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ABSTRACT 

The ground motion parameters such as amplitude, frequency content and the duration 

can be affected by the local site condition and may result in amplification or de-amplification 

to the original bedrock motion. Shear wave velocity is an important site parameter to 

describe the site condition and is widely used in estimating site response, classifying sites 

in recent building codes and loss estimation. This dissertation is aimed at: modeling the 

spatial variation of shear wave velocity using geostatistical tools; improve the random 

field framework for estimating soil properties to account for multiple sources of data; 

develop finite element model to qualify the uncertainty propagation in dynamic site 

response; introduce the response surface concept into seismic hazard analysis and 

quantifying the uncertainty propagation in dynamic site response caused by the variation 

of shear wave velocity and design parameters.  

To model the spatial variation of shear wave velocity, a multiscale random field-

based framework is presented and applied to mapping Vs30 - the time-averaged shear 

wave velocity in the top 30 meters of subsurface material - over extended areas. In this 

framework, the random field concept is employed to model the horizontal variation of 

shear wave velocity. Suzhou Site is selected as research area and its measured shear wave 

velocity data is combined with U.S. Geological Survey (USGS) slope-based Vs30 map for 

mapping the Vs30 around whole research area. Moreover, a different method of 

integrating multiple sources of data is used and tested based on a synthetic digital field.  
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To quantify the uncertainty propagation in dynamic site response caused by the 

variation of shear wave velocity, the finite element method (FEM) is developed and 

combined with random field realizations of shear wave velocity profiles. A viscoelastic 

constitutive model is implemented in the FEM model to account for the non-linear 

hysteresis response of subsurface materials under cyclic loadings. The analyzed site 

responses as well as the input parameters generated with Monte Carlo simulations (MCS) 

are then used to study the peak acceleration at site surface subjected to a given input 

seismic wave.  Finally, the response surface method and the first order second moment 

method (FOSM) are integrated into dynamic site response analysis to characterize 

variation of site performance caused by spatial variation of shear wave velocity. Through 

illustrative examples, the effectiveness, advantage, practicability and significance of 

improved random field framework and developed uncertainty propagation evaluation 

methodology are demonstrated. 
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CHAPTER I 

1. INTRODUCTION

1.1 Motivation and Background 

The 1933 Long Beach, 1957 San Francisco, 1967 Caracas, 1985 Mexico City, 

1989 Loma Prieta, and 1994 Northridge earthquake events left evidence of how the local 

site condition can affect the characteristics of propagating earthquake wave from the 

bedrock through the topsoil (Bhuiyan 2015). The ground motion amplitude, frequency 

content and the duration can be affected by the local site condition and thus can cause 

significant amplification or de-amplification to the original bedrock motion which can 

seriously affect the structures.  

For describing local site conditions, shear wave velocity (Vs) is a simple, effective 

and representative parameter. Also, it is an important input for any seismic site response 

study. Normally, there are two expression forms of shear wave velocity: the Vs profile 

along the depth, and the time-averaged shear wave velocity in the top 30 meters of the 

subsurface material, denoted as Vs30. As a simplified expression of shear wave velocity, 

Vs30 integrates a whole Vs profile into one specific value. Owing to its convenience in 

engineering usage, National Earthquake Hazards Reduction Program (NEHRP) uses Vs30 

value to classify the soil and describe soil stiffness. Lots of ground-motion prediction 

equations also use it as a key indicator such as Abrahamson and Silva (2008), 
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Abrahamson et al. (2014), Boore and Aktinson (2008), Boore et al. (2014), Campbell and 

Bozorgnia (2008, 2014), Choi and Youngs (2008, 2014), and Idriss (2008, 2014). 

Because of its importance and effectiveness as a site parameter for site response 

prediction, the NGA-West2 project (Ancheta et al., 2014; Seyhan et al., 2014) made a 

project-level decision to compile a site database in terms of Vs30. The U.S. Geological 

Survey (USGS) earthquake hazard program also provides and maintains a global Vs30 

map server. While the Vs30 can be computed directly given a shear-wave velocity 

measurement, such geophysical measurements are typically very sparse. Therefore, 

various descriptors or quantitative metrics of site condition have been proposed for the 

purpose of estimating Vs30 in the absence of geophysical measurements.  

In the past, proxy-based methods have been developed to estimate Vs30, including 

the geology-based (Wills et al. 2015), topography-based (Wald and Allen 2007) or hybrid 

method (Thompson et al. 2014). One limitation is that, while initially derived from 

observed Vs30 values, these approaches fail to directly incorporate the Vs30 measurements 

used back into the map that has been created.  

In this dissertation, a geostatistical approach that accounts for the spatial 

variability of Vs30 across different length scales and incorporates the compiled database 

of direct geophysical measurements and proxy-based Vs30 values is presented. 

Regional estimation of soil properties necessitates not only the geostatistical 

model considering spatial variance of soil properties, but also the means to account for 

heterogeneous sources of information. It is necessary to account for spatial variability of 

soil properties across scales consistently, while simultaneously preserving constraints 
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imposed by geological boundaries (Wang and Chen 2017). Thus, a hybrid geotechnical 

and geological data-based framework is presented and tested in this dissertation. 

Recommendations on how to act in each specific mapping situation and step-by-step 

instructions for accomplishing mapping are provided including the methodology to 

calibrate Markov Bayes coefficient B and integrate secondary data. 

Coupling the random field model with Monte Carlo simulations, the expected Vs30 

values across the specific site and the associated uncertainties can be obtained. It is found 

that the uncertainty of shear wave velocity is ubiquitous, in both horizontal and vertical 

direction. With the understanding of the distribution of Vs30 and the importance of its 

uncertainty, the uncertainty propagation in dynamic site response is evaluated.  

Dynamic analysis of site effect on ground motions is a challenging task, coupled 

with the uncertainty of soil parameter, making it even more difficult to quantify.  In the 

past few decades, lots of research has been done to estimate site response. Some of them 

use empirical models which are based on statistical analysis and fitting of field data like 

Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia 

(2008), Chiou and Youngs (2008) and Idriss (2008). Others use numerical methods which 

are based on dynamic site response analysis like Seed and Idriss (1969), Park and 

Hashash (2008), Kamalian et. al (2006), Martin et al. (1982) and Elgamal et al. (2002). 

Few researchers consider the uncertainty of input parameters. Typical works include 

Wang and Hao (2002), Bahrampouri et al. (2018), Stewart and Kwok (2008) and 

Tombari and Stefanini (2017).  
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In this dissertation, a comprehensive study is conducted to evaluate the impacts of 

soil parameters uncertainty in nonlinear dynamic site response. Numerical analysis with 

finite element method is applied to describe the uncertainty propagation in dynamic site 

response and its performance under different site condition. Modified Davidenkov model 

with simplified loading-reloading rules is used to describe the stress-strain relationship 

under irregular cyclic loading. Furthermore, in the following chapters, the response 

surface and first order second moment (FOSM) concept are integrated to quantify the 

uncertainty in dynamic site response and a response surface model is established for the 

further reliability analysis. 

Input seismic wave

Deterministic 
analysis

Uncertainty 
analysis

PGA at ground surface 
(fixed value)

Vs1
Vs2
Vs3

Vsn

Vs1

Vs2
Vs3

Vsn

Monte Carlo simulation
10,000 times

Sampling
(limit times)

Response surface model

Probabilistic failure 
assessment

Built ABAQUS 
model

PGA at ground surface 
(random variable)

Figure 1.1 Flow chart detailing the uncertainty analysis in the dynamic site response 
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1.2 Objective and Dissertation Organization 

The objectives of this research are to (1) investigative the distribution and 

uncertainty of regional soil properties (2) improve the random field framework for 

estimating soil properties to account for multiple sources of data, (3) develop finite 

element model to qualify the uncertainty propagation in dynamic site response, (4) 

introduce the response surface concept into seismic hazard analysis, (5) formulate the 

uncertainty propagation in site response that can explicitly consider longitudinal variation 

of input soil parameters and design parameters. 

This dissertation consists of five chapters. In Chapter II, a multiscale random 

field-based framework is presented and applied to map Vs30 over extended areas. Here, 

the framework accounts for spatial variations of Vs30 values across different length scales 

and is able to adaptively refine around areas of high interest while maintaining a 

consistent description of spatial dependence. In Chapter III, a hybrid geotechnical and 

geological data-based random field framework is presented and tested, which is an 

updated model based on the framework introduced in Chapter II. Here, the effects of site 

investigation plans, the Markov-Bayes coefficient and the element size for the predefined 

grid of secondary data on the random field-based mapping of soil properties have been 

tested. Based on the sensitivity analysis, an overall workflow for integrating multiple 

sources of data in the random field model for regional soil properties mapping is 

established. In Chapter IV, a finite element model is developed for the dynamic site 

response analysis. In this model, the modified Davidenkov model with simplified 



6 

loading-reloading rules is compiled and applied to simulate the stress-strain relationship 

of soil. Monte Carlo simulations are conducted to qualify the uncertainty propagation in 

dynamic site response. In Chapter V, the response surface and first order second moment 

(FOSM) concepts are applied based on the deterministic numerical solutions (developed 

in Chapter IV) for building computationally efficient models for complex geotechnical 

reliability problems. Finally, in Chapter VI, the main conclusions and recommendations 

of this dissertation are presented. 
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CHAPTER II 

2. SPATIALLY CORRELATED MULTISCALE VS30 MAPPING AND A

CASE STUDY OF THE SUZHOU SITE* 

2.1 Introduction 

The time average shear-wave velocity in the first 30 m of subsoil, denoted as Vs30, 

is an important site parameter used in estimating site response, classifying sites in recent 

building codes and loss estimation (Boore, 2004). Because of its importance and 

effectiveness as a site parameter for site response prediction, the NGA-West2 project 

(Ancheta et al., 2014; Seyhan et al., 2014) made a project-level decision to compile a site 

database in terms of Vs30. The U.S. Geological Survey (USGS) earthquake hazard 

program also provides and maintains a global Vs30 map server. Site databases in terms of 

Vs30 give useful site information that allows engineers to choose appropriate site 

conditions for various design and analysis purposes. 

While the Vs30 can be computed directly given a shear-wave velocity 

measurement, such geophysical measurements are typically very sparse. Therefore, 

various descriptors or quantitative metrics of site condition  have  been  proposed  for  the 

A similar form of this chapter has been published at the time of writing: Liu, W, Chen, Q, Wang, C, 
Juang, CH, (2017b). Spatially correlated multiscale Vs30 mapping and a case study of the Suzhou site. 
Engng Geol. 220, 110–122. 
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purpose of estimating Vs30 in the absence of geophysical measurements. For instance, 

Wald and Allen (2007) proposed a technique to derive first-order site-condition maps 

directly from topographic data, where the Vs30 values are correlated with the topographic 

slope. Wills and Clahan (2006) and Wills and Gutierrez (2008) grouped shear-wave 

velocity data by corresponding geologic units to determine the shear-wave velocity 

characteristics of each geologic unit. Then, the geologic unit designation and shear-wave 

velocity characteristics are applied to sites without shear-wave velocity data. This revised 

geologic designation improves the previous geology-based Vs30 method by Wills et al. 

(2000) and Wills and Silva (1998). In addition, geology-topography hybrid (Scasserra et 

al., 2009) and geomorphometry-based proxy relationships (Yong et al., 2012) have been 

proposed for estimating Vs30. 

A major limitation of proxy-based methods is that, while initially derived from or 

constrained by observed Vs30 values, these methods do not directly incorporate the Vs30 

measurements into the generated site condition map. This, along with the increasing 

amount of available direct geophysical measurement data, motivates the application of 

geostatistical methods to Vs30 and site condition mapping. Examples of recent work along 

this line include the work of Thompson and his coworkers (Thompson et al., 2014, 2011, 

2010), where a new map of Vs30 for California is developed accounting for geology, 

topography and most importantly, site-specific Vs30 measurements. The geostatistical 

approach  of  regression  kriging  (RK)  is  applied  to combine these constraints to 

predict Vs30. This approach allows  the resulting Vs30 map to be locally refined to reflect 

the rapidly expanding database of Vs30 measurements. Yong et al. (2013) and Wald et al. 
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(2011) applied the kriging-with-a-trend method to mapping Vs30, where the baseline 

model was derived from topographic slope. Also, Lee and Tsai (2008) established the 

spatial relationship between the shear-wave velocity (Vs) and the N value of the standard 

penetration test (SPT-N) and adopted the kriging with varying local means to update the 

Vs30 maps in Taiwan. Thompson et al. (2007) modeled the horizontal variability of near-

surface soil shear wave velocity in the San Francisco Bay Area using geostatistical 

methods. 

In this chapter, a multiscale random field-based approach is presented and applied 

to mapping Vs30 over an extended region. Unlike existing geostatistical methods for Vs30 

mapping, the presented approach explicitly accounts for the spatial variability of Vs30  

across different length scales and incorporates the compiled database of direct 

geophysical measurements and proxy-based Vs30 values. High resolution predictions of 

Vs30 can be obtained by  adaptively  refining coarse-scale values into finer scales in areas 

where deemed necessary while retaining  appropriate  spatial  correlation,  which  is a 

particular useful feature for analyzing fine scale quantities of interest, such as estimation 

of uncertainties. Coupled with Monte Carlo simulations, the multiscale random field 

models also allow the quantification of uncertainties in the Vs30 maps. The resulting Vs30 

maps preserve known Vs30 data, uphold appropriate spatial correlation and have 

multiscale resolutions with information on associated uncertainties. 

The order of presentation of this chapter goes as follows: Section 2.2 summarizes 

the engineering geology, field data and secondary Vs30 data of the Suzhou site; In Section 

2.3, key components of the developed geostatistical tools for mapping Vs30 are presented; 
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Statistical and spatial characterizations of the known Vs30 data will be discussed in detail 

in Section 2.4; In Section 2.5, new Vs30 maps will be  represented and applications of 

those new Vs30 maps will be discussed in Section 2.6. 

2.2 The Suzhou site: engineering geology and field data 

Suzhou is a populous city on the alluvial plain of the Yangtze River Delta in the 

southeast of Jiangsu Province, China. In this section, the engineering geology and field 

data of the Suzhou site are briefly summarized. The dominating alluvial deposits beneath 

the studied site are soft and  sensitive.  In  addition  to  geotechnical  engineering 

challenges associated with construction on soft soil, long-period ground motions of far 

earthquakes may also cause serious damage to engineering projects in this area (Zhan et 

al., 2009). 

2.2.1 Engineering geology 

The studied area of Suzhou City is covered by Quaternary deposits of fluvial, 

lake, lagoon and marine origins. Most of the area is a combination of a lacustrine plain 

and delta plain.  Some  layers  of  the  lake and river deposits are rich in  over-

consolidated  clay.  Most of the lagoonal and marine deposits, however, consist of soft 

clays, which are dark in color and rich in organic matters.  
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Figure 2.1 Surficial geology map of the Suzhou site and locations of shear-wave velocity 
measurements (black dots in the figure). II3 is the Taihu alluvial plain; II4 is the lake-swamp plain; 
I1, I2 and I3 are outcrops with different rock types. Cross sections 1-1 and 2-2 are used to plot 
example soil profiles for the top 50 m. The little triangle shows the location of the sample Vs 
profile in Figure 2.3. 

Figure 2.1 shows the boundaries of the studied area, the major surficial geology units and 

locations of shear-wave velocity measurements. As shown in Figure 2.1, the western 

portion of the studied area belongs to the Taihu alluvial plain (II3) with interspersed 

outcrops (I1, I2 and I3). The eastern portion belongs to the lake-swamp plain (II4). Almost 

all of the shear- wave velocity measurements were taken in the geological units II3 and 

II4. Example profiles of the top 50 m soil are plotted in Figure 2.2(a) for the Taihu 

alluvial plain (II3) (cross-section 1-1 in Figure 2.1) and in Figure 2.2(b) for the lake-

swamp plain (II4) (cross-section 2-2 in Figure 2.1), respectively. Explanations of the soil 

type number are summarized in Table 2.1. 
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(a) Cross-section 1-1

(b) Cross-section 2-2

Figure 2.2 Example soil profiles in the top 50 m for the cross-sections 1-1 and 2-2 shown in 
Figure 2.1. 

Table 2.1 Explanation of soil type numbers used in Figure 2.2. 
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2.2.2 Field data 

The field data compiled for this study consists of shear-wave velocity 

measurement data and soil parameters from lab tests from Institute of Earthquake 

Engineering for Jiangsu Province, China, performed 309 shear wave velocity tests in the 

Suzhou site using the suspension P-S velocity logging method. The suspension P-S 

logging system uses a probe that contains a source and two receivers spaced 1 m apart. 

The probe is lowered into the borehole to a specified  depth, where the source generates a 

pressure wave  in  the  bore-  hole fluid to be received by the receivers. The elapsed time 

between arrivals of the waves at the receivers is used to determine the average velocity of 

a 1-meter-high column of soil around the borehole. An example sequential waveform 

arrival along depth profile is shown in Figure 2.3(a) and the corresponding shear-wave 

velocity profile is shown in Figure 2.3 (b).  

(a)   (b) 

Figure 2.3 Sample shear-wave velocity data obtained from the suspension P-S velocity logging 
method: (a) depth sequential waveform arrivals; (b) shear wave velocity (Vs) versus depth. 
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The location of this profile is marked in Figure 2.1 as an triangle. In general, the shear-

wave velocity profile corresponds well with the expected soil conditions. For the top 20 

m, the shear wave velocity is relatively small (around 150 m/s), which corresponds to the 

soft soil layers (types 3-1 to 4-1 in Table 2.1). When the depth reaches below 20 m, the 

shear wave velocity increases significantly (to around 350 m/s) and remains constant 

from 20 to 50 m, which corresponds well to the relatively hard soil layers (type 6-1 to 8-1 

in Table 2.1). 

Table 2.2 Summary of soil parameters obtained from borehole samples. 

3 (g/cm )satρ  3 (g/cm )dρ LL PL 

Min 1.73 1.14 22.9 11.5 
Max 2.96 2.59 70.1 34.4 
Mean 2.81 1.51 35.6 20.1 

Soil samples were also collected at selected boreholes and analyzed to obtain 

various soil parameters of interest including the saturated density ( satρ ), the dry density (

dρ ), the liquid limit (LL) and the plastic limit (PL). Table 2.2 summarizes ranges of soil 

parameters obtained from borehole samples. The water table is found to be at 1.35 to 1.97 

m below ground surface. 

