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Abstract

Computational modeling and performance analysis are carried out for a ferrofluid

based electromagnetic energy harvester which converts ambient vibratory energy into elec-

tromotive force through sloshing motion of a ferrofluid. The system consists of a tank

partially filled with ferrofluid, magnets placed on the opposite sides of the tank and a cop-

per coil wound around the tank. In the presence of an external magnetic field, magnetic

dipoles in the ferrofluid rotate and produce a net magnetic moment aligned in the direction

of the field. When the device is subjected to an external excitation, the ferrofluid in the

tank undergoes a sloshing motion which induces a time-varying magnetization in the fluid,

causing a time-varying magnetic flux and electromotive force in the copper coil according

to Faraday’s law of induction. Compared to traditional solid-state vibratory energy har-

vesters, this liquid-state harvester provides better conformability, sensitivity, tunability and

response bandwidth. This study provides useful insights for designing high performance

ferrofluid based energy harvesters and is divided into three sections.

First, A continuum level finite element model is developed and implemented for the

multi-physics computational analysis of the energy harvester. The model solves the coupled

magnetic scalar potential equation and Navier-Stokes equations for the dynamic behavior

of the magnetic field and fluid motion. The model is validated against experimental re-

sults for eight configurations of the system. The validated model is then employed to study

the underlying mechanisms that determine the electromotive force of the energy harvester.
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Furthermore, computational analysis is performed to test the effects of several modeling as-

pects, such as three-dimensional effect, surface tension and type of the ferrofluid-magnetic

field coupling, on the accuracy of the model prediction.

Second, a series of numerical simulations are performed to investigate the influ-

ence of several design parameters on the electromotive force of the energy harvester. From

the eight configurations used for model validation, two configurations that give the highest

electromotive forces are chosen for further performance analysis. The design parameters

considered in this investigation include the device’s geometric parameters, external exci-

tation amplitude and material properties of the ferrofluid, which affect either the magnetic

flux in the device or the sloshing behavior of the ferrofluid.

Third, non-equilibrium molecular dynamics (NEMD) simulations are employed to

obtain an understanding of the dynamic magnetization behavior of the ferromagnetic nano-

particles and microscopic structures of the ferrofluid. The results from the continuum level

numerical simulations reveal that the magnetic susceptibility/magnetization of ferrofluid

greatly influences the performance of the energy harvester. Since the ferrofluid in the en-

ergy harvester undergoes sloshing motion under external mechanical excitations, it is also

expected that fluid motion would significantly influence the aggregation behavior of the

nano-particles, thereby playing an important role in determining the magnetization of the

ferrofluid and the performance of the energy harvester. In this study, ferrofluid systems con-

taining both small and large particles under the influence of both magnetic field and shear

flow are considered. The computational model involves long-range dipolar interaction as

well as short-range repulsive interaction of the nano-particles. The factors investigated in-

clude solvent friction coefficients, particle size, magnetic field strength and direction, and

shear rate.
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Chapter 1

Introduction

1.1 Background and Motivation

Energy harvesting (also known as power harvesting or energy scavenging) is a pro-

cess by which energy is derived from external sources (e.g. solar power, thermal energy,

wind energy, salinity gradients, and kinetic energy, also known as ambient energy), and

converted to electric energy to power micro electronics such as wireless sensors, actuators

and implantable medical devices, which require only sub-milliwatts to function. Battery,

being the current most widely used power option, is unfortunately left behind compared

to the development of wireless devices, especially in terms of energy density [6]. Besides,

battery replacement can be difficult, costly or dangerous in certain situations. For exam-

ple, continuous battery replacement is extremely laborious for networks with thousands

of physically embedded wireless sensor nodes [7]. Changing batteries for patients’ im-

plantable pace makers is very inconvenient and dangerous. On the other hand, mechanical

vibrations exist ubiquitously in applications including industrial plant equipment, man-

made structures and so on. Innovative energy harvesting designs that are able to utilize

vibration energy and provide continuous power supply for wireless devices will be very

1



meaningful.

1.2 Current Approach: Solid-State Energy Harvesting

Because of the unsatisfactory performance of current batteries and low-power con-

sumption of newly-designed electronics, in recent decades, energy harvesting using micro-

power generators (MPGs) has received considerable attention and been investigated exten-

sively in the literature [8–14]. Among the energy harvesting methods, vibratory energy

harvesting has become one of the focal areas. Much work has been done to convert me-

chanical vibrations to electric energy through piezoelectric, magnetostrictive, electrostatic

or electromagnetic mechanism [8].

Solid-state materials are typically used as the working material of vibratory energy

harvesters. For example, as shown in Fig. 1.1, the strain generated in a piezoelectric beam

is transformed into electric charge through the piezoelectric effect, and the strain in a mag-

netostrictive rod is transformed into magnetic field through the Villari effect [2, 15–17].

In the electrostatic mechanism as shown in Fig. 1.2a, one charged plate moves relative to

another oppositely charged plate to provide the electric energy [8]. In electromagnetic en-

ergy harvesting, as shown in Fig. 1.2b, electric potential is generated by either the relative

movement of the magnet and coil, or by a change in the magnetic field [18–20]. However,

the applications of solid-state energy harvesters may be limited due to the difficulty in con-

forming to different shapes, narrow bandwidth and low sensitivity to external excitations.

1.3 Proposed Approach: Liquid-State Energy Harvesting

Recently, ferrofluid has become a good alternative to solid-state materials in en-

ergy harvesting, due to its unique combination of magnetic characteristics and liquid state
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(a) (b)

Figure 1.1: (a) A typical piezoelectric power generator [1]. (b) Schematic diagram of a

magnetostrictive energy harvester subjected to axial vibrations [2].

(a) (b)

Figure 1.2: (a) Schematic diagram of an electrostatic energy harvester [3]. (b) Schematic

cross section of an electromagnetic energy harvester [4].

which can overcome the aforementioned conformability, bandwidth and sensibility issues.

Ferrofluid is a colloidal liquid with nanoscale magnetic particles suspended in a water or or-

ganic carrier liquid. A ferrofluid particle can be regarded as a single magnetic domain with

a permanent dipole moment fixed at its center. To prevent agglomeration of the magnetic

nanoparticles, the particles are stabilized either sterically by being coated with long-chain

surfactant or electrostatically by including charged groups. In the absence of an exter-

nal magnetic field, magnetic dipoles in ferrofluid are randomly oriented and the overall

magnetization is zero. With applied external magnetic field, ferrofluid behaves in a way

similar to a paramagnetic material. The dipoles rotate to produce a net magnetic moment

which aligns in the direction of the magnetic field. Some other energy harvesters have
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also used ferrofluid in various configurations. Refs. [21–24] used ferrofluid as a liquid

bearing/lubricant and Ref. [25] as a liquid spring in a spring-mass electromagnetic energy

harvester. Ref. [26] studied an electromagnetic energy harvester utilizing air bubble move-

ment in a ferrofluid filled channel. Ref. [27] proposed an electrostatic energy harvester with

magnetic field-driven ferrofluid droplets moving between electrodes.

Contrary to these configurations, Bibo, Alazemi et al. designed a ferrofluid based

electromagnetic vibratory energy harvester [28–31] which converts ambient vibratory en-

ergy into electromotive force through the sloshing motion of a ferrofluid. Their configura-

tion consists of a tank partially filled with ferrofluid, two permanent magnets placed on two

opposite sides of the tank and a copper coil of Nturns turns wound around the tank either

directly or through a ferromagnetic core. The entire setup is mounted on a shaker, which

provides an external harmonic excitation to the tank. When the frequency of the harmonic

excitation matches one of the infinite modal frequencies of the ferrofluid column, large

surface waves will be generated, which induce a time-varying magnetization in the fluid,

causing a time-varying magnetic flux and electromotive force in the copper coil according

to Faraday’s law of induction. This proposed energy harvester also inspired more research

works (Ref. [32] added a back yoke to the sloshing electromagnetic energy harvester to cre-

ate a closed magnetic flux path. Ref. [33] studied a sloshing triboelectric-electromagnetic

hybrid generator). The proposed sloshing ferrofluid based energy harvester can make use

of vibration energy and meanwhile work as a tuned liquid damper [34]. This novel energy

harvesting design has the following advantages:

• Conformability: Being liquid, ferrofluid is able to conform to various shapes, which

will inspire new design and manufacture of energy harvesters of complex shapes for

more demanding work environments.

• Sensitivity: Liquids are much more sensitive to low-level excitations than solids are.
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This is one reason why mammals’ ears incorporate a fluid called Perilymph to trans-

form mechanical vibrations from the middle ear into waves that can be carried to

the sensory ducts at the end of the cochlea. Thus, it is believed that liquid-state ma-

terials are capable of responding to the smallest levels of environmental excitations

including, but not limited to, the nature-common acoustic excitations.

• Tunability: External magnetic field and shear can change the viscosity of ferrofluid

by hindering the rotation of magnetic particles through magnetic torques (magneto-

viscous effect) [35]. In addition, magnetic body force can also influence the effective

gravity that exerts on the ferrofluid column. Both effects can help tune the modal

frequencies of the energy harvester to match the environmental vibration frequencies

for higher energy conversion efficiency.

• Bandwidth: Most linear energy harvesters operate efficiently only within a narrow

frequency bandwidth very close to the resonant frequency of the harvester. Small

variations in the excitation frequency around the harvester’s resonant frequency drop

its small energy output even further making the energy harvesting process inefficient

[36–41]. This becomes an even more pressing issue when one realizes that most en-

vironmental excitations have broad-band or time-dependent characteristics, i.e. the

energy is distributed over a wide spectrum of frequencies or the dominant frequencies

vary with time. Electromagnetic energy harvesters that incorporate solid-state mag-

nets respond only at one modal frequency [42] or widely-spaced modal frequencies

[43], and thus have a very narrow response bandwidth. On the contrary, a harvester

incorporating liquid-state materials can respond at infinite closely-spaced frequen-

cies, corresponding to the infinite modal frequencies of the fluid column which excite

the large amplitude rotational and horizontal surface waves. The presence of a large

number of closely-spaced modal frequencies can also facilitate the activation of non-
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linear modal interactions between the different vibration modes. Such interactions

occur when two or more modal frequencies are commensurate or nearly commen-

surate, i.e. multiple integers of each other [29], leading to energy exchange among

the commensurate modes resulting in large-amplitude responses over a wide range

of frequencies. This further enhances the broadband characteristics of the ferrofluid

based harvester in the random and non-stationary environments.

1.4 Objectives

Previous experimental results demonstrated the feasibility of this promising con-

cept, and revealed that transduction efficiency of the energy harvester depends on many

factors including the magnet placement and excitation amplitude [28, 29]. However, a

mathematical model that describes the interconnected relation between the fluidic, mag-

netic, and electric domains in this multiphysics system is still unavailable, which is essen-

tial for the investigation and optimization of energy harvester performance. The parameters

that influence the performance of the energy harvester include but are not limited to the ge-

ometry of the container, the depth and material properties of the ferrofluid, the strength and

spatial distribution of the magnetic field, and the excitation amplitude.

In order to elucidate the underlying macroscopic mechanisms that determine the

performance of the energy harvester, the dependence of the performance on various design

parameters and the microscopic behavior of the ferrofluid, it is necessary to develop com-

putational models and analysis tools of the system that are able to efficiently and accurately

describe the physical behavior of the system and accelerate the design and optimization of

the device. To achieve this goal, we investigate these relations through detailed computa-

tional analysis at several different levels:

• Develop a continuum level finite element model for fully coupled computational
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analysis which alleviates some assumptions made in the analytical model of Ref.

[30]. This computational model solves the coupled magnetic scalar potential equa-

tion and Navier-Stokes equations for the dynamic behavior of the magnetic field and

free surface fluid motion [44].

• Conduct experiments to validate the continuum level computational model. The

experiments are based on the design of Ref. [29] with modifications to accommodate

the assumptions of the computational model. The model is validated against the

experimental results for eight configurations of the system [44].

• Employ the validated model to study the underlying mechanisms of ferrofluid

based energy harvesting and test the effects of several modeling aspects. A bet-

ter understanding of the energy conversion mechanisms of the energy harvester is

obtained through the computational analysis. Furthermore, computational analy-

sis is performed to test the effects of several modeling aspects, such as the three-

dimensional effect, surface tension and type of the ferrofluid-magnetic field coupling,

on the accuracy of the model prediction [44].

• Perform a parametric study to investigate the influence of several design param-

eters on the output electromotive force. Two configurations of the energy harvester

that give the highest electromotive forces are considered for performance analysis.

The design parameters considered in this investigation include the device’s geomet-

ric parameters, external excitation amplitude and material properties of the ferrofluid,

which affect either the magnetic flux in the device or the sloshing behavior of the fer-

rofluid [45].

• Perform non-equilibrium molecular dynamics (NEMD) simulations to capture

the dynamic magnetization of the ferromagnetic nano-particles and microscopic
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structures of the ferrofluid. As the ferrofluid in the energy harvester undergoes

sloshing motion under external mechanical excitations, it is also expected that the

fluid motion would significantly alter the aggregation behavior of the nano-particles,

thereby affecting the effective magnetization of the ferrofluid and the performance of

the energy harvester. Therefore, a systematic molecular level study on ferrofluid sys-

tems containing both small and large particles under the influence of both magnetic

field and shear flow is carried out. The computational model involves long-range

dipolar interaction as well as short-range repulsive interaction of the nano-particles.

The factors investigated include solvent friction coefficients, particle size, magnetic

field strength and direction, and shear rate.

1.5 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 covers the first 3 ob-

jectives of the dissertation, presenting a magneto-ferro-hydrodynamic finite element model

along with experimental validation and computational analysis. Chapter 3 presents the

parametric study and performance analysis of the energy harvester, which is the fourth

objective. Chapter 4 presents the molecular dynamics simulations and analysis on the dy-

namic magnetization and microscopic behavior of the ferrofluid, which is the fifth objec-

tive. Finally, Chapter 5 presents the conclusions of this dissertation.
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Chapter 2

Continuum Level Modeling and

Implementation

In the literature, continuum level computational models have been developed for

studying ferrofluids in various applications (e.g. normal-field instability [46], spin-up flow

[47, 48], ferrofluid pump [49], magnetic drug targeting [50], interfacial deformation and

jetting [51], ferrofluid droplet or rising bubble in ferrofluid [52–55], sloshing [56], etc.).

Recently, Kim [32] carried out a numerical analysis on a different ferrofluid based energy

harvester. However, some of these models are for applications without ferrofluid-gas inter-

face [47–50] or with a uniform magnetic field [46, 52, 53], and some are overly-simplified

by using wedge-shaped ferrofluid sloshing motion [32], or invariant magnetic field [54, 56].

Refs. [51, 55] solved the magnetic field with analytical or measured magnetic scalar poten-

tial boundary condition generated by permanent magnets, but did not incorporate magnets

explicitly in the model. While fulfilling their own purposes, such models are insufficient

for computational analysis of our energy harvester.

As such, in this chapter, we present a comprehensive finite element (FE) model for

fully coupled computational analysis of a ferrofluid based energy harvester. Note that while
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the model is developed for the ferrofluid based energy harvester, it is a general purpose

model which can be applied to simulate any system containing free surface ferrofluid flow

under the influence of an externally applied magnetic field.

This model solves the coupled magnetic scalar potential equation and Navier-Stokes

equations for the dynamic behavior of the magnetic field and fluid motion. The Volume of

Fluid (VOF) method is employed to track the liquid-gas interface. The sharp surface tension

force model (SSF) is employed along with the height function method to capture the influ-

ence of surface tension. The computational model is validated against experimental results

for various configurations of the system. The validated model is then employed to study

the underlying mechanisms that determine the electromotive force of the energy harvester.

Furthermore, computational analysis is performed to test the effect of several modeling as-

pects, such as three-dimensional effect, surface tension and type of the ferrofluid-magnetic

field coupling, on the accuracy of the model prediction.

2.1 Experimental Setup

The experimental setup follows the work of Alazemi et al. [29, 30] as shown in

Fig. 2.1a. The setup consists of a 12.7×12.7×12.7 cm3 cubic plastic tank filled with 2.5

cm deep ferrofluid EFH3 (Ferrotec Corp.) and placed inside a copper coil of 1000 turns.

The ferrofluid EFH3 has a density of 1420 kg/m3, a viscosity of 12 mPa·s, and an initial

magnetic susceptibility of 3.52. The surface tension coefficient of the light hydrocarbon

carrier fluid is 24.15 mN/m [47]. Unlike the device used in Refs. [29, 30], in the current

setup, the ferromagnetic core is discarded to eliminate its interference with the magnetic

field. The copper coil is wound directly around the plastic tank. Two bar-shaped permanent

magnets with dimensions of 30.48×2.45×1.27 cm3 and a remanent magnetic flux density

of 0.38 T are placed at a distance of 4 cm from the nearest tank inner wall with their
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longitudinal axes directed perpendicular to the plane of sloshing. As shown in Fig. 2.1b,

we consider four configurations of the energy harvester. The magnets are placed on either

side of the tank in the first two configurations, with their centers 2.5 cm above the ferrofluid

surface, and are placed above and under the tank in the other configurations. The north

poles of the magnets are aligned in the same direction in Configs. (1) and (3), whereas

facing each other in Configs. (2) and (4). For all 4 configurations, both horizontal and

vertical coil windings are tested and denoted as “H” and “V”, respectively. The tank and

magnets are fixed on a thick plastic plate supported by four plastic pillars. The plastic

pillars are erected to create sufficient distance between the tank and the shaker’s mounting

table, thereby serving to minimize eddy currents.

tank
magnets

shaker

accelerometer

(a)

S N NS
magnet magnet

tank

ferrofluid

Configuration (1)

S N N S

magnet magnet

tank

ferrofluid
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N

S

N

S

magnet

magnet

tank

ferrofluid
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N

S

N

S

magnet

magnet

tank

ferrofluid

Configuration (4)

(b)

Figure 2.1: (a) Experimental setup. (b) Schematic diagrams showing the 4 configurations

of the ferrofluid based energy harvester.

As shown in Fig. 2.1a, the setup is fixed on a mounting table connected to an elec-

trodynamic shaker (Model ET-140, Labworks Inc.), which provides an external harmonic

excitation to the tank. The acceleration of the tank is measured using an accelerometer. A

dSPACE ControlDesk system (dSPACE Inc.) is used to compare the experimental tank ac-
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celeration amplitude with the prescribed value 0.5 m/s2 and adjust the output excitation of

the shaker accordingly. The resulting electromotive force is also measured by the dSPACE

system from the copper coil. When the experiment starts at a certain base excitation fre-

quency, the sloshing dynamics and the resulting electromotive force go through a transient

stage and eventually reach their steady-state values after a sufficiently long time. The

root-mean-square (RMS) electromotive force value is then computed for each frequency,

as explained in Sec. 2.2.1.1. Variation of the electromotive force with the base excitation

frequency is then obtained using a quasi-static frequency sweep containing the first modal

frequency.

2.2 Continuum Level Modeling and Implementation

2.2.1 Governing equations

Several assumptions are adopted in modeling the coupled magneto-ferro-hydro-

dynamic system depicted in Fig. 2.1a. First, in the experimental setup, the sloshing motion

of the fluid is mainly two-dimensional. The sloshing plane is defined as the xy plane and

the direction perpendicular to the sloshing plane as the z direction. Since the bar magnets

have a much larger dimension in the z direction than their cross-sectional dimensions, the

magnetic flux density distribution is considered to be uniform along the z direction. Thus,

the ferrofluid based electromagnetic energy harvester is represented by the two-dimensional

(2-D) system shown in Fig. 2.2. Second, as described further in Sec. 2.2.1.1, the ferrofluid

is considered to be superparamagnetic and magnetization of the ferrofluid is linearly pro-

portional to the magnetic field before reaches its saturation value. Third, the ferrofluid is

considered to be an incompressible viscous fluid with non-negligible surface tension. The

governing equations of the magneto-ferro-hydrodynamic system are described next.
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Figure 2.2: Schematic diagram showing the computational domains for different governing

equations. The entire spatial domain, which is set to be 10 times the size of the tank and

magnets, is governed by the magnetic scalar potential equation. The domain enclosed by

red dashed lines is subject to magnetization. The domain inside the tank (enclosed by green

dash-dot lines) is governed by the Navier-Stokes and continuity equations.

