for 

several constriction/unconstriction cycles.  
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Figure 70. Surface pressure versus molecular area for ApoL-III. (adapted from (7)) A. 

The full surface pressure curve B. Surface pressure curve in the region under 1 N/m. The 

behavior in this region follows that of equation (9.20).  

In their thermodynamic treatment of experimental data, Kawooya et al. analyzed the 

semi-dilute regime of the monolayer formation in Figure 70.B with equation (9.20) to 

determine the limiting molecular area A0 = 38 nm2. The interpretation of this data is 

questionable, however, since the instrument used in the study (Lauda Filmwaage, Type 

FW1) was not able to control concentration of surfactant in the bulk and adsorption of the 

material on the other – ‘clean’ – side of the trough. (12)  

9.2.3 Shape of a droplet on a thread – Unduloid equation 

In Chapter 7, we briefly discussed droplets that formed on the long-lived filaments. 

These droplets could form on both types of filaments that decayed via the capillary 

thinning and via the pullout instability. Assuming that the droplets are coexisting with the 

liquid bridges in equilibrium and slow flow of hemolymph does not affect their shape, we 

can apply the theory of equilibrium liquid bodies to describe their shapes (2, 3). The 

equilibrium shape of such droplets, called an unduloid, is dictated by a constant pressure 

throughout the droplet and a contact angle between the droplet and the liquid bridge on 
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which the droplet forms (13). The contact angle is a measure of the interaction between 

the materials comprising the droplet and the filament and if the contact angle is zero, both 

materials are presumably made of the same chemical compound. 

The derivation of the Unduloid equation is as follows. A small droplet of liquid in 

equilibrium and absence of significant gravitational contribution has a shape defined by 

the Laplace law. 

 
1 2

1 1
.P const

R R

 

    
 

  (9.21) 

where ∆𝑃 is the pressure inside the drop measured relative to the atmospheric pressure, 𝛾 

is the surface tension of the droplet, and R1 and R2 are the two principal radii of curvature 

of the droplet. For an axisymmetric droplet, the Laplace law can be written in a 

differential form as:  

 

 
2

3/2
21 1

1

1

du u P
u

dy u y

dx

dy u



  
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 



  (9.22) 

Where x is the coordinate along the liquid cylinder modeling the liquid bridge and y is the 

radius of the drop at the given point x. For a droplet on a fiber of radius, Rf, with a maximum 

radius, Rd, relative to the central axis, and a contact angle θc, a force balance can be set-up 

as  

 
       2 22 2 2 0

cos

d d f sl f sg f

sg sl c

R P R R R R       

   

    

 
  (9.23) 
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where sg and 
sl are surface tension of the liquid bridge/air interface and liquid 

bridge/droplet interface, respectively. Combining equations (9.22) and (9.23), we get an 

expression for the droplet shape that depends only on geometrical parameters Rd, Rf and 

θc: 

 
 

2
3/2

2

2 2

2 cos1 1
1

1

d f c

d f

R Rdu u
u

dy u y R R

dx

dy u

 
   
 
 



(9.24) 

The equation can be written in its integral form (14): 
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(9.25) 

where  ,F k a and  ,E k a are first and second kind elliptic integrals. The equation can 

be solved numerically. 

9.3 RESULTS 

9.3.1 Surface tension as a function of concentration 

The surface pressure of hemolymph of insects of three species, M. sexta (adults and 

caterpillar stage), V. cardui (adults), and D. plexippus (adults), were measured at different 

solute mass fractions. The solute mass fractions were varied by diluting extracted 
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hemolymph with 7.2 pH phosphate buffer solution (PBS). The solute mass fraction in the 

undiluted hemolymph, ws0, of adults was measured in chapter 3; it was measured in the 

same way for the M. sexta caterpillars to be ws0 = 0.075 ± 0.003.  

Expectedly, the surface pressure 

s

 changes linearly with solute mass fraction ws at 

low mass fractions and, unexpectedly, it changes exponentially at higher mass fractions. 