2.2.3 Calculation of Vs30 at measurement locations 

Given the shear-wave velocity measurement data, a time averaged shear-wave 

velocity to a profile depth z, denoted as Vsz, can be calculated at each measurement 

location as  
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where zt∆ is the travel time for shear waves from depth z to the ground surface; szV  is the 

shear-wave velocity at depth z; the integral is usually evaluated in practice through 

summation across velocities taken as constant within depth intervals. When the shear 

wave velocity profile extends to depths of  30 m or greater, z is taken as 30 m, and the 

resulting velocity is Vs30. When z < 30 m, Vs30  cannot be calculated directly and various 

correlations between szV  and Vs30 have been developed to estimate Vs30 (Boore, 2004; 

Boore et al., 2011). For this study, all shear wave velocity measurements reach over 30 

m. Figure 2.4 plots the Vs30 values at 309 measurement locations as well as their

histogram (the inset). 

Figure 2.4 Map of Vs30 measurements in Suzhou City, with histogram inset. 
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Those Vs30 values shown in Figure 2.4 are only available at locations with 

measured shear-wave velocity profiles. To estimate and map Vs30  values across the 

region of interest, geostatistical tools and multiscale random field models will be 

developed and presented in Section 3. Statistical and spatial characterization of the 

known Vs30 will be discussed in Section 4. 

2.2.4 Secondary Vs30 data 

In addition to the calculated Vs30 values at measurement locations, proxy-based 

Vs30 values are also collected in this study from the U.S. Geological Survey (USGS) 

global Vs30 map server (http://earthquake.usgs.gov/hazards/apps/vs30/). Those Vs30 

values are based on a simplified approach that correlates Vs30 value with the topographic 

slope (Wald et al., 2004; Allen and Wald, 2009). Such secondary Vs30 data are necessary 

because almost all Vs30 measurements (307 out of 309) are within the Taihu alluvial plain 

(II3) and the lake-swamp plain (II4), i.e., within relatively soft soils. There is little 

information on Vs30 values in hilly areas (I1, I2 and I3). The USGS Vs30 data will be used 

to improve Vs30 predictions in hilly areas, which will be discussed in more detail in 

Section 2.5. Figure 2.5 plots the USGS Vs30 data along with its histogram. It is clear from 

the map that the hilly areas in the western part of the city have much higher Vs30 values. 

Moreover, in the alluvial plain, the mean of the USGS Vs30 is 219 m/s and the minimum 

is 180 m/s. The mean of the measured Vs30 values is 200 m/s and the minimum is 153 

m/s. Distributions of the USGS and measurement Vs30 values have also been compared. 



17 

In general, it is found that the USGS Vs30 values tend to predict a higher estimate in the 

alluvial plain. 

Figure 2.5 USGS global slope-based Vs30 data: map of the Vs30 values in Suzhou City and the 
corresponding histogram (inset). 

2.3 Geostatistical approach to characterize spatial variability across scales 

In this section, key components of the developed geostatistical tools and random 

field-based models to map Vs30 are presented. The rationality behind a geostatistical 

approach is the fact that the measured soil parameters at one location are more similar to 

those at neighboring locations than those further away, i.e., soil parameters are spatially 

correlated. It is desirable to characterize the spatial structure of soil parameters of interest 

to improve the accuracy of predictions at unsampled locations. 
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In this study, a form of covariance called the semivariogram is used to describe 

the spatial structure, which is equal to one half of  the variance of two random variables 

separated by a distance h as 

( ) ( )[1
2

( )]Var Z Zγ = − +h u u h  (2.3) 

where ( )Z u is the variable under consideration at location u and ( )Z +u h is the lagged 

version of the variable. 

Under the condition of second-order stationarity, the semivariogram is related to 

the spatial correlation ( )ρ h by 

( ) ( )
( )

  1
COV

ρ
γ

= −
h

h
0

(2.4) 

where COV(0) is the covariance at =h 0 . The semivariogram ( )γ h is typically preferred 

by the geostatistics community because it only requires the increment ( ) ( )Z Z− +u u h to 

be second-order stationary, which is a weaker requirement than the second-order 

stationarity of the variable itself. In the following examples, the spatial structure of the 

soil parameter under consideration (i.e., the Vs30 value) is characterized by the 

semivariogram model, which can be converted to ρ  and implemented within a random 

field model.  

To account for the multiscale nature of soil variability Chen et al. (2012) and 

Baker et al. (2011) extended the definition of spatial correlation to multiple scales based 

on the notion that material properties at the coarser scale are the arithmetically averaged 

values of the properties over corresponding areas at the finer scale. Such notion is 
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formally similar to the block kriging (Goovaerts, 1997) but with a different intention to 

consistently and adaptive refine a coarse scale random field. The multiscale random field 

allows a higher resolution field to be adaptively generated around areas of high interest. 

In this work, two scales of interest are considered and all the subsequent 

developments apply to variables following the standard Gaussian distribution, i.e., 

variables after the normal score transformation. The variable of interest c
IZ  at the coarse 

scale is defined as the arithmetically averaged fine scale values over corresponding areas 

as (Chen et al., 2012) 

( )
1

1 N
c f
I i I

i
Z Z

N =

= ∑ (2.5) 

where the superscripts “c” and “f” correspond to coarse and fine scales, respectively; N is 

the number of fine scale elements within a corresponding coarse scale area (element) I. 

Defining the variable of interest at the fine scale and using the relation of 

Equation (2.5), the expression for the mean, the variance and the spatial correlation of 

coarse scale variables of interest can be explicitly derived. The mean of a coarse scale 

element c
IZ can be derived by taking the expectation of Equation (2.5) as 

( )1

1 0c f
i I

N
c
IZ Z

i
E Z

N
µ µ

=

 = = =  ∑   (2.6) 

where 
( )
f

i IZ
µ  is the mean at the fine scale, which equals to zero for variables following the 

standard Gaussian distribution. Accordingly, if the variance of the fine scale variable is 

unity, the coarse scale variance, denoted as 2
cZ

σ  , can be computed as  
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where 
,f f

i jZ Z
ρ  is the correlation between two fine scale element i and j with variance f

iZ
σ

and f
jZ

σ , respectively. The covariance between any two elements iZ  and jZ  within the 

random field is defined as 

,,
i j i ji j Z Z Z ZCOV Z Z ρ σ σ  =    (2.8) 

The correlations between all considered scales can be calculated by rearranging 

the definition of covariance such that 

,

,
i j
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Z Z
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ρ

σ σ

  = (2.9) 

where iZ and jZ are two elements within the random field at any scale with variance 2
iZσ

and 2
iZσ . By making appropriate substitutions at each scale using Equations. (2.8) and 

(2.9), the correlation between elements at different scales can be obtained as (Chen et al., 

2015, 2016) 
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where the Roman numerals I, II... are used for the coarse scale element number; ,c c
I IIZ Z

ρ is 

the correlation between two coarse-scale elements I and II; ,f c
IZ Z

ρ is the correlation 

between a fine-scale element and a coarse scale element I; 
( ) ( ),f f

i I k IIZ Z
ρ is the correlation 

between a fine element i and a fine element k, which belong to two different coarse scale 

elements I and II, respectively. Given the correlation ρ between elements at different 

scales, the corresponding covariances COV can be easily obtained via Equation. (2.8). 

Once the covariance COV between any two elements at any scale in the random 

field is determined, a conditional sequential simulation approach is taken for the 

simulation procedure. The process simulates each value individually, conditional upon all 

known data and previously simulated values. Using such a process, the conditional 

distribution of the next value to be simulated in the random field, denoted as Zn, is given 

by a univariate normal distribution with the updated mean and the variance as 

( ) ( )1 2 1,n p np pp p n np pp pnZ N σ− −⋅ ⋅ − ⋅ ⋅Z Σ Σ Z Σ Σ Σ (2.12) 

where pZ is a vector of all known or previously simulated points; npΣ , ppΣ , pnΣ  are 

covariance matrices; 2
nσ is the covariance of the next simulated point; the subscription 

“p’’ and “n’’ refer to the “previous” simulated point(s) and the “next” point to be 

simulated, respectively. Eq. (2.12) means that the unknown value nZ at an unmeasured 

location can be drawn from the conditional normal distribution with the mean 

1
np pp p

−⋅ ⋅Σ Σ Z and the variance 2 1
n np pp pnσ −− ⋅ ⋅Σ Σ Σ . Once nZ  is generated, it is inserted into 

the “previous” vector, i.e., pZ , upon which the “next” unknown value at another 
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unsampled location will be generated. Such process is repeated until all locations within a 

random field are simulated. A key advantage of such conditional simulation is that it 

preserves the field data in the random field. Moreover, as pointed out by Baker et al. 

(2011), such a simulation approach is particular suitable for an adaptive refinement 

process, where additional fine-scale simulations can be progressively added in the 

random field in locations deemed necessary. 

2.4 Data inference - statistical and spatial characterizations of the known Vs30 data 

The multiscale random field models require as inputs the statistical distributions 

and the spatial structures of the variable under consideration. In the Suzhou site, a total of 

309 Vs30 values are obtained from direct shear-wave velocity measurements. Figure 2.6 

plots the histogram of the 309 Vs30 measurements. Among those 309 Vs30 measurements, 

307 measurements are located in the two dominating surficial geological units: the Taihu 

alluvial plain (II3) and the lake-swamp plain (II4) as shown in Figure 2.1. Those Vs30 

measurements are grouped by geological units II3 and II4 to see whether significant 

differences exist. Table 2.3 summarizes the statistical characteristics (e.g., mean, 

variance, maximum, upper quantile, median, lower quantile, minimum) of the two 

groups. As can be seen from Table 2.3, the statistical characteristics do not differ 

significantly between the two dominant surficial geological units. In subsequent 

characterizations and examples, geologic units II3 and II4 are grouped together in random 

field models. In the outcrop areas (I1, I2 and I3),  no direct shear-wave velocity 
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measurement is available. The USGS proxy-based Vs30 data are collected (refer to Figure 

2.5) and incorporated as known data in those outcrop areas in subsequent random field 

simulations. 

  
Figure 2.6 Histogram of all 309 Vs30 values calculated from shear-wave velocity measurements. 

Figure 2.7 plots all measurement data projected in the east–west and north–south 

directions along with the trend lines. The trend line along the west–east direction is 

almost a horizontal line, indicating little trend in this direction. On the other hand, Figure 

2.7 (b) shows slightly increased Vs30 values from north to south. However, the change is 

still relatively mild to make any significant impact. It should be pointed out that 307 of 

the 309 Vs30 measurements are in the Taihu alluvial plain (II3) and lake-swamp plain (II4). 

So, the trend analysis reveals the trend (or no trend) of Vs30 in those geological units only. 

Table 2.3 Statistical characteristics of the known Vs30. 

Statistical parameter II3 II4 Combined II3 and II4 
Data count 143 164 307 
Mean 198 202 200 
Variance 205 216 192 
Maximum 236 233 236 
Upper quantile 208 212 201 
Median 196 203 200 
Lower quantile 188 193 191 
Minimum 172 153 153 
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(a) West-east                                                  (b) North-south 

Figure 2.7 Trend of the known Vs30 values at measurement locations along (a) the west–east 
direction and (b) the north–south direction. 

The empirical or sample semivariogram of  Vs30  measurements are also computed 

to infer their spatial structure in the studied region. The empirical semivariogram, 

denoted as ( )γ̂ h , is calculated as (Goovaerts, 1997) 

 ( ) ( ) ( ) ( )
( )

2

1

1ˆ
2

N

Z Z
N α α

α

γ
=

= + +  ∑
h

h u u h
h

  (2.13) 

where ( )N h  is the number of pairs of data ( ( )Z αu and ( )Z α +u h ) separated by a vector 

distanceh . To facilitate the incorporation of the semivariogram into random field models, 

the empirical semivariogram is typically fitted by a basic semivariogram model or a 

linear combination of several basic semivariogram models that are permissible 

(Goovaerts, 1997). Fig 2.8 plots the empirical semivariogram model as well as the fitted 

exponential model of the form 

 ( ) 31 exp hh
a

γ ω τ  = − − +    
  (2.14) 

where h is a scalar measure of the separation distance between a pair of points; a

is the range, i.e., the distance at which the semivariogram levels off and beyond which 
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the semivariance is constant; ω τ+ is the sill, which is the constant semivariance beyond 

the range. The fitted range for this study site is 2973 m and the sill is 0.9833. 

Figure 2.8 Empirical and fitted semivariogram based on known Vs30 at measurement locations. 

2.5 Vs30 mapping of the Suzhou site 

With the inferred model parameters, the known Vs30 at measurement locations and 

the secondary Vs30 information in the outcrop areas (I1, I2, I3), the multiscale random field 

models are used to generate Vs30 maps of the Suzhou site. An initial coarse grid with an 

element size of 500 × 500 m is used. Lakes are excluded from the Vs30 maps. The new 

maps account for and preserve the site-specific shear-wave velocity measurements and 

the inherent multiscale soil spatial structure. When coupled with Monte Carlo 

simulations, uncertainties associated with the generated Vs30 maps can also be estimated. 

The generated Vs30 maps will be compared with the available topography-based Vs30 map 

obtained from the U.S. Geological Survey global Vs30 database. 
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2.5.1 Random field realizations of  Vs30 

A typical set of Vs30 realizations (single and multiscale) is shown  in Figure 2.9. 

In the multiscale  realization,  each  coarse  grid  neighboring a measurement location is 

refined into 36 fine scale elements, where high resolution Vs30 are generated through the 

multiscale model described in Section 2.3. Such fine scale field enables predictions across  

different scales and can facilitate estimation of uncertainties  at much finer scales without 

sacrificing computation efficiency. The secondary Vs30 data from USGS, placed on a grid 

with a spacing of  800 m, are incorporated as known point data values in the random 

fields in the outcrop areas. It should be noted that for the current study, the amount of the 

secondary data is fixed. A preliminary work (Liu et al., 2017) is undergoing to investigate 

the effect of secondary data on the spatial structure and the distribution of the resulting 

Vs30 realizations. 

(a) Single scale (b) Multi scale

Figure 2.9 Sample random field realizations of Vs30 in Suzhou site. 
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The corresponding histograms and empirical semivariograms of the simulated 

Vs30 are shown in Fig 2.10. Both single and multi-scale simulations preserve the 

statistical characterizations and the spatial structures of Vs30 inferred from the known 

measurement data. 

 

(a) Single scale                                                   (b) Multiscale 

Figure 2.10 Semivariograms and histograms (the insets) of simulated Vs30 from one set of random 
field realizations in Suzhou site. Black dots are the empirical semivariogram and the red solid line 
is the specified exponential model. The red solid line in the histogram inset is the fitted 
probability density function. 

 

Coupling the random field model with Monte Carlo simulations, the expected Vs30 

values across the Suzhou site as well as the associated uncertainties can be obtained. 

Maps of the expected Vs30 values, averaged from 1000 independent Monte Carlo  

simulations, are shown in Figure 2.11 (a) and  (b).  An  obvious  trend  manifested  in the 

map is that high Vs30 values occur in the southern and western part of the city, especially 

the hilly areas. Low values are common in the northern and eastern part, which are 

consistent with the trends observed in the measurement data and the knowledge about the 

geology of this studied area. It should be noted that, in the current study, geological 
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boundaries are not explicitly incorporated in the data reference or in random field 

simulations. 

 

         

(a) Single scale                                                   (b) Multiscale 

               

(c) Single scale                                                   (d) Multiscale 

Figure 2.11 Expected Vs30 values and associated uncertainties (coefficient of variations) at the 
Suzhou site. 

 

One of the strengths of the proposed method is its ability to estimate uncertainties 

associated with generated Vs30 maps. To quantify uncertainties, coefficients of variation 

(COV) from 1000 independent Monte Carlo simulations are calculated at each location 

and plotted   in Figure 2.11 (c) and (d). As shown in the figure, the COVs are generally 
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very small and approach zero around locations with measurement data. It is interesting to 

note that the uncertainties associated with single scale map are smaller compared to the 

multiscale counterpart, especially around locations with known data. Recall that the 

coarse (single) scale field can be seen as the average of the corresponding fine (multi) 

scale realizations and such averaging process results the reduced uncertainties observed 

in Figure 2.11(c) and (d). 

The empirical semivariograms of the predicted Vs30  values are calculated and 

shown in Figure 2.12 along with  the  error bars indicating ±one standard deviation. It can 

be seen from Figure 2.12 that the specified exponential spatial structure, which is inferred 

from measurement data, is preserved well in the simulations. It is noted that the spatial 

structures, quantified here by the semivariogram, are different between single and 

multiscale. This is because the coarse (single) scale spatial correlation is derived based on 

the notion that a coarse scale element is the average of the corresponding fine scale 

element. This averaging of the fine scale points will effectively increase the correlation of 

a given distance relative to the fine scale. This effect has been previously reported and 

studied in Chen et al. (2012). 
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(a) Single scale                                                   (b) Multiscale 

Figure 2.12 Empirical semivariograms of predicted Vs30. Error bars indicate ±one standard 
deviation. 

 

2.5.2 Comparison with USGS Vs30 maps 

The newly generated multiscale random field-based Vs30 maps incorporate and 

preserve the site-specific shear wave velocity measurement data and their spatial 

dependency. To understand the effect of local measurement data and spatial dependency 

on Vs30 mapping, Figure 2.13 plots side-by-side the Vs30 map from the current study and 

the one from the USGS global Vs30 map server. Note that the upper limit of the color map 

is set to Vs30 = 360 m/s, which corresponds to the upper bound of the NEHRP site class D 

(refer  to Table 2.4). Since most of the Suzhou site has soft soil with relatively low Vs30 

values, such scale makes the difference among two maps more distinguishable. As can be 

seen from Figure 2.13, while both maps capture the general trend of high Vs30 values in 

the western hilly area and low Vs30 values in the eastern region, the current map has 

significantly higher resolution and has captured the transition from hilly to plain region 

fairly well. The current Vs30 map captures a northeast–southwest band with low Vs30, as 
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reflected from the Vs30 measurement data, which is missed in the proxy-based USGS 

map. Moreover, the current map precisely preserves the known Vs30 values at 

measurement locations and provides multiscale resolution, which contains small-scale 

Vs30 information. Such information can be used to estimate uncertainties at a much higher 

resolution without sacrificing the overall computational efficiency. 