2.2.1.1 Magnetic scalar potential equation for magnetic analysis

In the external magnetic field applied by the magnets, the sloshing of the ferrofluid

creates a time-varying magnetization in the fluid, producing a time-varying magnetic field

and electric field. We compute the electromotive force induced by the time-varying mag-

netic field assuming open-circuit conditions. This, combined with the fact that both the

ferrofluid and air are non-conducting fluids, guarantees that there is no electric current

passing through the system. With no electric current and the low operating frequencies of

the energy harvester (1-7 Hz), the magnetic field induced by the electric field is negligible.

Under such conditions, Maxwell’s equations for magnetodynamics are given as [57]

∇ ·B = 0 (2.1)

∇×H = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

where B is the magnetic flux density, H the magnetic field, E the electric field, and t the

time. Note that, since the curl of H is zero, H can be expressed as the gradient of the
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magnetic scalar potential ψ as

H = −∇ψ. (2.4)

The constitutive equations are given by

B = µ0H in the air (2.5)

B = µ0(H+M) in the ferrofluid (2.6)

B = µ0H+B0 in the magnets (2.7)

where M is the magnetization, B0 the remanent magnetic flux density, and µ0 the perme-

ability of free space. Equation (2.7) is a good approximation for commonly used permanent

magnets, such as ferrite, Samarium-Cobalt, and Neodymium-Iron-Boron magnets, the dif-

ferential permeabilities of which are very close to µ0 [57].

When the external H is applied, a ferrofluid particle aligns its magnetic moment

with the field either by a rotation of the whole particle, a process called Brownian re-

laxation, or by a change of the direction of the magnetic moment inside the particle, the

so-called Néel relaxation [58]. Both relaxation processes are characterized by respective re-

laxation times τB and τN that produce a phase-delay between H and M. When τN ≫ τB ,

the magnetization and rotation of magnetic particles follow the magnetization relaxation

equation and spin equation [58]. However, since in this work, the order of relaxation time

(microseconds) is much lower than the period of fluid oscillation (seconds), the ferrofluid

sample can be regarded as superparamagnetic. In such a case, when the magnitude of H

increases over a threshold value, all the magnetic particles align with direction of H and

magnetization reaches its saturation value. On the other hand, when H is small, the follow-

ing linear relation exists between M and H:

M = χH (2.8)
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where χ is the magnetic susceptibility.

Combining Eqs. (2.1, 2.4-2.8), we obtain a single set of governing equation in terms

of ψ

∇ ·
[

(1 + χ)∇ψ − 1

µ0
B0

]

= 0 (2.9)

where the values of χ and B0 vary sharply at the interface between ferrofluid and air,

magnets and air, respectively. In this way, the continuity of tangential component of H and

normal component of B is satisfied automatically. The boundary conditions for the entire

computational domain are

∂ψ

∂n
= 0 on the boundary of the entire computational domain (2.10)

ψ = 0 at the center of the top boundary (2.11)

where n is the outward unit normal vector of the boundary. While the physical domain of

the magnetic field is infinitely large, the computational domain must be limited to a finite

size. To determine the proper size of the computational domain, domain sizes that are 5,

8, 10, 15 and 20 times as large as the rectangular space occupied by the tank and magnets

are used to calculate ψ. It is found that the result has converged for the 10-time-large

domain. The norm difference in ψ between the 10-time-large and 20-time-large domains is

within 1.5%. Thus the 10-time-large domain is taken to be the computational domain for

all subsequent calculations.

In the dynamic computational analysis, the time-varying magnetic scalar potential

ψ is computed by solving Eq. (2.9) at each time step of the ferrofluid motion. Once ψ in

the entire domain and the magnetization M in the ferrofluid are obtained at each time step,

the electromotive force can be obtained using the integral form of Eq. (2.3), i.e. Faraday’s
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law of induction in this work. For one turn of coil [57],

ε = −dΦB

dt
(2.12)

where ε is the electromotive force, ΦB the magnetic flux. Both horizontal and vertical coil

windings are considered. For Nturns horizontal turns of coil uniformly wound around the

tank, ε is obtained from Eq. (2.12) as

ε = − d

dt

[

Nturns

Ht

∫ Ht/2

−Ht/2

(

∫ Wt/2

−Wt/2

∫ Lt/2

−Lt/2

Bydxdz

)

dy

]

= −NturnsWt

Ht

d

dt

(
∫

Ωt

BydΩ

)

(2.13)

where Lt, Ht, and Wt are the length, height, and width of the tank, respectively. Ωt is

the 2-D domain in the xy plane inside the tank, and By the y-component of B. Using the

central difference scheme for the time derivative, ε at a time step tn+1/2 is calculated as

εn+1/2 ≈ − NturnsWt

Ht(tn+1 − tn)

[

(
∫

Ωt

BydΩ

)n+1

−
(
∫

Ωt

BydΩ

)n
]

(2.14)

and

∫

Ωt

BydΩ = µ0

∫

Ωt

(Hy +My) dΩ = µ0

∫ Lt/2

−Lt/2

(ψ−Ht/2−ψHt/2)dx+µ0

∫

Ωt

MydΩ (2.15)

where Hy and My are the y-component of H and M, respectively.

For Nturns vertical uniform turns, ε is calculated by

εn+1/2 ≈ − NturnsWt

Lt(tn+1 − tn)

[

(
∫

Ωt

BxdΩ

)n+1

−
(
∫

Ωt

BxdΩ

)n
]

(2.16)

with
∫

Ωt

BxdΩ = µ0

∫ Ht/2

−Ht/2

(ψ−Lt/2 − ψLt/2)dy + µ0

∫

Ωt

MxdΩ (2.17)

16



where Hx and Mx are the x-component of H and M, respectively.

After the system reaches the steady state, the root-mean-square (RMS) value of

electromotive force at each excitation angular frequency ω is calculated by

εrms(ω) =

√

√

√

√

1

tN2 − tN1

N2−1
∑

n=N1

[(εn+1/2)2(tn+1 − tn)] (2.18)

where N1 and N2 are the start and end time step index of the sample region for RMS value

calculation, respectively. For each frequency, the sample region is different. N1 and N2

satisfy

tN1 =
2πNcycle1

ω
, tN2 =

2πNcycle2

ω
(2.19)

where Ncycle1 and Ncycle2 are the start and end excitation cycle index of the sample region,

respectively. Ncycle1 and Ncycle2 are taken as 3 and 12 for all simulations, respectively. For

experiments, 10 excitation cycles are used for the sample region following the initial fixed

tN1 = 20 seconds. In all the following sections, the rms superscript on ε is omitted for

simplicity.

2.2.1.2 Navier-Stokes equations for fluid dynamics in the tank

Both the ferrofluid and air in the tank are described by the Navier-Stokes and con-

tinuity equations for incompressible flow [58, 59]. These are:

ρ

(

∂V

∂t
+V · ∇V

)

= −∇P +∇ · η[∇V + (∇V)T ] + µ0M · ∇H− ρg + fb − σκ∇H(f)

(2.20)

∇ ·V = 0 (2.21)
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where V is the velocity, P the pressure, ρ the density, η the shear viscosity, and g the

gravitational acceleration. Here, ρ and η are constant in each phase but jump at the liquid-

gas interface. The term µ0M · ∇H is the magnetic body force due to magnetization of

the ferrofluid. The term −σκ∇H(f) is the surface tension force applied on the liquid-gas

interface, where σ is the surface tension coefficient, κ the local curvature, f the volume

fraction taken by the liquid, and H(f) a Heaviside step function of f . Assuming the base

excitation acceleration ab is a harmonic function given by ab = −a0 cos(ωt), the inertial

force fb on the fluid due to the external base excitation can be written as

fb = −ρab = ρa0 cos(ωt) (2.22)

where a0 is the amplitude of the base acceleration and ω is its angular frequency. Finally,

the boundary conditions on Eqs. (2.20, 2.21) are given by

V = 0 on the boundary of the tank (2.23)

P = 0 at the center of the tank top edge. (2.24)

2.2.2 Finite element formulation and implementation

Having defined all the governing equations necessary to model the dynamics of

the system, a finite element (FE) model is formulated and implemented in our in-house

code written in C++. In the FE model, the magnetic field distribution is obtained by

solving the magnetic scalar potential equation using the Galerkin method. The velocity

field of the fluid is obtained by solving the Navier-Stokes and continuity equations using

the streamline-upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-Galerkin

(PSPG) methods. The Volume of Fluid (VOF) method is employed to track the liquid-gas

interface. The sharp surface tension force model (SSF) is employed along with the height
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function method to capture the influence of surface tension. This section contains the de-

tails of the formulation and implementation of the FE model. The FE model results in a

system of algebraic equations. Approximate values of the unknowns can be calculated at

finite number of discrete points over the computational domain.

2.2.2.1 Magnetic field

The Galerkin Method of Weighted Residuals [60] is applied to obtain the weak form

of the magnetic scalar potential equation. Multiplying Eq. (2.9) by the variation of ψ, i.e.

δψ, and integrating it in the entire domain give

∫

Ω

δψ∇ ·
[

(1 + χ)∇ψ − 1

µ0
B0

]

dΩ = 0 (2.25)

Separating the air, liquid and magnet regions of the domain, and applying the Green’s

formula, Eq. (2.25) can be rewritten as

∫

Ω

∇δψ ·∇ψdΩ+

∫

Ωliq

∇δψ ·χ∇ψdΩ−
∫

Ωmag

∇δψ · 1

µ0
B0dΩ−

∫

Γ

δψ
∂ψ

∂n
dΓ = 0 (2.26)

where Ω is the entire domain of magnetics, Ωliq the domain of elements containing fer-

rofluid, Ωmag the domain of magnets, and Γ the boundary of the entire domain. Equation

(2.26) is the weak form of the governing equation. The domain of magnetodynamics is

then divided into a mesh of quadratic quadrilateral elements. Note that, χ is discontinuous

across the liquid-gas interface (χ = 0 in the air). Since the liquid-gas interface moves

constantly during sloshing, typically, the elements that intersect the liquid-gas interface are

partially filled with ferrofluid. For these elements, the second term given in Eq. (2.26)

should be rewritten as the integral of an averaged value χ̄, i.e.
∫

Ωe
interface

∇δψ · χ̄∇ψdΩ,

where Ωe
interface denotes a transition element e at the liquid-gas interface. To calculate
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χ̄ for the transition elements, two interpolation schemes, namely the weighted arithmetic

mean interpolation (WAM) and weighted harmonic mean interpolation (WHM) schemes,

are investigated. The WAM and WHM interpolation schemes were used to interpolate di-

electric permittivity of different dielectric fluids over their interface [61]. Using WAM, the

effective permeability in the transition element is obtained as

µ̄ = µ1f + µ2(1− f) (2.27)

and using WHM,

1

µ̄
=

f

µ1
+

1− f

µ2
(2.28)

where the subscripts 1 and 2 represent ferrofluid and air, respectively, and f is the vol-

ume fraction of ferrofluid in the transition element. Note that, in the dynamic analysis,

the liquid-gas interface is tracked and f is computed for the transition elements by using

the Volume of Fluid method which is described in details in Sec. 2.2.2.3. The numeri-

cal performances of the two interpolation schemes are tested in the current ferrofluid en-

ergy harvester model. It is found that WHM gives better agreement between computed

electromotive forces and experimental results. Similar finding is also described in Ref.

[61]. Therefore, WHM is adopted for the calculation of χ̄. Substituting µ̄ = µ0(1 + χ̄),

µ1 = µ0(1 + χ1), and µ2 = µ0 into Eq. (2.28) gives

χ̄ =
fχ1

1 + (1− f)χ1

(2.29)

Solving Eq. (2.26) with (2.29) for ψ requires approximation of the unknown quan-

tities within each element using the Lagrange interpolation

ψ(x, y) =

nen
∑

k=1

Nk(x, y)ψk (2.30)
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where nen is the number of nodes in an element, Nk(x, y) is the shape function associated

with node k in the element, and ψk is the value of ψ at node k. For quadratic elements,

nodes are on the vertices and edges of the elements. The partial derivatives of ψ are ex-

pressed as

∂ψ(x, y)

∂x
=

nen
∑

k=1

∂Nk(x, y)

∂x
ψk,

∂ψ(x, y)

∂y
=

nen
∑

k=1

∂Nk(x, y)

∂y
ψk (2.31)

As the same Lagrange interpolation is used for δψ, the weighting function δψ in the weak

form can be equivalently expressed using the shape functions of the elements. For each

element, the integrals in Eq. (2.26) are then evaluated using numerical integration and

expressed in the form of discretized element equations in terms of the unknown nodal ψk,

k = 1, 2, ..., nen. The global system, which is a linear system of algebraic equations in this

case, can be obtained by assembling all the element equations as

Kψ = f (2.32)

whereψ is the global vector of the unknown nodal ψ at all nodes. The matrix K is obtained

from the first and second integrals in Eq. (2.26), whereas f from the third integral and the

natural boundary condition. After applying the essential boundary condition Eq. (2.11),

the linear system can be solved and all the unknown nodal ψ can be obtained.

ψ obtained from the solution of Eq. (2.32) can only result in averaged or smeared

value H̄ in the transition elements. However, H1 and M1 are required in the transition

elements for electromotive force and magnetic body force calculation. Since M2 = 0, and

M̄ = fM1 + (1− f)M2 = fM1, we obtain

M1 =
M̄

f
=

χ1

1 + (1− f)χ1

H̄ (2.33)
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Also from M1 = χ1H1, we have

H1 =
M1

χ1

=
1

1 + (1− f)χ1

H̄ (2.34)

2.2.2.2 Sloshing dynamics

We obtain the weak form of the Navier-Stokes equations and continuity equation

by using the streamline-upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-

Galerkin (PSPG) methods as [62]

∫

Ω

w ·
[

ρ

(

∂V

∂t
+V · ∇V

)

− f

]

dΩ +

∫

Ω

ǫ(w) : TdΩ+

∫

Ω

q∇ ·VdΩ

+

ne
∑

e=1

∫

Ωe

(

τSUPGV · ∇w + τPSPG
1

ρ
∇q
)

·
[

ρ

(

∂V

∂t
+V · ∇V

)

−∇ ·T− f

]

dΩ

+
ne
∑

e=1

∫

Ωe

τLSIC∇ ·wρ∇ ·VdΩ =

∫

Γ

w · tdΓ (2.35)

where

T = −P I+ η[∇V + (∇V)T ] (2.36)

f = µ0M · ∇H− ρg + ρa0 cos(ωt)− σκ∇H(f) (2.37)

w and q denote weighting functions for velocity V and pressure P , respectively. Other

variables include T-stress tensor, ǫ-strain tensor, f-body force, t-surface traction on the

boundary, τSUPG-SUPG stabilization parameter, τPSPG-PSPG stabilization parameter, and

τLSIC-least-squares on incompressibility constant (LSIC) stabilization parameter. The av-
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eraged ferrofluid density and viscosity in transition elements are defined as

ρ̄ = fρ1 + (1− f)ρ2 (2.38)

η̄ = fη1 + (1− f)η2 (2.39)

The two element-level integrals in the formulation are the SUPG+PSPG stabilization terms

for the momentum equation and least-squares stabilization term for the continuity equation,

respectively. The coefficients are given as [62]

τSUPG =

[

(

2

∆t

)2

+

(

2|V|
he

)2

+

(

4ν

h2e

)2
]− 1

2

(2.40)

τPSPG = τSUPG (2.41)

τLSIC =
he
2
|V|z(Ree) (2.42)

where ν-kinematic viscosity, he-element length, Ree-element Reynolds number. he and

Ree are defined as

he = 2|V|
(

nen
∑

k=1

|V · ∇Nk|
)−1

(2.43)

Ree =
|V|he
2ν

(2.44)

The function z(Ree) is defined as

z(Ree) =















Ree/3, Ree ≤ 3

1, Ree > 3

(2.45)

The finite element discretization of the weak form of the Navier-Stokes equations

follows a similar procedure as described for the magnetic analysis. Linear elements are
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used to solve the Navier-Stokes and continuity equations. The quadratic elements inside

the tank for magnetic analysis are converted to linear elements for sloshing dynamics anal-

ysis by taking only the vertices (neglecting the edge nodes). In this way, the magnetic and

sloshing dynamics analyses share the same mesh in the tank. After the standard FE dis-

cretization, the weak form can be rewritten in a matrix form similar to that obtained in Ref.

[63]:

(M+Ms)a+ [C(v) +Cs(v)]v + (D−Ds +Bc)v − [G−Gs]p = f + fs (2.46)

GTv +Mpa+Cp(v)v −Dpv +Gpp = fp (2.47)

where v, a and p are the vectors of unknown nodal values of velocity, acceleration and

pressure, respectively. The matrices M, C(v), D and G are derived from mass, convec-

tive, viscous and pressure terms, respectively. f is related to the body forces and natural

boundary conditions. The subscripts s and p represent terms derived from SUPG stabiliza-

tion terms and PSPG stabilization terms, respectively. Bc is obtained from the least-squares

stabilization term.

In the dynamic analysis, the predictor-corrector algorithm is used to solve for un-

known variables at time tn+1 from tn [64]. The first step is to calculate the predicted values

v
(0)
n+1, p

(0)
n+1 using values from tn and set a

(0)
n+1, ṗ

(0)
n+1 zero. At the (i + 1)th iteration, the

weak form is written in an incremental form and ∆a(i) and ∆p(i) are calculated. When

∆a(i), ∆p(i) are obtained, predicted values are updated accordingly. Since the acceleration

is zero at the first iteration, at least 2 iterations are required to take into consideration the

effect of mass matrix.
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2.2.2.3 Liquid-gas interface model

The Volume of Fluid (VOF) method [65] is used to capture the liquid-gas interface.

A fixed mesh system is adopted so that no re-meshing is required. The fluids on either side

of the interface are marked by volume fraction f (or fractional volume, color function).

The VOF method is based on a transport equation of f

∂f

∂t
+V · ∇f = 0 (2.48)

where f is defined such that it is 1 at any point occupied by liquid and 0 elsewhere. If the

flow field is incompressible, i.e. ∇ ·V = 0, Eq. (2.48) can be rewritten as

∂f

∂t
+∇ · (Vf) = 0 (2.49)

While ∇f is physically singular across the moving boundary, it becomes finite in the nu-

merical solution. The phenomenon is known as ”false numerical diffusion”. One of the

schemes to suppress the numerical smearing is the volume flux based scheme. Integration

of the transport equation and discretization by an explicit scheme give [66]

fn+1
i,j = fn

i,j +
∆t

∆x
(F n

i−1/2,j − F n
i+1/2,j) +

∆t

∆y
(Gn

i,j−1/2 −Gn
i,j+1/2) (2.50)

where i and j denote the column and row indices of an element, respectively. Fi−1/2,j =

(fu)i−1/2,j denotes the flux across the left edge of element (i, j) and Gi,j−1/2 = (fv)i,j−1/2

the flux across the bottom edge, etc. The geometric interpretation of fluxes is shown in Fig.

2.3. The averaged value of f would then represent the fractional volume taken by liquid in

one element.

The simplest way to determine the interface position in an element is the simple
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u Δt

Figure 2.3: The liquid to the right of the dotted line crosses the right element edge. In

VOF/PLIC, the outflow volume can be determined after the interface is reconstructed.

line interface calculation (SLIC) [65]. A more accurate method is to construct the interface

with piecewise linear segments by using the interface normal direction and the value of f .

The method is known as the piecewise linear interface calculation (PLIC) method [66–70].

