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Abstract

The problem of locating the source of radioactive emissions using a network of

sensors is considered. Estimating the three-dimensional location of a nuclear source is

especially difficult in environments in which no sensor can be placed in close proximity

to the source. In this dissertation, maximum-likelihood (ML) estimation is applied

to a Poisson process model for radiation received at sensors that is proportional to

the inverse square of the distance between the source and the sensor. The joint mul-

tivariate density for the sensors is then maximized in order to estimate the location

and strength of the radioactive source. Additionally, a limited number of sensors is

used to implement a two-stage adaptive algorithm. In the first stage the drones sit at

the center of a building’s faces and an approximate location of the radiation source is

obtained. Based on the results of the first stage, in the second stage the drones move

to additional locations to collect more data. The data from both stages is utilized to

obtain a more accurate estimate of the location of the radiation source. A third topic

involves the effects of spatially non-homogeneous attenuation due to highly absorbing

materials such as concrete. A novel metric is presented for identifying situations in

which non-homogeneity significantly skews estimation results. This metric is used to

drive a multiple iteration multi-stage estimation algorithm utilizing multiple appli-

cations of ML estimation. The algorithm is analyzed in realistic situations such as

highly absorbing walls and a central shaft. Finally, a hybrid algorithm is proposed
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that first determines with a high degree of reliability whether non-homogeneous at-

tenuation is present. If non-homogeneous attenuation is declared absent, the sensors

move according to the adaptive algorithm. If non-homogeneous attenuation is de-

clared present, the multiple-iteration algorithm is employed. This hybrid algorithm

performs extremely well whether non-homogeneous is present or absent.
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Chapter 1

Introduction

With growing risk of contraband radioactive material, low-cost spatially dis-

tributed radiation detectors have emerged as an important topic in reconnaissance

research. Gamma photons emitted by radioactive sources are registered at detectors

at a rate dependent on the source intensity and its distance from the detector. Us-

ing sensor fusion algorithms to combine the data collected by a network of sensors,

source parameters can be estimated to perform effective localization. The risk of ter-

rorist attacks using improvised nuclear devices has led to growing concern in recent

years [26]. With increased interest in the application of drones for various defense

purposes, researchers have investigated the plausibility of using many kinds of un-

manned aircrafts in a variety of scenarios [8, 11, 12, 29, 34, 38]. The use of a single

autonomous helicopter is considered in [34] for obtaining overhead images, gathering

radiation measurements, and mapping both the structural and radiation content of

the environment in a post-disaster scenario. Mapping radiation in a post-disaster

scenario in three dimensions is also considered in [18].

Much recent work such as [1, 4, 7, 19, 22, 28, 30, 32] concentrates on radiation

sources in a two dimensional environment with unknown source intensity in which
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the detectors can be placed in close proximity to the source. Some of these works such

as [30] and [19] also take into account partial prior knowledge of the source location

and strength. Localizing a radiation source in a three-dimensional search space is

considered in [39]. However, in the simulation results, the author assumes that the

source is on the same plane as the deployed sensors, essentially converting this to a

two-dimensional localization problem. This paper also uses 100 sensors deployed in

a 10× 10 lattice within the periphery of the search space. In comparison, [7] uses 16

radiation detectors within the search space to localize the radiation source.

While the proposed methods in these papers generally work reasonably well

in theory, in many real-world scenarios, the search for illicit radioactive material of

unknown strength is necessarily conducted from the periphery of the search space. In

fact, in urban environments, the search space is inherently three-dimensional. Addi-

tionally, deploying a larger number of radiation detectors is often not a cost-effective

solution in real-world applications. These factors make the search problem signifi-

cantly more difficult.

Some flexibility in the sensor locations can be achieved by utilizing small in-

expensive drones with a payload consisting of low-cost radiation detectors, GPS, and

basic communication devices providing TCP/IP or connectivity over cellular net-

works [29] in order to share measurements and location information. The sensors on

these drones can be fitted with either portable Geiger counters or scintillation detec-

tors [11, 34]. Because Gamma and high energy beta particles are highly penetrating

radiations [6], these detectors are capable of detecting radiation activity even at low

concentrations [29,30].

Drones pose a unique advantage in offering the flexibility of placing sensors at

the most optimum locations (in three-dimensional space) for data collection. Due to

their mobility and portability, drones can respond quickly to intelligence about emerg-

2



ing threats or in response to data from other nuclear surveillance devices or networks.

Moreover, drones enable surveillance procedures to be performed in contaminated

areas without exposing personnel to radioactive materials.

Both classical and Bayesian approaches to estimation have been considered

in [1, 7, 8, 10, 12, 19, 20, 29, 34] for the general problem of estimating locations of ra-

dioactive sources. In general, classical approaches include minimum variance unbiased

(MVU) estimation [13] and maximum likelihood (ML) estimation [9]. Due to the dif-

ficulty in determining the MVU estimator, to our knowledge it has not been employed

for nuclear source estimation. In contrast, ML estimation has been used extensively.

The ML approach is applied in [8] to estimate the number of nuclear sources present

in a search region and each of their locations. Additionally, ML estimation is used

in conjunction with the Expectation Maximization (EM) algorithm to track multi-

ple radiation sources in [7]. Attenuation is not incorporated into the model in [8];

exponential attenuation through a homogeneous medium is modeled in [7], however.

An important property of ML estimation is that as the sample size tends to in-

finity, performance asymptotically achieves the Cramer-Rao Lower Bound (CRLB) [5,

27]. The CRLB can be useful as a predictor of performance under asymptotic con-

ditions, but it does not claim to predict the performance when the sample sizes are

relatively small. The CRLB is used in [10] to quantify the accuracy with which it

is possible to find the two-dimensional location and strength of the radiation source.

The results are extended in [19] to multiple sources. The models are two-dimensional

and do not incorporate the effects of attenuation. The work shows that ML estimates

sometimes does not converge for small values of SNR. Furthermore, the results show

difficulty in estimating the strength of the sources even under high SNR in some cases.

In contrast to classical approaches, the Bayesian approach to estimation as-

sumes knowledge of the prior distribution of unknown parameters. The goal of the
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Bayesian estimator, using a minimum mean square error (MMSE) criterion, is to

calculate the conditional expected value of the unknown random variable given the

available data [3]. In [20] a Bayesian approach is implemented for estimating multiple

moving sources in a two dimensional field assuming a known number of sources and

a known prior distribution of the location of each source. Because the conditional ex-

pected value is intractable, the authors in [20] approximate the conditional expected

value using importance sampling [21]. The focus of the results in [20] are on sensors

placed along a single stretch of road. Thus the distances between the source and

sensors are small and the motion is highly constrained.

Recursive Bayesian estimation (RBE) is an implementation of Bayesian esti-

mation in which the priors are sequentially updated as new data is obtained. If a

priori knowledge is available and statistical models are suitably simple (e.g., finding

the mean of a Gaussian random vector), this method can be easily implemented using

matrix multiplication and convolution algorithms. Although the RBE can be reason-

ably effective in locating the two dimensional position of the source [34], it suffers

from the “curse of dimensionality” such that an increase in any dimension of the

search space causes an exponential increase in the time and memory required for the

search process. A grid-based RBE is implemented in [34] assuming prior knowledge of

the isotope, the number of sources, and the strength of each source. RBE is also used

in [10] to locate a single radiation source with known strength in a two-dimensional

search space. The posterior PDF of the modeled Gaussian distribution is approx-

imated using both the extended Kalman Filter (EKF) and the Unscented Kalman

Filter (UKF). (An overview of these filters can be found in [2, 35].) In reality, radi-

ation data is non-Gaussian, and Bayesian estimation in non-Gaussian environments

leads to intractable integrals as a part of the estimator. Importance sampling is im-

plemented in [19] to approximate the integrals using a progressive correction method
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in order to estimate the posterior density of the source.

Bayesian detection has also been considered for the nuclear problem. For

example, in [25], Bayesian detection is used to determine whether a moving vehicle

contains nuclear material. The work assumes that the vehicle is tracked by means

other than by radiation measurements.

A problem related to the one considered in this paper, but yet distinct, is that

of providing a search strategy for one or more sensors seeking to find one or more

stationary or mobile radiation sources hidden over a large area. Examples of papers

exploring this problem are [33], [31], and [15]. This problem is formulated as a de-

tection problem in [33], where the trajectory of a source is presumed to be known,

and the goal (beyond determining whether a nuclear source is present) is to navigate

sensors around obstacles so as to improve detection performance. In [15], the problem

of directing a mobile radiation sensor to find multiple sources is considered. The ap-

proach taken uses an artificial potential field in conjunction with a particle filter that

estimates the direction and strength of the attractive forces in the field. A particle

filter is used in conjunction with sequential Bayesian estimation and a partially ob-

served Markov decision process to estimate multiple sources and direct mobile sensors

in [31]. From a national security perspective, both problems are important. However,

finding a stationary source is more likely to avert a terrorist attack well prior to final

implementation and is therefore more likely to successfully avert the attack.

Additionally, most of these papers do not take into account attenuation of the

radioactive decay. Papers such as [1,10,19,20,29–31,33,34] do not model attenuation.

While attenuation is insignificant in open spaces over very short distances, larger dis-

tances with material between source and sensor can exhibit a considerable amount of

attenuation. If not taken into account, absorption and the corresponding attenuation

can introduce considerable error in the parameter estimates of the source. Absorp-
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tion and attenuation and their effects on tracking radioactive materials in crowded

areas are explored in [37]. The paper investigates various shielding phenomena that

affect the counts registered by sensors, including scattering, detector shadowing and

exponential decay. The paper explores these models but does not consider specific

algorithms for estimation of source location. Estimation with attenuation modeling

for air is considered in [7]. However, this paper assumes a homogeneous absorp-

tion medium between source and sensor. Non-homogeneous attenuation due to a

combination of materials such as air and dense concrete with high mass attenuation

coefficients [24] has the potential to significantly skew results. To our knowledge,

estimation in the presence of severe attenuation has not been explored.

In this dissertation, three-dimensional estimation of the strength and location

of a single nuclear source is explored using ML estimation. It is assumed that the

source lies inside a large building (or complex of buildings) and, as a result, sensors

(on a network of drones) are unable to move closer to the source. Furthermore, the

ML algorithm and the performance results both explicitly model the effects of air

attenuation. In addition, the effects of non-homogeneous attenuation from buildings

on the performance of the algorithm are also analyzed. The use of a small number of

strategically placed sensors in spatially diverse locations is explored. It is shown that

choosing the right locations for the sensors gives better localization performance com-

pared to using a large number of sensors distributed uniformly outside the periphery

of the search space.

This dissertation proposes a novel technique to estimate the effects of unknown

non-homogeneous attenuation. A metric is proposed that uses drone data already col-

lected to identify situations in which attenuation non-homogeneity is likely to result

in non-negligible estimation error. This metric is then used to provide a correct lo-

cation estimate despite the presence of unknown absorption using a multi-iterative
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multi-stage algorithm based on ML estimation. Finally, a hybrid method is proposed

that incorporates the strengths of both the adaptive and multi-stage attenuation

estimation methods. This method produces highly reliable location estimates with

absolutely no prior knowledge of the presence or absence of non-homogeneous atten-

uation within the search space.

