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Abstract

An electric power system is a network of various components that generates and

delivers power to end users. Since 1881, U.S. electric utilities have supplied power to bil-

lions of industrial, commercial, public, and residential customers continuously. Given the

rapid growth of power utilities, power system optimization has evolved with developments

in computing and optimization theory. In this dissertation, we focus on two optimization

problems associated with power system planning: the AC optimal power flow (ACOPF)

problem and the optimal transmission line switching (OTS) problem under geomagnetic

disturbances (GMDs). The former problem is formulated as a nonlinear, non-convex net-

work optimization problem, while the latter is the network design version of the ACOPF

problem that allows topology reconfiguration and considers space weather-induced effects on

power systems. Overall, the goal of this research includes: (1) developing computationally

efficient approaches for the ACOPF problem in order to improve power dispatch efficiency

and (2) identifying an optimal topology configuration to help ISO operate power systems

reliably and efficiently under geomagnetic disturbances.

Chapter 1 introduces the problems we are studying and motivates the proposed

research. We present the ACOPF problem and the state-of-the-art solution methods devel-

oped in recent years. Next, we introduce geomagnetic disturbances and describe how they

can impact electrical power systems. In Chapter 2, we revisit the polar power-voltage for-

mulation of the ACOPF problem and focus on convex relaxation methods to develop lower

bounds on the problem objective. Based on these approaches, we propose an adaptive,

multivariate partitioning algorithm with bound tightening and heuristic branching strate-
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gies that progressively improves these relaxations and, given sufficient time, converges to

the globally optimal solution. Computational results show that our methodology provides

a computationally tractable approach to obtain tight relaxation bounds for hard ACOPF

cases from the literature. In Chapter 3, we focus on the impact that extreme GMD events

could potentially have on the ability of a power system to deliver power reliably. We de-

velop a mixed-integer, nonlinear model which captures and mitigates GMD effects through

line switching, generator dispatch, and load shedding. In addition, we present a heuristic

algorithm that provides high-quality solutions quickly. Our work demonstrates that line

switching is an effective way to mitigate GIC impacts. In Chapter 4, we extend the prelimi-

nary study presented in Chapter 3 and further consider the uncertain nature of GMD events.

We propose a two-stage distributionally robust (DR) optimization model that captures geo-

electric fields induced by uncertain GMDs. Additionally, we present a reformulation of a

two-stage DRO that creates a decomposition framework for solving our problem. Compu-

tational results show that our DRO approach provides solutions that are robust to errors

in GMD event predictions. Finally, in Chapter 5, we summarize the research contributions

of our work and provide directions for future research.
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Chapter 1

Introduction

An electric power system is a network of various components that generates and

delivers power to end users. It is operated, controlled, and monitored by an independent

system operator (ISO), an organization formed by the direction of the Federal Energy Regu-

latory Commission (FERC). Since 1881, U.S. electric utilities have supplied power to billions

of industrial, commercial, public, and residential customers continuously (Fig.1.1). Given

the rapid growth in power demand, the cost-effective utilization of power utilities while

providing reliable accessibility is extremely important. U.S. Energy Information Adminis-

tration (EIA) data on wholesale electricity prices suggests that small increases in dispatch

efficiency could save billions of dollars per year [24].

Figure 1.1: Operable utility-scale generating units as of July 2017. (Source: https://commons.

wikimedia.org/wiki/File:Power_plants_map.png)
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1.1 Optimal Power Flow

The alternating current optimal power flow (ACOPF) problem is one of the most

fundamental optimization problems for analyzing the economic and reliable operations of

electric power systems. It is solved every year, every day, and every 5-15 minutes to help

ISOs make decisions for different types of power markets [24]. For example, power system

planning can be divided into three categories: long-term planing, medium-term planning

and short-term planning [62]. Long-term decisions are usually taken over a period of 5-15

years and involve plans about network expansion for meeting an anticipated future load

requirements. Medium-term planning is used for maintenance schedules of the system com-

ponents; these decisions are typically made annually. Short-term decisions are made daily

to deal with operations contingencies and generating unit schedules. In this dissertation,

we focus on short-term real-time decisions in power systems for planning generator dispatch

and improving system reliability.

The ACOPF was first introduced in 1962 [26] and has been formulated in various

forms over the years [104]. In the first half of the 20th century, the optimal power flow

(OPF) problem usually was solved intuitively by power engineers and operators using ex-

perience, rules of thumb, and analog network analyzers [100]. Gradually, with advances

in optimization theory, both Gauss-Seidel and Newton-Raphson methods were commonly

used to solve OPF problems. In 1962, Carpentier [26] proposed optimality conditions for

the OPF using Karush–Kuhn–Tucker (KKT) conditions in the first publication formulat-

ing the full OPF problem. Although the OPF problem has been around for 55 years, the

development of efficient solution techniques has remained an active field of research. The

main challenges associated with solving the ACOPF include: a) nonconvex and nonlinear

models of AC physics, b) large-scale power grids with thousand buses and edges, and c)

limited computation time availability in real-time dispatch applications (wherein decisions

are made every 5-15 minutes). In recent years, various solution algorithms, ranging from

heuristics to convex relaxations, have been studied in the literature. Without loss of gen-
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erality, the ACOPF literature can be roughly categorized into three main research thrusts:

a) finding locally optimal solutions quickly, b) deriving strong, convex relaxations, and c)

proving global optimality.

In the local search literature, local solvers motivated by primal-dual interior point

methods or sequential linearization heuristics based on a Taylor-series expansion commonly

are used to find feasible solutions efficiently, but without any guarantees on solution quality

[23,29]. In the relaxation literature, recent work has focused on deriving convex relaxations

that produce tight lower bounds, including semidefinite programming (SDP)-based methods

[68], quadratic convex (QC) relaxations [57], and second-order cone (SOC) relaxations [63].

The performance of these methods has been evaluated and tested on well established power

system test cases from the literature [30,31]. Though relaxation approaches have empirically

yielded good lower bounds on average, a small improvement of solution quality could result

in significant savings: according to data reported by EIA [5], billions of dollars of potential

cost could be saved with only a 5% improvement in power dispatch efficiency. Finally, recent

efforts have focused on obtaining globally optimal solutions through SOC- and SDP-based

relaxations [46, 63] using standard spatial branch-&-bound (sBB) approaches. Today, the

research challenge is to find globally optimal solutions consistently and quickly, given the

computational time allowed for solving the full ACOPF problem in practice [24].

It is essential to develop fast solution methodologies for the ACOPF problem in

order to improve power dispatch efficiency, as this could dramatically reduce costs each

year. In the first phase of this research, we focus on decreasing the best optimality gaps

known to date on hard instances of the ACOPF problem by improving QC relaxations,

developing new branching strategies, and leveraging high-quality, locally optimal solutions.

1.2 Resilient Electrical Grid under Geomagnetic Disturbances

An electric power system is designed for delivering large amounts of power from

distant sources to demanding consumers [81]. Within these systems, the underlying high-
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voltage transmission network plays a vital role in facilitating this bulk movement of electrical

power. Transmission systems must be kept highly reliable to prevent blackouts and ensure

robust energy markets. However, when extreme events occur in large-scale transmission

systems, the ability to deliver power reliably could be significantly impacted due to physical

damage to overhead transmission lines and other system components. In this context,

this dissertation considers the impact caused by extreme space weather (i.e., geomagnetic

disturbances) on transmission systems. We focus on improving the response (resilience)

of power systems by switching on and off transmission lines. This optimal transmission

switching (OTS) problem [42] is the OPF problem extended to consider network topology

reconfiguration options [62].

1.2.1 Impact of Geomagnetic Disturbances on Transmission Systems

Solar flares and coronal mass ejections cause geomagnetic disturbances (GMDs)

that lead to changes in the Earth’s magnetic field which, in turn, create geo-electric fields

(Fig.1.2). These low-frequency, geo-electric fields induce quasi-DC currents, also known as

geomagnetically-induced currents (GICs), in grounded sections of power system networks

[10, 11, 105]. The GICs are superimposed on the usual alternating currents (AC) and bias

the AC such that maximum currents are increased. In many power system components, this

bias is not a major concern; however, in transformers, it can lead to half-cycle saturation

(i.e., the magnetic cores in the transformers are asymmetrically saturated since the DC

magnetic flux is superimposed on the AC flux [67, 95]) and the loss of magnetic flux in

regions outside of the transformer core. The energy stored in the stray flux increases the

reactive power consumption of the transformer, which can affect system voltages. Stray flux

also drives eddy currents that can cause excessive transformer heating, leading to reduced

transformer life or, potentially, immediate damage [7] (Fig.1.3).

The ability of a power system to reliably deliver power can be severely impacted by

the catastrophic damages caused by GMDs. Of all historical GMD occurrences, one of the

4



Figure 1.2: Geomagnetic Disturbances. (Source: https://en.wikipedia.org/wiki/Geomagnetic_
storm)

(a) transformer burning (b) transformer melting

Figure 1.3: Transformer damage due to GMD effects. (Source: http://www.

americanpreppersnetworkradionet.com/2014/09/weathering-solar-storm.html)

most severe events occurred in March 1989, which resulted in the shutdown of the Hydro-

Quebec power system. As a consequence, six million people suffered a nine-hour power

outage. The most recent GMDs were observed between October 19 and November 5, 2003,

which are often referred to as the Halloween Solar Storms [2]. During this event, satellite-
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based systems and communications were affected and power outages occured in Sweden.

Although GMD events are rare, the posed threat can result in high costs involving not

only the replacement of physically damaged equipment (e.g., high-voltage transformers),

but also the loss of revenue from the associated systems whose performance depends on

reliable power. For example, the net cost of the Quebec 1989 GMD event was $13.2 million,

with damaged equipment accounting for $6.5 million [19]. Hence, it is important to study

the GMD-induced impacts on power systems and enhance the performance of transmission

networks to deal with such negative effects.

There are two known primary risks associated with GICs in power systems. The first

is increased reactive power consumption in transformers and subsequent drops in system

voltages [7] and the second is transformer damage caused by hot-spot heating. To model

these risks, it is important to quantify GICs in bulk power systems. The North American

Electric Reliability Corporation (NERC) presents a procedure for computing GICs in a

system given the orientation and magnitude of a geo-electric field [6]. A common assumption

for GIC calculation is that the geo-electric field is uniformly distributed along the northward

and eastward directions [58]. This assumption is prevalent because if the geo-electric field

is non-uniform, the routing twist and turns of transmission lines must be considered, which

makes the necessary computations more complicated [6]. Further, solar activities, such as

solar flares or coronal mass ejections (CMEs), are unpredictable. Although ground- and

space-based sensors and imaging systems have been utilized by the National Aeronautics

and Space Administration (NASA) to observe these activities at various depths in the solar

atmosphere, accurate information about geomagnetic storms cannot be obtained until the

released particles arrive on Earth and interact with the geomagnetic field [85]. In the

presence of uncertain GMDs, GIC effects cannot be calculated exactly, which makes the

efficient and economical operations of power systems much more difficult.

6



1.2.2 Optimal Transmission Switching

In recent years, transmission switching has been explored in the literature as a con-

trol method to cope with emergency conditions, such as mitigating line overloads [47] and

transmission flow violations [12], preserving system security [59], and improving network

resilience [81]. Changing system topology by switching on and off transmission lines adds

flexibility to network configurations and can bring economic benefits in power markets [86].

Studies indicate that removing transmission lines could potentially improve the dispatch

efficiency of power system [42,54]. As a result, generation cost can be significantly reduced.

Transmission switching has been applied to transmission system expansion planning prob-

lems. In work by Amin and Mohammad [61], transmission switching is modeled as the

subproblem to identify the best system configuration for a transmission capacity expansion

problem with contingencies. Overall, transmission switching is a real-time control action

for maintaining system security while providing potential economical advantages.

Optimal transmission line switching (OTS) with AC power flow is a mathematically

challenging problem due to the computational complexity induced by nonlinear, nonconvex

AC physics and switching (binary) variables. In the literature, the direct current (DC)

power flow approximation has been widely used in nearly all OTS problem studies to date

[15, 34, 42, 61, 65, 86, 99, 107]. The DCOPF approximation linearizes the AC physics of the

power transmission system by neglecting reactive power consumption and line losses [104].

It assumes zero line resistance, small phase angle differences, and fixed magnitude of bus

voltage (i.e., 1 per unit). With these assumptions, the DC optimal transmission switching

problem (DCOTS) can be formulated as a mixed-integer, linear program (MILP) and solved

by commercial MILP solvers such as CPLEX and Gurobi. Meanwhile, additional research

has focused on exploring heuristic methods to efficiently obtain good solutions for large-

scale networks [43,98], as they are intractable for existing solvers. For example, Hedman et

al. [55] incorporates DCOTS with N-1 security constraints and uses heuristics to iteratively

determine switching decisions while preserving N-1 security. However, the optimal topology

decision obtained by solving OTS under a DC approximation may not be feasible for the AC

7



power flow physics. As a result, cost savings might be over estimated and reliability issues

might be overlooked [57]. In addition, our research takes into account the additional reactive

power consumption induced by GICs, while the reactive power is negligible in the DCOPF

approximation. Hence, to avoid feasibility issues and consider reactive power consumption,

it is necessary to use AC power flow equations in the OTS formulation.

Studies of the AC optimal transmission line switching problem (ACOTS) are limited

in the literature. Existing solution methodologies designed for the ACOTS heavily rely on

tight convex relaxations and advanced discrete optimization techniques [42, 87]. Recently,

various convex relaxations and disjunctive representations have been developed, such as

second-order-conic (SOC) relaxations [64], quadratically constrained (QC) relaxations [56],

and semi-definite programming (SDP) relaxations [13]. In the context of transmission ex-

pansion planning applications, QC relaxations have been shown to be effective [81, 84].

Despite these recent advances in optimization methods for OTS, global methods still can-

not scale to solve systems with 500 nodes.

8



Chapter 2

Global Optimization Methods for

Optimal Power Flow

Since the alternating current optimal power flow (ACOPF) problem was introduced

in 1962, developing efficient solution algorithms for the ACOPF problem has been an active

field of research. In recent years, there has been increasing interest in convex relaxation-

based solution approaches that have proven effective in practice. Based on these approaches,

we develop an adaptive, multivariate partitioning algorithm with bound tightening and

heuristic branching strategies that progressively improves these relaxations and, given suf-

ficient time, converges to the global optimal solution. We illustrate the strengths of our

algorithm using benchmark ACOPF test cases from the literature. Computational results

show that our novel algorithm reduces the best known optimality gap for some hard ACOPF

test cases.

9



Nomenclature

Sets

N set of nodes (buses)

G set of generators

Gi set of generators at bus i

E set of from edges (lines)

ER set of to edges (lines)

Parameters

c0, c1, c2 generation cost coefficients

i imaginary number constant

Yij “ gij ` ibij admittance on line ij

Sdi “ p
d
i ` iq

d
i AC power demand at bus i

Sij apparent power limit on line ij

θij ,θij phase angle difference limits on line ij

θMij maxp| θij |, | θij |q on line ij

vi,vi voltage magnitude limit at bus i

Sgi , S
g
i power generation limit at bus i

10



Rp¨q real part of a complex number

Tp¨q imaginary part of a complex number

p¨q˚ hermitian conjugate of a complex number

| ¨ |,=¨ magnitude, angle of a complex number

Continuous Variables

Vi “ vie
iθi AC voltage at bus i

θij “ =Vi ´=Vj phase angle difference on line ij

Wij AC voltage product on line ij, i.e., ViV
˚
j

Sij “ pij ` iqij AC power flow on line ij

Sgi “ pgi ` iq
g
i AC power generation at bus i

lij current magnitude squared on line ij

2.1 Introduction

The optimal power flow problem is one of the most fundamental optimization prob-

lems for identifying the economic and reliable operations of electric power systems. The

ACOPF formulation is a cost minimization problem with equality and inequality constraints

setting bus voltage, line flows and generator dispatch. It was first introduced in 1962 and

has been formulated in various forms over years, e.g., the polar power-voltage formulation

and the rectangular power-voltage formulation [24]. Since the introduction of the ACOPF

problem [26], the development of efficient solution techniques for the ACOPF has remained

an active field of research. The main challenges associated with solving the ACOPF in-

clude: a) non-convex and nonlinear mathematical models of AC physics, b) large-scale

power grids, and c) limited computation time available in real-time dispatch applications.

A computationally efficient algorithm for obtaining high-quality and lower-cost dispatch
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solutions could improve the operational performance of power systems and save billions of

dollars per year [24].

Various solution algorithms, ranging from heuristic to convex relaxation, have been

studied within the literature [57, 77]. Without losing generality, the ACOPF literature

can be roughly categorized into three main research directions: a) finding locally optimal

solutions quickly, b) deriving strong, convex relaxations, and c) proving global optimality.

In the local search literature, local solvers based on primal-dual interior point methods or

sequential linearization heuristics are used to find feasible solutions efficiently without any

guarantees on solution quality. In the relaxation literature, recent work has focused on

deriving convex relaxations that produce tight lower bounds. These relaxation techniques

include semi-definite programming (SDP) relaxations [68], quadratic relaxations (QC) [57]

and second-order-cone (SOC) relaxations [63]. The performances of these existing methods

have been evaluated and tested on well established power system test cases (i.e., Matpower

and NESTA Test Cases) [31]. Though the relaxation approaches have empirically yielded

strong lower bounds, there remain examples where the lower bounds are weak (e.g., case5,

nesta case30 fsr api, nesta case118 ieee api, etc.) [57]. Finally, there have been recent efforts

focused on obtaining globally optimal solutions through SOC and SDP-based relaxations

[46, 63] using standard spatial branch-&-bound (sBB) approaches. In this chapter, we

focus on decreasing the optimality gaps on remaining hard instances by improving the QC

relaxations, developing new branching strategies, and leveraging high quality locally optimal

solutions.

The focus of this chapter is a novel approach for globally optimizing the ACOPF

problem. Our study is built on an adaptive multivariate partitioning algorithm (AMP)

proposed in [82, 83]. The approach is based on a two-stage algorithm that uses sBB-like

methods tailored to OPF problems. In the first stage, we apply sequential bound-tightening

techniques to the voltage and phase-angle variables and obtain tightest possible bounds by

solving a sequence of convex problems [27, 32]. The second stage adaptively partitions

convex envelopes of the ACOPF into piecewise convex regions around best-known local

12



feasible solutions. This approach exploits the observation that local solutions to standard

benchmark instances are already very good. Our recent results on generic mixed-integer

nonlinear programs suggest that refining variable domains adaptively around best-known

feasible solutions can dramatically speed up the convergence to global optimum [82,114].

This research makes three key contributions to solving the ACOPF problem. The

first contribution develops an efficient partitioning scheme for tightening relaxations. In

multilinear relaxations, many approaches build uniform, piecewise relaxations via univariate

or bivariate partitioning [53]. One drawback of such approaches is that a large number of

partitions may be needed to attain global optimum. Thus, these approaches are often

restricted to small problems. To address inefficiencies of these approaches, we develop an

adaptive tightening algorithm with non-uniform partitions, where we selectively partition

convex envelopes that heuristically appear to tighten the relaxations.

Our second contribution lies in applying well-known ideas for deriving the tightest

possible convex relaxations (convex-hulls) for multilinear functions as they play a crucial

role for developing efficient global optimization approaches. Multilinears (up to trilinear)

appear in the polar form of the ACOPF, for which there has been a recent development in

developing strong convex quadratic relaxations (QC) [33, 57]. However, these relaxations

employ recursive McCormick envelopes to handle the trilinear terms, which rarely capture

their convex hulls. In the optimization literature, specifically for a trilinear function, Meyer

and Floudas [78] (Meyer-Floudas envelopes) describe the convex hull by deriving all it’s

facets, and for a generic multilinear function, convex hull is typically formulated as a convex

combination of the extreme points of the function [97]. Owing to the simplicity of the latter

idea from the global optimization perspective, we further strengthen the QC relaxations

to obtain tighter lower bounds for the OPF problem. Also, we develop tight piecewise

convex relaxations of the convex-hull representation for trilinear and quadratic functions by

extending the ideas of approximating univariate/bivariate functions [90,106].

The third contribution of this research is a novel algorithm that combines itera-

tive partitioning (using piecewise relaxations) with bound tightening to globally solve the
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ACOPF (given sufficient time). This algorithm first applies “optimality-based bound tight-

ening” by solving a sequence of min. and max. problems on voltage and phase angle

difference variables [27, 32, 92]. Second, the algorithm iteratively partitions the convex en-

velopes to tighten the lower bound. Simultaneously, the algorithm updates locally feasible

solutions to tighten the upper bound. The combination of tightening the upper and lower

bound yields an algorithm akin to sBB that determines the globally optimal solution.

2.2 AC Optimal Power Flow Problem

In this chapter, constants are typeset in bold face. In the AC power flow equations,

the primitives, Vi, Sij , S
g
i , Sdi and Yij are complex quantities. Given any two complex

numbers (variables/constants) z1 and z2, z1 ě z2 implies Rpz1q ě Rpz2q and Tpz1q ě Tpz2q.

| ¨ | represents absolute value when applied on a real number. Statement A ^ B is true iff

A and B are both true; else it is false. xfp¨qyR represents the constraints corresponding to

the convex relaxation of function fp¨q.