In the method, the normal vector of the interface m is estimated by

m = ∇f (2.51)

In numerical implementation, taking a 3×3 block centered at element (i, j), mi,j is com-

puted through averaging the values of m at the corners of element (i, j). For example

at position (i + 1/2, j + 1/2), which is the top right corner of element (i, j), we use the

following formulae similar to Ref. [71]

mx,i+1/2,j+1/2 =
(fi+1,j − fi,j)∆yj + (fi+1,j+1 − fi,j+1)∆yj+1

2∆yj+1/2∆xi+1/2

(2.52)

my,i+1/2,j+1/2 =
(fi,j+1 − fi,j)∆xi + (fi+1,j+1 − fi+1,j)∆xi+1

2∆xi+1/2∆yj+1/2

(2.53)

where ∆xi and ∆yj are the length and width of element (i, j). ∆xi+1/2 and ∆yj+1/2 are

defined as ∆xi+1/2 = 1
2
(∆xi + ∆xi+1) and ∆yj+1/2 = 1

2
(∆yj + ∆yj+1). The required
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element-centered value is the average of vertex values

mi,j =
1

4
(mi+1/2,j+1/2 +mi+1/2,j−1/2 +mi−1/2,j+1/2 +mi−1/2,j−1/2) (2.54)

When the element (i, j) is at the boundary or corner, a 2×3, 3×2 or 2×2 block is used

depending on the element location.

When the interface normal vector m and volume fraction f are known, the position

of the linear interface segment inside every transition element can be found [68]. We first

rotate the coordinate system in each transition element to make the normal vector m point

to the right or top right direction as in Fig. 2.4.
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4

1
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4

(b)

Figure 2.4: Elements to be rotated in order to have the interface normal vectorm pointing to

the (a) right direction or (b) top right direction. The numbers put in the squares demonstrate

the new start edge of the elements. The new elements have the 1st edge on the left.

The cases in Fig. 2.4a are trivial. The interface position for the cases in Fig. 2.4b

can be obtained as follows. Figure 2.5 shows a rectangular element having an interface line

with a normal vector m. Assuming the components of m, mx and my, are both positive
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after the coordinate transformation, a general equation for the straight interface line is

mxx+myy = αm (2.55)

where αm is related to the distance between the line and the origin. The liquid area below

the interface line within the rectangular element can be written as

S =
α2
m

2mxmy

[

1−H(αm −mx∆x)

(

αm −mx∆x

αm

)2

−H(αm −my∆y)

(

αm −my∆y

αm

)2
]

(2.56)

where α2
m/2mxmy is the area of triangle AEH. If point E is to the right of B, the area of the

small triangle BEF should be subtracted, which explains the 2nd term. Since triangle BEF

is geometrically similar to triangle AEH, there is

Area of BEF

Area of AEH
=

(

αm/mx −∆x

αm/mx

)2

=

(

αm −mx∆x

αm

)2

(2.57)

Similarly, the 3rd term is the area of the triangle DGH subtracted when point H lies above

D. As the liquid area in one element is the multiplication of the total area A and volume

fraction f , the position of the linear interface segment depends solely on αm when f and m

are known. Between any two closest critical volume fractions, Eq. (2.56) is a determined

polynomial function of αm whose roots can be solved analytically. Let fw denote the edge

wet ratio, which is the ratio of the wet region length on one edge to the total length of the

edge. The correct solution should be able to give four reasonable fw values which satisfy

0 ≤ fw ≤ 1 .

The detailed formulas to calculate αm and fw are derived for all cases in Fig. 2.6 as

follows.
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Δx

α/mx

Δy

α/my

A B

CD
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F

G

H

y

x

m

Figure 2.5: Polygon ABFGD is the liquid portion in one element. The location of the

interface is determined by the volume fraction f and interface normal vector m.

case 1 case 2 case 3

case 4-1 case 4-2 case 4-3 case 4-4

Figure 2.6: Elements are divided into 4 categories to calculate edge wet ratios based on the

volume fraction, interface normal vector components and distance between the interface

and the origin.

(1) When f = 1, fw1 = fw2 = fw3 = fw4 = 1

(2) When f = 0, fw1 = fw2 = fw3 = fw4 = 0

(3) When 0 < f < 1 and my = 0 (which means the interface is parallel to edge 1),

fw1 = 1, fw2 = fw4 = f, fw3 = 0

(4) When 0 < f < 1, and mx > 0 and my > 0

(4-1) Suppose αm/mx ≤ ∆x and αm/my ≤ ∆y. Then Eq. (2.56) becomes Af =
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α2
m

2mxmy
, and we have

αm = (2Afmxmy)
1/2 (2.58)

fw1 =
αm

my∆y
, fw2 =

αm

mx∆x
, fw3 = fw4 = 0 (2.59)

Check if αm/mx ≤ ∆x, αm/my ≤ ∆y, fw1 ≤ 1, fw2 ≤ 1 are satisfied.

(4-2) Suppose αm/mx > ∆x and αm/my > ∆y

Af =
α2
m

2mxmy

[

1−
(

αm −mx∆x

αm

)2

−
(

αm −my∆y

αm

)2
]

(2.60)

Af =
1

2mxmy

[

α2
m − (αm −mx∆x)

2 − (αm −my∆y)
2]

(2.61)

− 1

2mxmy
α2
m +

mx∆x+my∆y

mxmy
αm −

m2
x∆x

2 +m2
y∆y

2

2mxmy
− Af = 0 (2.62)

Let

a = − 1

2mxmy
, b =

mx∆x+my∆y

mxmy
, c = −

m2
x∆x

2 +m2
y∆y

2

2mxmy
−Af, ∆ = b2−4ac

(2.63)

Since αm > 0, we have

αm =
−b+

√
∆

2a
(2.64)

Since we also have BF = BE
AE
AH , then

fw3 =
αm/mx −∆x

αm/mx

αm/my

∆y
=

(αm/mx −∆x)mx

my∆y
(2.65)

Similarly,

fw4 =
(αm/my −∆y)my

mx∆x
(2.66)

Check if ∆ > 0, αm/mx > ∆x, αm/my > ∆y, fw3 ≤ 1 and fw4 ≤ 1 are satisfied.
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(4-3) Suppose αm/mx > ∆x and αm/my ≤ ∆y

Af =
α2
m

2mxmy

[

1−
(

αm −mx∆x

αm

)2
]

(2.67)

1

2mxmy
[2mx∆xαm −m2

x∆x
2] = Af (2.68)

αm =
2mxmyAf +m2

x∆x
2

2mx∆x
(2.69)

fw1 =
αm

my∆y
, fw2 = 1, fw3 =

(αm/mx −∆x)mx

my∆y
, fw4 = 0 (2.70)

check if αm/mx > ∆x, αm/my ≤ ∆y, fw1 ≤ 1 and fw3 ≤ 1 are satisfied.

(4-4) Suppose αm/mx ≤ ∆x and αm/my > ∆y, similar to (4-3)

αm =
2mxmyAf +m2

y∆y
2

2my∆y
(2.71)

fw1 = 1, fw2 =
αm

mx∆x
, fw3 = 0, fw4 =

(αm/my −∆y)my

mx∆x
(2.72)

Check if αm/mx ≤ ∆x, αm/my > ∆y, fw2 ≤ 1, and fw4 ≤ 1 are satisfied.

After the four edge wet ratios are obtained, each element is assigned an element

type according to the shape of the liquid portion as in Fig. 2.7. Cases (3), (4-3), (4-4) are

combined into one element type. For case (4-3), we need to rotate the coordinate system

again to ensure the edge with a wet ratio of 1 to be the first edge.

Next, using the velocity field and the location of interface in each partially-filled

element, new f is determined at the new time step. The advection algorithm is used to

evolve f in time. We divided all elements into three categories similar to those given in
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type A type B type C

type D type E

Figure 2.7: Elements are re-divided into 5 types according to the shape of the liquid portion.

Ref. [69]






























internal element (f = 1, Q̇net = 0)

active element (0 ≤ f ≤ 1, Q̇net 6= 0)

external element (f = 0, Q̇net = 0)

(2.73)

where Q̇net is the net flux. Only active elements’ volume fractions need to be updated.

Internal and external elements will keep their volume fractions. The active elements are

further categorized into three types, (1) partially-filled elements, (2) full elements with

at least one partially-filled or empty neighbor element, and (3) empty elements with at

least one partially-filled or full neighbor element. It is important to point out that, for the

FE formulation of the Navier-Stokes equations given in Eq. (2.35), the fluid mass is not

necessarily conserved in the active elements, i.e. ∇ · V 6= 0. To add the correction, the

original transport equation of f Eq. (2.48) is rewritten as

∂f

∂t
+∇ · (Vf) = f∇ ·V (2.74)
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The operator split method for the advection [66] is adopted for Eq. (2.74):

ft + (fu)x = fux (2.75)

ft + (fv)y = fvy (2.76)

For the element (i, j), in order to maintain conservation of f , it is necessary to discretize f

implicitly on the right hand side of Eq. (2.75) and explicitly on the right hand side of Eq.

(2.76) as [66]

f̃i,j =
fn
i,j +

∆t
∆x

(Fi−1/2,j − Fi+1/2,j)

1− ∆t
∆x

(ui+1/2,j − ui−1/2,j)
(2.77)

fn+1
i,j = f̃i,j +

∆t

∆y
(G̃i,j−1/2 − G̃i,j+1/2) + f̃i,j

∆t

∆y
(vi,j+1/2 − vi,j−1/2) (2.78)

where the tilde sign indicates the intermediate values of f and fluxes. After f̃i,j is deter-

mined from Eq. (2.77), the intermediate interface is constructed and vertical fluxes are

calculated with the intermediate interface location. Then fn+1
i,j at the new time level is de-

termined from Eq. (2.78). This procedure can be made second-order accurate simply by

alternating the sweep direction at each time step [66].

The procedure for the Volume of Fluid method is as follows. (1) Determine a proper

time step. (2) Mark full, empty and partially-filled elements. (3) For full and empty ele-

ments, obtain the edge wet ratios directly. For partially-filled elements, estimate the in-

terface normal vector in each element. (4) Compute edge wet ratios of partially-filled

elements. (5) Mark internal, external and active elements. (6) Compute
ui+1/2,j−ui−1/2,j

∆x
or

vi,j+1/2−vi,j−1/2

∆y
in all active elements depending on the direction in which the sweep oc-

curs. (7) Compute edge outflow volumes in all active elements and their neighbors in the

1st direction (edge inflow volumes of active elements are set as edge outflow volumes of

their neighbor elements). (8) Obtain intermediate volume fractions. (9) Repeat (2-6). (10)
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Compute edge outflow volumes in all active elements and their neighbors in the 2nd di-

rection. (11) Obtain volume fractions at new time. (12) Redistribute any volume fraction

undershoots or overshoots.

2.2.2.4 Surface tension model

The surface tension term −σκ∇H(f) in the FE formulation is implemented using

the sharp surface tension force model (SSF) [59, 72]. Surface tension forces acting on the

interface are transformed into volume forces in partially-filled elements at the gas-liquid

interface. In this approach, one single model for the two-phase flow is adequate and the

added volume forces will enforce the discontinuous interfacial condition in pressure. While

the SSF models described in Refs. [59, 72] were derived in finite difference formulation

(FD) with either VOF/reconstructed distance function (RDF), or coupled level set and vol-

ume of fluid (CLSVOF) for interface tracking, in this work, we reformulate the model in

FE implementation with VOF for interface tracking. Figure 2.8 illustrates the difference.

In the FD implementation shown in Fig. 2.8a, Ref. [59] considers an vertical interface be-

tween cells (i, j) and (i+ 1, j) with liquid on the right and gas on the left, and the surface

tension force is obtained as

fSSFi+1/2,j = −σκi+1/2,j
H(φ)i+1,j −H(φ)i,j

∆x
(2.79)

where φ is the level set function, H(φ) the Heaviside step function, and κi+1/2,j the edge

curvature value interpolated from cell centers. In this work as shown in Fig. 2.8b, however,

the values of the Heaviside functionH(f) are set at element vertices instead of centers, and

the surface tension force is calculated as a function of f at the center of the element (i, j)

as

fSSFi,j = −σκi,j∇H(f)i,j (2.80)
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where the ∇H(f)i,j is evaluated with the derivatives of shape functions.

(i, j) (i+1, j)(i+1/2, j)

Δx

Δy

Δx

Gas Liquid

H(φ)i+1,j=1H(φ)i,j=0

Interface

(a)

(i, j)

Δxi

Δyj

Gas LiquidInterface

H(f)1=1

H(f)4=1H(f)3=0

H(f)2=0

fi,j

(b)

Figure 2.8: Schematic diagrams showing how SSF is evaluated in (a) FD formulation and

(b) FE formulation with the interface between gas (left) and liquid (right).

The accuracy of surface tension force depends on the curvature estimation. The

height function method [73], in which the curvature is constructed based on sums of volume

fractions, has been shown to be able to give second order convergence rate [74]. The height

function algorithm is given in the following [73].

1. A 3x7 stencil is employed for 2-D cases. The stencil is centered at the element in

which the curvature should be estimated and aligned in the direction of the larger

component of the interface normal vector m.

2. Create 3 height functions in the y direction by summing volume fractions of each

column

hi,j =

j+3
∑

j−3

fi,j∆yj (2.81)

3. The curvature is evaluated as

κ =
hxx

(1 + h2x)
3/2

(2.82)

where hx and hxx are estimated with finite difference formulations.
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In many cases the stencil does not need to be so high, whereas other cases may require

more elements in the y direction in order to obtain an accurate curvature. Thus a local

asymmetric stencil is built adapted to the interface geometry shown in Fig. 2.9a: a 1x3,

1x4 and 1x5 stencil for the left, central and right column, respectively. In some cases the

direction ”best aligned” with m will not give an curvature value, then the 2nd direction will

be tried.

(a)

?

? ?

?

(b)

Figure 2.9: (a) Asymmetric stencils are built independently for each column (solid lines)

to estimate the curvature. (b) In this case for both horizontal and vertical stencils, only 2

out of 3 interface positions can be obtained.

Sometimes even for a moderately curved interface, the height functions can not be

constructed. As shown in Fig. 2.9b, both the horizontal and vertical estimations fail, even

though the mesh is not very coarse as the radius of curvature of the interface is around 4∆.

However, a combination of both stencils can give 4 average interface positions (the circles

in Fig. 2.9b). Fitting a parabola through these points and differentiating the analytical

function will give an estimate of the curvature. Given an element and n interface positions

[x1, ...,xn], the parabola-fitting procedure is listed below [73].

1. If the number of independent interface positions is smaller than 3, return an error.
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Two interface positions xi and xj are considered independent if |xi − xj | ≥ ∆,

which will ensure that the minimization problem is well-conditioned.

2. At the center o of the reconstructed interface fragment in the element, define an

orthonormal coordinate system R ≡ [o, i′,m].

3. Compute the transformed coordinates [x′
1, ...,x

′
n] of the interface positions.

4. Fit a parabola by minimizing

F (a) ≡
∑

1≤k≤n

[y ′
k
− f (a, x ′

k
)]2 (2.83)

with

f(a, x) ≡ a0x
2 + a1x+ a2 (2.84)

5. The mean curvature at the origin o of R is

κ ≡ 2a0
(1 + a21)

3/2
(2.85)

If the number of independent interface positions given by height-function estima-

tion is less than 3, the centers of the reconstructed interface fragments in each element of

the 3x3 stencil will be taken as the new set of interface positions. Then the parabola-fitting

procedure will be repeated to obtain the curvature. If enough independent positions can

still not be found, the curvature will be simply set as zero.

2.2.2.5 Flow chart

The procedure for the entire FE implementation is shown in the flow chart in Fig.

2.10. The liquid-gas interface tracking, magnetic scalar potential equation, and Navier-
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Y

N

Figure 2.10: Flow chart showing the algorithms of the FE model.

Stokes equations are weakly and sequentially coupled in time. At each time step, first,

the volume fraction f is updated at the element centers and nodes based on the previous

liquid-gas interface location and velocity field V, and then the interface is reconstructed

for the current time step. The interface curvature κ and surface tension force are calculated

at partially-filled element centers. Second, ψ and H are calculated throughout the entire

domain based on the new liquid-gas interface. M and magnetic body force are calculated at

the nodes of the elements containing ferrofluid (including partially-filled elements). Then

the RMS electromotive force ε is calculated from ψ and M. Third, the Navier-Stokes
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equations are solved through a nonlinear iteration to obtain the velocity V and pressure P

fields inside the tank. The procedure is repeated for the next time step until the prescribed

simulation time is reached.

2.3 Results and Discussion

2.3.1 Model validation

Before we delve into delineating the influence of the design parameters on the per-

formance of the system, we need to validate the computational model. To this end, we

obtain the magnetic and sloshing characteristics of the ferrofluid in the tank using the pro-

posed FE model and compare the results to experimental data and other theoretical or com-

putational results available in the literature.

2.3.1.1 Magnetic flux density distribution

By using the FE formulation of the magnetic scalar potential equation, the mag-

netic flux density distribution is calculated in a rectangular domain with two permanent

magnets as shown in Fig. 2.2. The two permanent magnets are placed 18.16 cm apart and

the north poles of the magnets are facing each other. The dimensions of the magnets are

30.48×2.45×1.27 cm3. The typical remanent magnetic flux density of a ferrite magnet is

0.38 T [57]. Keep in mind that the FE model is two-dimensional and hence the numerical

scheme provides the B distribution in the xy plane under the assumption that the magnets

have an infinite length in the z direction. In the experimental setup, lz ≫ lx and lz ≫ ly

are ensured and it can be seen in Fig. 2.11a that Bx is almost uniform along y = 0 from

z = −7.62 cm to z = 7.62 cm, which indeed illustrates that magnetic analysis can be

simplified into a 2-D problem. The calculated and measured Bx values match quite well
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as shown in Fig. 2.11b. Thus, the 2-D FE model is sufficient and accurate to capture the

magnetic behavior of the energy harvesting system.
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Figure 2.11: (a) Zoomed experimental results of Bx at y = 0 along the x direction from

z = −7.62 cm to z = 7.62 cm between two permanent magnets with north poles facing

each other. (b) Comparison of FEA and averaged experimental results ofBx at y = 0 along

the x direction.

2.3.1.2 Sloshing dynamics

Two sloshing problems are considered to verify the FE implementation of the Navier-

Stokes equations, continuity equation and Volume of Fluid (VOF) method used in the FE

analysis. First, we consider a case of small-amplitude sloshing in which the same configu-

ration as the one discussed in Ref. [75] is analyzed. The dimensions of the tank are chosen

as length Lt = 0.2 m, height Ht = 0.2 m. The depth of liquid D is 0.1 m. The densities of

water and air are set as ρ1 = 1000 kg/m3 and ρ2 = 1.29 kg/m3, respectively. Inviscid flow

is assumed in this case. The excitation has a form of xb(t) = A0 sin(ωt) with the amplitude

A0 = 0.186 mm and frequency ω = 0.999ω0. A 100×80 element mesh is used with denser

elements arranged near the interface. The prescribed time step ∆t is set to be 0.0005 s.

Results of the computational model are compared to the linearized analytical solu-
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tion obtained by Faltinsen’s [75] in which the wave elevation can be obtained using

ξ = ξ1 + ξ2 (2.86)

where

ξ1 =
A0

g

(

xω2 +

∞
∑

m=0

Cmω sin kmx

)

sinωt (2.87)

ξ2 = −A0

g

∞
∑

m=0

ωm

(

Cm +
Hm

ω2

)

sin kmx sinωmt (2.88)

km =
2m+ 1

Lt
π ω2

m = gkm tanh kmD (2.89)

Hm = ω3 4

Lt

(−1)m

k2m
Cm =

Hm

ω2
m − ω2

(2.90)

where g denotes the gravitational acceleration. The time history of non-dimensional inter-

face elevation at x = −Lt/2 is shown in Fig. 2.12a. It is evident that the FE result agrees

well with the analytical result.
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Figure 2.12: (a) FEA and analytical results of time history of interface elevation at x =
−Lt/2 for small amplitude sloshing. (b) FEA, experimental [5] and analytical results of

time history of interface elevation at x = 0.265 m for large amplitude sloshing.

Next, the configuration described in Ref. [5] is adopted for large amplitude slosh-
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ing. The tank has a length of 0.57 m, height of 0.3 m and water depth of 0.15 m. The

densities and viscosities of water and air are set as ρ1 = 1000 kg/m3, ρ2 = 1.29 kg/m3,

η1 = 1 mPa·s and η2 = 0.01837 mPa·s, respectively. The displacement of shaker is

xb(t) = −A0 sin(ωt) with A0 = 5 mm and ω = ω0. A 114×70 mesh refined near the

interface is used in this case. Time step ∆t is taken as 0.001 s. The time history of non-

dimensional interface elevation at position 20 mm from the right side wall of the tank is

shown in Fig. 2.12b. The result shows that, while the analytical solution fails to capture the

nonlinear characteristics of large amplitude sloshing, the numerical result obtained from

using the FE model agrees well with the experimental data from Ref. [5].