This suggests that only one component of surface-active particles contributes most in the 

surface adsorption.  

To determine the parameters of this behavior, we split the data into two regions and 

fitted one dataset with a linear function (Figure 71. A) and the other with an exponential 

function (Figure 71. B). As Barnes and Gentle suggest, the change of behavior should be 

expected at the surface pressures of about 

s

 ≈ 5 mN/m, so that we split the data at that 

value. Since the surface pressure of pure solvent is 0, the linear regression was performed 

with the y-intercept pinned at 0 and the best fit slopes were 46±7, 15±3, 1.4±0.2, and 

1.3±0.2 [N/m] for adult M. sexta, adult V. cardui, adult D. plexippus, and caterpillar M. 

sexta, respectively. These values are presented in in Table 10 and are discussed in the 

discussion section.  

The data with 

s

> 5 mN/m was fitted with an exponential function. The 

exponential coefficients were equal to a = 3.2±0.3, 3.2±0.6, 3.5±1.5, and 2.1±0.4 [mN/m] 

and the y-intercepts were equal to b = 35±3, 31±3, and 26±9, and 16±1 [mN/m] for adult 

M. sexta, adult V. cardui, adult D. plexippus, and caterpillar M. sexta, respectively. These

values are also presented in in Table 10 and are discussed in the discussion section. 
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Table 10. Summary of the experimental parameters of the surface tension isotherms for 

hemolymph of adult M. sexta, adult V. cardui, adult D. plexippus, and caterpillar M. 

sexta.  

Species Life stage 

Slope in linear 

regime, m [N/m] 

Exponential coefficient, a 

[mN/m] 

Exponential 

y-intercepts, 

b [mN/m] 

M. sexta Adult 46±7 3.2±0.3 35±3 

V. cardui Adult 15±3 3.2±0.6 31±3 

D. plexippus Adult 1.4±0.2 3.5±1.5 26± 

M. sexta Caterpillar 1.3±0.2 2.1±0.4 16±1 

The uncertainties represent the 95% confidence interval. The results of the 

regressions for each species are also presented in their respective figures. No samples had 

a surface pressure above 20 mN/m. One adult M. sexta hemolymph sample with the 

highest solute mass fraction can be seen significantly to the right of the best fit curve, 

possibly indicating a critical micelle concentration. That region, however, is difficult to 

probe, since it requires low dilutions of the sample and thus a large volume of extracted 

hemolymph.  
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Figure 71. A plot of surface pressure vs. total solute concentration of hemolymph for the 

three species of Lepidoptera – 3 adults and one caterpillar. (A) As expected, the surface 

pressure 

s

 at surface pressures 

s

< 5 mN/m follows a linear trend and was fitted with a 

line. The slopes m of the best fit lines are presented in the legend. (B) The x-axis is 

logarithmic in scale. At surface pressures 

s

> 5 mN/m, the surface pressures increase

exponentially with the mass fraction ws. That data was fitted with an exponent and the 

best fit parameters are presented in the legend.  
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9.3.2 Caterpillars: surface tension as a function of time 

Surface tension of a pendant droplet formed from incubated hemolymph of M. sexta 

caterpillars was measured as a function of surface age of the droplet, ts, at incubation 

times ti ranging from 2 to 40 minutes since the extraction of hemolymph. Each 

measurement consisted of extracting the hemolymph from the caterpillar onto a glass 

slide, collecting the hemolymph into a clean glass syringe, incubating the hemolymph in 

the syringe for a set amount of time ti (up to 40 minutes), producing a pendant drop, and 

tracking the surface tension of that drop via image analysis as a function of the surface 

age of the drop, ts. For each droplet, the surface tension decreased over several minutes of 

the surface age. Since equation (9.14) only describes the early kinetics in the absence of 

back diffusion, we use the data from the initial 60 seconds of the surface development 

and fit it with equation (9.14) with the initial surface tension γ0 and a coefficient 

1/22 b iRTC D
c


  as adjustable parameters. We studied 10 droplets from 3 specimens and 

found no dependency of c or γ0 on the incubation time of hemolymph and on average, c = 

0.8 ± 0.4 mNm-1s-1/2 and γ0 = 62 ± 3 mN/m. 
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Figure 72. An example of the surface tension vs surface age curve. Only the first 60 

seconds of life of the drop were fitted with equation (9.14) due to the effect of back-

diffusion at later incubation times.  

