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Abstract

There has been growing interest in modeling stationary series that have discrete marginal

distributions. Count series arise when describing storm numbers, accidents, wins by a sports team,

disease cases, etc.

The first count time series model introduced in this paper is the superpositioning methods.

It have proven useful in devising stationary count time series having Poisson and binomial marginal

distributions. Here, properties of this model class are established and the basic idea is developed.

Specifically, we show how to construct stationary series with binomial, Poisson, and negative binomial

marginal distributions; other marginal distributions are possible.

A second model class for stationary count time series – the latent Gaussian count time series

model – is also proposed. The model uses a latent Gaussian sequence and a distributional transfor-

mation to build stationary series with the desired marginal distribution. This model has proven to

be quite flexible. It can have virtually any marginal distribution, including generalized Poisson and

Conway-Maxwell. It is shown that the model class produces the most flexible pairwise correlation

structures possible, including negatively dependent series. Model parameters are estimated via two

methods: 1) a Gaussian likelihood approach (GL), and 2) a particle filtering approach (PF).
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Chapter 1

Introduction

1.1 Time Series Overview

A time series is a sequence of random variables collected over time. Most often, the mea-

surements are made at regular time intervals. Time Series Analysis is used in many applications,

including: economic forecasting, sales forecasting, stock market analysis, sports analysis, and many

more.

The basic objectives of time series modeling are to fit a model that describes the structure

of the time series and provides real-world interpretations. Uses for a fitted model are:

• To describe the important features of the time series, such as trend, seasonality, and change-

points.

• To explain how the past affects the future, thus to permitting forecasting of future values of

the series.

One difference of time series analysis from regression analysis is that the data are not

necessarily independent. Let X1, X2, · · · , Xn be a time series of length n, denoted as {Xt}nt=1. The

mean structure of {Xt}nt=1 is µt := E[Xt]. The covariance structure of {Xt}nt=1 is described by its

autocovariance function (ACVF). The lag h ACVF at time t is defined as

γX(t, t+ h) := Cov(Xt, Xt+h) = E(XtXt+h)− E(Xt)E(Xt+h).

1



A time series {Xt} is said to be weakly stationary if it satisfies: 1) the mean E(Xt) is

the same for all t, 2) the covariance between Xt and Xt+h is the same for all t and every h ∈

{0, 1, 2, · · · }. Similarly, a time series {Xt} is said to be strictly stationary if (X1, X2, · · · , Xn)′ and

(X1+h, X2+h, · · · , Xn+h)′ have the same joint distribution for all integer h ≥ 0 and n > 0. Clearly,

strictly stationary implies weakly stationary.

For a (weakly) stationary series {Xt}, the lag h ACVF does not depend on t for all h. In

this setting,

γX(t, t+ h) = γX(0, h).

For notational convenience, one can use a single argument in all ACVFs: γX(h) := γX(0, h).

In some cases, it is easier to look at correlations instead of covariances. The autocorrelation

function (ACF) of a stationary time series {Xt} is defined as

ρ(h) := Corr(Xt, Xt+h) =
γ(h)

γ(0)
.

Clearly, ACFs are between -1 and 1 by Cauchy-Schwarz inequality. In ACFs, the effect of dispersion

in the series is removed. ACFs can be used to compare the level of dependency in different series.

For some series, it is worthwhile to pursue a partial autocorrelation function (PACF). In

general, a partial correlation is a conditional correlation. For a time series, the partial autocorrelation

between Xt and Xt+h, h ≥ 0, is defined as the conditional correlation between Xt and Xt+h,

conditional on Xt+1, Xt+2, · · · , Xt+h−1:

κ(h) := Corr(Xt, Xt+h|Xt+1, · · · , Xt+h−1),

where the conditional correlation is taken between Xt and Xt+h after linear prediction of all variables

between Xt and Xt+h.

1.1.1 ARMA and ARIMA Models

In stationary time series analysis, the most commonly-used model class is the autoregressive

moving average (ARMA) model class. The general ARMA model was described in the thesis of Peter

Whittle ([36]) and was popularized in the 1970 book by Box and Jenkins ([4]). The ARMA model

2



class relates the current observation of a series to past observations and past prediction errors. An

ARMA(p, q) model includes autoregressive terms up to order p and moving-average terms up to

order q. It obeys the recursion

Xt − φ1Xt−1 − φ2Xt−2 − · · · − φpXt−p = θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q,

where p and q are non-negative integers. The series {Zt} is white noises, that is often assumed to

be independent and identically distributed in time t. When p = 0, an ARMA(p, q) model is referred

to as a moving-average model of order q (MA(q)). Similarly, when q = 0, this model is called an

autoregressive model of order p (AR(p)). For the model to remain stationary, some constraints need

to be met on the values of the parameters. For example, the AR(1) model is stationary with |φ1| 6= 1

and not stationary with |φ1| = 1. A realization of 300 observations of an ARMA(1,2) series with

φ1 = 0.5, θ1 = 0.5, θ2 = 0.3 is shown in Figure 1.1.

For non-stationary series, autoregressive integrated moving average (ARIMA) models can

be used to describe patterns in the series. The elements in the model are specified in the form

ARIMA(p, d, q), which include p autoregressive terms, q moving average terms, and d difference

operations. More formally, a process {Xt} is said to be ARIMA(p, d, q) if

(1−B)dXt

is ARMA(p, q), where p, d, q are non-negative integers. Here, (1 − B)d is the dth order difference

operator. For example, (1−B)Xt = Xt −Xt−1, (1−B)2Xt = (1−B)(Xt −Xt−1) = Xt − 2Xt−1 +

Xt−2, · · · . An ARIMA (1,1,1) model, for example, has one AR parameter and one MA parameter.

A first-order difference allows for a linear trend in the data. Realizations of ARIMA(1,1,0) and

ARIMA(0,1,1) series of length n = 300 are shown in Figure 1.2.

1.2 Count Time Series

There has been significant recent interest in modeling stationary series that have dis-

crete marginal distributions. Often, the discreteness arises in the form of counts taking values

in {0, 1, 2, · · · }. Count series are widely used when describing storm numbers, accident tallies, wins

3
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Figure 1.1: Realization of 300 observations of a ARMA(1,2) with φ1 = 0.5, θ1 = 0.5, θ2 = 0.3.

by a sports team, disease cases, etc. An example of a count time series is shown in Figure 1.3. It

shows the annual number of Atlantic tropical cyclones from 1850 to 2011. The observation at each

time is integer-valued, which clearly cannot be normally distributed.

The traditional ARMA/ARIMA model classes work well in describing series with Gaussian

marginal distributions. However, no one definitive model class dominates the count series literature.

In fact, the autocovariance function of many commonly used count models is deficient in some senses,

as described below.

The theory of stationary Gaussian time series is well developed by now. However, there is no

known result characterizing autocovariance functions of stationary count series. Elaborating, γX(·)

is a symmetric non-negative definite function on the integers, if and only if there exists a stationary

Gaussian sequence {Xt} with Cov(Xt, Xt+h) = γX(h) for all integers h. Here, non-negative definite

4
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Figure 1.2: Top: realization of 300 observations of an ARIMA(1,1,0) series with φ1 = 0.3. Bottom:
realization of 300 observations of an ARIMA(0,1,1) series with θ1 = 0.5.

is defined as

n∑
i=1

n∑
j=1

aiγX(ti − tj)aj ≥ 0

for every choice of n ∈ {1, 2 . . . , } and real numbers a1, . . . , an. Unfortunately, no analogous result

exists for say, a stationary series with Poisson marginal distributions. In fact, restrictions on autoco-

variance functions of count time series are often more stringent than just non-negative definiteness.

For example, it may not be possible to have a stationary count series having a specific marginal

distribution that is highly negatively correlated at some lag while the autocovariance function can

take on any value between -1 and 1 in a Gaussian process.

5



Figure 1.3: Annual number of Atlantic tropical cyclones from 1850 to 2011.

1.2.1 DARMA Models

Initial attempts to model stationary count series used the discrete-valued autoregressive

moving-average (DARMA) methods introduced in the 1970s by Jacobs and Lewis ([14, 15]). The

model used mixing techniques to build series with preset marginal distributions. For example, a

first order discrete autoregressive (DAR(1)) series {Xt} is built from independent and identically

distributed (IID) count variables {Yt}, say with marginal cumulative distribution F (·), and an IID

Bernoulli thinning sequence {Vt} with P(Vt = 1) := ρ ∈ [0, 1]. The count series is initialized with

X0 = Y0 and then recursively updated via

Xt = VtXt−1 + (1− Vt)Yt, t = 1, 2, . . . .

6



Induction shows that Xt has distribution F (·) for every t ∈ {1, 2, . . .}.

While one can build any marginal distribution for a DAR(1) series (in addition to discrete

structures), there are some undesirable properties of DARMA series. Foremost, DAR(1) sample

paths can remain constant for long runs. Since P(Xt = Xt−1) ≥ ρ, this issue becomes problematic

for larger ρ. DAR(1) models cannot produce negatively correlated series either. This is because

the thinning probability ρ must lie in [0, 1]. In fact, one can show that the DAR(1) autocorrelation

has form Corr(Xt, Xt+h) = ρh for all h ≥ 0. While higher order autoregressions can be built by

introducing additional IID Bernoulli trial sequences, negative correlations cannot be achieved with

any DAR formulation. An example where negatively correlated count series are encountered with

hurricane counts is introduced by Livsey in 2018 ([19]). In short, the DARMA covariance structure

cannot be expected to describe all stationary count series. For these reasons and more, DARMA

models fell out of favor in the 1980s.

1.2.2 INARMA Models

Another count time series model, and one that remains popular today, is the integer ARMA

(INARMA) model class. INARMA models were introduced by Steutel in 1979 ([29]) and stud-

ied further in a series of papers in the 1980s ([1, 22, 23, 24]). For example, a first-order integer

autoregressive (INAR(1)) model for {Xt} obeys the recursion

Xt = α ◦Xt−1 + εt.

Here, ◦ denotes a thinning operator that acts on a count-valued random variate Y via α ◦ Y :=∑Y
i=1Bi, where {Bi}∞i=1 is a sequence of zero/one Bernoulli trials with P(Bi = 1) = α ∈ [0, 1] and

{εt} is a sequence of IID count-valued random variables with mean µε and finite variance σ2
ε .

Unlike DARMA series, INARMA sample paths do not tend to stay constant for long runs;

however, like the DARMA class, INARMA models cannot have negative correlations. In fact, the

INAR(1) model has Corr(Xt, Xt+h) = αh for any h ≥ 0. One can construct higher order integer

autoregressions and even add moving-average components as in [22, 23, 24]; however, one will not

obtain a model with any negative correlations. Unlike DARMA series, it is not clear how to obtain

any marginal distribution with INARMA methods — this, in fact, may be hard or impossible,

depending on the marginal distribution desired.

7



1.2.3 Convolution-closed Infinitely Divisible Model Class

Another count series model type was proposed by Joe in 1996 ([16]). It produces stationary

series whose marginal distribution lies in the so-called convolution-closed infinitely divisible class.

Suppose that Fθ is a marginal distribution whose convolution, denoted by ∗, satisfies Fθ1 ∗ Fθ2 =

Fθ1+θ2 . For the first order autoregressive case, the count series {Xt} obeys the recursion

Xt = At(Xt−1;α) + εt,

where {εt} are IID variables having the marginal distribution F(1−α)θ, α ∈ [0, 1], and εt is indepen-

dent of Xj for j < t. The operator At, which is IID in time t, is defined so that At(Y ) is a random

variable whose marginal distribution is Fαθ (see [16] for details). These models capably describe

many marginal distributions — both discrete and continuous — and include gamma, beta, normal,

binomial, Poisson, negative binomial, and generalized Poisson. However, the marginal distribution

must come from the convolution-closed class. Unfortunately, again the correlations of these models

cannot be negative.

1.2.4 RINAR Models

Recently, [17] produced negatively correlated count series models by rounding solutions

to Gaussian autoregressive models. For example, a rounded autoregressive model of order p with

location parameter µ and autoregressive parameters φ1, . . . , φp obeys

Xt =

〈
µ+

p∑
j=1

φjYt−j

〉
+ εt,

where 〈x〉, for x ≥ 0, rounds x to its nearest integer (round down should this be non-unique),

{Yt} is a Gaussian autoregressive series, and {εt} is count-valued IID noise. While such {Xt} can

have negative correlations, due to the rounding, it is difficult to construct a pre-specified marginal

distribution in this model class.

8



1.3 Research Motivations

All historical count models devised to date have some nice features and individualized draw-

backs. Bayesian approaches also exist for many count analyses, which usually do not demand a fixed

marginal distribution. This dissertation focuses on building stationary count models with possibly

negative and positive autocovariances while maintaining a fixed marginal distribution.

Another drawback of previous models is that none of them can generate count time series

with long memory autocovariances. A stationary count series {Xt} is said to have long memory

if
∑∞
h=0 |cov(Xt, Xt+h)| = ∞. Methods of constructing count series with long memory will also be

illustrated.

In what follows, Chapter 2 and 3 will introduce two methods for devising count time series

that have desirable properties. Chapter 2 will build on the work of Cui and Lund ([7]), devising

some count models where explicit autocovariance expressions are achieved. Chapter 3 then presents

a very general copula-based technique. Here, explicit autocovariance expressions are not produced;

however, a Hermite polynomial expansion provides series expressions that are very useful numeri-

cally.

9



Chapter 2

Superpositioned Stationary Count

Time Series

This chapter introduces a different approach to model stationary count time series. Our

count time series will be built from a stationary zero-one (binary) random sequence {Bt}. This

tactic was used in [3] and further developed in [7] and [21]. The idea can be viewed as the time

series extension of the fact that any discrete-valued distribution can be constructed from fair coin

flips.