2.3.1.3 Capillary wave

To verify that the FE implementation can properly capture the surface tension force,

the FE result is compared to the analytical solution for a small amplitude damped capillary

wave problem between two superposed fluids of identical density and kinematic viscos-

ity [68, 73, 76–78]. The configuration given in Ref. [78] is used in this case. The domain is

a 2π×2π square box divided vertically in 2 parts. A cosinoidal disturbanceA(t)t=0 cos(x)

of wavelength λ = 2π and amplitude A(t)t=0 = A0 = 0.01λ is applied to the flat inter-

face between the two fluids. The non-dimensional parameters are given as ρ1 = ρ2 = 1,

ν1 = ν2 = 0.064720863 and σ = 2. Periodic boundary conditions are used in the x di-

rection and slip conditions in the y direction. The FE simulation is performed with a mesh

of 128×128 elements and ∆t of 0.003. Results are compared to the analytical solution

obtained by Prosperetti [78]

A(t) =
4(1− 4β)ν2

8(1− 4β)ν2 + ω2
0

A0erfc
√
νt +

4
∑

i=1

zi
Zi

ω2
0A0

z2i − ν
exp [(z2i − ν)t]erfc(zi

√
t) (2.91)
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where zi are roots of

z4 − 4β
√
νz3 + 2(1− 6β)νz2 + 4(1− 3β)ν3/2z + (1− 4β)ν2 + ω2

0 = 0 (2.92)

and

β =
ρ1ρ2

(ρ1 + ρ2)2
ω0 =

√

σ

ρ1 + ρ2
Zi =

4
∏

j=1,j 6=i

(zj − zi) (2.93)

Figure 2.13 shows the temporal evolution of the non-dimensional elevation at the center of

the interface. The FE result agrees well with the analytical result.
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Figure 2.13: FE and analytical results of temporal evolution of the amplitude of a capillary

wave.

2.3.2 Numerical results of ferrofluid based energy harvesting

Having individually validated the electromagnetic and sloshing fluid dynamics mod-

els in Sec. 2.3.1, in this section, the coupled ferrofluid-electromagnetic model is employed

to simulate the transient and steady-state behavior of the ferrofluid energy harvester de-

scribed in Fig. 2.1a. The numerical results are then compared to experimental results ob-
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tained using the experimental setup shown in Fig. 2.1a. The purpose of this investigation

lies in three folds: (1) validate the coupled model for the application of ferrofluid energy

harvesting, (2) elucidate the underlying mechanisms that determine the electromotive force

of the energy harvester, and (3) reveal the significance of several modeling aspects on the

accuracy of the model prediction.

As the tank has a wall thickness of 6 mm, and the coil is tightly wound around

the tank with a thickness of 2 mm, there is an averaged 7 mm gap between the ferrofluid

and coil. In order to compare the experimental and numerical results, this gap needs to

be included in the numerical integration region in the xy plane for the electromotive force

calculation in Eqs. (2.14-2.17). In addition, the 2-D numerical electromotive force needs to

be multiplied by a dimension in the z direction,Wt, to demonstrate the final output of a 3-D

energy harvester. In this chapter, Wt is taken as 13.4 cm (the average of the tank dimension

12.7 cm, and the coil dimension 14.1 cm including the tank wall and wire thickness).

In the FE simulation, a quadrilateral mesh of 23632 elements with 80 × 80 rect-

angular elements inside the tank is used. The Courant number is set at 0.25. Figure 2.14

illustrates snapshots of the sloshing ferrofluid in the tank together with the magnetic flux

lines as computed using the FE model for Config. (1H) and Config. (4V), respectively. It

is evident that the original magnetic field is altered by the ferrofluid motion.

2.3.2.1 Experimental validation

Comparison of experimental and numerical results of the electromotive force as a

function of excitation frequency for all configurations and windings is shown in Figs. 2.15

through 2.18. The results show that the electromotive force-excitation frequency character-

istics of the energy harvester are captured by the simulations. Within the range of frequency

sweep considered, there are two peaks of ε. The higher peak occurs at the system’s first

modal frequency which is around 1.9 Hz whereas the lower peak occurs at around 1.5 Hz.
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(a) (b)

Figure 2.14: Snapshots of the ferrofluid sloshing and the magnetic flux lines for (a) Config.

(1H) and (b) Config. (4V).

The lower peak appears due to an internal resonance between the first and second vibration

modes. Internal resonances occur when two or more modal frequencies of the fluid column

are commensurate or nearly commensurate. It turns out that, for the design parameters

used in the experimental setup, ω1 is approximately half of ω2. As such, an internal energy

pump is activated between the two modes causing the smaller peak to appear. The inter-

nal resonance enables the energy harvester to respond to a fairly wider range of excitation

frequencies [29].

While in general the numerical and experimental results are in reasonably good

agreement, the numerical results show slight peak shifts and small differences in magnitude

as compared to the experimental results. Both the peak shift and the magnitude difference

are mainly due to the 2-D model simplification in the FE simulations. The dimension

of ferrofluid in reality is not infinite in the z direction. As will be shown later in this

section, the discrepancies between the numerical and experimental results are reduced by

increasing the size of the tank in the z direction. Even when using the 2-D assumption, the

shifts between the peak frequencies are less than 0.1 Hz, and the magnitude differences are
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(a) (b)

Figure 2.15: Comparison of experimental and FEA results for (a) Config. (1H), (b) Config.

(1V).

(a) (b)

Figure 2.16: Comparison of experimental and FEA results for (a) Config. (2H), (b) Config.

(2V).

less than 5 mV for all cases.

2.3.2.2 Influence of harvester’s configuration on electromotive force

Comparing results of the eight configurations, it becomes evident that Config. (1H)

in Fig. 2.15a produces higher values of the electromotive force, ε. This is due to the fact

that, in this configuration, the change of magnetic flux in each sloshing cycle is higher.

Note that, in all the test cases, the majority of ferrofluid motion occurs in the lower region

of the tank for the given tank length, ferrofluid depth and excitation acceleration. In Config.

46



(a) (b)

Figure 2.17: Comparison of experimental and FEA results for (a) Config. (3H), (b) Config.

(3V).

(a) (b)

Figure 2.18: Comparison of experimental and FEA results for (a) Config. (4H), (b) Config.

(4V).

(1H), the copper coil is wound horizontally, therefore only By is of concern. Since the two

magnets have opposite poles facing each other, some magnetic field lines coming out of

the left north pole go back into the right south pole passing through the tank as shown

in Fig. 2.14a. Therefore, Hy is directed downwards in the bottom left region of the tank

and upwards in the bottom right region. During an oscillation cycle, when the ferrofluid

moves to the left, downward By increases in the left region due to the added downward My

carried by the ferrofluid moving to that region. On the other hand, upward By decreases in

the right region because the magnetized ferrofluid moves away from that region. The two
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effects add up and lead to a net decrease in ΦBy .

On the contrary, when the ferrofluid flows back to the right, downwardBy decreases

in the left side whereas upward By increases in the right side. This leads to a net increase in

ΦBy. Apparently, in this case, Hy changes direction inside the ferrofluid from left to right,

and hence the change of ΦBy is large in each cycle which implies that ε is large. However,

for Config. (1V), since Hx is rightward almost in the entire tank, the change of ΦBx due to

sloshing is small, resulting in a much lower ε.

Figure 2.18b shows that Config. (4V) also produces high ε. Since the two north

poles face each other, magnetic field lines coming out of the north pole go back to the

south pole of the same magnet as shown in Fig. 2.14b. As a result, Hx generated by

the two magnets adds up and is leftward in the left region of the tank and rightward in

the right region. In this case, Hx also goes in opposite directions from left to right inside

the ferrofluid. Therefore, in a sloshing cycle, the rate of change in ΦBx is large. On the

contrary for Config. (4H), Hy is upward in the whole bottom region and the change of ΦBy

is small in a sloshing cycle, leading to lower ε. For similar reasons, Configs. (2V) and

(3V) also produce higher ε values compared to Configs. (2H) and (3H). The magnitude

of ε, however, depends on the positions of the magnets, tank length, ferrofluid depth, and

excitation acceleration.

2.3.2.3 Validity of the 2-D assumption

Next, several modeling aspects are investigated to elucidate their effects on the ac-

curacy of the model prediction. First, as discussed previously, the energy harvester is sim-

plified to a 2-D system in the computational model. In the experimental setup, however,

both the tank and the magnets have finite length in the z direction. The 3-D effect becomes

more significant when their size in the z direction decreases. To illustrate this, the experi-

ments and numerical analyses are repeated for a smaller tank of 10.16×10.16×10.16 cm3.
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(a) (b)

Figure 2.19: Comparison of experimental and FEA results for Config. (1H) with (a) 10.16

cm tank, (b) 12.7 cm tank.

(a) (b)

Figure 2.20: Comparison of experimental and FEA results for Config. (3H) with (a) 10.16

cm tank, (b) 12.7 cm tank.

The experimental and numerical results for both 10.16 cm and 12.7 cm tanks are compared

in Figs. 2.19 and 2.20. The ferrofluid depth for the 10.16 cm tank is taken as 2 cm to

ensure the same ratio of ferrofluid depth to tank length. When comparing Fig. 2.19a and

Fig. 2.19b, it becomes evident that the magnitude difference between the experimental and

numerical results is smaller for the larger (12.7 cm) tank. Comparison of Figs. 2.20a and

2.20b indicates that the difference in the peak frequency between the experimental and nu-

merical results is also smaller for the larger (12.7 cm) tank. This study reveals that the 3-D

effect plays an important role in the accuracy of the numerical results. Therefore, the tank
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Figure 2.21: Comparison of fluid flow snapshots at t = 6.62 s for Config. (1H) with

excitation frequency of 1.84 Hz and (a) without surface tension, (b) with surface tension.

size in the z direction must be sufficiently large for the 2-D approximation of the system to

be valid.

2.3.2.4 Influence of surface tension

We study the influence of the surface tension of the ferrofluid on the accuracy of

the computational model. Extensive numerical results were performed showing that sim-

ulations with and without surface tension give no significant difference in the calculation

of the electromotive force, ε. Figure 2.21 shows snapshots of the fluid flow at the same

instant for the two cases. The bulk of ferrofluid follows the same flow pattern in both cases,

which explains why they lead to similar ε. However, without surface tension, the liquid-gas

interface is not as smooth and ferrofluid droplets are easily generated and sprinkled in the

air. Thus, surface tension should still be considered in the computational model to more

faithfully describe the motion of the ferrofluid.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.22: Comparison of experimental results, FEA results with coupled H and FEA

results with fixed H for (a) Config. (1H), (b) Config. (1V), (c) Config. (2H), (d) Config.

(2V), (e) Config. (3H), (f) Config. (3V), (g) Config. (4H), (h) Config. (4V).

2.3.2.5 Dependence of the magnetic field distribution on the fluid motion

If H can be assumed independent of the ferrofluid motion one can significantly

simplify the computational analysis for the energy harvesting application. To test the va-

lidity of this assumption, the numerical simulations are repeated for all configurations with

an invariant H field. That is, those simulations use one-way coupling: the magnetic field

influences the fluid motion, but not vice versa. Results shown in Fig. 2.22 indicate that

the one-way coupling gives much larger electromotive forces than the experimental values.

Examining the detailed H profile in the tank obtained from the two-way coupling scheme,

we observe that H is in fact smaller in the ferrofluid than in the air. This is because the

magnetic scalar potential equation require the normal component of B to be continuous at

the liquid-gas interface, and the relation B = µ0(1 + χ)H leads to a jump in the magni-

tude of Hn across the interface, creating a smaller H magnitude inside the ferrofluid. In

the one-way coupling scheme in which H does not depend on the ferrofluid motion, the

magnitude of Hn does not undergo a sudden reduction when getting into the ferrofluid,
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which eventually causes larger B and ε. Therefore, it is evident that the influence of fluid

motion on the magnetic field is strong, and two-way coupling is necessary and crucial for

the numerical analysis of the energy harvester.
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Chapter 3

Performance Analysis of the Energy

Harvester

Experimental results showed that the transduction efficiency of the ferrofluid based

energy harvester depends on many factors including the magnet placement, tank geometry,

ferrofluid depth and excitation amplitude [28–30]. Understanding how these factors affect

the energy conversion performance can help the design and optimization of high perfor-

mance ferrofluid based energy harvesters. While experimental test is a direct approach to

measure the effects of these factors on the performance of the device, it is very expensive

and limited by the availability of research equipment and materials. Having developed and

validated the continuum level computational model presented in Chapter 2, in this chapter,

a parametric study is conducted to investigate the effects of device design parameters and

material properties on the output electromotive force.

In Chapter 2, a total of eight configurations of the energy harvester - four types of

permanent magnet placement combined with a horizontal or vertical coil - are investigated.

The results reveal that the two configurations shown in Fig. 3.1, referred to as Config. (1)

and Config. (2), give the largest electromotive forces. In Config. (1), the two permanent
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magnets are placed on the two sides of the tank with north-south poles directed in the same

direction and the coil wound horizontally. In Config. (2), the two magnets are placed above

and below the tank with the north poles facing each other and the coil wound vertically. The

two configurations are chosen for the performance analysis for two reasons: (1) their high

performance compared to other configurations warrants further investigation, and (2) the

two configurations have completely different magnet placements, pole alignments and coil

windings, indicating the effects of design parameters on the electromotive force may be

different.

S N NS

Configuration (1)

N
S

N
S

Configuration (2)

dmdm

Lt

hm

D

ab

ab

dm

D

dmLt

Figure 3.1: Schematic diagrams showing the two configurations of ferrofluid based energy

harvesters analyzed in this chapter.

Parameters to be analyzed are divided into two groups: (1) device design parame-

ters and material properties related to the magnetic flux in the tank and ferrofluid, including

the tank-magnet distance dm, the vertical distance from the ferrofluid surface to the mag-

nets hm, and the ferrofluid susceptibility χ, and (2) device design parameters and material

properties related to the sloshing dynamics of the ferrofluid, including the tank length Lt,

ferrofluid level D, base excitation amplitude a0, and ferrofluid material properties such as

viscosity η, density ρ, and surface tension coefficient σ. The device’s geometric design
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Table 3.1: Default values of the design parameters

Parameter Default value Parameter Default value Parameter Default value

dm 4 cm Lt 12.7 cm η 12 mPa·s
hm 2.5 cm D 2.5 cm σ 24.15 mN/m

χ 3.52 a0 0.5 m/s2 ρ 1420 kg/m3

parameters are shown in Fig. 3.1. When investigating the effect of a certain parameter,

only the parameter of interest is varied and all the other parameters are set at their default

values used in the original setup. The default values of the parameters are summarized in

Table 3.1. The tank height (y direction) and width (z direction) are kept at 12.7 cm. Note

that, unless further explained, the investigated material property values cover their practi-

cal ranges for most commercial ferrofluids. In this chapter, to illustrate the effects of these

design parameters, the tank wall and coil thickness are neglected, and the numerical inte-

grations in Eqs. (2.14-2.17) are performed only inside the tank. For all simulations, the size

of the computational domain is set to be 10 times the size of the tank and magnets. In the

numerical study on tank length, the interior mesh varies from 16×80 to 128×80 depending

on the size of the tank. In all the other studies, 80×80 rectangular elements are used inside

the tank.

3.1 Results and Discussion

3.1.1 Effects of magnetic flux-related parameters

The flux-related design parameters considered in this section are the distance be-

tween the magnets and the tank dm, the vertical distance from the ferrofluid surface to the

magnets hm, and the ferrofluid susceptibility χ. While these parameters all influence fer-

rofluid sloshing to a certain extent by contributing to the magnetic body force on the right
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hand side of the Navier-Stokes equations Eq. (2.20), their effects on the magnetic flux are

direct and more important.

3.1.1.1 Distance from tank to magnets dm

In this section, the distance between the magnets and the tank, dm, is adjusted to

alter the magnetic field in the tank. Simulation results indicate that varying dm does not

change the magnetic field pattern. However, the intensity of H is directly affected by the

variation of dm. In this study, the maximum and minimum dm values are set to be 7 cm and

1 cm, respectively.

The effect of tank-magnet distance, dm, on the electromotive force ε for Config.

(1) is shown in Fig. 3.2. Three snapshots of magnetic flux lines and fluid flow in motion

are also shown in Fig. 3.3. For each value of dm the maximum electromotive force occurs

at the resonant frequency of the sloshing column which is evident by the large peaks in

the frequency response curves shown in Fig. 3.2a. Figure 3.2c shows when dm is in the

range of 4-7 cm, the ε-frequency curves exhibit peaks at similar frequencies. When dm is

reduced below 4 cm, however, the peak starts to shift to lower frequencies. The decrease

in the resonant frequency is also shown clearly when comparing the fluid flow snapshots

at the same instant (simulation time). When the ferrofluid is already on its way coming

back to the right in Fig. 3.3c (dm = 7cm), it just reaches the left highest point in Fig. 3.3b

(dm = 2cm).

The shift in the resonance peak at smaller tank-magnet distances results from the

stronger magnetic force offsetting the effect of gravitational force on sloshing. Note that, in

the absence of the external magnetic field, the analytical solution of the undamped modal

frequencies of a small-amplitude sloshing with a slipping contact line is given as [79]

ω2
i =

(

gki +
σ

ρ
k3i

)

tanh(kiD), ki =
iπ

Lt
, i = 1, 2, 3... (3.1)
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where i is the mode number. Since the resonant frequency is intrinsically related to the

modal frequency, it is apparent from Eq. (3.1) that the magnitude of g is positively cor-

related to the resonant frequency. However, when dm becomes smaller, the magnetic field

exerts a larger upward force on the ferrofluid, which leads to a smaller effective gravity and

thus a smaller resonant frequency than the original value.

(a) (b)

(c) (d)

Figure 3.2: Effect of distance from tank to magnets on electromotive force for (a) Config.

(1) and (b) Config. (2). Variations of resonant frequency and maximum electromotive force

as functions of tank-magnet distance for both configurations are shown in (c) and (d).

Figure 3.2d shows that the maximum electromotive force εmax continuously in-

creases when dm is reduced from 7 cm to 1.65 cm, but starts to decrease when dm is

reduced below 1.65 cm. The increasing trend in εmax as dm decreases is due to the increase

in H as the magnets are placed closer to the tank. This is evident by the increasing number
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(a) (b) (c)

Figure 3.3: Magnetic flux lines and fluid flow snapshots at t = 4.85 s for Config. (1) with

base excitation frequency of 1.82 Hz and tank-magnet distance: (a) dm = 1 cm, (b) dm =
2 cm and (c) dm = 7 cm.

(a) (b) (c)

Figure 3.4: Magnetic flux lines and fluid flow snapshots at t = 6.04 s for Config. (2) with

base excitation frequency of 1.94 Hz and tank-magnet distance: (a) dm = 1 cm, (b) dm =
2 cm and (c) dm = 7 cm.

of magnetic flux lines going through the ferrofluid when comparing Figs. 3.3b and 3.3c. A

larger H leads to a larger M in the ferrofluid, and consequently larger B and ε. However,

when dm is reduced below 1.65 cm, as shown in Fig. 3.3a, the ferrofluid starts to cling to

the side walls of the tank and sloshing becomes more difficult, resulting in a smaller ε.

The effect of dm on ε and ferrofluid sloshing for Config. (2) is shown in Figs.

3.2 and 3.4, respectively. It is shown in Fig. 3.2d that when dm reduces, εmax increases
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monotonically. When compared to Config. (1), the peak in ε shifts only slightly as shown

in Fig. 3.2c. This is consistent with Fig. 3.4 where all the three fluid flow snapshots

show similar free surface profiles in spite of the different dm values. Such behavior can

be attributed to the relatively small magnetic force due to the larger distance from the

magnets to the ferrofluid surface. Even when dm reduces to 1 cm, the ferrofluid surface is

still at least 2-3 cm away from the bottom magnet and far away from the top magnet. In

this case, the magnetic force only plays a small role in the ferrofluid sloshing compared

to the gravitational force. Therefore, the increase of H due to decrease of dm leads to

a monotonically increasing εmax and a small peak shift. The results obtained for both

configurations suggest that, to obtain the highest ε, ferrite magnets of the specific size

should be placed around 1.65 cm away from the sloshing ferrofluid surface if possible.