The remainder of this dissertation is organized into the following chapters. Chap-

ter 2 describes a method of estimating the location of a nuclear source in a three

dimensional environment using static sensor locations. Chapter 3 explores the idea

of adaptively moving a small number of physical sensors to new locations, based on

a coarse initial estimate of the source location. A metric for detecting whether non-

homogeneous attenuation is present or absent is proposed in Chapter 4. In Chap-

ter 5, this metric is used along with a multi-stage algorithm that employs ML es-

timation in each stage to estimate an unknown source location in the presence of

non-homogeneous attenuation. Additionally, a hybrid method is also presented in

this chapter which combines the adaptive sensor-moving method and the attenuation

estimation algorithm in order to locate an unknown nuclear source irrespective of the

presence or absence non-homogeneous attenuation. Finally, conclusions and future

work are presented in Chapter 6.
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Chapter 2

Estimating the Location of a

Nuclear Source in a

Three-Dimensional Environment

In this chapter, it is assumed that a single isotropic point source emits de-

tectable radiation particles. Radiation detectors are assumed to be deployed at known

fixed locations around the periphery of the search space encompassing the source. The

detectors are assumed to be omnidirectional; that is, the detector (built out of mul-

tiple individual sensors attached to a single drone) counts the number of interactions

received from all directions. Each detector records the number of interactions over a

given amount of time. The number of counts (or interactions) reported by each sensor

depends on the collection interval, the drone’s position and distance from the source,

and the source intensity. The effect of a radioactive source on a detector is modeled

as a Poisson process. In this chapter, a variety of different sensor configurations for

estimating the location of the unknown source are compared. The performance re-

sults provide insight into the relationship between sensor placement and the unknown

8



location of the source.

2.1 System Model

The count arrival rate at the ith drone is denoted by λi for i = 1, . . ., N ,

where N is the number of drones being deployed. The count arrival rate is related to

the distance Di between source and the drone via

λi = λB +
µAI

4πD2
i

e−ρgDi (2.1)

where µ is the photo-peak efficiency (including the branching factors for the photo

peaks of the different isotopes), A is the cross-sectional area of the detector, ρg is

the mass attenuation coefficient of air, and I is the source intensity. The exponential

term in (2.1) incorporates the effects of homogeneous attenuation, and the quantity

λB is due to background radiation. As in [7], the background radiation is assumed to

be constant for the photo-peak region considered.

Note that in (2.1) the quantities µ, A, and I only appear together as a product.

Defining V = ln(µAI), it follows that

λi = λB +
1

4πD2
i

eV−ρgDi (2.2)

Because the units of I are Becquerels and µA is dimensionless, so it follows that the

units of V are ln(Bq).

It is assumed that a set of sensors are placed at fixed locations outside the

periphery of the search space. The search space is modeled as a rectangular cuboid

with corners (±L1

2
,±L2

2
,±L3

2
) in three-dimensional space. Drones are placed α m

away from the periphery of the search space.
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If the position of the ith drone is denoted by (xi, yi, zi), then the distance

Di =
√

(xi−x0)2 + (yi−y0)2 + (zi−z0)2 where (x0, y0, z0) is used to indicate the (un-

known) location of the source. The observed nuclear decay is modeled as a Poisson

process [14]. Each detector receives only a small portion of the radioactive particles.

A well-known result of “splitting” a Poisson process is that each split stream is also

a Poisson process, and furthermore the split processes are mutually independent [36].

Let Ti denote the amount of time over which the data has been collected at the ith

drone. Then the number of counts received during Ti at the ith drone is Poisson

(λiTi), and these counts are mutually independent for all the drones. Denote the

count at the ith sensor as Ki. The probability of measuring ki counts at the ith

sensor is accordingly given by

P (Ki= ki;x0, y0, z0, I) =
(λiTi)

ki e−(λiTi)

ki!
, ki=0,1,. . . (2.3)

Furthermore, by independence the joint mass function is the product of the individual

mass functions of each sensor; that is

P (K = k; x0, y0, z0, I) =
∏N

i=1 P (Ki = ki; x0, y0, z0, I) (2.4)

Consider the problem of jointly estimating (x0, y0, z0) and I. The maximum

likelihood (ML) estimator is given by

[x̂0, ŷ0, ẑ0, Î] = arg max
x0,y0,z0,I

P (K = k;x0, y0, z0, I) (2.5)

In order to obtain a more numerically tractable result, the natural logarithm

of P (K = k;x0, y0, z0, I) is equivalently maximized. Taking the natural logarithm
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of (5.3) gives

lnP (K = k;x0, y0, z0, I)

=
∑N

i=1

(
ki ln (λiTi)− λiTi − ln(ki!)

) (2.6)

Using Eqs. (2.1) and (2.2), Eq. (2.6) can be rewritten as follows:

lnP (K = k;x0, y0, z0, I)

=
∑N

i=1

(
ki(V + lnTi + ln(λBe

−V + µA
4πD2

i
e−ρgDi))

−eV Ti(λBe−V + µA
4πD2

i
e−ρgDi)− ln(ki!)

) (2.7)

ML estimation is implemented via a numerical maximization of the joint mul-

tivariate mass function using the MATLAB routine fminsearchbnd [16]. The algo-

rithm is based on the built-in MATLAB routine fminsearch [17] that computes the

minimum value of the objective function. The routine fminsearchbnd enables the

implementation of upper and lower constraints on the variables on which the func-

tion depends. For the specific case of the problems discussed in this thesis, these

constraints are the boundaries of the search space.

Similar to [7], 0.0762 mNaI based scintillating detectors are assumed, and the

detection efficiency is calculated based on the measurements for the Cs-137 photo-

peak region of 662-keV. The background radiation level is assumed to be uniformly

distributed at an intensity of λB =103 cps as in [7]. Because performance depends on

µ, A, and I solely through V = ln(µAI), the individual values of µ, A, and I do not

need to be specified, if performance is given as a function of V . The mass attenuation

coefficient for air is ρg =0.0775 cm2/g and the density of air is 0.001225 g/cm3 [24].

Numerical results are presented for a high-rise building of dimension 100 m

×100 m ×100 m (so that L1 =L2 =L3 = 100 m). Drones are placed α= 10 m away

from the search space boundary planes as described earlier.
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Because the location of the source in the building is unknown, and because

performance can depend strongly on the location of the source, a set of 125 source lo-

cations are considered, uniformly distributed about the search space. These locations

have co-ordinates (20i, 20j, 20k) where i,j and k can take values ±2,±1 and 0. The

maximum and average distance between the true source location and its estimate for

these locations are used to analyze the performance of the algorithm. The highest

possible error among the 125 locations is referred to as the maximum error and the

mean of all the errors is defined as the average error.

The estimation results are averaged over n iterations. The estimate of the

source location from the jth iteration is denoted by (xj, yj, zj). The average distance

of this estimate from the true location of the source (x, y, z) is calculated as the error

in location estimate, as follows:

D̄ =
1

n

n∑
j=1

D̂j (2.8)

where D̂j =
√

(x̂j−x0)2+(ŷj−y0)2+(ẑj−z0)2. Throughout this dissertation, results

have been averaged over n = 500 iterations.

2.2 Performance results

2.2.1 Six faces accessible
This first scenario is primarily hypothetical. It is assumed that the drones

have access to all six sides of the building, including underneath the building. Even

though this configuration is unlikely to be able to be implemented in practice, it

provides important insight into the behavior of the ML algorithm, especially as a

function of the number of sensors.
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Although sensors can be placed in an infinite number of locations, minimal

flexibility is lost by restricting locations to be near the centers of the sides (faces), near

corners, and near the center of edges. In all, these choices result in 26 locations which

are presented in Fig. 2.1. The face locations are (±(L1

2
+α), 0, 0), (0,±(L2

2
+α), 0) and

(0, 0,±(L3

2
+α)), and the locations of the corners are (±(L1

2
+α),±(L2

2
+α), (±L3

2
+α)).

The edges are located at (±(L1

2
+ α),±(L2

2
+ α), 0), (±(L1

2
+ α), 0,±(L3

2
+ α)) and

(0,±(L2

2
+ α), (±L3

2
+ α)). From these 26 possible locations, a number of subsets are

considered: the faces alone, the corners alone, the edges alone, the faces with corners,

the faces with edges, the corners with edges, and all locations (corners, faces and

edges). The number of sensors for each of these subsets is listed in Table 2.1.

Classification N (number of sensors)

Faces 6

Corners 8

Edges 12

Faces and Corners 14

Faces and Edges 18

Corners and Edges 20

Corners, Faces and Edges 26

Table 2.1: Subsets of 26 sensor locations.

In Figs. 2.2 and 2.3, the maximum and average errors for the 125 locations are

plotted for all the subsets listed in Table 2.1 as a function of data collection time. The

source strength, represented by V , is kept constant at 16.5 ln(Bq). Similarly, Figs. 2.4

and 2.5 present performance as a function of source strength (V ) for a fixed data

collection time of 210 seconds.
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Figure 2.1: Sensor locations for N = 26 sensors.
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Figure 2.2: Maximum error vs. time, N fixed sensor locations, six faces accessible.
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Figure 2.3: Average error vs. time, N fixed sensor locations, six faces accessible.
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Figure 2.4: Maximum error vs. source strength, N fixed sensor locations, six faces accessible.
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Figure 2.5: Average error vs.. source strength, N fixed sensor locations, six faces accessible.
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It is evident from these results that a higher number of drone locations results

in better localization of the source. In fact, as can be seen in Fig. 2.2, errors less than

0.1 m can be achieved at all source locations with N = 26 sensors using less than

50 seconds of data collection time. On average, error performance can be as low as

a hundredth of a meter. From Figs. 2.4 and 2.5, it is seen that localization errors

remain low even for very weak sources provided that a sufficiently large number of

drones are used.

2.2.2 Five faces accessible

It is now more realistically assumed that sensors cannot be placed underneath

the building. Additionally, the sensors along the bottom edge of the building are

now moved α = 10 m above the ground. As a result, this scenario loses the inherent

symmetry of the sensor configuration in Section 2.2.1. The available face locations

are (±(L1

2
+ α), 0, 0), (0,±(L2

2
+ α), 0) and (0, 0, (L3

2
+ α)). The corner locations are

(±(L1

2
+ α),±(L2

2
+ α), (±L3

2
+ α)) and the edge locations are at (±(L1

2
+ α),±(L2

2
+

α), 0), (±(L1

2
+ α), 0, (±L3

2
+ α)) and (0,±(L2

2
+ α), (±L3

2
+ α)). These locations are

illustrated in Fig. 2.6. Similar to Section 2.2.1, subsets of these 25 sensor locations

are considered. These subsets are listed in Table 2.2.
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Figure 2.6: Sensor locations for N = 25 locations.
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Classification N (number of sensors)

Faces 5

Corners 8

Edges 12

Faces and Corners 13

Faces and Edges 17

Corners and Edges 20

Corners, Faces and Edges 25

Table 2.2: Subsets of 25 sensor locations.