 
(a) USGS                                                   (b) Multiscale map 

Figure 2.13 Comparison of Vs30 maps: (a) USGS topography-based proxy; (b) current study. 

To quantify the performance of the proxy-based USGS map, the difference 

between USGS Vs30 values and the measured Vs30 normalized by the measured Vs30 value 

is calculated and the histogram of all 309 data is plotted in Figure 2.14. As shown in 

Figure 2.14, many of the normalized differences are within 0 to 40% range with a few 

points indicating over 100% difference. 

Table 2.4 NEHRP site class and corresponding Vs30 range. 

Site Class Description Vs30 
A Hard rock >1500 m/s 
B Firm to hard rock 760 to 1500 m/s 
C Dense soil, soft rock 360 to 760 m/s 
D Stiff soil 180 to 360 m/s 
E Soft clay <180 m/s 
F Soil requiring site specific evaluation - 
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Figure 2.14 Statistic characteristic of the difference (in percentage) between USGS Vs30 
prediction and known Vs30 at 309 measurement locations. 

2.6 Applications of the new Vs30 maps 

Vs30 is a key indicator of site response in many earthquake engineering 

applications, such as ground-motion prediction equations, site classification, and 

earthquake hazard maps. In this section, two   of the applications of the newly generated 

Vs30 maps will be presented: Vs30-based site classification in Section 2.6.1 and the 

estimation of site amplification factors in Section 2.6.2. 

2.6.1 Vs30-based site classification 

The National Earthquake Hazards Reduction Program (NEHRP) classifies a site 

into 5 groups and provides the range of Vs30 values for each class as shown in Table 2.4. 
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Given a Vs30 map, the site of interest can be classified based on Vs30 values following the 

NEHRP criteria. 

 

(a) Multiscale                                                   (b) USGS  

Figure 2.15 Vs30-based NEHRP site classification (Table 2.4): (a) based on the new multiscale 
Vs30 map; (b) based on the USGS Vs30 map. 

 

Figure 2.15 shows the site classification maps for the Suzhou site based on the 

new multiscale random field-based Vs30 and the USGS proxy- based Vs30 maps. The 

classification map of  Figure 2.15 (a) shows that most of the studied region can be 

classified as NEHRP soil type D, where Vs30 ranges from 180 to 360 m/s. In the hilly area 

in the western part, the site is classified as soil type C with Vs30 values ranging from 360  

to 760 m/s. This is consistent with the known engineering geology of this region 

previously described in Section 2.2. 
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(a) Lower bound                                                   (b) Upper bound  

Figure 2.16 Uncertainties associated with the site classification maps based on expected Vs30 
values ±one standard deviation: (a) lower bound (mean −one standard deviation); (b) upper bound 
(mean +one standard deviation). 

 

The site classification shown in Figure 2.15 (a) is based on the expected Vs30 

values averaged from 1000 Monte Carlo simulations as previously shown Figure 2.11 (b). 

To quantify the associated uncertainties in the site classification, upper and lower bound 

site classification maps are also generated by using ± one standard deviation of the 

expected Vs30 values. The results are shown in Figure 2.16. Compared to the mean Vs30-

based site classification shown in Figure 2.15 (a), most of the hilly areas in the western 

part of the city remain in the site class C, but the eastern plain changes to site E when the 

lower bound (mean minus one standard  deviation) Vs30 map is used, which is considered 

to be   a more conservative estimation. 

2.6.2 Amplification factor mapping 

The second application of the new Vs30 map is the estimation and mapping of site 

amplification factors. Among various commonly used models for estimating site 

amplification factor, the model by Choi and Stewart (2005) is used in this work to 
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illustrate the application. In the Choi and Stewart (2005) model, the model for estimating 

the amplification factor ijF is expressed as 

( ) 30ln ln ln
0.1

i j ijs r
ij i ij

ref

V PHA
F c b

V
η ε

   
= + + +        

  (2.15) 

where rPHA is the peak horizontal acceleration for the reference site condition and is 

expressed in the unit of the gravitational acceleration g; b is a function of the regression 

parameters as given in Equation.(2.16); c and refV are the regression parameters; iη is a 

random effect term for the i-th earthquake event with zero median and a standard 

deviation denoted as τ; ijε represents the intra-event model residual for the j-th motion in 

i-th earthquake event, which has a median near zero for well-recorded events with a

standard deviation denoted as σ. 

The variation of model parameter b is described in the following model (Choi and 

Stewart, 2005): 
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where the units of Vs30 are in m/s; b1, b2 and bv are model parameters. For this reference 

model, Abrahamson and Silva (1997) provided values of site factor model parameters 

from regression analysis, which are summarized in Table 2.5. 
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Table 2.5 Regression parameters for site amplification factors after Abrahamson and Silva 
(1997). 

Parameter b1 b2 bv c Vref (m/s) τ σ 
Fa(0.3) -0.41 -0.11 300 -0.46 532 0.35 0.54 
Fv(1.0) -0.39 0.02 300 -0.69 519 0.41 0.55 
 

 

 

(a) T=0.3s                                                   (b) T=1.0s  

Figure 2.17 Maps of amplification factors in Suzhou City based on the Choi and Stewart (2005) 
model: (a) Fa (T = 0.3 s) and (b) Fv (T = 1.0 s). 

 

With the amplification model Equation. (2.15), Equation. (2.16) and the fitting 

parameters in Table 2.5, site factors Fa (corresponding to a low-period range with T = 0.1 

– 0.5 s) and Fv (corresponding to a mid-period range with T = 0.4 – 2.0 s) are calculated 

based on an assumed PHAr of 0.1 g. Results of the site factors are plotted in Figure 2.17 

for Fa (T = 0.3 s) and Fv (T = 1.0 s). Figure 2.17 shows that most of the eastern and 

central areas have relatively high amplification factors with a maximum of 1.7 for T = 0.3 

s and 2.2 for T = 1.0 s, which correlates well with the softer soils (NEHERP site classes 

D and E, refer to Figure 2.15 (a)). 
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2.7 Summary 

 

In this work, a multiscale random field-based framework is presented to map Vs30 

values over extended areas. The random field model explicitly accounts for the spatial 

variability of Vs30 across different scales while incorporates and preserves measured Vs30 

data. The framework is applied to map Vs30 over the Suzhou site, where 309 shear-wave 

velocity measurements and topography-based Vs30 values are compiled. Monte Carlo 

simulations are coupled with the random field model to quantify uncertainties of the 

generated multiscale Vs30 map. The new map is then applied to site classification and 

amplification factor characterization in the studied region. In summary, it is found that: 

1. Quantitatively consistent Vs30  estimates over different length scales over the entire 

studied region can be obtained using the multiscale random field model. The 

resulting map has multi- scale resolutions and is particular convenient to 

incorporate and preserve local measurement data into a regional Vs30 map. 

2. Comparison of the new Vs30 map with existing USGS topography-based Vs30 map 

shows that the new Vs30 map provides more accurate and more detailed Vs30 

values, especially in the eastern plain region of the studied site because  of the 

incorporated local Vs30 measurements and their spatial dependency. 

3. Uncertainties associated with the new Vs30 map  are  quantified in terms of the 

coefficient of variation (COV) calculated from Monte Carlo simulations. In 

general, the COVs approach zero around locations with measurement data and 



 38 

gradually increase in areas without any known Vs30 values. COVs in single scale 

random field map are found to be slightly smaller when compared to the 

multiscale counterpart. 

4. The site application map based on the newly generated Vs30 map shows that 

relatively stiff soil (NEHRP site class C) is found in the northwestern part of the 

city and the soil tends to be softer in the southeastern region (NEHRP site class D 

and E). This trend in the soil type correlates well with the calculated amplification 

factor map, where high amplification factors are predicted in the southeastern part 

of the city, indicating potential seismic amplification effect in this region. 
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CHAPTER III 

3. PARAMETER STUDY OF HYBRID GEOTECHNICAL AND GEOLOGIC 

DATA-BASED RANDOM FIELD FRAMEWORK* 

 

 3.1 Introduction 

The time-averaged shear-wave velocity in the top 30 meters of the subsurface 

material, denoted as Vs30, is an important site parameter used in estimating site response, 

classifying sites in recent building codes and loss estimation (Boore, 2004). While the 

Vs30 can be computed directly given a shear-wave velocity measurement, such 

geophysical measurements are typically very sparse. Therefore, various descriptors or 

quantitative metrics of site condition have been proposed for the purpose of estimating 

Vs30 in the absence of geophysical measurements and mapping Vs30 in the area of interest. 

Correlation between geologic units and shear wave velocity form the basis of a series of 

Vs30 maps developed over the past 15 years. Wills et al. (2006) developed a map of 

geologic units that can be distinguished by their shear wave velocity and used that map to 

supply velocity estimates. After that, Wills et al. (2015) updated the previous map and 

generated a modified Vs30 map for California based on geology and topography. All these 

works focus on large regions as they provide the general trend of Vs30 in at least state 

scale. The geological data, to some extent, provide information on large-scale (regional 

scale) material heterogeneity. 

 
*A similar form of this chapter has been submitted at the time of writing: Liu, W, Chen, Q, Wang, C, 
Juang, CH. Parameter study of hybrid geotechnical and geologic data-based random field framework. 
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The previously mentioned work ignores the inherent spatial variability of soil 

properties and limits the accuracy. To improve the accuracy and to take advantage of the 

ever-expanding high-quality geotechnical database, geostatistical methods have received 

increased attention in recent years. Geostatistical methods allow the incorporating of 

geotechnical data and slow the explicit consideration of the soil property spatial 

variability. For instance, Thompson and his coworkers (Thompson et al., 2014, 2011, 

2010), used regression kriging (RK) to develop a new map of Vs30 for California which 

accounting for geology, topography and site-specific Vs30 measurements. Yong et al. 

(2013) and Wald et al. (2011) applied the kriging-with-a-trend method to mapping Vs30, 

where the baseline model was derived from the topographic slope. Lee and Tsai (2008) 

established the correlation between the shear-wave velocity (Vs) and the N value of the 

standard penetration test (SPT-N) and adopted the kriging with varying local means to 

update the Vs30 maps in Taiwan. Thompson et al. (2007) modeled the horizontal 

variability of near-surface soil shear wave velocity in the San Francisco Bay Area using 

geostatistical methods. Lee et al. (2017) developed a 3D model of the geologic structure 

and associated seismic velocities in the Canterbury, New Zealand. More recently, Chen 

and co-workers (Chen et al., 2016a, 2016b; Liu et al., 2017a; Liu et al., 2017b), 

developed a multiscale random field model to account consistently for soil spatial 

variability across multiple length scales and was applied to mapping soil properties and 

liquefaction potentials across a region. 

The geostatistical methods consider the spatial variability of the mapped 

properties derived from geotechnical data. However, the spatial structure of the mapped 
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properties could vary within and across different geological units. The insufficient and 

unevenly located geotechnical data cannot represent the large-scale (regional scale) 

material heterogeneity.  

To overcome the limitations in the aforementioned mapping methods, Wang and 

Chen (2017) proposed a novel hybrid geotechnical and geological data-based framework. 

The framework offers an idea to consistently accounts for the spatial variability of soil 

properties across scales, while simultaneously preserving constraints imposed by 

geological boundaries. Both geotechnical and geological data are integrated into a 

random field model through a conditional sequential simulation technique. 

But this framework has not been well-rounded tested and several significant 

parameters have not been calibrated. In this chapter, sensitivity analysis, and parameter 

learning are operated based on a synthetic digital field and an overall workflow for 

integrating multiple sources of data in random field model for regional soil properties 

mapping is established based on Wang and Chen (2017) hybrid geotechnical and 

geological data-based framework. Recommendations on how to act in each specific 

mapping situation and step-by-step instructions for accomplishing mapping are provided 

including the methodology to calibrate Markov Bayes coefficient B and integrate 

secondary data. 

The order of presentation of this chapter goes as follows: Section 3.2 summarizes 

the key components of the developed geostatistical tools for mapping Vs30; in Section 3.3, 

spatially correlated synthetic digital soil field is presented; random field realizations of 

Vs30 and Monte Carlo analysis is discussed in detail in Section 3.4; in Section 3.5, 
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parameter study of Hybrid Geostatistical and geological data-based model is operated; 

Section 3.6 describes the overall workflow for integrating multiple sources of data in the 

random field model is established; and all the findings will be discussed in Section 3.7. 

 

3.2 Hybrid Geostatistical and geological data-based model 

In this section, key components of the hybrid geotechnical and geological data-

based framework to map Vs30 are presented. The rationality behind this hybrid approach 

is the fact that other than spatially correlated, soil parameters are related to the geologic 

units to a certain extent. The geological data provide information on large-scale (regional 

scale) material heterogeneity. It is desirable to combine the spatial structure of soil 

parameters of interest and its characteristic affected by its geologic properties to improve 

the accuracy of predictions at unsampled locations.  

In this study, a form of covariance called the semi-variogram is used to describe 

the spatial structure, which is equal to one half of the variance of two random variables 

separated by a distance h  as 

( ) ( )[1
2

( )]Var Z Zγ = − +h u u h                                      (3.1) 

where ( )Z u  is the variable under consideration at location u and ( )Z +u h is the lagged 

version of the variable. 

Under the condition of second-order stationarity, the semi-variogram is related to 

the spatial correlation ( )ρ h by 
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( ) ( )

( )
  1

COV
ρ

γ
= −

h
h

0                                    (3.2) 

where COV(0) is the covariance at =h 0 . The semi-variogram ( )γ h is typically preferred 

by the geo-statistics community because it only requires the increment ( ) ( )Z Z− +u u h to 

be second-order stationary, which is a weaker requirement than the second-order 

stationarity of the variable itself. In the following examples, the spatial structure of the 

soil parameter under consideration (i.e., the Vs30 value) is characterized by the semi-

variogram model, which can be converted to ρ  and implemented within a random field 

model.  

To facilitate the incorporation of the semi-variogram into random field models, 

the empirical semi-variogram is typically fitted by a basic semi-variogram model or a 

linear combination of several basic semi-variogram models that are permissible 

(Goovaerts, 1997). The form of the exponential model used in this study is 

 ( ) 31 exp hh
a

γ ω τ  = − − +    
  (3.3) 

where h  is a scalar measure of the separation distance between a pair of points; a is the 

range, i.e., the distance at which the semi-variogram levels off and beyond which the 

semi-variance is constant; ω τ+ is the sill, which is the constant semi-variance beyond the 

range. 

A conditional sequential simulation algorithm is implemented in this work to 

generate random field realizations of Vs30. This algorithm integrates and preserves 
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multiple sources of known data (e.g., primary and secondary Vs30 data). In this algorithm, 

the realization of a random variable nZ  is represented by a joint distribution as follows 

2

,
n n n np ns

p p pn pp ps

s s sn sp ss

Z
N

µ σ  ∑ ∑   
      ∑ ∑ ∑     
      ∑ ∑ ∑      

Z μ
Z μ

 (3.4) 

where N(μ, Σ) denotes the vector of random variables following a joint normal 

distribution with the mean vector μ and the covariance matrix Σ; nZ is the random 

variable to be generated with the expected value nµ ; pZ is the vector of previously 

generated or known primary random variables with the vector of expected values pμ ; sZ

is a vector of secondary random variables with the vector of expected values sμ ; nσ is the 

standard deviation of nZ ; ∑ is the covariance matrix with subscripts ‘n’, ‘p’ and ‘s’ 

denoting ‘next’, ‘previous primary’ and ‘secondary’, respectively. The individual terms 

in the covariance matrix are defined as 

, ,,
i j i ji j Z Z Z ZCOV Z Z ρ σ  =   (3.5) 

where ,i jZ Zρ is the correlation between two elements iZ and jZ within the random field at 

any scale with a standard deviation of
iZσ and 

jZσ , respectively. 

Given the joint distribution Equation (3.4), the distribution of the random variable

nZ , conditional upon all previously simulated and known primary and secondary data, is 

given by a univariate normal distribution with the updated mean and variance as 

(3.6) 

with 
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   (3.7) 

   (3.8) 

where symbols in equations (3.7) and (3.8) have all been defined after equation (3.4). The 

value of a random variable nZ  at an unsampled location is drawn from the above joint 

distribution. Once generated, nZ  becomes a data point in the vector pZ  to be conditioned 

upon by all subsequent simulations. This process is repeated by following a random path 

to each unknown location until all the values in the field have been simulated – that is, a 

map of the primary variable for the region of interest is generated. 

To perform the conditional sequential simulation in Equation (3.6), three 

covariances must be determined: one for the primary variable, one for the secondary 

variable and a cross-covariance describing the relationship between these variables. With 

a relatively sufficient amount of Vs30 data calculated from shear wave velocity test, the 

covariance of the primary variable can be easily obtained from the inferred spatial 

correlation between primary data. However, the direct calculation of the secondary and 

cross-covariances can be challenging. In this work, one simplified approach is adopted 

based on the Markov–Bayes hypothesis described by Goovaerts (1997) to derive the 

secondary and cross-covariances by calibrating them to the primary covariance as 

(Goovaerts, 1997; Moysey et al., 2003) 

 2

( )  for  0
( )

( )  for  0
p

s
p

B COV
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B COV
 ⋅ ==  ⋅ >

h h
h

h h
  (3.9) 
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 ( ) ( )ps pCOV B COV= ⋅h h   (3.10) 

where B is the Markov–Bayes coefficient; pCOV  is the covariance for the primary 

variable, sCOV  is the covariance for the secondary variable and psCOV  is the covariance 

between the primary and the secondary variables; h  is the distance vector separating two 

random variables. The Markov–Bayes coefficient B generally varies between 0 and 1 

when primary and secondary variables are positively correlated. Its value affects the 

relative importance of primary data and secondary data and this effect will be illustrated 

in the results section. 