This section describes the mathematical formulation of the ACOPF problem using

the polar formulation. A power network is represented as a graph, pN,Eq, where N and E

are the buses and transmission lines, respectively. Generators are connected to buses where

Gi are the generators at bus i. We assume that there is power demand (load) at every bus,

some of which is zero. The optimal solution to the ACOPF problem minimizes generation

costs for a specified demand and satisfies engineering constraints and power flow physics.

More formally, the ACOPF problem is mathematically stated as:

P :“ min
ÿ

iPG

c2ipRpS
g
i q

2q ` c1iRpS
g
i q ` c0i (2.1a)

s.t.
ÿ

kPGi

Sgk ´ S
d
i “

ÿ

pi,jqPEYER

Sij @i P N (2.1b)

Sij “ Y
˚
ijWii ´ Y

˚
ijWij @pi, jq P E (2.1c)

Sji “ Y
˚
ijWjj ´ Y

˚
ijW

˚
ij @pi, jq P E (2.1d)
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Wii “ |Vi|
2 @i P N (2.1e)

Wij “ ViV
˚
j @pi, jq P E (2.1f)

θij ď =Vi ´=Vj ď θij @pi, jq P E (2.1g)

vi ď |Vi| ď vi @i P N (2.1h)

Sgi ď Sgi ď S
g
i @i P G (2.1i)

|Sij | ď Sij @pi, jq P EY ER (2.1j)

In formulation (2.1), the convex quadratic objective (2.1a) minimizes total generator

dispatch cost. Constraint (2.1b) corresponds to the nodal power balance at each bus, e.g.

Kirchoff’s current law. Constraints (2.1c) through (2.1f) model the AC power flow on each

line in complex number notation. Constraint (2.1g) limits the phase angle difference on each

line. Constraint (2.1h) limits the voltage magnitude at each bus. Constraint (2.1i) restricts

the apparent power output of each generator. Finally, constraint (2.1j) restricts the total

electric power transmitted on each line. For simplicity, we omit the details of constant bus

shunt injections, transformer taps, phase shifts, and line charging, though we include them

in the computational studies. The ACOPF is a hard, non-convex problem [18] where the

source of non-convexity is in constraints (2.1e) and (2.1f), which reduce to:

Wii “ v2
i (2.2a)

RpWijq “ vivj cospθijq (2.2b)

TpWijq “ vivj sinpθijq (2.2c)

To address the non-convexities, we first summarize a state-of-the-art convex relaxation

with some enhancements and then derive tighter piecewise relaxations.
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2.3 Convex Quadratic Relaxation of the ACOPF

In this section, we discuss the features of the convex quadratic (QC) relaxation of

the ACOPF [32, 57]. Though there are numerous other relaxations in the literature, we

adopt the QC relaxations as it has been observed to be empirically tight, computationally

stable, and efficient. We further tighten the sinusoidal relaxations of [32, 57] for certain

conditions and introduce the tightest possible convex relaxations for trilinear functions.

Quadratic function relaxation Given a voltage variable, vi P rvi,vis, the tightest convex

envelop is formulated with a lifted variable, pwi P xv
2
i y
R, where

pwi ě v2
i (2.3a)

pwi ď pvi ` viqvi ´ vivi (2.3b)

Cosine function relaxation Under the assumptions that |θij | is not always equal to |θij |

and θMij ď π{2, the convex quadratic envelope of the cosine function is formulated with a

lifted variable pcsij P xcospθijqy
R where

pcsij ď 1´
1´ cospθMij q

pθMij q
2

pθ2
ijq (2.4a)

pcsij ě
cospθijq ´ cospθijq

θij ´ θij
pθij ´ θijq ` cospθijq (2.4b)

Sine function relaxation First, let the first-order Taylor’s approximation of sinpθq at θ

be

foapθq “ sinpθq ` cospθqpθ ´ θq (2.5)

Second, let the secant function between pθ, sinpθqq and pθ, sinpθqq be

fsecpθ,θq “
sinpθq ´ sinpθq

θ ´ θ
pθ ´ θq ` sinpθq (2.6)

Finally, given bounds rθ,θs, we use θµ “ pθ`θq
2 to denote the midpoint of the bounds. Since
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the bounds on phase-angle differences can be non-symmetric, we derive convex relaxations

of the sine function for three cases:

Case (a): When pθij ă 0q ^ pθij ą 0q, the polyhedral relaxation, as described in [57], is

characterized with lifted variable xsnij P xsinpθijqy
R where

xsnij ď foapθMij {2q, xsnij ě foap´θMij {2q (2.7)

Case (b): When pθij ă 0q ^ pθij ă 0q, we derive a tighter polyhedral relaxations that

exploits a lack of an inflection point in the sine function. This relaxation is defined by:

xsnij ď fsecpθij ,θijq, (2.8a)

xsnij ě foapθijq @θij P tθij ,θ
µ
ij ,θiju. (2.8b)

Case (c): Like case (b), when pθij ą 0q ^ pθij ą 0q, a tighter polyhedral relaxation for the

sine function is:

xsnij ě fsecpθij ,θijq, (2.9a)

xsnij ď foapθijq @θij P tθij ,θ
µ
ij ,θiju. (2.9b)

A geometric visualization of the relaxations of the sine function for cases (a) and (c) are

shown in Figure 2.1.

Trilinear function relaxation After introducing the lifted variables, pcsij and xsnij from

above, the non-convex constraints in (2.2b) and (2.2c) become trilinear functions of the

form vivj pcsij and vivjxsnij . In the literature, bilinear McCormick relaxations are applied

recursively to relax these trilinear functions [57,77], which rarely capture their convex hull.

Instead, we relax the trilinear function based on the convex hull of the extreme points using

techniques from [97].

Given a trilinear function φpx1, x2, x3q “ x1x2x3 with respective variable bounds
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Figure 2.1: Polyhedral relaxations for sinusoidal function

rx1,x1s, rx2,x2s, rx3,x3s, the extreme points of φp¨q are given by the Cartesian product

px1,x1q ˆ px2,x2q ˆ px3,x3q “ xξ1, ξ2, . . . , ξ8y. We use ξik to denote the coordinate of xi

in ξk. The convex hull of the extreme points of x1x2x3 is then given by

ÿ

k“1,...,8

λk “ 1, λk ě 0, @k “ 1, . . . , 8, (2.10a)

px “
ÿ

k“1,...,8

λkφpξkq, xi “
ÿ

k“1,...,8

λkξ
i
k (2.10b)

The notation xx1, x2, x3y
λ is used to denote the λ-based relaxation of a trilinear function as

defined above. Thus, the relaxation of x1x2x3 is stated as px “ xx1, x2, x3y
λ. We note that

this formulation generalizes to any multilinear function and is equivalent to the standard

McCormick relaxation for bilinear functions.

Current-magnitude constraints We also add the second-order conic constraints that

connect apparent power flow on lines, (Sij), with current magnitude squared variables,

(lij) [33, 57]. The complete convex quadratic formulation with tightest trilinear relaxation

of the ACOPF is then stated as:

PQC :“ min
ÿ

iPG

c2ipRpS
g
i q

2q ` c1iRpS
g
i q ` c0i (2.11a)
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s.t. (2.1b)´ (2.1d), (2.11b)

(2.1g)´ (2.1j), (2.11c)

Wii “ pwi, pwi P xv
2
i y
R @i P N (2.11d)

RpWijq “ xwcij , TpWijq “ ywsnij , @pi, jq P E (2.11e)

xwcij P xvivj pcsijy
λ, ywsnij P xvivjxsnijy

λ, (2.11f)

pcsij P xcospθijqy
R, xsnij P xsinpθijqy

R, (2.11g)

Sij ` Sji “ Zijlij @pi, jq P E (2.11h)

|Sij |
2 ďWiilij @pi, jq P E. (2.11i)

2.4 Piecewise Convex Relaxations

One of the weaknesses of the convex quadratic relaxations described in section 2.3 is

that the relaxation is not tight when the bounds of the variables are wide. To address this

issue, recent work [27,32] has developed approaches to tighten variable bounds, sometimes

significantly. However, there are still a few OPF instances with large optimality gaps. In

this section, we focus on developing tighter piecewise convex relaxations for quadratic and

trilinear functions.

Piecewise trilinear functions In this section, we present a piecewise relaxation method

to strengthen the convex-hull representation of the trilinear functions vivj pcsij and vivjxsnij

described above (Eqs. (2.10)). This method is an extension of our preliminary study [73]

which tightened these trilinear terms using the λ-based formulations for piecewise polyhe-

drons of multilinear functions [69, 90, 103, 106]. Recall that our preliminary method dis-

cretized the domain of each variable (i.e., vi, vj , pcsij , and xsnij) and introduced sufficient

binary variables to control their partitions. However, this method may lose some informa-

tion by partitioning on pcs and xsn independently. For example, pcsij and xsnij are functions of

θij , thus there are relationships among these variables which we can use when discretizing

their domains. As a result, additional unnecessary partition (binary) variables are created,
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which can significantly slow down the convergence. Instead, we partition only on θij and

apply specific partitions for pcsij and xsnij . Without loss of generality and for the purpose of

exposition, we illustrate piecewise polyhedral relaxations of trilinear functions with specific

partitions on every variable (i.e., two partitions on vi and vj ; three partitions on pcsij and

xsnij). For generalizations to multiple partitions and validity of the formulation, we refer

the reader to Sundar et al. [103].

For notation brevity, variables vi, vj , pcsij , xsnij and θij are termed as x1, x2, xc3, xs3

and θ3 respectively. Let xi,j be the jth discretization point of xi, and x3 represents xc3 or

xs3. We define zi,j P t0, 1u as the binary partition variables corresponding to xi on range j.

The partitioned domains of variables xc3 and xs3 are graphically illustrated in Figure 2.2(a)

and 2.2(b), respectively.

θ3
θ3,1 θ3,2 θ3,3 θ3,4

xc3,1

xc3,2

xc3,3

xc3,4
z3,1 z3,2 z3,3

(0, 1)

xc3

(a) cospθ3q

θ3

xs3

θ3,1 θ3,2 θ3,3 θ3,4

xs3,2

xs3,3

xs3,4

xs3,1 z3,1 z3,2 z3,3

(0, 0)

(b) sinpθ3q

Figure 2.2: Partitioned domains for variable xc3 and xs3, as a function of θ3. Blue font indicates
binary variables. Red font denotes the added points when θ3 ď 0 ď θ3.

These figures show that the discretization points of xc3 and xs3 are determined by

partitions of θij , rather than themselves. Particularly, as shown in Figure2.2, the domain of

variable θ3 is partitioned into three pieces by introducing four discretization points θ3,k, k P

t1, 2, 3, 4u, where θ3 “ θ3,1 and θ3 “ θ3,4. Given these points, the discretization points of

xc3 and xs3 can be calculated as xc3,j “ cospθ3,jq and xs3,j “ sinpθ3,jq for each j P t1, 2, 3, 4u.

In this case, we present domains of xc3 and xs3 below:

xc3 P rx
c
3,1,x

c
3,2s Y rx

c
3,2,x

c
3,3s Y rx

c
3,4,x

c
3,3s (2.12a)
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xs3 P rx
s
3,1,x

s
3,2s Y rx

s
3,2,x

s
3,3s Y rx

s
3,3,x

s
3,4s (2.12b)

It is important to notice that cosine function fpθq is not monotonic if θ ď 0 ď θ (here

we assume that |θ| ď π
2 and |θ| ď π

2 ). Thus, this approach may lead to the loss of some

valid domains of xc3. For example, if the domain of θ3 is partitioned by three discretization

points θ3,1, θ3,2, and θ3,4, which generate three discretization points xc3,1, xc3,2, and xc3,4

for xc3. This implies that xc3 P rx
c
3,1,x

c
3,2s Y rx

c
3,4,x

c
3,2s, thus a valid range rxc3,2,x

c
3,3s is

neglected. This issue can be simply addressed by adding one discretization point θ3,k such

that cospθ3,kq “ 1 (e.g., θ3,3 in Figure2.2). As a result, when θ3 ď 0 ď θ3, the true upper

bound of xc3 (i.e., 1) is always included in its domain and no sub-domains are neglected.

Further, it is evident that xc3 is monotonically increasing and decreasing with re-

spect to the left-side domain and the right-side domain of θ3 (i.e., rθ3,1, 0s and r0,θ3,4s),

respectively. This property facilitates the derivation of piecewise convex-hull representa-

tions of vivj pcsij and vivjxsnij with partitions on variable θij (will discuss later). Meanwhile,

although sine function fpθq is always monotonic when θ3 ď 0 ď θ3, the point xs3,3 “ 0 must

be added to the discretization point set of xs3. This is due to xc3 and xs3 use the same binary

variables (i.e., z3,1, z3,2 and z3,3 in Figure2.2) to control partitions. Finally, it is important

to note that when θ3 ą 0 or θ3 ă 0, the discretization points xc3,3 “ 1 and xs3,3 “ 0 are

infeasible for xc3 and xs3, respectively. In this case, these two points must be excluded and

should not be added to the discretization point sets of xc3 and xs3.

Let K “ t1, .., 36u be the set of integer values between 1 and 36. Recall that

for k P K, ξk denotes the coordinates of the kth extreme point of a trilinear function

φp¨q and ξik denotes the coordinate of xi in ξk. For every extreme point, ξk, there is a

nonnegative mulitiplier variable λk. The partitioned domains of trilinear functions are

graphically illustrated in Figure2.3.

Using these notations and partitioning scheme above, we now present the SOS-

II (i.e., a special order set of type II [9]) constraints that model the piecewise union of
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Figure 2.3: Partitioned variable domains for a trilinear function. Blue font indicates binary variables.
The red slice represents the partitioned domains associated with the added points when θ3 ď 0 ď θ3

(i.e., If θ3 ą 0 or θ3 ă 0, this slice is not included).

polyhedrons of the trilinear function below:

px “
ÿ

kPK

λkφpξkq, xi “
ÿ

kPK

λkξ
i
k, (2.13a)

ÿ

kPK

λk “ 1, λk ě 0, @k P K, (2.13b)

zi,1, zi,2 P t0, 1u, zi,1 ` zi,2 “ 1, @i “ 1, .., , 2 (2.13c)

z3,1, z3,2, z3,3 P t0, 1u, z3,1 ` z3,2 ` z3,3 “ 1, (2.13d)

z1,1 ě
ÿ

kPK̃

λk, K̃ “ t1, 2, 3, 10, 11, 12, 19, 20, 21, 28, 29, 30u, (2.13e)

z1,2 ě
ÿ

kPK̃

λk, K̃ “ t7, 8, 9, 16, 17, 18, 25, 26, 27, 34, 35, 36u, (2.13f)

z2,1 ě
ÿ

kPK̃

λk, K̃ “ t1, 4, 7, 10, 13, 16, 9, 22, 25, 28, 31, 34u, (2.13g)

z2,2 ě
ÿ

kPK̃

λk, K̃ “ t3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36u, (2.13h)

z1,1 ` z1,2 ě
ÿ

kPK̃

λk, K̃ “ t4, 5, 6, 13, 14, 15, 22, 23, 24, 31, 32, 33u, (2.13i)

z2,1 ` z2,2 ě
ÿ

kPK̃

λk, K̃ “ t2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35u, (2.13j)
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z3,1 ě

9
ÿ

k“1

λk, z3,1 ` z3,2 ě

18
ÿ

k“10

λk, z3,2 ` z3,3 ě

27
ÿ

k“19

λk, z3,3 ě

36
ÿ

k“28

λk. (2.13k)

Constraints (2.13a)-(2.13d) model the convex combination of extreme points and

disjunctions. They force one partition for each variable to be active. Constraints (2.13e)-

(2.13k) enforce the adjacency conditions for the λ variables. These resemble SOS-II con-

straints. The formulation in (2.13) has many interesting polyhedral properties. For example,

the projection of this polytope on to the space of tx1, x2, x3, pxu has integral extreme points.

This is one of the primary reasons this formulation can be computationally efficient For

further theoretical details, we delegate the reader to [69,106].

Piecewise quadratic functions Using the same notation, the partitioned domains of

quadratic functions are graphically illustrated in Figure 2.4. The SOS-II constraints of

xi

ŵi

xi,1 xi,2 xi,3

λ1

λ2

λ3

zi,1

zi,2

Figure 2.4: Piecewise quadratic regions. Blue font indicates binary variables.

piecewise quadratic constraints are modeled as the following, using a piecewise union of

convex quadratic regions. To the best of our knowledge, this is the first time the piece-

wise quadratic regions of the voltage squared variables have been modeling using the λ

formulation.

pwi ě x2
i , pwi ď

ÿ

k“1,2,3

λkx
2
i,k, xi “

ÿ

k“1,2,3

λkxi,k, (2.14a)
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ÿ

k“1,2,3

λk “ 1, λk ě 0, @k “ 1, 2, 3, (2.14b)

zi,1, zi,2 P t0, 1u, zi,1 ` zi,2 “ 1, (2.14c)

zi,1 ě λ1, zi,2 ě λ3, zi,1 ` zi,2 ě λ2. (2.14d)

Strengthening valid inequalities Though the formulations in (2.13) and (2.14) are

necessary and sufficient to characterize the piecewise relaxations of trilinear and quadratic

functions, we observed that the inclusion of the following (simple) valid constraints improved

the computational performance of λ formulations tremendously. For a given variable xi with

two partitions (i.e., xi P rxi,1,xi,2s Y rxi,2,xi,3s), the constraint is as follows:

zi,1xi,1 ` zi,2xi,2 ď xi ď zi,1xi,2 ` zi,2xi,3 (2.15)

Finally, for a given trilinear or quadratic function with a finite number of partitions, we use

x¨yλp to denote the piecewise λ-formulation of (2.13) and (2.14), respectively. The complete

piecewise convex relaxation of the ACOPF is then stated as:

PQC
λ

:“ min
ÿ

iPG

c2ipRpS
g
i q

2q ` c1iRpS
g
i q ` c0i (2.16a)

s.t. (2.1b)´ (2.1d), (2.1g)´ (2.1j) (2.16b)

(2.11e), (2.11h)´ (2.11i) (2.16c)

Wii “ pwi, pwi P xv
2
i y
λp @i P N (2.16d)

xwcij P xvivj pcsijy
λp , ywsnij P xvivjxsnijy

λp . (2.16e)

2.5 Global optimization of ACOPF

Adaptive Multivariate Partitioning To solve the ACOPF problem, we use the Adap-

tive Multivariate Partitioning (AMP) algorithm described in [82, 83]. The key idea of

this method is that AMP leverages the observations that solutions based on relaxations to
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ACOPF are often tight in practice and that locally optimal solutions are also very good [57].

AMP iteratively introduces narrow partitions around these relaxations.

A high-level pseudo-code for AMP is given in Algorithm 1. In this algorithm, we

use the notation σ to denote a solution to the ACOPF, fpσq to denote the objective value

of σ, and σpxq to denote the assignment of variable x in σ. In Lines 2-3, a feasible solution,

Algorithm 1 Adaptive Multivariate Partitioning (AMP)

1: function AMP
2: σ Ð Solve(P)
3: σ Ð Solve(PQC)
4: θij , θij , vi, vi, pcsij , pcsij ,xsnij ,xsnij ÐTightenBounds(σ)
5: XÐSelectPartitionVariables(σ, σ)
6: IÐInitializePartitions(X,P, σ)

7: σ Ð Solve(PQC
λpIq

)

8: while
´

fpσq´fpσq

f pσq
ě ε

¯

and (Time ď Timeout) do

9: IÐTightenPartitions(xI,P, σ)

10: σ ÐSolve(PQC
λpIq

)
11: pσ ÐSolve(P, σ)
12: if fppσq ă fpσq then
13: σ Ð pσ
14: XÐ SelectPartitionVariables(σ, σ)
15: end if
16: end while
17: return σ, σ
18: end function

σ, and a lower bound, σ, are computed. Here, the lower bound is computed without

partitioning any variables. In line 4, we sequentially tighten the bounds of the voltage

magnitude, vi, and phase angle differences, θij , using optimization-based bound tightening

(BT) [27, 32]. The new bounds on θij are used to tighten pcsij and xsnij using the cases

defined in equations (2.4)-(2.9). We would like to note that, though the importance of BT

has been already observed for ACOPF problems, the bounds we obtain in this paper are

tighter than in [27, 32] since formulation (2.11) is based on the convex-hull representation

of trilinear functions.

Line 5 describes our variable selection strategy for partitioning (discussed later).

This is one main point of departure (and contribution) from the AMP algorithm discussed
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in [82]. Line 6 initializes the piecewise partitions of variables in X around those variables’

assignments in σ (see Figure 2.5). It is important to note that, if θij P X, the calculated

partitions for variables pcsij and xsnij (as described earlier) are included in I. Line 7 then

updates the lower bound using the piecewise relaxation. Line 9 updates the partition

set I by adding new partitions associated with variables in X around the updated lower

bound (see Figure 2.5). Again, if θij P X, the partitions for pcsij and xsnij are updated in

I accordingly. Note that we don not remove any partitions that have been added from all

preceding processes. Lines 10-13 then update the upper and lower bounds of the ACOPF.

The upper bound (feasible solution) is updated by fixing the the ACOPF to the partition

selected in σ and attempting to find a (better) feasible solution using a local solver. Line

14 redefines X, a set of variables selected for partitioning, based on the updated lower- and

upper-bound solutions from lines 10-13. The process is repeated until the objective values of

the upper and lower bound converge or a time-out criteria is met (Line 8). The full details

of these procedures are discussed in [82], except for line 14 which describes a heuristic for

updating the selection of variables to be partitioned in next iteration. We also note that

this is the first time this algorithm has been applied to ACOPF represented in the polar

form.