For notation, let pB = E[Bt] ≡ P(Bt = 1) be the mean of {Bt} and denote its lag-h

autocovariance by γB(h) = Cov(Bt, Bt+h). Then

γB(h) = P(Bt = 1 ∩Bt+h = 1)− p2
B = pB [P(Bt+h = 1|Bt = 1)− pB ]. (2.1)

Two quantities that will be important later are the h-step-ahead transition probabilities to

a unit point: p1,1 := P(Bt+h,i = 1|Bt,i = 1) and p0,1 := P(Bt+h,i = 1|Bt,i = 0). Obviously, the two

h-step-ahead transition probabilities to a zero point are p1,0 := P(Bt+h,i = 0|Bt,i = 1) = 1 − p1,1

and p0,0 := P(Bt+h,i = 0|Bt,i = 0) = 1− p0,1.

10



2.1 Stationary Zero-One Series

2.1.1 Renewal zero-one point processes

We now discuss two models to efficiently construct {Bt}; other methods are also possible.

Our first model uses the renewal times in a stationary discrete-time renewal process as in [3, 7, 21].

A stationary renewal process employs an initial random “lifetime” L0 ∈ {0, 1, . . .} (delay) and a

sequence of IID aperiodic lifetimes {Li}∞i=1 supported in {1, 2, . . .} with µL := E[L1] < ∞. The

random walk {Sn}∞n=0 associated with the renewal process obeys Sn =
∑n
i=0 Li for n ∈ {0, 1, . . .}.

The zero-one process {Bt} is simply set to unity at all renewal times:

Bt = 1[∪∞n=0{Sn=t}].

To have {Bt} stationary, L0 needs to be specially selected as the so-called first-derived

distribution from the tails of L1 [12]:

P(L0 = k) =
P(L1 > k)

µL
, k ∈ {0, 1, . . .}.

The Elementary Renewal Theorem gives pB = µ−1
L and P(Bt+h = 1|Bt = 1) = uh, where uh is the

probability of a renewal at time h in a so called zero-delayed process (L0 = 0). Equation (2.1) now

yields

γB(h) = Cov(Bt, Bt+h) =
1

µL

(
uh −

1

µL

)
, (2.2)

Notice that γB(h) < 0 if and only if uh < µ−1
L , which happens for many renewal sequences. The

parameters in a renewal binary sequence are those that describe the lifetime L1. In what follows, L

will denote a lifetime whose distribution is equivalent to any of L1, L2, . . .. Point probabilities are

p1,1 = uh and p0,1 = pB(1− uh)/(1− pB).

2.1.2 Clipped Gaussian Sequences

A second construct for {Bt} uses a correlated latent Gaussian process {Zt} as in [19].

Specifically, let {Zt} be a correlated zero-mean unit-variance Gaussian random processes with

Corr(Zt, Zt+h) = ρZ(h). Set Bt = 1(Zt>κ) for some preset real κ. Then {Bt} is a strictly stationary

11



binary sequence with pB = 1− Φ(κ); here, Φ(·) denotes the cumulative distribution function of the

standard normal random variable. This construct is very similar to the clipping tactics introduced

in [30].

The autocovariance function of {Bt} can be derived from bivariate normal probability cal-

culations. As an illustration, suppose that κ = 0 so that pB = 1/2. Then a classical multivariate

normal orthant probability calculation gives

E(BtBt+h) = P(Zt > 0 ∩ Zt+h > 0) =
1

4
+

sin−1(ρZ(h))

2π
,

where [28] is used. Since E[Bt] ≡ 1/2,

γB(h) =
sin−1(ρZ(h))

2π
, ρB(h) =

2 sin−1(ρZ(h))

π
. (2.3)

In this case, lag h autocovariances and autocorrelations are negative if and only if ρZ(h) < 0. Hence,

this model can assume negative covariances. Notice that ρB(h) can take on any value in [−1, 1].

When pB 6= 1/2, one will need to invert the standard normal cumulative distribution to

find the desired quantile of the standard normal distribution corresponding to pB . The covariance

function in this case is harder to derive explicitly as it involves integrating the bivariate normal

density over an infinite rectangle that is not an orthant. For notation, define G(x1, x2, ρ) := P(Z1 >

x1, Z2 > x2) for a bivariate normal random vector (Z1, Z2)′ with zero-mean, unit variance, and

correlation ρ. A recent result on bivariate normal quadrant probabilities [19] gives

G(x1, x2, ρ) = 1− Φ(x1)− Φ(x2) +
1

4

∞∑
m=0

(2ρ)2m

(2m)!

2x1x2F1(m+ 1
2 ; 3

2 ;
−x2

1

2 )F1(m+ 1
2 ; 3

2 ;
−x2

2

2 )

Γ2( 1
2 −m)

+
1

4

∞∑
m=0

(2ρ)2m+1

(2m+ 1)!

F1(m+ 1
2 ; 3

2 ;
x2
1

2 )F1(m+ 1
2 ; 3

2 ;
x2
2

2 )

Γ2( 1
2 −m)

,

where F1(·; a, b) is the confluent hypergeometric function of the first kind with parameters a and

b: F1(x; a, b) =
∑∞
n=0(a)nx!/[n!(b)n], where (a)n is the rising factorial defined by (a)0 = 1 and

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1). In these expressions, x! = Γ(x+ 1) for x > 0 and Γ(−x) for a

non-integer x > 0 is defined via the recursion Γ(x+ 1) = xΓ(x).

Turning to covariances,

12



E[BtBt+h] = G(κ, κ, ρZ(h)) =

∫ ∞
κ

∫ ∞
κ

exp
(
x2−2ρZ(h)xy+y2

2[1−ρZ(h)2]

)
2π
√

1− ρZ(h)2
dydx

and γB(h) = G(κ, κ, ρZ(h))− p2
B . Transition probabilities can be verified as

p1,1 =
G(κ, κ, ρZ(h))

1− Φ(κ)
, p0,1 =

1− Φ(κ)−G(κ, κ, ρZ(h))

Φ(κ)
.

2.2 Superpositioning

We now move to superpositioned count series. Let {Bt,i} for i ∈ {1, 2, . . .} denote IID copies

of {Bt}. Our count series {Xt} is built by superimposing a random number of IID copies of {Bt}:

Xt =

Mt∑
i=1

Bt,i. (2.4)

Here, {Mt} is an IID count-valued random sequence that is independent of all {Bt,i}. See [2] for

more when {Mt} is a Poisson process.

Let E(Mt) = µM and var(Mt) = σ2
M . It is obvious that {Xt} in (2.4) is a count-valued

strictly stationary random sequence with mean E[Xt] ≡ pBµM . The following result establishes

additional properties of {Xt}.

Theorem 2.2.1. Let {Xt} be the strictly stationary count series in (2.4). Then

a) The probability generating function of Xt has form ψX(u) := E[uXt ] = ψM (1− pB + pBu), where

ψM (u) := E[uMt ] is the probability generating function of Mt.

b) The dispersion of {Xt} is DX := var(Xt)/E[Xt] = pBDM + 1− pB, where DM := σ2
M/µM is the

dispersion of Mt. Xt is over/under dispersed if and only if Mt is over/under dispersed.

c) The lag h autocovariance of {Xt} Has the form γX(h) = κγB(h), where κ = E[min(M1,M2)]

when h 6= 0, and γX(0) = γB(0)µM + p2
Bσ

2
M .

d) The lag h bivariate probability distributions of {Xt} have form

P(Xt = xt, Xt+h = xt+h) =

∞∑
mt=0

∞∑
mt+h=0

Hmt,mt+h(xt, xt+h)fM (mt)fM (mt+h),

13



where fM (k) = P(Mt = k) and Hmt,mt+h(xt, xt+h) has the form identified in the Appendix.

e) In the renewal case, {Xt} has long memory if and only if E[L2] = ∞. In the clipped Gaussian

case, {Xt} has long memory if and only if {Zt} has long memory.

This theorem is proven in appendix A.1. Attempts to derive higher order (beyond bivariate)

joint process distributions have not produced tractable expressions to date. This is unfortunate as it

precludes using the processes’ joint distribution to construct likelihood-based parameter estimators;

nonetheless, the bivariate distribution above allows one to compute composite likelihood estimators

[26, 25] and the covariance structure of the model permits pseudo-Gaussian likelihood parameter

estimation.

2.3 Classical Count Marginal Distributions

This section constructs stationary time series with the classical count marginal distributions:

binomial, Poisson and negative binomial.

2.3.1 Binomial Marginals

Count time series with binomial marginal distributions with M trials and success probability

pB are easily obtained: just take Mt equal to the constant M . The binomial distribution is under-

dispersed with DX = 1− pB . This model was introduced by [3] and studied further in [7], [8], [33],

and [32]. By part c) of Theorem 1, when h 6= 0, the lag h autocovariance and autocorrelation of

{Xt} are

γX(h) = MγB(h), ρX(h) =
γB(h)

pB(1− pB)
,

and γX(0) = MpB(1− pB), ρX(0) = 1. Then by (2.2), in the renewal case, the lag h autocovariance

and autocorrelation of {Xt} are

γX(h) =
M

µL

(
uh −

1

µL

)
, ρX(h) =

1
µL

(
uh − 1

µL

)
pB(1− pB)

.

From our derived expressions in the clipped Gaussian case, the lag h autocovariance and

autocorrelation of {Xt} are, for h 6= 0,

14
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Figure 2.1: Two hundred points of a stationary count time series with Bin(5, 0.5) marginal distribu-
tion. Sample autocorrelations and partial autocorrelations are shown with pointwise 95% confidence
bands for white noise.

γX(h) = M
[
G(κ, κ, ρZ(h))− p2

B

]
, ρX(h) =

G(κ, κ, ρZ(h))− p2
B

pB(1− pB)
.

Figure 2.1 shows a simulated realization of such a series. Here, the Bt,is were generated

from a renewal process with lifetime L supported on {1, 2, 3}, with P(L = 1) = P(L = 3) = 0.1 and

P(L = 2) = 0.8. Here, E[L] = 2 and pB = 1/2. From the sample autocorrelations plotted, it is

evident that negative correlations are obtained.

2.3.2 Poisson Marginals

To construct a count time series {Xt} with Poisson marginal distributions with mean λ > 0,

let {Mt} be an IID Poisson sequence with mean λ/pB . It is easy to show that Xt in (2.4) has a

Poisson distribution with mean λ (see [7]). The Poisson distribution has unit dispersion. The lag h

autocovariance of this process has form γX(h) = κγB(h), for h 6= 0, where κ = E[min(Mt,Mt+h)]

and Mt and Mt+h are independent Poisson random variables with mean λ/pB . This is derived in

[21] as

κ =
λ
{

1− e−2λ/pB [I0(2λ/pB) + I1(2λ/pB)]
}

pB
,
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where Ii(x) is the modified Bessel function

Ii(x) =

∞∑
n=0

(x/2)2n+i

n!(n+ i)!
, i ∈ {0, 1}.

When h = 0, E[min(Mt,Mt+h)] = λ/pB . By Theorem 4.1, the lag h autocovariance of {Xt} is

γX(h) = κγB(h) when h 6= 0 and γX(0) = λ. In the renewal case, autocovariance and autocorrelation

functions are

γX(h) =
κ

µL

(
uh −

1

µL

)
, ρX(h) =

κ

λµL

(
uh −

1

µL

)
.

Observe that γX(h) < 0 when uh < µ−1
L , which happens for many renewal lifetimes L. In the clipped

Gaussian case, the autocovariance and autocorrelation are

γX(h) = κ[G(κ, κ, ρZ(h))− p2
B ], ρX(h) =

κ

λ
[G(κ, κ, ρZ(h))− p2

B ];

these are negative at lag h when ρZ(h) < 0.

Figure 2.2 shows a simulated realization of a stationary count time series with Poisson

marginal distributions with mean λ = 5. The Bt,is are generated from a clipped Gaussian process

– a zero-mean unit variance AR(1) series with lag one autocorrelation of 0.9.

2.3.3 Negative Binomial Marginals

Count series with negative binomial marginal distributions are often used to model overdis-

persed count series [34, 31, 13]. The negative binomial distribution with parameters r ∈ {1, 2, . . .}

and p ∈ (0, 1) (NB(r, p)) has the probability mass function

P(Xt = k) =

(
r + k − 1

r − 1

)
pr(1− p)k, k ∈ {0, 1, · · · }.

The dispersion of this distribution is DX = 1/(1− p) > 1 and its probability generating function is

ψXt(u) = E[uXt ] =

(
p

1− (1− p)u

)r
, |u| < (1− p)−1.

To construct a negative binomial count series {Xt} via the superposition in (2.4), apply

part 1 of Theorem 4.1 to infer that the probability generating function of Mt must satisfy
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Figure 2.2: A realization of a stationary count time series with Poisson marginal distributions with
mean 5. Sample autocorrelations and partial autocorrelations are shown with pointwise 95% critical
intervals for white noise.

ψM (u) =

(
ppB

1−p+ppB
1− ppB

1−p+ppB u

)r
.

From this, it follows that the marginal distribution of {Mt} is again negative binomial: Mt ∼

NB(r, p̃), where p̃ = ppB/(1− p+ ppB) ∈ [0, 1].

Part c) of Theorem 1 shows that the lag h autocovariance of {Xt} has form γX(h) = κγB(h)

when h 6= 0 and γX(0) = r(1−p)/p2, where κ = E[min(Mt,Mt+h)] andMt andMt+h are independent

NB(r, p̃) variates. To find κ, note that

κ =

∞∑
k=0

P(min(Mt,Mt+h) > k) =

∞∑
k=0

P(Mt > k)2.