The coefficient B can be chosen based on a calibration procedure recommended 

by Deutsch and Journel (1998) such that the value B is determined as the difference 

between two conditional expectations as follows 

 1 0B E E= −   (3.11) 

where the two conditional expectations are defined as 

 { }( )1 Prob s pE E Z z Z z= ≤ ≤   (3.12) 

 { }( )0 Prob s pE E Z z Z z= ≤ >   (3.13) 

where E is the expectation operator; E is the expectation; sZ  is the secondary variable 

(e.g. the geological data-based LPI value) and { }Prob sZ z≤  is the probability of sZ  less 

than or equal to a threshold value z (e.g. a given Vs30 threshold value); pZ  is the primary 

variable (e.g. the geotechnical data-based Vs30 value). The conditional expectation 1E  will 

be close to 1 if the primary and secondary data support each other – that is, the two data 
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predict similar liquefaction hazard levels. The conditional expectation 0E  will be close to 

1 if the primary and secondary data contradict each other – that is, the two data 

predictions of liquefaction hazard contradict each other. 

 

3.3 Spatially correlated synthetic digital soil field 

 

To test the hybrid approach presented in Section 3.2, a spatially correlated 

synthetic digital soil field is created and its Vs30 fields are assumed as the benchmark. The 

dimension of the synthetic digital soil field is set as 2000 × 4000 m and a soil element 

size is correspondingly set as 4 × 4 m. There are a total of 500,000 soil elements in the 

field. In order to test the framework’s performance in mapping in the field with different 

site conditions, this synthetic field is bisected into two sub-field which belongs to two 

geologic units. The left part, denoted as Unit 1, is assumed as crystalline rock (Xtaline) 

and the right part (denoted as Unit 2) is assumed as quaternary alluvium (Qal2).  

Within this two sub-field, two two-dimensional and spatially correlated Vs30 sub-

fields are generated separately and their values are assigned to each soil element as 

shown in Figure 3.1. The known data points and distribution used to generate the 

synthetic field are based on the experience gained from the Vs30 database in Alameda 

County of California (https://earthquake.usgs.gov/data/vs30/us/). The spatial correlation 

length is assumed as 3.7 km based on Thompson, E.M. et. al (2007). This assumption 

made on spatial correlation is for the convenience of generating the digital field. In this 

https://earthquake.usgs.gov/data/vs30/us/
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synthetic field, two sub-field follow different distribution but share the same spatial 

correlation (Figure 3.2). 

 
Figure 3.1  The 2D view of synthetic digital Vs30 field 

 
Figure 3.2 Histogram of the synthetic digital Vs30 field 

For simplicity, the synthetic digital Vs30 field is noted as the “true” field for use in 

this research. It should be noted that the true distribution and spatial structure of this 

digital soil field are unknown to random field-based modeling and mapping, the same as 

in the case of a real soil field.  

2000m 2000m

20
00

m
Unit 1: Xtaline Unit 2: Qal2
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3.4 Random field realizations of Vs30 and Monte Carlo analysis 

 

Based on the synthetic field built in Section 3.3, the site investigation is operated 

for getting ‘measured data’. As suggested by Webster and Oliver (1992), a sample size of 

100 should give acceptable confidence to estimate distribution and semi-variograms of 

soil properties. Hence, the investigation plan is designed with a total of 128 evenly 

spaced Vs30 sample locations. Among them, 64 samples locate in Unit 1 and 64 samples 

locate in Unit 2. The average distance between two sample locations is 250m. The 

element size for random field realizations is designed with 40 m × 40 m, which is one 

hundred times larger than that of the synthetic digital Vs30 field. The Vs30 value is 

extracted from the digital soil field at each sample locations (denoted as ‘measured data’), 

the evenly spaced sampling plan is considered in the current study.  

  
Figure 3.3 Histogram and semi-variograms of 128 measured data 

The histogram and semi-variogram of the measured data are shown in Figure 3.3, 

and the correlation length is 3606 m. The measured Vs30 data follows a lognormal 
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distribution, and the mean μ and standard deviation σ are 482.56 m/s and 224.42 m/s, 

respectively. 

As described in Section 3.2, the geological map is considered in this random field 

framework as secondary information. Wills et al. (2006) and Wills et al. (2015) provide a 

site condition map to show simplified geologic units and corresponding Vs30 values. In 

this map, the mean and standard deviation of each geologic unit are defined (Table 3.1). 

This map is selected as secondary information in this study. With the given characteristic 

of Vs30 in each geologic unit, random variable realizations of secondary can be 

generated and assigned to the predefined grid. As described before, Unit 1 is assumed as 

crystalline rock (Xtaline) and Unit 2 is assumed as quaternary alluvium (Qal2). Herein, 

the corresponding mean and standard deviation for two geologic units can be found in 

Table 3.1 as 1 710.1 m/sxtalineµ µ= = , 1 710.1 m/sxtalineσ σ= = , 1 2 293.5 m/sQalµ µ= =  and 

2 2 73.5 m/sQalσ σ= = . 

With the parameters for statistics and spatial correlation of the test samples, the 

hybrid random field-based Vs30 models can be generated using procedures discussed 

before. Coupling the random field model with Monte Carlo simulations for 1000 times, 

the expected Vs30 values across the field and the associated uncertainties can be obtained. 
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Table 3.1  Geologic units and Vs30 characteristics. Modified according to Wills et al. 2015 

Geologic 
units 

Number of 
profiles 

Mean 
(m/s)  

Standard 
Deviation (m/s) 

Qi 19 176.1 47.6 
Af/qi 95 225.6 113.3 
Qal1 (flat) 117 228.2 48 
Qal2 (mod.) 161 293.5 73.5 
Qal3 (steep) 114 351.9 112.2 
Qoa 183 386.6 145.1 
Qs 13 307.6 33.7 
QT 17 444.0 159.7 
Tsh 32 385.1 129.4 
Tss 62 468.4 212.6 
Tv 11 518.9 172.0 
Serpentine 3 571.6 87.0 
Kss 19 502.5 227.9 
KJf 41 733.4 340.1 
Xtaline 35 710.1 393.8 

 

 

3.5 Parameter study of hybrid geostatistical and geological data-based model 

 

Knowledge of surficial geology is an important piece of information for regional 

soil properties mapping as it typically provides broader area coverage and information on 

large-scale material heterogeneity. Following steps are used to integrate multiple sources 

of data into the mapping process: 

1. Identify the boundaries of each geological unit within the study region. 

2. Get the statistical distributions of the target parameter of each geologic units. 

3. Generate random variable realizations of secondary Vs30 values within each 

geological unit according to the characterized or assumed statistical distributions. 

Once generated, the secondary data will be kept constant for the following 

random field realizations. 
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4. Assign the generated secondary Vs30 values to a predefined grid with a given 

element size, which will be integrated into the conditional sequential simulation 

algorithm as secondary data. For simplicity, the element size of the predefined 

grid is denoted as the “esize” for use in subsequent analysis. 

In this section, sensitivity analyses are operated to calibrate B, integrate secondary 

data and test this framework. 

 

3.5.1 Relationship between Z and B 

Implementation of the Markov-Bayes hypothesis requires the selection of a 

calibration parameter, B. In general, when the primary and secondary variables are 

positively correlated, B can vary between 0 and 1; if B=0, the secondary data are ignored 

and if B=1, the secondary data are not updated by neighboring hard or soft data.  

As described in section 3.2, a calibration procedure recommended by Deutsch and 

Journel (1998) is selected in this work. In this procedure, the value of B is determined as 

the difference between two conditional expectations which detailed in Equation (3.11), 

(3.12) and (3.13). Within this procedure, the selection of threshold dominates the 

outcome B value. A threshold is used to distinguish ranges of values where the behavior 

predicted by the model varies in some important way. Some indices have a specific value 

to distinguish soil behavior, like for liquefaction potential index (LPI), a threshold value 

of 5 can be chosen as it appropriately separates liquefaction-prone and non-liquefied 

units. Other than its physical significance, the distribution of primary and secondary data 

should also be taken into consideration.  
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Here, 120 sample locations are selected with given measured data (primary) and 

generated secondary data. The threshold value is selected on an interval from 0 to 1800 

m/s with steps of 15. The result is shown in Figure 3.4. Grey dash lines link each pair of 

primary and secondary data. When threshold smaller than 200 m/s, the corresponding B 

value is 0, and when threshold larger than 1400m/s, the corresponding B value is 1. 

Therefore, the threshold value should be selected within the intersection value range of 

the primary and secondary data.  

 

 
Figure 3.4. Different thresholds with its corresponding B value 
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3.5.2 Sufficient data & insufficient data 

In the real-world field investigations, especially for shear wave velocity test, most 

sampling locations are clustered in some specific geologic units and few of them locate in 

the hilly area. Herein, one more investigation plan with all samples locate in one geologic 

unit is designed in this chapter to compare the model performances under the condition of 

sufficient and insufficient sample (Figure 3.5).  

 

Figure 3.5. Two investigation plans with different number of sample points. (a) Plan A: 128 
sample points located in the whole field evenly. (b) Plan B: 64 sample points located only in Unit 
1. 

 

Three typical scenarios with different esize and B value ((1)esize=500, B=0.2; (2) 

esize=400, B=0.4; (3) esize=300, B=0.6) are performed based on both two invagination 

plans, results are shown in Figure 3.6. It can be seen that by changing esize and B value, 

maps based on plan A (Figure 3.6(a), (c) and (e)) have a little change while maps based 

on plan B (Figure 3.6(b), (d) and (f)) have a significant change especially in Unit 2. This 

(a)

(b)
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shows the performance of the framework is influenced by the number of measured data 

significantly. Hence, in the rest section, all the analysis are based on both two 

investigation plans: Plan A, with 128 evenly placed sample points and Plan B, with 64 

points located in Unit 1. 

Figure 3.6. Maps of expected Vs30 values based on two investigate plans. Left three maps are 
based on the investigate plan with 128 points, right three maps are based on the investigate plan 
with 64 points. Each map is obtained by averaging results from 1000 Monte Carlo simulations: 
(a) and (b) esize=500, B=0.2;(c) and (d) esize=400, B=0.4; (e) and (f) esize=300, B=0.6

3.5.3 Relationship between B and output 

To investigate the influence of the Markov–Bayes coefficient B introduced in 

equation (3.9) and (3.10), six B values are used – namely, 0, 0.2, 0.4, 0.6, 0.8 and 1.0. For 

each B value, 1000 Monte Carlo simulations are performed. Figure 3.7 shows maps of 

(a) (b)

(c) (d)

(e) (f)
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expected Vs30 values for all six cases of Markov–Bayes coefficient B for sufficient 

investigate plan: Plan A. Each of the six maps is obtained by averaging results from 1000 

Monte Carlo simulations.  

 

Figure 3.7. Maps of expected Vs30 values for six cases of the Markov–Bayes coefficient B for 
investigate Plan A. Each map is obtained by averaging results from 1000 Monte Carlo 
simulations: (a) B=0; (b) B=0.2; (c) B=0.4; (d) B=0.6; (e) B=0.8; (f) B=1.0 

 

As shown in Equations (3.9) and (3.10), the Markov–Bayes coefficient B is 

essentially a ‘scaling’ factor between the primary covariance and the secondary 

covariance matrices. The larger the coefficient B, the stronger influence the secondary 

data has on the generated Vs30 maps. In this work, the secondary Vs30 data come from 

geological information. Therefore, as the value of B increases, the geological boundaries 

should become more distinguishable in the resulting Vs30 maps. However, from Figure 

3.7 (a) to (f), there is little change in the boundary. Sufficient amount of measured data is 

the main reason that causes this observation. With the sufficient measured data, random 

(a) (b)

(c) (d)

(e) (f)
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field model can make an accurate prediction of Vs30 at unsampled locations. With the 

increasing number of measured data, the accuracy improved. So in this case, the 

boundary can be distinguished, even there is no secondary information.  

A more detailed comparison of Vs30 values for six cases of Markov–Bayes 

coefficient B for investigation plan A can be seen in Figure 3.8. Each bar in Figure 3.8(a) 

represents the Vs30 of soil in the whole field, and segments in the bar represent different 

site classes of that field. In this field, nearly 50% of the soil belongs to site class C, nearly 

30% of the soil belongs to site class D. With the increasing of B value, barely change can 

be seen in Figure 3.8(a). But the change of mean value for each geologic units can be 

seen in Figure 3.8(b). For B changing from 0 to 1, the mean Vs30 value of Unit 1 

gradually approaches the mean Vs30 value of Unit 1 in the synthetic field which equals to 

636 m/s. A similar trend can be observed in Unit 2, the mean Vs30 value decreases slightly 

and reaches to 328 m/s which is the mean Vs30 value of Unit 2 in the synthetic field. 

Summing up the above, adding ‘weight’ of secondary information can make a slight 

distribution in improving Vs30 mapping when there is sufficient measurement data. 

 
(a)                                          (b) 

Figure 3.8. Components of Vs30 values for six cases of Markov–Bayes coefficient B for 
investigate Plan A: (a) stacked column (b) mean value for two units 
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Figure 3.9 shows maps of expected Vs30 values for all six cases of Markov–Bayes 

coefficient B for insufficient investigate plan: Plan B. Same as previous, each of the six 

maps is obtained by averaging results from 1000 Monte Carlo simulations. In Figure 

3.9(a), no geological constraint is applied to the Vs30 map, only 64 measured data is 

considered here. The realization of Vs30 in Unit 2 holds relativity large value, which is 

incompatible with the synthetic field. In Figure 3.9(b) to (f), the inclusion of secondary 

data significant lower the Vs30 value appears in Unit 2 and the geological boundaries 

become more distinguishable in the resulting Vs30 maps. 

 

Figure 3.9. Maps of expected Vs30 values for six cases of Markov–Bayes coefficient B for 
investigate Plan B. Each map is obtained by averaging results from 1000 Monte Carlo 
simulations: (a) B=0; (b) B=0.2; (c) B=0.4; (d) B=0.6; (e) B=0.8; (f) B=1.0 

 

Components of Vs30 values for six cases of Markov–Bayes coefficient B for 

investigation Plan B are shown in Figure 3.10. In Figure 3.10(a), nearly 80% of the soil 

(a) (b)

(c) (d)

(e) (f)
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belongs to site class C, only 2% of the soil belongs to site class D when B value equals to 

zero. For B changing from 0 to 1, the percentage of soil belongs to site class D reaches 

8%. In Figure 3.10(b), a similar trend in the mean Vs30 value of two units can be found: 

for B changing from 0 to 1, the mean Vs30 value decreases towards the mean Vs30 value of 

Unit 2 in the synthetic field. But for the mean Vs30 value of Unit 1, other than approaches 

to mean Vs30 value of Unit 1 in synthetic field, the mean Vs30 value excesses it and 

reaches to 710m/s, which is the given mean Vs30 value for this geologic unit (Table 3.1) 

This result indicates, for the scenario with insufficient measured data, the secondary 

information may control the distribution of estimated value other than primary data. 

 

                 (a)                                          (b) 

Figure 3.10. Components of Vs30 values for six cases of Markov–Bayes coefficient B for 
investigate Plan B: (a) stacked column (b) mean value for two units 

 

3.5.4 Relationship between dense of secondary data and output 

 

To investigate the influence of the size of predefined grid for integrating 
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100m. For each esize value, 1000 Monte Carlo simulations are performed. Figure 3.11 

shows maps of expected Vs30 values for all six cases of esize for sufficient investigate 

plan: Plan A. Each of the six maps is obtained by averaging results from 1000 Monte 

Carlo simulations. Since the size for the whole filed is 2000m×4000m, for esize changing 

from 500 to 100m, the number of secondary data changes from 50 to 800.  

As described in the procedure of integrates the secondary data with primary data, 

esize controls the number of control seeds that sprinkled on the field. The smaller the 

esize, the more secondary data distributes in the generated Vs30 maps. Since secondary 

Vs30 data come from geological information, as the value of esize decreases, the 

geological boundaries should become more distinguishable in the resulting Vs30 maps. 

From Figure 3.11 (a) to (f), as the esize decreases, the geological boundaries 

become more distinguishable in the resulting Vs30 maps. In Figure 3.11(a) and (d), Unit 2 

turns more blue which means the estimated Vs30 value in Unit 2 become lower. In Figure 

3.11(e) and (f), the boundary between two units can be clearly seen as a straight line. But 

for these two cases, The Vs30 values gradually turn randomly.  
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Figure 3.11. Maps of expected Vs30 values for six cases of esize for investigate Plan A. Each map 
is obtained by averaging results from 1000 Monte Carlo simulations: (a) esize =500m; (b) esize 
=400m; (c) esize =300m; (d) esize =250m; (e) esize =200m; (f) esize =100m 

 

In Figure 3.12(a), with the decreasing of esize, the class D soil keeps increasing 

till esize reaches 250 m. For esize changes from 250 to 100 m, the percentage of class D 

soil decreases. In Figure 3.12(b), for esize changing from 500 to 250 m, the mean Vs30 

value of Unit 1 gradual approaches to the mean Vs30 value of Unit 1 in the synthetic field. 

After that, with the changing of esize from 250 to 100 m, the averaging Vs30 decreases. A 

similar trend can be observed in Unit 2, for esize changing from 500 to 250 m, the mean 

Vs30 value decreases slightly and reaches the mean Vs30 value of Unit 2 in the synthetic 

field. For esize changing from 250 to 100 m, averaging Vs30 increases. All these results 

show a inflection point at esize equal to 250 m. Meanwhile, for primary data, the average 

distance between any two closest points is 250m. When the average distance of 

secondary data larger than the average distance of primary data, primary data dominates 

(a) (b)

(c) (d)

(e) (f)
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the simulation. If the average distance of secondary data is smaller than the average 

distance of primary data, which means secondary data are more close to the unstimulated 

points, the secondary data will dominate the estimation which makes the estimated Vs30 

value random.   

 

Figure 3.12. Components of Vs30 values for six cases of esize for investigate Plan A: (a) stacked 
column (b) mean value for two units 

 

For insufficient investigate plan B, the similar trend can be obtained in Figure 

3.13. For changing esize from 500 to 100 m, the boundary shows more distinguishable. 

More lower value appears in Unit 2. Still, for Figure 3.13(e) and (f), Vs30 value become 

randomly.  
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Figure 3.13. Maps of expected Vs30 values for six cases of esize for investigate Plan B. Each map 
is obtained by averaging results from 1000 Monte Carlo simulations: (a) esize =500m; (b) esize 
=400m; (c) esize =300m; (d) esize =250m; (e) esize =200m; (f) esize =100m 

 

In Figure 3.14(b), the mean Vs30 value decreases towards the mean Vs30 value of 

Unit 2 in the synthetic field when esize changing from 500 to 100 m. But for the mean 

Vs30 value of Unit 1, the mean Vs30 value excesses mean Vs30 value of Unit 1 in the 

synthetic field and leading to the given mean Vs30 value for geologic unit 1 (Table 3.1). In 

accordance with the finding in Section 3.5.3, for the scenario with insufficient measured 

data, the secondary information controls the distribution of estimated value other than 

primary data. 