The maximum and average errors for this sensor configuration are plotted

against data collection time in Figs. 2.7 and 2.8. The source strength is again constant

at V = 16.5 ln(Bq). Similarly, in Figs. 2.9 and 2.10, maximum and average errors are

plotted against increasing source strength V with a fixed data collection time of 210

seconds.

It is evident from Figs. 2.7 to 2.10 that a higher number of sensor locations

still result in better error performance. In fact, comparison of Fig. 2.7 with Fig. 2.2

and comparison of Fig. 2.8 with Fig. 2.3 shows that there is no significant loss of

performance in reducing the number of sensor locations from N = 26 to N = 25,

despite the loss of symmetry. These results show that sufficiently large numbers

of sensors can locate the unknown source in spite of the asymmetry of the sensor

locations.
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Figure 2.7: Maximum error vs. time, N fixed sensor locations, five faces accessible.
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Figure 2.8: Average error vs. time, N fixed sensor locations, five faces accessible.
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Figure 2.9: Maximum error vs. source strength, N fixed sensor locations, five faces acces-
sible.
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Figure 2.10: Average error vs. source strength, N fixed sensor locations, five faces accessible.

21



2.2.3 Three faces accessible (opposite)

In this scenario, it is assumed that two opposite faces of the building are not

available to the sensors, so only the top face and the remaining opposite faces are

accessible. Here there are three face locations, eight corner locations, and ten edge

locations. The face locations are given by (0,±(L2

2
+ α), 0) and (0, 0, (L3

2
+ α)), the

corner locations are at (±(L1

2
+ α),±(L2

2
+ α), (±L3

2
+ α)) and the edge locations

at (0,±(L2

2
+ α), (L3

2
+ α)), (±(L1

2
+ α), 0, (L3

2
+ α)), (±(L1

2
+ α), 0, (−L3

2
+ α)) and

(±(L1

2
+α),±(L2

2
+α), 0). This results in a total of 21 possible sensor locations which

are shown in Fig. 2.11, and the corresponding subsets are listed in Table 2.3. As

before, error performance is compared for all of these subsets.

Classification N (number of sensors)

Faces 3
Corners 8
Edges 10
Faces and Corners 11
Faces and Edges 13
Corners and Edges 18
Corners, Faces and Edges 21

Table 2.3: Subsets of 21 sensor locations.

The maximum and average errors for the 125 possible source locations are

again simulated and the results are presented in Figs. 2.12 to 2.15. Results for faces

only (N = 3) are not shown because performance is quite poor, with errors consis-

tently 30 m or more. This poor performance can be explained by noting that there

are fewer sensors than there are unknown values to estimate (x0,y0,z0 and I). Over-

all, the algorithm exhibits low localization errors with N ≥ 8 sensor locations, and

performance improves with increasing N .
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Figure 2.11: Sensor locations for N = 21 locations.
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Figure 2.12: Maximum error vs. time, N fixed sensor locations, three faces accessible
(opposite).
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Figure 2.13: Average error vs. time, N fixed sensor locations, three faces accessible (oppo-
site).
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Figure 2.14: Maximum error vs. source strength, N fixed sensor locations, three faces
accessible (opposite).
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Figure 2.15: Average error vs. source strength, N fixed sensor locations, three faces acces-
sible (opposite).
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2.2.4 Three faces accessible (adjacent)

In contrast to Section 2.2.3, it is assumed that only two adjacent faces (in

addition to the top face) are available to the sensors. Here there are three face

locations, seven corner locations, and nine edge locations. The face locations are

given by ((L1

2
+ α), 0, 0), (0, (L2

2
+ α), 0) and (0, 0, (L3

2
+ α)), the corner locations are

at (±(L1

2
+ α),±(L2

2
+ α), (L3

2
+ α)), ((L1

2
+ α),±(L2

2
+ α), (−L3

2
+ α)) and (−(L1

2
+

α), (L2

2
+α), (−L3

2
+α)), and the edge locations are at (±(L1

2
+α), 0, (L3

2
+α)),(0,±(L2

2
+

α), (L3

2
+α)),((L1

2
+α),±(L2

2
+α), (−L3

2
+α)) and (−(L1

2
+α), (L2

2
+α), (−L3

2
+α)). This

results in a total of 19 possible sensor locations which are illustrated in Fig. 2.16, and

the corresponding subsets are listed in Table 2.4. The maximum and average errors

of 125 possible source locations are used to analyze the performance of the algorithm

for all of these subsets.

Classification N (number of sensors)

Faces 3

Corners 7

Edges 9

Faces and Corners 10

Faces and Edges 12

Corners and Edges 16

Corners, Faces and Edges 19

Table 2.4: Subsets of 19 sensor locations.
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Figure 2.16: Sensor locations for N = 19 locations.
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Results are shown in Figs. 2.17 to 2.20. Similar to Section 2.2.3, the subset

containing only faces (i.e. N = 3) exhibits poor error performance, and is omitted

from the figures. Performance with N = 3 is slightly better here than with two

opposite faces available, around 20 m in the best case (instead of 30 m). For N = 7

and larger, performance is far better, but in general two opposite faces available is

slightly better than two adjacent faces being available because more sensor locations

are utilized (a maximum number of N = 21 for two opposite faces vs N = 19 for two

adjacent faces).

2.2.5 Two faces accessible

In this final scenario, it is assumed that the sensors have access to only two

faces of the building, the top and a single side. Accordingly, the only two face locations

available are ((L1

2
+α), 0, 0) and (0, 0, (L3

2
+α)). There are six corner locations available

at co-ordinates (±(L1

2
+α),±(L2

2
+α), (L3

2
+α)) and ((L1

2
+α),±(L2

2
+α), (−L3

2
+α))

and seven edge locations available at co-ordinates (0,±(L2

2
+ α), (L3

2
+ α)),(±(L1

2
+

α), 0, (L3

2
+ α)),((L1

2
+ α),±(L2

2
+ α), 0) and ((L1

2
+ α), 0, (−L3

2
+ α)). This leads to

a total of 15 possible sensor locations which are illustrated in Fig. 2.21 and whose

subsets are listed in Table 2.5.
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Figure 2.17: Maximum error vs. time, N fixed sensor locations, three faces accessible
(adjacent).
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Figure 2.18: Average error vs. time, N fixed sensor locations, three faces accessible (adja-
cent).
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Figure 2.19: Maximum error vs. source strength, N fixed sensor locations, three faces
accessible (adjacent).
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Figure 2.20: Average error vs. source strength, N fixed sensor locations, three faces acces-
sible (adjacent).
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Figure 2.21: Sensor locations for N = 15 locations.
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Classification N (number of sensors)

Faces 2

Corners 6

Edges 7

Faces and Corners 8

Faces and Edges 9

Corners and Edges 13

Corners, Faces and Edges 15

Table 2.5: Subsets of 15 sensor locations.

Figs. 2.22 to 2.25 present performance results. Again, due to poor perfor-

mance, results for faces only (N = 2) are omitted; in this case, the errors are again

30 m or more. For larger values of N , performance is far better, again improving as

N increases.

To evaluate the effects of sensor placement on performance with N fixed sen-

sors, Figs. 2.26 and 2.27 present performance with five faces accessible, three faces

accessible (opposite faces), and two faces accessible with N = 13. The results show

that the best performance occurs with five faces accessible; that is better performance

occurs when sensors can be as spread out as possible.

2.3 Conclusion

In conclusion, ML estimation has been presented as an effective means of

detecting the location and strength of a nuclear source in a three-dimensional envi-

ronment. The estimation scheme incorporates the effects of attenuation due to air.
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Figure 2.22: Maximum error vs. time, N fixed sensor locations, two faces accessible.
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Figure 2.23: Average error vs. time, N fixed sensor locations, two faces accessible.
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Figure 2.24: Maximum error vs. source strength, N fixed sensor locations, two faces acces-
sible.
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Figure 2.25: Average error vs. source strength, N fixed sensor locations, two faces accessible.
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Figure 2.26: Maximum error vs. time, 13 fixed sensor locations.
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Figure 2.27: Average error vs. time, 13 fixed sensor locations.
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Results show that, generally, performance improves with an increasing number

of sensors. The results also show that even if various sides of the periphery of the

search space are unavailable, accurate estimation is possible provided a large number

of sensors are used. In addition, the large gap in performance between maximum

and average error demonstrates that estimation performance depends strongly on the

location of the source.
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Chapter 3

Moving Sensors During the

Estimation Process

The previous chapter demonstrates that the performance of a particular sensor

configuration depends strongly on the source location. Consequently, it maybe pos-

sible to improve performance by moving sensors during the estimation process based

on data already received. Such algorithms can be described as adaptive. In this

chapter, algorithms are considered in which the sensors, after obtaining an initial es-

timate of source location, move to new locations to estimate the source location more

accurately. The counts recorded by the drones in both stages are used collectively to

obtain a final estimate of the source location.

In the remainder of this chapter, several adaptive algorithms are presented

along with their performance, based on accessibility situations similar to those of Chap-

ter 2.
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3.1 System Model

The radioactive decay is modeled as a Poisson process as in Chapter 2. There-

fore, the count arrival rate λi is a function of λB, V , ρg and Di as in Eq. (2.2), where

the subscript i denotes the location at which data is collected. At the ith sensor lo-

cation, the Poisson process has parameter λiTi, where Ti is the time spent collecting

data at the ith location.

The MLE is obtained by maximizing

[x̂0, ŷ0, ẑ0, Î] = arg max
x0,y0,z0,I

P (K = k;x0, y0, z0, I) (3.1)

where k incorporates the counts recorded at the sensor locations in both stages.

Both stages of the algorithm are specific to the geometry of the search space

and the availability of drone locations around this space. As in Chapter 2, the search

space is modeled as a rectangular cuboid with corners (±L1

2
,±L2

2
,±L3

2
) in three-

dimensional space. The cuboid rests on the ground, so drones are assumed to be

unable to access the area underneath the bottom face.

3.2 Adaptive Two-Stage Algorithms

In the first stage, five sensors are placed at the centers of the accessible faces

of the building, as shown in Fig. 3.1. The locations of the five sensors are s[±1,0,0] =

(±(L1

2
+α), 0, 0), s[0,±1,0] = (0,±(L2

2
+α), 0) and s[0,0,1] = (0, 0, (L3

2
+α)), where α is

the separation in meters between a drone and the search space. In the second stage

sensors may move to additional locations close to corners and edges of the cuboid.

Therefore, only a total of five sensors are used in the entire application (as opposed

to 16 detectors in [7] and 100 detectors in [39]).
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Figure 3.1: Drone locations for the first stage, five faces accessible.
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The second stage locations are selected from 25 possible locations: the five

faces from the first stage, 8 corner locations, and 12 edge locations, as shown in Fig. 3.2.