9.3.3 Surface rheology of hemolymph of caterpillars.  

A magnetic microwire was placed on the surface of incubating hemolymph and 

rotated with a magnetic field. There are three major results from these experiments. First, 

the surface behavior of an incubating sample of hemolymph changes as a function of 

time. Initially, it behaves as a surface with Newtonian viscosity. As time goes on, 

viscosity increases and the surface becomes elastic. This was evident from the motion of 

the probes – initially, their motion had both oscillatory components as well as a rotating 

mean orientation. With time, the average orientation became constant, indicating that the 

material behaves like a gel. With further incubation, the amplitude of the oscillation 

decreased, indicating a more viscous and a more elastic material. Such behavior was not 

observed with a model surfactant solution of aqueous sodium-dodecyl-sulfite of any 
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concentration. This suggests that gelation occurs not only at the surface but propagates 

deeper in the bulk of the liquid.  

Second, by placing two probes in the same sample that was incubated for several 

minutes – one pinned to the surface and one in the bulk – we see a drastic change of the 

properties between the two locations. The probe on the surface was oscillating with a 

small amplitude around a non-changing average orientation – the behavior we would 

expect from a probe in a gel. The probe suspended deeper in the bulk, however, was 

rotating freely, oscillating around an increasing average orientation – a behavior 

impossible for a probe in a gel. An image of the probes in the sample along with their 

extracted trajectories are presented in Figure 73. This unique dichotomy of material 

behavior indicates significant surface activity and interaction of the solutes in 

hemolymph of M. sexta caterpillars. 
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Figure 73. Behavior of a probe on the surface and in the bulk of the same incubating 

hemolymph sample. (A and B) The bulk probe (labeled with a blue dot) can be seen 

freely rotating in the liquid. The surface probe (marked with a red dot) is almost 

motionless. (C) An extracted profile of the orientation angle φ for both the surface and 

the bulk probes. The surface probe’s trajectory is oscillating around a constant average 

indicative of a gel, while the bulk’s probe rotation oscillates around an increasing average 

orientation, indicative of a liquid. 

Third, by tracking the motion of the probes over a long period of time, we find 

that the surface viscosity changes linearly with time. The experiment consisted of rotating 

the field for 10 revolutions, relaxing the material for 1 second, then rotating the field for 

10 more revolutions, et cetera. The motion of the probe after each relaxation begins by 

oscillating around an increasing average orientation, but then changes to oscillating 

around a constant average (Figure 74, A). This motion is indicative of a rod rotating in a 
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gel above the critical frequency. For simplicity of the analysis, we can analyze the first 

several oscillations assuming Newtonian model to probe the apparent viscosity of the 

surface. Such analysis of two probes in two samples from two different caterpillars is 

presented in Figure 74. The two samples demonstrate a linearly increasing viscosity, 

although at different rates and with a different y-intercept. As mentioned above, to 

correctly characterize the properties, the probe-liquid interaction needs to be well-

characterized and controlled. Furthermore, in the performed experiment, the depth of the 

sample was not controlled, which could affect the interaction of the clot structures, which 

propagate from the substrate through the bulk, with the surface and the probe. We do, 

however, demonstrate that in both samples the viscosity increases linearly and not 

exponentially as in the case of the clot structures, indicating a different physical process.  
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Figure 74. (A) A profile of a trajectory of a probe in response to 10 rotations of a 

magnetic field after 1 second of material relaxation. The rod can be initially seen 

oscillating around an increasing average orientation and then reaching a saturation angle 

– labeled with a dashed orange line – after which it oscillates around a constant average

orientation. The first 3 oscillations can be analyzed with Newtonian model of rotation to

get apparent viscosity. (B) The dependency of the measured apparent viscosity of the

surface of hemolymph on incubation time. Since the surface was created at the same time

as the cut was made, the incubating time is the same as the surface age, ti = ts.