3.1.1.2 Vertical distance from ferrofluid surface to magnets hm

Another way to change the position of the magnets is to move them vertically in

Config. (1). The effect of the vertical distance, hm, from the ferrofluid surface to the

magnets on the electromotive force ε is shown in Fig. 3.5. Twelve hm values were used in

the simulations and shown in Figs. 3.5b and 3.5c. Note that only five ε-frequency curves

are shown in Fig. 3.5a for clarity. The resonant frequency shift due to the changing hm

is fairly small as shown in Fig. 3.5b since the magnets are at least 4 cm away from the

ferrofluid in all cases. Figure 3.5c illustrates that εmax increases as hm is increased from -4

cm to -2.93 cm, then it decreases as hm is increased within [-2.93 cm, 0.30 cm]. The trend

reverses and εmax increases again as hm increases from 0.30 cm to 4.28 cm, then decreases

again in the range between 4.28 cm and 6 cm.

The reasons for this trend can be explained by inspecting the magnetic flux lines

shown in Fig. 3.6. As shown in Fig. 3.6a, when hm = -3 cm, the y-component of H,

Hy, in the left half of the ferrofluid is always positive (pointing upwards), whereas Hy is
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always negative in the right half (pointing downwards). This guarantees a monotonically

changing By when the ferrofluid goes from left to right and vice versa, leading to a large

ε. In the case of hm = 0 cm, the magnetic flux lines have a different pattern. Figure 3.6b

shows that there are both upward and downward magnetic flux lines passing through the

ferrofluid body no matter which direction it sloshes toward. The cancellation between the

upward and downward magnetic fluxes lowers ε.

The situation of hm = 4 cm shown in Fig. 3.6c is similar to the hm = -3 cm case:

By also changes monotonically with the ferrofluid sloshing from one side to the other since

Hy is again unidirectional on either the left or right side. The difference between the two

cases lies in that, at hm = 4 cm, the magnetic field H going through the moving wave crest

is stronger than that in the hm = -3 cm case. For this reason, ε at hm = 4 cm is higher.

Finally, when magnets are far away from the ferrofluid surface, i.e. hm < -2.93 cm or

hm > 4.28 cm, H becomes smaller, leading to a smaller ε. From these results, it can be

concluded that in the design process of the energy harvester, the magnets should be placed

above the ferrofluid surface at an optimal height determined by the sloshing amplitude.

(a) (b) (c)

Figure 3.5: (a) Effect of the vertical distance between the ferrofluid surface and magnets

on electromotive force for Config. (1). Variations of resonant frequency and maximum

electromotive force as functions of vertical ferrofluid-magnet distance for Config. (1) are

shown in (b) and (c).
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(a) (b) (c)

Figure 3.6: Magnetic flux lines and fluid flow snapshots at t = 5.60 s for Config. (1) with

base excitation frequency of 1.94 Hz and vertical fluid-magnet distance: (a) hm = -3 cm,

(b) hm = 0 cm and (c) hm = 4 cm.

3.1.1.3 Magnetic susceptibility χ of the ferrofluid

Another significant parameter affecting the magnetic flux is the magnetic suscepti-

bility, χ, of the ferrofluid. Figure 3.7c shows little resonant frequency shift. Figure 3.7d

shows that, increasing χ causes a monotonic increase in εmax. This is expected since ε is

proportional to the change of magnetic flux and positively-correlated to the integration of

M in the ferrofluid which is linearly proportional to χ. If H was assumed to be constant

with increasing χ, the εmax-χ relation would be linear. Nonetheless, since this is not the

case, the slope of εmax reduces as χ rises. The sub-linear variation of εmax can be un-

derstood by the following weak form of the magnetic scalar potential equation Eq. (2.26)

combined with Eq. (2.29)

∫

Ω

∇δψ ·∇ψdΩ+

∫

Ωliq

∇δψ · fχ

1 + (1− f)χ
∇ψdΩ =

∫

Ωmag

∇δψ · 1

µ0
B0dΩ+

∫

Γ

δψ
∂ψ

∂n
dΓ

(3.2)

Since the right hand side of Eq. (3.2) does not vary with χ, increasing χ results in decreas-

ing of ∇ψ on the left hand side, i.e. decreasing magnitude of H according to Eq. (2.4).

Therefore, εmax-χ relation should be sub-linear. It is also observed that the saturation value

for χ in Config. (2) is around 7.04, much smaller than that in Config. (1).
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(a) (b)

(c) (d)

Figure 3.7: Effect of ferrofluid susceptibility on electromotive force for (a) Config. (1)

and (b) Config. (2). Variations of resonant frequency and maximum electromotive force as

functions of ferrofluid susceptibility for both configurations are shown in (c) and (d).

3.1.2 Effects of sloshing-related parameters

In addition to the parameters altering the magnetic flux, the design parameters that

determine the ferrofluid sloshing behavior can also indirectly influence the magnetization

distribution. It is obvious that the tank length Lt, ferrofluid level D and base excitation

amplitude a0 can largely affect the sloshing behavior. Furthermore, three ferrofluid material

properties, namely the viscosity η, surface tension coefficient σ and density ρ are also

important since they are closely related to the viscous force, surface tension, gravity and

horizontal excitation force, respectively. These forces either reinforce or compete with the
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magnetic force on the right hand side of the Navier-Stokes equations Eq. (2.20), and thus

influence the sloshing dynamics of the ferrofluid. Therefore, they are investigated in this

section.

S N NS

S N NS

Figure 3.8: Adjusted Config. (1).

The simulation setup for Config. (1) is adjusted in this section for more consistent

evaluation of the effects of sloshing-related parameters. When hm = 2.5 cm in the original

setup, ferrofluid may slosh over and under the centers of magnets as depicted in Figs. 3.3a

and 3.3b. In some cases, therefore, the performance variation would be the result of the

combined effects of the magnet position and the sloshing-related parameters. To eliminate

the inconsistent magnet position effect from case to case and focus only on the effects of

sloshing-related parameters, the two magnets are moved up to hm = 10.2 cm as shown in

Fig. 3.8. At that position, the centers of the magnets are aligned with the tank top edge,

which ensures a unidirectional Hy along the y direction in the entire tank similar to the

situation shown in Fig. 3.6c. For Config. (2), sinceHx distribution is always unidirectional

along the y direction, no further adjustment of magnet position is made.

3.1.2.1 Tank length Lt

The tank length, Lt, is varied from 2.54 cm to 20.32 cm to investigate its effect

on ε. It is observed in Figs. 3.9a and 3.9b that both configurations give very similar

resonant frequency and εmax trends. When Lt increases, resonance rapidly shifts to a lower
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frequency as shown in Fig. 3.9c. For Config. (1), as shown in Fig. 3.9d, it is observed that

the εmax-Lt curve contains three stages: (1) small for Lt < 5 cm, (2) increasing rapidly

between Lt > 5 cm and Lt < 10 cm, and (3) increasing slowly after Lt > 10 cm. The

slope of εmax-Lt curve reflects the combined influence of the sloshing amplitude and the

intensity of Hy along the vertical direction. In the first stage, the amplitude of sloshing

and H are both very small, leading to the initial low εmax. Simulation results show that

sloshing amplitude increases rapidly for 5 cm < Lt < 10 cm and then the rise slows down

with increasing Lt. This behavior determines the characteristics of εmax-Lt slope in the

second and third stages.

(a) (b)

(c) (d)

Figure 3.9: Effect of tank length on electromotive force for (a) Config. (1) and (b) Config.

(2). Variations of resonant frequency and maximum electromotive force as functions of

tank length for both configurations are shown in (c) and (d).
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In Config. (2), the εmax-Lt curve exhibits a similar trend as in Config. (1) except

for very small Lt. The faster εmax increase in Config. (2) is due to the different magnetic

field distribution. At small Lt, ferrofluid surface elevation is very small and it mainly

sloshes close to the bottom of the tank given the specific ferrofluid level. This region has

high-intensity Hx due to the magnet below the tank. Therefore, when Lt increases, εmax

increases steadily in the first and second stages. For both configurations, the optimal tank

length is around 10 cm, which can lead to a high ε without greatly increasing the tank size.

The resonant frequency can also be adjusted effectively by changing the tank length.

3.1.2.2 Ferrofluid level D

The ferrofluid level in the tank, D, is varied from 1.27 cm to 11.43 cm and its

effect on the electromotive force is shown in Fig. 3.10. Nine different values of D for

each configuration were studied, but only six of those are shown in Figs. 3.10a and 3.10b

for clear illustration. In Config. (1), εmax is very small for small D, but rises quickly to

the maximum value 0.082 V at D = 8.83 cm, and then decreases. The initial small εmax is

caused by the small amount of ferrofluid in the tank, as well as the low H due to the magnets

being faraway from the surface. Subsequently, εmax starts to increase with increasing D

since both of the surface elevation and H increase. Eventually, εmax decreases at large D

because sloshing is confined by the remaining small empty space in the tank. This result

shows that the ferrofluid level is a crucial factor in optimizing the electromotive force, and

the optimal ferrofluid level for Config. (1) is around 9 cm for the energy harvester.

In Config. (2), Fig. 3.10d reveals that εmax bears an almost steady value except

whenD is either very small or very large. The small values of εmax for the two extreme val-

ues of D are due to the small amount of ferrofluid and restricted sloshing in limited empty

space, respectively. The steady result is caused by the combination of two factors: the

amplitude of sloshing and the distribution of Hx. While the sloshing amplitude reaches its
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(a) (b)

(c) (d)

Figure 3.10: Effect of ferrofluid level on electromotive force for (a) Config. (1) and (b)

Config. (2). Variations of resonant frequency and maximum electromotive force as func-

tions of ferrofluid level for both configurations are shown in (c) and (d).

maximum value when the tank is around half full, Hx is larger closer to the top and bottom

of the tank, and smaller near the vertical center. Therefore, over the entireD range, sloshing

and Hx undergo alternate increases and decreases, producing a fairly steady ε. Comparison

of Figs. 3.10a and 3.10b demonstrates that the electromotive force is highly sensitive to the

placement of magnets. In addition, for both configurations, it is shown in Fig. 3.10c that

when D increases, the resonance moves to a higher frequency. At D = 11.43 cm, however,

the ε-frequency curve greatly bends to the left and the resonance frequency drops. Thus,

different from the monotonically increasing resonant frequency obtained from Eq. (3.1),

the confinement of sloshing at high D reduces the resonant frequency.
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3.1.2.3 Amplitude of the input acceleration a0

(a) (b)

(c) (d)

Figure 3.11: Effect of the base acceleration amplitude on the electromotive force for (a)

Config. (1) and (b) Config. (2). Variations of resonant frequency and maximum electro-

motive force as functions of base acceleration amplitude for both configurations are shown

in (c) and (d).

The effect of the acceleration amplitude, a0, on the electromotive force ε is shown

in Fig. 3.11. It is evident that, εmax increases monotonically as the acceleration is increased

in both configurations. This is due to the fact that, at larger values of a0, the amplitude of

the sloshing motion increases, which leads to a larger change in the magnetic flux during a

sloshing cycle and consequently larger εmax. Furthermore, due to the nonlinear softening

sloshing behavior of the fluid column, the ε-frequency response curve bends to the left as

the amplitude of the excitation increases to 2 m/s2 as shown in Figs. 3.11a and 3.11b. At
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such a large acceleration level, the possibility of wave breaking at high sloshing magnitudes

increases and spilling of drops and lumps of ferrofluid interferes with the bulk flow [80,

81]. This has the influence of producing aperiodic responses which are evident in the non-

smooth nature of the curves near the peak frequency.

3.1.2.4 Ferrofluid viscosity η

(a) (b)

(c) (d)

Figure 3.12: Effect of ferrofluid viscosity on electromotive force for (a) Config. (1) and

(b) Config. (2). Variations of resonant frequency and maximum electromotive force as

functions of ferrofluid viscosity for both configurations are shown in (c) and (d).

The effect of ferrofluid viscosity, η, on the electromotive force ε is shown in Fig.

3.12. Numerical results show that, in the investigated range [0.012 mPa·s, 48 mPa·s], for

both configurations, viscosity has little effect on the resonant frequency, but lower viscosity
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leads to a slightly higher ε. Higher values of η make the ferrofluid more viscous and, hence,

sloshing becomes slightly more difficult. This leads to slightly smaller ε values. Although

viscosity of some commercial ferrofluids for sealing applications can go up to thousands of

times of the default value of η, high η values would only largely reduce the electromotive

force, which is obviously not desired for performance optimization of the energy harvester.

Therefore, ferrofluids with extremely high viscosity are not studied here.

3.1.2.5 Surface tension coefficient σ

(a) (b)

(c) (d)

Figure 3.13: Effect of surface tension coefficient on electromotive force for (a) Config. (1)

and (b) Config. (2). Variations of resonant frequency and maximum electromotive force as

functions of surface tension coefficient for both configurations are shown in (c) and (d).

Figure 3.13 shows that surface tension coefficient, σ, has a negligible influence on
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ε in both configurations. When σ increases, the downward surface tension force at the

sloshing surface increases, leading to a larger resonant frequency according to Eq. (3.1).

This causes the resonance peak to shift slightly to the right.

3.1.2.6 Ferrofluid density ρ

(a) (b)

(c) (d)

Figure 3.14: Effect of ferrofluid density on electromotive force for (a) Config. (1) and

(b) Config. (2). Variations of resonant frequency and maximum electromotive force as

functions of ferrofluid density for both configurations are shown in (c) and (d).

The effect of the ferrofluid density, ρ, on ε is investigated in Fig. 3.14. For both

configurations, the resonance peak only shifts slightly. At very small values of ρ, the influ-

ences of gravity and the excitation force become less prevalent when compared to those of

70



viscous force, magnetic force and surface tension. The latter three forces slightly suppress

the sloshing motion which eventually leads to a smaller εmax.
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Chapter 4

Molecular Dynamics Analysis of

Magnetization and Microscopic

Behavior of Ferrofluid

Ferrofluid is a colloidal suspension of small magnetic, single-domain particles dis-

persed in a water or organic carrier liquid [58]. To prevent aggregation of the ferromagnetic

nanoparticles, particles are stabilized either sterically by being coated with long-chain sur-

factant or electrostatically by including charged groups. As a result, particles interact with

each other by the anisotropic long-range magnetic dipole-dipole potential as well as the

electrostatic monopolar interaction or the short-range symmetric potentials. Experiments

[82–86], theories [87–96] and simulations [97–112] have revealed that, due to these inter-

actions, various aggregates, such as chains, rings, branched structures and networks, can

be formed. This influences the macroscopic properties of ferrofluid, such as the effective

viscosity and magnetization.

Continuum level computational analysis of the energy harvester in Chapter 3 reveals

that the magnetic susceptibility/magnetization of ferrofluid greatly influences the perfor-
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mance of the energy harvester. In addition, since the ferrofluid in the energy harvester

undergoes sloshing motion under external mechanical excitations, it is expected that fluid

motion would significantly influence the aggregation behavior of the nanoparticles, thereby

playing an important role in determining the ferrofluid properties. Therefore, it is critical

to understand the relation between the dynamic microstructural behavior of the ferrofluid

and its associated macroscopic magnetization.

Magnetic aggregates are also affected by the polydispersity of ferrofluid. Particles

in commercially available ferrofluids typically have various sizes, with a mean magnetic

core diameter of around 10 nm. Since the dipole moment of a particle is proportional

to the magnetic core volume, large particles with a typical size of 15-20 nm have much

higher dipole-dipole interaction energy than the thermal energy at room temperature and

can aggregate into different structures [100]. In addition, large particles also rotate more

easily at low magnetic field strengths compared to smaller particles. They strongly enhance

the effective viscosity at small flow velocity gradients and magnetization in weak fields.

Therefore, a ferrofluid system having large particles behaves differently from a monodis-

perse small-particle system in terms of microscopic structures and macroscopic properties

[86, 100, 113–115]. In the literature, a polydisperse ferrofluid is typically modeled as a

bidisperse system consisting of two fractions of magnetic particles with significantly dif-

ferent diameters.

However, most research studies on the magnetization of ferrofluid systems only

dealt with the equilibrium situations [99, 100, 115–117]. Some studies included flow con-

ditions but only considered weakly interacting systems [118, 119], zero magnetic field

[120], or single-particle formulation (ignored all dipolar and flow-induced interactions)

[121]. To the best of the authors’ knowledge, non-equilibrium/dynamic aggregation behav-

ior and associated magnetization of ferrofluid systems with strong dipolar potentials under

shear flow conditions have not been studied at the molecular level.
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In this chapter, a non-equilibrium molecular dynamics (NEMD) study is performed

to obtain an understanding of the dynamic magnetization and microscopic structures of fer-

rofluid systems containing small and large particles under the influence of both magnetic

field and shear flow. The computational model considers both long-range dipolar interac-

tion and short-range repulsive interaction of the ferromagnetic nanoparticles. The factors

investigated include solvent friction coefficients, particle size, magnetic field strength and

direction, and shear rate.

4.1 Molecular Dynamics Model

A bidisperse ferrofluid system consisting of N spherical particles of two different

sizes distributed in a cubic simulation box of dimension L is considered in this model.

When the number of particles of either size is set as zero, the system reverts to a monodis-

perse system. Periodic boundary conditions are assumed along all directions. A ferrofluid

particle can be regarded as a single magnetic domain with a diameter σi and a permanent

dipole moment mi fixed at its center. The long-range dipole-dipole potential takes the form

[99]

Udip
ij =

µ0

4π

[

mi ·mj

r3ij
− 3(mi · rij)(mj · rij)

r5ij

]

(4.1)

rij = |rij| = |ri − rj| (4.2)

where µ0 is the permeability of free space, ri the position vector of particle i, and rij the

distance vector between two particles i and j. The dipole moment of a magnetic particle

is proportional to its magnetic core volume as mi = Mdπσ
3
i /6, where Md is the bulk

magnetization of the magnetic material and has a value of 4.46 ×105 A/m for magnetite.

The dipolar potential depends on both the interparticle distance rij and the orientations of
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the two dipole moments. In addition to the dipolar potential, ferrofluid particles are also

subjected to the short-range interaction potential. The potential may depend on whether

this specific ferrofluid is sterically or electrically stabilized. In this work, the steric effect

of the coating layer is approximated by the Lennard-Jones potential with a cutoff similar to

that in Ref. [100]

U lj
ij = 4ǫ

[

(

σi + σj
2rij

)12

−
(

σi + σj
2rij

)6
]

, rij < rc (4.3)

where ǫ is the potential well depth. The cutoff radius rc is taken as 2−5/6(σi + σj), which

makes the interaction force purely repulsive and smoothly decrease to zero at rc.

x
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V(r)=(�y, 0, 0)

�(r)= (0, 0, -�/2)

H=(Hcos�, Hsin�, 0)

�

z
o

Figure 4.1: Schematic diagram showing the flow field and the magnetic field considered in

the ferrofluid system.

The solvent of ferrofluid is not explicitly considered in this model. Instead, it is

implicitly included through Langevin dynamics, which mimics the viscous damping and

random bumping of the solvent by adding friction and Brownian effects to the equations

of motion. Langevin dynamics can also control the system temperature like a thermostat.