Heuristic partition-variable selection Algorithm 2 describes in more detail about our

variable selection strategy for partitioning. The original implementation of AMP selects

a sufficient number of variables to ensure that all relaxed functions are partitioned and

tightened. This approach ensures convergence to global optimality, but in practice, such an

approach is computationally difficult to solve when the number of binary variables is large.

Here, we introduce a heuristic that limits the number of variables that are partitioned.

While convergence is no longer assured, this heuristic can have a considerable impact on

solution quality.

Let V “ tvi, θij , @i P N, ij P Eu represent the set of candidate variables for partition-

ing. In Algorithm 2, Line 2 computes the difference between a variable’s (xi) assignment

in an upper- and a lower-bound solution. Line 3 sorts the variables in V by increasing
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Figure 2.5: Example of variable partitioning in AMP for a bilinear function. Given an initial
relaxation (tan region) and an initial feasible point (middle of the black curve), the function Ini-
tializePartitions creates a narrow partition around the feasible point (middle green region) and
two wide partitions (outer green regions) around it. The size of the narrow partition is controlled by
a user parameter, ∆. The relaxation is iteratively tightened by the function TightenPartitions
around relaxed solutions. This figure shows the partitioning of one iteration (blue regions).

value of this difference. Line 4 returns the the first α|S| variables, where α is a user de-

fined parameter between 0 and 1. This heuristic relies on an expectation that variables

whose assignments from the non-partitioned convex relaxation are very different from the

local feasible solution are indeed the variables that require further refinement in the relaxed

space. Note that when α “ 100% this heuristic reverts to the original AMP algorithm.

Algorithm 2 Heuristic Partition-Variable Selection

1: function SelectPartitionVariables(σ, σ)
2: xδi Ð |σpxiq ´ σpxiq|, @i “ 1, . . . , |V|
3: SÐ tx1, x2, . . . , x|V|u : xi P V and xδi ě xδi`1

4: return
Ť

xi : i ď α|S|
5: end function

Addtitionally, we also update set X based on the gap between the updated lower-

and upper-bound solutions for each variable in V. Particularly, in each iteration, X is

either kept the same or updated by changing at least one variable, while its size is always

equal to α|S|. As a result, a limited number of new partitions are created and added to
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the partition set I, which can significantly reduce computational efforts. Meanwhile, for

any variable ever appeared in X, its associated partitions are never removed from I. For

example, consider a problem with two variables x1 and x2 where only one variable is allowed

for partitioning. Assume in the first iteration, X :“ tx1u and the associated partition set

is I :“ tx1 P rx1,1,x1,2s Y rx1,2,x1,3su. In the next iteration, assume x2 is selected to be

partitioned and its partitioned domains are x2 P rx2,1,x2,2sYrx2,2,x2,3s. Using our heuristic

method, the updated X and I will be X :“ tx2u and I :“
 

x1 P rx1,1,x1,2sYrx1,2,x1,3s, x2 P

rx2,1,x2,2s Y rx2,2,x2,3s
(

. We acknowledge that there can be numerous other branching

strategies which can lead to better convergence of AMP, which we leave for the future work.

2.6 Numerical Results

In remainder of this chapter, BT refers to bound tightening using the tightened

convex quadratic relaxations introduced in section 2.3. QCconv and BT-QCconv correspond

to improved QC relaxation and bound-tightening applied with convex-hull trilinear formu-

lation (2.11). BT-Lambda-θ and BT-Lambda-θ-α refer to Algorithm 1 with and without

heuristic partitions, respectively (i.e., α ă 100% and α “ 100%). BT-Lambda refers to

the AMP algorithm with individual partitions on the pcsij and xsnij variables in trilinear

products and without heuristic partitions. For more details about this algorithm, we refer

the reader to our earlier work [73]. The performance of these algorithms are evaluated

on the ACOPF test cases from NESTA 0.7.0 [31]. These test cases were selected because

the basic QC optimality gaps were larger than 1% and hence hard for global optimization.

Here, Ipopt 3.12.1 is used to find the feasible solution σ in AMP. The relaxed problems are

solved using Gurobi 7.0.2 with default options and presolver switched on.

In Algorithm 1, the value of ε and the “time-out” parameter were set to 0.01 and

18000.0 seconds, respectively. A 10800-second time-limit was imposed on the BT proce-

dure. All the algorithms were implemented using Julia/JuMP [36]. All the computational

experiments were performed using the HPC Palmetto cluster at Clemson University with
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Intel Xeon E5-2670v2, 20 cores and 120GB of memory.

2.6.1 Performance Comparison of Algorithms

In Table 2.1, we summarize the computational performance of all algorithms with-

out heuristic partitions. The first two columns present the initial local feasible solution σ

and the initial lower bound σ, respectively. Columns three and four present the optimality

gaps of [33] and [63], respectively. The remaining columns show the performance of BT,

BT-Lambda, and BT-Lambda-θ, respectively. The results in Table 2.1 show that, due to

the convex-hull relaxation of trilinear functions, the QCconv gaps (highlighted in bold font

in Table 2.1) outperformed the recursive McCormick approach used in [33]. Table 2.2 tab-

ulates a few instances in which the improvements in QC gaps were significant based on the

proposed approach. Even during bound-tightening, the best QC gaps found using recur-

sive McCormick (BT-QCrmc) for trilinear functions were 2.7% and 11.8% for case30 fsr api

and case118 ieee api, respectively. However, applying the convex-hull representation (BT-

QCconv) for the same instances reduced the gaps to 0.35% and 8.54%, respectively.

Meanwhile, the optimality gaps for BT-Lambda and BT-Lambda-θ are consistently

smaller than QCconv, SDP gaps, and the best gaps in [63]. In 25 out of 35 test instances,

the globally optimal solution is found by BT-Lambda-θ (i.e., Gap ă 0.01%). Further, four

of the sub-optimal solutions have gaps less than 0.2% and we observe that BT-Lambda-θ

outperforms BT-Lambda in 10 out of 35 instances. For example, for case189 edin api, the

global optimal is found by BT-Lambda-θ within the allowable time limit, while the gap for

BT-Lambda is 0.03% when the time limit is reached; for case300 ieee, BT-Lambda-θ finds

the global optimal solution in 953.1 seconds, which is two times faster than BT-Lambda.

It could be because partitioning θij introduces less discrete variables and results in more

efficient local bounds of trilinear terms to tighten relaxations.
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Table 2.1: The performance summary of all algorithms without heuristic partitions for NESTA 0.7.0 ACOPF instances. Values under “Gap” and “T,T θ”
are in % and seconds, respectively. “GOpt” refers to the global optimum when Gap ă 0.01%. “TO” indicates time-out. “–” indicates no solution
is provided under “SDP” and “Best of [63]” columns. “–” under “BT-Lambda” and “BT-Lambda-θ” columns indicates that the BT-QCconv already
converged to global optimum. Here, ∆˚ represents the best one from {4, 6, 8, 10, 16}.

BT-Lambda [73] BT-Lambda–θ

Instances AC p$q QCconv (%) SDP (%) Best of [63] (%) BTconv (s) BT-QCconv (%) (∆˚) Gap T (∆˚) Gap T θ

case3 lmbd 5812.64 0.97 0.39 0.09 2.1 GOpt (16) GOpt – (8) GOpt –
case5 pjm 17551.90 14.54 5.22 0.10 0.9 6.73 (6) GOpt 303.7 (6) 0.01 TO
case30 ieee 204.97 15.20 GOpt – 48.1 GOpt (16) GOpt – (8) GOpt –
case118 ieee 3718.64 1.53 0.06 0.09 2235.0 GOpt (10) GOpt – (20) GOpt –
case162 ieee dtc 4230.23 3.95 1.33 1.08 6292.3 GOpt (10) GOpt – (20) GOpt –
case240 wecc 75136.10 5.23 – – 10800.0 2.90 (6) 2.64 TO (20) 2.55 TO
case300 ieee 16891.28 1.17 0.08 0.19 10800.0 0.01 (20) GOpt 2164.2 (20) GOpt 953.1

case3 lmbd api 367.44 1.59 1.26 0.02 0.3 GOpt (16) GOpt – (8) GOpt –
case14 ieee api 325.13 1.26 GOpt 0.09 11.7 0.06 (8) GOpt 0.4 (20) GOpt 0.2
case24 ieee rts api 6426.65 8.79 1.45 – 72.8 GOpt (8) GOpt – (20) GOpt –
case30 as api 570.08 4.63 0.00 0.06 47.1 GOpt (16) GOpt – (20) GOpt –
case30 fsr api 366.57 45.20 11.06 0.35 101.8 0.35 (6) 0.12 TO (6) 0.12 TO
case39 epri api 7460.37 2.97 GOpt – 96.7 GOpt (16) GOpt – (20) GOpt –
case73 ieee rts api 19995.00 9.64 4.29 – 1528.2 0.01 (10) GOpt 61.2 (20) GOpt 27.9
case89 pegase api 4255.44 19.83 18.11 – 3997.3 16.21 (6) 13.46 TO (6) 13.7 TO
case118 ieee api 10269.82 43.45 31.50 6.17 1515.6 8.54 (6) 4.19 TO (6) 0.9 TO
case162 ieee dtc api 6106.86 1.25 0.85 1.03 6392.6 GOpt (6) GOpt – (20) GOpt –
case189 edin api 1914.15 1.69 0.05 0.12 5110.9 0.04 (8) 0.03 TO (6) GOpt 12825.1

case3 lmbd sad 5959.33 1.38 2.06 0.03 0.2 GOpt (16) GOpt – (20) GOpt –
case4 gs sad 315.84 0.96 0.05 – 0.3 GOpt (10) GOpt – (6) GOpt –
case24 ieee rts sad 76943.24 2.77 6.05 – 44.7 GOpt (6) GOpt – (10) GOpt –
case29 edin sad 41258.45 16.38 28.44 0.67 222.4 GOpt (16) GOpt – (16) GOpt –
case30 as sad 897.49 2.32 0.47 0.08 53.8 GOpt (16) GOpt – (20) GOpt –
case30 ieee sad 204.97 4.01 GOpt 0.08 50.4 GOpt (16) GOpt – (10) GOpt –
case73 ieee rts sad 227745.73 2.38 4.10 – 1655.8 GOpt (6) GOpt – (16) GOpt –
case118 ieee sad 4106.72 4.15 7.57 2.43 2211.4 GOpt (8) GOpt – (20) GOpt –
case162 ieee dtc sad 4253.51 4.27 3.65 3.76 6337.2 0.01 (10) GOpt 88.5 (20) GOpt 39.8
case240 wecc sad 76494.70 5.27 – – 10800.0 2.61 (8) 2.41 TO (6) 2.43 TO
case300 ieee sad 16893.92 1.09 0.13 0.10 10800.0 GOpt (10) GOpt – (20) GOpt –

case5 bgm nco 1082.33 10.17 – – 6.93 GOpt (6) GOpt – (16) GOpt –
case9 bgm nco 3087.84 10.84 – – 2.72 10.80 (16) 10.12 TO (6) 8.44 TO
case9 na cao nco -212.43 -14.97 – – 2.14 -6.90 (6) -0.04 TO (6) -0.05 TO
case9 nb cao nco -247.42 -15.59 – – 2.62 -6.93 (6) -0.09 TO (6) -0.07 TO
case14 s cao nco 9670.44 3.83 – – 16.22 2.34 (6) 0.04 TO (8) 0.04 TO
case39 1 bgm nco 11221.00 3.72 – – 103.98 3.58 (8) 3.46 TO (16) 3.39 TO
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Table 2.2: QC relaxation gaps with trilinear functions relaxed using recursive McCormick (QCrmc)
versus convex-hull representation (QCconv).

Instances QCrmc (%) QCconv (%)

case3 lmbd 1.21 0.96

case30 ieee 15.64 15.20

case3 lmbd api 1.79 1.59

case24 ieee rts api 11.88 8.78

case73 ieee rts api 10.97 9.64

case3 lmbd sad 1.42 1.37

case4 gs sad 1.53 0.96

case5 pjm sad 0.99 0.77

case24 ieee rts sad 2.93 2.77

case73 ieee rts sad 2.53 2.38

case118 ieee sad 4.61 4.14

In Table 2.1, there are 16 instances for which BT-QCconv does not converge to the

global optimum. Next, we test the performance of the heuristic partitioning scheme on

these instances: Table 2.3 summarizes the computational gaps and solution times for four

different values of α: 20%, 40%, 60% and 80%. The results show that the performance of

the heuristic partitioning algorithm heavily depends on α. For example, in case300 ieee,

the global optimum is found for all values of α, but the resulting run times vary widely.

Further, in case189 edin api, “GOpt” is found when α equals 60% and 80%, while the

solution does not converge to the global optimum within the allowable time limit when α

equals 20% or 40%. Second, we observe that in 9 of 16 test cases (highlighted in bold under

the “Instances” column), BT-Lambda-θ-α outperforms both BT-Lambda and BT-Lambda-

θ for some values of α. For example, in case240 wecc, case89 pegase api, case240 wecc sad,

case9 bgm nco, and case39 1 bgm nco, smaller optimality gaps are found by the heuristic.

Also, in case189 edin api, though the global optimum can be found by both BT-Lambda-θ

and BT-Lambda-θ-α(60% and 80%), the required computation time is significantly reduced

by the heuristic partitioning algorithm (e.g., time difference between BT-Lambda-θ and

BT-Lambda-θ-α(80%) is 5329 s). The superior performance of BT-Lambda-θ-α could be
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due to the fact that less discrete variables are introduced to control partitions and the

number of partitioned variables selected heuristically are sufficient to tighten relaxations.

Table 2.3: The performance of heuristic partitioning scheme for NESTA 0.7.0 ACOPF instances. Values
under “Gap” and “Tα” are in % and seconds, respectively. “GOpt” refers to the global optimum when Gap
ă 0.01%. “TO” indicates time-out. ∆˚ represents the best one from {4, 6, 8, 10, 16}.

BT-Lambda–θ–αp20%qBT-Lambda–θ–αp40%qBT-Lambda–θ–αp60%qBT-Lambda–θ–αp80%q

Instances (∆˚) Gap Tα (∆˚) Gap Tα (∆˚) Gap Tα (∆˚) Gap Tα

case5 pjm (16) 4.58 TO (10) 0.36 TO (6) 0.05 TO (6) 0.02 TO

case240 wecc (6) 1.94 TO (10) 1.74 TO (16) 2.63 TO (20) 2.59 TO

case300 ieee (20) GOpt 583.05 (20) GOpt 908.68 (20) GOpt 614.43 (20) GOpt 694.68

case14 ieee api (10) GOpt 0.17 (16) GOpt 0.17 (16) GOpt 0.17 (16) GOpt 0.05

case30 fsr api (10) 0.34 TO (8) 0.31 TO (6) 0.13 TO (6) 0.13 TO

case73 ieee rts api (16) GOpt 6.48 (8) GOpt 21.70 (20) GOpt 17.45 (8) GOpt 23.64

case89 pegase api (8) 6.75 TO (6) 12.60 TO (6) 2.09 TO (20) 11.98 TO

case118 ieee api (20) 6.84 TO (16) 4.07 TO (16) 3.27 TO (10) 1.13 TO

case189 edin api (8) 0.03 TO (8) 0.03 TO (6) GOpt 8254.67 (20) GOpt 7495.57

case162 ieee dtc sad (20) GOpt 42.35 (20) GOpt 39.90 (20) GOpt 66.49 (20) GOpt 36.29

case240 wecc sad (8) 0.45 TO (6) 2.44 TO (20) 2.44 TO (10) 2.41 TO

case9 bgm nco (6) 10.80 TO (8) 10.79 TO (10) 10.73 TO (6) 8.20 TO

case9 na cao nco (6) -6.87 TO (8) -4.55 TO (20) -0.07 TO (8) -0.04 TO

case9 nb cao nco (16) -4.87 TO (6) -3.93 TO (10) -0.64 TO (8) -0.09 TO

case14 s cao nco (6) 1.19 TO (8) 0.89 TO (16) 0.34 TO (6) 0.05 TO

case39 1 bgm nco (10) 3.50 TO (8) 3.04 TO (10) 2.79 TO (8) 3.27 TO

2.6.2 Analysis of “Hard” Instances

In Table 2.1 and 2.3, there are still five instances for which the best optimality

gaps found by BT-Lambda, BT-Lambda-θ, and BT-Lambda-θ-α are larger than 1%. These

problems are hard because the tightened bounds remain weak. Table 2.4 shows that there

are a large number of θij variables whose bounds allow positive and negative values (i.e.,

flow could be in ether direction). This is generally not the case for the other instances.

We also notice that BT-Lambda-θ produces better optimality gaps than BT-Lambda-θ-

α for all tested α values in 4 of 35 instances. In these cases, the heuristic incorrectly

identifies variables whose partitioning is required to prove global optimality. Finally, AMP

algorithm performed very well on three of six “nco” instances, which are hard for non-convex

optimization. Though BT-QCconv exhibits large gaps, AMP finds near global optimum

solutions within the prescribed time limits.
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Table 2.4: Percentage of edges where pθ ă 0q ^ pθ ą 0q after BT.

Instances % of edges

case240 wecc 77.6
case89 pegase api 51.5
case118 ieee api 32.4
case9 bgm nco 44.4
case39 1 bgm nco 45.7

2.7 Conclusions and Future Research

This chapter considers the ACOPF problem in polar form and develops efficient

formulations and algorithms to solve it to global optimality. The key developments in this

chapter are a) using state-of-the-art QC relaxations in combination with improved relax-

ations for trilinear functions based on a convex-hull representation, b) developing novel

mathematical formulations for tight piecewise convex relaxations of trilinear and quadratic

functions, and c) leveraging these tight formulations for global optimization using an adap-

tive multivariate partitioning approach in combination with bound tightening and effective

heuristic branching strategies. Except for a few challenging instances, our methodologies

help to close the best known gap for many hard instances. Future research will include

testing our methods with other equivalent ACOPF formulations, investigating the exploita-

tion of graph sparsitity, and exploring better branching and pruning strategies for piecewise

formulations.
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Chapter 3

Topology Reconfiguration for

Power Systems under Geomagnetic

Disturbances

In recent years, there have been increasing concerns about how geomagnetic distur-

bances (GMDs) impact electrical power systems. Geomagnetically-induced currents (GICs)

can saturate transformers, induce hot-spot heating and increase reactive power losses. These

effects can potentially cause catastrophic damage to transformers and severely impact the

ability of a power system to deliver power. To address this problem, we develop a model

of GIC impacts to power systems that includes 1) GIC thermal capacity of transformers

as a function of normal Alternating Current (AC), and 2) reactive power losses as a func-

tion of GICs. We use this model to derive an optimization problem that protects power

systems from GIC impacts through line switching, generator dispatch, and load shedding.

We employ state-of-the-art convex relaxations of AC power flow equations and present a

local branching algorithm that yields high-quality solutions quickly. We demonstrate the

approach on a modified RTS96 system and show that line switching is an effective way to

mitigate GIC impacts.
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Nomenclature

Sets

Na,Nd,No set of nodes in the AC and DC circuit, respectively, where No “ Na XNd

Ng Ď Na set of nodes with exactly one generator

I Ď Nd set of substation neutrals

Ea,Ed,E set of edges in the AC and DC circuit, respectively, where E “ Ea Y Ed

Eo Ď Ea set of transmission lines

Eg Ď Ea set of edges eij such that either i or j P Ng

Eτ Ď Ea set of transformer edges

Ew Ď Ed set of DC edges used to model transformer windings in the DC circuit

Ewe Ď Ed set of DC edges used to model the windings for transformer edges eij P E
τ

E`i Ď E set of outgoing edges connected to AC/DC node i

E´i Ď E set of incoming edges connected to AC/DC node i

Ei set of all edges connected to AC/DC node i, where Ei “ E`i Y E´i

Eτi Ď Eτ set of AC edges used to compute dqlossi (as described later) for node i

Parameters

c0
i , c

1
i , c

2
i generation cost coefficients of generator i P Ng
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η0
e , η

1
e , η

2
e coefficients of the thermal limit curve of transformer line e P Eτ

κ cost of load shedding

am admittance of the grounding line at bus m P I, 0 if bus m R I

ae DC admittance of edge e P Ed

re, xe resistance and reactance of line e P Ea

ge, be conductance and susceptance of line e P Ea

gi, bi shunt conductance and susceptance at bus i P Na

dpi , d
q
i real and reactive power demand at bus i P Na

bce line charging susceptance of line e P Ea

se apparent power limit on line e P Ea

θ phase angle difference limit

θM Big-M parameter given by |Ea|θ

I
a
e AC current flow limit on line e P Ea

ke loss factor of transformer line e P Eτ

vi, vi AC voltage limits at bus i P Na

gp
i
, gpi real power generation limits at generator i P G

gq
i
, gqi reactive power generation limits at generator i P G

φ the angle of the geo-electric field relative to east

νde GMD induced voltage source on line e P Ed, 0 if e P Eτ

LN ,LE the north and east components of the displacement of each transmission line,

respectively

EN ,EE strength of the north and east geo-electric field, respectively
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Binary Variables

ze 1 if line e P Ea is switched on; 0 otherwise

Continuous Variables

θi phase angle at bus i P Na

vi AC voltage magnitude at bus i P Na

vdi induced DC voltage magnitude at bus i P Nd

le AC magnitude squared on line e P Ea

Ide GIC flow on transformer line e P Eτ

rIae AC magnitude on line e P Ea

rIde the effective GIC on transformer line e P Eτ

dqlossi GIC-induced reactive power loss at bus i P Na

pij , qij real and reactive power flow on line eij P E
a, as measured at node i

fpi , f qi real and reactive power generated at bus i P Na

lpi , l
q
i real and reactive power shed at bus i P Na

3.1 Introduction

Solar flares and coronal mass ejections drive geomagnetic disturbances (GMDs) that

lead to changes in the Earth’s magnetic field which, in turn, create geo-electric fields. These

low-frequency geo-electric fields induce quasi-DC currents, also known as Geomagnetically-

Induced Currents (GICs), in grounded sections of power system networks [10,11,105]. The

GICs are superimposed on the usual alternating currents (AC) and bias the AC such that

the maximum currents are increased. In many power system components, this bias is not

a major concern; however, in transformers, this bias can lead to half-cycle saturation and
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the loss of magnetic flux in regions outside of the transformer core. The energy stored in

the stray flux increases the reactive power consumption of the transformer, which can affect

system voltages. Stray flux also drives eddy currents that can cause excessive transformer

heating, leading to reduced transformer life or, potentially, immediate damage [7].