 

(a) (b)

(c) (d)

(e) (f)
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Figure 3.14. Components of Vs30 values for six cases of esize for investigate Plan B: (a) stacked 
column (b) mean value for two units 

 

3.6 Suggestions in using the hybrid random field framework 

 

With the operated parameter study, the overall workflow for integrating multiple 

sources of data in random field model for regional soil properties mapping can be 

established based on a hybrid geotechnical and geological data-based framework (Figure 

3.15). This overall workflow combines guideline and a detailed procedure of operating 

the proposed random field framework. It provides all advice on how to act in each 

specific mapping situation. Following the given procedure listed in Figure 3.15, the 

mapping can be accomplished with step-by-step instructions.  
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How to use random field 
framework

Determine study area

Collect measured 
data

If study area has 
multiple geological units

No

Yes

If data is sufficient in all 
geological units

Yes

Multi-scale random 
field framework

Hybrid geotechnical and 
geological data-based 

framework

Collect secondary 
information

(mean and standard 
deviation for target 

parameter)

Method 1: Subgroup measured 
data by geological units, 
calculate μand σ 

Method 2: Known μ and 
σvalue (From other research)

Dense of secondary data:
Element size of predifined grid for 
secondary data should be 1.5 to 2 
times of the mean distance of primary 
data

Integrate 
multiple 

sources of data 

Determine  input parameters:
1. Dense of secondary data
2. B value

B value:
Calculated according to Equation.

If there is a 
threshold  can 
distinguish soil 

type

Do Monte Carlo 
simulations

Yes

No

Pick an appropriate 
threshold  within the 

intersection value 
range of the primary 
and secondary data

Finish mapping

Figure 3.15.  Overall workflow to integrate multiple sources of data in random field model 

 Summary 

In this chapter, a guideline to integrate multiple sources of data in the random 

field model for regional soil properties mapping is established based on a hybrid 

geotechnical and geological data-based framework. The geotechnical data such as the 

Vs30 measured data are used as the primary information, showing clear spatial correlation. 

Geological information is considered as secondary information that essentially enforces 
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geological constraints to the generated soil properties maps. Both primary and secondary 

data are integrated into random field models through a conditional sequential simulation 

technique. The integration effect caused by Markov–Bayes coefficient B and the size of 

the predefined grid of secondary information are emphatically discussed within two 

sampling conditions: sufficient measured data and insufficient measured data. A well-

designed 2-D synthetic digital field is applied here to test the proposed framework. In 

summary, it is found that: 

1. Since the secondary data represents the geologic information, as the weight of the 

secondary data increases, the geological boundaries become more distinguishable 

in the generated map. 

2. It is necessary to select an appropriate threshold value for calibrating the Markov–

Bayes coefficient B. Other than its physical meaning, the threshold value should 

be selected within the intersection value range of the primary and secondary data. 

3. The element size of the predefined grid for secondary data cannot be smaller than 

the mean distance of any closest two primary data points. The overdense 

secondary data may result in the randomly estimated value. 

4. Integration of secondary data can modify mapping scenario with insufficient, 

unevenly distributed measured data. For the mapping scenario with sufficient 

measured data in all geologic units, it can modify the resultant mapping slightly.   
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CHAPTER IV 

4. UNCERTAINTY PROPAGATION IN DYNAMIC SITE EFFECT CAUSED

BY UNCERTAINTY OF SOIL PARAMETERS* 

4.1 Introduction 

Predicting the influence of local soil conditions on expected earthquake ground 

motions is a critical aspect of the seismic design process. In the past few decades, lots of 

research has been done to estimate site response. All these works can be divided into two 

main groups based on research methods, one is the empirical method which is based on 

statistical analysis and fitting of field data, the other one is the numerical method which is 

based on dynamic site response analysis. 

 “Next Generation of Ground-Motion Attenuation Models” for the western United 

States (NGA-West) program, a comprehensive multidisciplinary research project 

coordinated by the Pacific Earthquake Engineering Research Center (PEER), has made 

some major advances in seismic hazard estimation for the western US. As a typical work 

using the empirical model method, one main contribution of NGA-West project is that a 

new ground-motion prediction relationship is developed through a comprehensive and 

highly interactive research program. In phase 1 (known as NGA-West 1), five sets of 

Ground  Motion Prediction  Equations  (GMPEs)  were  developed  by  Abrahamson  and 

*A similar form of this chapter has been submitted at the time of writing: Liu, W, Chen, Q, Juang, CH.
Uncertainty propagation in dynamic site effect caused by uncertainty of soil parameters.
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Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), Chiou and 

Youngs (2008) and Idriss (2008). In phase 2 (known as NGA-West 2), based on updated 

NGA-West database, Abrahamson et al. (2014), Boore et al. (2014), Campbell and 

Bozorgnia (2014), Chiou and Youngs (2014), and Idriss (2013, 2014) updated and 

superseded GMPEs which is developed in NGA-West 1 Project for both small-to-

moderate and moderate-to-large magnitude database. Apart from the NGA-West 

program, other efforts on improving GMPEs have been made by Steward et al. (2015), 

Choi and Stewart (2015), Atkinson (2015).  

With these GMPEs, the PGA at site surface or amplification factor can be easily 

obtained. But in many situations, researchers still use dynamic analysis to obtain a 

detailed, accurate, thorough and site-specific ground response. The non-linear dynamic 

behavior of soils during a seismic event has a predominant role in current site response 

analysis. 

Dynamic seismic site response analysis represents the effects of soils conditions 

on ground shaking that assessed through dynamic simulations of wave propagation. This 

analysis propagates rock acceleration-time histories through the local soil profile to 

compute acceleration-time histories at the ground surface. The site response analysis 

provides an assessment of surface acceleration time histories, surface acceleration 

response spectra, amplification factors, as well as an evaluation of the induced shear 

stresses and shear strains within the soil profile. Lots of work has been done in dynamic 

seismic site response analysis like Seed and Idriss (1969), Park and Hashash (2008), 

Kamalian et al. (2006), Martin et al. (1982) and Elgamal et al. (2002). Constitutive 
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models are at the core of dynamic site response analysis. A broad range of simplified 

(e.g., Ramberg and Osgood, 1943; Duncan and Chang 1970; Hardin and Drnevich, 

1972a&b; Pyke, 1979; Martin and Seed, 1982) and advanced soil constitutive models 

(Prevost, 1977, Li et al., 1997, Borja and Amies 1994) have been proposed in non-linear 

site response analysis (Hashash et al., 2010). Some advanced constitutive models are able 

to capture important features of soil behavior such as anisotropy, generation of excess 

pore pressure, and dilation (Prevost, 1977, Li et al., 1997, Borja and Amies 1994). 

However, advanced constitutive models typically require more detailed information on 

soil behavior for parameter calibration. For many engineering applications, the only soil 

behavior information available is usually the modulus reduction and damping curves. To 

this end, simplified models, especially those that belong to the family of hyperbolic 

models, are often used and will be adopted in this work.  

Within dynamic site response, it has been recognized that the severity of ground 

motion at a site significantly depends on the soil characteristics of the layers below the 

surface (Campbell, 1979; Toro, 1993). At most sites, however, the soil profiles and the 

parameters that are responsible for the site dynamic response are not known with 

certainty. The lack of in-situ geotechnical investigation data, the effect of sample 

disturbance and scaling associated with laboratory tests and the natural heterogeneity of 

soil profiles are notable sources of uncertainty in nonlinear site response analysis. Herein, 

the effect of soil parameter uncertainty on the prediction of site response needs to be 

examined. Several studies have been published on this topic: Li and Assimaki (2010) 

investigated the effect of 1D spatial variability of shear wave velocity, material damping, 
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modulus reduction and input motion using randomized realizations of a based soil profile. 

Bazzurro and Cornell (2004a) used SUMDES, a nonlinear procedure for response 

analysis to study the ground response variability due to uncertainty in the ground motion 

site condition and show that spectral acceleration at the bedrock of the input record is the 

single most helpful parameter for the prediction of amplification factor at the same 

oscillator frequency. Bazzurro and Cornell (2004b) presented effective probabilistic 

procedures for evaluating ground-motion hazard at the free-field surface of soil deposit. 

Wang and Hao (2003) considered the effect of groundwater level during site response 

analysis. Bahrampouri et al. (2018), Stewart and Kwok (2008) studied the effect of 

uncertainty in modulus reduction and damping curves on the uncertainty in the 

amplification factors. Tombari and Stefanini (2017) used a fuzzy set method to simulate 

uncertainty of input parameters include shear elastic modulus, unit density, damping ratio 

and thickness of the soil deposit. 

In this chapter, a comprehensive study is conducted to evaluate the impacts of soil 

parameters uncertainty in nonlinear dynamic site response. Extensive geotechnical data 

on variability statistics of soil at three downhole sites with different site classes are used 

in this study. Also, Davidenkov model with simplified loading-reloading rules is used to 

describe the stress-strain relationship under irregular cyclic loading. For each of these 

three sites, the peak ground acceleration (PGA) at surface subjected to a historical 

seismic wave motion is estimated while considering the uncertainty of soil parameters. 

The values of PGA, are obtained by driving a real rock ground motion through different 

representations of the soil model. Each representation is characterized by a different but 
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plausible combination of soil parameter values generated by Monte Carlo Simulation. To 

obtain a reliable estimation of soil response, a finite element computer program capable 

of adding subroutine on user-defined materials is used to perform the analysis in the time 

domain. 

The structure of this paper is as follows: Firstly, numerical analysis with finite 

element method is introduced, including constitutive model and numerical 

implementation in ABAQUS VUMAT. Then, uncertainties of soil parameters are 

quantified and modeled. Thereafter, the model for numerical analysis is described and 

three study sites with different site condition are simulated. Finally, the results from the 

site response analyses are then used to discuss the uncertainty propagation in PGA caused 

by shear wave velocity. 

 

4.2 The modified Davidenkov constitutive model 

 

In this section, the modified Davidenkov constitutive model is introduced to 

model the non-linear soil behavior under irregular cyclic loadings. The model is then 

implemented as a user-defined material subroutine VUMAT in ABAQUS/Explicit, where 

details of the numerical implementation algorithm are presented.  
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 4.2.1 Model formulation 

The stress-strain curves of the modified Davidenkov model under irregular cyclic 

loadings are illustrated in Figure 4.1. This hyperbolic-type model can be described using 

two sets of equations. The first set of equations defines the stress-strain relationship for 

loading and is shown as the backbone curve (also called the skeleton curve) in Figure 4.1. 

The second set of equations defines the stress-strain relationship for unloading and 

reloading (e.g., loading path 1-2-1, 5-6-7 in Figure 4.1) 

2 γ
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(- , - )ex exγ τ

0

Loading path
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( , )ex exγ τ

( , )c cγ τ

Backbone curve
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Figure 4.1 Stress-strain curves of the modified Davidenkov model under irregular cyclic loadings 

The backbone curve of the modified Davidenkov model is constructed using the 

following set of equations (Martin and Seed, 1982) 

   (4.1) 
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where τ and γ are the shear stress and shear strain, respectively;  is the initial shear 

modulus; A, B and γ0 are fitting parameters. 

For unloading and reloading (before reaching the previous loading reversal point), 

the following variation of the original Davidenkov model is adopted (Pyke 1979) 

(4.3) 

where γc is the shear strain at the point of loading reversal; n is a scaling factor of the 

initial loading curve. In this work, the “n-times method” by Pyke (1979) is adopted 

instead of the original factor of two (Martin 1974). Once reloading passes the previous 

reversal point (e.g., loading path 1-3 in Figure 4.1), the stress-strain curve will follow the 

original backbone curve. 

With both sets of equations defined, the stress-strain curve of a soil under 

irregular cyclic loadings follows the extended Masing rule (Martin and Seed, 1982; Pyke, 

1979): 

(1) For initial loading (e.g., path 0-1 in Figure 4.1), the loading path follows the

backbone curve defined by Equations (4.1) and (4.2).

(2) If a loading reversal occurs at a point defined by ( γc , τc), subsequent stress-strain

curve (e.g., path 1-2) should move down along the path defined by Equation (4.3).

The path extends from the loading reversal point to the historical maximum

(minimum) point (e.g., the trend line 2-4).

(3) For reloading (e.g., path 2-1-3), if the reloading curve passes the maximum past strain

(e.g., point 1) before unloading, it will follow the backbone curve until the next stress
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reversal. 

With these three rules, the stress-strain curve under irregular cyclic loading can be 

fully defined with stress and strain values at the loading reversal (τc , γc), stress and strain 

values at the loading reversal at the historical maximum point (τex , γex), and some 

constant model parameters (Gmax, A, B, γ0), minimizing the information the model needs 

to “memorize”. This is a great advantage when it comes to numerical implementation, 

which will be detailed in the next section. 

4.2.2 Numerical implementation in ABAQUS VUMAT 

In this section, the numerical integration and implementation of the modified 

Davidenkov model as a user-defined material subroutine VUMAT in ABAQUS/Explicit 

are presented. ABAQUS/Explicit is a robust and well-tested commercial finite element 

code capable of three-dimensional linear and nonlinear dynamic analysis. The unique 

feature of ABAQUS/Explicit is that it allows the integration of user-defined material 

models through the VUMAT interface, which makes it a particularly attractive tool for 

this research.  

Given the values of stress and internal state variables at time tn, and the strain 

increment ∆γ, the objective of the numerical integration is to find the stress and state 

variable values at time tn+1. In the modified Davidenkov model, the shear modulus G has 

a non-linear dependency on strain and accounts for the hysteresis behavior of the soil. 

The key in the integration is therefore to obtain shear modulus update. Once the modulus 

is updated, the value of stress can be easily calculated using Equation (4.1). 



75 

When the loading path follows the backbone curve, the shear modulus at time tn+1 

can be obtained by taking the derivative of stress τ with respect to strain γ per Equation 

(4.1) as 

( )
2
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1 max 2 2
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21 1
B

n B B

ABdG G H
d

γτ γ
γ γ γ+

  
= = − + ⋅  +   

(4.4) 

For unloading and reloading (before reaching the previous loading reversal point), 

the shear modulus can be obtained by taking the derivative of stress in Equation (4.3) 

with respect to γ-γc as 
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where (2nγ0)2B is determined by both current point of loading reversal and historical 

maximum point as 
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By substituting the historical maximum point (τex , γex) into Equation (4.3), R can 

be expressed as 
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1
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G

τ τ
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(4.7) 

The “±” in this equation takes “-” during the loading process and takes “+” during 

the unloading process. 

This scheme is advantageous in the sense that it only needs five state variables, 

i.e., the strain of the previous time step (γn), the strain and stress values at the historical

maximum point (τex(n), γex(n)), and the strain and stress values at the current point of 
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loading reversal (τc(n) , γc(n)). The numerical integration algorithm is summarized in 

Algorithm 1.  

Algorithm 1: Explicit integration algorithm 
Input: state parameters γn, γex(n), τex(n), γc(n), τc(n) 
Incremental strain and constants: ∆γ(n+1), Gmax,, A, B, γ0 , β 
Output: γ(n+1), τ(n+1) 
Step 1: Update current strain 

1 0 1n nγ γ γ+ += + ∆   
Step 2: Update historical maximum point 
If ( ) 1 &&  n ex n n nγ γ γ γ+≥ <  then

( 1)ex n nγ γ+ =   

Equation (4.1) and (4.2) 

End if 
Step 3: Update inflexion point 
If 1 ( ) 1 &&  n ex n n nγ γ γ γ+ +< >  then 

( 1)c n nγ γ+ =  
Equation (4.2) and (4.3) 

End if 
Step 4: Update shear modulus G 
If 1 ( )n ex nγ γ+ ≥  

Equation (4.4) 

Else 
Equation (4.5), (4.6) and (4.7) 

End if 
Step 5: Update stress 
 1 1n nGτ γ+ += ⋅   

An additional viscous mechanism is usually available and exploited in most finite 

element (FE) codes (Pisanò and Jeremić, 2014). The viscous component implies 

smoother cycles and avoids the sharp transitions at stress reversal.  Ronaldo I. B. et al. 

(2000) point out that incorporating the viscous effect provides for a smoother transition 
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of the stress-strain curve on a reverse loading. In contrast, the inviscous response shows a 

sharp corner at the unloading on reverse loading. 

The form for viscous component σv is: 

   (4.8) 

 0

1

2ξβ ω=  (4.9) 

where  is the strain rate; Del is the elastic matrix; β is a scaling coefficient; ω1 is the first 

order frequency of structure; and ξ0 is the value of damping ratio in the limit zero shear 

strain. It is assumed that the energy in soil gets dissipated even in the elastic domain.  

Finally, the total stress can be obtained by summing two components as 

   (4.10) 

where σf is the stress calculated from Algorithm 1 and σv is the viscous force defined in 

Equation (4.8).  

Algorithm 2:  
Extra viscous damping algorithm viscous component 
Input: Gmax, ν, εn+1 
Output: σ n+1 
Step 1: Calculate σv according to elastic theory 

                          Equation (4.8) 
Step 2: Calculate total stress 

                          Equation (4.10) 
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4.3 Sensitivity analysis and shear-wave velocity modeling 

 

The modified Davidenkov model has six parameters, i.e., Gmax, ν, A, B, γ0 and β. 

In this section, sensitivity analysis is first performed to understand the relative 

importance of these parameters in terms of their impact on amplifying seismic motions. 

Then, the most significant parameter is selected for subsequent uncertainty 

quantifications and case studies. A shear-wave velocity model is presented which 

accounts for the spatial variability shear-wave velocity along the depth.  