9.3.4 Contact angle of a droplet on long-lived filaments of stretched 

hemolymph 

Droplets that appeared on the surface of long-lived filaments studied in Chapter 7 were 

analyzed. The surface profile was extracted and fitted with the unduloid equation. Two 

types of droplets were analyzed: ones that appeared on the long-lived filaments that 

decayed via the pullout instability (Figure 75, A and B) and ones that appeared on the 
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surface of long lived filaments that decayed via capillary thinning (Figure 75, C and D). 

To ensure that the analyzed droplets have achieved their relaxed configurations, the 

droplets of the largest possible surface age were considered. Thus, for the pullout 

instability case, the last frame before the filament collapse was studied, which yielded 

surface age of ts = 55 s. Similarly, for the capillary thinning case, the frame was used after 

all motion of the liquid in the filament had ceased, yielding the surface age of ts = 8 s. The 

best fit contact angle in both cases was θ = 0, which means that the material in the 

filament and in the droplet is the same.  

Figure 75. The surface profiles of droplets appearing on long-lived filaments decaying 

via the (A, B) pullout instability right before the filament collapse, and (C, D) capillary 

thinning after the filament stabilized and no longer moved. (A) The extracted droplet 

profile fitted with unduloid equation yielding best fit contact angle θ = 0. (B) The bet-fit 

unduloid is superimposed on an image of the droplet on a pullout filament. (C) The 
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extracted droplet profile fitted with unduloid equation yielding best fit contact angle θ = 

0. (D) The best-fit unduloid is superimposed on an image of the droplet on a capillary

thinning filament.

9.4 DISCUSSION 

The logarithmic portion of the surface tension isotherms of hemolymph of adult M. 

sexta, adult V. cardui, adult D. plexippus, and caterpillar M. sexta in conjunction with 

equation (9.11) can be used to describe the surface excess in the constant absorption region. 

The three species of adults had nearly identical exponential constants of a = 3.3 mN/m, 

which suggests that the adsorbing molecules are the same in all three species, which is 

consistent with our hypothesis. For these insects, the surface excess is calculated as 

6 21.4 10 mol madults

a

RT

      . The molecular area can be calculated from this surface 

excess as: 21 1.2 nm /moleculem
b N

A
A 


. This result cannot be directly compared to 

Kawooya’s et al’s result of limiting molecular area of the apoL-III A0 = 37 nm2/molecule, 

because the limiting molecular area is an empirical parameter that has no direct 

interpretation. One point, in which the data can be compared, however, is that in apoL-III, 

a phase transition was observed at πs ≈ 20 mN/m. In our experiments, no sample was 

measured to have surface pressure larger than 20 mN/m, possibly indicating a critical 

micelle concentration at around that surface pressure.  For the caterpillars, the parameter a 

= 2.1 mN/m is smaller than that in adults and corresponds to 7 28.6 mol mcaterpillars

a

RT

    

and 21 1.9 nm /moleculem
b N

A
A 


, a larger area per adsorbed particle. This means that 

the surface-active molecules are different in the studied species caterpillar from their adult 
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counterparts. This is not surprising, since the lipoproteins have been found to undergo 

structural changes during metamorphosis of M. sexta. (15) 

The linear portion of the surface tension isotherm describes the behavior of the 

surface in the dilute regime. In this region, the surface pressure is a linear function of the 

concentration of the surface-active material. The above analysis yielded that the surface-

active particles in hemolymph of adults of the three studied species occupy the same area 

per particle. If from this we assume that the surface-active particles in all three species are 

the same, then the ratios of the slopes of the linear portions of the surface tension isotherms 

would give the relative concentrations of these particles in the hemolymph of the respective 

species. We take the concentration of surface active particles in M. sexta as a reference. 