The potential impacts of GMDs to transformers in the bulk electric power system

have led the United States government to increase the understanding of and mitigate the

impacts of such events [8], [40]. To mitigate the potential risks introduced by GICs to

power systems, the electric power industry has actively improved GIC modeling and GIC

monitoring [6, 25, 38, 58, 89, 94]. These models have been used to conduct risk analyses

[88,89] that investigate the sensitivity of transformer reactive power losses due to GICs and

concluded that risk and risk mitigation warrants further study.

One focus in the recent literature has been on mitigating the effect of GICs on trans-

former reactive power consumption and subsequent drops in system voltages and potential

voltage collapse. One approach to mitigation is the installation of DC-current blocking de-

vices to keep GICs from entering through transformer neutrals [20]; however, these devices

are expensive, with costs for a single unit close to $500K [66, 71, 123]. In an attempt to

minimize the projected cost of mitigation, optimization-based methods have been developed

to guide the siting of these blocking devices. Instead of performing a full power systems

analysis that includes the AC, GICs and full AC power flow equations, previous study has

primarily focused on minimizing induced reactive losses independent of normal AC currents.

The intuition of these surrogate models is that small amounts of reactive losses imply small

voltage impacts and, presumably, a secure power system. Beyond voltage effects, the liter-

ature on risk mitigation associated with transformer heating is relatively sparse. Existing

studies focus on assessing transformer susceptibility to GIC effects [44] and formulating

the thermal response of transformer cores to different levels of GMDs [76]. However, this

approach was strictly a screening study and did not recommend methods for mitigation in

practice.

While this earlier research is a very important start, it leaves a number of open
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questions. First, the installation of blocking devices is very expensive and its associated cost

may pose a barrier to adoption. Instead, we focus on developing a GIC-aware optimal power

flow (OPF) model that uses existing controls such as generator dispatch, load shedding, and

line switching to mitigate the risks of GIC impacts. Second, we incorporate the AC physics

of power flow into the GIC-aware OPF because these physics play an important role in the

impacts associated with GICs. For example, while minimizing reactive losses may imply

small voltage problems across the whole system, these models focus on total losses and can

miss relatively large voltage problems in a small part of a system. More importantly, models

of hot-spot thermal heating inherently depend on both GICs and AC.

The setting considered in this chapter is very challenging. It combines transformer

reactive losses, transformer heating, and full AC power flow into an optimization-based oper-

ational mitigation setting with line switching. By itself, optimal transmission line switching

(OTS) with AC power flow physics is a mathematically challenging problem that includes

nonlinearities, non-convexities and discrete variables. Existing solution methodologies de-

signed for OTS heavily rely on tight convex relaxations and advanced discrete optimization

techniques. Recently, various convex relaxations and disjunctive representations have been

developed, such as second-order-conic (SOC) relaxations [64], quadratically constrained

(QC) relaxations [56] and Semi-definite programming relaxations [13]. In the context of

transmission expansion planning applications, the QC relaxations have been shown to be

effective [81, 84]. Despite these recent advances in optimization methods for OTS, global

methods still cannot scale to solve systems with 500 nodes.

The main contributions of this chapter are the formulation and initial algorithmic

solution approaches to an operational decision support tool that incorporates:

1. A model of transformer heating as a response to AC and GIC-induced DC,

2. A realistic, coupled model of convex, relaxed AC power flows with GIC effects for

different transformer types and a heuristic method that obtains high-quality solutions

quickly, and
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3. An optimization problem that protects the system from reactive losses and thermal

heating induced by GICs.

3.2 GIC modeling and ACOTS formulation

3.2.1 GIC Modeling

νde calculation The computation of transformer hot-spot heating and GIC-induced reac-

tive power losses depends on the induced voltage sources (νde ) on each power line e P Ed in

the network, which itself depends on the strength and direction of the geo-electric field (i.e.,

the electric field at the surface of the earth) associated with the GMD. These relationships

are modeled in Eq.(3.1).

νde “

¿

~Ee ¨ d~le @e P Ed, (3.1)

where, ~Ee is the geo-electric field at the location of transmission line e P Ed, and d~le is

the incremental line segment length, including direction [6]. In practice, the actual geo-

electric field varies with time and geographical locations. Using a common assumption that

the geo-electric field is uniformly distributed in the geographical area of a transmission

grid [6, 58,123] (i.e., ~Ee “ ~E, @e P Ed), νde can be reformulated in the following form:

νde “ ~E ¨ ~Le “ ENL
N
e ` EEL

E
e “ |

~E|
´

sinpφqLN ` cospφqLE

¯

@e P Ed, (3.2)

where ~Le denotes the length of line e with direction. LN , LE , EN , EE and φ are as described

in the nomenclature (see Appendix I of [6]). Given that transformer edges (windings)

are sufficient short, thus the induced voltage sources for transformers are negligible, i.e.,

νde “ 0 e P Ew.

Transformer Modeling The two most common transformers in electrical transmission

systems subject to GICs are network transformers and generator step-up (GSU) transform-

ers. Network transformers are generally located relatively far from generators and transform

voltage between different sections of the transmission system. In contrast, GSUs connect
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the output terminals of generators to the transmission network. Many IEEE transmission

reliability test networks explicitly model network transformers, but generally do not model

GSUs. However, GSUs and the neutral leg ground points they provide are critical when

modeling GICs and methods to mitigate the impact of GICs.

In this chapter, we modify the IEEE RTS test network by adding a GSU transformer

between each generator and its injection bus (see Figure 3.1(a)). Consistent with common

engineering practice, we assume that each GSU is grounded on its high voltage side that

connects to the transmission network. We also model the switching of the circuit breaker

between the high side of the GSU and the transmission network using a binary variable

that allows the GSU to be isolated from the network and the quasi-DC GICs to protect the

GSU. This switching is performed if the generator output is zero. Although the IEEE test

networks include network transformers, transformer type and grounding data are typically

not provided. We consider two types of network transformers: (1) Gwye-Gwye transformers

and (2) auto-transformers. For a Gwye-Gwye transformer, we assume that its high-voltage

(HV) and low-voltage (LV) sides are both connected to the neutral ground, while each

auto-transformer has a single neutral node that is located on the common side.

Figure 3.1 includes examples of both GSU and network transformer modeling. Fig-

ure 3.1(a) shows a five-bus section of the transmission system with one auto-transformer

(Tjk), one Gwye-Gwye transformer (Tks), and two GSU transformers (Tbi , T
c
i ) independently

connecting two generators (Gbi , G
c
i ) to the same injection bus i. Figure 3.1(b) presents a

simplified AC equivalent network of this five-bus example. In the figure, bus b and c model

output terminals of generation Gbi and Gci , respectively. Each GSU transformer Tbi (Tci ) is

reduced to a (single) series impedance ib (ic) with a circuit breaker. Similarly, each net-

work transformer Tjk (Tks) is reduced to a (single) series impedance jk (ks) with a circuit

breaker. Under this transformation, the number of buses and lines in the AC network grow

to |No| ` |Ng| and |Eo| ` |Ng|, respectively, where |No| and |Eo| represent the original set of

buses and edges in the network. Figure 3.1(c) shows an equivalent single-phase DC circuit

of the example system in nodal form. In this figure, nA, nB and nC model the neutral points

41



of substation A, B, and C, respectively. Parameters aAm, aBm and aCm denote the grounding

admittance of substation A, B, and C, respectively. For GSU transformer Tbi (Tci ), the HV

bus and HV primary winding are modeled by node i and edge (i, nA), respectively, where

aib (aic) represents the admittance of the HV winding. For auto-transformer Tjk, the HV

and LV buses are modeled as nodes j and k, respectively. Edges (j, k) and (k, nB) model

its series and common windings whose admittance are ajk and akn, respectively. Similarly,

buses k and s represent the HV and LV buses of Gwye-Gwye transformer Tks, respectively.

The HV and LV windings of Tks are modeled by edge (k, nC) and (c, nC) with admittance

akn and ans, respectively. Meanwhile, each edge in the DC circuit can be linked to one

and only one edge in the AC circuit (one-to-one). For example, transmission line (i, j) in

the DC circuit is associated with the single line (i, j) in the AC circuit. Further, DC edges

(j, k) and (k, nB) are associated with the same transformer edge (j, k) in the AC circuit

(many-to-one).

i

Tjk

SUB A SUB B

j

k sTks t

SUB C

Gb
i

T b
i

Gc
i

T c
i

(a) 5-bus system

i

Tjk

j k

Tks

tGb
i

Gc
i

s
T b
i

T c
i

b

c

(b) Equivalent AC network

i

nA

aij

j

nB

ajk

k

ansakn

nC s
ast

t

akn

aBm aCmaAm

aib aic

νdij νdst

(c) Equivalent DC network

Figure 3.1: Schematic of GSU and network transformer modeling. In Figure 3.1(b), red font repre-
sents transformer lines in the AC circuit, i.e., Eτ Ď Ea. In Figure 3.1(c), blue font denotes neutral
buses of substations (i.e., i P I) and red font represents transformer windings in the DC circuit (i.e.,
Ew Ď Ed), respectively.

Since GICs in the transformer HV and LV windings are different, it is important
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to calculate the effective GICs for each transformer type to measure transformer hot-spot

heating and GIC-induced reactive power consumption. To illustrate our effective GIC for-

mulation, we extract the DC representation of each transformer type in Figure 3.2. For

notation brevity, we define subscripts h and l as the HV and LV sides of the GSU/Gwye-

Gwye transformer, respectively, while subscripts s and c denote the series and common

sides of the auto-transformer, respectively. Let Nx and Idx then represent the number of

turns and GICs in the transformer winding x, respectively, and let Θp¨q denote a linear

function of Idx . For the grounded GSU transformer, its DC-equivalent circuit is shown in

Figure 3.2(a). The effective GICs (denoted as rId) only depend on GICs in the HV primary

winding, i.e.,

rId “
ˇ

ˇ

ˇ
ΘpIdhq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
Idh

ˇ

ˇ

ˇ
(3.3)

For an auto-transformer, as shown in Figure 3.2(b), the effective GICs are determined by

GIC flows in the series and common windings, such that:

rId “
ˇ

ˇ

ˇ
ΘpIds q `ΘpIdc q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

pα´ 1qIds ` I
d
c

α

ˇ

ˇ

ˇ
(3.4)

where turns ratio α “ Ns`Nc
Nc

. Similarly, the effective GICs for a Gwye-Gwye transformer

(Figure 3.2(c)) captures GICs in the both HV and LV sides, i.e.,

rId “
ˇ

ˇ

ˇ
ΘpIdhq `ΘpIdl q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

αIdh ` I
d
l

α

ˇ

ˇ

ˇ
(3.5)

where transformer turns ratio α “ Nh
Nl

. Further, for three-winding transformers: delta-delta,

delta-wye, wye-delta, and wye-wye, we assume their windings are ungrounded. Hence, their

associated effective GICs are zero due to the fact that such ungrounded transformers do

not provide a path for GIC flow [6].

GIC-Effects During GMDs, the quasi-DC GICs may flow through transformers with

grounded neutral legs. This quasi-DC current combines with the normal operating AC

current creating half-cycle saturation and loss of magnetic flux from the transformer core,
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Figure 3.2: DC equivalent circuits for different types of transformers. h, l, and n (blue font) represent
high-side bus, low-side bus, and neutral bus, respectively.

which lead to several undesirable effects. The two effects that we consider are (1) eddy

current-driven transformer heating and (2) excess reactive power consumption caused by

the excess magnetic energy stored in the stray magnetic flux. Both of these effects are

challenging to model from first principles, and even if such models existed, they would

be too complex to include in the OTS formulation. Instead, we use a combination of

manufacturer test, specification data, and simplified models to calculate GIC effects.

For eddy current-driven transformer heating, we use GIC capability curves (see

Fig. 3.3) that may be based on either manufacturer acceptance test data or on electro-

magnetic and thermal modeling of the transformer design. These curves provide an upper

bound on a feasible operating range in the space of AC loading and GICs. This upper

bound is also a function of the duration of the combined AC and GIC loading (typically

given for 30 minute and 2 minute durations). The sampled points (blue) in Fig. 3.3 are

sampled from a transformer manufacturer’s 2-minute duration curve [1]. Over a reasonable

operating range, these points are well represented by the best-fit quadratic (red) curve with

the feasible operating region lying below and to the left of the curve.

Excess reactive power losses due to GICs has been studied in the literature [71,88,89,
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Figure 3.3: Fitted curve for thermal GIC capability of a transformer. Here, we used 180˝ as the
maximum allowed temperature of transformers for short-term (2 minutes) peak GIC pulses and
assumed that a transformer cannot be loaded to greater than 100% of its MVA limit. The figure
shows the coefficients of the constructed quadratic function (curve), η0

e , η1
e and η2

e , fitted to the
collected 11 (blue) points of the GIC thermal capacity measurements. The feasible region of the
transformer load current is the area under the curve and is expressed as constraint (3.6x).

123]. We adopt the simplified model in [88] which is shown in Eq.(5). These reactive losses

create voltage sags that can adversely impact system operation. The previous work has

focused on minimizing these losses to improve system safety. In this chapter, we explicitly

model the AC power equations (voltage magnitudes) so that we can enforce voltage limits

directly.

3.2.2 ACOTS with GIC constraints

A complete ACOTS model with topology reconfiguration that accounts for GIC-

induced transformer thermal heating and transformer reactive power heating is formulated

below.

Po :“ min
ÿ

iPNg,ePEi

c2i pf
p
i q

2 ` c1i f
p
i ` zepc

0
i q `

ÿ

iPNa

κplpi ` l
q
i q (3.6a)

s.t. AC power flow equations

ÿ

eijPE
`
i

pij `
ÿ

ejiPE
´
i

pij “ fpi ` l
p
i ´ d

p
i ´ v

2
i gi @i P Na (3.6b)

ÿ

eijPE
`
i

qij `
ÿ

ejiPE
´
i

qij “ fqi ` l
q
i ´ d

q
i ` v

2
i bi ´ d

qloss
i @i P Na (3.6c)
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pij “ ze
`

gev
2
i ´ vivjge cospθi ´ θjq ´ vivjbe sinpθi ´ θjq

˘

@eij P E
azEg (3.6d)

qij “ ze
`

´ pbe `
bce
2
qv2
i ` vivjbe cospθi ´ θjq ´ vivjge sinpθi ´ θjq

˘

@eij P E
azEg (3.6e)

pji “ ze
`

gev
2
j ´ vivjge cospθj ´ θiq ´ vivjbe sinpθj ´ θiq

˘

@eij P E
azEg (3.6f)

qji “ ze
`

´ pbe `
bce
2
qv2
j ` vivjbe cospθj ´ θiq ´ vivjge sinpθj ´ θiq

˘

@eij P E
azEg (3.6g)

pij ` pji “ zere
`

le ` b
c
eqij ` p

bce
2
q2v2

i

˘

@eij P E
azEg (3.6h)

qij ` qji “ ze
`

xeple ` b
c
eqij ` p

bce
2
q2v2

i q ´
bce
2
pv2
i ` v

2
j q
˘

@eij P E
azEg (3.6i)

pij ` pji “ 0, qij ` qji “ 0 @eij P E
g (3.6j)

p2
ij ` q

2
ij “ lev

2
i @eij P E

a (3.6k)

le “ prI
a
e q

2 @e P Ea (3.6l)

Operational limit constraints

p2
ij ` q

2
ij ď zes

2
e, p2

ji ` q
2
ji ď zes

2
e @eij P E

a (3.6m)

0 ď rIae ď zeI
a

e @e P Ea (3.6n)

vi ď vi ď vi @i P Na (3.6o)

|θi ´ θj | ď zeθ ` p1´ zeqθ
M @eij P E

azEg (3.6p)

zegpi ď fpi ď zegpi @i P Ng, e P Ei (3.6q)

zegqi ď fqi ď zegqi @i P Ng, e P Ei (3.6r)

GIC effects on transformers

ÿ

enmPE
´
m

zÝÑe aepv
d
n ` ν

d
e ´ v

d
mq ´

ÿ

emnPE
`
m

zÝÑe aepv
d
m ` ν

d
e ´ v

d
nq “ amV

d
m @m P Nd (3.6s)

Ide “ zÝÑe aepv
d
m ´ v

d
nq @emn P E

w (3.6t)

rIde ě
ÿ

peijPEwe

ΘpId
pe q,

rIde ě ´
ÿ

peijPEwe

ΘpId
pe q @e P Eτ (3.6u)

0 ď rIde ď max
@êPEa

2I
a

pe @e P Eτ (3.6v)

dqlossi “
ÿ

ePEτi

kevirI
d
e @i P Na (3.6w)

rIae ď η0
e ` η

1
e
rIde ` η

2
ep
rIde q

2 @e P Eτ (3.6x)

ze P t0, 1u @e P Ea (3.6y)

The objective function (3.6a) minimizes total generator dispatch costs and load
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shedding costs. Constraints (3.6b) – (3.6r) describe system constraints for the buses and

branches in the AC circuit. Constraints (3.6b) and (3.6c) represent the nodal real and

reactive power balance, including the increased reactive power losses (demand) due to

GICs. Constraints (3.6d) through (3.6g) model the AC power flow on each transmis-

sion line with on-off variables ze. The flow on any line is forced to zero if the line is

switched off. Constraints (3.6h) through (3.6j) represent power loss equations associ-

ated with AC power flow. In constraint (3.6j), fictitious lines between output termi-

nals of generators and their injection buses are modeled as transportation edges (i.e.,

|pij | “ | ´ pji| “ fpi , |qij | “ | ´ qji| “ f qi @eij P E
g). Non-convex constraint (3.6k) evaluates

current magnitude lij , an auxiliary variable introduced to bound the squared AC current

flow magnitude in constraint (3.6l). Constraints (3.6m) through (3.6r) describe the oper-

ational limits of the grid; constraint (3.6m) models operational thermal limits of lines in

both directions. Constraint (3.6o) limits the voltage magnitude at buses. Constraint (3.6p)

applies appropriate bounds on phase angle difference between two buses when the line ex-

ists. Constraints (3.6q) and (3.6r) model the availability and capacity of power generation.

A generator is offline if its line is switched off.

The DC circuit and the effects associated with the GMD are formulated in con-

straints (3.6s)-(3.6x). Recall that we link an edge, e P Ed in the DC circuit to an edge

in the AC circuit with ÝÑe . The HV primary side of GSU transformer eij P Eτ is modeled

by introducing a node and an edge in the DC circuit (e.g., node nA and edge (i, nA) in

Fig. 3.1(c)). Similarly, the common side of auto-transformer eij P E
τ is modeled in the DC

circuit by introducing additional nodes and edges (e.g., node nB and edge (k, nB) in Fig.

3.1(c)). For Gwye-Gwye network transformer eij P Eτ , the HV and LV sides are modeled

by two new edges that are introduced by adding one neutral node between bus i and j in

the DC circuit (e.g., node nC and two edges (k, nc), (s, nc) in Fig. 3.1(c)). By using these

notations, constraints (3.6s) and (3.6t) calculate the GIC flow on each DC line by applying

Kirchhoff’s current law. The GIC on a line is determined by the induced voltage source

and the quasi-DC voltage difference between two buses [6]. GIC flow is forced to 0 by zÝÑe
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when line ÝÑe is switched off. Since for each e P Ed the value of Ide can be negative, decision

variables rIde for each transformer e P Eτ are introduced to model the effective values of GICs.

Instead of introducing additional discrete variables, constraint set (3.6u) is used to model

and relax the absolute value of
ÿ

peijPEwe

ΘpId
pe q where Θp¨q is a linear function of GICs in trans-

former windings defined in the form of (3.3)–(3.5). Constraint (3.6v) denotes the maximum

allowed value of the effective GICs in transformers. We assume this limit is twice the upper

bound of AC flows in the network. Constraint (3.6w) computes the reactive power load due

to transformer saturation [11,89,122,123] by using the effective GICs for each transformer

type. Constraint (3.6x) guarantees that the hot-spot temperature of transformers due to

the combination of AC and GICs is below the thermal limits for peak GIC. The couplings

between AC power flows and GICs occur in constraints (3.6c), (3.6x), and (3.6w).

3.2.3 Convex Relaxations

The ACOTS with GIC constraints is a mixed-integer, non-convex optimization prob-

lem that is generally computationally difficult to solve. We adopt the convex relaxations

developed by [56]. We now discuss the key features of the relaxations extended to the

problem with GICs.