 

4.3.1 Sensitivity analysis of model parameters 

 

As previously mentioned in Section 4.2, there are six parameters in the modified 

Davidenkov model, i.e., Gmax, ν, A, B, γ0 and β. Among them, the initial shear modulus 

Gmax is related to the shear-wave velocity (Vs) and the unit weight of a soil. In this study, 

the unit weight of soil is treated as a constant while the shear-wave velocity is considered 

as an independent model parameter, from which the initial shear modulus Gmax can be 

derived. The Poisson's ratio ν is assumed to be a constant. The fitting parameters A, B, γ0 

can be obtained from modulus reduction and damping curves and the range of their 

values are set based on recommendations from Chen et al. (2005). The scaling coefficient 

β for the additional viscous component is used to control high-frequency oscillations 

(detailed in Section 2.2) and its value is set as zero here. The range and interval of the 

model parameters are listed in Table 4.1.   
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For sensitivity analysis, a homogeneous soil model with 4 meters high and 4 

meters wide is used here. The displacements of the lateral and bottom sides are fixed 

along the vertical direction, the ground motion is added at the bottom in the horizontal 

direction. Four-node bilinear plane strain element type (CPE4R) is assigned to each 

element. With given input seismic motion, the maximum acceleration at top of the model 

can be obtained. This simplified homogeneous quadrate model is computationally 

efficient in single factor sensitivity analysis.  

 

Table 4.1 Range of model parameters in sensitivity analysis 

 Vs (m/s) A B       γ0 

Maximum 760 1.2 0.45  9×10-3  9×10-4 
Minimum 180 0.9 0.35  1×10-3  1×10-4 
Interval 20 0.05 0.02  1×10-3  1×10-4 

 

A motion record from Coyote Lake earthquake, August 6th, 1979 is selected as 

input motion in this study (obtained from PEER Strong Motion Database: 

https://ngawest2.berkeley.edu/). This seismic motion is recorded 17.2 km far away from 

fault rupture, with a magnitude of 5.7 and a maximum acceleration of 1.23 m/s². The 

acceleration time history of the Coyote Lake earthquake is shown in Figure 4.2. 
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Figure 4.2．Acceleration time history of the Coyote Lake earthquake record 

Each parameter changes with a given range and step (e.g. Vs changes from 180 

m/s to 760 m/s with an increment of 20 m/s). For each scenario, only one parameter 

changes its value, other parameters are kept constant. Scenarios with same changed 

parameter are combined as one case. Since four parameters are tested here, all scenarios 

are divided into 4 cases, Case A, Case B, Case γ0, and Case Vs. The calculated PGA 

values with 4 cases are shown in Figure 4.3. It indicates that Vs caused a huge influence 

especially for a relatively soft soil, other parameters’ influence can be ignored compared 

with the effect caused by Vs. Hence, Vs is selected as the random variable in the further 

analysis. It can be much more effective, pertinent and time-saving in further analysis with 

one significant variable comparing to six variables. 
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Figure 4.3. Range of PGA caused by variation of each parameter 

4.3.2 The expression form of shear wave velocity 

In accordance with the sensitivity analysis results in the previous section, the 

importance of shear wave velocity in the dynamic analysis has been acknowledged for a 

long time. Boaga et al. (2011) point out in the case of seismic ground motion scenarios, 

shear wave velocity models are the primary input for the computation of site ground 

response amplification. Rathje et al. (2010) suggest engineers must put thought into the 

selection of the interlayer correlation coefficient and the standard deviation of the shear-

wave velocity.  

Also, in the statistical method, shear wave velocity is considered as an important 

parameter to describe soil properties in estimating amplification factor. But other than Vs 

profile, they used a simplified expression Vs30 to describe the shear wave velocity. Choi 

and Stewart (2005) develop empirical relationships to predict nonlinear amplification 

factors for 5% damped response spectral acceleration as a continuous function of average 
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shear wave velocity in the upper 30m. Also, Boore and Atkinson (2008), Campbell and 

Bozorgnia (2008) and Abrahamson and Silva (2008) use Vs30 as an important soil 

properties parameter to establish empirical ground-motion models. 

However, as the time-averaged shear wave velocity in the upper 30 m, Vs30 is a 

simplified expression of shear wave velocity that only considers the soil properties in the 

upper 30 m. We expand the 4 m soil column model in previous sensitivity analysis into 

30 m and 100 m to test how soil layers below 30 meters affect the site response. For each 

model, a homogeneous soil is assumed with shear wave velocity equals to 155m/s, 

266m/s, 489m/s and 913m/s which are typical values for NEHRP site class E, D, C and 

B. Model with 30 m depth simulates the case only considering top 30 m. In this case, as

shown in Figure 4.4, the PGA value increases first then decreases when the soil becomes 

harder. This trend is similar to the trend shown in Stewart and Seyhan (2013). But for the 

model with 4 m and 100m depth, the trends are different. These three different trends 

indicate the depth of soil column has a significant influence on the site response. Using 

Vs30 is not accurate enough for estimating PGA at the ground surface. The soil layers 

below 30 meters have a contribution in seismic wave prorogation from rock to the 

surface. 
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Figure 4.4. Resultant PGA trend of 4 types of Site Classes with 3 different model sizes 

Above all, the shear wave velocity (Vs) profile is the most critical parameter 

influencing the site response and the effect of the variability in Vs can be taken into 

account by performing 1D analyses for multiple realizations of the Vs profile. 

4.3.3  Shear wave velocity uncertainty 

As a selected random variable, shear wave velocity needs to be characterized with 

its variability and distribution.  

Toro (1993) velocity model is adopted here to describe the variability of Vs within 

each layer and its correlation with adjacent layers. Toro (1993) studied the probability 

distribution of ln(Vs) using the cumulative distribution of standardized variables shown in 

Equation (4.11) for generic soil profiles 
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(4.11) 

where Vi is the velocity at the midpoint of layer i; Vm,i is the median velocity of 

the same layer; σlnv is the standard deviation of ln(Vs) for all layers; iZ represents the 

number of standard deviations from the mean value of ( ),ln m iv in log space. 

The lognormal distribution of Vs and the Vs layer to layer correlation based on an 

analysis of over 500 shear-wave velocity profiles at the study site are characterized using 

a first-order autoregressive model as Equation (4.12) 
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 ==  >+ −
(4.12) 

where Zi-1 is the standard normal variable of the previous layer; ρ is the interlayer 

correlation coefficient; εi are independent normal random variables with zero mean and 

unit standard deviation. The standard normal variable for the surface layer (Z1, i=1) is 

independent of all other layers and Zi is correlated with the layer above it. The parameters 

ρ and σlnv, and the median Vs profile define completely the probabilistic velocity model. 

Toro (1993) estimated the parameters ρ and σlnv using data from generic soil profiles via 

linear regression as ρ=0.577 and σlnv=0.39 (corresponding to a velocity coefficient of 

variation COV = 41%), and those values are adopted in this study. Note that if more 

detailed geotechnical data are available at the site, the parameters ρ and σlnv of the 

lognormal distribution will be calibrated based on site-specific information, and the Vs 

stochastic model will be characterized by a lower COV.  
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4.4 Study site and analyses performed 

In this case study, multiple 1D profile realizations are generated by statistically 

varying site Vs profiles using Monte Carlo simulation. Then, all these realizations are 

used as input for dynamic site response analysis. A fully nonlinear soil model (modified 

Davidenkov model) in the site response simulations with realistic statistical descriptions 

of the soil properties is implemented. Besides, 3 base cases with different site classes are 

selected in order to obtained the site response uncertainty under different site conditions. 

4.4.1 Deterministic model for site response 

Using ABAQUS/Explicit, a soil column of 152m was modeled by 100 layers with 

1.52 m thickness each. Four-node bilinear plane strain element type (CPE4R) is selected 

here. The displacements of the lateral and bottom sides are fixed along the vertical 

direction, ground motion is added at the bottom in the horizontal direction. The FE model 

is shown in Figure 4.5. Coyote Lake earthquake is selected as the input motion (Figure 

4.2). Detailed information about the model is listed in Table 4.2. 

Table 4.2. Model information and values for soil parameters used in this work 

Model & Element Soil parameters 
Soil column size (m) 152×10 Density (kg/m3) 1980 
Element size (m) 1.52×1 Poisson ratio 0.49 
Number of layers 100 A 1.1 
Input motion Coyote Lake Earthquake B 0.78 
Element type CPE4R γ0 change with depth 
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Fixed in vertical direction
Input motion

Unit: m

 

Figure 4.5. Model size and boundary condition 

 

4.4.2 Example: Stanford area (Site class D) 

 

With the input uncertainty model and deterministic finite element model 

introduced before, a whole procedure of uncertainty analysis of a class D site is detailed 

described in this section. Using Toro’s (1993) probabilistic velocity model, random 

realizations of the Vs fields are generated using one standard truncation of the lognormal 

distribution to eliminate potential outliners. Realizations of Vs random profile at Stanford 

site are shown in Figure 4.6, where the thick black line corresponds to the median profile 
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at the site, and the thin chromatic lines correspond to 1000 random realizations of Vs 

profile. 

 

Figure 4.6. Sample realizations of Vs random profile at the Stanford site 

Monte Carlo Simulation is implemented to evaluate the effect of soil parameter 

uncertainty on the site response variability. For the ground response variability, PGA at 

site surface is set as the target parameter.  
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(a)  (b) 

Figure 4.7. Variability in PGA caused by uncertainties in soil parameters for a strong seismic 
excitation. (a) Histogram for PGA with 1000 times realizations; (b) Cumulative distribution 
function (CDF) of PGA. 

 

Figure 4.7 shows the statistical distribution of PGA values from 1000 time 

realizations. As shown in Figure 4.7 (b), the PGA distribution is approximately 

lognormal, with the exception of a small deviation at the tail of the distribution. The 

mean value of resultant PGA is 2.43 m/s2 and the standard deviation is 0.27 m/s2. 

 

 4.4.3 Uncertainty propagation of PGA under different site classes 

 

Besides Stanford case, two more calculations with different site classes are done 

for seeking the PGA distribution under different site condition. Basic information for 

three sites is listed in Table 4.3. Three typical sites for site class C, D and E are selected, 

which corresponding to the stiff soil, relative stiff soil and soft soil. During the 
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calculation, the same model size as 152m×10 m is applied to reduce the difference caused 

by the depth of the soil. 

 

Table 4.3. Information of three sites 

ID 1 2 3 

NEHRP 
site class C D E 

Vs30 (m/s) 414 315 134 

City Salt Lake Valley Stanford Hilo 

State UT CA HI 

Vs profile 

 

 

 

 

Based on these three sites, MCSs for 3000 times realizations are conducted to 

evaluate the uncertainty propagation in ground motion caused by uncertain soil. The PGA 

distributions for three sites are shown in Figure 4.8. The base case is shown as red solid 

line. 

 

As expected, all three distributions of resultant PGA (Figure 4.8(a) to (c)) are 

approximately lognormal which corresponding to the results in Section 4.2. Figure 4.8(d) 
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shows the scatter plot of the resultant PGA and corresponding Vs30 value. An obvious 

trend manifested in Figure 4.8(d) is that relatively higher PGA value occurs in the Class 

E site, relatively lower PGA value is more common in the Class C site. This indicates that 

an increasing shear wave velocity brings about an increasing resultant PGA value. This 

trend is different from Stewart (2013) and Seyhan and Stewart (2014) which suggest the 

PGA will increases first and then decreases with the increasing of Vs30. Several reasons 

cause this discrepancy. First of all, unlike the empirical equation proposed by Seyhan and 

Stewart (2014) which use Vs30 as a parameter to describe the soil property, Vs profile is 

used to describe the real soil property of a specific site in this finite element analysis 

which considers variabilities along the depth. Secondly, instead of upper 30-meters, the 

depth of the soil model down to the bedrock is considered here. Thus, deep-seated soil 

(beneath upper 30m) can make a contribution to the site response analysis, which is 

consistent with the reality. Thirdly, Soil is made up of distinct horizontal layers which 

have different properties and characteristics from the adjacent layers above and below. 

The combination of distinct horizontal layers makes a significant contribution in site 

response, which is not included in the empirical equation. These three reasons have been 

verified in Section 3.1. 

One of the advantages of the Monte Carlo simulation is its ability to characterize 

uncertainties. To quantify uncertainties, coefficient of variation (COV) and standard 

deviation from 3000 independent Monte Carlo simulations are calculated for each site. 

The mean value of PGA keeps increasing from 0.7 to 3.31. The standard deviation is also 

increasing from 0.13 to 0.44 for site class E to C. This indicates the stiff soil may cause a 
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relatively higher standard deviation than soft soil. The corresponding coefficient of 

variation (COV) for site class E, D and C are 0.19, 0.12 and 0.13 respectively. It is 

interesting to note that the uncertainties associated with soft soil (Class E) are higher 

compared to the stiff soil (Class D and C), no obvious difference in between Site class D 

and C. Variability in soil properties significantly increases the standard deviation of the 

PGA but has a lesser effect on the COV. A similar trend is also found in Rathje et al. 

(2010).  

 

(a) Class E                                                  (b) Class D

 

              (c) Class C                               (d) Scatter plot for 3000 times realizations 
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Figure 4.8. Histogram and scatter plot of PGA for three sites, base case result shown as red line. 
(a) , (b) and (c) are histogram of site class E, D and C, (d) is the scatter plot for 3000 times 
realizations. 

 

 

4.4.4 Effect of input distribution in uncertainty of PGA 

 

To conform the conclusion made in Section 4.4.3, and testing the influence on 

output distribution caused by input distribution, another set of shear wave velocity 

distribution model is used. In Section 4.3, a set of lognormal distributed shear wave 

velocity with COV=0.39, ρ=0.577 is used. In this section, shear wave velocity follows 

the lognormal distribution with COV=0.2 (which is commonly used in engineering), no 

layer correlation is operated. With 3000 Monte Carlo realizations and Finite Element 

analyses, the results are obtained and shown in Figure 4.9. 

 

Figure 4.9(a) shows the boxplot of PGA corresponding to the lognormal 

distribution shear wave velocity with COV=0.39 while considering the inter-layer 

correlations. For Figure 4.9 (b), the input shear wave velocity follows the lognormal 

distribution with COV=0.2, no layer correlation considered. Comparing Figure 4.9(a) and 

Figure 4.9(b), resultant PGA follows the same trend in that the mean value of PGA keeps 

increasing when soil become harder. Figure 4.9(c), (d) and (e) represent the mean, 

standard deviation and COV of PGAs that are calculated by two sets of shear wave 
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velocity profiles following different distributions. It is obvious that under two different 

sets of input shear wave velocity profiles, the trend of mean, standard deviation and COV 

of PGA still keep the same with little fluctuation. These results confirm the trend 

observed in Section 4.4.3 and also indicate both the COV and layer correlation of shear 

wave velocity have no effect on the trend of output uncertainty, including mean, standard 

deviation and COV for different site condition.  

 

(a)                          (b) 

 

(c)                         (d)                        (e)  

Figure 4.9. Comparison of two different input distributions. (a) and (b) are box plots of PGA with 
two different Vs distributions, (c) is the mean value of PGA, (d) is standard deviation of PGA, 
and (e) is the COV of PGA. 
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4.5 Summary 

In this chapter, the effect of soil layers with uncertainty properties on the 

amplification of surface ground motion with respect to incident rock motion is 

investigated from a statistical perspective. More specifically, three downhole sites in 

Stanford, Salt Lake and Hilo which represent three types of site conditions are considered 

and applied for developing realistic probability models for the nonlinear soil properties 

based on site-specific geotechnical data. The nonlinear response of the soil was 

considered here. Modified Davidenkov constitutive model was implemented in 

ABAQUS/Explicit. The uncertainty of the soil properties and the imperfect correlation of 

the parameter values in different layers were considered via a Monte Carlo simulation 

procedure. The site amplification of three site classes was studied here. Each soil column 

was subjected to a real rock recording applied to its base, and the peak ground 

acceleration at the ground surface was computed for each run. 

In summary, it is found that: 

1. Sensitivity analyses performed on the calculated PGA and six input soil

parameters revealed that PGA strongly depends on the shear wave velocity. Other

parameters in the subroutine are found to be insignificant comparing to shear

wave velocity. Uncertainties in the velocity structure of soil profiles (Vs) are

shown to be the most intensity dependent variable that governing the

amplification potential of the site.

2. Using Vs30 is not accurate enough for estimating PGA at the ground surface. The
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soil layers below 30 meters have contributions in seismic wave prorogation from 

rock to the surface. Also, the variation of shear wave velocity along depth should 

be taken into consideration. Thus, shear wave velocity should be expressed as Vs 

profile instead of Vs30 value. 

3. The results of Monte Carlo Simulation show that with the given lognormally

distributed shear wave velocity, PGA values follow lognormal distribution with

the exception of a small deviation at the tail of the distribution.

4. With Coyote Lake Earthquake input motion, the calculated PGA at soil surface

keeps increasing when soil become harder.

5. For the uncertainty of PGA at site surface, variability in soil properties

significantly increases the standard deviation of the ground peak acceleration at

site surface but has a lesser effect on the COV. Uncertainties associated with soft

soil (Class E) are higher compared to the stiff soil (Class D and C), no obvious

difference between Site class D and C.

6. Distribution of input parameter has little influence of uncertainty propagation in

dynamic site response analysis. The trend of output uncertainty, including mean,

standard deviation and COV, will not change under different distributions of input

parameter.
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CHAPTER V 

5. UNCERTAINTY QUANTIFICATION IN SEISMIC HAZARD USING 

RESPONSE SURFACE METHOD* 

 

5.1 Introduction 

 

Predicting the influence of local soil conditions on expected earthquake ground 

motions is a critical aspect of the seismic design process. Regarding dynamic site 

response, it is well known that the soil characteristics of the layers below the surface are 

indicators of the severity of ground motions at any given site (Campbell, 1979; Toro, 

1993). At most sites, however, the soil profiles and the parameters that control the site 

dynamic response are not known with certainty. The lack of in-situ geotechnical 

investigation data, the effect of sample disturbance and scaling associated with laboratory 

tests and the natural heterogeneity of soil profiles are notable sources of uncertainty in 

nonlinear site response analysis. Therefore, the effect of soil parameter uncertainty on the 

prediction of site response has been the subject of study. Specifically, randomized 

realizations of a based soil profile have been used to determine the effect of shear wave 

velocity, material damping, modulus reduction and input motion (Li and Assimaki 2010). 