The tail probability P(Mt > k) for Mt ∼ NB(r, p̃) can be calculated via a recursion in r. Specifically,

Mt has the representation Mt = A1 + · · ·+Ar, where the Ais are independent with tail distribution

P(Ai > k) = (1− p̃)k for k ∈ {0, 1, 2, . . .} (a NB(r = 1, p̃) distribution). Let q̃ = 1− p̃ and condition

on A1 to get the recursion

P(A1 + · · ·+Ar > k) =

∞∑
`=0

P(A2 + · · ·+Ar > k − `)p̃q̃`.
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With ψr(k) = P(A1 + · · ·+Ar > k), we arrive at the difference equation

ψr(k) = q̃k+1 + p̃

k∑
`=0

ψr−1(k − `)q̃`,

which can be numerically evaluated recursively in r to obtain ψr(k) = P (Mt > k), starting with

ψ1(k) = q̃k+1.

Figure 2.3 shows a realization of stationary count time series with negative binomial marginal

distribution with r = 10 and p = 0.5. The Bt,is here are built from a renewal process whose lifetimes

L have a Pareto distribution with parameter α = 2.1: P(L = k) = C(α)/kα, where k = 1, 2, . . ..

Here, the constant C(α) makes the distribution of L sum to unity (there is no explicit form for

C(α)). In this case, L has a finite mean but an infinite second moment, implying from part e) of

Theorem 4.1 that this series has long memory.
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Figure 2.3: A realization of a long memory stationary count time series with NB(10, 0.5) marginal
distributions. Sample autocorrelations and partial autocorrelations are shown with pointwise 95%
confidence bounds for white noise.

Despite having long memory, the series in Figure 3 does not exhibit large autocorrelations
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at any lag. In fact, additional simulations with other parameters reveal the same drawback; to get

correlations larger than 1/4 in absolute value (at any lag), one must take r on the order of hundreds.

In this sense, the superposition tactics for negative binomial do not seem to work well. This said,

negative correlations with this model can be achieved akin to the Poisson case.

Another way of combining the zero-one processes to construct negative binomial marginals

draws from a tactic in [7]. Using that a negative binomial draw is the first time that r heads

are obtained in independent coin flips (minus r to render a variable supported on {0, 1, . . .}), set

M
(r)
t = inf{k ≥ 1 :

∑k
i=1Bt,i = r} and Xt = M

(r)
t − r. Then Xt has a NB(r, pB) distribution by

construction. It also has a superpositioned form in that

Xt =

M
(r)
t∑
i=1

(1−Bt,i). (2.5)

The difference between (2.4) and (2.5), besides the Bt,i versus the 1− Bt,i, is that M
(r)
t in (2.5) is

not independent of the Bt,is, but is rather a stopping time constructed from them.

Explicit evaluation of the autocovariance function of this model is difficult, but can be done

recursively in the integer r. Let ψi,j(h) := E[M
(i)
t M

(j)
t+h], where M

(i)
t = At,1 + · · ·+At,i and M

(j)
t+h =

At+h,1 + · · ·+At+h,j are ordinary geometric random variables supported on {1, 2, . . .} (not that this

support set does not contain zero). Since γX(h) = cov(M
(r)
t ,M

(r)
t+h), γX(h) = ψr,r(h)− r2/p2

B . The

Appendix establishes the recursion

ψi,j(h) =
ψi−1,j−1(h)pBp1,1 + ψi,j−1(h)(1− pB)p0,1 + ψi−1,j(h)pBp1,0

1− (1− pB)p0,0

+

(
i+ j − 1

pB
− p1,1

1− (1− pB)p0,0

)
1

1− (1− pB)p0,0
+

[2− (1− pB)p0,0]

[1− (1− pB)p0,0]2

(2.6)

in i, j ∈ {1, 2, . . .}. Of course, ψi,j(h) = ψj,i(h). Boundary conditions take ψ0,i(h) = ψi,0(h) = 0

and start with

ψ1,1(h) =
1

pBp0,1
− pBp0,0

[1− (1− pB)p0,0]2p0,1
+

p1,0

[1− (1− pB)p0,0]2
. (2.7)

For example, to get ψ2,2(h), one first uses (2.6) to get ψ1,2(h) = ψ2,1(h). Using the recursion

again gives ψ2,2(h) from ψ1,2(h) and ψ2,1(h).

Figure 2.4 shows a realization of a stationary count time series built from the above tech-
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niques with negative binomial marginal distribution with r = 10 and p = 0.5. As with the last

example, the Bt,is are taken from a renewal process whose lifetimes L have a Pareto distribution

with α = 2.1. This time, covariances are much larger than those in Figure 3. Again, the model can

take on negative correlations.
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Figure 2.4: A realization of a stationary count time series with NB(10, 0.5) marginal distributions.
Sample autocorrelations and partial correlations are shown with pointwise 95% confidence bounds
for white noise.

2.4 Other Marginal Distributions

This section turns to some other marginal distributions that can be built from our tech-

niques. While any of the series in the last section can be built from either renewal or clipped

Gaussian binary processes, in this section we find it more convenient to work with the same latent

Gaussian processes, but to place them into more than two categories.
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2.4.1 Discrete Uniform Marginals

The discrete uniform distribution on the categories 1, . . . ,M , denoted by DU(M), has prob-

ably mass P(Xt = k) = 1/M for k ∈ {1, 2, . . . ,M}. This distribution might be useful in genetics

(M = 4) (see [5]) and has dispersion DX = (M − 1)/6.

Let {Zt} be our latent stationary Gaussian process with zero mean, unit variance, and auto-

correlation function ρZ(·). Let A1, A2, · · · , AM be disjoint sets partitioning R into the equally likely

intervals A1 = (−∞,Φ−1(1/M)], A2 = (Φ−1(1/M),Φ−1(2/M)],..., AM = (Φ−1((M − 1)/M),∞),

where Φ−1(·) denotes the inverse of the standard normal cumulative distribution function. Now

define

Xt =

M∑
i=1

i1Ai(Zt).

By construction, {Xt} is a series having discrete uniform marginal distributions. Non-equally likely

categories can be produced by altering the Ai’s to have non-equal standard normal probabilities.

The mean of the series is E[Xt] ≡ (M + 1)/2. To get the lag h covariance, note that

E (XtXt+h) = E

( M∑
i=1

i1Ai(Zt)

) M∑
j=1

j1Aj (Zt+h)

 =

M∑
i=1

M∑
j=1

ijP (Zt ∈ Ai, Zt+h ∈ Aj)

The joint probability P(Zt ∈ Ai, Zt+h ∈ Aj) can be expressed in terms of G(x1, x2, ρZ(h)).

For example, if Ai = (Φ−1((i− 1)/M),Φ−1(i/M)) and Aj = (Φ−1((j − 1)/M),Φ−1(j/M)),

K(M ; i, j) := P(Zt ∈ Ai, Zt+h ∈ Aj)

= G(Φ−1(i/M),Φ−1(j/M), ρZ(h))−G(Φ−1((i− 1)/M),Φ−1(j/M), ρZ(h))

−G(Φ−1(i/M),Φ−1(j − 1)/M), ρZ(h)) +G(Φ−1((i− 1)/M),Φ−1((j − 1)/M), ρZ(h)).

When h 6= 0, the autocovariance and autocorrelation functions are

γX(h) =

 M∑
i=1

M∑
j=1

ijK(M ; i, j)

− (M + 1

2

)2

, ρX(h) =

(∑M
i=1

∑M
j=1 ijK(M ; i, j)

)
−
(
M+1

2

)2
(M2 − 1)/12

.

21



●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●●●●●●

●●

●

●

●

0 50 100 150 200

0
1

2
3

4

time

co
un

t

0 5 10 15 20 25 30

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Figure 2.5: A realization of a stationary count time series with discrete uniform marginal supported
on {1, 2, 3, 4, 5}. Sample autocorrelations and partial autocorrelations are shown with pointwise 95%
confidence bounds for white noise.

Figure 2.5 shows a simulated realization of a count time series with DU(4) marginal distribu-

tions. Here, {Zt} is a stationary first order autoregression with ρZ(1) = −0.9. Negative correlations

arise here whenever ρZ(1) < 0.

2.4.2 Multinomial Marginals

Our goal here is to construct a J-dimensional time series with multinomial marginal distri-

butions with M trials and success probability vector (p1, p2, . . . , pJ) with p1 + p2 + . . .+ pJ = 1. We

reduce to the case with one trial — results for a general M simply add M independent draws of one

trial.

Now partition R into the J sets — call these A1, A2, . . . , AJ — so that P (Z1 ∈ Aj) = pj for

j = 1, 2, . . . , J . Set Xt,j = 1Aj (Zt) for j = 1, 2, . . . , J . By construction, Xt := (Xt,1, Xt,2, . . . , Xt,j)

has a multinomial distribution with one trial and success probabilities p1, . . . , pJ .

For a generalM , E[Xt,j ] = Mpj . To find lag h autocovariances, observe that E (Xt,iXt+h,j) =

MP(Zt ∈ Ai ∩ Zt+h ∈ Aj). It now follows that

cov(Xt,i, Xt+h,j) = M [P(Zt ∈ Ai ∩ Zt+h ∈ Aj)− P(Zt ∈ Ai)P (Zt+h ∈ Aj)]
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We omit a graphic showing a sample path of {Xt} and its sample autocorrelations and

partial autocorrelations. Again, one can have negative autocovariances.

2.5 Comments

This chapter presents methods to build stationary time series with common count marginal

distributions that can take on very general autocovariance features, including negative correlations

and long-memory. The methods build the series by combining correlated zero-one binary series in

various ways. A superpositioning tactic worked well for producing Binomial and Poisson marginal

distributions; however, a coin-tossing paradigm worked better for building negative binomial series.

A distribution not pursued here but is worthy of further research is generalized Poisson. Also,

statistical methods to fit these series are in need of development.
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Chapter 3

Latent Gaussian Count Time

Series Modeling

Another tactic used to generate a variety of series is a copula approach. Some words on this

merit mention. Suppose F (·) is the desired marginal distribution of a count series. If {Zt} is a Gaus-

sian process with standard normal marginal and autocorrelation function ρZ(·), then the sequence

{Xt} defined pointwise by Xt = F−1(Φ(Zt)) will have marginal distribution F (·). This model can

construct count series with any desired marginal distributions. However, the autocovariance func-

tion of {Xt} is hard to explicitly derive in practice. Statistically, this would not matter if one could

evaluate the data’s likelihood function. However, the second drawback is that the joint distribution

needed to derive the likelihood is difficult to obtain because of the discrete nature of F−1. If F were

continuous, then a simple Jacobian transformation method would suffice to evaluate the likelihood.

But, the discrete nature of F−1 makes one have to quantify a discrete joint transformation, which

appears difficult. In this chapter, we will introduce a method to use Hermite polynomial expansion

to evaluate the autocovariance function of the count series {Xt} numerically. Then we introduce

particle filtration method to help us to approximate the full likelihood of the series.

We are interested in constructing stationary time series {Xt} that have marginal distribu-

tions from several families of count structures supported in {0, 1, . . .}, including:

• Binomial (Bin(N, p)): P[Xt = n] =
(
N
n

)
pn(1− pN−n), n = 0, . . . , N , p ∈ (0, 1);

• Poisson (Pois(λ)): P[Xt = n] = e−λλn/n!, with λ > 0;
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• Mixture Poisson (mixPois(λ,p)): P[Xt = n] =
∑M
m=1 pme

−λmλnm/n!, where p = (p1, . . . , pM )

with the mixture probabilities pm > 0 such that
∑M
m=1 pm = 1 and λ = (λ1, . . . , λM ) with

λm > 0;

• Negative binomial (NB(r, p)): P[Xt = n] = Γ(r+n)
n!Γ(r) (1− p)rpn, with r ≥ 0 and p ∈ (0, 1);

• Generalized Poisson (GPois(λ,w)): P[Xt = n] = e−(λ+wn)λ(λ + wn)n−1/n!, with λ > 0 and

w ∈ (0, 1);

• Conway-Maxwell-Poisson (CMP(λ, ν)): P[Xt = n] = λn

(n!)νC(λ,ν) , with λ > 0, ν > 0, and a

normalizing constant C(λ, ν) making the probabilities sum to unity.

The negative binomial, generalized Poisson, and Conway-Maxwell-Poisson distributions are

over-dispersed in that their variances are larger than their respective means. This is the case for

sample variances and means of many observed count time series.

3.1 Theory

Let {Xt}t∈Z be the stationary count time series of interest. Suppose that one wants the

marginal cumulative distribution function (CDF) of Xt for each t of interest to be FX(x) = P(Xt ≤

x), depending on a vector θ containing all model parameters. The series {Xt} will be modeled

through the copula type transformation

Xt = G(Zt). (3.1)

Here,

G(x) = F−1
X (Φ(x)), x ∈ R, (3.2)

where Φ(·) is the CDF of a standard normal variable and

F−1
X (u) = inf{t : FX(t) ≥ u}, u ∈ (0, 1),
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is the generalized inverse (quantile function) of the non-decreasing CDF FX . The process {Zt}t∈Z

is assumed to be standard Gaussian, but possibly correlated in time t:

E[Zt] = 0, E[Z2
t ] = 1; (3.3)

that is, each Zt ∼ N (0, 1) for each t. This approach was recently used by [11] in spatial settings

with good results. The autocovariance function (ACVF) of {Zt} at lag h is denoted by

γZ(h) = E[Zt+hZt]; (3.4)

the autocovariance and autocorrelation of {Zt} coincide due to the standard normal assumptions.