Handling bilinear terms Given any two variables xi, xj P R, the McCormick relaxation

is used to linearize the bilinear product xixj by introducing a new variable pxij P xxi, xjy
MC .

The feasible region of pxij is defined by inequalities (3.7). Note that the MC relaxation is

exact if one variable is binary.

pxij ě xixj ` xjxi ´ xi xj (3.7a)

pxij ě xixj ` xjxi ´ xi xj (3.7b)

pxij ď xixj ` xjxi ´ xi xj (3.7c)

pxij ď xixj ` xjxi ´ xi xj (3.7d)

xi ď xi ď xi, xj ď xj ď xj (3.7e)
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Quadratic terms Given a variable xi P R, a second-order conic relaxation can be applied

to convexify the quadratic term x2
i by introducing a new variable pxi P xxiy

MC´q, as defined

in equation (3.8).

pxi ě x2
i (3.8a)

pxi ď pxi ` xiqxi ´ xixi (3.8b)

xi ď xi ď xi (3.8c)

On-off trigonometric terms In constraints (3.6d), (3.6e), (3.6f) and (3.6g), if the line eij

is switched off, Hijaz et al. [56] suggests the following procedure to deactivate the associated

trigonometric terms: Given the phase angle difference variable θij “ θi ´ θj and on-off

variable ze P t0, 1u, a disjunctive quadratic relaxation is used to convexify the nonlinear

function ze cospθijq by introducing a new variable pcsij P xzecospθijqy
R, as formulated in

(3.9).

pcsij ď ze ´
1´ cospθq

pθq2
pθ2
ij ` pze ´ 1qpθuq2q (3.9a)

ze cospθq ď pcsij ď ze (3.9b)

Similarly, for zesinpθijq, a disjunctive polyhedral relaxation is applied by introducing a new

variable psij P xzesinpθijqy
R, as described in equation (3.10).

psij ď cospθ̄{2qθij ` zepsinpθ̄{2q ´ θ̄{2 cospθ̄{2qq ` p1´ zeqpcospθ̄{2qθM ` 1q (3.10a)

psij ě cospθ̄{2qθij ´ zepsinpθ̄{2q ´ θ̄{2 cospθ̄{2qq ´ p1´ zeqpcospθ̄{2qθM ` 1q (3.10b)

ze sinp´θq ď psij ď ze sinpθq (3.10c)

Based on the above relaxations, we replace the non-convex constraints in (3.6b)–(3.6i) with
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equations (3.11):

ÿ

eijPE
`
i

pij `
ÿ

ejiPE
´
i

pij “ fpi ` l
p
i ´ d

p
i ´ pvigi @i P Na (3.11a)

ÿ

eijPE
`
i

qij `
ÿ

ejiPE
´
i

qij “ f qi ` l
q
i ´ d

q
i ` pv2

i bi ´ d
qloss
i @i P Na (3.11b)

pij “ gexzvij ´ gexwcij ´ bexwsij @eij P E
azEg (3.11c)

qij “ ´pbe `
bce
2
qxzvij ` bexwcij ´ gijxwsij @eij P E

azEg (3.11d)

pji “ gexzvji ´ gexwcij ` bexwsij @eij P E
azEg (3.11e)

qji “ p´pbe `
bce
2
qxzvji ` bexwcij ` gexwsij @eij P E

azEg (3.11f)

pij ` pji “ re
`

le ` b
c
eqij ` p

bce
2
q2xzvij

˘

@eij P E
azEg (3.11g)

qij ` qji “ xeple ` b
c
eqij ` p

bce
2
q2xzvijq ´

bce
2
pxzvij `xzvjiq @eij P E

azEg (3.11h)

where, the new variables xzvij , xwcij and xwsij , admit feasible regions as follows:

pcsij P xzecospθijqy
R, psij P xzesinpθijqy

R, (3.12a)

pvi P xviy
MC´q, xzvij P xzij , pviy

MC , xzvji P xzij , pvjy
MC , (3.12b)

pwij P xvi, vjy
MC , (3.12c)

xwcij P x pwij , pcsijy
MC , xwsij P x pwij , psijy

MC (3.12d)

Other non-convex constraints Further, non-convex constraints (3.6k) and (3.6l) are re-

laxed to a convex, rotated second-order conic constraint by using the introduced lifted

variable pvi (for (3.6k)) as follows:

p2
ij ` q

2
ij ď lepvi @eij P E

a, (3.13a)

le ě prI
a
e q

2, le ď pI
a
eq
rIae @e P Ea (3.13b)

Convex relaxations of the reformulated thermal heating limit constraint (3.6x) and excess
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reactive power losses equation (3.6w) are stated here in equations (3.14):

rIae ď η0
e ` η

1
e
rIde ` η

2
e
pIde @e P Eτ (3.14a)

dqlossi “
ÿ

ePEτi

kepu
d
ie @i P Na (3.14b)

pIde P x
rIde y

MC´q
@e P Eτ (3.14c)

pudie P xvi,
rIde y

MC
@i P Ea, @e P Eτi (3.14d)

Convex relaxations of the GIC injection constraints (3.6s) and (3.6t) are described in equa-

tion (3.15).

ÿ

ePE`m

zÝÑe aeν
d
e ´

ÿ

ePE´m

zÝÑe aeν
d
e “ ´amv

d
m ´

ÿ

ePE`m

aexzv
d
e `

ÿ

ePE´m

aexzv
d
e @m P Nd (3.15a)

Ide “ aexzv
d
e @e P Ew (3.15b)

xzvde P xzÝÑe , pv
d
m ´ v

d
nqy

MC
@emn P E

d (3.15c)

In summary, the convexified problem is formulated as:

PC :“
 

min (3.6a) : (3.11)´ (3.15); (3.6j)´ (3.6m); (3.6u)´ (3.6v); z P t0, 1u|E
a|
(

(3.16)

3.3 A Local Branching Search Algorithm

In the literature, heuristics have been widely applied to the OTS problem to ef-

ficiently select which line(s) to remove from the network by line ranking [43, 115] or by

imposing a constraint on the number of lines that may be off in a solution [42]. For ex-

ample, Soroush and Fuller [102] propose a new heuristic to rank lines for removal based on

solutions from the economic dispatch problem and its corresponding optimal dual variables.

The switching solutions found by these heuristics have shown that significant reductions in

required computing times is possible.

We now present a heuristic that exploits a local branching strategy [41] in con-
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junction with the above convex relaxations to quickly find high-quality solutions to our

problem. First, given a feasible topology decision z0, we define I and O as sets of edges

eij : I :“ teij P Ea : z0
e “ 1u and O :“ teij P Ea : z0

e “ 0u. Using this notation, the local

branching constraint is formulated as

∆pz, z0q :“
ÿ

ePI
p1´ zeq `

ÿ

ePO
pzeq ď n (3.17)

where n is a positive constant. The left-hand side ∆pz, z0q :“
ř

ePIp1 ´ zeq `
ř

ePOpzeq

captures the number of variables ze flipping their values from 0 to 1 or from 0 to 1 with

respect to the given solution z0
e . Hence, the local branching constraint (3.17) can be used to

limit the exploration of the solution space by restricting the maximum allowed differences

(n) between z and z0 [96]. As a consequence, if n is sufficiently small, the problem can be

solved efficiently in the sub-region defined by ∆pz, z0q ď n. In this chapter, we use n “ 3.

By incorporating the local branching constraint in formulation PC, we create a local

search algorithm that starts from a reference topology decision and iteratively improves

solution quality by locally searching around the best known solution (Algorithm 3). In this

algorithm, we use fu and f l to denote the best known solution and the current feasible

solution of formulation PC, respectively. Lines 3-5 describe the process for obtaining an

initial feasible topology decision z0. In line 3, a relaxed (fractional) topology solution, pz, is

computed by solving formulation PR that arises by removing the integrality constraints of

variable z, i.e., PR :“
 

PC : 0 ď ze ď 1 @eij P E
a
(

. Here, the optimal objective value, fppzq,

yields a valid lower bound to problem PC. Line 4 then rounds fractional pz to their nearest

integer values (i.e., 0 or 1) and assigns the rounded values to variable z. Hence, an initial

feasible solution z0 is obtained (i.e., z0 “ Roundppzq) and the optimal objective associated

with z0, fpz0q, is evaluated by solving formulation P0 in line 5. Line 6 initializes the best

known solution f l and the current feasible solution fu with fppzq and fpz0q, respectively.

Lines 7-11 are the main body of our local search algorithm. At the beginning of iteration

k, line 8 defines the neighbourhood of the incumbent solution zK by adding local branching
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constraint 3.17 to formulation PC. Lines 9-10 then evaluate the optimal topology decision

in the neighbourhood and update the incumbent solution to this new solution. The process

then continues to search from this new topology solution until a (locally) optimal solution

is found.

Algorithm 3 A Local Branching Search Algorithm

1: function LBR
2: Set KÐ 0, f l Ð ´8, fu Ð `8

3: pz Ð SolvepPRq

4: PK Ð
 

PC : z “ Roundppzq
(

5: zK Ð SolvepPKq

6: Set f l Ð fppzq, fu Ð fpzKq

7: while
´

fu´f l

f l
ď ε

¯

do

8: PK`1 Ð
 

PC : ∆pz, zKq ď n
(

9: zK`1 Ð SolvepPK`1q

10: Set f l Ð fu, f l Ð fpzK`1q, KÐ K` 1
11: end while
12: return zK`1

13: end function

3.4 Case Study

In this section, we analyze the performance and sensitivity of a power system when

exposed to varying strengths of geo-electric fields induced by GMDs. We use a modified

version of the single area IEEE RTS-96 system [112]. Its size is comparable to previous

work [123] that considered minimization of the quasi-static GICs and not a full ACOPF

with topology control. The derived and modified parameters of IEEE RTS-96 are presented

in Table 3.1–3.2. We arbitrarily place the system in western Pennsylvania to give the model

a geographic orientation. We assume the cost of shedding load is twice the cost of the most

expensive generator. We performed computational experiments using the HPC Palmetto

cluster at Clemson University with Intel Xeon E5-2665, 24 cores and 120GB of memory. All

implementations are completed using Julia/JuMP [36]. All cases were solved using Gurobi

7.0.2 with default options and its presolver switched on.
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Table 3.1: Transformer and transmission line data. The nominal line length parameters of the single
area of RTS96 [112] are used to perform an approximate geospatial layout of the power system nodes.
(a) The transformer winding resistance (RW1, RW2) and k are estimated based on the test cases
provided in [6,58]. (b) The line length is calculated based on the geographic latitudes of substations
displayed in Table 3.2.

(a) Transformer data

RW1 RW2 k
Name Type (Ohm) Bus No. (Ohm) Bus No. Line No. (p.u.)

A 1 Gwye-Gwye 0.12 3 0.18 24 7 1.8
A 2 Auto 0.12 9 0.18 11 14 1.8
A 3 Auto 0.12 9 0.18 12 15 1.8
A 4 Auto 0.12 10 0.18 11 16 1.8
A 5 Auto 0.12 10 0.18 12 17 1.8
G 1 GSU 0.3 1 N/A 25 44 1.8
G 2 GSU 0.3 1 N/A 26 45 1.8
G 3 GSU 0.3 1 N/A 27 46 1.8
G 4 GSU 0.3 1 N/A 28 47 1.8
G 5 GSU 0.3 2 N/A 29 48 1.8
G 6 GSU 0.3 2 N/A 30 49 1.8
G 7 GSU 0.3 2 N/A 31 50 1.8
G 8 GSU 0.3 2 N/A 32 51 1.8
G 9 GSU 0.3 7 N/A 33 52 1.8
G 10 GSU 0.3 7 N/A 34 53 1.8
G 11 GSU 0.3 7 N/A 35 54 1.8
G 12 GSU 0.3 13 N/A 36 55 1.8
G 13 GSU 0.3 13 N/A 37 56 1.8
G 14 GSU 0.3 13 N/A 38 57 1.8
G 15 GSU 0.3 14 N/A 39 58 1.8
G 16 GSU 0.3 15 N/A 40 59 1.8
G 17 GSU 0.3 15 N/A 41 60 1.8
G 18 GSU 0.3 15 N/A 42 61 1.8
G 19 GSU 0.3 15 N/A 43 62 1.8
G 20 GSU 0.3 15 N/A 44 63 1.8
G 21 GSU 0.3 15 N/A 45 64 1.8
G 22 GSU 0.3 16 N/A 46 65 1.8
G 23 GSU 0.3 18 N/A 47 66 1.8
G 24 GSU 0.3 21 N/A 48 67 1.8
G 25 GSU 0.3 22 N/A 49 68 1.8
G 26 GSU 0.3 22 N/A 50 69 1.8
G 27 GSU 0.3 22 N/A 51 70 1.8
G 28 GSU 0.3 22 N/A 52 71 1.8
G 29 GSU 0.3 22 N/A 53 72 1.8
G 30 GSU 0.3 22 N/A 54 73 1.8
G 31 GSU 0.3 23 N/A 55 74 1.8
G 32 GSU 0.3 23 N/A 56 75 1.8
G 33 GSU 0.3 23 N/A 57 76 1.8

(b) Transmission line data

Length
Name From Bus To Bus (km)

1 1 2 6.4
2 1 3 85.5
3 1 5 36.7
4 2 4 53.4
5 2 6 71.6
6 3 9 54.0
7 3 24 0.00
8 4 9 43.0
9 5 10 37.6
10 6 10 32.1
11 7 8 25.8
12 8 9 70.0
13 8 10 70.0
14 9 11 0.00
15 9 12 0.00
16 10 11 0.00
17 10 12 0.00
18 11 13 57.8
19 11 14 54.7
20 12 13 57.8
21 12 23 113.4
22 13 23 92.3
23 14 16 44.0
24 15 16 19.6
25 15 21 57.0
26 15 21 57.0
27 15 24 61.8
28 16 17 30.2
29 16 19 29.9
30 17 18 17.3
31 17 22 117.2
32 18 21 28.9
33 18 21 28.9
34 19 20 48.2
35 19 20 48.2
36 20 23 25.1
37 20 23 25.1
38 21 22 83.4

For reference, the peak geo-electric field during the HydroQuebec event of 1989 was

2 V/km [21, 108]. References [4, 91] suggest that 100-year GMDs could cause 5 V/km and

13V/km, respectively, at some high-latitude locations. In our case studies, we consider

middle ground, but still extreme, geo-electric fields of 7.5 V/km and 8.7 V/km. We also
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Table 3.2: Substation data and other parameters. (a) The substation grounding resistance GR
is estimated from typical values of grounding resistance of substations provided in [80]. (b) The
original line parameters roe , x

o
e, g

o
e , boe, and bce are scaled by ratio βe “

Le
Loe

where Loe is the original

line length of e provided in [112], and Le represents the calculated line length based on geographic
coordinates of substations.

(a) Substation data

Name Latitude Longitude GR(Ohm)

SUB 1 40.44 -78.80 0.1
SUB 2 40.44 -78.73 0.1
SUB 3 40.90 -79.61 0.1
SUB 4 40.70 -79.26 0.1
SUB 5 40.70 -79.07 0.1
SUB 6 41.08 -78.61 0.1
SUB 7 40.50 -78.20 0.1
SUB 8 40.53 -78.50 0.1
SUB 9 41.03 -78.99 0.1
SUB 10 41.22 -78.35 0.1
SUB 11 41.48 -79.26 0.1
SUB 12 41.45 -79.71 0.1
SUB 13 41.63 -79.75 0.1
SUB 14 41.86 -79.94 0.1
SUB 15 42.01 -79.86 0.1
SUB 16 41.77 -79.45 0.1
SUB 17 42.01 -78.95 0.1
SUB 18 41.95 -79.52 0.1
SUB 19 42.41 -78.73 0.1
SUB 20 42.02 -78.65 0.1

(b) Other parameters

Parameter Value

κ $ 1000 /MW (or MVar)

I
a
e Te{mintV i, V ju

re pβeqr
o
e

xe pβeqx
o
e

ge p 1
βe
qgoe

be p 1
βe
qboe

bce p 1
βe
qbce

θ 30˝

study the directionality of the event by considering field directions between 0˝ and 180˝

spaced by 5˝.

To analyze the benefits of GIC mitigation by topology control, generator dispatch,

and load shedding, we studied three cases. To describe these cases, we define z˚x and C˚x

to be the optimal topology (line on-off) decisions and objective (minimum total costs),

respectively, for case x. The solutions of z˚x and C˚x are obtained from model Mx that are

formulated below. The cases we consider are:

1. C1: The ACOTS model neglecting GIC effects (C˚o , z˚o):

Mo :“
 

min (3.6a) : (3.11)´ (3.13); (3.6j)´ (3.6m); z P t0, 1u|E
a|;dqloss “ 0

(

2. C2: The ACOTS with GIC effects ( C˚gmd, z˚gmd)
1:

1C˚gmd, z
˚
gmd are locally optimal solutions to model Mgmd obtained by the LBR method. We show that

they are also global optima for the RTS96 test system in Section 3.4.
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Mgmd :“
 

min (3.6a) : (3.11)´ (3.15); (3.6j)´ (3.6m); (3.6u)´ (3.6v); z P t0, 1u|E
a|
(

3. C3: The ACOPF (fixed z “ z˚o) with GIC effects (C˚f , z˚o):

Mf :“
 

min (3.6a) : (3.11)´ (3.15); (3.6j)´ (3.6m); (3.6u)´ (3.6v); z “ z˚o
(

4. C4: The ACOPF (fixed z “ 1) with GIC effects (C˚1, 1):

M1 :“
 

min (3.6a) : (3.11)´ (3.15); (3.6j)´ (3.6m); (3.6u)´ (3.6v); z “ 1
(

Case C1 defines the topology z˚o and evaluates the objective C˚o that results from

neglecting the effects of GICs. Case C2 considers the GIC mitigation using both generation

dispatch and topology control. Case C3 evaluates cost C˚f that results from mitigating GIC

effects with generation dispatch on the topology of C1. Case C4 is similar to Case C3, but

line switching is not allowed.

3.4.1 Case C1: Potential Damage by GICs

Under normal circumstances without GMDs, line switching decisions are determined

by economic dispatch. More specifically, the optimal system topology is obtained by solving

an ACOTS model without the GIC-effects constraints (Case C1). Figure 3.4(a) shows

the optimal normal topology, z˚o , where some generators are not injecting real or reactive

power2. For example, generators 16 through 20 are shut down at node 15, and their GSU

transformers are disconnected from the network using the circuit breakers. Referring to

Fig. 3.1(a), we note that this action does not significantly affect the topology of the AC

network, which is only affected by switching transmission lines. This action removes GSU

transformer ground points from the DC network topology over which the GICs flow.

Case C1 assumes that generation and system topology are optimized for cost while

neglecting the impact of GICs. This impact is calculated using constraints (3.6s) through

(3.6u) to evaluate the feasibility of thermal limit constraint (3.6x). Figure 3.4(b) shows

how many GSU and network transformers would be overheated under C1 depending on

2There are multiple generators located at buses 1, 2 and 15. Generators 1 and 2 at bus 1 have the same
cost and capacity, as do generators 5 and 6 at bus 2 and generators 16 through 20 at bus 15. Thus, there
are equivalent dispatch solutions.
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(a) Optimal topology z˚o in Case C1
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(b) Potential damage of transformers by GICs

Figure 3.4: Evaluation of the power system in Table 3.1–3.2 for Case C1. (a) The grey nodes are
loads. The blue lines indicate network transformers (Gwye-Gwye and auto- transformers). The
green and magenta nodes indicate GSU transformers. Transformer IDs are listed next to the node.
Generation nodes with disconnected GSU transformers are magenta and their (network or GSU)
transformer IDs are marked as magenta as well. (b) The Case C1 solution is tested by applying
geo-electric fields of strength 7.5 V/km and 8.7 V/km for all directions. The label above each bar
indicates IDs of overheated transformers.

the direction and strength of the GMD. For example, when the electric field is 7.5 V/km,

GSU transformers 22 (at node 16) and 23 (at node 18) are overheated when the event is

oriented between 90˝ and 175˝. When the strength is increased to 8.7 V/km, one or more

transformers are overheated at almost all orientations of the GMD. For example, when

the event is oriented at 40˝, seven GSU transformers (21-24, 31-33) are overheated. These

results provide a baseline to evaluate alternative operating paradigms that ensure system

security.

3.4.2 Case C2: GIC Mitigation via ACOTS

Using Case C2, the cost benefits of simultaneous controlling generation dispatch and

network topology to mitigate GIC effects are evaluated.

Cost Analysis For geo-electric field strengths of 7.5 V/km and 8.7 V/km, Case C2 is

solved for orientations of the field from 0 to 180˝, which results in a total cost C˚gmd (see

Fig. 3.5) and topology z˚gmd (discussed later). The results in Fig. 3.5 show that the directions
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of the geo-electric field are not all equivalent because the cost of mitigation, C˚gmd, varies

with direction. The most costly GMDs occur when the event is oriented between 20˝ and

110˝. The increase in cost between 7.5 V/km and 8.7 V/km is primarily due to changes in

generator dispatch and is not significant. For example, the difference in cost between the 7.5

V and 8.7 V per kilometer case is 1.25% when the GMD is oriented at 60˝. Moreover, the

dispatch cost is smaller when GIC effects are neglected (Case C1). However, the transformer

thermal limit constraints are violated when GIC effects are applied to the network (as seen

in Fig. 3.4(b)). Thus, there is an implicit higher cost associated with replacing the damaged

equipment and unexpected load shed when the transformer fails.
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Figure 3.5: The total cost c˚gmd for Case C2 for different geo-electric field orientations and strengths.