The relative concentration of the surface-active material in painted lady is

15 0.33
46

V

Ma

m
m

  . Similarly, the relative concentration of the surface-active material 

in monarch 1.4 0.03
46

D

Ma

m
m

  . This is consistent with the hypothesis that the amount 

of surface active material in these insects is correlated with the energy demands of flight – 

the heavier the insect is, the more energy it needs to fly, the more surface -active energy 

carriers it has. Caterpillars, which seem to have different surface-active agents cannot be 

compared to adults in this manner.  

In hemolymph of caterpillars, when the surface-active material adsorbs to the 

surface, it changes the surface rheology of the liquid – the surface becomes gel-like with 

a linearly increasing apparent viscosity with time. At the same time, the rheology of the 

bulk probed deeply under the surface remains liquid-like. This unique dichotomy of 
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material behavior indicates significant surface activity and interaction of the solutes in 

hemolymph of M. sexta caterpillars. During surface maturation, the surface tension 

slowly decreases following square root of time kinetics due to the slow diffusion of 

surface agents to the surface. 

The droplets that form on the surface of the long-lived filaments formed in response 

to stretching of hemolymph clots also experience adsorption of surface agents and, as a 

result, change their surface tension. The development of the filaments takes 10-20 seconds 

and in this time, the surface tension decreases by roughly 1-2 mN/m, which is not 

significant to the kinetics of the droplet and filament development. More importantly, the 

droplet formed on both the pullout and the capillary thinning filaments towards their end 

of their lifetimes have perfectly unduloid shapes with contact angles of 𝜃 = 0, which means 

that the material comprising the droplet and the filament is the same.  

9.5 MATERIALS AND METHODS 

9.5.1 Surface tension measurement to determine presence of surface active 

lipids 

To determine the presence of surface active lipids and their critical micelle concentration 

(CMC) surface tension isotherm measurements were performed. The surface tension was

found for multiple concentrations of hemolymph solute by diluting extracted untreated 

hemolymph in phosphate buffer solution.  
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9.5.1.1 Methodology 

To thermodynamically characterize the surface behavior of hemolymph, the 

surface tension isotherms for the three species of Lepidoptera were measured. 

Hemolymph was collected according to the protocol described in Chapter 5 and diluted. 

When mixed with DI water, some proteins denaturized and precipitated out. Hemolymph 

was found to be stable, however, when diluted in 7.2 pH phosphate buffer solution (PBS) 

(Ricca, 5800-32).  

 Thus, the surface tension isotherms were measured as a function of dilution ratio 

with PBS. For each sample, the first 2 droplets were discarded to prevent contamination, 

the measurement was performed on 3-4 droplets and the average value was recorded. The 

surface tension was measured at each dilution, the surface pressure and the mass fraction 

were calculated, and their relation was analyzed at low solute concentrations. 

At each dilution, there are two parameters of interest: the mass fraction of water, 

ww , and the mass fraction of hemolymph solute,
sw . In the undiluted hemolymph, the 

sum of the two equals unity, 1h h

w sw w  , where the superscript h specifies the undiluted 

hemolymph values. As hemolymph is diluted with the buffer, the mass fraction of solute 

approaches 0, 0sw   and the mass fraction of water approaches the mass fraction of the 

buffer, b

w ww w , where the superscript b specifies the buffer.  