The construction in (3.1) ensures that the marginal CDF of Xt is indeed FX(·). Elaborating,

the probability integral transformation theorem shows that Φ(Zt) has a uniform distribution on (0, 1)

for each t; a second application of the result justifies the claimed marginal distribution. Temporal

dependence in {Zt} will induce temporal dependence in {Xt} as quantified in the next section. For

autocovariace notation, let

γX(h) = E[Xt+hXt]− E[Xt+h]E[Xt] (3.5)

denote the ACVF of {Xt}, that depends on another vector η of parameters.

3.1.1 Relationship between Autocovariances

The autocovariace functions (ACVFs) of {Xt} and {Zt} can be related using Hermite ex-

pansions (see Chapter 5 of Pipiras and Taqqu [27]). More specifically, let

G(z) = E[G(Z0)] +

∞∑
k=1

gkHk(z) (3.6)

be the expansion of G(x) in terms of the Hermite polynomials

Hk(z) = (−1)kez
2/2 d

k

dzk
e−z

2/2, z ∈ R. (3.7)
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The first three Hermite polynomials are H0(z) ≡ 1, H1(z) = z, and H2(z) = z2 − 1; higher

order polynomials can be obtained from the recursion Hk(z) = zHk−1(z)−H ′k−1(z). The Hermite

coefficients are

gk =
1

k!

∫ ∞
−∞

G(z)Hk(z)
e−z

2/2dz√
2π

=
1

k!
E[G(Z0)Hk(Z0)]. (3.8)

The relationship between γX(·) and γZ(·) is extracted from Chapter 5 of [27] as

γX(h) =

∞∑
k=1

k!g2
kγZ(h)k := g(γZ(h)), (3.9)

where the power series is

g(u) =

∞∑
k=1

k!g2
ku

k. (3.10)

In particular,

Var(Xt) = γX(0) =

∞∑
k=1

k!g2
k (3.11)

depends only on the parameters in the marginal distribution FX(·). Note also that

ρX(h) =

∞∑
k=1

k!g2
k

γX(0)
γZ(h)k = h(ρZ(h)), (3.12)

where ρ refers to autocorrelations and

h(u) =

∞∑
k=1

k!g2
k

γX(0)
uk :=

∞∑
k=1

hku
k. (3.13)

The function h maps [−1, 1] into (but not necessarily onto) [−1, 1]. For future reference, note also

that h(0) = 0,

h(1) =

∞∑
k=1

hk = 1. (3.14)

Using (3.6) and E[Hk(Z0)H`(−Z0)] = (−1)kk!1[k=`] gives

h(−1) = Corr(G(Z0), G(−Z0)); (3.15)

however, h(−1) is not necessarily −1 in general. As such, h(·) “starts” at (−1, h(−1)), passes through

(0, 0), and connects to (1, 1). Examples will be given in Section 3.1.4.

The quantities g(·) and h(·) are called link functions, and ACVF–link and ACF–link func-
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tions, respectively, if additional precision is required. Similarly, k!g2
k and hk = k!g2

k/γX(0) are called

link coefficients. A key feature in (3.9) is that the effects of the marginal CDF FX(·) and the ACVF

γZ(·) are “decoupled” in the sense that the correlation parameters in {Zt} do not influence the gk

coefficients in (3.9) — this will be very useful in our ensuing estimation work.

Remark 3.1.1. The relationship (3.9) between the ACVFs of {Xt} and {Zt} can be used to gauge

short- and long-range dependence properties. Recall that a time series {Zt} is short-range dependent

(SRD) if
∑∞
h=−∞ |γZ(h)| < ∞. According to one definition, a series {Zt} is long-range dependent

(LRD) if γZ(h) = L(h)h2d−1, where d ∈ (0, 1/2) is the LRD parameter and L is a slowly varying

function at infinity [27]. The ACVF of such LRD series satisfies
∑∞
h=−∞ |γZ(h)| = ∞. If {Zt} is

SRD, then so is {Xt}. To see this, when E[Z2
t ] = 1 and Var(Xt) < ∞, this follows directly from

(3.9): since |γZ(h)|k ≤ |γZ(h)|, note that

∞∑
h=−∞

|γX(h)| ≤
∞∑

h=−∞

∞∑
k=1

g2
kk!|γZ(h)|k ≤

∞∑
k=1

g2
kk!

∞∑
h=−∞

|γZ(h)| = Var(Xt)

∞∑
h=−∞

|γZ(h)| <∞.

On the other hand, if {Zt} is LRD with parameter d, then {Xt} can be either LRD or SRD. The

conclusion depends, in part, on the Hermite rank ofG(·), which is defined as r = min{k ≥ 1 : gk 6= 0}.

Specifically, if d ∈ (0, (r− 1)/2r), then {Xt} is SRD; if d ∈ ((r− 1)/2r, 1/2), then {Xt} is LRD with

parameter r(d− 1/2) + 1/2 (see Pipiras and Taqqu [27], Proposition 5.2.4). For example, when the

Hermite rank is unity, {Xt} is LRD with parameter d for all d ∈ (0, 1/2); when r = 2, {Xt} is LRD

with parameter 2d− 1/2 for d ∈ (1/4, 1/2).

Remark 3.1.2. The construction in (3.1)–(3.2) yields models with very flexible autocorrelations.

In fact, the methods achieve the most flexible correlation possible for Corr(Xt1 , Xt2) when Xt1 and

Xt2 have the same marginal distribution FX . Indeed, let ρ− = min{Corr(Xt1 , Xt2) : Xt1 , Xt2 ∼ FX}

and define ρ+ similarly with min replaced by max. Then, as shown in Theorem 2.5 of Whitt [35],

ρ+ = Corr(FX(U), FX(U)) = 1, ρ− = Corr(FX(U), FX(1− U)),

where U is a uniform random variable over (0, 1). Since U
D
= Φ−1(Z) and 1 − U D

= Φ−1(−Z) for a

standard normal random variable Z, the maximum and minimum correlations ρ+ and ρ− are indeed

achieved with (3.1)–(3.2) when Zt1 = Zt2 and Zt1 = −Zt2 , respectively. The preceding statements

are non-trivial for ρ− only since ρ+ = 1 is attained whenever Xt1 = Xt2 . It is worthwhile to compare
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this to the discussion surrounding (3.15). Finally, all correlations in (ρ−, ρ+) = (ρ−, 1) are achievable

since h(u) in (3.13) is continuous in u.

The preceding remark all but settles flexibility of autocovariance debates for stationary

count series. Flexibility is a concern when the count series is negatively correlated, an issue arising

in the hurricane data in [19]. Since a general count marginal distribution can also be achieved, the

model class appears quite general.

3.1.2 Covariates

There are situations where stationarity is not desired. Such scenarios can often be accom-

modated with simple variants of the above setup. For concreteness, consider a situation where L

non-random covariates are available to explain the series at time t — call these M1,t, . . . ,ML,t. If

one wants Xt to have the marginal distribution Fθ(t)(·), where θ(t) is a vector-valued function of t

containing parameters, then simply set

Xt = F−1
θ(t)(Φ(Zt)). (3.16)

and reason as before.

Link functions can be used when bounds are needed for parametric support sets. As an

example, a Poisson regression-type model is easily constructed as

θ(t) = E[Xt] = exp

(
β0 +

L∑
i=1

βiMi,t

)
.

Here, the exponential link guarantees that the Poisson parameter is positive and β0, . . . , βL are re-

gression coefficients. The above construct requires the covariates to be non-random Should covariates

be random, the marginal distribution may change.

3.1.3 Calculation and properties of Hermite coefficients

Several strategies for computing the Hermite coefficients are available. We consider the

stationary setting here for simplicity. Because G in (3.2) is discrete, the following approach proved to

be simple, stable, and revealing. Let θ denote all parameters appearing in the marginal distribution

29



of FX . For θ fixed, define the mass and cumulative probabilities of FX via

pn = P[Xt = n], Cn = P[Xt ≤ n] =

n∑
j=0

pj , n ∈ {0, 1, . . .}. (3.17)

Note that

G(z) =

∞∑
n=0

n 1{Cn−1≤Φ(z)<Cn} =

∞∑
n=0

n 1[
Φ−1(Cn−1),Φ−1(Cn)

)(z) (3.18)

(take C−1 = 0 as a convention). When Cn = 0, we take Φ−1(Cn) = −∞ and, for Cn = 1,

Φ−1(Cn) =∞. Using this in (3.8) provides, for k ≥ 1,

gk =
1

k!
E[G(Z0)Hk(Z0)] =

1

k!

∞∑
n=0

nE
[
1[

Φ−1(Cn−1),Φ−1(Cn)
)(Z0)Hk(Z0)

]
.

Using (3.7) and simplifying provides

gk =
1

k!

∞∑
n=0

n√
2π

∫ Φ−1(Cn)

Φ−1(Cn−1)

Hk(z)e−z
2/2dz

=
1

k!

∞∑
n=0

n√
2π

∫ Φ−1(Cn)

Φ−1(Cn−1)

(−1)k
( dk
dzk

e−z
2/2
)
dz

=
1

k!

∞∑
n=0

n√
2π

(−1)k
( dk−1

dzk−1
e−z

2/2
)∣∣∣Φ−1(Cn)

z=Φ−1(Cn−1)

=
1

k!

∞∑
n=0

n√
2π

(−1)e−z
2/2Hk−1(z)

∣∣∣Φ−1(Cn)

z=Φ−1(Cn−1)

=
1

k!
√

2π

∞∑
n=0

n
[
e−Φ−1(Cn−1)2/2Hk−1(Φ−1(Cn−1))− e−Φ−1(Cn)2/2Hk−1(Φ−1(Cn))

]
. (3.19)

Using the telescoping nature of the series (3.19) reveals that

gk =
1

k!
√

2π

∞∑
n=0

e−Φ−1(Cn)2/2Hk−1(Φ−1(Cn)) (3.20)

(convergence issues are dealt with in Remark 3.1.3 below). When Φ−1(Cn) = ±∞ (that is, Cn = 0 or

1), the summand e−Φ−1(Cn)2/2Hk−1(Φ−1(Cn)) is interpreted as 0. Before proceeding, the following

remarks clarify a number of issues related to these coefficients. As noted in these remarks and also

in the next section, (3.20) is particularly appealing from a numerical standpoint and also sheds light

on the behavior of the Hermite coefficients.
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Remark 3.1.3. One obtains (3.20) from (3.19) if, after changing k−1 to k for notational simplicity,

∞∑
n=0

e−Φ−1(Cn)2/2
∣∣∣Hk(Φ−1(Cn))

∣∣∣ <∞. (3.21)

Such finiteness holds when {Xt} has a finite variance. To see this, suppose that Cn < 1 for all n,

since otherwise the sum in (3.21) has a finite number of terms. Since Hk(z) is a polynomial of degree

k, |Hk(z)| ≤ κ(1 + |z|k) for some constant κ that depends on k. The sum in (3.21) can hence be

bounded (up to a constant) by

∞∑
n=0

e−Φ−1(Cn)2/2(1 + |Φ−1(Cn)|k). (3.22)

To show that (3.22) converges, it suffices to show that

∞∑
n=0

e−Φ−1(Cn)2/2|Φ−1(Cn)|k <∞ (3.23)

since |Φ−1(Cn)|k ↑ ∞ as Cn ↑ 1. Mill’s ratio for a standard normal distribution states that 1−Φ(x) ∼

e−x
2/2/(

√
2πx) as x → ∞. Substituting x = Φ−1(y) gives 1 − y ∼ e−Φ−1(y)2/2/(

√
2πΦ−1(y)) as

y ↑ 1. Taking logs in the last relation and ignoring constant terms, order arguments show that

Φ−1(y) ∼
√

2| log(1− y)|1/2 as y ↑ 1. Substituting Φ−1(Cn) ∼
√

2| log(1−Cn)|1/2 in (3.23) provides

∞∑
n=0

e−Φ−1(Cn)2/2|Φ−1(Cn)|k ≤
∞∑
n=0

| log(1− Cn)|k/2(1− Cn). (3.24)

For any δ > 0 and x ∈ (0, 1), one can verify that − log(x) ≤ x−δ/δ. Using this in (3.24) and

Cn = 1− P[X > n], it suffices to prove that

∞∑
n=0

P[X > n]1−δk/2 <∞ (3.25)

for some δ > 0. Since X ≥ 0 and E[X2] <∞ are assumed, the Markov inequality gives P[X > n] =

P[X2 > n2] ≤ E[X2]/n2. Thus the sum in (3.25) is bounded by

E[X2]1−δk/2
∞∑
n=0

1

n2−δk . (3.26)

But (3.26) converges whenever δ < 2/k. Choosing such a δ proves (3.21).
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Remark 3.1.4. From a numerical standpoint, the expression (3.20) is evaluated as follows. The

families of marginal distributions considered in this work have fairly “light” tails. This means

that Cn approaches 1 rapidly as n → ∞. In fact, for many distribution families, Cn becomes

exactly 1 numerically for small to moderate values of n. Let n(θ) be the smallest such value. For

example, for the Poisson distribution with parameter θ = λ and Matlab software, n(0.1) = 10,

n(1) = 19, and n(10) = 47. For n ≥ n(θ), the numerical value of Φ−1(Cn) is infinite and the terms

e−Φ−1(Cn)2/2Hk−1(Φ−1(Cn)) in (3.20) are numerically zero and can be discarded. Thus, (3.20)

becomes

gk =
1

k!
√

2π

n(θ)−1∑
n=0

e−Φ−1(Cn)2/2Hk−1(Φ−1(Cn)). (3.27)

Remark 3.1.5. Assuming that the gk are evaluated through (3.27), their asymptotic behavior as

k → ∞ can be quantified. We focus on gk(k!)1/2, whose squares are the link coefficients. The

asymptotic relation for Hermite polynomials states that Hm(x) ∼ ex
2/4(m/e)m/2

√
2 cos(x

√
m −

mπ/2) as m → ∞ for each x ∈ R. Using this and Stirling’s formula, k! ∼ kke−k
√

2πk as k → ∞,

show that

gk(k!)1/2 ∼ 1

21/4π3/4

1

k3/4

n(θ)−1∑
n=0

e−Φ−1(Cn)2/4 cos

(
Φ−1(Cn)

√
k − 1− (k − 1)π

2

)
. (3.28)

Numerically, this approximation, which does not involve Hermite polynomials, was found to be

accurate for even moderate values of k. It also suggests that k!g2
k decay at most (up to a constant)

as k−3/2. While this might appear slow, these coefficients are multiplied by γZ(h)k in (3.9), which

decays geometrically fast in k to zero, except in degenerate cases when |γZ(h)| = 1.