Topology Control Analysis In Figure 3.5, the network topology varies with the strength

and direction of the GMD. In the remainder of this section, we focus on GMD events

oriented at 40˝, 80˝, 110˝, and 140˝ because total costs C˚gmd fluctuate widely in these

directions. Figures 3.6 and 3.7 display the network topology for geo-electric field strengths

of 7.5 V/km and 8.7 V/km, respectively. In Figure 3.6, for the 40˝ geo-electric field case,

two transmission lines, (1,5) and (15,16), are switched off. In the 80˝ geo-electric field

case, only one transmission lines (1,5), which is nearly perpendicular to the geo-electric

field, is switched off. This topology control is likely being used to reroute power flow away

from more susceptible transmission lines (e.g., line (1,5)). When event orientations are at

110˝ and 140˝, all transmission lines are switched on and the corresponding total costs are
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(a) 7.5 V/km, 40˝ (b) 7.5 V/km, 80˝

(c) 7.5 V/km, 110˝ (d) 7.5 V/km, 140˝

Figure 3.6: Topology solutions for Case C2 at 7.5 V/km strength and orientations from 40˝, 80˝,
110˝, and 140˝. Switched off lines are colored magenta and the IDs of unused generators are labeled
beside their connected substations.

significantly reduced. Our experimental results indicate that more transmission lines are

switched off when orientation directions are more sensitive to GMDs (e.g., 40˝ and 80˝),

resulting in higher total costs.

The results in Figure 3.7 for different geo-electric field orientations suggest similar

conclusions. At a fixed 8.7 V/km in Figure 3.7, the optimal topology solutions switch off

several transmission lines, while some transmission lines still display significant sensitivity to

orientation (e.g., line (1,5)). Comparing Figure 3.7 (8.7 V/km) with Figure 3.6 (7.5 V/km)

suggests that some topology solutions at low field strength persist to higher field strength;

59



however, more GSU transformers are disconnected from the network to avoid large GIC in

their connected transformers. The sensitivity of the topology solution to the details of the

orientation and the difficulty in making accurate predictions of geo-electric field direction

suggest that the ACOTS solution should be extended to a stochastic or robust formulation

over field strength. Finally, we note that while the solution adjusts the topology, it does not

create islands–a mitigation strategy that is sometimes suggested. However, islands could

form in larger, more complex networks.

(a) 8.7 V/km, 40˝ (b) 8.7 V/km, 80˝

(c) 8.7 V/km, 110˝ (d) 8.7 V/km, 140˝

Figure 3.7: Same as Fig 3.6 but for a geo-electric field strength of 8.7 V/km.
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3.4.3 Case C2 versus Case C3: Cost Benefits of Topology Optimization

The inclusion of topology control into the ACOTS formulation increases the com-

plexity of the problem, but it also provides significant cost savings over a less complex

ACOPF. The cost savings are evaluated by comparing Case C2 (where topology control is

allowed) with Case C3 (where the topology is fixed to that found in Case C1). Figure 3.8

displays the percentage cost savings of C2 (ACOTS) over C3 (ACOPF) for 7.5 V/km and

8.7 V/km field strengths with directions between 0˝–180˝. Under the most severe GMD

conditions explored, the benefit of topology control is as much as 45%.
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Figure 3.8: Combined savings from generator dispatch and load shedding costs enabled by the
optimal topology z˚gmd found by ACOTS relative to the dispatch and load shedding cost incurred
by the ACOPF of Case C3 with the topology fixed to z˚0 .

Table 3.3 further breaks down the cost savings of Case C2 over Case C3 into gen-

erator dispatch costs and load shedding costs. For the 8.7 V/km field strength case, the

topology control in Case C2 enables all of the load to be served. In contrast, the fixed

topology in C3 results in load shedding costs of 9.3% on average and 28.0% in the worst

case.

3.4.4 Case C3 versus Case C4: Performance of Network Reconfiguration

The results displayed in Figure 3.9 compare the topology of Case C3 (where topology

is fixed to case C1) with Case C4 (where all lines and generators). Similar to the results
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Table 3.3: Percentage of the total cost in cases C2 and C3 due to generator dispatch and load
shedding. For 7.5 V/km and 8.7 V/km strengths, the average, minimum and maximum percentage
of total cost is computed over the geo-electric field orientation from 0˝–180˝.

Dispatch Cost(%) Load shedding Cost(%)

Strength Case Avg. Min. Max. Avg. Min. Max.

7.5 V/km
C2 100.0 100.0 100.0 0.0 0.0 0.0
C3 97.8 96.0 100.0 0.4 0.0 4.0

8.7 V/km
C2 100.0 100.0 100.0 0.0 0.0 0.0
C3 92.7 72.0 100.0 9.3 0.0 28.0

in Fig. 3.9(a), the total cost, C˚1, varies with event direction. Ignoring GIC effects also

induces a lower operating cost (Fig. 3.9(b)). However, like the results of Fig. 3.4(b), we

also observed that the transformer thermal limit constraints (3.6x) are violated when GIC

effects are neglected. For example, if the field strength is 8.7 V/km and has an orientation

of 100˝, GSU transformers 21 and 23 overheat. Comparing Fig. 3.9(a) (Case C3) with Fig.

3.9(b) (Case C4) shows that the optimal topology control found in Case C1 induces a higher

cost than Case C4 for orientations through 20˝ to 105˝ under the field of 8.7 V/km. This is

due to forced disconnect of generators in Case C1 (e.g., generator 14 at bus 13) which could

be dispatched more effectively, when no line can be switched off, to mitigate GIC effects.
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(a) The total cost c˚f in Case C3.
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(b) The total cost c˚1 in Case C4.

Figure 3.9: Cost comparison of Case C3 and C4 for different geo-electric field orientations and
strengths.
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3.4.5 Computational Analysis

To evaluate the computational performance of the proposed LBR method, we com-

pare LBR with the branch-and-cut (B&C) algorithm performed by the Gurobi MIP opti-

mizer with default options and its presolver switched on. In this section, we only consider

Case C2 where the corresponding solutions are obtained by LBR. Note that Gurobi solves

the formulation Mgmd (Case C2) to optimality, while LBR aims to find a near-optimal

solution which could be a local optimum.

Solution Quality We compare the solution quality of LBR with Gurobi by testing the

following null hypothesis: there is no difference between the objective values from the two

methods (i.e., the solutions are statistically indistinguishable). Paired t-test results are

included in Table 3.4.

Table 3.4: Paired t-tests for comparison of the optimal objective and computational times obtained
from Gurobi and the LBR method. ∆ Total Cost (Wall time) represents the objective (computational
time) difference between Gurobi and LBR. N , Xd and Sd denote the sample size, mean and standard
deviation, respectively.

∆ Total Cost ($) ∆ Wall Time (sec)

Strength (V/km) N Xd Sd t-score p-value Xd Sd t-score p-value

7.5 36 -0.1 0.5 -0.74 0.46 844.0 858.0 5.90 9.4e-6
8.7 36 0.0 0.3 -0.43 0.67 4389.4 5389.1 4.89 2.1e-6

The values under column “∆ Total Cost” show that the p-values associated with this hy-

pothesis test are 0.46 and 0.67 for 7.5 V/km and 8.7 V/km, respectively. Since both 0.46

and 0.67 are greater than 0.05, we cannot reject the null hypothesis at a 95% significance

level. In addition, the full range of solution differences between LBR and Gurobi is dis-

played in Figure 3.10(a). The plot suggests that the LBR solution is always within ˘0.2 ($)

of the optimal total cost found by Gurobi, which is less than 0.0004% based on the scale of

objective values presented in Figure 3.5. Hence, we conclude that for the RTS96 test case,

solutions obtained by LBR are not statistically different with the optimal solutions from

Gurobi.

Computational Speed Table 3.5 summarizes the computational time properties of solv-
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ing formulation Mgmd (Case C2) with these two methods. We observe that the LBR al-

gorithm offers a significant improvement in computation time as compared to Gurobi, es-

pecially at larger geo-electric field strengths. Indeed, when strength is 8.7 V/km, Gurobi

takes 25264 seconds («7 hours) in the worst case to respond to the event. In contrast,

LBR can find the optimal solution for any direction between 0˝-180˝ within 1403 seconds

(«23 minutes), which is 18-19 times faster than Gurobi. The distributional characteristics

of the computational difference are shown in Figure 3.10(b) which indicates that compu-

tations from Gurobi are much more time-intensive than LBR. Similarly, we also conduct a

paired t-test with the following null hypothesis on computation time: there is no difference

between the computational times of the two methods. The t-test results are summarized in

column “∆ Wall Time” in Table 3.4. For 7.5 V/km and 8.7 V/km strengths, the p-values

associated with this hypothesis are almost 0.0, which are less than 0.05. Therefore, there is

strong evidence to reject the null hypothesis and conclude that LBR does lead to a signif-

icant improvement in computational speed. These results suggest that our proposed LBR

method can be a practical algorithm for obtaining high-quality solutions to larger power

flow systems on the time scale required for GMD mitigation efforts.

Table 3.5: Computational time comparisons of the single-area RTS96 system. The average, min-
imum, maximum and standard deviation of solving time are presented over the geo-electric field
orientation from 0˝–180˝. Under “Method” column, “Gurobi(B&C)” represents the B&C method
performed by the Gurobi MIP solver, and ”LBR” denotes the proposed local search algorithm in
section 3.3.

Wall Time (sec)

Strength (V/km) Method Avg. Min. Max. Std.

7.5
LBR 664.0 420.5 1249.6 172.8

Gurobi(B&C) 1508.0 646.0 3914.6 934.3

8.7
LBR 802.7 401.0 1403.1 235.4

Gurobi(B&C) 5192.1 610.7 25263.6 5492.2
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Figure 3.10: Performance comparison between the GRB and LBR method.

3.5 Conclusions and Future Research

We formulate a detailed topology control optimization model to mitigate the impacts

of GMDs on electrical transmission systems. Our mathematical formulation minimizes

total generation dispatch and load shedding, subject to non-convex AC power flow physics,

the effects of geomagnetically-induced currents on transformer heating, and transformer

reactive power consumption. We leverage recently developed convex relaxation approaches

to handle the nonlinearites due to AC transmission switching and GIC constraints. Further,

we propose a heuristic to find high-quality feasible solutions within the time scales required

for GMD mitigation efforts. Further research will include developing exact algorithms

to solve larger problems, modeling time-extended variations in the geo-electric field, and

considering N-1 security constraints.
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Chapter 4

Distributionally Robust

Optimization for Resilient

Transmission Grids under

Geomagnetic Disturbances

In recent years, there have been increasing concerns about the impacts of geomag-

netic disturbances (GMDs) on electrical power systems. Unpredictable GMDs, that are

caused by uncontrollable solar storms, can significantly increase the risk of transformer

failure. In this research, we propose a two-stage distributionally robust (DR) optimization

model that captures uncertain GMDs and mitigates the effects of GICs on power systems

through existing system controls. This model assumes an ambiguity set of probability distri-

butions of the induced geo-electric field to capture the uncertain magnitude and orientation

of a GMD event. We employ state-of-the-art linear relaxation methods and reformulate

the proposed two-stage DR model that creates a decomposition framework for solving our

problem. We demonstrate the approach on the modified Epri21 system and show that the

DR optimization method effectively handles prediction errors of GMD events.
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Nomenclature

Sets

Na,Nd set of nodes in the AC and DC circuit, respectively

Ng Ď Na set of nodes with exactly one generator

Ea,Ed,E set of edges in the AC and DC circuit, respectively, where E “ Ea Y Ed

Eτ Ď Ea set of transformer edges

Ew Ď Ed set of DC edges used to model transformer windings in the DC circuit

Ewe Ď Ed set of DC edges used to model the windings for transformer edges eij P E
τ

E`i Ď E set of outgoing edges connected to AC/DC node i

E´i Ď E set of incoming edges connected to AC/DC node i

Ei set of all edges connected to AC/DC node i, where Ei “ E`i Y E´i

Eτi Ď Eτ set of AC edges used to compute dqlossi (as described later) for node i

Eg Ď Ea set of edges eij such that either i or j P Ng

Parameters

c0
i fixed cost for generator i P Ng

c1
i , c

2
i fuel cost coefficients of electricity generation ρi from generator i P Ng
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cR1
i , cR2

i fuel cost coefficients of additional electricity generation ∆i from generator

i P Ng

Fip¨q fuel cost function of electricity generation from generator i P Ng

κ`i , κ
´
i penalty of load shedding and over-generation at bus i P Na, respectively

am admittance of the grounding line at bus m P I, 0 if bus m R I

ae DC admittance of edge e P Ed

re, xe resistance and reactance of line e P Ea

ge, be conductance and susceptance of line e P Ea

gi, bi shunt conductance and susceptance at bus i P Na

dpi , d
q
i real and reactive power demand at bus i P Na

bce line charging susceptance of line e P Ea

se apparent power limit on line e P Ea

θ phase angle difference limit

ke loss factor of transformer line e P Eτ

vi, vi AC voltage limits at bus i P Na

gp
i
, gpi real power generation limits at generator i P Ng

gq
i
, gqi reactive power generation limits at generator i P Ng

´uRi , u
R
i ramp-down and ramp-up limits for generator i, respectively

~E the geo-electric field at the area of a transmission system

LNe ,LEe the northward and eastward components of the displacement of each trans-

mission line e P Ea, respectively

First-Stage Variables
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ze 1 if line e P Ea is switched on; 0 otherwise

ρi reserved real-power output of generator i P Na

Second-Stage Variables

θi phase angle at bus i P Na

vi voltage magnitude at bus i P Na

vdi induced DC voltage magnitude at bus i P Nd

lde GIC flow on transformer line e P Eτ

Ide the effective GIC on transformer line e P Eτ

dqlossi GIC-induced reactive power loss at bus i P Na

∆p
i excess real power generated at generator i P Ng

pij , qij real and reactive power flow on line eij P E
a, as measured at node i

fpi , f qi real and reactive power generated at bus i P Na

lp`i , lq`i real and reactive power shed at bus i P Na

lp´i , lq´i real and reactive power over-generated at bus i P Na

Random Variables

rνE , rνN GMD-induced geo-electric fields in Eastward and Northward, respectively

rνde induced voltage sources on transmission line e P E, as a function of rνE and

rνN

4.1 Introduction

Solar flares and coronal mass ejections form solar storms where a billion tons of

charged particles escape from the sun and arrive at Earth causing geomagnetic disturbances
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(GMDs). GMDs lead to changes in Earth’s magnetic field, which then create geo-electric

fields. These low-frequency geo-electric fields induce quasi-DC currents, also known as

Geomagnetically-Induced Currents (GICs), in grounded sections of power system networks

[10, 11, 105]. GICs are superimposed on the existing alternating currents (AC) and bias

the AC in transformers. This bias can lead to half-cycle saturation and magnetic flux loss

in regions outside of the transformer core. The energy stored in the stray flux increases

the reactive power consumption of transformers, which could lead to load shedding since,

in general, generators are not designed to handle such unexpected losses. In addition, the

stray flux also drives eddy currents that can cause excessive transformer heating, which leads

to reduced transformer life or, potentially, immediate damage [7]. Damaged transformers

can disconnect the bulk electric power system and disrupt its ability to deliver power.

Particularly, when GMD events occur on large-scale electric power systems, the resulting

power outages can be catastrophic. For example, the GMD event in Quebec in 1989 led

to the shutdown of the Hydro-Quebec power system. As a consequence, six million people

suffered a power outage for nine hours. A report estimated that the net cost of this event

was $13.2 million, with damaged equipment accounting for $6.5 million of the cost [19].

The potential GMD impacts to transformers in the bulk electric power system have

motivated the United States government to sponsor research which will improve our un-

derstanding of GMD events and identify strategies to mitigate the impact of GMDs on

power systems [8,40]. To model the potential risks introduced by GICs, both the academia

and the electric power industry have actively improved GIC modeling and GIC monitor-

ing [25, 38, 58, 89, 94]. For example, the North American Electric Reliability Corporation

(NERC) presented a procedure to quantify GICs in a system based on the corresponding

geo-electric field [6]. These models have been used to conduct risk analyses that estimate

the sensitivity of reactive power losses due to GICs. It was found that risk mitigation

warrants further study.

The recent literature mainly focuses on mitigating two primary risks introduced

by GICs. The first is voltage sag resulted from increased reactive power consumption on
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transformers [7]; the second is transformer damage caused by excessive hot-spot thermal

heating [1]. One mitigation approach is installing DC-current blocking devices to keep the

GIC from accessing transformer neutrals [20]. However, these devices are expensive since

a single unit can cost $500K [66, 71, 123]. This high cost is a barrier for adopting this

technology in practice. To address this issue, Lu et al. [74] developed a GIC-aware optimal

AC power flow (ACOPF) model that uses existing topology control to mitigate the risks

of GIC impacts. This work showed that topology reconfiguration can effectively protect

power systems from GIC impacts, and left the development of a scalable algorithm for large

systems as future work.

The model proposed by Lu et al. [73] is a first study of this problem – – their

findings are insightful. However, the paper assumes a steady GMD event (i.e., the induced

geo-electric field is constant). In reality, solar storms, such as solar flares and coronal

mass ejections (CMEs), are unpredictable. Although ground- and space-based sensors and

imaging systems have been utilized by the National Aeronautics and Space Administration

(NASA) to observe these activities at various depths in the solar atmosphere, the intensity

of a storm cannot be measured until the released particles reach Earth and interact with its

geomagnetic field [85]. As a result, there is often uncertainty in predictions of solar storms

and the induced geo-electric field, which introduce operational challenges of mitigating the

potential risks by GIC to power systems.

This research extends our initial study of GIC effects induced by a GMD [74] in

two ways. The model (1) allows line switching and generator ramping to mitigate GIC

impacts and (2) assumes uncertain magnitude and orientation of a GMD. We formulate

this problem as a two-stage distributionally robust (DR) optimization model which we call

DR-OTSGMD. The first-stage problem selects a set of transmission lines and generators

to serve power in a power system ahead of an imminent GMD event. The second-stage

problem evaluates the performance of the network given the status of transmission lines,

the reserved electricity for daily power service, and a realized GMD. In this model, the un-

certain magnitude and direction of a GMD are captured by an ambiguity set of probability
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distributions of the induced geo-electric field. The objective is to minimize the expected

total cost for the worst-case distribution defined in the ambiguity set. Instead of assuming

a specific candidate distribution, the ambiguity set is described by statistical properties of

uncertainty, such as the support and moment information. As a result, the DR optimization

approach yields less conservative solutions than the prevalent robust optimization [117,121].

In comparison to stochastic programming, the DR method does not require the complete

information of the exact probability distribution, thus the decision does not rely on assump-

tions about unknown distributions [14]. Additionally, the reliability of the solutions found

does not require a large number of random samples, leading to computational tractabil-

ity and scalability for large-scale problems [70]. In the literature, the DR optimization

approaches have been used to model a variety of problems [35, 37, 39, 45, 60, 101]. Recent

work has focused on modeling the relevant problems in power systems, such as contingency-

constrained unit commitment [28, 117, 120], optimal power flow with uncertain renewable

energy generation [70,75,116,119], planning and scheduling of power systems [17,110], and

energy management [93,111].

We present a two-stage DR-OTSGMD model of the AC optimal power flow (OPF)

problem with GIC effects induced by uncertain GMD events. The objective is to minimize

the worst-case expected total cost over all probability distributions in an ambiguity set

that is defined to capture the uncertainty of the GMD-induced geo-electric field. The main

contributions of this chapter include:

• A two-stage DR-OTSGMD model that captures the uncertainty of the GMD-induced

geo-electric field. This formulation considers the AC physics of power flow and reactive

power consumption at transformers due to random GICs.

• A reformulation of the two-stage DR-OTSGMD problem which facilitates problem

decomposition. The resulting problems are nonlinear and non-convex due to the AC

physics of power flow. We show that solutions to these problems provide valid lower

bounds.
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• Extensive numerical analysis using the Epri21 test system validates the model and

demonstrates the effectiveness of the proposed model to generate robust solutions.

The remainder of this chapter is organized as follows. In section 4.2, we discuss

the two-stage DR-OTSGMD formulation and the ambiguity set of probability distributions

for the induced geo-electric field. We describe linear approximations of nonlinear and non-

convex functions in the problem, then derive a decomposition framework for solving this

approximation. In Section 4.3, we present a column-and-constraint generation algorithm

and demonstrate this approach using the Epri21 test system in Section 4.4. Finally, we

conclude this chapter and provide directions for future research in Section 4.5.