The corner locations are s[±1,±1,±1] =
(
±(L1

2
+α),±(L2

2
+α), (α± L3

2
)
)
. The verti-

cal edge locations are s[±1,±1,0] =
(
±(L1

2
+α),±(L2

2
+α), 0

)
, the top edge locations

are s[0,±1,1] =
(
0,±(L2

2
+α), (L3

2
+α)

)
and s[±1,0,1] =

(
±(L1

2
+α), 0, (L3

2
+α)

)
, and

the bottom edge locations are s[0,±1,−1] = (0,±(L2

2
+α),−(L3

2
−α)) and s[±1,0,−1] =(

±(L1

2
+α), 0,−(L3

2
−α)

)
. In the first stage, data collected by the five drones at the

face locations obtain an initial estimate of the source location, and this location

is identified as belonging to one of the twenty-seven sub-cuboid regions as shown

in Fig. 3.3. The sub-cuboids are not uniform in size; it has been found that better

performance occurs if the center sub-cuboid is smaller than the others. The bound-

aries of the center cuboid are x = ±β L1

2
, y = ±β L2

2
, and z = ±β L3

2
, where β is a

fixed constant between 0 and 1. These boundaries along with the outer boundaries of

the search space define all the boundaries of the sub-cuboids. The drones are moved

in the second stage based on the sub-cuboid identified in the first stage.

The new drone locations in the second stage are not decided based solely

on proximity to the estimate of the location of the source. Instead, the algorithm

moves the sensors to locations that are reasonably close but spatially separated from

one another. As mentioned in [7], spatial diversity of sensor locations benefits the

localization problem. The heart of the adaptive algorithm in this chapter is the choice

of where to send the drones in the second stage.
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Figure 3.2: Possible drone locations for the second stage, five faces accessible.
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Figure 3.3: Grid view of search space, β = 0.3.
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The sensors move in the second stage according to the following rules:

1. If the first stage locates the source at the center of the search space, none of the

sensors move, and they continue to collect data from their original positions.

2. If the sub-cuboid detected in the first stage is the top face, the sensor with the

second largest count stays in its place, whereas the other four sensors are moved to

the four top edges of the building.

3. If the source is located close to the bottom face, the sensor with the lowest count

remains in its place, whereas the other four sensors move to the four bottom edges.

4. If the source is detected near a top corner, the three sensors with the largest

counts remain where they are, while the other two sensors are moved to the closest

edges.

5. If the source is detected near a bottom corner, only two sensors with the largest

counts remain where they are, while the other three sensors are moved to the closest

edges.

6. If the detected sub-cuboid is a vertical face, the sensor with the lowest count does

not move. The remaining four sensors are moved to the four closest edges.

7. If the first stage detects the sub-cuboid top edge, the two sensors with the highest

counts do not move; the other three sensors move to form a triangular shape, with

two sensors along the two side edges and one above the top edge.

8. If the sub-cuboid is classified as a bottom edge, the sensor with the highest counts

stays in its place, while the other four sensors move to the bottom plane of the

building, two at the bottom corners and two along the bottom edges.
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9. If the first stage classifies the source as a vertical edge, then the sensor with the

highest count stays in its place, and the four remaining sensors are moved to the

four closest corners.

Table 3.1 presents the details of what has been described above.

If fewer than five faces are accessible, the algorithm must be modified appro-

priately. Figs. 3.4 and 3.5 show the first stage and available second stage locations

when three faces are accessible (opposite faces accessible), and Table 3.2 presents the

details of where to move in the second stage. Similarly, Figs. 3.6 and 3.7 show the first

and second stage locations when three faces are accessible (adjacent faces accessible),

and the algorithm is shown in Table 3.3. Finally, Figs. 3.8 and 3.9 and Table 3.4 show

the corresponding information for the case that two faces are accessible.

The maximum distance a drone must traverse is the longest diagonal distance

of the search space. Suppose L3 ≥ L2 ≥ L1. Because the drone can only move outside

the perimeter of the building, this distance is d=
√

(L1 + 2α)2+(L2 + 2α)2+L3. The

maximum number of locations from which the sensors collect data is nine (considering

both stages). This means that the sensors would have to move only once in order to

visit the maximum number of locations. It is assumed that the drones do not collect

data while moving from first stage to second stage locations, therefore only upper

bounds on movement times are considered in the adaptive algorithm. Assuming that

the average speed of each drone is v m/s, the total time required by the adaptive

algorithm is

Ttot = max
i
{Ti}+

d

v
(3.2)

where Ti is the time spent collecting data at each sensor location.
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Type Initial
Location
Estimate

Unchanged
Sensor Loca-
tions

Changed Sensor Locations

Center c[0,0,0] s[0,0,1], s[1,0,0],
s[0,−1,0],
s[0,1,0],s[−1,0,0]

None

Top Face c[0,0,1] s[0,−1,0] s[−1,0,1], s[1,0,1], s[0,1,1], s[0,−1,1]

Bottom Face c[0,0,−1] s[0,0,1] s[−1,0,−1], s[1,0,−1], s[0,1,−1], s[0,−1,−1]

Top Corner
c[1,−1,1] s[0,0,1],s[1,0,0],

s[0,−1,0]

s[1,0,1], s[1,−1,0]

c[1,1,1] s[0,0,1], s[1,0,0],
s[0,1,0]

s[1,0,1], s[1,1,0]

c[−1,1,1] s[0,0,1], s[−1,0,0],
s[0,1,0]

s[−1,0,1], s[−1,1,0]

c[−1,−1,1] s[0,0,1], s[−1,0,0],
s[0,−1,0]

s[−1,0,1], s[−1,−1,0]

Bottom Corner
c[1,−1,−1] s[1,0,0],s[0,−1,0] s[1,0,−1], s[0,−1,−1], s[1,−1,0]

c[1,1,−1] s[1,0,0], s[0,1,0] s[1,0,−1], s[0,1,−1], s[1,1,0]
c[−1,−1,−1] s[−1,0,0],

s[0,−1,0]

s[−1,0,−1], s[0,−1,−1], s[−1,−1,0]

c[−1,1,−1] s[−1,0,0],s[0,1,0] s[−1,0,−1], s[0,1,−1], s[−1,1,0]

Vertical Face
c[−1,0,0] s[1,0,0] s[−1,−1,0], s[−1,1,0], s[−1,0,−1], s[−1,0,1]

c[1,0,0] s[−1,0,0] s[1,−1,0], s[1,1,0], s[1,0,−1], s[1,0,1]
c[0,1,0] s[0,−1,0] s[−1,1,0], s[1,1,0], s[0,1,1], s[0,1,−1]

c[0,−1,0] s[0,1,0] s[−1,−1,0], s[1,−1,0], s[0,−1,1], s[0,−1,−1]

Top Edge
c[1,0,1] s[0,0,1], s[1,0,0] s[1,1,0], s[1,−1,0], s[1,0,1]
c[−1,0,1] s[0,0,1],

s[−1,0,0]

s[−1,1,0], s[−1,−1,0], s[−1,0,1]

c[0,1,1] s[0,0,1], s[0,1,0] s[−1,1,0], s[1,1,0], s[0,1,1]
c[0,−1,1] s[0,0,1],

s[0,−1,0]

s[−1,−1,0], s[1,−1,0], s[0,−1,1]

Bottom Edge
c[1,0,−1] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[0,−1,−1], s[0,1,−1]

c[−1,0,−1] s[−1,0,0] s[−1,−1,−1], s[−1,1,−1], s[0,−1,−1], s[0,1,−1]

c[0,1,−1] s[0,1,0] s[−1,1,−1], s[1,1,−1], s[−1,0,−1], s[1,0,−1]

c[0,−1,−1] s[0,−1,0] s[−1,−1,−1], s[1,−1,−1], s[−1,0,−1], s[1,0,−1]

Vertical Edge
c[1,−1,0] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[1,1,1], s[1,−1,1]

c[1,1,0] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[1,1,1], s[1,−1,1]

c[−1,1,0] s[−1,0,0] s[−1,−1,−1], s[−1,1,−1], s[−1,1,1], s[−1,−1,1]

c[−1,−1,0] s[−1,0,0] s[−1,−1,−1], s[−1,1,−1], s[−1,1,1], s[−1,−1,1]

Table 3.1: Location of sensors for adaptive algorithm, five accessible faces.
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Figure 3.4: Drone locations for the first stage, three faces accessible (opposite).
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Figure 3.5: Possible drone locations for the second stage, three faces accessible (opposite).
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Type Initial
Location
Estimate

Unchanged
Sensor Loca-
tions

Changed Sensor Locations

Center c[0,0,0] s[0,0,1], s[1,0,0],
s[−1,−1,0],
s[1,1,0],s[−1,0,0]

None

Top Face c[0,0,1] s[−1,−1,0] s[−1,0,1], s[1,0,1], s[0,1,1], s[0,−1,1]

Bottom Face c[0,0,−1] s[0,0,1] s[−1,0,−1], s[1,0,−1], s[1,1,−1], s[−1,−1,−1]

Top Corner
c[1,−1,1] s[0,0,1],s[1,0,0],

s[−1,−1,0]

s[1,0,1], s[1,−1,0]

c[1,1,1] s[0,0,1], s[1,0,0],
s[1,1,0]

s[1,0,1], s[1,1,0]

c[−1,1,1] s[0,0,1], s[−1,0,0],
s[1,1,0]

s[−1,0,1], s[−1,1,0]

c[−1,−1,1] s[0,0,1], s[−1,0,0],
s[0,−1,0]

s[−1,0,1], s[−1,−1,0]

Bottom Corner
c[1,−1,−1] s[1,0,0],s[−1,−1,0] s[1,0,−1], s[−1,−1,−1], s[1,−1,0]

c[1,1,−1] s[1,0,0], s[1,1,0] s[1,0,−1], s[1,1,−1], s[1,1,0]
c[−1,−1,−1] s[−1,0,0],

s[0,−1,0]

s[−1,0,−1], s[−1,−1,−1], s[−1,−1,0]

c[−1,1,−1] s[−1,0,0],s[1,1,0] s[−1,0,−1], s[1,1,−1], s[−1,1,0]

Vertical Face
c[−1,0,0] s[1,0,0] s[−1,−1,0], s[−1,1,0], s[−1,0,−1], s[−1,0,1]

c[1,0,0] s[−1,0,0] s[1,−1,0], s[1,1,0], s[1,0,−1], s[1,0,1]
c[0,1,0] s[−1,−1,0] s[−1,1,0], s[1,1,0], s[0,1,1], s[1,1,−1]

c[0,−1,0] s[1,1,0] s[−1,−1,0], s[1,−1,0], s[0,−1,1], s[−1,−1,−1]

Top Edge
c[1,0,1] s[0,0,1], s[1,0,0] s[1,1,0], s[1,−1,0], s[1,0,1]
c[−1,0,1] s[0,0,1],

s[−1,0,0]

s[−1,1,0], s[−1,−1,0], s[−1,0,1]

c[0,1,1] s[0,0,1], s[1,1,0] s[−1,1,0], s[1,1,0], s[0,1,1]
c[0,−1,1] s[0,0,1],

s[−1,−1,0]

s[−1,−1,0], s[1,−1,0], s[0,−1,1]