Further, the spectral acceleration at the bedrock of the input record was deemed the single 

most helpful parameter for the prediction of amplification factor at the same oscillator fre 

 
*A similar form of this chapter has been submitted at the time of writing: Liu, W, Juang, CH, Chen, Q. 
Uncertainty quantification in seismic hazard using response surface method. 
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-quency (Bazzurro and Cornell, 2004a). Other studies have entailed evaluating the i) 

ground-motion hazard at the free-field surface of soil deposits (Bazzurro and Cornell, 

2004b), ii) the effect of groundwater level during site response analysis (Wang and Hao, 

2002) and iii) the effect of uncertainty in modulus reduction and damping curves as 

associated with the uncertainty of the amplification factors (Bahrampouri et al. 2018; 

Stewart and Kwok 2008). Finally, the uncertainty of such input parameters as shear 

elastic modulus, unit density, damping ratio and the thickness of the soil deposit have 

also been the subject of simulations (Tombari and Stefanini, 2017). 

Although advanced modeling techniques such as the finite element method have 

been used successfully in site response analysis, their use in uncertainty analysis is 

hindered by prohibitive computational costs, a problem that has become accentuated with 

the evolution of time consuming and sophisticated computer codes (Wong, 1985). Also, 

developing such numerical programs requires expertise in both geotechnical numerical 

analysis and geotechnical uncertainty analysis. 

To bridge the gap, research is being pursued to develop statistical analysis 

methodologies that are compatible with long-running, numerical simulation codes. 

Herein, the authors introduce the response surface method to provide computationally 

efficient statistical approximations to a time consuming model, and to derive the 

uncertainty propagation through computationally efficient models that approximate the 

associated deterministic numerical solutions.  

Although the response surface analytical method is widely used in slope 

reliability analysis (Li et al, 2015, Wong, 1985, Zhang et al, 2010, Cho, 2009), in the 
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reliability analysis of ground–support interaction in circular tunnels (Lü et al., 2011) and 

in the design of supported excavation (Khoshnevisan et al., 2017), it has never been used 

in seismic site response analysis. 

Herein, the authors describe a method for using the response surface method for 

seismic site response analysis to assess both the response uncertainty and its dependence 

on the randomness of the design variables (Figure 5.1). The results of this effort suggest 

its efficacy in extending the capability of the profession for the reliability analysis of 

complex geotechnical problems. 

 

Figure 5.1 Flow chart detailing the uncertainty analysis in the dynamic site response 

The structure of this paper is as follows: First, a numerical analysis derived by the 

finite element method is introduced, specifically as regards to the Constitutive model and 

the 1D Finite element model. The soil and design parameters, considered as input 

variables in the response surface in site response analysis, are next characterized. Next, 

the response surface, which is the process of identifying and fitting an approximate 
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response surface model from input and output data obtained from the numerical analysis 

in which each run is regarded as an experiment, is undertaken. Finally, FOSM is used to 

characterize the uncertainty propagation in site response analysis for extension into such 

reliability analyses as the probability of liquefaction (Juang, 2006). 

5.2 Constitutive model 

Constitutive models that describe the non-linear stress-strain behavior of soils 

under cyclic loadings play a central role in site response analysis. As such, a broad range 

of simplified (e.g., Ramberg and Osgood, 1943; Duncan and Chang 1970; Hardin and 

Drnevich, 1972a&b; Pyke, 1979; Martin and Seed, 1982) and advanced soil constitutive 

models (Prevost, 1977, Li et al., 1997, Borja and Amies 1994) have been proposed in 

non-linear site response analysis (Hashash et al., 2010). Some of these advanced 

constitutive models have been used to capture important features of soil behavior such as 

anisotropy, the generation of excess pore pressure, and dilation (Prevost, 1977, Li et al., 

1997, Borja and Amies 1994). However, advanced constitutive models typically require 

more detailed information on soil behavior for parameter calibration, which for many 

engineering applications is unsuitable in that the only soil behavior information available 

is the modulus reduction and damping curves. To this end, simplified models, especially 

those within the family of hyperbolic models, are often used and will be adopted in this 

work.  
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In the next section, the modified Davidenkov constitutive model is introduced to 

derive the non-linear soil behavior under irregular cyclic loadings. The model is then 

implemented as a user-defined material subroutine VUMAT in ABAQUS/Explicit, where 

the details of the numerical implementation algorithm are presented.  

 

5.2.1  Model formulation 

The stress-strain curves of the modified Davidenkov model under irregular cyclic 

loadings are illustrated in Figure 5.2. Two sets of equations are used to describe this 

hyperbolic-type model. The first set of equations, shown as the backbone, or skeleton 

curve in Figure 5.2, defines the stress-strain relationship for loading. The second set of 

equations defines the stress-strain relationship for unloading and reloading (e.g., loading 

path 1-2-1, 5-6-7 in Figure 5.2).  
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Figure 5.2 Stress-strain curves of the modified Davidenkov model under irregular cyclic loadings 

The backbone curve of the modified Davidenkov model is constructed using the 

following set of equations (Martin and Seed, 1982) 
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where τ and γ are the shear stress and shear strain, respectively;  Gmax is the initial 

shear modulus; A, B and γ0 are the fitting parameters. 

For unloading and reloading (prior to reaching the previous loading reversal 

point), the following variation of the original Davidenkov model is adopted (Pyke 1979) 
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γ γ

τ τ γ γ
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  (5.3) 

where γc is the shear strain at the point of loading reversal and n is the scaling 

factor of the initial loading curve. In this work, the established “n-times method” is 

adopted instead of the original factor of two (Pyke 1979). The reloading passing the 

previous reversal point follows the backbone curve. 

With both sets of equations defined, the stress-strain curve of a soil under 

irregular cyclic loadings follows the extended Masing rule (Martin and Seed, 1982; Pyke, 

1979): 

(4) For initial loading (e.g., path 0-1 in Figure 5.2), the loading path follows the 

backbone curve defined by Equations (5.1) and (5.2). 

(5) If a loading reversal occurs at a point defined by ( γc , τc), subsequent stress-strain 

curve (e.g., path 1-2) should move down along the path defined by Equation (5.3). 

The path extends from the loading reversal point to the historical maximum 
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(minimum) point (e.g., the trend line 2-4). 

(6) For reloading (e.g., path 2-1-3), if the reloading curve passes the maximum past strain

(e.g., point 1) before unloading, it will follow the backbone curve until the next stress

reversal.

With these three rules, the stress-strain curve under irregular cyclic loading can be 

defined with only stress and strain at loading reversal (τc , γc), the historical maximum 

point (τex , γex) and constant model parameters (Gmax, A, B, γ0), minimizing the 

information the model must “memorize”. Such a minimization is a great advantage in 

terms of numerical implementation, as detailed in the next section.  

 5.2.2 Numerical implementation in ABAQUS VUMAT 

Here, the modified Davidenkov model is implemented as a user-defined material 

subroutine VUMAT in ABAQUS/Explicit. ABAQUS/Explicit is a robust and well-tested 

commercial finite element code capable of three-dimensional linear and nonlinear 

dynamic analysis. The unique feature of ABAQUS/Explicit is that it allows the 

integration of user-defined material models through the VUMAT interface, which makes 

it a particularly attractive tool for this research.  

Given the values of stress and internal state variables at time tn, and the strain 

increment ∆γ, the objective of the numerical integration is to find the stress and state 

variable values at time tn+1. In the modified Davidenkov model, the shear modulus G 

exhibits a non-linear dependency on strain and also considers the hysteresis behavior of 
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the soil. The key to its integration entails obtaining a modulus update, which once 

acquired makes it quite easy to derive the stress value per the elastic theory. 

When the loading path follows the backbone curve, the shear modulus at time tn+1 

can be obtained by taking the derivative of stress τ with respect to strain γ in 

Equation(5.1). 
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γ γ γ+

  
= = − + ⋅  +   

  (5.4) 

For unloading and reloading (prior to reaching the previous loading reversal 

point), the expression of time-varying shear modulus is obtained as Equation (5.5) and 

(5.6) by the derivative of γ-γc in Equation(5.3). 
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where (2nγ0)2B is determined by both the current point-of-loading reversal and the 

historical maximum point. 

 ( ) ( )2 2
0

12 B B
ex c

Rn
R

γ γ γ − = ± ⋅ 
 

  (5.6) 

By substituting the historical maximum point (τex , γex) into Equation (5.3), R is 

then expressed as follows: 
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  (5.7) 

In this “±” equation “-” represents the loading procedure and “+” the unloading 

procedure. 
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5.3 Elements of response surface in site response analysis 

 

The input variables, specifically the soil and design parameters as related to the 

response surface, are detailed in this section. Also, the soil parameters are considered as 

random variables for the balance of this discussion. 

 

5.3.1 Characterization of random soil parameters 

 

The inherent variability, measuring error, and transformation error may result in 

variations in the soil parameters. For the site response problem shown in Figure 5.1, the 

main uncertainty parameter is the shear wave velocity for each of the site layers, which is 

considered as a random variable in this study.  

The heterogeneity of soil means that the soil properties may vary in space, thus 

complicating the effort to place precision soil properties into any analysis. For any 

proposed engineering project, the soil properties must be simplified through the use of a 

uniform and deliberate method. Therefore, the shear wave velocity is simplified, the 

process of which is detailed below.  
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(a)   (b) 

Figure 5.3 The soil profile in different simplification methods: (a) soil profiles divided into 1, 2, 
3, 4, 5 and 10 layers equally (b) the top 30m is considered as one layer with the remainder of the 
120 m of the soil column divided into 1, 2, 3, 4 extra layers equally (for a total of 2, 3, 4 and 5 
layers). 

The black solid line in Figure 5.3(b) is assumed as the real soil shear wave 

velocity profile with 100 layers (denoted as the S7 model). The soil profile is then 

divided into 1, 2, 3, 4, 5 and 10 layers with the simplified methods shown here. Six dash 

lines represent the model with the soil profiles equally divided into 1, 2, 3, 4, 5 and 10 

layers (model S1, S2, S3, S4 and S5). For that soil column that is less than 4 layers 

(model S2, S3 and S4), the first layer is larger than 30m. Considering the importance of 

Vs30 in describing the soil property, three more models (model S8, S9, and S10) are 
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added, all of which are represented with chromatic solid lines in Figure 5.3(b). In here, 

top 30m is considered as one layer, and the rest 120 m of soil column is divided into 1, 2 

and 3 extra layers equally (the total of layers 2, 3 and 4).  

Figure 5.4 Resultant PGA value with different soil profiles 

Ten deterministic site response analyses were implemented with ABAQUS/CAE, 

the results of which are shown in Figure 5.4. The ratio between the difference and the 

resultant PGAsurface in the base case is used to characterize the deviation. In the 

equipartition cases, represented as a dashed line in Figure 5.4, the deviation continues to 

approach zero with an increase in the number of layers. When the top 30 m is taken into 

consideration, however, the accuracy improves greatly. For engineering purposes, those 

results with a high degree of accuracy and requiring fewer input parameters should be 

optimal, which means that the three layers exhibited the superior performance in this test. 

This three-layer profile was again used in a further analysis in this work, in which the top 

30 m was considered a single layer with the remainder bisecting the rest of the soil 

column.   
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The use of this simplified three-layer profile thus makes it easy to describe the 

soil properties, with the values given for those uncertain soil parameters Vs, layer 1, Vs, layer 2, 

and Vs, layer 3 listed in Table 5.2. These listed values are assumed as the mean value. 

According to Moss (2008), the Coefficient of Variation (COV) changes with the mean 

value of the shear wave velocity, which is expressed as: 

 0.000328 0.165967VsCOV µ= +   (5.8) 

 

5.3.2 Characterization of design parameters 

 

Design parameters are those input parameters that easily controlled by the 

designer, which for purposes of this study are also deemed input parameters. For this site 

response analysis, the maximum acceleration of the input wave and the class of site are 

treated as design parameters. The values of each of the design parameters listed in Table 

4 were determined via established practice. A discrete space is selected as an example to 

demonstrate the site response analysis of the nine scenarios considered here. It should be 

noted that, for site class C, D, and E, different base profiles are used. The base profiles 

for different site classes (considered as mean value) are listed in Table 5.4 as are the 

COV values corresponding to the various soil layers. 
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5.4 Deterministic model for site response 

An actual site was then analyzed with the Finite element program ABAQUS/CAE 

with all information provided in Sections 5.2 and 5.3. A soil column of 152 m was 

meshed into 1000 elements with the element type selected as four-node bilinear plane 

strain element (CPE4R), which is a general plane strain element with reduced integration 

and hourglass control. 

Figure 5.5 Acceleration time-history of the Coyote Lake earthquake record 

The displacement of two broadsides and bottom side are fixed in the direction of 

gravity with ground motion added at the bottom in the horizontal direction. The Coyote 

Lake earthquake that occurred on the Calaveras Fault near Coyote Lake in Santa Clara 

County, California on August 6th, 1979, with a magnitude of 5.7 and a maximum 

acceleration as 1.23m/s² from its SE component is selected as input motion (Figure 5.5). 

The information about this model is detailed in Table 5.1. This deterministic model was 
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then used to simulate the site response subjected to a given seismic motion and to obtain 

the PGA at the site surface.  

Table 5.1 Model information and values for the soil parameters used in this study 

Model & Element Soil parameters 
Model 
size (m) 

Element 
size (m) 

Number 
of layers 

Input 
motion 

Element 
type 

Dense 
(kg/m3) 

Poisson 
ratio   0γ  

152×10 1.52×1 100 
Coyote 
Lake 
Earthquake 

CPE4R 1980 0.49 1.1 0.78 
changes 
with 
depth 

 

According to the previous section, the simplified three-layer soil model is selected 

in this study. The detailed soil properties and parameters for the constitutive model in 

each layer are listed in the Table 5.2. Here, the shear wave velocity for each depth is 

calculated based on a real site measurement in Stanford University, California, offered by 

Network for Earthquake Engineering Simulation (NEES) database 

(https://datacenterhub.org). 

 

Table 5.2 . The basic soil properties adopted in this study 

Layer Depth 
(m) 

Density 
(kg/m3) 

Shear wave velocity  
(m/s) Class D 

A B Poisson ratio γ0 

1 0-30 1980 322 1.1 0.78 0.49 changes with depth 
2 30-90 1980 446 1.1 0.78 0.49 changes with depth 
3 90-150 1980 646 1.1 0.78 0.49 changes with depth 

 

 

 

 

 

https://datacenterhub.org/
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5.5 Response surface of dynamic site response 

 

The use of a finite element code such as ABAQUS for computing the site 

response with a given input seismic wave within the uncertainty propagation framework 

that must consider various random variable scenarios and many designs in a design pool 

is computationally challenging. Therefore the response surface is selected to ensure the 

efficiency and practicality of this computation. Here, the response surface was framed as 

a problem specific-surrogate model rather than a numerical model for computing the site 

response that is subjected to a given seismic wave.   

 

5.5.1 Response surface procedure 

The behavior of the specific site in an earthquake is affected by factors such as 

site conditions (e.g., the stiffness of soil, dense of soil), site class and input wave. Here, 

the site class and input wave are set as design parameters. For the deterministic model 

described in Section 5.4, three soil parameters ,  1 ,  2 ,  3 { , 3} { , , }s layer s layer s layeri V V Viθ θ= = =

are treated as the random variable with the design parameters 

{ , 2} { , }i inputd d i PGA class= = =  also considered in the construction of the response 

surface. It is noted that, although only three random variables are considered in this 

study, additional uncertainties may also be considered and included as random variables, 

the number of random variables are unlimited. For each of these three soil parameters, an 
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upper limit and lower limit of variation, µ σ+  and µ σ−  are used to define the region 

of interest. Here,  denotes the mean value and σ  denotes the standard deviation. Here, 

nine series of parametric studies are conducted to investigate how the dynamic site 

response is affected by these factors. For these parametric analyses, the parameter 

settings are listed in Table 5.3. 

 

Table 5.3 The nine soil parameter scenarios adopted for developing the response surface 

Random variable scenario Vs, layer 1 Vs, layer 2 Vs, layer 3 
1 µ  µ  µ  
2 µ σ+  µ  µ  
3 µ σ−  µ  µ  
4 µ  µ σ+  µ  
5 µ  µ σ−  µ  
6 µ  µ  µ σ+  
7 µ  µ  µ σ−  
8 µ σ+  µ σ+  µ σ+  
9 µ σ−  µ σ−  µ σ−  

 

Other than the shear wave velocity in each layer, other external factors can also 

affect the site response. In this study, these external factors are considered as the ‘design 

parameters’ to extend the response surface model. Here, the peak acceleration of seismic 

wave and the site class are taken into consideration. Three values of inputPGA  are 

considered here: 0.1g, 0.3g and 0.5g. Also three site classes, C, D, E, are designed in this 

study. For different site class, three real sites are selected as the base case, in which, their 

measured shear wave velocity is considered as the mean value. Also, the standard 

deviation values are calculated based on mean values. The characteristics of the random 
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variables for site classes C, D, and E and the assumption of distribution are detailed in 

Table 5.4. 

 With two design parameters and three cases for each parameter, nine design 

parameter scenarios are listed in Table 5.5. 

 

Table 5.4 The characteristics of the random variables for site classes C, D, and E in this study 

 Site class C Site class D Site class E Distribution 
 µ  (m/s) σ   µ  (m/s) σ   µ  (m/s) σ    
Layer 1  424 0.305 322 0.272 170 0.221 Lognormal 
Layer 2  805 0.430 446 0.312 287 0.260 Lognormal 
Layer 3  1128 0.534 646 0.377 479 0.323 Lognormal 

 

Table 5.5 The selected values for the design parameters in this study 

Design parameters scenarios inputPGA  (g) Site class 
1 0.1 C 
2 0.1 D 
3 0.1 E 
4 0.3 C 
5 0.3 D 
6 0.3 E 
7 0.5 C 
8 0.5 D 
9 0.5 E 

 

For each set of design parameters (e.g. design parameter scenario 1), 9 random 

variables scenarios are performed (all scenarios are listed in Table 5.3). Thus, a total of 

9×9=81 scenarios are obtained. 