The system is placed in a flow field V(r) with a local vorticity Ω(r) = 1
2
∇ × V(r), and

a magnetic field H = (H cos θ, H sin θ, 0) as shown in Fig. 4.1. The flow field is set as a

shear flow with a linear velocity profile V(r) = (γy, 0, 0), where γ is the shear rate. The
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translational and rotational motions of particles are given as [118]

Mi
dvi

dt
= (Fdip

i + F
lj
i )− ΓT i[vi −V(ri)] + ξT i (4.4)

Ii ·
dωi

dt
= τ dip

i + µ0mi ×H− ΓRi[ωi −Ω(ri)] + ξRi (4.5)

where vi and ωi are the translational and angular velocities of the particle, Mi and Ii the

mass and moment of inertia tensor, F
dip
i , F

lj
i and τ

dip
i the forces and torque acting on the

particle, ξT i and ξRi the uniform random force and torque with zero mean that satisfy the

fluctuation/dissipation relations. The two terms −ΓT i[vi −V(ri)] and −ΓRi[ωi − Ω(ri)]

represent the hydrodynamic drag, where ΓT i and ΓRi are the translational and rotational

friction coefficients. For a sphere of diameter σ, I = Mσ2/10. When it is placed inside a

solvent with viscosity η, the friction coefficients are given by

ΓT = 3πησ, ΓR = πησ3. (4.6)

Taking the small particle diameter and mass as references, all variables can be writ-

ten in dimensionless forms as:

r∗ =
r

σs
, M∗ =

M

Ms
, I∗ =

I

Msσ2
s

, t∗ = t

√

ǫ

Msσ2
s

, T ∗ =
kBT

ǫ
(4.7)

m∗ = m

√

µ0

4πǫσ3
s

, H∗ = H

√

4πµ0σ3
s

ǫ
, F ∗ =

Fσs
ǫ
, τ ∗ =

τ

ǫ
(4.8)

Γ∗
T = ΓT

√

σ2
s

Msǫ
, Γ∗

R = ΓR

√

1

Msσ2
sǫ
, γ∗ = γ

√

Msσ2
s

ǫ
(4.9)

where kB is the Boltzmann constant and T the temperature. The dipole moment, mass and

moment of inertia of large particles can be expressed in terms of those of small particles and

their size ratio: ml = ms(σl/σs)
3 , Ml = Ms(σl/σs)

3 and Il = Is(σl/σs)
5, respectively.
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Then, Eqs. (4.4, 4.5) can be rewritten in dimensionless form as

M∗
i

dv∗
i

dt∗
= (Fdip∗

i + F
lj∗
i )− Γ∗

T i[v
∗
i −V∗(r∗i )] + ξ

∗
T i (4.10)

I∗i ·
dω∗

i

dt∗
= τ dip∗

i +m∗
i ×H∗ − Γ∗

Ri[ω
∗
i −Ω∗(r∗i )] + ξ

∗
Ri (4.11)

Despite the difference in sizes and magnetic materials, the behavior of a bidisperse

ferrofluid system can be characterized by the following dimensionless parameters: the vol-

ume fraction of particles φ, the dipolar coupling parameter λ and the Langevin parameter

α:

φs =
Ns

V

πσ3
s

6
=
Ns

V ∗

π

6
, φl =

Nl

V

πσ3
l

6
=
Nl

V ∗

πσ∗3
l

6
, φ = φs + φl (4.12)

λs =
µ0m

2
s

4πσ3
skBT

=
m∗2

s

T ∗
, λl =

µ0m
2
l

4πσ3
l kBT

= λsσ
∗3
l , α = µ0

msH

kBT
=
m∗

sH
∗

T ∗
(4.13)

where V is the total volume of the system. When φl varies from 0 to φ, the system goes

from monodisperse of small particles (φl = 0), to bidisperse (0 < φl < φ), and finally

to monodisperse of large particles (φl = φ). The dipolar coupling parameter λ relates

the minimum dipole-dipole interaction energy of two contacting particles to the thermal

energy kBT . If λ is on the order of one or smaller, the dipole-dipole interaction is too weak

to cause any particle aggregation. The Langevin parameter α represents the ratio of the

field-dipole energy to the thermal energy in the system. For a ferrofluid system at a given

temperature, α is simply proportional to the magnetic field magnitude H .

The equilibrium or steady state magnetization is calculated through the sum of

dipole moments divided by the system volume and then averaged over a certain period

of time after the system establishes equilibrium or steady state

M =

〈

1

V

N
∑

i=1

mi

〉

(4.14)

77



where the angle brackets denote the time average.

In our simulations, ferrofluid aggregates are mainly chains and rings. Two particles

are considered to be bound when their dipolar potential energy is less than the prescribed

threshold −1.5λskBT [2σ
∗
i σ

∗
j /(σ

∗
i + σ∗

j )]
3, i.e. 75% of the dipolar energy of two contacting

and perfectly head-to-tail aligned dipoles [99, 100]. The size of a cluster is defined as the

number of particles in that cluster, and the average cluster size is defined as

Cavg =

〈

1

Nc

Nc
∑

k=1

Ck

〉

(4.15)

where k is the cluster index, Nc the number of clusters, and Ck the size of cluster k.

In this work, Eqs. (4.10, 4.11) are implemented in the LAMMPS package [122]

and MD simulations are performed to study the bidisperse ferrofluid in the shear flow field.

With periodic boundary conditions in all three directions, the dipole-dipole interaction is

evaluated by the Ewald summation under metallic boundary condition. To apply a shear

flow with a linear velocity profile, the initial orthogonal simulation box is tilted into a

triclinic box at the shear strain rate γ and periodically flipped to an equivalent shape in the

opposite direction. The root mean square (rms) absolute errors in the dipolar forces for the

Ewald summation are fixed at ∆F dip ≤ 10−4m2
sµ0/(4πσ

4
s), i.e. ∆F dip∗ ≤ 10−4m∗2

s . All

simulations are started from initial configurations with particles placed on a simple cubic

lattice with random dipole moment orientations.

4.2 Model Validation

Prior to investigating the magnetization and microstructures of ferrofluid systems

under shear flow, for validation purpose, MD simulations are first performed for several

test cases and the numerical results are compared to those available in the literature.
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4.2.1 Equilibrium magnetization of a monodisperse system

The first test case calculates the equilibrium magnetization of a monodisperse sys-

tem and follows the configuration of Ref. [99]. The simulated system has 1000 particles

in a periodic cubic simulation box. Simulations are performed at T ∗ = 1 with λ = 3. The

values of dimensionless friction coefficients do not affect the equilibrium magnetizations

and are taken as Γ∗
T = 10 and Γ∗

R = Γ∗
T/3. The time step is set as ∆t∗ = 0.002. The system

is equilibrated for 100 dimensionless time period at first and then sampled for another 400

dimensionless time period. The equilibrium magnetizations are estimated from the means

of the samples and standard deviations of the means are also calculated and shown as error

bars. The computed magnetizations of this work match well with Ref. [99] as shown in

Fig. 4.2.
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Figure 4.2: Dimensionless magnetization M∗ of a monodisperse ferrofluid system as a

function of the Langevin parameter α and the volume fraction φ with the dipolar coupling

parameter λ = 3.

4.2.2 Equilibrium magnetization of a bidisperse system

The second test case is on the equilibrium magnetization of a bidisperse system

[100]. The diameters of the two types of particles are chosen to be 10 nm and 16 nm,
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Figure 4.3: Magnetization curves of a bidisperse ferrofluid system as a function of the

Langevin parameter α and the volume fraction of large particles φl with dipolar coupling

parameters λs = 1.32 and λl = 5.39. The total volume fraction is fixed as φ = 0.07. Msat

is the saturation magnetization.

respectively, which make the dipolar coupling parameters λs = 1.32 for the small particles

at room temperature 300 K, and λl = 5.39 for the large ones. The total volume fraction of

all particles is fixed at φ = 0.07 and the volume fraction of large particles is varied from

0 to 0.07. Other parameters include: total number of particles set at 1000, temperature

T ∗ = 1, and ∆t∗ = 2× 10−3. Friction coefficients can be chosen arbitrarily and are taken

as Γ∗
Ts = 10, Γ∗

Rs = 10/3, Γ∗
T l = 41 and Γ∗

Rl = 35. The equilibration time is set at

t∗ = 600, and the equilibrium values of the magnetization are calculated for another period

of t∗ = 2400 after equilibration. Comparison of results in this work and Ref. [100] are

shown in Fig. 4.3. The numerical results agree well with Ref. [100].

4.2.3 Non-equilibrium magnetization of a monodisperse system in shear

flow

In this section, a monodisperse system is subjected to a shear flow V(r) = (γy, 0,

0). The dimensionless shear rate is set as γ∗ = 0.1. The magnetic field H = (0, H , 0)
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is oriented in the flow gradient direction. For an NEMD simulation, the values of friction

coefficients are important, therefore they should be calculated as described in Sec. 4.1.

Here for the test case, they are set as the same values as in Ref. [118], i.e. Γ∗
T = 10 and

Γ∗
R = Γ∗

T/3. Simulations are run with 15625 particles at T ∗ = 1. The time step is set as

∆t∗ = 0.001. The system is integrated for t∗ = 100 to reach the stationary state. Steady

state magnetizations are then calculated for another t∗ = 500. The calculated results in

this work generally agree with Ref. [118] in Fig. 4.4. The discrepancy is likely due to the

difference in simulation methods. Ref. [118] used the reaction field method for long-range

interactions, whereas the Ewald summation is used in this work.
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Figure 4.4: Non-equilibrium magnetization of a monodisperse ferrofluid system in shear

flow as a function of the Langevin parameter α. The shear rate is set as γ∗ = 0.1.

4.3 Results and Discussion

The test cases demonstrate the feasibility of investigating properties and micro-

scopic behavior of ferrofluid using MD simulations. However, these MD simulations are

based on either equilibrium situations or weak dipolar interactions, which are not suffi-

cient for systematically understanding the dynamic properties and behavior of ferrofluid
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particles. In this section, non-equilibrium molecular dynamics (NEMD) simulations in-

volving shear flow in both monodisperse and bidisperse ferrofluid systems are performed

to investigate these characteristics.

4.3.1 Effects of shear rate and magnetic field strength

The ferrofluid system to be investigated here also consists of two types of magnetite

particles with diameters of 10 nm and 16 nm, which give dipolar coupling parameters

λs = 1.32 and λl = 5.39 at room temperature 300 K, respectively. The total volume

fraction φ is set as 0.1. The value of volume fraction φ is within the range of common

commercial ferrofluids. For investigation purpose, the volume fraction of large particles is

chosen to be 0, 0.05 and 0.1.

For equilibrium cases, the values of friction coefficients Γ∗
T and Γ∗

R do not affect

the final magnetizations and can be chosen arbitrarily. Under non-equilibrium conditions,

however, Γ∗
T and Γ∗

R should be calculated carefully. According to Eqs. (4.6, 4.9)

Γ∗
Ts = 3πησs

√

σ2
s

Msǫ
, Γ∗

Rs = πησ3
s

√

1

Msσ2
sǫ

=
1

3
Γ∗
Ts, Γ∗

T l = σ∗
l Γ

∗
Ts, Γ∗

Rl = σ∗3
l Γ∗

Rs,

(4.16)

At 300 K, the viscosity of water is around 8.56× 10−4 Pa·s, which makes Γ∗
Ts around 241.

The other three coefficients can also be calculated accordingly as Γ∗
Rs = 80, Γ∗

T l = 385 and

Γ∗
Rl = 329. Note that solvents of ferrofluids have a wide range of viscosity. To demonstrate

the effect of friction coefficients, simulations are performed first on a monodisperse system

of only small particles with η = 8.56 × 10−4 Pa·s and η = 8.56 × 10−5 Pa·s as shown in

Fig. 4.5. The system is in a shear flow V(r) = (γy, 0, 0) with a magnetic field H = (0,

H , 0) (see Fig. 4.1). The total number of particles is fixed at 2197 and the temperature
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Figure 4.5: Non-equilibrium magnetization curves of a monodisperse ferrofluid system of

small particles as a function of the Langevin parameter α and the shear rate γ∗ with the

volume fraction φs = 0.1, the dipolar coupling parameter λs = 1.32, and the solvent

viscosity (a-b) η = 8.56× 10−4 Pa·s and (c-d) η = 8.56× 10−5 Pa·s.

set at T ∗ = 1. The dimensionless time step is set as ∆t∗ = 0.001 except for the case

of η = 8.56 × 10−5 Pa·s and γ∗ = 10, where ∆t∗ = 0.0005 is used. The system is

first integrated for t∗ = 1000 to reach steady state and the subsequent data are output

every 5 dimensionless time period for another t∗ = 1000 afterwards. The steady state

magnetizations are estimated from the means of the samples and the standard deviations of

the means are also calculated and shown as error bars.

Figures 4.5a and 4.5b show that when the dimensionless shear rate γ∗ = 0, x di-

rectional magnetization Mx is always around zero and y directional magnetization My
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Figure 4.6: Non-equilibrium magnetization curves of a monodisperse ferrofluid system

of large particles as a function of the Langevin parameter α and the shear rate γ∗ with

the volume fraction φl = 0.1, the dipolar coupling parameter λl = 5.39, and the solvent

viscosity (a-b) η = 8.56× 10−4 Pa·s and (c-d) η = 8.56× 10−5 Pa·s.

increases with α and eventually saturates as shown in the Langevin relation [58]. In the

presence of the linear shear flow, Mx rises up first and then reduces with α. With larger γ∗,

Mx increases slower but reaches a higher value. At the same γ∗, My rises slower than Mx

and eventually saturates. Numerical results indicate that this is due to the competition be-

tween magnetic field and shear flow. Shear flow makes particles rotate clockwise whereas

magnetic field makes them align in the direction of the field (y direction in this case). For a

given γ∗, at small α, the dipoles start to align toward H but with an angle deviation, which

means both the x- and y-components of the magnetization, Mx and My, are finite. When α
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increases, both Mx and My increase due to higher magnetization. When α becomes larger,

dipoles align more and more in the direction of H, making Mx decrease and My increase

further until saturation. At a higher shear rate γ∗, dipoles are rotated by the shear flow more

and a higher H is needed to compete with the shear flow, resulting in the Mx-decreasing

and My-saturating trend beginning later, and the Mx peak going higher. Comparison of

Figs. 4.5a-4.5b and 4.5c-4.5d reveals that magnetization curves with η = 8.56× 10−5 Pa·s

show identical trends as those with η = 8.56× 10−4 Pa·s at one tenth of γ∗. More simula-

tions also show that η = 8.56 × 10−3 Pa·s results in same trends as η = 8.56 × 10−4 Pa·s

at 10 times of γ∗. These results imply that, for the smaller particles, the product of η and

γ is a determining factor of the magnetization curve as a function of α. Since high friction

coefficients and high shear rate both limit the time step, simulations can be performed with

a properly chosen set of Γ∗
T , Γ∗

R and γ∗ which give identical results with a larger time step.

To test if the same phenomenon occurs for large particles, simulations are also

performed on a large-particle system with η = 8.56× 10−4 Pa·s and η = 8.56× 10−5 Pa·s.

At η = 8.56×10−5 Pa·s and γ∗ = 10, ∆t∗ = 0.00025 is used, whereas ∆t∗ = 0.001 is used

for all other cases. The system is integrated for t∗ = 2000 and then sampled for t∗ = 1000.

Figure 4.6 shows thatMx andMy for a large-particle system have similar trends as those for

a small-particle system. However, one difference is Mx starts to respond to H at a smaller

shear rate. Comparison of Figs. 4.6a-4.6b and 4.6c-4.6d also reveals that magnetization

curves with η = 8.56×10−5 Pa·s have similar trends as those with η = 8.56×10−4 Pa·s at

one tenth of γ∗. However, with η = 8.56× 10−5 Pa·s, Mx values at γ∗=1e-2 and γ∗=1e-1,

My values at γ∗ = 10 are different from those with η = 8.56 × 10−4 Pa·s at one tenth of

these shear rates. Therefore, for large particles, the physical values of friction coefficients

need to calculated according to Eq. (4.16) to obtain the correct magnetization curves. The

following simulations will all be conducted with η = 8.56× 10−4 Pa·s.
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Figure 4.7: Magnetization curves of monodisperse and bidisperse ferrofluid systems as

a function of the magnetic field direction θ with total volume fraction φ = 0.1, dipolar

coupling parameters λs = 1.32 and λl = 5.39, shear rate γ∗ = 0.01, and solvent viscosity

η = 8.56 × 10−4 Pa·s. The large particle volume fraction φl varies from 0 to 0.1 from left

to right in each row and the Langevin parameter α increases from 0.5 to 1.5 from top to

bottom in each column.

4.3.2 Effect of magnetic field direction

To further study how magnetic field and shear flow influence ferrofluid magnetiza-

tion, the external magnetic field is applied in different directions. For a magnetic field H
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Figure 4.8: Same as Fig. 4.7 except that the Langevin parameter α varies from 2 to 7.

with direction θ as shown in Fig. 4.1, Mθ denotes the component of M in the θ direction,

Mθ−π/2 the component in the direction perpendicular to θ, and Mmag the magnitude of M.

θ is taken within the range [0, π) due to the symmetry or antisymmetry of the results in [π,

2π). Based on the convergence study, for γ∗ = 0.001 and γ∗ = 0.01, 5832 particles are

used at α = 0.5 and α = 1 and 2197 particles for higher α. For γ∗ = 0.1 and γ∗ = 1,

1000 particles are considered for all α values. Dimensionless time step, integration period
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(a) (b) (c)

(d) (e)

Figure 4.9: Snapshots of system slabs with (a) φl = 0, α = 0.5, θ = 20◦, Cavg = 1.010, (b)

φl = 0.1, α = 0.5, θ = 70◦, Cavg = 1.631, (c) φl = 0.1, α = 0.5, θ = 150◦, Cavg = 1.492,

(d) φl = 0, α = 7, θ = 0◦, Cavg = 1.023, (e) φl = 0.1, α = 7, θ = 100◦, Cavg = 1.511.

Both systems have 5832 particles. Other parameters are λs = 1.32, λl = 5.39, γ∗ = 0.01,

and η = 8.56× 10−4 Pa·s.

before sampling, and sampling period are set at 0.001, 2000 and 1000, respectively. Error

bars for Mx and My are also estimated based on the data from the sampling period.

The results for γ∗ = 0.01 are given in Figs. 4.7 and 4.8. The first columns in

these two figures show that, when the system only consists of small particles (φl = 0),

Mmag maintains a steady value with respect to θ and increases with α. Mθ and Mθ−π/2 also

bear steady values with respect to θ and Mθ is always higher than Mθ−π/2. These trends

demonstrate that magnetization of small particles has no preference in direction under shear

flow. Mx and My increase and decrease alternatively as dipoles try to align to the direction
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of H. Visualization of the ferrofluid system is performed by VMD [123] as shown in Figs.

4.9a and 4.9d. All visualizations are performed for systems of 5832 particles for clear

comparison. Each dipole is represented by two spherical particles slightly shifted away

from the center of the particle mass in opposite directions along the dipole moment line.

Note that only a slab of the simulation box in the z direction is shown in each snapshot for

clear demonstration. Due to the lower dipolar interaction, small particles are not able to

form chains as shown in both Figs. 4.9a and 4.9d, and the average cluster sizes are only

slightly above 1, being 1.010 and 1.023, respectively.

As shown in the third columns, when φl = 0.1, i.e., the system only consists of

large particles, the magnetization components show clear trends as θ varies, especially

when subjected to weak fields. Mmag, Mθ and Mθ−π/2 are no longer near-constant. Mmag

shows a peak at the maximum Mx value, (Mx)max, and a trough at the maximum My

value, (My)max. (Mx)max is much larger than (My)max when the magnetic field is weak.

θ corresponding to (Mx)max for large particles is much larger (nearly π/2 at α = 0.5)

than that for small particles, and decreases as α increases. Snapshots of the large-particle

system corresponding to the cases of (Mx)max and (My)max at α = 0.5 are shown in Figs.

4.9b and 4.9c to illustrate the chain structures. At θ = 70◦, many chains are formed along

the x direction (Cavg=1.631), leading to a higher (Mx)max. At θ = 150◦, chains are not

able to form and align in the y direction due to the shear flow which constantly rotates

and breaks the chains (Cavg = 1.492), leading to a lower (My)max. On the other hand, at

higher α, since the magnetic interaction is much stronger than the shear flow effect, dipoles

again align in the H direction with larger magnetization magnitudes. Figure 4.9e reveals

that longer chains are formed in the y direction (Cavg = 1.511). When φl = 0.05, the

magnetization behavior falls between those of φl = 0 and φl = 0.1. The transitions can be

clearly seen in Figs. 4.7 and 4.8.