The computation and behavior of the link coefficients hk = k!g2
k/γX(0) are now examined

for several families of marginal distributions. Figure 3.1 shows plots of hk on a vertical log scale

over a range of parameter values for k = 1, . . . , 5 for the Poisson and negative binomial (with r = 3)

distributions. A number of observations are worth making.

Since
∑∞
k=1 hk = 1 and hk ≥ 0 by construction, the parameter values in Figure 3.1 with

log(h1) close to 0 (or h1 close to 1) means that most of the “weight” in the link coefficients is contained

in the first coefficient, with higher order coefficients being considerably smaller and decaying with

increasing k. This takes place in the approximate ranges λ > 1 for the Poisson distribution and

p ∈ (0.1, 0.9) in the negative binomial distribution with r = 3. Such cases will be called “condensed”.
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Figure 3.1: The link coefficients hk on a log-vertical scale for the Poisson (left) and negative
binomial (right) distributions.

As shown in Section 3.1.4 below, h(z) in the condensed case is close to z. In the condensed case,

the implication is that correlations in {Zt} and {Xt} are similar.

Non-condensed cases are referred to as “diffuse”. Here, weights are spread to many link

coefficients. This happens in the approximate ranges λ < 1 for the Poisson distribution and p < 0.1

and p > 0.9 for the negative binomial distribution with r = 3. This was expected for small λs and

small ps: these cases correspond to discrete random structures that are nearly degenerate in the

sense that they concentrate at 0 (as λ → 0 or p → 0). For such cases, large negative correlations

in (3.15) are impossible; hence, h(z) cannot be close to z and correlations in {Zt} and {Xt} are

different. The diffuse range p > 0.9 for the negative binomial distribution remains to be understood,

although it can also probably be attributed to some form of “degeneracy.”

3.1.4 Calculation and properties of link functions

We now study calculation of h(u) in (3.13), which requires truncation of the sum to k ∈

{1, . . . ,K} for some K. Note again that the link coefficients hk are multiplied by γZ(h)k in (3.9),

which decays geometrically fast in k to zero for most stationary {Zt} of interest when h 6= 0. The

link coefficients for large k are therefore expected to play a minor role. We now set K = 25 and

explore the consequences of this choice.

Remark 3.1.6. An alternative procedure would bound (3.28) by (2π3k3)−1/4
∑n(θ)−1
n=0 e−Φ−1(Cn)2/4.

Now let K = K(θ) be the smallest k for which the bound is smaller than some predetermined error
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Figure 3.2: The link function h(u) for the Poisson distribution with λ = 0.1, 1, and 10 (left) and
the negative binomial distribution with r = 3 and p = 0.1, 0.5, and 0.95 (right).

tolerance ε. In the Poisson case with ε = 0.01, for example, such K are K(0.01) = 29,K(0.1) = 27,

and K(1) = 25. These are around the chosen value of K = 25.

Figure 3.2 plots h(u) (solid line) for the Poisson and negative binomial distributions for

several parameter values. The link function is computed by truncating its expansion to k ≤ 25 as

discussed above. The condensed cases λ = 10 and λ = 1 (perhaps this case is less condensed), and

p = 0.85 lead to curves that are close to h(u) ≈ u. However, the diffuse cases appear more delicate.

Diffusivity and truncation of the infinite series in (3.13) lead to a computed link function that does

not have h(1) = 1, in contrast to theoretical properties in (3.14); in this case, one should increase

the number of terms in the summation.

Though deviations from h(1) = 1 might seem large (most notably for the negative binomial

distribution with p = 0.95), this seems to arise only in the more degenerate cases associated with

diffusivity; moreover, this occurs only when linking an ACVF of {Zt} for lags h for which ρZ(h)

is close to unity. For example, note that if the link deviation is 0.2 from 1 at u = 1 (as it is

approximately for the negative binomial distribution with p = 0.95), the error for linking ρZ(h) as

0.8 (or smaller but positive) would be no more than 0.2 · (0.8)26 = 0.0006! In practice, any link

deviation could be partially corrected by adding one extra pseudo link coefficient, in our case the

26th coefficient, which would make the link function pass through (1, 1). The resulting link function

is depicted in the dashed line in Figure 3.2 around the point (1, 1) and nearly coincides with the

original link function for u values that are close to unity. It is this dashed link function connecting
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to (1, 1) that is used in practice for positive u.

The situation for negative u and, in particular, around u = −1 is different: the theoretical

value of h(−1) in (3.15) is not explicitly known. However, a similar correction could be achieved

by first estimating h(−1) through a Monte-Carlo simulation and adding a pseudo 26th coefficient

making the computed link function connect to the desired value at u = −1. This is again depicted

for negative u via the dashed lines in the Figure 3.2, which is visually distinguishable only near

u = −1 (and then only in some cases). Again, it is this link function connecting to (−1, h(−1)) that

is used in practice for negative values of u.

Remark 3.1.7. In estimation (Section 3.3 below), a link function needs to be evaluated multiple

times; hence, running Monte-Carlo simulations to evaluate h(−1) can become computationally ex-

pensive. In this case, the estimation procedure is fed precomputed values of h(−1) on a grid of

parameter values and interpolation is used for any intermediate parameter values.

3.2 Particle filtering and the HMM connection

This section studies the implications of the latent structure of our model, especially as it

relates to hidden Markov models (HMMs). Our main reference is [10]. As in that monograph, the

observations are taken to start at time zero. The following prediction and notations are key: let

Ẑt+1 = ẑt+1(Z0, . . . , Zt) denote the one-step-ahead linear prediction of the latent Gaussian series

Zt+1 from the history Z0, Z1, . . . , Zt. This will be expressed as Ẑt+1 = φt0Zt + . . . + φttZ0. The

weights φts, s = 0, . . . , t, can be computed recursively in t and efficiently from the ACVF of {Zt}

by using the Durbin-Levinson (DL) algorithm, for example. By convention, Ẑ0 = 0. Let also

r2
t = E[(Zt − Ẑt)2] be the corresponding mean-squared error.

We are interested in the following problems:

Filtering : the distribution of Ẑt+1|t, i.e. Ẑt+1 conditional on X0 = x0, . . . , Xt = xt,

Prediction : the distribution of X̂t+1|t, i.e. Xt+1 conditional on X0 = x0, . . . , Xt = xt,

as well as computing numerically the quantities EX [f(Ẑt+1|t)] and EX [f(X̂t+1|t)] for some function

f , where EX refers to an expectation conditioned on X0 = x0, . . . , Xt = xt. These quantities will

be needed to evaluate model likelihoods in inference (Section 3.3.2) and the probability integral
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transform in model diagnostics (Section 3.3.3).

Remark 3.2.1. Several comments are in place regarding the problems of interest above. Smoothing

is another commonly considered problem in connection to HMMs. It is not considered here for several

reasons. First, in the HMM setting, smoothing is commonly used in likelihood evaluation through

versions of the EM algorithms (see, for example, Section 12 in Douc et al. [10]). But as explained

in Remark 3.3.3 below, even when our model is an HMM, this standard approach does not apply

to it because of the lack of the partial dominance property. Second, we work here with general

underlying Gaussian series which are not necessarily Markovian. Our algorithms below extend

filtering algorithms from HMM to the situations where the latent process is stationary Gaussian and

possibly non-Markovian. We presently do not have efficient smoothing algorithms in the latter setting

that extend those used in the HMM setting. Another comment related to these points concerns our

filtering problem above. Note that Ẑt+1 = ẑt+1(Z0, . . . , Zt) involves all previous values Z0, . . . , Zt

and hence their conditional distribution given X0 = x0, . . . , Xt = xt. This suggests that evaluating

the distribution of Ẑt+1|t could potentially be carried out through the smoothing problem. But since

the operation ẑt = ẑt(z0, . . . , zt−1) commonly acts as an exponential-type averaging of the previous

values, we expect that direct, filtering-like approach in evaluating the distribution of Ẑt+1|t would

be sufficient. In particular, one special case of the underlying Gaussian series Zt is an autoregressive

model of order 1 (AR(1)) satisfying Zt = φZt−1 + (1 − φ)1/2εt, where |φ| < 1, {εt} consists of

i.i.d. N (0, 1) random variables and the presence of (1 − φ)1/2 ensures that EZ2
t = 1. In this case,

Ẑt+1 = φZt and then our filtering problem is equivalent to the conventional filtering problem of

finding the distribution of Zt given X0 = x0, . . . , Xt = xt.

For later reference, we first derive expressions for the above distributions of interest. It will

be convenient here and below in the paper to use the notation

A(x) = {z : Φ−1(fx−1) ≤ z < Φ−1(fx)}. (3.29)

Its role for our model stems from the fact that

x = G(z)⇔ z ∈ A(x) (3.30)

(see (3.18)). The proof of the following result can be found in Appendix A.2, and uses a more general
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auxiliary result of interest (see Lemma A.2.1).

Lemma 3.2.1. With the above notation,

EX [f(Ẑt+1|t)] =

∫
zs∈A(xs),s=0,...,t

f(ẑt+1)e−
1
2

∑t
s=0(zs−ẑs)2/r2sdz0 . . . dzt∫

zs∈A(xs),s=0,...,t
e−

1
2

∑t
s=0(zs−ẑs)2/r2sdz0 . . . dzt

(3.31)

and

EX [f(X̂t+1|t)] =

∫
zs∈A(xs),s=0,...,t

f(G(zt+1))e−
1
2

∑t+1
s=0(zs−ẑs)2/r2sdz0 . . . dzt+1∫

zs∈A(xs),s=0,...,t
e−

1
2

∑t+1
s=0(zs−ẑs)2/r2sdz0 . . . dzt+1

, (3.32)

where EX refers to the expectation conditioned on X0 = x0, . . . , Xt = xt. We also have

EX [f(X̂t+1|t)] = EX [gf,t+1(Ẑt+1|t)], (3.33)

where

gf,t+1(z) =

∫
R
f(G(zt+1))

1√
2πr2

t+1

e
− (zt+1−z)

2

2r2
t+1 dzt+1. (3.34)

Our algorithm related to the filtering problem is next described, and its connection to the

HMM literature is clarified in a subsequent remark. The name of the algorithm is also motivated

by the HMM connection described in the remark.

Sequential Importance Sampling (SIS) particle filtering: For i = 1, . . . , N , initialize

the underlying Gaussian series Zit by

Zi0
d
=
(
N (0, 1)

∣∣G(N (0, 1)) = x0

)
, (3.35)

that is, generate Zit at time 0 assuming X0 = G(Z0) = x0. In view of (3.30), this is equivalent to

generating

Zi0
d
=
(
N (0, 1)

∣∣Φ−1(fx0−1) ≤ N (0, 1) < Φ−1(fx0
)
)
. (3.36)

Set also wi0 = 1. Then, recursively in t = 1, . . . , T , perform the following steps:

1: Compute Ẑit by using the DL algorithm and the previous values Zi0, . . . , Z
i
t−1.
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2: Sample an error εit conditionally on having Xt = xt, that is,

εit
d
=
(
N (0, 1)

∣∣G(Ẑit + rtN (0, 1)) = xt

)
(3.37)

or, in view of (3.30),

εit
d
=
(
N (0, 1)

∣∣r−1
t (Φ−1(fxt−1)− Ẑit) ≤ N (0, 1) < r−1

t (Φ−1(fxt)− Ẑit)
)
, (3.38)

where f−1 = 0 by convention (and Φ−1(0) = −∞).

3: Update the underlying Gaussian series as

Zit = Ẑit + rtε
i
t, (3.39)

and also set

wit = wit−1wt(Ẑ
i
t), (3.40)

where

wt(z) =

∫
A(xt)

1√
2πr2

t

e
− 1

2r2t
(z′−z)2

dz′

= Φ(r−1
t (Φ−1(fxt)− z))− Φ(r−1

t (Φ−1(fxt−1)− z)). (3.41)

Then, the following approximation can be used

EXf(Ẑt+1|t) ≈
N∑
i=1

wit
ΩN,t

f(Ẑit+1) =
1
N

∑N
i=1 w

i
tf(Ẑit+1)

1
N

∑N
i=1 w

i
t

=: ÊXf(Ẑt+1|t), (3.42)

where ΩN,t =
∑N
i=1 w

i
t. This approximation is based on the following basic result, showing by the

law of large numbers that the limit of the right-hand side of (3.42) is indeed EXf(Ẑt+1|t). The proof

can be found in Appendix A.2.

Proposition 3.2.1. With the above notation, we have

EXwitf(Ẑit+1) = EXf(Ẑt+1|t)

∫
zs∈A(xs),s=0,...,t

e−
1
2

∑t
s=0(zs−ẑs)2/r2s

(2π)(t+1)/2r0...rt
dz0 . . . dzt∫

z0∈A(x0)
e−z

2
0/2

(2π)1/2r0
dz0

. (3.43)
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Remark 3.2.2. By (3.43) and (A.10),

P(X0 = x0)EXwiT = P(X0 = x0, . . . , XT = xT ). (3.44)

We shall use the left-hand side of this relation to approximate the model likelihood when using the

SIS algorithm.