Bottom Edge
c[1,0,−1] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[−1,−1,−1], s[1,1,−1]

c[−1,0,−1] s[−1,0,0] s[−1,−1,−1], s[−1,1,−1], s[−1,−1,−1], s[1,1,−1]

c[0,1,−1] s[0,1,0] s[−1,1,−1], s[1,1,−1], s[−1,0,−1], s[1,0,−1]

c[0,−1,−1] s[−1,−1,0] s[−1,−1,−1], s[1,−1,−1], s[−1,0,−1], s[1,0,−1]

Vertical Edge
c[1,−1,0] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[1,1,1], s[1,−1,1]

c[1,1,0] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[1,1,1], s[1,−1,1]

c[−1,1,0] s[−1,0,0] s[−1,−1,−1], s[−1,1,−1], s[−1,1,1], s[−1,−1,1]

c[−1,−1,0] s[−1,0,0] s[−1,−1,−1], s[−1,1,−1], s[−1,1,1], s[−1,−1,1]

Table 3.2: Location of sensors for adaptive algorithm, three accessible faces (opposite).
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Figure 3.6: Drone locations for the first stage, three faces accessible (adjacent).
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Figure 3.7: Possible drone locations for the second stage, three faces accessible (adjacent).
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Type Initial
Location
Estimate

Unchanged
Sensor Loca-
tions

Changed Sensor Locations

Center c[0,0,0] s[0,0,1], s[1,0,0],
s[0,−1,0],
s[−1,−1,0],s[1,1,0]

None

Top Face c[0,0,1] s[0,−1,0] s[−1,0,1], s[1,0,1], s[0,1,1], s[0,−1,1]

Bottom Face c[0,0,−1] s[0,0,1] s[−1,−1,−1], s[1,0,−1], s[1,1,−1], s[0,−1,−1]

Top Corner
c[1,−1,1] s[0,0,1],s[1,0,0],

s[0,−1,0]

s[1,0,1], s[1,−1,0]

c[1,1,1] s[0,0,1], s[1,0,0],
s[1,1,0]

s[1,0,1], s[1,1,0]

c[−1,1,1] s[0,0,1], s[−1,−1,0],
s[1,1,0]

s[−1,0,1], s[1,1,0]

c[−1,−1,1] s[0,0,1], s[−1,−1,0],
s[0,−1,0]

s[−1,0,1], s[−1,−1,0]

Bottom Corner
c[1,−1,−1] s[1,0,0],s[0,−1,0] s[1,0,−1], s[0,−1,−1], s[1,−1,0]

c[1,1,−1] s[1,0,0], s[1,1,0] s[1,0,−1], s[1,1,−1], s[1,1,0]
c[−1,−1,−1] s[−1,−1,0],

s[0,−1,0]

s[−1,0,−1], s[0,−1,−1], s[−1,−1,0]

c[−1,1,−1] s[−1,−1,0],s[1,1,0] s[−1,0,−1], s[1,1,−1], s[1,1,0]

Vertical Face
c[−1,0,0] s[1,0,0] s[−1,−1,0], s[1,1,0], s[−1,−1,−1], s[−1,0,1]

c[1,0,0] s[−1,−1,0] s[1,−1,0], s[1,1,0], s[1,0,−1], s[1,0,1]
c[0,1,0] s[0,−1,0] s[−1,1,0], s[1,1,0], s[0,1,1], s[1,1,−1]

c[0,−1,0] s[1,1,0] s[−1,−1,0], s[1,−1,0], s[0,−1,1], s[0,−1,−1]

Top Edge
c[1,0,1] s[0,0,1], s[1,0,0] s[1,1,0], s[1,−1,0], s[1,0,1]
c[−1,0,1] s[0,0,1],

s[−1,0,0]

s[1,1,0], s[−1,−1,0], s[−1,0,1]

c[0,1,1] s[0,0,1], s[1,1,0] s[1,1,0], s[1,1,1], s[0,1,1]
c[0,−1,1] s[0,0,1],

s[0,−1,0]

s[−1,−1,0], s[1,−1,0], s[0,−1,1]

Bottom Edge
c[1,0,−1] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[0,−1,−1], s[0,1,−1]

c[−1,0,−1] s[−1,−1,0] s[−1,−1,−1], s[−1,−1,1], s[0,−1,−1], s[1,1,−1]

c[0,1,−1] s[1,1,0] s[−1,−1,1], s[1,1,−1], s[−1,−1,−1], s[1,0,−1]

c[0,−1,−1] s[0,−1,0] s[1,−1,−1], s[1,−1,−1], s[−1,−1,−1], s[1,1,−1]

Vertical Edge
c[1,−1,0] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[1,1,1], s[1,−1,1]

c[1,1,0] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[1,1,1], s[1,−1,1]

c[−1,1,0] s[−1,−1,0] s[−1,−1,−1], s[1,1,−1], s[−1,1,1], s[−1,−1,1]

c[−1,−1,0] s[−1,−1,0] s[−1,−1,−1], s[1,1,−1], s[−1,1,1], s[−1,−1,1]

Table 3.3: Location of sensors for adaptive algorithm, three accessible faces (adjacent).
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Figure 3.8: Drone locations for the first stage, two faces accessible.
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Figure 3.9: Possible drone locations for the second stage, two faces accessible.
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Type Initial
Location
Estimate

Unchanged
Sensor Loca-
tions

Changed Sensor Locations

Center c[0,0,0] s[0,0,1],
s[1,0,0], s[1,1,0],
s[1,−1,0],s[1,0,−1]

None

Top Face c[0,0,1] s[1,−1,0] s[−1,0,1], s[1,0,1], s[0,1,1], s[0,−1,1]

Bottom Face c[0,0,−1] s[0,0,1] s[−1,1,−1], s[1,0,−1], s[1,1,−1], s[1,−1,−1]

Top Corner
c[1,−1,1] s[0,0,1],s[1,0,0],

s[1,−1,0]

s[1,0,1], s[1,−1,0]

c[1,1,1] s[0,0,1], s[1,0,0],
s[1,1,0]

s[1,0,1], s[1,1,0]

c[−1,1,1] s[0,0,1], s[1,0,−1],
s[1,1,0]

s[−1,0,1], s[−1,1,0]

c[−1,−1,1] s[0,0,1], s[1,0,−1],
s[1,−1,0]

s[−1,0,1], s[−1,−1,0]

Bottom Corner
c[1,−1,−1] s[1,0,0],s[1,−1,0] s[1,0,−1], s[1,−1,−1], s[1,−1,0]

c[1,1,−1] s[1,0,0], s[1,1,0] s[1,0,−1], s[1,1,−1], s[1,1,0]
c[−1,−1,−1] s[1,0,−1],

s[1,−1,0]

s[−1,0,−1], s[1,−1,−1], s[1,−1,0]

c[−1,1,−1] s[1,0,−1],s[1,1,0] s[−1,0,−1], s[1,1,−1], s[1,1,0]

Vertical Face
c[−1,0,0] s[1,0,0] s[−1,−1,0], s[−1,1,0], s[−1,1,−1], s[−1,0,1]

c[1,0,0] s[1,0,−1] s[1,−1,0], s[1,1,0], s[1,0,−1], s[1,0,1]
c[0,1,0] s[1,−1,0] s[1,1,1], s[1,1,0], s[0,1,1], s[1,1,−1]

c[0,−1,0] s[1,1,0] s[1,−1,0], s[1,−1,1], s[0,−1,1], s[1,−1,−1]

Top Edge
c[1,0,1] s[0,0,1], s[1,0,0] s[1,1,0], s[1,−1,0], s[1,0,1]
c[−1,0,1] s[0,0,1],

s[1,0,−1]

s[−1,1,0], s[−1,−1,0], s[−1,0,1]

c[0,1,1] s[0,0,1], s[1,1,0] s[−1,1,0], s[1,1,0], s[0,1,1]
c[0,−1,1] s[0,0,1],

s[1,−1,0]

s[−1,−1,0], s[1,−1,0], s[0,−1,1]

Bottom Edge
c[1,0,−1] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[1,−1,−1], s[1,1,−1]

c[−1,0,−1] s[1,0,−1] s[−1,−1,1], s[−1,1,1], s[1,−1,−1], s[1,1,−1]

c[0,1,−1] s[1,1,0] s[−1,1,1], s[1,1,1], s[−1,1,−1], s[1,0,−1]

c[0,−1,−1] s[1,−1,0] s[−1,−1,1], s[1,−1,−1], s[−1,1,−1], s[1,0,−1]

Vertical Edge
c[1,−1,0] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[1,1,1], s[1,−1,1]

c[1,1,0] s[1,0,0] s[1,−1,−1], s[1,1,−1], s[1,1,1], s[1,−1,1]

c[−1,1,0] s[1,0,−1] s[−1,−1,1], s[−1,1,−1], s[−1,1,1], s[−1,−1,1]

c[−1,−1,0] s[1,0,−1] s[−1,−1,1], s[−1,1,−1], s[−1,1,1], s[−1,−1,1]

Table 3.4: Location of sensors for adaptive algorithm, two accessible faces.
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For purposes of comparison, non-adaptive approaches with five sensors are

also considered. Here, the combined data from all the sensors is used to estimate the

source location.

It is assumed that the five sensors spend an equal amount of time in all loca-

tions they visit. The sensors are moved using a scheduling process. If L denotes the

number of locations visited, the number of movements required is nm=
⌈
L
5

⌉
− 1.

L

Faces accessible 5 3 (Opposite) 3 (Adjacent) 2

Faces 5 3 3 2

Corners 8 8 7 6

Edges 12 10 9 7

Faces and Corners 13 11 10 8

Faces and Edges 17 13 12 9

Corners and Edges 20 18 16 13

Faces, Corners and Edges 25 21 19 15

Table 3.5: Location of sensors for non-adaptive algorithms with five physical sensors and L
fixed sensor locations.

The maximum distance the sensors are required to move is d and the speed of

each drone is v m/s. Similar to the adaptive algorithm, the drones are assumed to

not collect data while moving. Therefore, the total time required by the non-adaptive

algorithms is given by

Ttot =
L

5
Ti +

d

v
nm (3.3)

The values of L considered are presented in Table 3.5. Each column corre-
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sponds to Tables 3.1 to 3.4 respectively, based on accessibility situations.

3.3 Performance Results

ML estimation is implemented in both stages using the MATLAB routine

fminsearchbnd [16]. In the second stage, both first stage and second stage data are

used to obtain the final estimate of location. As in Chapter 2, numerical results are

presented for a high-rise building of dimension 100 m ×100 m ×100 m and drones

are placed α=10 m away from the search space boundary planes. Good performance

results with β = 0.3, the corners of the central sub-cuboid being (±15,±15,±15).

Scintillating detectors based on 0.0762 mNaI are assumed, and the detection efficiency

is calculated based on the measurements for the Cs-137 photo-peak region of 662-keV.

The background radiation level is assumed to be uniformly distributed at λB =103 cps.

The individual values of µ, A, and I are unspecified as before, so that performance

depends on those quantities solely through V . The mass attenuation coefficient and

the density of air are as specified in Chapter 2.