Since the magnetization of large particles shows a stronger dependence on θ than
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Figure 4.10: Magnetization curves of a monodisperse ferrofluid system as a function of the

magnetic field direction θ with large particle volume fraction φl = 0.1, dipolar coupling

parameter λl = 5.39, shear rate γ∗ = 0.1, and solvent viscosity η = 8.56× 10−4 Pa·s. The

Langevin parameter α increases from 1 to 50.

that of small ones, we focus on the results for the large-particle system in this section.

Figure 4.10 shows the magnetization curves as functions of the magnetic field direction θ

for the large-particle system subjected to a larger shear rate γ∗ = 0.1. The sub-plots show

variation of these magnetization curves when α is changed from 1 to 50. In weak fields,
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(a) (b)

Figure 4.11: Snapshots of system slabs with (a) φl = 0.1, α = 4, θ = 80◦, Cavg = 1.193,

(b) φl = 0.1, α = 4, θ = 160◦, Cavg = 1.074. The system has 5832 particles. Other

parameters are λl = 5.39, γ∗ = 0.1, and η = 8.56× 10−4 Pa·s.

Mθ is smaller than Mθ−π/2, as the shear flow exerts a stronger influence than the weak

magnetic field. When the magnetic field becomes strong, Mθ is larger than Mθ−π/2 similar

to the results in Fig. 4.8i. Note that with larger γ∗, θ for (Mx)max is larger compared to that

in Figs. 4.7 and 4.8 at the same α.. An interesting observation is that in the transition range

of α ∈ [3, 5], (My)max is larger than (Mx)max, which is contradictory to what is shown in

Fig. 4.7c. Snapshots of the nanoparticles for instances of (Mx)max and (My)max at α = 4

are shown in Fig. 4.11. As the shear flow gradient is larger here, for both cases, the average

cluster sizes (1.193 and 1.074) at α = 4 are smaller than those (1.631 and 1.492) in Figs.

4.9b and 4.9c at α = 0.5. At θ = 80◦, due to the effects of both higher shear flow gradient

and higher magnetic field compared to those in Fig. 4.9b, chains and dipoles in the chains

deviate from the x direction. On the other hand, at θ = 160◦, almost all the chains are

broken into pieces. In this case, it is observed that dipoles individually all tend to align in

the y direction, which makes (My)max larger than (Mx)max.

Figure 4.12 compares the magnetization curves calculated for different shear rates.

The four sub-plots are corresponding to shear rates of four different orders of magnitude:

γ∗=0.001, 0.01, 0.1 and 1, respectively. The results again show that θ for (Mx)max is
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Figure 4.12: Magnetization curves of a monodisperse ferrofluid system as a function of the

magnetic field direction θ with large particle volume fraction φl = 0.1, dipolar coupling

parameter λl = 5.39, and solvent viscosity η = 8.56× 10−4 Pa·s.

positively related to the ratio of shear rate to magnetic field strength, γ∗/α. In addition, at

small γ∗, (Mx)max > (My)max, whereas at large γ∗, (Mx)max < (My)max. When γ∗ is

very large, Mθ, Mθ−π/2 and Mmag are almost independent of θ.
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Chapter 5

Conclusions

This chapter presents the conclusions of this dissertation. The research presented

is focused on computational modeling and performance Analysis of a sloshing ferrofluid

based electromagnetic energy harvester. The following sections summarize the findings.

5.1 Continuum Level Modeling and Implementation

A FE model is described and implemented in Chapter 2 for computational analysis

of a ferrofluid based electromagnetic energy harvester. The energy harvester consists of a

tank partially filled with ferrofluid, a copper coil wound around the tank, and two magnets

placed by the tank. The ferrofluid undergoes a sloshing motion due to an external excitation

applied at the base of the tank. In the FE model, the magnetic field distribution is obtained

by solving the magnetic scalar potential equation using the Galerkin method. The velocity

field of the fluid is obtained by solving the Navier-Stokes and continuity equations using

the streamline-upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-Galerkin

(PSPG) methods. The Volume of Fluid (VOF) method is employed to keep track of the

liquid-gas interface. The sharp surface tension force model (SSF) is employed to capture
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the influence of surface tension, along with the height function method for interface cur-

vature estimation. The computational model is validated against experimental results for

eight different configurations of the energy harvester. The results show that the electromo-

tive force-excitation frequency characteristics of the energy harvester are captured by the

model. Numerical and experimental results are in a reasonably good agreement where it is

shown that the maximum error in peak frequency and electromotive force is less than 0.1

Hz and 5 mV, respectively.

By using the validated model and numerical results, it is shown that the basic mech-

anism responsible for the change in magnetic flux in the coils during each sloshing cycle is

the magnetization carried by the sloshing ferrofluid. Variation of the magnetization magni-

tude and its direction depends on the location of the ferrofluid bulk in the external magnetic

field. Furthermore, the effects of several modeling aspects on the accuracy of the numerical

model are studied. Results show that (i) the 2-D model is a reasonable approximation of

the 3-D energy harvester as long as the tank is sufficiently long in the z direction; and (ii)

surface tension and the two-way coupling between the magnetic field and fluid flow are

important to capture the actual dynamics of the results.

5.2 Performance Analysis of the Energy Harvester

A parametric study and performance analysis of the ferrofluid based electromag-

netic energy harvester are performed in Chapter 3. Two magnet configurations with their

respective coil windings are investigated. The first configuration (Config. (1)) has magnets

on the sides of the tank with same pole alignment and a horizontal coil, whereas the second

configuration (Config. (2)) has magnets above and underneath the tank with opposite pole

alignment and a vertical coil.

The parametric study and performance analysis reveal that a set of parameters af-
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fecting the magnetic flux have a substantial influence on the electromotive force, ε. The

influence of these parameters is summarized as follows:

• In most cases, attaining a higher magnetic field by bringing the magnets closer to the

tank leads to a larger magnetic flux, and hence, larger ε. However, extremely high

magnetic fields force the ferrofluid to cling onto the tank wall, thereby diminishing

the amplitude of the sloshing motion, and eventually leading to lower values of ε.

In the current study, the optimal distance between the magnets and the ferrofluid

sloshing surface is 1.65 cm. In Config. (1), when the magnets are placed higher

than the ferrofluid surface, the resonant frequency can also be reduced by moving the

magnets closer to the tank.

• The electromotive force, ε, changes significantly when the magnetic field distribu-

tion is altered by changing the location of the magnets with respect to the ferrofluid

surface. In specific, it is shown that there is an optimal magnet placement which

results in maximum ε. For Config. (1), magnets should always be placed in such a

way that the magnetic field in the vertical direction Hy stays unidirectional on either

side of the tank but has opposite directions on each side. This implies the magnets

should be placed above the ferrofluid surface at an optimal height determined by the

sloshing amplitude. For Config. (2), Hx should stay unidirectional on either side of

the tank but has opposite directions on each side.

• Generally, increasing ferrofluid susceptibility leads to an increase in ε until saturation

value is reached. The saturation value is much smaller for Config. (2).

Numerical simulations also demonstrate that the tank length, ferrofluid level, and

the amplitude of the base acceleration play important roles in determining ε and resonant

frequency. Our specific case shows:
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• When the ferrofluid level is 2.5 cm, the optimal tank length is around 10 cm, which

keeps a good balance between ε and tank size. Increasing the tank length reduces the

resonant frequency.

• When the tank has both the length and height set as 12.7 cm, for Config. (1) the

ferrofluid level around 9 cm gives the maximum ε. Config. (2) always gives low

ε regardless of the ferrofluid level. For both configurations, the highest resonant

frequency also occurs at the ferrofluid level range between 9 and 10cm.

• Increasing base acceleration amplitude also leads to a higher ε. However, the reso-

nant frequency increases initially and decreases in the end.

When varying within their realistic ranges, ferrofluid material properties such as its

viscosity, surface tension coefficient, and density have very little effect on ε and resonant

frequency. Low viscosity and high density can lead to a slightly higher ε.

5.3 Molecular Dynamics Analysis of Magnetization and

Microscopic Behavior of Ferrofluid

The magnetization and microstructures of ferrofluid systems subjected to magnetic

field and shear flow are investigated using non-equilibrium molecular dynamics simulations

in Chapter 4. Monodisperse and bidisperse ferrofluid systems are considered. The shear

flow is in the x-direction and the velocity gradient is along the y-direction. The physical

behavior of the ferrofluid systems revealed by the simulation results includes (1) for smaller

particles, the product of the solvent viscosity η and shear rate γ is a determining factor of the

ferrofluid magnetization curve as a function of magnetic field strength; This rule, however,

does not apply to large particles; (2) when subjected to a magnetic field (strong or weak) in
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various directions, small particles tend to stay separate from each other and the magnitude

of magnetization is almost identical regardless of the direction of magnetic field; (3) when

subjected to a weak magnetic field, large particles form chains, and the characteristics

of the chain orientation and magnetization depend on the shear rate; and (4) when the

magnetic field is strong enough, as the influence of shear flow becomes less significant,

large particles always form chains along the magnetic field direction, and magnetization

magnitude maintains a steady value with respect to the magnetic field direction.
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Appendix A Governing Equations for Ferrofluid with Spin-

ning Particles

For continuum level modeling of the ferrofluid based energy harvester in Chapter.

2, governing equations are given assuming magnetic particles in ferrofluid always align

in the direction of the external magnetic field. However in reality, with an applied H, a

ferrofluid particle can either align its magnetic moment with the field by a rotation of the

whole particle, a process called Brownian relaxation, or by a change of the direction of the

magnetic moment inside the particle, the so-called Néel relaxation [58]. Both relaxation

processes are characterized by respective relaxation times τB and τN . Either way produces

a lag between H and M. This appendix contains the governing equations for the ferrofluid

based energy harvester taking into consideration the spinning ferrofluid particles.

Two assumptions as in Sec. 2.2.1 are adopted in modeling the coupled magneto-

ferro-hydrodynamic system in this section: (1) the energy harvester is represented by a

2-D system as in Fig. 2.2; (2) ferrofluid is considered to be an incompressible viscous

fluid with non-negligible surface tension. The assumption that ferrofluid is considered to

be superparamagnetic in Sec. 2.2.1 is removed.

A.1 Magnetization relaxation equation for ferrofluid particles

The relation between H and M for ferrofluid with spinning particles follows the

magnetization relaxation equation [58]

∂M

∂t
+V · ∇M = ω ×M− 1

τeff
(M−Meq) (1)

where ω-spin rate, τeff -relaxation time. Meq is the equilibrium magnetization, which is

obtained in motionless fluid in a steady magnetic field H. The equilibrium magnetization-
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magnetic field relation is the Langevin relation [58].

Meq

Msat

= L(α)
H

H
=

[

cothα− 1

α

]

H

H
(2)

Msat = φMd, α =
µ0MdHVc
kBT

(3)

Let Meq = χ(H)H, then

χ(H) =
MsatL(α)

H
(4)

where Md-domain magnetization, Vc-volume of the magnetic core, α-Langevin parameter.

The Brownian relaxation time τB scales linearly with the particle volume, while the Néel

relation time τN grows exponentially with the particle size. Since the actual relaxation

process takes place by the one with the shortest relaxation time, the small particles will

follow the Néel process while the large ones behave in a Brownian manner. Here the

effective relaxation time is given as [48]

1

τeff
=

1

τB
+

1

τN
, τB =

3ηVh
kBT

, τN =
1

f0
exp

(

KaVc
kBT

)

(5)

where Vh-hydrodynamic particle volume, f0-characteristic frequency for Néel relaxation,

Ka-magnetocrystalline anisotropy constant of magnetic domains. No boundary condition

is needed for Magnetization Relaxation Equation.

A.2 Spin equation for ferrofluid particles

The conservation of angular momentum gives the spin equation [58]

0 = µ0M×H+ 2ζ(∇×V − 2ω) + η′∇2ω (6)
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Where ζ-vortex viscosity, η′-shear coefficient of spin viscosity. There are two possibilities

for the boundary condition. The ”spin-no-slip” boundary condition assumes the particle-

wall interaction is so strong that there is no spin on the boundary

ω = 0 (7)

The ”spin-vorticity” boundary condition assumes that antisymmetric stresses vanish at the

wall

ω − 1

2
∇×V = 0 (8)

Khushrushahi [48] proved that the ”spin-vorticity” boundary condition is not valid. Thus

the ”spin-no-slip” boundary condition is used. In this work, spin is only in the z direction.

A.3 Navier-Stokes equations for fluid dynamics in the tank

Similar to Sec. 2.2.1.2, the Navier-Stokes equations and continuity equations for

ferrofluid with spinning particles are given as [58, 59]

ρ

[

∂V

∂t
+V · ∇V

]

= −∇P + 2ζ∇× ω + (η + ζ)∇2V + µ0M · ∇H− ρg

+ρa0 cos(ωt)− σκ∇H(f)

(9)

∇ ·V = 0 (10)
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Appendix B Finite Element Formulation and Implemen-

tation for Ferrofluid with Spinning Particles

This appendix contains details of the FE formulation and implementation of the

ferrofluid based energy harvester taking into consideration the spinning ferrofluid particles.

In this FE formulation, the magnetization is obtained by solving the magnetization relax-

ation equation using the characteristic-Galerkin method. The spin of particles is obtained

by solving the spin equation using the Galerkin method. The velocity field of the fluid

is obtained by solving the Navier-Stokes and continuity equations using the streamline-

upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-Galerkin (PSPG) meth-

ods. The FE formulation and implementation of the magnetic scalar potential equation

here is similar to those in Sec. 2.2.2.1, except that χ∇ψ in the second term in Eq. (2.26)

should be replaced with −M, which is evaluated separately as in Sec. A.1.

B.1 Magnetization relaxation equation

The magnetization relaxation equation Eq. (1) can be projected into the x and y

directions as

∂Mx

∂t
+ Vx

∂Mx

∂x
+ Vy

∂Mx

∂y
= −ωzMy −

1

τeff
(Mx − χHx) (11)

∂My

∂t
+ Vx

∂My

∂x
+ Vy

∂My

∂y
= ωzMx −

1

τeff
(My − χHy) (12)

Since the magnetization relaxation equation has the form of a transport equation, in

this work, the characteristic-Galerkin procedure [124] is applied to derive the weak form.
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The equation in the x direction is used to illustrate the derivation of the weak form.

DMx

Dt
= −ωzMy −

1

τeff
Mx +

χ

τeff
Hx (13)

Let’s start from the 1-D case. Assume a particle is at the location x at time tn+1. Then it

should be at x− δ at time tn due to convection, where δ = ū∆t.

1

∆t
(Mn+1

x −Mn
x |(x−δ)) =

1

2

(

−ωzMy −
1

τeff
Mx +

χ

τeff
Hx

)n+1

+
1

2

(

−ωzMy −
1

τeff
Mx +

χ

τeff
Hx

)n

(x−δ)

(14)

From the Taylor expansion we have

Mn
x |(x−δ) =Mn

x − δ
∂Mn

x

∂x
+

1

2
δ2
∂2Mn

x

∂x2
+O(∆t3) (15)

Hn
x |(x−δ) = Hn

x − δ
∂Hn

x

∂x
+O(∆t2) (16)

(ωzMy)
n|(x−δ) = (ωzMy)

n − δ
∂(ωzMy)

n

∂x
+O(∆t2) (17)

One approximation of ū is as follows

ū =
1

2

(

un+1 + un|(x−δ)

)

= un+
1

2 − 1

2
∆tun

∂un

∂x
+O(∆t2) (18)

so we get

1

∆t
(Mn+1

x −Mn
x ) =− un+

1

2

∂Mn
x

∂x
+

1

2
un∆t

∂un

∂x

∂Mn
x

∂x
+

1

2
(un+

1

2 )2∆t
∂2Mn

x

∂x2

+

(

−ωzMy −
1

τeff
Mx +

χ

τeff
Hx

)n+ 1

2

− 1

2
un+

1

2∆t

(

−∂(ωzMy)

∂x
− 1

τeff

∂Mx

∂x
+

χ

τeff

∂Hx

∂x

)n

(19)
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If n + 1/2 terms are replaced with n terms, we get

Mn+1
x −Mn

x =−∆t

[

∂(uMx)

∂x
+ ωzMy +

1

τeff
Mx −

χ

τeff
Hx

]n

+
1

2
∆t2un

∂

∂x

[

∂(uMx)

∂x
+ ωzMy +

1

τeff
Mx −

χ

τeff
Hx

]n (20)

For multidimensional problems

Mn+1
x −Mn

x =−∆t

[

∂(VjMx)

∂xj
+ ωzMy +

1

τeff
Mx −

χ

τeff
Hx

]n

+
1

2
∆t2V n

i

∂

∂xi

[

∂(VjMx)

∂xj
+ ωzMy +

1

τeff
Mx −

χ

τeff
Hx

]n (21)

Applying the Galerkin method and Green’s formula, the week form can be obtained as

∫

Ω

δMx ·∆Mx · dΩ =−∆t

∫

Ω

δMx

[

∂(VjMx)

∂xj
+ ωzMy +

1

τeff
Mx −

χ

τeff
Hx

]n

dΩ

− 1

2
∆t2

∫

Ω

∂

∂xi
(δMxV

n
i )

[

∂(VjMx)

∂xj
+ ωzMy +

1

τeff
Mx −

χ

τeff
Hx

]n

dΩ

(22)

The weak form in the y direction is

∫

Ω

δMy ·∆My · dΩ =−∆t

∫

Ω

δMy

[

∂(VjMy)

∂xj
− ωzMx +

1

τeff
My −

χ

τeffHy

]n

dΩ

− 1

2
∆t2

∫

Ω

∂

∂xi
(δMyV

n
i )

[

∂(VjMy)

∂xj
− ωzMx +

1

τeff
My −

χ

τeffHy

]n

dΩ

(23)

B.2 Spin equation

Projecting Eq. (6) into the z direction leads to

−η′∇2ωz + 4ζωz = µ0(MxHy −MyHx) + 2ζ

(

∂Vy
∂x

− ∂Vx
∂y

)

(24)
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Let’s look at how the spin equation is derived [58]. From the internal angular mo-

mentum balance, we have

0 = ρG +∇ ·C+ A (25)

where G is the body couple exerted by a distant source and ρG is the torque. In this

case, ρG = µ0M × H. A is the rate of conversion of external angular momentum to

internal angular momentum. Physically, this conversion arises when there is a lack of

synchronization between the rate of rotation of a fluid element and the rate of internal spin.

The effective rate of rotation of a fluid element is represented by half the vorticity.

1

2
Ω =

1

2
∇×V (26)

Thus, A is expressed as a function of the difference between the vorticity and the spin.

Assuming a linear relation, we have

A = 2ζ(∇×V − 2ω) (27)

C is the couple stress tensor. It is assumed to be symmetric and has the following expression

C = λ′(∇ · ω)I+ η′[∇ω + (∇ω)T ] (28)

Since ω has only one component in the z direction, which is only a function of x and y, the

first term in the expression of C vanishes.

[C] = η′

















0 0 ∂ωz

∂x
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∂y

∂ωz

∂x
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(29)
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∇ ·C =
∂2ωz

∂x2
+
∂2ωz

∂y2
= ∇2ωz (30)

Using the Galerkin method, the weak form for the spin equation can be obtained.