4.2 Problem Formulation

4.2.1 GIC modeling

The computation of GIC-induced reactive power losses depends on the induced

voltage sources prνde q on each power line e P Ed in the network, which itself is determined by

the geo-electric field integrated along the length of each transmission line. This relationship

is modeled in Eq.(4.1)

rνde “

¿

~Ee ¨ d~le, (4.1)

where, ~Ee is the geo-electric field in the area of transmission line e P Ed, and d~le is the

incremental line segment length including direction [6]. In practice, the actual geo-electric

field varies with geographical locations. In this research, we use a common assumption that

the geo-electric field in the geographical area of a transmission grid is uniformly distributed

[6, 58, 123], i.e., ~E “ ~Ee for any e P Ed. Hence, only the coordinates of the line ending

points are relevant and ~E can be resolved into its eastward (x axis) and northward (y

axis) components [6]. Let ~Le be the length of line e with direction. Thus, (4.1) can be

reformulated as:

rνde “
~E ¨ ~Le “ rνNLNe ` rνELEe , @e P E (4.2)
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where rνN and rνE represent the geo-electric fields (V/km) in the northward and eastward

directions, respectively, which are modeled as random variables in our model. LNe and LEe

denote distances (km) along the northward and eastward directions, respectively, which

depend on the geographical location (i.e., latitude and longitude) of associated substations

[6].

4.2.2 The two-stage DR-OTSGMD Formulation

A transmission network is modeled as a graph with nodes N (buses and generators)

and edges E (lines and transformers). Each edge has a switch which is represented as a

binary variable used to control the on-off status of this line. For notation brevity, each edge

eij P E is given an arbitrary orientation from bus i to bus j, and we omit the ij subscript

when the orientation is not relevant. We present a two-stage DR-OTSGMD formulation as

the following.

Qo :“ min
z,ρ

ÿ

iPNg ,ePEi

zepc
0
i q `

ÿ

iPNg

Fipρiq ` sup
PPQ

EPrHpz,ρ, rν
dqs (4.3a)

s.t. ze P t0, 1u @eij P E
a (4.3b)

zegpi ď ρi ď zegpi @i P Ng, e P Ei (4.3c)

The first-stage problem (4.3), referred to as the master problem, specifies a system

topology and the real-power generation reserved for daily electricity consumption. The ob-

jective is to minimize the worst-case expected total cost including the fixed cost for keeping

generators on and the fuel cost for the reserved essential real-power outputs. Constraint

set (4.3b) defines line switching variables, and constraint set (4.3c) limits the reserved real-

power generation that is determined prior to an imminent event. In the objective (4.3a),

the fuel cost Fipρiq is formulated as a quadratic function of ρi, i.e., Fipρiq “ c2
i pρiq

2 ` c1
i ρi.

Given on-off status ze, reserved real-power generation ρi, and a realized GMD event mea-

sured by rνE and rνN , Hpz,ρ, rνdq represents the recourse cost and equals to the optimal

objective value of the second-stage (which is referred to as the subproblem) formulated as

74



below.

Hpz,ρ, rνdq “ min
ÿ

iPNg

Fip∆
p
i q `

ÿ

iPNa

κ`i pl
p`
i ` lq`i q ` κ

´
i pl

p´
i ` lq´i q (4.4a)

s.t.
ÿ

eijPE
`
i

pij `
ÿ

ejiPE
´
i

pij “ fpi ` l
p`
i ´ lp´i ´ dpi ´ v

2
i gi @i P Na (4.4b)

ÿ

eijPE
`
i

qij `
ÿ

ejiPE
´
i

qij “ fqi ` l
q`
i ´ lq´i ´ dqi ´ d

qloss
i ` v2

i bi @i P Na (4.4c)

pij “ zepgev
2
i ´ gevivj cospθi ´ θjq ´ bevivj sinpθi ´ θjqq @eij P E

azEg (4.4d)

qij “ zep´pbe `
bce
2
qv2
i ` bevivj cospθi ´ θjq ´ gevivj sinpθi ´ θjqq @eij P E

azEg (4.4e)

pji “ zepgev
2
j ´ gevivj cospθj ´ θiq ´ bevivj sinpθj ´ θiqq @eij P E

azEg (4.4f)

qji “ zep´pbe `
bce
2
qv2
j ` bevivj cospθj ´ θiq ´ gevivj sinpθj ´ θiqq @eij P E

azEg (4.4g)

pij ` pji “ 0, qij ` qji “ 0 @eij P E
g (4.4h)

vi ď vi ď vi @i P Na (4.4i)

ze|θi ´ θj | ď θ @eij P E
azEg (4.4j)

p2
ij ` q

2
ij ď zes

2
e, p2

ji ` q
2
ji ď zes

2
e @eij P E

a (4.4k)

zegpi ď fpi ď zegpi @i P Ng, e P Ei (4.4l)

zegqi ď fqi ď zegqi @i P Ng, e P Ei (4.4m)

´ zeu
R
i gpi ď fpi ´ ρi ď zeu

R
i gpi @i P Ng, e P Ei (4.4n)

∆p
i ě 0, ∆p

i ě fpi ´ ρi @i P Ng (4.4o)

Formulations (4.4a) through (4.4o) describe system constraints for buses and branches

in the AC circuit that takes into account the additional reactive power consumption due

to GICs. The objective function (4.4a) minimizes the total cost including the fuel cost

for the ramp-up generation of real power and the penalty for load shedding and over-

generation. Note that the over-generation variables are introduced to facilitate the fea-

sibility of the subproblem, thus lp´i and lq´i should be zero at optimality by associating

them with very high penalty cost κ´i . Constraints (4.4b) and (4.4c) represent the nodal

real and reactive power balance, including the reactive power consumption due to GICs.

Constraints (4.4d) through (4.4g) model AC power flow on each transmission line with

on-off variables ze. Constraint set (4.4h) indicates that fictitious lines between output ter-

minals of generators and their injection buses are modeled as transportation edges (i.e.,
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|pij | “ | ´ pji| “ fpi , |qij | “ | ´ qji| “ f qi @eij P Eg). Constraints (4.4i) through (4.4o) de-

scribe the operational limits of the grid; constraint set (4.4i) limits the voltage magnitude at

buses, while constraint set (4.4j) applies appropriate bounds on the phase angle difference

between two buses when the line exists. Constraint set (4.4k) models operational thermal

limits of lines in both directions. Constraints (4.4l) and (4.4m) model the availability and

capacity of power generation; a generator is offline if its line is switched off. Constraints

(4.4n) limit the deviations of real power generations from the reserved amount ρi. These

ramp-down and ramp-up amounts are used to balance the additional reactive power con-

sumption due to GICs. Constraints (4.4o) model the ramp-up generation (i.e., positive

deviation) of real power at each generator. If generator i P Ng ramps up, the minimum

∆p
i is equal to fpi ´ ρi; 0 otherwise. Note that the fuel cost Fip∆

p
i q takes into account only

the ramp-up power generation, thus there is no fuel cost if generator i P Ng ramps down.

Particularly, ∆p
i “ maxt0, fpi ´ ρiu and FRi p0q “ 0.

ÿ

ePE`
m

zÝÑe aerν
d
e ´

ÿ

ePE´
m

zÝÑe aerν
d
e “ ´amv

d
m ´

ÿ

emnPE
`
m

zÝÑe aepv
d
m ´ v

d
nq `

ÿ

enmPE
´
m

zÝÑe aepv
d
n ´ v

d
mq @m P Nd (4.5a)

Ide “ zÝÑe aepv
d
m ´ v

d
nq @emn P E

w (4.5b)

rIde ě
ÿ

peijPEwe

ΘpId
pe q, rIde ě ´

ÿ

peijPEwe

ΘpId
pe q @e P E

τ (4.5c)

0 ď rIde ď max
@pePEa

2I
a
ê @e P E

τ (4.5d)

dqlossi “
ÿ

ePEτi

keviI
d
e @i P N

a (4.5e)

The induced DC circuit and the effects associated with a GMD event are formulated in

constraints (4.5a)-(4.5e). Recall that we link an edge e P Ed in the DC circuit to an edge

in the AC circuit with ÝÑe . In particular, for e P Ed, we use notation ÝÑe to denote the

associated AC edge of e. This is a one-to-one mapping for transmission lines and a many-

to-one mapping for transformers (see Chapter 3). Using this notation, constraints (4.5a)

and (4.5b) calculate the GIC flow on each DC line by applying Kirchhoff’s current law. The

GIC on a line is determined by the induced voltage source rνde and the quasi-DC voltage

difference between two buses [6]. GIC flow is forced to 0 by zÝÑe when line ÝÑe is switched

off. Instead of introducing additional discrete variables, constraint (4.5c) is used to model

and relax the magnitude of
ÿ

peijPEwe

ΘpId
pe q where Θp¨q is a linear function of GICs in transformer
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windings defined in the form of (3.3)–(3.5) (see Chapter 3). Constraint set (4.5d) denotes

the maximum allowed value of GIC flowing through transformers. We assume this limit is

twice the upper bound of the AC flow in the network. Constraint set (4.5e) computes the

reactive power load due to transformer saturation [11, 89, 122, 123] by using the effective

GICs for each transformer type. The couplings between AC power flows and GIC occur in

constraints (4.4c) and (4.5e).

4.2.3 Linear Approximation

Note that the subproblem (4.4a)–(4.5e) described above is nonlinear and non-convex,

which is computationally hard to solve to optimality. In this section, we present outer-

approximation methods to linearize these nonlinear terms in the subproblem.

Perspective Reformulation and Relaxation of the Fuel Cost Function In this chap-

ter, fuel cost Fip¨q is formulated as a quadratic function of the real power generation from

generator i P Ng. Particularly, for each generator i P Ng, Fip∆iq “ cR2
i p∆iq

2 ` cR1
i ∆p

i

and Fipf
p
i q “ c2

i pf
p
i q

2 ` c1
i f

p
i . For notation brevity, we represent the fuel cost function in

a generic form: Fipxiq “ C2pxiq
2 ` C1xi. Next, we define a new variable qxi to capture the

quadratic term pxiq
2, such that

qxi :“ pxiq
2 @i P Ng (4.6a)

Using perspective reformulation methods described in [50, 51, 72], we present a piecewise

linearization of Fipxiq as follows:

Fipxiq “ C2
i qxi ` C1

ixi @i P Ng (4.7a)

qxi ě 2x`ipxiq ´ zepx
`
iq

2 @i P Ng, e P Ei, ` P t1, 2, ..., Lu (4.7b)

where L represents the number of pieces and x`i is a given real-power output of generator

i P Ng on piece `. Constraints (4.7b) are referred to as perspective cuts which have been

widely exploited to tighten convex relaxations for a class of indicator-induced MINLPs
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[50, 72, 87]. If generator i P Ng is turned off (i.e., ze “ 0), then the optimal solution of

qxi should be 0, as this is a minimization problem. Otherwise, if ze “ 1, constraints (4.7b)

define the feasible region of qxi to outer approximate the quadratic term in the cost function.

Note that we reformulate both Fipρiq and Fip∆
p
i q in the form of (4.7).

Linear Approximation of AC Physics Let Lp¨q denotes a set of piecewise linear func-

tions used to approximate a nonlinear (non-convex) term. We define new variables wi for

each bus i P Na and wze , w
c
e, and wse for each edge eij P Ea to capture the non-convexities

in the AC power flow equations (4.4b)–(4.4g). In particular, for @i P Na and @eij P EazEg,

we define

wi :“ v2
i , wzie :“ zev

2
i , wce :“ vivj cospθi ´ θjq, wse :“ vivj sinpθi ´ θjq (4.8a)

Using this notation, formulation (4.4a)–(4.4m) can be reformulated as follows:

min p4.4aq (4.9a)

s.t.
ÿ

eijPE
`
i

pij `
ÿ

ejiPE
´
i

pij “ fpi ` l
p`
i ´ lp´i ´ dpi ´ wigi @i P Na (4.9b)

ÿ

eijPE
`
i

qij `
ÿ

ejiPE
´
i

qij “ f qi ` l
q`
i ´ lq´i ´ dqi ´ d

qloss
i ` wibi @i P Na (4.9c)

pij “ gew
z
ie ´ gew

c
e ´ bew

s
e @eij P E

azEg (4.9d)

qij “ ´pbe `
bce
2
qwzie ` bew

c
e ´ gew

s
e @eij P E

azEg (4.9e)

pji “ gew
z
je ´ gew

c
e ` bew

s
e @eij P E

azEg (4.9f)

qji “ ´pbe `
bce
2
qwzje ` bew

c
e ` gew

s
e @eij P E

azEg (4.9g)

zew
c
e ď wce ď zew

c
e @eij P E

azEg (4.9h)

zew
s
e ď wse ď zew

s
e @eij P E

azEg (4.9i)

zev
2
i ď wzie ď zev

2
i , zev

2
j ď wzje ď zev

2
j @eij P E

azEg (4.9j)

wi ´ v
2
i p1´ zeq ď wzie ď wi ´ v

2
i p1´ zeq @eij P E

azEg (4.9k)
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wj ´ v
2
j p1´ zeq ď wzje ď wj ´ v

2
j p1´ zeq @eij P E

azEg (4.9l)

tanpθqwse ď wce ď tanpθqwse @eij P E
azEg (4.9m)

L
´

pwceq
2 ` pwseq

2 ´ wiwj

¯

ď 0 @eij P E
azEg (4.9n)

wi ě Lpv2
i q @i P Na (4.9o)

wi ď pvi ` viqvi ´ vivi @i P Na (4.9p)

Lpp2
ij ` q

2
ijq ď zes

2
e @eij P E

a (4.9q)

Lpp2
ji ` q

2
jiq ď zes

2
e @eij P E

a (4.9r)

p4.4hq ´ p4.4iq, p4.4lq ´ p4.4mq, p4.7aq ´ p4.7bq, p4.4nq ´ p4.4oq (4.9s)

In this formulation, constraints (4.9d)–(4.9g) force line flows to be zero when the line

is switched-off and take the associated values otherwise, due to constraints (4.9h)–(4.9l).

Constraints (4.9j)–(4.9l) represent the McCormick [77] relaxations of a bilinear product

with one binary variable. Constraints (4.9m) are used to link new introduced variables

wse and wce for each edge, and is equivalent to the phase angle limit constraints (4.4j).

Constraint set (4.9n) describes linearizations of the second-order conic (SOC) constraints

pwceq
2 ` pwseq

2 ď wiwj , where Lp¨q is formulated as:

L
´

pwceq
2 ` pwseq

2 ´ wiwj

¯

“ 2
´

wcewc
`k
e ` w

s
ews

`k
e

¯

´ pwc`ke q
2 ´ pws`ke q

2 ´ wiw
`
j ´ wjw

`
i ` w

`
iw

`
j

@eij P E
a, ` P t1, ..., Lu, k P t1, ...,Ku

(4.10a)

w`i “
pwi ´ wiq`

L
, w`j “

pwj ´ wjq`

L
@eij P E

a, ` P t1, ..., Lu (4.10b)

wc`ke “ w`iw
`
j cosp

2πk

K
q, ws`ke “ w`iw

`
j sinp

2πk

K
q @eij P E

a, ` P t1, ..., Lu (4.10c)

where both L and K are the total number of pieces (it is possible that L ‰ K), and the

number of added linear cuts is LˆK. Next, constraints (4.9o)–(4.9p) linearize the quadratic

term wi :“ v2
i for each bus i P Na. We present their associated piecewise linear functions
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Lp¨q as:

Lpv2
i q “ 2v`ivi ´ pv

`
i q

2, v`i “
pvi ´ viq`

L
@i P Na, ` P t1, ..., Lu (4.11)

where v`i is a given voltage value on piece ` P t1, ..., Lu. Similarly, line capacity constraints

(4.4j) can be outer approximated as the following:

Lpp2
ij ` q

2
ijq “ 2pijp

`
ij ´ pp

`
ijq

2 ` 2qijq
`
ij ´ pq

`
ijq

2 @eij P E
a, ` P t1, ..., Lu (4.12a)

Lpp2
ji ` q

2
jiq “ 2pjip

`
ji ´ pp

`
jiq

2 ` 2qjiq
`
ji ´ pq

`
jiq

2 @eij P E
a, ` P t1, ..., Lu (4.12b)

p`ij “ p`ji “ se cosp
2π`

L
q, q`ij “ q`ji “ se sinp

2π`

L
q @` P t1, ..., Lu (4.12c)

Convex Envelopes of Bilinear terms in the GIC-Associated DC Circuit We note

that all nonlinearities and non-convexities are from these bilinear terms: (1) zÝÑe pv
d
m ´ vdnq

and (2) viI
d
e . Given any two variables xi, xj P R, the McCormick (MC) relaxation [77] can

be used to linearize bilinear product xixj by introducing a new variable qxij P xxi, xjy
MC .

The feasible region of qxij is defined as follows:

qxij ě xixj ` xjxi ´ xi xj (4.13a)

qxij ě xixj ` xjxi ´ xi xj (4.13b)

qxij ď xixj ` xjxi ´ xi xj (4.13c)

qxij ď xixj ` xjxi ´ xi xj (4.13d)

xi ď xi ď xi, xj ď xj ď xj (4.13e)

Let vzdmn :“ zÝÑe pv
d
m ´ vdnq and udie :“ viI

d
e , the linearzied formulations of (4.5a)-(4.5e) are

presented below:

ÿ

ePE`m

zÝÑe aerν
d
e ´

ÿ

ePE´m

zÝÑe aerν
d
e “ ´amv

d
m ´

ÿ

emnPE
`
m

aev
zd
mn `

ÿ

enmPE
´
m

aev
zd
nm @m P Nd (4.14a)

lde “ aev
zd
mn @emn P E

w (4.14b)
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dqlossi “
ÿ

ePEτi

keu
d
ie @i P Na (4.14c)

vzdmn P xzÝÑe , v
d
m ´ v

d
ny
MC

@emn P E
d (4.14d)

udie P xvi, I
d
e y
MC

@i P Na, e P Eτi (4.14e)

p4.5cq ´ p4.5dq (4.14f)

4.2.4 Model of Uncertainty

This section focuses on constructing an ambiguity set (denoetd by Q) of probability

distributions for the random geo-electric field induced by a GMD event. Let rω be a vector

of all random variables (i.e., rω “ rrνE , rνN sT ), and µ “ rµE , µN sT be the mean vector of the

eastward and northward geo-electric fields, then ambiguity set Q can be formulated in the

following form:

Q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rω P R2

P P P0pRq : EPprωq “ µ

P
´

rω P Ω
¯

“ 1

(4.15)

where P0pRq denotes the set of all probability distributions on R and P presents a probability

measure in P0. Note that random variables rω are not associated with any specific probability

distribution. The second line of Q suggests that the expectation of rω is µ. The third line

defines the support of the random variables, Ω, which contains all the possible outcomes of

rω. We formulate this support set based on valid bounds of geo-electric fields in eastward

and northward directions, such that:

Ω :“
!

prνN , rνEq P R : 0 ď rνN ď νM , ´νM ď rνE ď νM , L
´

prνN q2 ` prνEq2
¯

ď pνM q2
)

(4.16a)

The first two constraints in Ω define individual bounds of rνN and rνE , respectively. Given

a prespecified upper bound on the geo-electric field amplitude (denoted by νM ), the third

inequality further limits the values of rνN and rνE , where L
´

prνN q2 ` prνEq2
¯

denotes a set
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of piecewise linear functions of the following form:

L
´

prνN q2 ` prνEq2
¯

“ 2rνNrνN` ´ prν
N
` q

2 ` 2rνErνE` ´ prν
E
` q

2 @` P t1, ..., Lu (4.17a)

rνN` “ νM cosp
π`

L
q, rνE` “ νM sinp

π`

L
q @` P t1, ..., Lu (4.17b)

where L represents the number of linear pieces. rνN` and rνE` are given values of rνN and

rνE , respectively, on piece `. Recall that we model the geomagnetic field magnitude in a

rectangular form prνN q2`prνEq2 “ p| ~E|q2 (see Eq.(4.2)), thus the bounds of combined rνN and

rνE are calculated as prνN q2`prνEq2 ď pνM q2. In this research, we linearize Ω using (4.17) and

reformulate this two-stage DRO-OTSGMD model as a tractable mixed-integer linear (MIP)

model (discussed in the next section). Figure 4.1 gives two examples that illustrate feasible

domains of rνE and rνN , where vector ~E represents the geo-electric field in the area of a

transmission system. In the figure, the dotted half cycle represents the quadratic boundary

of ~E (i.e., prνEq2 ` prνN q2 ď pνM q2). The tangent lines at this boundary are used to outer

approximate the feasible domain of random variables and formulated as (4.17) (i.e., L “ 5 in

the figure). In this case, Ω can be represented by the surrounded (yellow) area under these

tangent lines. Note that the figure only presents the angle of ~E from 0 (east) to π (north)

because the geo-electric field is uniform and the effects are symmetric with respect to east

(west) direction [74]. For notation brevity, we express uncertainty set Ω in the following

linear matrix form:

Ω :“
!

rω P R2 : Drω ď d
)

(4.18a)

where D P RM0ˆ|rω| and d P RM0 , M0 is the number of constraints in the support set Ω. In

the next section, we use this linear form of Ω to present a reformulation of the two-stage

DR-OTSGMD problem described in Section 4.2.2.
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EW

ν̃N
~E

ν̃E

N

(a) rνE ă 0, | ~E| “ νM
E

N

W

ν̃N

ν̃E

~E

(b) rνE ą 0, | ~E| ă νM

Figure 4.1: Examples of feasible regions of rνE and rνN . The geo-electric field ~E is formed by rνE

and rνN . In Fig.4.1(a), the magnitude of ~E equals νM and angle relative to east is larger than π
2 . In

Fig.4.1(b), the magnitude of ~E is less than νM and the angle is smaller than π
2 .