It is assumed that the average speed of each drone when moving from one set of

locations to the next is v = 14.5 m/s. It follows that d
v
≈ 20 seconds. Equations (3.2)

and (3.3) are used to calculate total times of movement and data collection. In

order to provide a fair comparison, Ttot is kept constant for both the adaptive and

non-adaptive approaches. To compare the algorithms, the worst case and average

performance is determined, using 125 source locations spaced uniformly throughout

the search space. These source locations are the same locations used in Chapter 2.

As before, average distance between estimated and true location of the source

is calculated as D̄ = 1
n

∑n
j=1 D̂j, where D̂j is this distance for the jth iteration, as

described in Chapter 2.
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The worst case errors for five accessible faces are depicted in Fig. 3.10 and the

average errors in Fig. 3.11. The worst case error for the adaptive method occurs at

the center of the search space, due to the fact that the center location is relatively

far away from all sensors.

The adaptive method dramatically outperforms the non-adaptive algorithms.

The maximum errors for L = 5 are relatively large with as much as 7 m for a total

time of 100 seconds. The limited number of locations in L = 8 implies that more

time is spent collecting data than all of the other non-adaptive cases; however, more

data collection time does not translate to better estimation of the source.

The best performance for non-adaptive methods is obtained with L = 12,

which strikes the right balance between high data collection time and good enough

spatial diversity. The non-adaptive algorithm with L = 25 locations starts off with

higher estimation errors, but due to the larger number of sensor locations employed,

these methods eventually catch up in performance to the L = 12 non-adaptive algo-

rithm in performance.

In Figs. 3.12 and 3.13, in that two opposite sides and the floor are assumed

to be inaccessible to the drones, and Figs. 3.14 and 3.15 where two adjacent sides

and the floor are inaccessible. In addition, Figs. 3.16 and 3.17 present results for the

case that only one side and the roof are accessible. In each case, it is seen that the

adaptive algorithm outperforms all of the non-adaptive options.

The four geometric restrictions are compared to one another in Figs. 3.18

and 3.19. As expected, the best performance is achieved when all five faces are

accessible to the sensors. However, the performance remains quite good even when

fewer faces are available, despite theaccessibility issues.
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Figure 3.10: Maximum error for adaptive and non-adaptive methods, five accessible faces.
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Figure 3.11: Average error for adaptive and non-adaptive methods, five accessible faces.
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Figure 3.12: Maximum error for adaptive and non-adaptive methods, three faces accessible
(opposite).
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Figure 3.13: Average error for adaptive and non-adaptive methods, three accessible faces
(opposite).
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Figure 3.14: Maximum error for adaptive and non-adaptive methods, three accessible faces
(adjacent).
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Figure 3.15: Average error for adaptive and non-adaptive methods, three faces accessible
(adjacent).
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Figure 3.16: Maximum error for adaptive and non-adaptive methods, two faces accessible.
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Figure 3.17: Average error for adaptive and non-adaptive methods, two faces accessible.
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Figure 3.18: Maximum error vs. time, comparison of adaptive algorithms.
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Figure 3.19: Average error vs. time, comparison of adaptive algorithms.
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3.4 Conclusion

This chapter proposes an adaptive two-stage method for estimating the loca-

tion of a radiological point source in a three-dimensional space while incorporating

multiple real world constraints. Only five sensors are used to estimate the unknown

location and strength of the source. This chapter highlights the advantage of using a

small number of detectors in strategically chosen locations, based on a coarse initial

estimate of the location of the source. This method greatly outperforms the “fixed

sensor location” methods.
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Chapter 4

Detection of Non-Homogeneous

Attenuation

Building materials such as high-density concrete [24] can cause significant at-

tenuation of a radioactive source if the materials lie between the source and sensor.

Due to the nature of a building’s structure, such materials are almost certain to af-

fect some sensor locations more than others, leading to non-homogeneous effects. If

not taken into account, absorption and the corresponding attenuation can introduce

considerable error in the parameter estimates of the source. To our knowledge, esti-

mation in the presence of severe non-homogeneous attenuation has not been explored

previously.

This chapter proposes a novel technique to detect unknown non-homogeneous

attenuation. A metric is proposed that uses drone data already collected to identify

situations in which attenuation non-homogeneity is likely to result in non-negligible

estimation error.
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4.1 System Model

The system models considered in Sections 2.1 and 3.1 assume that non-homogeneous

attenuation is negligible. These models can be generalized to account for non-

homogeneous attenuation. Assume that the arrival rate is affected by both gaseous

and solid materials in the path between source and sensor. The count arrival rate at

the ith sensor location is given by

λi = λB +
µAI

4πD2
i

e−ρg(Di−Wi)e−ρsWi (4.1)

In this equation, the mass attenuation coefficient of a (highly absorbing) solid material

is denoted by ρs and the thickness of this solid material in the path between the source

and ith sensor is denoted by Wi. As before, Di denotes the distance between source

and sensor. Because Wi is assumed to be relatively negligible compared to Di, λi can

be approximated as

λi ≈ λB +
µAI

4πD2
i

e−ρgDi−ρsWi (4.2)

4.2 Attenuation Detection

The estimates of the source location and intensity are denoted as (x̂0, ŷ0, ẑ0)

and Î. These estimates can be obtained from static sensors via the algorithm in Chap-

ter 2 or via sensors that move as in the algorithms of Chapter 3. Note that these

algorithms assume that non-homogeneous attenuation is absent. Define D̂i to be an

estimate of Di based on (x̂0, ŷ0, ẑ0) and define V̂ to be an estimate of V based on Î

so that D̂2
i = (xi − x̂0)2 + (yi − ŷ0)2 + (zi − ẑ0)2 and V̂ = log(µAÎ). We estimate the
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arrival rate at the ith location as

λ̂i = λB +
1

4πD̂2
i

eV̂−ρgD̂i (4.3)

Recall that the counts recorded at the ith sensor location is represented as ki

and the time duration over which data is collected is Ti. The quantity ki
Ti

is also a

measure of the arrival rate, and it is expected to be close to λ̂i if non-homogeneous

attenuation is absent, but there is no reason to expect ki
Ti

to be close to λ̂i if significant

non-homogeneous attenuation is present. To estimate the degree to which a given

location may be affected by non-homogeneous attenuation, the following normalized

error detection metric is proposed:

Ai =
ki
Ti
− λ̂i
λ̂i

(4.4)

Using the collection of metrics A1 through AL gives a set of statistics that

together may be used to detect the presence or absence of non-homogeneous attenu-

ation.

4.3 Performance Results

It is assumed that the sensors have access to all sides of the building, excluding

the bottom face. As before, numerical results are presented for a high-rise building of

dimension 100 m ×100 m ×100 m (so that L1 =L2 =L3 =100 m). Drones are placed

α=10 m away from the search space boundary planes. There are five physical drones

visiting the 25 possible source locations around the search space, as shown in Fig. 3.2.

The drones move according to the scheduling process described in Chapter 3 for the

non-adaptive algorithms.
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The mass attenuation coefficient for air is ρg =0.0775 cm2/g and the density of

air is 0.001225 g/cm3 [24], as described before. The mass attenuation coefficient for

solid concrete is assumed to be ρs = 8.236×10−2 cm2/g with density 2.3 g/cm3 [23,24].

These values correspond to a high density formulation of concrete.

Two possible scenarios are considered, a concrete vertical shaft and a concrete

vertical wall. In the first scenario, it is assumed that a rectangular structure consisting

of four concrete walls runs vertically through the center of the building as shown in

Fig. 4.1. In the second case, a single concrete wall is assumed to be present along an

entire vertical face of the building as shown in Fig. 4.2. It is further assumed that

the four walls of the vertical shaft and the single vertical wall have thicknesses of

∆ = 0.25 m.

The values of log10 |Ai| are plotted against increasing data collection time

in Figures 4.3 to 4.6. The attenuating structure is assumed to be the vertical shaft as

shown in Fig. 4.1. Figure 4.3 places the source at (40, 40, 0), which is close to a side

edge of the building. For this source location, 21 sensor locations are affected by non-

homogeneous attenuation. Figure 4.4 places the source at (40, 40, 40), close to a corner,

and in this case 16 locations experience non-homogeneous attenuation. Figures 4.5

and 4.6 place the source at (0, 10, 0) and (0, 40, 0), close to the center of the building

and to the face of the outer wall, respectively, and the numbers of sensor locations

affected by non-homogeneous attenuation are correspondingly 20 and 18.

Figs. 4.7 to 4.10 present results for the attenuating vertical wall of Fig. 4.2,

the sources are placed in the same locations as before. For the source located at

(40, 40, 0), 10 sensor locations are affected by non-homogeneous attenuation. Only

6 sensor locations are affected for the source at (40, 40, 40). When the source is at

(0, 10, 0), the number of sensor locations affected is 9. Finally, for the source at

(0, 40, 0), a total of 8 sensor locations are affected by non-homogeneous attenuation.
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Figure 4.1: Vertical shaft in the center of the building.
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Figure 4.2: Single concrete wall along a face of the building.
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Figure 4.3: Attenuation detection metric vs. time, vertical shaft, source located at
(40, 40, 0).
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Figure 4.4: Attenuation detection metric vs. time, vertical shaft, source located at
(40, 40, 40).
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Figure 4.5: Attenuation detection metric vs. time, vertical shaft, source located at (0, 10, 0).
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Figure 4.6: Attenuation detection metric vs. time, vertical shaft, source located at (0, 40, 0).
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Figure 4.7: Attenuation detection metric vs. time, vertical wall, source located at (40, 40, 0).
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Figure 4.8: Attenuation detection metric vs. time, vertical wall, source located at
(40, 40, 40).
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Figure 4.9: Attenuation detection metric vs. time, vertical wall, source located at (0, 10, 0).
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Figure 4.10: Attenuation detection metric vs. time, vertical wall, source located at (0, 40, 0).

73



It is also important to determine the behavior of these statistics when non-

homogeneous attenuation is absent. These results are presented in Figures 4.11 to 4.14

for the same four source locations presented in the earlier figures.

Taken together, the figures show that not only does the Ai metric distinguish

between the presence and absence of non-homogeneous attenuation on the structure

as a whole, but it also successfully identifies which particular sensor locations are

affected by non-homogeneous attenuation. In general, the larger the value of Ai, the

higher the degree of non-homogeneous attenuation. Thus, one way to use the Ai

metrics to detect whether non-homogeneous attenuation is present or absent is to

compare the maximum value of A1 through AL to a fixed threshold and declare that

non-homogeneous attenuation is present if this threshold is exceeded.

In most cases, the Ai metrics do not vary significantly beyond the minimum

total time of 100 seconds, but the results of Fig. 4.8 are an exception. The reason

in this case is that attenuation only affects six of the 25 sensor locations, fewer than

in every other case in which non-homogeneous attenuation is present. As a result,

the source location estimation algorithm is able to continue to improve accuracy over

time as more data is collected, whereas this is not the case when more sensor locations

are affected by non-homogeneous attenuation. The results of Figures 4.11 to 4.14 (in

which non-homogeneous attenuation is absent) also demonstrate the improvement

over time as expected.

4.4 Conclusion

In this chapter, it has been verified through simulations that the error detection

metric is quite sensitive to the presence or absence of non-homogeneous attenuation.