−
∫

Ωe

δωz

(

∂C13

∂x
+
∂C23

∂y

)

dΩ =

∫

Ωe

δωz(ρG+ A)dΩ (31)

∫

Ωe

(

∂δωz

∂x
C13 +

∂δωz

∂y
C23

)

dΩ =

∫

Ωe

δωz(ρG+ A)dΩ +

∫

Γ

δωz(C13nx + C23ny)dΓ

(32)

Substituting the expressions of C13, C23, ρG and A into Eq. (32), we have

∫

Ωe

∇δωz · η′ · ∇ωz · dΩ+

∫

Ωe

δωz · 4ζ · ωz · dΩ

=

∫

Ωe

δωz · 2ζ
(

∂Vy
∂x

− ∂Vx
∂y

)

dΩ+

∫

Ωe

µ0(MxHy −MyHx)dΩ+

∫

Γe

η′δωz ·
∂ωz

∂n
dΓ

(33)

B.3 Fluid analysis

The FE formulation and implementation of the Navier-Stokes equations including

spin Eq. (9) and continuity equation are described as follows, which also serve as the

supplement for Sec. 2.2.2.2 by simply setting ω and ζ as zero. The derivation of Eq. (9) is

briefly shown here [58], which is necessary for the derivation of the weak form. The linear

momentum balance leads to the following equation

ρ

(

∂V

∂t
+V · ∇V

)

= ∇ ·T+ f (34)
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The body force f has 3 components which are the three most right terms listed in Eq. (9)

f = −ρg + ρa0 cos(ωt)− σκ∇H(f) (35)

The stress tensor T has 4 components shown below

T = −P I+Tv +Ta +Tm (36)

where Tv is a symmetric stress tensor related to viscosity

Tv = λ(∇ ·V)I+ η[∇V + (∇V)T ] (37)

∇ ·Tv = (λ+ η)∇(∇ ·V) + η∇2V (38)

For an incompressible fluid, the term (λ+η)∇(∇·V) is zero. Ta is an antisymmetric tensor

existing in non-polar fluids and defined as a function of A. A is the rate of conversion of

external angular momentum to internal angular momentum as in Eq. (27).

Ta =
1

2
ǫ ·A =

1

2
ǫij3eiejA =

1

2
A(e1e2 − e2e1) (39)

∇ ·Ta = −1

2
∇×A = −1

2
∇× 2ζ(∇×V − 2ω)

= −ζ∇× (∇×V − 2ω) = −ζ∇(∇ ·V) + ζ∇2V + 2ζ∇× ω
(40)

The term −ζ∇(∇ ·V) also vanishes. Tm is the magnetic stress tensor. For a dilute fluid,

there is

∇ ·Tm = fm = µ0M · ∇H (41)

In this work, the magnetic force is considered as a body force and written directly as fm.

Substituting Eqs. (38, 40, 41) into Eq. (34), we obtain the four terms on the right hand side
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of Eq. (9)

∇ ·T = −∇p+ 2ζ∇× ω + (η + ζ)∇2V + µ0M · ∇H (42)

Define a stress tensor

T′ = −pI+Tv +Ta

=









−p + 2η ∂Vx

∂x
η
(

∂Vx

∂y
+ ∂Vy

∂x

)

+ ζ
(

∂Vy

∂x
− ∂Vx

∂y
− 2ωz

)

η
(

∂Vx

∂y
+ ∂Vy

∂x

)

− ζ
(

∂Vy

∂x
− ∂Vx

∂y
− 2ωz

)

−p + 2η
(

∂Vy

∂y

)









(43)

and a vector

f ′ = µ0M · ∇H− ρg + ρa0 cos(ωt)− σκ∇H(f) (44)

There are apostrophes on T′ and f ′ as the magnetic force is included in the body force

instead of the stress tensor.

The weak form of the Navier-Stokes equations and continuity equation is given by

SUPG+PSPG method as [62]

∫

Ω

w ·
[

ρ

(

∂V

∂t
+V · ∇V

)

− f ′
]

dΩ+

∫

Ω

ǫ(w) : T′dΩ +

∫

Ω

q∇ ·VdΩ

+
ne
∑

e=1

∫

Ωe

(

τSUPGV · ∇w + τPSPG
1

ρ
∇q
)

·
[

ρ

(

∂V

∂t
+V · ∇V

)

−∇ ·T′ − f ′
]

dΩ

+
ne
∑

e=1

∫

Ωe

τLSIC∇ ·wρ∇ ·VdΩ =

∫

Γ

w · tdΓ (45)

w and q denote weighting functions for velocity V and pressure P , respectively. Other

variables include T′-stress tensor, ǫ-strain tensor, f ′-body force, t-surface traction on the

boundary, τSUPG-SUPG stabilization parameter, τPSPG-PSPG stabilization parameter, and

τLSIC-least-squares on incompressibility constant (LSIC) stabilization parameter. The av-
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eraged ferrofluid density and viscosity in transition elements are defined as

ρ̄ = fρ1 + (1− f)ρ2 (46)

η̄ = fη1 + (1− f)η2 (47)

The two element-level integrals in the formulation are the SUPG+PSPG stabilization terms

for the momentum equation and least-squares stabilization term for the continuity equation,

respectively. The coefficients are given as [62]

τSUPG =

[

(

2

∆t

)2

+

(

2|V|
he

)2

+

(

4ν

h2e

)2
]− 1

2

(48)

τPSPG = τSUPG (49)

τLSIC =
he
2
|V|z(Ree) (50)

where ν-kinematic viscosity, he-element length, Ree-element Reynolds number. he and

Ree are defined as

he = 2|V|
(

nen
∑

k=1

|V · ∇Nk|
)−1

(51)

Ree =
|V|he
2ν

(52)

The function z(Ree) is defined as

z(Ree) =















Ree/3, Ree ≤ 3

1, Ree > 3

(53)
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Projecting the weak form of the Navier-Stokes equations in the x direction gives

∫

Ω

[

wxρ

(

∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

)

− wxfx

+
∂wx

∂x
(−p) + 2η

∂wx

∂x

∂Vx
∂x

+ (η + ζ)
∂wx

∂y

∂Vx
∂y

+ (η − ζ)
∂wx

∂y

∂Vy
∂x

+ 2ζ
∂wx

∂y
ωz

]

dΩ

+

ne
∑

e=1

∫

Ωe

τSUPG

(

Vx
∂wx

∂x
+ Vy

∂wy

∂y

)

·
[

ρ

(

∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

)

−(η + ζ)∇2Vx − 2ζ
∂ωz

∂y
+
∂P

∂x
− fx

]

dΩ

+

ne
∑

e=1

∫

Ωe

τLSICρ
∂wx

∂x

(

∂Vx
∂x

+
∂Vy
∂y

)

dΩ =

∫

Γ

wxtxdΓ (54)

In the y direction

∫

Ω

[

wyρ

(

∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

)

− wyfy

+
∂wy

∂y
(−p) + 2η

∂wy

∂y

∂Vy
∂y

+ (η + ζ)
∂wy

∂x

∂Vy
∂x

+ (η − ζ)
∂wy

∂x

∂Vx
∂y

− 2ζ
∂wy

∂x
ωz

]

dΩ

+
ne
∑

e=1

∫

Ωe

τSUPG

(

Vx
∂wx

∂x
+ Vy

∂wy

∂y

)

·
[

ρ

(

∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

)

−(η + ζ)∇2Vy + 2ζ
∂ωz

∂x
+
∂P

∂y
− fy

]

dΩ

+
ne
∑

e=1

∫

Ωe

τLSICρ
∂wy

∂y

(

∂Vx
∂x

+
∂Vy
∂y

)

dΩ =

∫

Γ

wytydΓ (55)
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The weak form of continuity equation is as follows

∫

Ω

q

(

∂Vx
∂x

+
∂Vy
∂y

)

+
ne
∑

e=1

∫

Ωe

τPSPG
∂q

∂x
·
[

ρ

(

∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

)

−(η + ζ)∇2Vx − 2ζ
∂ωz

∂y
+
∂P

∂x
− fx

]

dΩ

+

ne
∑

e=1

∫

Ωe

τPSPG
∂q

∂y
·
[

ρ

(

∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

)

−(η + ζ)∇2Vy + 2ζ
∂ωz

∂x
+
∂P

∂y
− fy

]

dΩ = 0 (56)

∇2Vx and ∇2Vy are trivial when linear elements are used [64] (p237).

The finite element discretization of the weak form of the Navier-Stokes equations

follows a similar procedure as described for the magnetic analysis. Linear elements are

used to solve the Navier-Stokes and continuity equations. The quadratic elements inside

the tank for magnetic analysis are converted to linear elements for sloshing dynamics anal-

ysis by taking only the vertices (neglecting the edge nodes). In this way, the magnetic and

sloshing dynamics analyses share the same mesh in the tank. After the standard FE dis-

cretization, the weak form can be rewritten in a matrix form similar to that obtained in Ref.
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[63]

















M11 0

0 M11









+









Ms11 0

0 Ms11

























ax

ay









+

















C11 0

0 C11









+









Cs11 0

0 Cs11

























vx

vy









+

















D11 D12

D21 D22









+









Bc11 Bc12

Bc21 Bc22

























vx

vy









−

















G1

G2









−









Gs1

Gs2

















p =









f1

f2









+









fs1

fs2









(57)

[

GT
1 GT

2

]









vx

vy









+

[

Mp1 Mp2

]









ax

ay









+

[

Cp1 Cp2

]









vx

vy









+Gpp = fp (58)

where v, a and p are the vectors of unknown nodal values of velocity, acceleration and

pressure, respectively. The matrices M, C(v), D and G are derived from mass, convec-

tive, viscous and pressure terms, respectively. f is related to the body forces and natural

boundary conditions. The subscripts s and p represent terms derived from SUPG stabiliza-

tion terms and PSPG stabilization terms, respectively. Bc is obtained from the least-squares

stabilization term. The matrices are calculated as follows.

M11 =

∫

ρNNTdΩ (59)

Ms11 =

∫

τSUPGρ

(

vx
∂N

∂x
+ vy

∂N

∂y

)

NTdΩ (60)

C11 =

∫

ρN

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

dΩ (61)

Cs11 =

∫

τSUPGρ

(

vx
∂N

∂x
+ vy

∂N

∂y

)(

vx
∂N

∂x
+ vy

∂N

∂y

)T

dΩ (62)
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D11 =

∫
[

2η
∂N

∂x

∂N

∂x

T

+ (η + ζ)
∂N

∂y

∂N

∂y

T]

dΩ (63)

D12 =

∫

(η − ζ)
∂N

∂y

∂N

∂x

T

dΩ (64)

D21 = DT
12 (65)

D22 =

∫ [

2η
∂N

∂y

∂N

∂y

T

+ (η + ζ)
∂N

∂x

∂N

∂x

T]

dΩ (66)

Bc11 =

∫

τLSICρ
∂N

∂x

∂N

∂x

T

dΩ (67)

Bc12 =

∫

τLSICρ
∂N

∂x

∂N

∂y

T

dΩ (68)

Bc21 = BT
c12 (69)

Bc22 =

∫

τLSICρ
∂N

∂y

∂N

∂y

T

dΩ (70)

G1 =

∫

∂N

∂x
NTdΩ (71)

G2 =

∫

∂N

∂y
NTdΩ (72)

Gs1 =

∫

τSUPG

(

vx
∂N

∂x
+ vy

∂N

∂y

)

∂N

∂x

T

dΩ (73)

Gs2 =

∫

τSUPG

(

vx
∂N

∂x
+ vy

∂N

∂y

)

∂N

∂y

T

dΩ (74)
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f1 =

∫
(

Nfx − 2ζ
∂N

∂y
ωz

)

dΩ (75)

f2 =

∫
(

Nfy + 2ζ
∂N

∂x
ωz

)

dΩ (76)

fs1 =

∫

τSUPG

(

vx
∂N

∂x
+ vy

∂N

∂y

)(

fx + 2ζ
∂ωz

∂y

)

dΩ (77)

fs2 =

∫

τSUPG

(

vx
∂N

∂x
+ vy

∂N

∂y

)(

fy − 2ζ
∂ωz

∂x

)

dΩ (78)

Mp1 =

∫

τPSPGρ
∂N

∂x
NTdΩ (79)

Mp2 =

∫

τPSPGρ
∂N

∂y
NTdΩ (80)

Cp1 =

∫

τPSPGρ
∂N

∂x

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

dΩ (81)

Cp2 =

∫

τPSPGρ
∂N

∂y

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

dΩ (82)

Gp =

∫

τPSPG

(

∂N

∂x

∂N

∂x

T

+
∂N

∂y

∂N

∂y

T)

dΩ (83)

fp =

∫

τPSPG

(

∂N

∂x
fx +

∂N

∂y
fy + 2ζ

∂N

∂x

∂ωz

∂y
− 2ζ

∂N

∂y

∂ωz

∂x

)

dΩ (84)

The matrix form can be written in a more concise way as [63] (p16)

(M+Ms)a+ [C(v) +Cs(v)]v + (D+Bc)v− [G−Gs]p = f + fs (85)

GTv +Mpa+Cp(v)v +Gpp = fp (86)

In the dynamic analysis, the predictor-corrector algorithm is used to solve for un-

known variables at time tn+1 from tn [64]. The first step is to calculate the predicted values
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v
(0)
n+1, p

(0)
n+1 using values from tn and set a

(0)
n+1, ṗ

(0)
n+1 zero.

v
(0)
n+1 = vn +∆t(1− β)an (87)

a
(0)
n+1 = 0 (88)

p
(0)
n+1 = pn +∆t(1− β)ṗn (89)

ṗ
(0)
n+1 = 0 (90)

The predicted values are corrected in these ways,

v(i+1) = v(i) + β∆t∆a(i) (91)

a(i+1) = a(i) +∆a(i) (92)

p(i+1) = p(i) +∆p(i) (93)

ṗ(i+1) = ṗ(i) + (∆p(i))/(β∆t) (94)

At (i+1)th iteration, Eqs. (85, 86) lead to the following equations.

(M+Ms)a
(i+1) + [C(v(i+1)) +Cs(v

(i+1))]v(i+1)

+(D+Bc)v
(i+1) − [G−Gs]p

(i+1) = f (i+1) + f (i+1)
s

(95)

GTv(i+1) +Mpa
(i+1) +Cp(v

(i+1))v(i+1) +Gpp
(i+1) = f (i+1)

p (96)

According to Taylor series, the 2nd term in Eq. (95) can be written as

[C(i+1) +C(i+1)
s ]v(i+1) ≈ (C(i) +C(i)

s )v(i) +
d[(C(i) +C

(i)
s )v(i)]

dv(i)
∆v(i)

= (C(i) +C(i)
s )v(i) +

d[(C(i) +C
(i)
s )v(i)]

dv(i)
β∆t∆a(i)

(97)
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In the same way, the 3rd term in Eq. (96) can be written as

C(i+1)
p v(i+1) = C(i)

p v(i) +
d(C

(i)
p v(i))

dv(i)
β∆t∆a(i) (98)

When written in an incremental form, the weak form takes the following format.

Since the acceleration is zero at the first iteration, at least 2 iterations (I=2) are required to

take into consideration the effect of mass matrix [64] (p17).

M′∆a(i) −G′∆p(i) = R(i+1) (99)

H′∆a(i) +Gp∆p(i) = Q(i+1) (100)

where

R(i+1) =f (i+1) + f (i+1)
s − [ (M+Ms)a

(i) + (C(i) +C(i)
s )v(i)

+ (D+Bc)v
(i) − (G−Gs)p

(i) ]

(101)

Q(i+1) =F (i+1)
p − (GTv(i) +Mpa

(i) +C(i)
p v(i) +Gpp

(i)) (102)

M′(i+1) =M+Ms + β∆t

[

d(C(i)v(i))

dv(i)
+
d(C

(i)
s v(i))

dv(i)
+D+Bc

]

(103)

G′ =G−Gs (104)

H′(i+1) =Mp + β∆t

[

d(C
(i)
p v(i))

dv(i)
+GT

]

(105)

Now let’s look at the how to calculate the nonlinear term
d(Cv)
dv

Cv =









C11 0

0 C11

















vx

vy









=









C11vx

C11vy









(106)
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So

d(Cv)

dv
=









d(C11vx)
dvx

d(C11vx)
dvy

d(C11vy)
dvx

d(C11vy)
dvy









(107)

From Eq. (61) it can be seen that

C11vx =

∫

ρN

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

dΩ · vx (108)

The a-th row of C11vx is

(C11vx)a =

∫

ρNa

[

nen
∑

c=1

(

vx
∂Nc

∂x
+ vy

∂Nc

∂y

)

vxc

]

dΩ (109)

Taking the derivative of (C11vx)a with respect to vxb gives

d(C11vx)a
dvxb

=

∫

ρNa

[

nen
∑

c=1

(

Nb
∂Nc

∂x

)

vxc

]

dΩ +

∫

ρNa

(

vx
∂Nb

∂x
+ vy

∂Nb

∂y

)

dΩ (110)

Thus

d(C11vx)

dvx

=

∫

ρNNT

(

∂vx
∂x

)

dΩ+C11 (111)

In similar ways,

d(C11vx)

dvy
=

∫

ρNNT

(

∂vx
∂y

)

dΩ (112)

d(C11vy)

dvx
=

∫

ρNNT

(

∂vy
∂x

)

dΩ (113)

d(C11vy)

dvy

=

∫

ρNNT

(

∂vy
∂y

)

dΩ+C11 (114)
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For the nonlinear term
d(Csv)

dv
, from Eq. (62) it can be seen that

Cs11vx =

∫

τSUPGρ

(

vx
∂N

∂x
+ vy

∂N

∂y

)(

vx
∂N

∂x
+ vy

∂N

∂y

)T

dΩ · vx (115)

The a-th row of Cs11vx is

(Cs11vx)a =

∫

τSUPGρ

(

vx
∂Na

∂x
+ vy

∂Na

∂y

)

[

n
∑

c=1

(

vx
∂Nc

∂x
+ vy

∂Nc

∂y

)

vxc

]

dΩ (116)

Taking the derivative with respect to vxb

d(Cs11vx)a
dvxb

=

∫

τSUPGρ

(

Nb
∂Na

∂x

)

[

n
∑

c=1

(

vx
∂Nc

∂x
+ vy

∂Nc

∂y

)

vxc

]

dΩ

+

∫

τSUPGρ

(

vx
∂Na

∂x
+ vy

∂Na

∂y

)

[

n
∑

c=1

(

Nb
∂Nc

∂x

)

vxc

]

dΩ

+

∫

τSUPGρ

(

vx
∂Na

∂x
+ vy

∂Na

∂y

)(

vx
∂Nb

∂x
+ vy

∂Nb

∂y

)

dΩ

(117)

Thus

d(Cs11vx)

dvx
=

∫

τSUPGρ

(

∂N

∂x
NT

)

[

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

vx

]

dΩ

+

∫

τSUPGρ

(

vx
∂N

∂x
+ vy

∂N

∂y

)

NT

(

∂vx
∂x

)

dΩ+Cs11

(118)
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Similarly,

d(Cs11vx)

dvy

=

∫

τSUPGρ

(

∂N

∂y
NT

)

[

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

vx

]

dΩ

+

∫

τSUPGρ

(

vx
∂N

∂x
+ vy

∂N

∂y

)

NT

(

∂vx
∂y

)

dΩ

(119)

d(Cs11vy)

dvx
=

∫

τSUPGρ

(

∂N

∂x
NT

)

[

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

vy

]

dΩ

+

∫

τSUPGρ

(

vx
∂N

∂x
+ vy

∂N

∂y

)

NT

(

∂vy
∂x

)

dΩ

(120)

d(Cs11vy)

dvy

=

∫

τSUPGρ

(

∂N

∂y
NT

)

[

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

vy

]

dΩ

+

∫

τSUPGρ

(

vx
∂N

∂x
+ vy

∂N

∂y

)

NT

(

∂vy
∂y

)

dΩ +Cs11

(121)

The 3rd nonlinear term
d(Cpv)

dv
is computed in the following way.

Cp(v)v =

[

Cp1 Cp2

]









vx

vy









= Cp1vx +Cp2vy (122)

d(Cpv)

dv
=

[

d(Cp1vx+Cp2vy)

dvx

d(Cp1vx+Cp2vy)

dvy

]

(123)

From Eqs. (81, 82), it is clear that

Cp1vx +Cp2vy =

∫

τPSPGρ
∂N

∂x

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

dΩ · vx

+

∫

τPSPGρ
∂N

∂y

(

vx
∂N

∂x
+ vy

∂N

∂y

)T

dΩ · vy

(124)
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And then

d(Cpv)

dvx

=

∫

τPSPGρ
∂N

∂x
NT ∂vx

∂x
dΩ+Cp1 +

∫

τPSPGρ
∂N

∂y
NT ∂vy

∂x
dΩ (125)

d(Cpv)

dvy
=

∫

τPSPGρ
∂N

∂x
NT ∂vx

∂y
dΩ+

∫

τPSPGρ
∂N

∂y
NT ∂vy

∂y
dΩ +Cp2 (126)

When ∆a(i), ∆p(i) are calculated, predicted values are corrected according to Eqs.

(91-94).
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