Remark 3.2.3. Depending on model parameters, the SIS algorithm may, in fact, not generate

a particle path Zit for some value(s) of i, that is, a “NaN” may be obtained numerically. For

example, supposing that the underlying Gaussian model is AR(1) with parameter −1 < φ < 0 and

Ẑt+1 = φZt (see Remark 3.2.1), this happens in the following scenario. It can happen that a value

of εit = ∞ is generated numerically in Step 2 of the SIS algorithm, leading to Zit = ∞ and hence

also Ẑit+1 = φZit = −∞. But then at the next time t+ 1, if xt+1 = 0 and hence xt+1 − 1 = −1, we

have Φ−1(fxt+1−1) = Φ−1(0) = −∞ and the term Φ−1(fxt+1−1) − Ẑit+1 in Step 2 of the algorithm

becomes −∞ +∞ = NaN. When the algorithm leads to a “NaN”, one could either regard these

model parameters as very unlikely or ignore these particles, e.g., in likelihood calculations. We found

these two approaches to lead to comparable results in practice.

The next two remarks and a subsequent discussion draw connections between our model

and the algorithm above to HMMs and particle filtering.

Remark 3.2.4. When the underlying Gaussian series Zt is autoregressive of order p (AR(p)), the

vector series (Zt, . . . , Zt−p+1)′ is a Markov chain on Rp, and our model Xt = G(Zt) is an HMM. (The

same also happens with ARMA(p.q) models with an appropriate enlargement of the state space.)

Indeed, here are more details on this statement when p = 1, in which case Zt = φZt−1 +(1−φ)1/2εt,

where |φ| < 1, {εt} consists of i.i.d. N (0, 1) random variables and the presence of (1− φ)1/2 ensures

that EZ2
t = 1. The resulting series Xt = G(Zt) is then an HMM in the sense of Definition 9.3 of

Douc et al. [10], p. 295, with a Markov kernel on R given by

M(z, dz′) =
1

(2π(1− φ2))1/2
e
− (z′−φz)2

2(1−φ2) dz′ (3.45)

governing the transition of the Markov AR(1) series Zt, and a Markov kernel from R to N0

G(z, dx) = δG(z)(dx) = point mass at G(z) (3.46)
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governing the transition from Zt to Xt. Thus, many of the developments for HMMs (see e.g.

Chapters 9–13 in Douc et al. [10]) are expected to apply directly to our model in the special case of

the underlying Gaussian AR series. One important feature of our model when viewed as an HMM

is that it is not partially dominated (in the sense described following Definition 9.3 of Douc et al.

[10]). Though a number of developments described, in particular, in Douc et al. [10] apply or extend

easily to partially non-dominated models (as in the next remark), there are also issues that make

these models more difficult to handle (see, in particular, Remark 3.3.2 below).

Remark 3.2.5. When our model is an HMM with, for example, the underlying Gaussian AR(1)

series (as in the preceding remark), the algorithm described in (3.35)–(3.42) above is the Sequential

Importance Sampling (SIS) algorithm for particle filtering discussed in Section 10.2 of Douc et al.

[10] with the choice of the optimal kernel and the associated weight function in Eqs. (10.30) and

(10.31) of Douc et al. [10]. Indeed, this could be seen from the following observations. For AR(1)

series, the one-step-ahead prediction is Ẑt+1 = φZt (and ẑt+1 = φzt). Though as noted in the

preceding remark, our model as an HMM is not partially dominated and hence a transition density

function g(z, x) (defined following Definition 9.3 of Douc et al. [10]) is not available, a number of

formulas for partially dominated HMMs given in Douc et al. [10] also apply to our model by taking

g(z, x) = 1A(x)(z), (3.47)

where the set A(x) is defined in (3.29). This is the case, in particular, for the developments in

Section 10.2 on SIS in Douc et al. [10]. For example, one could check with the choice (3.47) that the

filtering distribution φt in Eq. (10.23) of Douc et al. [10] is exactly that appearing in (3.31) above.

The kernel Qt(z,A) appearing in Section 10.2 of Douc et al. [10] is then

Qt(z,A) =

∫
A

M(z, dz′)g(z′, xt) =

∫
A∩A(xt)

1

(2π(1− φ2))1/2
e
− (z′−φz)2

2(1−φ2) dz′, (3.48)

where we used (3.45) and (3.47). Sampling Zit from the optimal kernel Qt(Z
i
t−1, ·)/Qt(Zit−1,R) (see

p. 330 in Douc et al. [10]) can then be checked to be the same as defining Zit through Steps 2 and 3

of our particle filtering algorithm above. The optimal weight function Qt(z,R) can also be checked

to be that in (3.41) above.

Following particle filtering developments in the HMM literature (Sections 10.4.1 and 10.4.2
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in Douc et al. [10]), our SIS filtering algorithm could also be modified to the following two algorithms.

These will also be examined in our simulation study.

Sequential Importance Sampling with Resampling (SISR) particle filtering: Pro-

ceed as in SIS but modify Step 3 and add resampling Step 4 as follows:

3: Modify Step 3 of SIS by setting

Z̃it = Ẑit + rtε
i
t, w̃it = wit−1wt(Ẑ

i
t) (3.49)

and also Ω̃N,t =
∑N
i=1 w̃

i
t.

4: Draw, conditionally independently given {(Zis, wis), s ≤ t − 1, i = 1, . . . , N} and {Z̃it , i =

1, . . . , N}, a multinomial trial {Iit , i = 1, . . . , N} with probabilities of success {w̃it/Ω̃N,t} and

set Zit = Z̃
Iit
t and wit = 1, i = 1, . . . , N .

Auxiliary particle filtering (APF): Proceed as in SIS but modify Step 3 as follows:

3: Denote the distribution of Zit in (3.39) as Rt(Ẑ
i
t , ·). Then, draw conditionally independently

pairs {(Iit , Zit), i = 1, . . . , N} of indices and particles from the distribution

µ({i} ×A) =
wt(Ẑ

i
t)∑N

i=1 wt(Ẑ
i
t)
Rt(Ẑ

i
t , A), (3.50)

where wt(z) is defined in (3.41). Discard the indices to take {Zit , i = 1, . . . , N} for the particles

at time t. Also, set wit = 1 for all i = 1, . . . , N .

We now turn from the filtering problem to the prediction problem, namely, that of evaluating

EXf(X̂t+1|t). This can be addressed by relating prediction to the filtering problem as in (3.33). For

example, if using the SIS particle filtering, we would approximate EXf(X̂t+1|t) as

EXf(X̂t+1|t) ≈
N∑
i=1

wit
ΩN,t

gf,t+1(Ẑit+1) (3.51)

(see (3.42)). The SISR and APF algorithms could be used as well.

41



3.3 Inference

The model (3.1) involves unknown parameters θ, associated with the marginal density and

η, associated with the temporal dependence structure. Several inference questions for this model

are discussed here, namely, estimation of parameters and assessment of goodness-of-fit.

3.3.1 Pseudo Gaussian likelihood estimation

An is Section 3.2, suppose the observations xt are given for times t ∈ {0, . . . T} and set

X = (x0, . . . , xT )′. Denote the exact likelihood of the model (3.1) as

LT (θ,η) = P(X0 = x0, X1 = x1, . . . , XT = xT ). (3.52)

The likelihood has proven difficult to directly calculate for most count time series models [? ]. In

Section 3.3.2, it is approximated by using particle filtering and the resulting approximate MLE can

be computationally intensive. A computationally superior but potentially statistically less efficient

approach is to use a pseudo Gaussian likelihood (GL).

In the pseudo GL approach, the parameters are estimated as

(θ̂gl, η̂gl) = argmax
θ,η

e−
1
2 (X−µθ)′ΓT (θ,η)−1(X−µθ)

(2π)(T+1)/2|ΓT (θ,η)|1/2
, (3.53)

that is, by maximizing the likelihood assuming the model is Gaussian with the model mean µθ and

the model covariance matrix ΓT (θ,η) = (γX(i − j))i,j∈{0,...,T}. It should be noted that for large

T , the pseudo GL approach is equivalent to least squares, where the regression is carried out (e.g.

through the Durbin-Levinson algorithm) for Xt on the previous values Xt−1, . . . , X0 (see e.g. Section

5.2 in [6]). Two other points related to the pseudo GL approach should be emphasized. First, the

covariance function for the model (3.1) could be evaluated efficiently as described in Section 2. The

model mean µθ, on the other hand, can often be expressed explicitly for the marginal distributions

of interest. Second, the numerical optimization of (3.53) yields the numerical Hessian that can be

used to set confidence intervals for the parameters of the model.
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3.3.2 MLE through particle approximation

By using the notation and result (3.33) appearing in Lemma 3.2.1, the likelihood (3.52) can

be expressed as

LT (θ,η) = P(X0 = x0)

T∏
s=1

P(Xs = xs|X0 = x0, . . . , Xs−1 = xs−1)

= P(X0 = x0)

T∏
s=1

EX(1{xs}(X̂s|s−1))

= P(X0 = x0)

T∏
s=1

EX(g1{xs},s
(Ẑs|s−1)). (3.54)

Note from (3.34) that

g1{xs},s
(z) = ws(z), (3.55)

where ws(z) is defined and can be computed numerically as in (3.41). The particle approximation

of the likelihood is then defined as

L̂T (θ,η) = P(X0 = x0)

T∏
s=1

ÊX(ws(Ẑs|s−1)), (3.56)

by using the notation in (3.42) and supposing that particles are generated by one of the methods

(SIS, SISR or APF) discussed in Section 3.2. The ML estimators through particle approximations

are then defined as

(θ̂, η̂) = argmax
θ,η

L̂T (θ,η). (3.57)

Remark 3.3.1. For the SIS algorithm, the expression (3.56) reduces to

L̂T (θ,η) = P(X0 = x0)
1

N

N∑
i=1

wiT , (3.58)

which is consistent with what was noted in Remark 3.2.2.

Remark 3.3.2. In the HMM literature, superior algorithms to the likelihood approximation (3.56)

are available, based on e.g. versions of the EM algorithm (see Section 12 in Douc et al. [10]). These

algorithms do not apply directly to our context even when our model is an HMM. Indeed, as noted

in Remark 3.2.4, our model is not partially dominated. As a consequence, even the most basic
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developments of Douc et al. [10] do not carry over to our model. For example, for the underlying

AR(1) model Zt, the complete likelihood for our model is

P(Z0 = z0, . . . , ZT = zT , X0 = x0, . . . , XT = xT )

=
e−z

2
0/2

(2π)1/2

e−
1
2

∑T
t=1(zt−φzt−1)2

(2π(1− φ2))T/2

T∏
t=0

1{zt∈A(xt)}.

For example, taking the logarithm of this likelihood is not quite possible in order to get the form of

the complete likelihood appearing in Eq. (12.9) of Douc et al. [10], on which their subsequent EM

algorithms are based.

When using MLE through particle approximation, confidence intervals for model parameters

will be set through a block bootstrap. In this regard, note that under the model (3.1), a block

bootstrap of the series Xt corresponds to that of the underlying Gaussian series Zt, which is quite

well understood.

3.3.3 Model diagnostics

The goodness-of-fit of count models is commonly assessed through probability integral trans-

form (PIT) histograms and related tools (e.g. Czado et al. [9], Kolassa [18]). These are based on the

predictive distributions of {Xt}, defined for time t as

Pt(y) = PX(X̂t|t−1 ≤ y) = P(Xt ≤ y|X0 = x0, . . . , Xt−1 = xt−1), y ∈ {0, 1, . . .}. (3.59)

This quantity can be estimated through the particle methods discussed in Section 3.2, namely, as

P̂t(y) =

y∑
x=0

ÊX1{x}(X̂t|t−1) =

y∑
x=0

ÊXg1{x},t(Ẑt|t−1), (3.60)

by using the notation gf,t in (3.34) and ÊX in (3.42), supposing the particles are generated by the

SIS, SISR or APF method. Similarly to (3.55), note also that

g1{x},t(z) = w̃x,t(z), (3.61)
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where

w̃x,t(z) = Φ(r−1
t (Φ−1(fx)− z))− Φ(r−1

t (Φ−1(fx−1)− z)) (3.62)

(and w̃xt,t(z) = wt(z)).

The (non-randomized) mean PIT is defined as

F (u) =
1

T + 1

T∑
t=0

Ft(u|xt), u ∈ [0, 1], (3.63)

where

Ft(u|y) =


0, if u ≤ Pt(y − 1),

u−Pt(y−1)
Pt(y)−Pt(y−1) , if Pt(y − 1) < u < Pt(y),

1, if u ≥ Pt(y),

(3.64)

which is estimated by replacing Pt by P̂t in practice. The PIT histogram with H bins is defined as

a histogram with the height F (h/H)− F ((h− 1)/H) for bin h ∈ {1, . . . ,H}.

As a more elementary diagnostics tool, another possibility is to consider the model residuals

defined as follows. Let

Ẑt = E(Zt|Xt = xt) =
1√
2π

exp(−Φ−1(Ck−1)2/2)− exp(−Φ−1(Ck)2/2)

Ck − Ck−1
(3.65)

be the estimated mean value of the latent Gaussian process at time t given the observation xt,

where the formula (3.65) follows by direct calculations for the model (3.1) (assuming the estimated

parameter values θ of the marginal distribution entering Ck’s). For a fitted underlying time series

model with parameter values η, the residuals are then defined as the residuals ε̂t of this model fitted

to the series Ẑt, after centering it by the sample mean. In more formal terms (omitting the sample

mean for simplicity),

ε̂t = Ẑt − Eη(Ẑt|Ẑt−1, . . . , Ẑ0),

where Eη indicates the linear prediction under the fitted time series model with parameter values η.