At each dilution, the mass fraction was calculated as follows. The average mass 

fraction of water in undiluted hemolymph, 

h
h w
w h h

w s

m
w

m m



 was previously measured for 

each species, where m denotes the mass, the subscripts w and s refer to water and solute 
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respectively. The water mass fraction of solute in PBS is provided by the supplier as 

0.9524
b

b w
w b b

w s

m
w

m m
 


, where the superscript b refers to the contents of the buffer. At 

each dilution, the mass fraction of water is calculated as 
11 1

r

h b

w w
w

r D

w w
w

D
 

 
, where 

w b
r h h

w s

m m
D

m m





. Similarly, the mass fraction of hemolymph solute at each dilution was 

calculated as 
1

h

s
s

r

w
w

D



. 

The surface pressure was calculated as 
s solvent solution    . 

9.5.1.2 Sample preparation 

To perform surface tension measurement, hemolymph was first collected into a 

capillary tube. The volume collected was analyzed by performing image analysis of the 

length of the liquid. The collected hemolymph was added to PBS to create an initial 

dilution to simplify further work with the sample. Small volumes of the initial dilution 

sample were separated using calibrated micropipettes into clean containers to dilute 

further with PBS. 

Prior to the surface tension measurement, a glass syringe and a 1.5 mm needle 

were cleaned with acetone and water and dried under nitrogen gas. The needle diameter 

was measured using calipers.  

The first measurements of surface tension were made with pure PBS to have a 

standard for the room’s particular temperature and humidity and consequent 

measurements were made with the diluted hemolymph samples; 200-300 μL of the 
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sample was taken into the syringe and placed in the Krüss DSA Apparatus. The camera 

was focused on the needle, and the magnification factor was calculated based on the 

diameter of the needle in the droplet analysis software. Using the manual micro dispenser 

on the apparatus two sample drops were discarded. During the measurement, the largest 

drop possible was made and the image was captured. The software was used to extract 

and fit the profile of the drop to find its surface tension. This was repeated for multiple 

drops and for each solution.  

9.5.2 Time-dependent surface tension 

Hemolymph was drained from the caterpillar onto a glass slide via an incision in the 

third proleg with a razor blade. During the hemolymph extraction, the caterpillar was 

securely held in a tubular holder; 200-300 μl of hemolymph was extracted from each 

caterpillar in this manner. After the extraction, hemolymph was collected into a clean 

glass syringe (Cadence Science, W034276) fitted with a d = 1.65 mm needle (Nordson 

Precision Tips. 4002051140). The syringe was placed in the surface tension analyzer 

(Kruss DSA 10), which was set to record the shape of the droplet at 1 frame per second. 

Three hemolymph droplets were made and discarded. The fourth drop was created with a 

maximum possible size and observed as a function of the surface age, ts. The incubation 

time, ti of each drop was recorded as the time that passed between the incision and the 

creation of the droplet. Each droplet was observed for roughly 10 minutes. After that time 

period, another droplet was made and the new ti was recorded. The maximum incubation 

time was 40 minutes. At the end of each experiment, the syringe and the needle were 
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cleaned multiple times with soap and water until visibly clean and rinsed with methanol 3 

times.  

If during the lifetime of the droplet any liquid evaporated, more hemolymph was 

manually added to the droplet. A constant droplet length was maintained to the best 

ability of the operator by noting the length of the initial droplet on the screen and adding 

liquid into the droplet to maintain that length during the experiment.  

The surface tension of the pendant droplet was obtained from the shape of the 

droplet from the image analysis using the Kruss DSA software. Thus, only 1 data point 

could be collected per sample; 3-4 samples per insect were studied.  

9.5.3 Surface rheology of hemolymph of caterpillar 

The surface rheology was measured by placing a magnetic stainless steel (SUS 304) 

microrod onto the surface of a large droplet of hemolymph and rotating the nanorod, 

using the magnetic rotator presented in Chapter 3. Once placed on the surface, the probe 

remained pinned to the surface and did not sink. If manually pushed below the surface, it 

would sink to the bottom of the sample. When the probe was on the surface, however, 

any curvature of the surface led to the probe sliding to the lowest point due to gravity. 