Therefore, by comparing this metric to a fixed threshold, it can be determined whether
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Figure 4.11: Attenuation detection metric vs. time, no attenuation, source located at
(0, 10, 0).
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Figure 4.12: Attenuation detection metric vs. time, no attenuation, source located at
(0, 40, 0).
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Figure 4.13: Attenuation detection metric vs. time, no attenuation, source located at
(40, 40, 0).
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Figure 4.14: Attenuation detection metric vs time, no attenuation, source located at
(40, 40, 40).
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the counts at a particular location have been significantly affected by non-homogeneous

attenuation. This metric also indicates which particular sensor locations experience

non-homogeneous attenuation, a fact that is exploited in the following chapter.
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Chapter 5

Estimation in the Presence of

Non-homogeneous Attenuation

In Chapter 4, it has been shown that the use of the metrics Ai enables the de-

tection of situations in which significant non-homogeneous attenuation is present due

to absorbing materials such as high-density concrete. It has furthermore been shown

that the metrics enable the ability to determine which particular sensor locations

experience attenuation. In this chapter, these properties of the metrics are exploited

to effectively estimate the source location despite the presence of non-homogeneous

attenuation. The essence of the approach is to use the Ais to identify attenuated sen-

sor locations and estimate their attenuation levels in addition to the unknown source

location and strength.

5.1 System Model

The updated system model presented in Section 4.1 is used again, this time for

estimation in the presence of unknown attenuation. As before, the thickness of the
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attenuating material Wi is considered to be relatively small compared to the distance

Di between the source and the ith sensor location. Therefore, the count arrival rate

at the ith location is again given by

λi ≈ λB +
µAI

4πD2
i

e−ρgDi−ρsWi (5.1)

where ρs is the mass attenuation coefficient of solid material, ρg is the mass attenu-

ation coefficient of air, I is the intensity of the source, µ is the photo-peak efficiency

(including the branching factors for the photo-peaks of the different isotopes), A is

the cross-sectional area of the detector, and λB is the background radiation level.

5.2 Attenuation Estimation

The position of the ith data collection location is (xi, yi, zi), and (x0, y0, z0) is

the location of the source; it follows that Di=
√

(xi−x0)2 + (yi−y0)2 + (zi−z0)2. The

observed nuclear decay is again modeled as a Poisson process [14]. Let L denote the

number of locations visited by N physical sensors, let Ti denote the amount of time

over which the data has been collected at the ith location, and let λi be the count

arrival rate. Then, the number of counts received over duration Ti at this location

is Poisson (λiTi), and these counts are mutually independent. Denoting the count at

the ith location as Ki, the probability of measuring ki counts at this location is given

by

P (Ki = ki;x0, y0, z0, I,W1, . . . ,WL) =
(λiTi)

ki e−(λiTi)

ki!
, ki=0,1,. . . (5.2)
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Furthermore, by independence the joint mass function is the product of the individual

mass functions of each sensor; that is

P (K = k; x0, y0, z0, I,W1, . . . ,WL) =
∏L

i=1 P (Ki = ki; x0, y0, z0, I) (5.3)

A multi-stage algorithm based on ML estimation is proposed for estimating

the location of the nuclear source. In the first stage, ML estimation is employed

assuming that the Wis in Eq. (5.1) are all equal to zero; that is, it is assumed that

non-homogeneous attenuation is absent. Denote the resulting estimates of the source

location and intensity as x̂0, ŷ0, ẑ0, and Î. Furthermore, define D̂2
i = (xi − x̂0)2 +

(yi− ŷ0)2 +(zi− ẑ0)2 and V̂ = log(µAÎ). From these definitions, the estimated arrival

rate at the ith location can be estimated as λ̂i = λB + 1

4πD̂2
i

eV̂−ρgD̂i . We can use the

error detection metric from Chapter 4 given by Ai =
ki
Ti

−λ̂i
λ̂i

in order to detect which

sensor locations are likely to be affected by non-homogeneous attenuation.

Defining τ as a threshold used by the algorithm, if for a given sensor location

log10 |Ai| > τ , it is concluded that the counts at that location have undergone non-

negligible non-homogeneous attenuation. The specific value of threshold that is most

appropriate for a given attenuating structure will depend on the structure itself.

One approach is to consider multiple thresholds and compare the log10 |Ai| values to

each threshold. That is, nτ iterations of the non-homogeneous attenuation detection

process are used, and for the jth iteration, significant non-homogeneous attenuation

is declared present at the ith sensor location if log10 |Ai| > τj and declared absent

otherwise.

For the sensor locations declared to be affected by non-homogeneous attenua-

tion, the Wis are treated as unknowns, in addition to x0, y0, z0, and I. ML estimation

can be used to estimate the unknown Wis along with source location and strength.
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Using these estimates, a new count arrival rate λ̂i is calculated to obtain new Ais.

Typically, the new Ais will have lower values than they did previously, and as a

result, fewer log10 |Ai| values will be above the threshold τj. ML estimation is per-

formed again, using the previously estimated Wis that correspond to log10 |Ai| < τj

and re-estimating the Wis that are such that log10 |Ai| > τj along with re-estimating

x0, y0, z0, and I. This process is repeated until either log10 |Ai| < τj for all i or a

maximum number of iterations c is reached.

If all L sensor locations were such that log10 |Ai| exceeded the threshold τj,

there would be more unknowns than sensor counts, and the ML algorithm would be

indeterminate. Thus no more than a maximum numberM ofWis should be estimated.

This maximum number should be such that the total number of unknowns is less than

L. For example, with L = 25 sensor locations, if M = 15 is used, the total number of

unknowns cannot exceed M + 4 = 19, which lies significantly below L. In theory, M

could be as large as 21 for L = 25 locations, but the ML algorithm tends to perform

poorly when the number of unknowns is nearly as large as L.

In the event that more than M Ais are such that log10 |Ai| > τj, the Wis

corresponding to the M largest values of log10 |Ai| are estimated. In later iterations,

as log10 |Ai| values drop, more of the Wis that were set aside can be estimated.

This entire procedure is repeated for each threshold τj to obtain nτ different

estimates of x̂0, ŷ0, ẑ0, and Î. The joint mass function in Eq. (5.3) is then calculated

for each of the nτ sets of estimates, and the estimates that maximize the joint mass

function are chosen to be the final result. The algorithm is summarized in Algorithm 1

and Fig. 5.1. In this algorithm and flowchart, we indicate which Wis are to be

estimated via ML estimation by setting them equal to negative one.
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Algorithm 1 Estimation Procedure for Non-Homogeneous Attenuation

1: Collect data kis for L sensor locations
2: for j = 1, . . . , nτ do
3: Set all Wis to 0
4: for n = 1, . . . , c do
5: Estimate x̂0, ŷ0, ẑ0, Î, and Ŵis that were −1 via ML estimation
6: Calculate D̂is, λ̂is, and Ais from ML estimates
7: if all Ais satisfy log10 |Ai| < τj then go to Step 14

8: if at most M Ais satisfy log10 |Ai| > τj then
9: Set Wis that correspond to log10 |Ai| > τj to −1

10: else
11: Set Wis that correspond to M largest log10 |Ai| to −1

12: endif
13: endfor
14: Calculate Pj = P (K = k; x̂0, ŷ0, ẑ0, Î , Ŵ1, . . . , ŴL)

15: Set x̂0j = x̂0, ŷ0j = ŷ0, ẑ0j = ẑ0, and Îj = Î

16: endfor
17: Set x̂0 = x̂0j, ŷ0 = ŷ0j, ẑ0 = ẑ0j and Î = Îj that correspond to the largest Pj
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Figure 5.1: Estimation algorithm incorporating non-homogeneous attenuation.
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5.3 Performance Results

A total of five different attenuating structures are considered, the shaft and

the wall from Chapter 4, as shown in Figs. 5.2 and 5.3, and three new structures: two

opposite attenuating walls, as shown in Fig. 5.4, two adjacent attenuating walls, as

shown in Fig. 5.5 and three attenuating walls, as shown in Fig. 5.6.

As before, a set of 125 source locations uniformly distributed across the search

space are used to calculate the maximum and average errors. Figs. 5.7 and 5.8 present

results for the shaft, Figs. 5.9 and 5.10 show results for a single wall, Figs. 5.11

and 5.12 present results for two opposite walls, two adjacent walls are considered

in Figs. 5.13 and 5.14, and results for three walls are shown in Figs. 5.15 and 5.16.

Additionally, Figs. 5.17 and 5.18 present results when non-homogeneous attenuation

is absent.

For each figure, six cases are shown. Three of the cases use nτ = 21 threshold

values ranging from τ1 = −2 to τ21 = 0, spaced at multiples of 0.1. These results are

shown as solid horizontal lines on the figures. The other three cases, shown as dashed

lines, use nτ = 1, a single fixed threshold. The value of this threshold varies in the

figures so that the results are not straight lines. Within each group of three plots, the

values of c are c = 2, c = 15, and c = 30. In every case, there are five physical sensors

moving to 25 locations, and the formulas for travel time and total time in Chapter 3

are used here as well. For the figures, the total time is 500 seconds, V = 18 ln(Bq),

and λB = 103 cps. All walls, including the walls of the shaft, are assumed to have

thickness ∆ = 0.25 m.
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Figure 5.2: Vertical attenuating shaft in the center of the building.
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Figure 5.3: Single attenuating wall along a face of the building.

86



Figure 5.4: Two attenuating walls along faces of the building (opposite).
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Figure 5.5: Two attenuating walls along faces of the building (adjacent).
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Figure 5.6: Three attenuating walls along faces of the building.
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Figure 5.7: Maximum error of attenuation estimation algorithm, central attenuating shaft.
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Figure 5.8: Average error of attenuation estimation algorithm, central attenuating shaft.
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Figure 5.9: Maximum error of attenuation estimation algorithm, single vertical attenuating
wall.
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Figure 5.10: Average error of attenuation estimation algorithm, single vertical attenuating
wall.
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Figure 5.11: Maximum error of attenuation estimation algorithm, two attenuating walls
(opposite).
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Figure 5.12: Average error of attenuation estimation algorithm, two attenuating walls (op-
posite).
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Figure 5.13: Maximum error of attenuation estimation algorithm, two attenuating walls
(adjacent).
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Figure 5.14: Average error of attenuation estimation algorithm, two attenuating walls (ad-
jacent).
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Figure 5.15: Maximum error of attenuation estimation algorithm, three attenuating walls.
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Figure 5.16: Average error of attenuation estimation algorithm, three attenuating walls.
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Figure 5.17: Maximum error of attenuation estimation algorithm, no non-homogeneous
attenuation.
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Figure 5.18: Average error of attenuation estimation algorithm, no non-homogeneous at-
tenuation.
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An examination of the various dashed lines in the figures show that there is not

one optimal threshold for all the structures, and thus it is of value to use nτ > 1. An

examination of the various solid lines shows that the final threshold selection method

of the algorithm is effective at finding the location estimate that corresponds to the

best threshold. It also shows that using c = 15 iterations is much better than using

c = 2 iterations, but only negligibly worse than c = 30. Note that the algorithm

requires a total of nτ (c + 1) uses of the ML algorithm, and thus neither nτ nor c

should be larger than necessary.