3.3.4 Inclusion of covariates

Covariates can be included in the model (3.1) through the parameter θ of the marginal

distribution, as discussed in Section 3.1.2. With the covariates, the parameter θ depends on time t
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as θ(t). The GL and particle inference procedures are modified for θ(t) in the following ways.

For the GL procedure, the covariance Cov(Xt1 , Xt2) = Cov(Gθ(t1)(Zt1), Gθ(t2)(Zt2)) is need-

ed, where θ(t) is added as subscript in G to indicate the dependence on t. But as in (3.9), one has

Cov(Xt1 , Xt2) = Cov(Gθ(t1)(Zt1), Gθ(t2)(Zt2)) =

∞∑
k=1

k!gθ(t1),kgθ(t2),kγZ(t1 − t2)k, (3.66)

where again, the subscript θ(t) is added to gk to indicate dependence on t. Numerically, evaluating

(3.66) is not much different from that of (3.9), since both are based on calculating the Hermite

coefficients gk.

For the particle filtering approach, the modification is somewhat simpler: one just needs

to replace θ by θ(t) at time t when generating the underlying particles. For example, for the SIS

algorithm in Section 3.2, θ(t) would enter through fx in (3.36), (3.38), (3.41). This modification is

justified from the structure of the model, where the covariates enter only through the parameter θ

controlling the marginal distribution.

3.4 A Simulation Study

To study the developed methods, a simulation study considering multiple marginal distribu-

tions and ACVFs was conducted. Here, the classic Poisson and negative binomial count distributions

with ARMA {Zt} are considered.

3.4.1 Poisson AR(1)

We begin with the simple case where Xt has a Poisson marginal distribution for each t with

mean λ > 0. An AR(1) {Zt} satisfying

Zt = φZt−1 + (1− φ)1/2εt (3.67)

is considered, where {εt} is i.i.d. standard normal as in Remark 3.2.4. Series of lengths T = 100, 200,

and 400 are simulated from (3.67) and then transformed via (3.1) to obtain the Poisson count series.

The Gaussian likelihood (GL) and particle filtering (PF) likelihood estimation methods of Section 3.3

are applied. All simulations were replicated 200 times to assess bias and variability of the estimators.

All combinations of λ ∈ {2, 5, 10} and φ ∈ {±0.25,±0.75} were considered.
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Box plots of the resulting parameter estimates for the models with λ = 2 and φ = ±0.75

are displayed in Figure 3.3. Observe that the GL estimates of φ tend to be slightly less than φ

(biased towards zero), while having similar variance than the approximately unbiased PF estimates.

When the lag-one correlation in {Zt} (and hence also that in {Xt}) is negative, both estimation

methods have smaller variances than their positively correlated counterparts. This is expected: the

mean of this process is λ, and the variability of the sample mean, one good estimator of the mean,

for stationary series is comparatively smaller for negatively correlated series than for positively

correlated series. Smaller λ values yield estimates with smaller variabilities. Again this is expected:

the variance of the Poisson distribution is also λ. In estimating φ, the GL is again biased toward zero,

while the PF estimates show little, if any, bias; however, the variance of the GL and PF estimators

are now similar. In this case, both estimation methods have yielded reasonable results. All other

simulation runs mimicked these results and the resulting box plots are omitted here.
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Figure 3.3: Estimates from simulated Poisson AR(1) series. In the left plots, the true value of
parameters are λ = 2 and φ = 0.75. In the right plots, the true value of parameters are λ = 2
and φ = −0.75. All true parameter values are plotted as a horizontal red dashed line. Sample sizes
of 100, 200, and 400 are indicated on the horizontal axis and estimation method are given in the
legend.

3.4.2 Mixed Poisson AR(1)

This case reveals differences between our estimation methods. Here, the three-parameter

mixture Poisson marginal distribution with parameters λ1 > 0, λ2 > 0, probability p ∈ [0, 1],

satisfying

P (Xt = k) = p
e−λ1λk1
k!

+ (1− p)e
−λ2λk2
k!

(3.68)
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is considered. Again, 200 Gaussian series of lengths T = 100, 200 and 400 are simulated and

transformed to a mixed Poisson AR(1) count time series that has marginal distributions as in (3.68).

As in the last case, an AR(1) {Zt} is used with φ = ±0.25,±0.75 and the Gaussian likelihood and

particle filtering estimation methods are applied.

Observe that Gaussian likelihood only uses the theoretical mean of the distribution of Xt

and the covariance structure of {Xt} to compute parameter estimates. Here, the probability that

Xt is close to its mean value of pλ1 + (1 − p)λ2 is small when λ1 and λ2 are far apart. Hence, one

might expect Gaussian likelihood to do poorly. In contrast, the particle filtering likelihood approach

should feel the entire joint distribution of the process, basing estimates on more than the first and

second moments of the series.

Figure 3.4 shows box plots of 200 estimates for the model with λ1 = 2, λ2 ∈ {5, 10}, p = 1/4,

and φ = 0.75. To maintain parameter identifiability p was constrained to the interval [0, 0.5].

The results are as expected, with particle filtering likelihoods providing superior performance. As

expected, the superiority of particle filtering is more pronounced as the difference between λ1 and

λ2 gets larger.
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Figure 3.4: Estimates from simulated Mixed Poisson AR(1) series. In the left plots, the true
parameter values are λ1 = 2, λ2 = 5, φ = 0.75 and p = 1/4. In the right plots, the true parameter
values are λ1 = 2, λ2 = 10, φ = 0.75 and p = 1/4. True values are shown as a red horizontal dashed
line. Sample size of 100, 200 and 400 are given on the horizontal axis and estimation method are
indicated in the legend.
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3.4.3 Negative Binomial MA(1)

The prior subsections were based on the unbquitious equidispersed Poisson distribution.

Here, the negative Binomial distribution (NB) with parameters r > 0 and p ∈ (0, 1), is considered.

The marginal law of Xt is

P (Xt = k) =
Γ(k + r)

Γ(r)k!
pr(1− p)k, k ∈ {0, 1, . . .}. (3.69)

For the ACVF, a moving average (MA) of order one is utilized. Series of lengths T = 100, 200 and

400 from the difference equation

Zt = εt + θεt−1, (3.70)

where {εt} is an i.i.d. zero mean Gaussian series with the variance set to (1 + θ2)−1.

The parameter values θ ∈ {±0.25,±0.75} and p ∈ {0.2, 0.5} were considered. Again, sim-

ulation procedures were run 200 times for each combination of parameters. Figure 3.5 shows box

plots of our results for the models with θ = ±0.75, r = 3, and p = 0.2. The results again seem

reasonable, with the possible exception of a large variance in estimation of θ for the smaller sample

size T = 100 for GL. When the sample size increases to T = 400, Gaussian likelihood boundary

issues dissipate and sampling variability becomes appreciably smaller.
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Figure 3.5: Estimates from simulated Negative Binomial MA(1) series. In the left plots, the true
value are r = 3, p = 0.2 and θ = 0.75. In the right plots, the true value are r = 3, p = 0.2 and
θ = −0.75. True values are shown as red horizontal dashed line. Sample sizes of 100, 200 and 400
are given on the horizontal axis and estimation method are indicated in the legend.
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3.5 An Application

This section analyzes a count series containing the number of major league baseball games

where no hitters were pitched on an annual basis from 1893 — 2017 (T = 125). The data are over-

dispersed, with a sample mean of 2.12 and a sample variance of 3.40. The counts and its sample

autocorrelations and partial autocorrelations are plotted in Figure 3.6. Two covariates are available
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Figure 3.6: The number of no-hitters pitched by season from 1893 to 2017 and its sample autocor-
relation and partial autocorrelations. Pointwise 95% confidence intervals are displayed.

to help describe the counts: 1) the total number of games played in each year (denoted as M1) and

the height of the pitching mound (denoted as M2). The total number of games played in a season

has increased over the years as more teams have entered the league over time. Also, baseball seasons

have lengthed, with a team currently playing 162 games each season. Of course, one expects more

no hitters when more games are played. The height of the pitching mound has varied over the years

and could also be a significant factor. Higher pitching mounds tend to give pitchers more of an
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advantage; this said, hitters tend to adjust to changes over time. In what follows, two over-dispersed

count marginal distributions, the negative binomial and generalized Poisson distributes, are fitted

to the data.

The overdispersed generalized Poisson distribution with parameters η ∈ (0, 1) fixed in time

and λt varying with time will be one considered model for the counts. We use

λt = exp (β0 + β1M1,t + β2M2,t) , (3.71)

where a log link is used to keep λt positive. One can also let η depend on the covariates, but we will

not need to do this as evidenced by the residual diagnostics below.

The negative binomial distribution with parameters r > 0 and p ∈ (0, 1) will also be

considered for this count series. In this fit, we again use the log link

rt = exp (β0 + β1M1,t + β2M2,t)

and p is kept fixed in time t.

We now explore some low order ARMA model fits for {Zt}, specifically the AR(1), AR(2),

ARMA(1,1), MA(1), and MA(2) models. The classical AIC and/or BIC model order selection

statistics will be used to select the best fitting model. Table 3.1 shows Gaussian likelihood (GL)

and particle filtering (PF) estimates for each ARMA model and both the generalized Poisson and

negative binomial distributions.

Marginal Distri-
bution

Model AR(1) AR(2) ARMA(1,1) MA(1) MA(2)

Generalized
Poisson

−2 log(L̂GL) 477.5984 476.2281 476.3462 479.1375 478.1373
AIC 487.5984 488.2281 488.3462 489.1375 490.1373
BIC 488.0829 488.8029 488.9277 489.6221 490.7188

Negative
Binomial

−2 log(L̂GL) 480.4010 477.1121 480.3373 481.2713 480.9248
AIC 490.4010 489.1121 492.3373 491.2713 492.9248
BIC 491.3012 489.6936 492.9187 491.7559 493.5063

Table 3.1: Optimized log likelihood with the AIC/BIC for different latent Gaussian structures.

The standard errors quoted above were obtained in the usual way from the Hessian matrix at

the estimated model parameters. Both the AIC and BIC statistics prefer the generalized Poisson fit

with AR(1) {Zt}. This conclusion holds for both Gaussian likelihood and particle filtering estimates.
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In the AR(1) fit shown in table 3.2, the standard errors indicate that the β0 and β2 parameters are

not significantly different from zero; the parameter β1 appears significantly positive. We remark

that asymptotic normality of the parameter estimators has not been proven (this would take us far

from our salient points), but there is no reason not to expect it. The implication here is that the

number of no-hitters pitched increase with the number of games played, but past changes in the

mound height have not influenced the counts greatly.

Parameters φ β0 β1 β2 η
GL Estimates 0.2665 -1.1496 0.7583 0.0338 0.1679

GL Standard Errors 0.0658 0.9069 0.2173 0.0436 0.0480

Table 3.2: Estimates and standard errors of the full model with {Zt} being AR(1).

As a tuning step, the AR(1) model for {Zt} was refit assuming that β0 = β2 = 0. Table 3.3

shows estimates of the model parameters and their standard errors. It is perhaps worth comment-

ing that the above application entails a negative binomial and generalized Poisson regression with

correlated errors.

Parameters φ β1 η
GL Estimates 0.2456 0.4059 0.1212

GL Standard Errors 0.0621 0.0480 0.0416

Table 3.3: Estimates and standard errors of the reduced model with {Zt} being AR(1).

Let us now consider residual diagnostics to assess the AR(1) generalized Poisson model fit.

Residuals can be obtained by estimating the latent {Zt} process from the observed {Xt} and the

estimated model parameters. Since a specific count Xt can be backtracked to an interval of Zt

values, an estimated value of the latent Gaussian process at time t is defined as the average value

Ẑt = E(Zt|Xt = k) =
1√
2π

exp(−Φ−1(Ck−1)2/2)− exp(−Φ−1(Ck)2/2)

Ck − Ck−1
. (3.72)

The estimated time tARMA residual is then simply Ẑt−P (Ẑt|Ẑ1, . . . , Ẑt−1), where P (X|A1, . . . , Ak)

denotes the best (minimal mean squared error) prediction ofX from linear combinations ofA1, . . . , Ak.

These are computed from the fitted ARMA model coefficients in the usual time series manner. In

the AR(1) case, one has P (Ẑt|Ẑ1, . . . , Ẑt−1) = φ̂1Ẑt−1 for t ≥ 2 and P (Ẑ1|·) = 0.

Figure 3.7 shows an analysis of the AR(1) residuals from the generalized Poisson model with

β0 = β2 = 0. The sample autocorrelations and partial autocorrelation do not show any departures
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from a white noise model. It is stressed that normality of these residuals is needed. A QQ plot of

the residuals is presented in the northeast plot of the figure and suggests a good fit, some misfit in

the lower quantiles aside. The p-value for the Shapiro-Wilks test for normality is 0.4012, which is

quite reasonable. Overall, it would seem that the model fits the data well.
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Figure 3.7: The upper left is the plot of the estimated residuals against time. The upper right is
the QQ plot the estimated residuals. The two plots on the bottom are the sample ACF and sample
PACF plot of the estimated residuals.
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Appendix A

Appendices

A.1 Proof of Theorem 2.2.1 in Chapter 2

Equation (2.4) gives

E(zXt) = E
[
E
(
z
∑Mt
i=1 Bt,i |Mt

)]
= E

[
(1− pB + pBu)

Mt

]
= ψM (1− pB + pBz).