Thus, when placed and rotated on the surface of a sessile drop, the probe was unstable 

and fell to the edge of the drop in a matter seconds. Making a larger droplet with a 

relatively flat top surface did not adequately resolve the issue, as the probe would travel 

around an imperfectly flat surface until it got close to the edge and fell as well. To 

adequately resolve the issue, a surface with an upward-facing curvature was created by 

placing hemolymph into a small container and sucking some liquid out, taking advantage 
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of the contact hysteresis phenomenon. The container of choice was the center of a white 

sintering vial cap. The radius of the container was small enough to create enough of a 

curvature to keep the rod in the center and the white background provided good contrast 

for observation of the probe.  

The procedure was as follows. First, the probe was prepared by magnetizing a 

stainless-steel wire (SUS 304, d = 50 μm) with a strong permanent magnet, cleaning it 

with methanol, and cutting a 2-3 mm long rod from the wire with precision scissors. The 

magnetization of the magnetized probe was measured using an alternating gradient field 

magnetometer (AGM 2900 Princeton Measurement, Inc). The caterpillar was secured in a 

tubular holder and an incision was made on the third proleg. Hemolymph was bled 

directly into the center chamber of the scintillator vial cap. Once the container was full, 

the caterpillar was set aside and the excess hemolymph was removed with a pipette to 

create a slight upward curvature of the surface of the sample. The prepared probe was 

then placed onto the surface of the liquid. The cap was then placed in the magnetic 

rotator and a rotating field was induced.  

The induced field had the amplitude of A=400 μT and the frequency of 1 Hz. The 

field was rotated for 10 revolutions and then aligned along the y-axis of the instrument 

for 1 second, allowing the rod to align with the field and any high relaxation time 

processes to relax. The field was then again rotated for 10 oscillations and then again 

aligned for 1 second. This process was repeated until stopped by the user.   
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9.5.4 Fitting of the droplet on the long-lived filaments with the Unduloid 

equation.  

The long-lived filaments were created, imaged, and had their contours extracted as 

described in Chapter 8. The frames for analysis were chosen from the end of evolution of 

those filaments that did not break at the end of their life but remained intact with their 

profiles non-changing. All analysis is performed in LabVIEW. 

To fit the profile with an unduloid equation, two approaches can be taken. The first 

relies on solving the differential equation (9.24) and the second relies on solving the 

integral form of the equation (9.25). We show below that both methods produce identical 

results at various contact angles, θ (Figure 76), and fiber to droplet radii ratios, f

d

R
n

R


(Figure 77). We also find that the determination of the numerical solution for the 

differential equation is time consuming at low contact angles θ and is impossible at θ = 0. 

The determination of the numerical solution to the integral equation, meanwhile, 

encounters no such shortcomings. Both methods are outlined below.  
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Figure 76. Numerically obtained normalized profiles of droplets of a filament at 

n=Rf/Rd=0.5 and θ ranging from 0.1 to 0.9. The dots represent the results obtained with a 

differential equation method and the lines are solutions obtained with the elliptic integral 

method. The two methods produce results indistinguishable from one another.  

Figure 77. Numerically obtained normalized profiles of droplets of a filament at θ = 

0.005 (arbitrarily close to θ = 0) and n = Rf/Rd ranging from 0.2 to 0.9. The dots represent 

the results obtained with a differential equation method and the lines are solutions 

obtained with the elliptic integral method. The two methods produce results 

indistinguishable from one another. 
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9.5.4.1 Determination of a numerical solution of the differential equation 

Equation (9.24) is a second order differential equation, so we will need two 

boundary conditions to solve it. Before we set up the boundary conditions, we need to 

normalize both x and y by the maximum radius of the droplet, 
d

y
Y

R
  , 

d

x
X

R
 . The 

equation thus becomes 

 
2

3/2
2

2

1 1 2 2cos
1

11

1

f

d

dU U
U

dY U Y n
n

n

dX

dY U

R
n

R


  
  

     
   

  





(9.26) 

The center of coordinates is chosen such that Y = 0 at the center of the filament 

and X = 0 at the maximum height of the droplet. The problem is axisymmetric, which 

means that we only need to solve for X ≥ 0. Both Rf and Rd are obtainable from 

experiment. Rd is the maximum point on the profile of the droplet and Rf is the point at 

which the profile of the droplet stops changing (protocol is described below). Thus, n is 

known from experiment and θ becomes an adjustable parameter.  