By repeating the ABAQUS/CAE analysis for each of these scenarios, 81 resultant 

PGA values are obtained. For building the response surface model, both the design and 

soil parameters are combined as dependent variables for estimating independent variable, 

which is the PGA at the site surface.  
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5.5.2 Model selection 

Although the second-order polynomial is a commonly used model for determining 

the response surface (Bucher and Bourgund 1990; Xu and Low 2006), 18 models were 

analyzed here, including the first and second order and the intersection to determine the 

most appropriate response surface model. Different combinations of variables are tested 

to determine the use of all terms in predicting the PGA values (Figure 5.6 and Table 5.6).  

 
Figure 5.6 R2 value with different response surface models. 
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Table 5.6 Terms included in each response surface models and the corresponding R2 value 
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For engineering purposes, the model should be simplified to a smaller number of 

parameters with an acceptable R2 value. Note that ‘site class’ is considered here as a 

categorical variable. Given the difficulty of applying this variable to reliability analysis, 

the possibility of removing the site class was also examined. As shown in Figure 5.6, a 

downward trend of the R2 value with a decrease in the number of parameters is clearly 

evident. The model with the five fitting parameters and four variables received the lowest 

R2 value. In Figure 5.6, the points in red box represent the models that did not consider 

the interaction of input wave and shear wave velocity, and the corresponding R2 values 

are lower than other models apparently. The points in both the yellow and green boxes 

represent the models considering the interaction terms, the relative higher R2 values 

indicate the interaction with the input PGA and the shear wave velocity makes a huge 

contribution in the prediction of the resultant PGA. This interaction term can be 

expressed as Class×PGA or Vs×PGA. The points in the green box represent the models 

that include the term Vs×PGA, and the points in the yellow box represent the models that 

include the term Class×PGA. Although both perform well as categorical variables, but 

the application of the model with factor variable will be restricted (e.g. the  factor 

variable is nondifferentiable ). Therefore, the term Vs×PGA is selected here.  

Model No. 12 was selected in that it best synthesized both the R2 value and 

number of variables. In this model, only eight fitting parameters are used including the 

intercept to express the response surface with an R2 value that is equal to 0.9619. This 

response surface can be expressed as follows: 
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V PGA V P
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+ × × − × × )inputGA
  (5.9) 

This response surface model encompasses three random variables and one design 

variable, all of which are dependent. The PGA (m/s2) value at site surface can be 

obtained easily by inserting , 1s layerV  (m/s), , 2s layerV  (m/s), , 3s layerV (m/s) and inputPGA  (g) of 

the input seismic wave into Equation (5.9) rather than the dynamic analysis using the 

Finite Element method. Note that the application of the developed response surface 

model requires entering all input parameters with their nominal values. No variation is 

considered, and the variation in the random variables is detailed in Section 5.4. 

 

5.5.3 Model validation 

 

To determine the accuracy of the obtained response surface model, ten designs 

were randomly selected from the design pool under the single constraint those designs 

used for the development of the response surface models are excluded. For each design, 

the values of the three soil parameters are randomly selected from the assumed 

probability distributions. For each of these designs, ABAQUS/CAE is used to compute 

the PGA at the ground surface, with the results then compared with that obtained from 

the developed response surface model. As shown in Figure 5.7, the accuracy of the 

response surface model in this example problem was deemed satisfactory. It should be 
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noted that the response surface model is problem specific, meaning that a new response 

surface model must be developed for a given set of problems. 

 

Figure 5.7 Validation of the proposed response surface models for PGA at the site surface 

 

5.5.4 Uncertainty propagation in PGA 

 

The response surface method is also superior in that it can construct a function 

permitting the ready acceptance of the uncertainty of the dependent variable. Unlike the 

numerical model, however, only Monte Carlo simulation can be used to study this 

uncertainty propagation, which while arguably more accurate requires in excess of 

10,000 simulations to derive that accuracy. Consequently, a strong computational 

performance and a long calculation time are required, thus making the convenience of 
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response surface method, especially in complicated dynamic numerical analysis a better 

fit. 

In this study, the FOSM method is used to calculate the model uncertainty. 

Formally known as the first-order second-moment method, FOSM derives its name from 

it basis within a first-order Taylor series approximation of the performance function 

linearized at the mean values of the random variables, and because of the sole use of the 

second moment statistic (mean and covariances) of the random variables. Using the 

response surface model obtained in Section 5.5.2, the performance function can be 

defined as Equation (5.9). Among these four input parameters, Vs,layer1, Vs,layer2, Vs,layer3 

are considered as random variables. In this uncertainty analysis, each of these random 

variables is assumed to follow a lognormal distribution, which does provide a good fit to 

the measured geotechnical parameters. Lognormal distribution requires a knowledge of 

the mean and standard deviation, which for each case in the example studied here, both 

the mean and the coefficients of variation are available. The mean value for Vs,layer1, 

Vs,layer2, Vs,layer3 for site class C, D and E are listed in Table 5. According to Equation (5.8)

, the standard deviation is expressed as: 

 20.000328 0.165967Vs Vs Vs VsCOVσ µ µ µ= × = × + ×   (5.10) 

The performance function is generalized for three random variables, denoted by a 

vector X. Let the performance function be written as: 

 1 2 3( ) ( , , )PGA g X g X X X= =   (5.11) 

Followed by a Taylor series expansion of the performance function about the 

mean value which is expressed as 
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where the derivatives are evaluated at the mean values of the random variables 

(X1, X2, X3) and μXi is the mean value of Xi. A linear truncation of terms of this series is 

then used to derive the first order approximate mean and variance for uncorrelated 

variables, which is expressed as follows: 

( )1 2 3, ,PGA X X Xgµ µ µ µ≈   (5.13) 

( )
23

2

1
PGA i

i i

g Var X
X

σ
=

 ∂
≈  ∂ 
∑ (5.14) 

By substituting the Equation (5.9) into Equations (5.13) and (5.14), the 

approximate mean and variance for the response surface model embedded into Section 

5.4 are expressed as: 
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  (5.16) 

These given equations thus make it possible to easily obtain both the mean value 

and standard deviation of PGAsurface by substituting input variables into Equations (5.15) 

and (5.16), both of which are effective in a further reliability analysis such as in 

determining the probability of liquefaction (Juang, 2006). This concept also provides 
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removes the limitation of current geotechnical reliability analyses in terms of focusing on 

problems with a relatively simple set of limit-state functions. Most numerical programs 

lack such an effective reliability analysis. For example, even though the Monte Carlo 

simulation is a well-developed method for determining uncertainty analysis, it requires 

strong computational performance and long calculation times. However, this combination 

of the response surface model and FOSM method is the most effective method for 

characterizing the uncertainty propagation in site response analysis in that it circumvents 

those lengthy calculation requirements.   

Table 5.7 The mean estimation and the standard deviation of the PGA at the site surface. 

 
Class C Class D Class E 

surfacePGAµ   3.57 1.87 1.28 
surfacePGAσ   1.90 0.85 0.53 

COV 0.53 0.46 0.41 
 

Substituting the Vs listed in Table 5.7 into Equations (5.15) and (5.16) greatly 

enhances acquisition of the 
surfacePGAµ  and 

surfacePGAσ  (listed in Table 8). Although both the 

mean value and standard deviation of PGAsurface decreases in site classes C to E, the COV 

trend is more opaque, possibly in that the output distribution is subjected to the input 

distribution. Here, the COV of the Vs changes with the mean value. Again in site classes 

C to E, the mean value of Vs decreases which is the cause of the decreased COV, a 

decrease that will in turn cause a similar trend in output distribution of the COV value.   
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Summary 

The deterministic, complex and time-consuming procedure that characterized 

current site response analysis necessitates considering uncertainties in that analysis which 

is the result of uncertainties in the soil properties. Six findings in this study are of 

particular note.  

(1) A procedure for developing a response surface surrogate model to replace the

time consuming finite element code in statistical studies was proposed, through

which the power of the finite element method in modeling and the statistical

methods in addressing uncertainties are combined into an effective statistical

analysis tool.

(2) The finite element method was used to create a response surface model based on

the seismic dynamic analysis, and a Modified Davidenkov model was used to

describe soil behaviors under irregular loading reloading conditions.

(3) FOSM, based upon the surface model that was described and constructed here,

was used to characterize the uncertainty propagation of PGA caused by the

uncertainty of the soil parameter. The resultant formulas of the mean estimation

and standard deviation of PGA now makes it much easier to undertake

geotechnical reliability analysis, such as liquefaction probability. Unlike most

geotechnical reliability schemes that emphasize problems with simple limit-state

functions, this novel concept was efficient in solving problems in terms of
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determining reliability analysis. 

(4) The interaction with input ground motion and shear wave velocity were most

important in predicting the resultant PGA. However, given that the commonly

used second-order polynomial model was not used here, future response surface

model selection efforts must be targeted towards test the model with different

patterns of manifestation instead of the direct use of the second-order polynomial

model.

(5) A uniform and deliberate method is necessary for simplifying the soil properties

for a specific engineering purpose. Here, the three layers profile which considers

the top 30 m as a single layer and a bisection of the remainder of the soil column,

was deemed most suitable for this exercise.

(6) Given the problem-specific of this proposed response surface model, specific

response surface models must be developed for a certain set of problem criteria.
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CHAPTER VI 

6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions 

The ground motion parameters such as amplitude, frequency content or the 

duration can be affected by the local site condition and may result in amplification or de-

amplification to the original bedrock motion. Shear wave velocity is an important site 

parameter to describe the site condition that is widely used in estimating site response, 

classifying sites in recent building codes and loss estimation. In this dissertation, the 

geostatistical approach accounting for the spatial variability of Vs30 across different 

length scales and incorporates the compiled database of direct geophysical measurements 

and proxy-based Vs30 values is presented. Based on that, a hybrid geotechnical and 

geological data-based framework is presented and well tested in this dissertation. 

Recommendations on how to act in each specific mapping situation and step-by-step 

instructions for accomplishing mapping are provided including the methodology to 

calibrate B and integrate secondary data. 

With the well understood of the variation of shear wave velocity, a 

comprehensive study is conducted to evaluate the impacts of soil parameters uncertainty 

especially shear wave velocity in nonlinear dynamic site response. Numerical analysis 

with finite element method is applied to describe the uncertainty propagation in dynamic 
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site response and its performance under different site condition. Modified Davidenkov 

model with simplified loading-reloading rules is used to describe the stress-strain 

relationship under irregular cyclic loading. Furthermore, the response surface and the first 

order second moment (FOSM) concept are integrated to quantify the uncertainty in 

dynamic site response.  

In chapter II, a multiscale random field-based framework is presented to map Vs30 

values over extended areas. The random field model explicitly accounts for the spatial 

variability of Vs30 across different scales while incorporates and preserves measured Vs30 

data. The framework is applied to map Vs30 over the Suzhou site, where 309 shear-wave 

velocity measurements and topography-based Vs30 values are compiled. Monte Carlo 

simulations are coupled with the random field model to quantify uncertainties of the 

generated multiscale Vs30 map. The new map is then applied to site classification and 

amplification factor characterization in the studied region. In summary, it is found that: 

Quantitatively consistent Vs30 estimates over different length scales over the entire 

studied region can be obtained using the multiscale random field model; The resulting 

map has multiscale resolutions and is particularly convenient to incorporate and preserve 

local measurement data into a regional Vs30 map; Comparison of the new Vs30 map with 

existing USGS topography-based Vs30 map shows that the new Vs30 map provides more 

accurate and more detailed Vs30 values, especially in the eastern plain region of the 

studied site because  of the incorporated local Vs30 measurements and their spatial 

dependency; Uncertainties associated with the new Vs30 map  are  quantified in terms of 

the coefficient of variation (COV) calculated from Monte Carlo simulations. In general, 
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the COVs approach zero around locations with measurement data and gradually increase 

in areas without any known Vs30 values. COVs in single scale random field map are 

found to be slightly smaller when compared to the multiscale counterpart; The site 

application map based on the newly generated Vs30 map shows that relatively stiff soil 

(NEHRP site class C) is found in the northwestern part of the city and the soil tends to be 

softer in the southeastern region (NEHRP site class D and E);  This trend in the soil type 

correlates well with the calculated amplification factor map, where high amplification 

factors are predicted in the southeastern part of the city, indicating potential seismic 

amplification effect in this region. 

In chapter III, a guideline to integrate multiple sources of data in random field 

model for regional soil properties mapping is established based on a hybrid geotechnical 

and geological data-based framework. The geotechnical data such as the Vs30 measured 

data are used as primary information, which show clear spatial correlation. Geological 

information is considered as secondary information which essentially enforces geological 

constraints to the generated soil properties maps. Both primary and secondary data are 

integrated into random field models through a conditional sequential simulation 

technique. The integration effect caused by Markov–Bayes coefficient B and the size of 

the predefined grid of secondary information are emphatically discussed within two 

sampling conditions: sufficient measured data and insufficient measured data. A well-

designed 2-D synthetic digital field is applied here to test the proposed framework. In 

summary, it is found that: Since the secondary data represents the geologic information, 

as the weight of the secondary data increases, the geological boundaries become more 
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distinguishable in the generated map; It is necessary to selected an appropriate threshold 

value for calibrating Markov–Bayes coefficient B. Other than it’s physical meaning, the 

threshold value should be selected within the intersection value range of the primary and 

secondary data; The element size of the predefined grid for secondary data cannot be 

smaller than the mean distance of any closest two primary data points; The overdense 

secondary data may result in the randomly estimated value; Integration of secondary data 

can modified mapping scenario with insufficient, unevenly distributed measured data. For 

the mapping scenario with sufficient measured data in all geologic units, it can modify 

the resultant mapping slightly.   

In chapter IV, the effect of soil layers with uncertainty properties on the 

amplification of surface ground motion with respect to incident rock motion is 

investigated from a statistical perspective. More specifically, three downhole sites in 

Stanford, Salt Lake and Hilo which represent three types of site conditions are considered 

and applied for developing realistic probability models for the nonlinear soil properties 

based on site-specific geotechnical data. The nonlinear response of the soil was 

considered here. The modified Davidenkov constitutive model was implemented in 

ABAQUS/Explicit. The uncertainty of the soil properties and the imperfect correlation of 

the parameter values in different layers were considered via a Monte Carlo simulation 

procedure. The site amplification of three site classes was studied here. Each soil column 

was subjected to a real rock recording applied to its base, and the peak ground 

acceleration at the ground surface was computed for each run. In summary, it is found 

that: Sensitivity analyses performed on the calculated PGA and six input soil parameters 
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revealed that PGA strongly depends on the shear wave velocity; Other parameters in the 

subroutine are found to be insignificant comparing to shear wave velocity. Uncertainties 

in the velocity structure of soil profiles (Vs) are shown to be the most intensity dependent 

variable that governing the amplification potential of the site; Using Vs30 is not accurate 

enough for estimating PGA at ground surface; The soil layers below 30 meters have 

contribution in seismic wave prorogation from rock to the surface. Also, the variation of 

shear wave velocity along depth should be taken into consideration. Thus, shear wave 

velocity should be expressed as Vs profile instead of Vs30 value. The results of Monte 

Carlo Simulation show that with the given lognormally distributed shear wave velocity, 

PGA values follow the lognormal distribution with the exception of a small deviation at 

the tail of the distribution. With Coyote Lake Earthquake input motion, the calculated 

PGA at soil surface keeps increasing when soil become harder. For the uncertainty of 

PGA at site surface, variability in soil properties significantly increases the standard 

deviation of the ground peak acceleration at site surface but has a lesser effect on the 

COV. Uncertainties associated with soft soil (Class E) are higher compared to the stiff 

soil (Class D and C), no obvious difference between Site class D and C. Distribution of 

input parameter has little influence of uncertainty propagation in dynamic site response 

analysis. The trend of output uncertainty, including mean, standard deviation and COV, 

will not change under different distributions of input parameter.   

In chapter VI, response surface method is introduced in dynamic site response 

analysis to assess both the response uncertainty and its dependence on the randomness of 

the design variables. The deterministic, complex and time-consuming procedure that 
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characterized current site response analysis necessitates consider uncertainties in that 

analysis which is the result of uncertainties in the soil properties. In summary, it is found 

that: A procedure for developing a response surface surrogate model to replace the time 

consuming finite element code in statistical studies was proposed, through which the 

power of the finite element method in modeling and the statistical methods in addressing 

uncertainties are combined into an effective statistical analysis tool. The finite element 

method was used to create a response surface model based on the seismic dynamic 

analysis, and a Modified Davidenkov model was used to describe soil behaviors under 

irregular loading reloading conditions; FOSM, based upon the surface model that was 

described and constructed here, was used to characterize the uncertainty propagation of 

PGA caused by the uncertainty of the soil parameter. The resultant formulas of the mean 

estimation and standard deviation of PGA now makes it much easier to undertake 

geotechnical reliability analysis, such as liquefaction probability. Unlike Most 

geotechnical reliability schemes that emphasize problems with simple limit-state 

functions, this novel concept was efficient in solving problems in terms of determining 

reliability analysis. The interaction with input ground motion and shear wave velocity 

were most important in predicting the resultant PGA. However, given that the commonly 

used second-order polynomial model was not used here, future response surface model 

selection efforts must be targeted towards test the model with different patterns of 

manifestation instead of the direct use of the second-order polynomial model. A uniform 

and deliberate method is necessary for simplifying the soil properties for a specific 

engineering purpose. Here, the three-layer profile that considers the top 30 m as a single 



129 

layer and a bisection of the remainder of the soil column, was deemed most suitable for 

this exercise. Given the problem-specific of this proposed response surface model, 

specific response surface models must be developed for a certain set of problem criteria.   

6.2 Recommendations 

To further expand the work presented in this dissertation, a number of research 

topics may be undertaken, which include the following: 

(1) Further investigation of a more complex finite element model for site response

analysis is suggested, such that the boundary condition can be more accurate

included.

(2) Other than the variables that considered in chapter V and chapter VI, depth of soil

is also a parameter worth considering. In chapter V, a basic study has been done

which related to the depth of soil. Based on that, it can be selected as a variable

and considered into the response surface model. It should be noticed that this

should be based upon field data.

(3) In the constitutive model described in Chapter IV, the values of fitting parameters

are obtained from other researcher’s work. This may only apply to the soil in

specific area. It is recommended to do more experiments based on the soil form

different site conditions to offer a more widely used range of those fitting

parameters.
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