Substituting u = 1− pB + pBz yields the result in part a). For part b), simple computations show

that E[Xt] = pBµM and var(Xt) = p2
B(σ2

M − µM ) + µMpB . Hence,

DX =
p2
Bσ

2
M + µMpB(1− pB)

µMpB
= pBDM + 1− pB

as claimed.

To prove part c), apply the law of total covariance to get

cov(Xt, Xt+h) = cov

Mt∑
i=1

Bt,i,

Mt+h∑
j=1

Bt+h,j


= E

cov

Mt∑
i=1

Bt,i,

Mt+h∑
j=1

Bt+h,j

∣∣∣∣∣∣Mt,Mt+h

+ cov

E

[
Mt∑
i=1

Bt,i

∣∣∣∣∣Mt,Mt+h

]
,E

Mt+h∑
j=1

Bt+h,j

∣∣∣∣∣∣Mt,Mt+h

 .

(A.1)
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For any positive integersmt,mt+h, cov
(∑mt

i=1Bt,i,
∑mt+h
j=1 Bt+h,j

)
= min(mt,mt+h)γB(h) and E [

∑mt
i=1Bt,i] =

mtpB . Plugging this result in (A.1) gives

cov(Xt, Xt+h) = E [min(Mt,Mt+h)] γB(h) + p2
Bcov(Mt,Mt+h).

When h 6= 0, Mt and Mt+h are independent and cov(Mt,Mt+h) = 0, implying that γX(h) = κγB(h),

where κ = E [min(Mt,Mt+h)]. When h = 0, extracting the first two moments from the probability

generating function gives γX(0) = γB(0)µM + p2
Bσ

2
M as claimed.

For part d), when h 6= 0, conditioning on Mt and Mt+h gives

P(Xt = xt, Xt+h = xt+h) =

∞∑
mt=0

∞∑
mt+h=0

Hmt,mt+h(xt, xt+h)fM (mt)fM (mt+h),

where Hmt,mt+h(xt, xt+h) := P (St = xt, St+h = xt+h) and St =
∑mt
i=1Bt,i, with mt fixed. This joint

probability can be calculated by conditioning on the value of Xt:

Hmt,mt+h(xt, xt+h) = P (St+h = xt+h|St = xt)P(St = xt). (A.2)

It is easy to see that St has a binomial distribution with mt trials and success probability

pB . The conditional probability above changes form with two cases.

When mt < mt+h, the conditional probability in (A.2) represents the sum of three indepen-

dent binomial distributions: one with xt trials and success probability p1,1, one with mt − xt trials

and success probability p0,1, and one with mt+h −mt trials and success probability pB . Hence,

P (St+h = xt+h|St = xt) =

min(mt−xt,xt+h)∑
b=0

min(xt,xt+h−b)∑
a=0

T1T2T3,

where T1 = B(xt, a, p1,1), T2 = B(mt − xt, b, p0,1), and T3 = B(mt+h −mt, xt+h − a− b, pB). Here,

B(n, k, p) :=
(
n
k

)
pk(1− p)n−k denotes the binomial probability mass function.

The case where mt ≥ mt+h is more complicated. Further conditioning on
∑mt+h
i=1 Bt,i (this
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is neither St nor St+h) gives

P (St+h = xt+h|St = xt) =

∞∑
k=0

P

(
St+h = xt+h|St = xt,

mt+h∑
i=1

Bt,i = k

)
P

(
mt+h∑
i=1

Bt,i = k

∣∣∣∣∣St = xt

)
.

(A.3)

Conditional on St = xt,
∑mt+h
i=1 Bt,i has a hypergeometric distribution with mt+h draws

from a population of containing xt Type I items and mt − xt Type II items:

P

(
mt+h∑
i=1

Bt,i = k

∣∣∣∣St = xt

)
=

(
xt
k

)(
mt−xt
mt+h−k

)(
mt
mt+h

) ,

for k ∈ {max(0,mt+h −mt + xt), · · · ,min(xt,mt+h)}.

The distribution of St+h conditioned on St = xt and
∑mt+h
i=1 Bt,i = k has a form that is the

sum of two independent binomial distributions: one with k trials and success probability p1,1, and

the other with mt+h − k trials and success probability p0,1. This gives

P

(
St+h = xt+h

∣∣∣∣∣St = xt,

mt+h∑
i=1

Bt,i = k

)
=

min(k,xt+h)∑
a=0

B(mt+h − k, xt+h − a, p0,1)B(k, a, p1,1).

This identifies the two terms in (A.3). Plugging these back into (A.2) identifies Hmt,mt+h(xt, xt+h).

To prove part e), the renewal case is established in [20]. In the clipped Gaussian case,

if ρZ(h) → 0 as h → ∞, then the result follows from (2.3) and the limit comparison test since

limx→0 sin−1(x)/x = 1. Should ρZ(h) 9 0, then {Zt} must have long memory and there are an

infinite number of lags h where |ρZ(h)| > δ for some δ > 0. For these lags, we also must have

| sin−1(ρZ(h))| > δ∗ for some δ∗ > 0 by properties of the inverse sin function. It follows from (2.3)

that {Xt} must also have long memory. This proves part e).

Proof of (2.6): To rig up a type of regeneration epoch, condition on the minimum of At,1 and At+h,1

to get

ψi,j(h) =

∞∑
`=1

E
[
M

(i)
t M

(j)
t+h

∣∣∣min(At,1, At+h,1) = `
]
P(min(At,1, At+h,1) = `) (A.4)
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When At,1 = At+h,1 = `, due to the memoryless property of the geometric distribution,

M
(i)
t is distributionally equivalent to M

(i−1)
t + ` and M

(j)
t+h is equal in distribution to M

(j−1)
t+h + `.

Similarly, when ` = At,1 < At+h,1, M
(i)
t is equal in distribution to M

(i−1)
t + ` and M

(j)
t+h is equal

to M
(j)
t+h + ` in distribution. When Mt,1 > Mt+h,1 = `, M

(i)
t equal to M

(i)
t + ` in distribution and

M
(j)
t+h is equal to M

(j−1)
t+h + ` in distribution. Using these in (A.4) and simplifying gives

ψi,j(h) = ψi−1,j−1(h)p1 + ψi,j−1(h)p2 + ψi−1,j(h)p3 +
i+ j − 1− p1

pB
E [min(At,1, At+h,1)]

+ var(min(At,1, At+h,1)) + E2 [min(At,1, At+h,1)]

(A.5)

where i, j ∈ {1, 2, . . .}. Here, the pis are

p1 = P(At,1 = At+h,1 = `|min(At,1, At+h,1) = `) =
pBp1,1

1− (1− pB)p0,0
,

p2 = P(At,1 > At+h,1 = `|min(At,1, At+h,1) = `) =
(1− pB)p0,1

1− (1− pB)p0,0
,

p3 = P(` = At,1 < At+h,1|min(At,1, At+h,1) = `) =
pBp1,0

1− (1− pB)p0,0
.

To verify the expression in (2.7), notice that M
(1)
t+h conditioned on M

(1)
t = k has the distri-

butional form:

` P (M
(1)
t+h = `|M (1)

t = k)

1 p0,1

...
...

k − 1 pk−2
0,0 p0,1

k pk−1
0,0 p1,1

k + 1 pB(pk−1
0,0 p1,0)

k + 2 (1− pB)pB(pk−1
0,0 p1,0)

...
...

Using these in the law of total expectation gives

ψ1,1(h) =
1

pBp0,1
− pBp0,0

[1− (1− pB)p0,0]2p0,1
+

p1,0

[1− (1− pB)p0,0]2
.
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Finally, we derive an explicit form for E [min(At,1, At+h,1)] and var (min(At,1, At+h,1)). The

tail distribution of min(At,1, At+h,1) satisfies

P(min(At,1, At+h,1) > `) = P (Bt,1 = 0, Bt+h,1 = 0, · · · , Bt,` = 0, Bt+h,` = 0) = [(1− pB)p0,0]`,

which is an ordinary geometric distribution. Hence, E[min(At,1, At+h,1)] = [1− (1− pB)p0,0]−1 and

var(min(At,1, At+h,1) = (1−pB)p0,0/[1− (1−pB)p0,0]2. Plugging these into (A.5) verifies the claim.

A.2 Proofs of results in Chapter 3

We gather here the proofs of the results given in this work. Lemma 3.2.1 will follow from

the following more general result.

Lemma A.2.1. For bounded functions h1, h2, we have

EXh1(Z0, . . . , Zt) =

∫
zs∈A(xs),s=0,...,t

h1(z0, . . . , zt)e
− 1

2

∑t
s=0(zs−ẑs)2/r2sdz0 . . . dzt∫

zs∈A(xs),s=0,...,t
e−

1
2

∑t
s=0(zs−ẑs)2/r2sdz0 . . . dzt

(A.6)

and

EXh2(Z0, . . . , Zt+1) =

∫
zs∈A(xs),s=0,...,t

h2(z0, . . . , zt+1)e−
1
2

∑t+1
s=0(zs−ẑs)2/r2sdz0 . . . dztdzt+1∫

zs∈A(xs),s=0,...,t
e−

1
2

∑t+1
s=0(zs−ẑs)2/r2sdz0 . . . dzt

, (A.7)

where EX refers to the expectation conditioned on X0 = x0, . . . , Xt = xt. Moreover, for bounded h3,

Eh3(X0, . . . , Xt) =

∫
Rt+1

h3(G(z0), . . . , G(zt))
e−

1
2

∑t
s=0(zs−ẑs)2/r2s

(2π)(t+1)/2r0 . . . rt
dz0 . . . dzt. (A.8)

Proof: We shall use the following expression which is well-known in the time series literature:

Eh(Z0, . . . , Zt) =

∫
Rt+1

h(z0, . . . , zt)
e−

1
2

∑t
s=0(zs−ẑs)2/r2s

(2π)(t+1)/2r0 . . . rt
dz0 . . . dzt (A.9)

(e.g. Brockwell and Davis [6], Section 8.6). For the relation (A.6), note by (3.30) that

Eg(X0, . . . , Xt)h1(Z0, . . . , Zt) = Eg(G(Z0), . . . , G(Zt))h1(Z0, . . . , Zt)
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=
∑

i0,...,it∈N0

Eg(G(Z0), . . . , G(Zt))h1(Z0, . . . , Zt)1{G(Zs)=is,s=0,...,t}

=
∑

i0,...,it∈N0

g(i0, . . . , it)Eh1(Z0, . . . , Zt)1{Zs∈A(is),s=0,...,t}

=
∑

i0,...,it∈N0

g(i0, . . . , it)
Eh1(Z0, . . . , Zt)1{Zs∈A(is),s=0,...,t}

E1{Zs∈A(is),s=0,...,t}
P(Xs = is, s = 0, . . . , t).

This implies that

EXh1(Z0, . . . , Zt) =
Eh1(Z0, . . . , Zt)1{Zs∈A(xs),s=0,...,t}

E1{Zs∈A(xs),s=0,...,t}
,

which can be expressed as in (A.6) by using (A.9). The relation (A.7) can be proved similarly. The

relation (A.8) follows from (A.9) since h3(X0, . . . , Xt) = h3(G(Z0), . . . , G(Zt)). 2

Remark A.2.1. The relation (A.8) implies, in particular, that

P(X0 = x0, . . . , Xt = xt) =

∫
A(xs),s=0,...,t

e−
1
2

∑t
s=0(zs−ẑs)2/r2s

(2π)(t+1)/2r0 . . . rt
dz0 . . . dzt. (A.10)

We next give a proof of Lemma A.2.1.

Proof of Lemma A.2.1: The relation (3.31) follows from (A.6) since Ẑt+1 = ẑt+1(Z0, . . . , Zt).

Similarly, the relation (3.32) follows from (A.7) since f(Xt+1) = f(G(Zt+1)). 2

We next give a proof of Proposition 3.2.1.

Proof of Proposition 3.2.1: We drop the superscript i for notational simplicity. Note that

EXwtf(Ẑt+1) = EXwt−1wt(Ẑt)f(ẑt+1(Z0, . . . , Zt)) = EXwt−1wt(Ẑt)f(ẑt+1(Z0, . . . , Ẑt + rtεt))

= EX
[
EX [wt−1wt(Ẑt)f(ẑt+1(Z0, . . . , Ẑt + rtεt))|Z0, . . . , Zt−1]

]

= EX
[
wt−1wt(Ẑt)

∫
A(xt)

f(ẑt+1(Z0, . . . , zt))
e
− 1

2rt
(zt−Ẑt)2√
2πr2t

dzt∫
A(xt)

e
− 1

2rt
(zt−Ẑt)2√
2πr2t

dzt

]

= EX
[
wt−1

∫
A(xt)

f(ẑt+1(Z0, . . . , zt))
e−

1
2rt

(zt−Ẑt)2√
2πr2

t

dzt

]
,

where we used the definition of εt in Step 2 of the SIS algorithm, and that of wt(z) in (3.41).
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Repeating a similar argument would lead next to the expression

EX
[
wt−2

∫
A(xt−1)

∫
A(xt)

f(ẑt+1(Z0, . . . , zt−1, zt))
e
− 1

2rt−1
(zt−1−Ẑt−1)2− 1

2rt
(zt−ẑt(Z0,...,zt−1))2√

2πr2
t−1

√
2πr2

t

dzt−1dzt

]
.

Further similar iterations yield

EXwtf(Ẑt+1) =

∫
zs∈A(xs),s=0,...,t

f(ẑt+1) e
− 1

2

∑t
s=0(zs−ẑs)2/r2s

(2π)(t+1)/2r0...rt
dz0 . . . dzt∫

z0∈A(x0)
e−z

2
0/2

(2π)1/2r0
dz0

(the term in the denominator does not cancel out since w0 = 1), and the proposition follows in view

of (3.31). 2
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