If we originate our solution at X0 = 0, the boundary conditions are as follows: 

(1) 0

'(1) 0

X

X




(9.27) 

These boundary conditions are not unique for unique θ, which makes the problem 

difficult to solve. One method that allows to find the solution is the shooting method, 

which relies on guessing a θ, solving for a solution, finding the intersection point at Y = 
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n, calculating the angle at that point, and comparing that angle to θ. This method is time- 

consuming and difficult to implement. 

Instead, we solve the problem from right to left and originate at a point of contact of 

the droplet with the filament. To do that, we temporarily shift the X-position, such that X 

= 0 at the contact line, find the solution, find the maximum Y of that solution, find the X 

of that maximum, and then shift the solution by -X. The obtained result is thus in the 

initially defined coordinate system. The boundary condition for this method are: 

0( )

'( ) tan

X n X

X n 




(9.28) 

where   0 maxX X Y   is found after the solution is obtained. 

9.5.4.2 Determination of a numerical solution of the integral equation 

To find the numerical solution of equation (9.25), the equation first needs to be 

rewritten in terms of non-dimensional parameters 
d

y
Y

R
  , 

d

x
X

R


     
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 


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

(9.29) 

which can be solved directly. The only challenge is computing the elliptical integrals, but 

any commercial software can compute them numerically quickly.
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9.5.4.3 Extraction of relevant data from a filament profile. 

The profile of the droplet on a filament is obtained from an image as described above and 

is plotted. Using cursors on the plot, the user selects the approximate bounds of the 

droplet (Figure 78, left). The user then selects the side of the droplet to fit to the right of 

the maximum or to the left of the maximum and the model with which to fit the droplet – 

integral or differential (Figure 78, right).  

The program then performs the following steps.  

1. Records the x and the y positions of both cursors.

2. Symmetrizes the droplet by averaging the top and the bottom profiles. To do that,

the coordinates of the profiles are interpolated at equal x- coordinates and the

absolute values of the y-coordinates are averaged.

3. Extracts the coordinates of the maximum radius of the droplet – which is

specified by the two cursors - with a PeakDetector algorithm, which finds the

maximum at a subpixel level by fitting localized data with a parabola.

4. All the data that is not between the selected cursor and the maximum of the

droplet is discarded.

In a liquid filament, the contact line is difficult to resolve experimentally, so Rf is 

difficult to precisely determine. Steps 5 and 6 resolve this problem by introducing Rf 

as a bound adjustable parameter, which can be varied by 5%, and adding a 

preferential weight to the well-resolved data point far away from the filament.  

5. The minimum y coordinate is obtained from the data and set as the initial guess

for Rf in the fitting algorithm. From this value, a bound interval is determined as

(Rf - 0.05*Rf, Rf + 0.05*Rf) During the fitting, Rf will be adjusted within this

interval to determine the best fit.

6. The weighing function is applied to give the well-resolved data more weight

during the fitting w = (y - Rf)
2. Several functions were empirically tested for the

weight function, and the above produced the best fitting results.

7. The data is then fitted with a constrained Liebenberg-Marquardt algorithm and

plotted for the user. During the fit, the data points that have x-coordinates, x >

x(Rf) are discarded.

The results of a sample fit with an integral equation are presented in Figure 79. 
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Figure 78. A screenshot of the data and fitting parameter selection as seen by the user 

during analisys. 

Figure 79. A screenshot of an example fit of a droplet using integral equation method, as 

seen by the user during the data analysis. 
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