Figs. 5.19 and 5.20 compare the performance of the algorithm (with c = 15

and nτ = 21) for the various attenuating structures. These plots show the maximum

and average errors as a function of total time. It is evident that the estimation errors

are lowest when the attenuating structure is a single wall along a face of the building,

and the worst performance results when attenuating structure is three faces. The

shaft performance is worse than the single wall but better than the two walls. To a

degree, the different slopes of the plots indicates the degree to which attenuation is

estimated accurately.

The figures also include the performance of the algorithm when no attenuat-

ing structures are present. Surprisingly, the results are worse than that of a single

attenuating wall. This performance is due to the fact that the algorithm is specif-

ically designed for attenuating structures. An enhancement to this algorithm that

incorporates both scenarios is considered in the following section.
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Figure 5.19: Maximum error vs. time for attenuation estimation algorithm for different
attenuating structures.
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Figure 5.20: Average error vs. time for attenuation estimation algorithm for different
attenuating structures.
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5.4 Hybrid Algorithm

In Chapter 3, it has been shown that moving sensors adaptively based on

initial estimates of source location dramatically improves the performance of loca-

tion estimation when non-homogeneous attenuation is absent. In Section 5.3 it has

been shown that non-homogeneous attenuation can be estimated along with unknown

source location and intensity. In this section, we consider whether the strengths of

these two approaches can be combined.

A key requirement for the adaptive algorithm to perform well is that the

first stage estimates are sufficiently accurate so as to identify the correct sub-cube

in which the source is located. If the initial stage fails in this task, then the sen-

sors may be moved to very inappropriate locations resulting in performance that is

worse than if they had not moved at all. Unfortunately, the presence of significant

non-homogeneous attenuation makes accurate initial-stage estimation difficult if not

impossible. Furthermore, locations that were good to move to in the absence of non-

homogeneous attenuation may become quite poor in the presence of non-homogeneous

attenuation. However, it is easy to detect the presence of non-homogeneous attenua-

tion even in a very short first stage.

For these reasons, a hybrid method is presented that combines the performance

of the best features of both the adaptive and the attenuation estimation algorithm. In

the first stage of this hybrid method, N physical sensors collect data from the sensor

locations shown in Fig. 5.21. In this figure, N = 5. An initial estimate (x̂0, ŷ0, ẑ0, λ̂)

is obtained for the source location.
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Figure 5.21: Drone locations for the first stage of the hybrid algorithm.

99



Using this estimate, values of the Ais are obtained using Eq. (4.4) for i =

1, . . . , N . For the first stage of the hybrid algorithm, if log10 |Ai| > τh for any i, it is

concluded that sources of non-homogeneous attenuation are present within the search

space. Here, τh is a single fixed threshold. In this case, the attenuation estimation

algorithm described in Section 5.2 is used to obtain source location estimates in

the presence of non-homogeneous attenuation. In contrast, if it is concluded that

non-homogeneous attenuation within the search space is negligible, then the initial

estimate (x̂0, ŷ0, ẑ0, λ̂) is used to select a sub-cube from Fig. 3.3, and the algorithm

from Table 3.1 is used. A block diagram of the hybrid algorithm is shown in Fig. 5.22.

For performance results, the five attenuating structures of Section 5.3 are

considered along with the case that non-homogeneous attenuation is absent. These

results, comparing the hybrid algorithm with the adaptive algorithm of Section 3.2

and the attenuation estimation algorithm of Section 5.2, are shown in Figs. 5.23

to 5.34. For these figures, N = 5, L = 25, V = 18 ln(Bq), and λB = 1000 cps.

For the attenuation estimation algorithm, both as a standalone algorithm and as a

component of the hybrid algorithm, c = 15 and nτ = 21, and τ ranges from −2 to 0,

with a step size of 0.1. For the hybrid algorithm, τh = −1.4.

The results in the presence of non-homogeneous attenuation (Figs. 5.23 to 5.32)

show that the hybrid algorithm performs dramatically better than the adaptive al-

gorithm and only slightly worse than the attenuation estimation algorithm. The gap

between the hybrid algorithm and the attenuation estimation algorithm tends to be

the largest in situations in which symmetry causes the hybrid algorithm to more fre-

quently decide that non-homogeneous attenuation is absent (i.e., the shaft and the

two opposite walls).
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Figure 5.22: Hybrid estimation algorithm incorporating homogeneous and non-
homogeneous attenuation.
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Figure 5.23: Maximum error vs. time for attenuation estimation, adaptive and hybrid
algorithms, central attenuating shaft.

100 200 500 1000 2000 5000 10000

Time (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
v
e

ra
g

e
 E

rr
o

r 
(m

)

Attenuation estimation

Adaptive

Hybrid

Figure 5.24: Average error vs. time for attenuation estimation, adaptive and hybrid algo-
rithms, central attenuating shaft.
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Figure 5.25: Maximum error vs. time for attenuation estimation, adaptive and hybrid
algorithms, vertical attenuating wall.
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Figure 5.26: Average error vs. time for attenuation estimation, adaptive and hybrid algo-
rithms, vertical attenuating wall.
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Figure 5.27: Maximum error vs. time for attenuation estimation, adaptive and hybrid
algorithms, two attenuating walls (opposite).
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Figure 5.28: Average error vs. time for attenuation estimation, adaptive and hybrid algo-
rithms, two attenuating walls (opposite).

104



100 200 500 1000 2000 5000 10000

Time (s)

1

2

3

4

5

6

7

8

9
M

a
x
im

u
m

 E
rr

o
r 

(m
)

Attenuation estimation

Adaptive

Hybrid

Figure 5.29: Maximum error vs. time for attenuation estimation, adaptive and hybrid
algorithms, two attenuating walls (adjacent).
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Figure 5.30: Average error vs. time for attenuation estimation, adaptive and hybrid algo-
rithms, two attenuating walls (adjacent).
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Figure 5.31: Maximum error vs. time for attenuation estimation, adaptive and hybrid
algorithms, three attenuating walls.
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Figure 5.32: Average error vs. time for attenuation estimation, adaptive and hybrid algo-
rithms, three attenuating walls.
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Figure 5.33: Maximum error vs. time for attenuation estimation, adaptive and hybrid
algorithms, no attenuation.
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Figure 5.34: Average error vs. time for attenuation estimation, adaptive and hybrid algo-
rithms, no attenuation.
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The results in the absence of non-homogeneous attenuation (Figs. 5.33 and 5.34)

show that the hybrid algorithm performs dramatically better than the attenuation

estimation algorithm and only a little worse than the adaptive algorithm, especially

with regards to the maximum error (Fig. 5.33). In general, it can be concluded that

the hybrid algorithm is effective at determining whether attenuation is present and

proceeding appropriately.

Finally, Figs. 5.35 and 5.36 compare the performance of the hybrid algorithm

in the various attenuating environments (and in the absence of non-homogeneous

attenuation). The results are similar to those of the attenuation estimation algorithm

(Figs. 5.19 and 5.20) except that the performance in the absence of non-homogeneous

attenuation is far better than it was previously.

5.5 Conclusion

This chapter presents several novel techniques for estimating the location of

a nuclear source in which significant non-homogeneous attenuation maybe present.

The algorithm of Section 5.2 is designed for non-homogeneous attenuation, whereas

the algorithm of Section 5.4 is designed to operate well, whether non-homogeneous

attenuation is present or absent. The results of the latter algorithm perform nearly as

well as the former algorithm when non-homogeneous attenuation is present and nearly

as well as the adaptive algorithm of Chapter 3 when non-homogeneous attenuation

is absent.
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Figure 5.35: Maximum error vs. time for the hybrid algorithm for different attenuating
structures.

100 200 500 1000 2000 5000 10000

Time (s)

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 E

rr
o

r 
(m

)

Central shaft

Vertical wall

Two opposite walls

Two adjacent walls

Three walls

No attenuation

Figure 5.36: Average error vs. time for the hybrid algorithm for different attenuating
structures.
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Chapter 6

Conclusions and Future Work

This dissertation explores how to mitigate real-world constraints encountered

in the problem of locating a nuclear source in crowded metropolitan areas. In Chap-

ter 2, a network of sensors with fixed locations are employed. Various accessibility

constraints are explored. It is seen that the location estimates are most accurate when

the sensors have access to all faces of the building. However, even with limitations on

where sensors can operate, it is possible to estimate the source location and strength

accurately with a sufficiently large number of sensors.

Chapter 3 explores the idea of using only a small number of physical sensors

to visit a set of strategic sensor locations as opposed to collecting data from a large

number of sensor locations. An adaptive algorithm is presented that is based on

the fact that spatial diversity of sensor locations is as important as proximity to the

source when it comes to problem of location estimation. For purposes of comparison,

a set of non-adaptive algorithms are also presented that involve a small number

of physical sensors visiting a set of fixed locations. The accessibility constraints

explored in Chapter 2 are also considered here. It is seen from the results that the

adaptive algorithm vastly outperform the non-adaptive methods, even when only a
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small number of sensor locations are available.

The effects of non-homogeneous attenuation are explored in Chapter 4. Specif-

ically, an error detection metric is proposed, based on the estimated count arrival rate

and the actual count arrival rate at each sensor location. This metric can be used

to identify situations in which significant non-homogeneous attenuation has skewed

estimation results. It is seen from the results that this metric is capable of identifying

specific sensor locations affected by non-homogeneous attenuation.

Based on the metric from Chapter 4, a multi-stage iterative estimation algo-

rithm is presented in Chapter 5. This algorithm uses the error detection metric of the

previous chapter to identify sensor locations where significant absorption has taken

place and iteratively estimates the attenuation effects along with the source location

and strength. This attenuation estimation method is specifically designed to counter

the effects of non-homogeneous attenuation when no prior knowledge regarding the

attenuating structure is available. The results show that the attenuation estimation

algorithm can successfully locate a source of nuclear radiation even in the presence

of significant non-homogeneous attenuation. Finally, this chapter also combines the

adaptive method of Chapter 3 to the attenuation estimation method of Chapter 5 in

order to propose a hybrid method that can estimate the source location irrespective

of the presence or absence of non-homogeneous attenuation.

This dissertation presents a number of algorithms for estimating the location

and strength of a single isotropic point source. A problem meriting future research is

the situation in which multiple isotropic sources are present within the search space,

and the number of such sources is unknown. While the error detection metric can

predict with a high level of reliability whether the estimates obtained are close to the

true location of the source, it does not say anything about the source of such error.

Therefore, it would need to be enhanced further in order to detect the number of
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sources present within the search space. Combined with unknown non-homogeneous

attenuation, the presence of multiple sources within a search space poses an interesting

problem in the domain of nuclear radiation source estimation.

Another interesting topic for future consideration is estimating the effect of

shielding materials on the location estimation problem. While this dissertation ex-

plores how non-homogeneous attenuation affects the estimation results, the attenua-

tion considered is purely due to the specific structure of the building. In real world

scenarios, additional shielding materials of non-uniform thickness may be used to hide

the nuclear material and can significantly affect the location estimates. This is an

important problem that should be explored in future research.
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