4.2.5 Reformulation of the Two-Stage DR-OTSGMD

Using linear approximation methods described in Section 4.2.3, the subproblem

becomes linear and it returns a lower bound of the original objective. For notation brevity,

we present the linearized program in a succinct form as follows:

min
y
aTy ` sup

PPQ
EPrHpy, rωqs (4.19a)

s.t. yi P t0, 1u @i P t1, 2, ..., |Ea|u (4.19b)

Ay ě b (4.19c)

where

Hpy, rωq “ min
x
cTx (4.19d)

s.t. Gy `Ex ě h (4.19e)

T prωqy “Wx (4.19f)

where y “ rz,ρsT represents first-stage variables. x “ r∆p, fp, f q, p, g, θ, v, w, wz, wc, ws,

vd, ld, Id, vzd, ud, dqlosssT consists of the second-stage recourse variables that depend on

random variables rω. Let N1 and N2 is the dimension of y and x, respectively; M1 be the

number of constraints in the first stage; M2 and M3 represent the number of constraints

that are independent of and affected by random variables, respectively. Constraints (4.19b)
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represent constraints (4.3b). Constraints (4.19c) represent constraints (4.3c) and (4.7a)–

(4.7b), where A P RM1ˆN1 and b P RM1 . Constraints (4.19e) represent constraints (4.9b)–

(4.12c) and (4.14b)–(4.14f), where G P RM2ˆN1 , E P RM2ˆN2 and h P RM2 . Constraint set

(4.19f) represents constraints (4.14a) that are all equations involved the random variables

in the second stage, where T prωq P RM3ˆN1 and W P RM3ˆN2 . The detailed formulation

presented in Section 4.2.2 shows that only coefficient matrix T prωq P RM3ˆN1 is affected by

random variables rω (see Eq. (4.14a)). Particularly, T prωq is an affine function of rω, such

that T prωq “
ř|rω|
i“1 T

i
rωi where T i P RM3ˆN1 @i “ 0, 1, ..., |rω|.

In remainder of this section, we derive a reformulation of the two-stage DR-OTSGMD

problem which can be solved by applying a decomposition framework. First, we present

an equivalent formulation of the worst-case expected cost supPPQ EPrHpy, rωqs in the objec-

tive function (4.19a). According to Zhao et al. [120], it can be written as an optimization

problem (4.20) by exploiting constraints in ambiguity set Q.

sup
PPQ

EPrHpy, rωqs “ max
P

ż

Ω
Hpy, rωqPpdrωq (4.20a)

s.t.

ż

Ω

rω Ppdrωq “ µ (4.20b)

ż

Ω
Ppdrωq “ 1 (4.20c)

Constraints (4.20b)–(4.20c) precisely describe the ambiguity set defined in (4.15). Con-

straint (4.20b) is an equivalent formulation of the second line in Q (i.e., EP
`

rω
˘

“ µ) which

defines the mean value of random variables rω. Constraint (4.20c) ensures that Ω contains all

the possible outcomes of rω. By applying standard duality theory [16], supPPQ EPrHpy, rωqs

can be evaluated by solving the dual problem of (4.20) as follows:

min
λ,η

µTλ` η (4.21a)

s.t. λT rω ` η ě Hpy, rωq @rω P Ω (4.21b)

where λ and η are dual variables associated with primal constraints (4.20b) and (4.20c),
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respectively. We reformulate the problem as (4.22) by incorporating (4.21) in formulation

(4.19).

Qd :“ min
y,λ,η

aTy ` µTλ` η (4.22a)

s.t. p4.19bq ´ p4.19cq (4.22b)

η ě Hpy, rωq ´ λT rω @rω P Ω (4.22c)

where

Hpy, rωq “ min
x

 

cTx : Gy `Ex ě h, T prωqy “Wx
(

(4.22d)

Note that constraints (4.22c) must be satisfied for all realizations of rω over its support Ω.

Hence, it is equivalent to the following formulation.

η ě max
@rωPΩ

 

Hpy, rωq ´ λT rω
(

(4.23)

The right-hand side of constraints (4.23) can be rewritten as an inner maximization problem.

The derivation is the following.

max
@rωPΩ

!

Hpy, rωq ´ λT rω
)

“ max
@pγ,πqPΓ,rωPΩ

!

ph´GyqTγ ` yT
`

|rω|
ÿ

i“1

pT iqTπrωi
˘

´ λT rω
)

(4.24a)

Γ “

$

&

%

ETγ `W Tπ ď c

γ ě 0
(4.24b)

where γ P RM2 and π P RM3 are dual variables associated with constraints (4.19e) and

(4.19f), respectively. Γ denotes the feasible domain of the dual variables. For fixed y and

λ, the objective function (4.24a) contains bilinear terms πrωi. The literature presents sev-

eral methods to solve robust optimization (RO) models with bilinear terms in the inner

(sub-) problem, including heuristics [114] and MIP reformulations [79,109,118]. The former

finds local optima for two-stage robust problems for which the uncertainty set is a general

polyhedron (e.g., non-convex regular polyhedra [49]). The latter finds exact solutions for

RO problems by exploiting the special structure of the uncertainty set. A recent work by
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Zhao and Zeng [121] develops an exact algorithm for two-stage RO problems for which the

uncertainty set is a general polyhedron. The authors derive an equivalent MIP formulation

for the inner problem by using the strong Karush–Kuhn–Tucker (KKT) conditions. How-

ever, this MIP formulation can be challenging to solve when binary variables are introduced

to linearize complementary slackness constraints. Hence, it is challenging to derive exact

solutions for RO models for which the uncertainty set is a general polyhedron. Thus, we

leave the exploration of exact solution methods as future work. In this research, we focus

on generating a lower bound for reformulation Qd described in (4.22).

From formulation (4.24), we observe that rω only appears in the objective function

(4.24a), thus different realizations of rω do not affect the feasible region of the dual variables,

Γ (4.24b). Meanwhile, note that Γ is nonempty, since formulation (4.22d) is feasible for any

given first-stage solution due to load shedding and over-generation options. Let ppπ, pγq P Γ

be any feasible dual solution to formulation (4.24). It follows that py and pλ are given

solutions of first-stage variables y and λ, respectively. Hence, for fixed y, λ, π and γ,

the maximum value of (4.24a) equals the optimal objective value of the following linear

programming (LP) formulation:

max
@rωPΩ

!

ph´GpyqT pγ ` pyT
`

|rω|
ÿ

i“1

pT iqT pπrωi
˘

´ pλT rω
)

(4.25)

Based on LP geometry [16, 22], since Ω is a bounded and nonempty polyhedron (i.e., Ω :“

trω P R2 : Drω ď du), there exists an optimal (worst-case) solution of rω which is an extreme

point of Ω. Further, we note that the worst-case rω is not required to be a vertex of Ω in

some special cases. For example, if y “ 0 and λ “ 0 , then the worst-case rω could be any

feasible value in Ω (i.e., the optimal solution of rω is not unique).

Remark 4.2.1. Given that Ω is bounded and nonempty. Then, for any given first-stage

decision y and λ, there exists an optimal (worst-case) solution of rω which is an extreme

point of Ω.
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Based on remark 4.2.1 and the above discussion, we derive a MIP formulation by

introducing binary variables associated with each extreme point of Ω. The formulation is

desribed in the following form.

Qv :“ min
y,λ,η

aTy ` µTλ` η (4.26a)

s.t. p4.19bq ´ p4.19cq (4.26b)

where

η ě max
γ,π,rω

ph´GyqTγ ` yT
`

|rω|
ÿ

i“1

|K|
ÿ

j“1

pT iqT ζjrω
˚
ij

˘

´ λT rω (4.26c)

s.t. ETγ `W Tπ ď c (4.26d)

γ ě 0 (4.26e)

ζjl P xβj , πly
MC @j P t1, ..., |K|u, @l P t1, ...,M3u (4.26f)

rω “

|K|
ÿ

j“1

βj rω
˚
j (4.26g)

|K|
ÿ

j“1

βj “ 1 (4.26h)

βj P t0, 1u, @j P t1, ..., |K|u (4.26i)

where K is the set of vertexes (denoted as rω˚) of the uncertainty set Ω and rω˚ij represents the

jth extreme point in K. βj are binary variables used to control the selection of an extreme

point rω˚j . ζj P RM3 are continuous variables introduced for linearizing bilinear products

βjπ via McCormick Relaxations. Note that this linearization is exact due to βj P t0, 1u [83].

The underlying idea of this MIP model is that we only consider the extreme points of Ω

as candidate solutions for rω. Hence, for any given first-stage decision py,λq, the resulting

worst-case rω will be a vertex of Ω.

Proposition 4.2.2. The worst-case expected total cost obtained from formulation Qv is a

lowed bound to the reformulated two-stage DR-OTSGMD problem Qd.
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Proof. Let Q˚d and Q˚v be the optimal objective values to formulations Qd and Qv, respec-

tively. η˚d and η˚v represent the optimal values of η to models Qd and Qv, respectively. Since

K represents the vertexes of Ω, then K Ď Ω and the following holds:

max
@rωPΩ

 

Hpy, rωq ´ λT rω
(

ě max
@rωPK

 

Hpy, rωq ´ λT rω
(

(4.27)

As a result, for any given first-stage decisions y and λ, the following is true: aTy`µTλ`

η˚d ě a
Ty ` µTλ` η˚v (see constraints (4.22c) and (4.26c)), i.e., Q˚v ď Q˚d .

Proposition 4.2.3. Solving formulation Qv yields a lower bound of the worst-case expected

total cost to the two-stage DR-OTSGMD problem Qo.

Proof. Let Q˚o , Q˚d , and Q˚v be the optimal objective function values of formulations Qo,

Qd, and Qv, respectively. As described in Section 4.2.3, Qd is a linear approximation of Qo.

Hence, Qd yields a lower bound for Qo, i.e., Q˚d ď Q˚o . Further, Q˚v ď Q˚d based on proposition

4.2.2. Thus, Q˚v ď Q˚d ď Q˚o .

4.3 Solution Methodology: A column-and-constraint gener-

ation algorithm

To solve the proposed two-stage DR-OTSGMD problem, we use the column-and-

constraint generation (C&CG) algorithm described in [118]. Similar to Benders’ decompo-

sition, the C&CG algorithm is a cutting plane method. It iteratively refines the feasible

domain of a problem by sequentially generating a set of recourse variables and their asso-

ciated constraints. The algorithmic description for the C&CG procedure is presented in

Algorithm 4. In this algorithm, we use notation O to denote a subset of K. LB and UB

represent a lower and an upper bound of formulation (4.26), respectively. ε is a sufficiently

small positive constant. Lines 3-10 are the main body of the C&CG which describe a cutting

plane procedure for the first K iterations. In lines 4-5, the LB is evaluated during iteration

K using the incumbent solution pyK`1, pλK`1 and pηK`1. Note that in the initial iteration
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(K “ 0), set O is empty and master problem Pp¨q lacks constraints (4.28a)-(4.28c). In lines

6-7, the subproblem Qp¨q is solved, UB is estimated, and the worst-case scenario p

rωK`1 is

generated using the incumbent decision (pyK`1, pλK`1). Line 8 generates a new set of recourse

variables xK`1 and associated constraints (4.30) for Pp¨q. Note that constraint (4.30a) is

valid only if subproblem Qp¨q is bounded (i.e., complete recourse). Indeed, for any given

first-stage solution, formulation (4.22d) is feasible due to load shedding and over-generation

options. Line 9 expands set O and adds these newly-generated variables and constraints to

the master problem Pp¨q to tighten the feasible domain of the first-stage variables (line 4).

The process is repeated until the objective values of the upper and lower bound converge

(line 3).

Algorithm 4 Column-and-Constraint Generation (C&CG)

1: function C&CG
2: Set KÐ 0, LB Ð ´8, UB Ð `8, O “ H

3: while |UB´LB|
LB ď ε do

4: Solve the following master problem

Ppprω P Oq “ min
y,λ,η,x

aTy ` µTλ` η

s.t. p4.19bq ´ p4.19cq

η ě cTxl ´ λT prωl @l ď K (4.28a)

Gy `Exl ě h @l ď K (4.28b)

T pprωlqy “Wxl @l ď K (4.28c)

5: Use the optimal solution pyK`1, pλK`1 and pηK`1 to calculate LB Ð Ppprω P Oq
6: Solve

QppyK`1, pλK`1
q “ max

γ,π, rω
ph´GpyK`1

q
Tγ ` ppyK`1

q
T
`

| rω|
ÿ

i“1

|K|
ÿ

j“1

pT iqT ζjrω
˚
ij

˘

´ ppλK`1
q
T
rω (4.29a)

s.t. p4.26dq ´ p4.26iq

7: Use the optimal solution p

rωK`1 to calculate UB Ð LB ´ pηK`1 ` QppyK`1, pλK`1q

8: Generate a new set of recourse variables xK`1 and the following constraints for Pp¨q

η ě cTxK`1
´ λT prωK`1 (4.30a)

Gy `ExK`1
ě h (4.30b)

T pprωK`1
qy “WxK`1 (4.30c)

9: Update OÐ O
Ť

p

rωK`1 and KÐ K` 1
10: end while
11: return pyK

12: end function
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Note that the optimal solution of the reformulation (4.26) can be obtained by enu-

merating all the possible uncertain scenarios (vertexes) in K. However, full enumeration is

computationally intractable when subset K is large. One advantage of the C&CG is that

the computational efforts could be significantly reduced by a partial enumeration of non-

trivial scenarios of the random variables rω. Additionally, the C&CG algorithm is known

to converge in a finite number of iterations since the number of extreme points in K is

finite [121].

4.4 Case Study

This section analyzes the performance of a power system when exposed to uncertain

geo-electric fields induced by GMDs. We use a modified version of the Epri21 system [3]. Its

size is comparable to a previous work [123] that considered minimization of the quasi-static

GICs and did not consider ACOPF with topology control. Computational experiments were

performed using the HPC Palmetto cluster at Clemson University with Intel Xeon E5-2665,

24 cores and 120GB of memory. All implementations are completed using Julia/JuMP [36].

All cases are solved using CPLEX 12.7.0 (default options).

4.4.1 Data Collection and Analysis

The main source of data about GMDs is a recent work by Woodroffe et al. [113].

The authors analyzed a 100-year of data related to storms and indicate that the magnitude

of the corresponding induced geo-electric fields varies with the magnetic latitudes. The

authors also categorized geomagnetic storms into three classes, strong, severe and extreme,

according to the range of geoelectromagnetic disturbances (Dst). Table 4.1 summaries a

set of parameters used for describing the uncertain electric fields induced by GMDs. In

this table, νM denotes the maximum amplitude of geo-electric fields induced by GMDs (see

Section 4.2.4). Its value is obtained by the upper bound of a 95% confidence interval (CI)

of a 100-year peak GMD magnitude presented in Woodroffe et al. [113] (Table 1-3 in [113]
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). The values of µN and µE are estimated via extreme value analysis of electric fields from

15 geomagnitude storms using a Generalized Extreme Value Distribution model for both

northward and eastward components (i.e., rνN and rνE). In addition, it is important to notice

Table 4.1: Peak GMD amplitudes for geomagnetic storms with different magnetic latitudes based on
100 years of historical data. µE and µN are the mean values of geo-electric fields in the eastward and
northward directions. MLAT denotes the geomagnetic latitude. Dst represents geoelectromagnetic
disturbances.

νM (µN , µE) (V/km)

Strong Severe Extreme

MLAT p´100nT ě Dst ą ´200nT q p´200nT ě Dst ą ´300nT q p´300nT ě Dstq

40˝–45˝ 1.6 p0.9, 0.8q 2.0 p0.9, 0.8q 3.5 p1.1, 0.9q

45˝–50˝ 1.2 p0.7, 0.7q 1.6 p0.8, 0.7q 3.5 p1.5, 1.3q

50˝–55˝ 3.5 p2.1, 1.8q 5.0 p2.5, 2.1q 6.0 p3.1, 2.7q

55˝–60˝ 11.5 p6.6, 5.6q 6.6 p3.7, 3.1q 9.1 p4.2, 3.6q

60˝–65˝ 6.6 p5.0, 4.3q 6.6 p4.3, 3.6q 12.7 p5.9, 5.1q

65˝–70˝ 8.8 p6.1, 5.2q 8.8 p5.3, 4.5q 10.6 p5.8, 4.9q

70˝–75˝ 7.7 p5.1, 4.3q 6.3 p3.9, 3.3q 16.1 p6.8, 5.8q

that latitudes in Table 4.1 are relative to a magnetic coordinate system which usually differs

from the corresponding values in the geographic system. Hence, the magnetic latitudes

should be converted to corresponding latitudes in a geographic system, and vice versa. In

this research, we convert the geographic latitudes of substations in a power system to their

corresponding magnetic latitudes using the transformation method described in Appendix

A. After transformation, the MLAT of the Epri21 system is between 55˝ ´ 60˝.

Tables 4.2–4.4 present problem parameters that we derived for this modified Epri21

case. We consider that this system is located in Quebec, Canada in order to use the

corresponding geographic location. We consider that cost of shedding/over-generating load

is ten times of the most expensive generation cost; and the fuel cost coefficients of additional

real-power generation (i.e., ∆i) is 20% more than the reserved generation prior to a storm.
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Table 4.2: (a) Transformer winding resistance and k are estimated based on the test cases provided
in [6, 58]. (b) The nominal line length for the Epri21 system [3] is used to derive an approximate
geospatial layout of the power system nodes

. (a) Transformer data

Resistance Resistance
Name Type W1(Ohm) Bus No. W2(Ohm) Bus No. Line No. k (p.u.)

T 1 wye-delta 0.1 1 0.001 2 16 1.2
T 2 Gwye-Gwye 0.2 4 0.1 3 17 1.6
T 3 Gwye-Gwye 0.2 4 0.1 3 18 1.6
T 4 Auto 0.04 3 0.06 4 19 1.6
T 5 Auto 0.04 3 0.06 4 20 1.6
T 6 Gwye-Gwye 0.04 5 0.06 20 21 1.6
T 7 Gwye-Gwye 0.04 5 0.06 20 22 1.6
T 8 GSU 0.15 6 0.001 7 23 0.8
T 9 GSU 0.15 6 0.001 8 24 0.8
T 10 GSU 0.1 12 0.001 13 25 0.8
T 11 GSU 0.1 12 0.001 14 26 0.8
T 12 Auto 0.04 16 0.06 15 27 1.1
T 13 Auto 0.04 16 0.06 15 28 1.1
T 14 GSU 0.1 17 0.001 18 29 1.2
T 15 GSU 0.1 17 0.001 19 30 1.2

(b) Transmission line data

From To Length
Line Bus Bus (km)

1 2 3 122.8
2 4 5 162.1
3 4 5 162.1
4 4 6 327.5
5 5 6 210.7
6 6 11 97.4
7 11 12 159.8
8 15 4 130.0
9 15 6 213.5
10 15 6 213.5
11 16 20 139.2
12 16 17 163.2
13 17 20 245.8
14 17 2 114.5
15 21 11 256.4

Table 4.3: (a) The substation grounding resistance GR is estimated from typical values of grounding
resistance of substations provided in [80]. (b) The original line parameters roe and xoe are scaled by
the ratio βe of the new to original line lengths.

(a) Substation data

Name Latitude Longitude GR(Ohm)

SUB 1 46.61 -77.87 0.20

SUB 2 47.31 -76.77 0.20

SUB 3 46.96 -74.68 0.20

SUB 4 46.55 -76.27 1.00

SUB 5 45.71 -74.56 0.10

SUB 6 46.38 -72.02 0.10

SUB 7 47.25 -72.09 0.22

SUB 8 47.20 -69.98 0.10

(b) Other parameters

κ`i $ 1000 /MW (or MVar)

κ´i $ 1000 /MW (or MVar)

vi 0.9 p.u.

vi 1.1 p.u.

cR1
i 120%c1i

cR2
i 120%c2i

I
a
e Te{mintvi, vju

re pβeqr
o
e

xe pβeqx
o
e

θ 30˝

Table 4.4: Generator Data

Name Bus No. gp (MW) gp (MW) gq (MVar) gq (MVar) c2, c1, c0 ($)

G 1 1 200 1000 -350 500 0.11, 5, 60
G 2 7 180 900 -350 400 0.11, 5, 60
G 3 8 180 900 -350 400 0.11, 5, 60
G 4 13 100 500 -200 225 0.11, 5, 60
G 5 14 100 500 -200 225 0.11, 5, 60
G 6 18 160 800 -300 400 0.11, 5, 60
G 7 19 160 800 -300 400 0.11, 5, 60
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4.4.2 Experimental Results

To evaluates the performance of the Epri21 system under the influence of uncertain

geomagnetic storms, we consider three different storm levels described in Table 4.1: extreme,

severe and strong. We assume that generator ramping limits change from 0% to 30% of

its maximum real power generation (gp) in 5% steps. To analyze the benefits of capturing

uncertain events via the DR optimization, we study the following four cases:

1. C0: The ACOTS with GIC effects induced by the mean geo-electric fields (i.e., µE and µN ):

Mmean :“ Min
!

aTy ` cTx: (4.19b)-(4.19c), (4.19e)-(4.19f); rω “ rνE , νN sT
)

ô y˚mean,C
˚
mean

2. C1: The two-stage DR-OTSGMD:

Mdr :“ Min
!

(4.26a): (4.26b)-(4.26i)
)

ô y˚dr,C
˚
dr

3. C2: The two-stage DR-OTSGMD with fixed topology configuration and generator setpoints:

Mfm :“ Min
!

(4.26a): (4.26b)-(4.26i); y “ y˚mean

)

ô y˚mean,C
˚
fm

4. C3: The two-stage DR-OTSGMD with fixed topology configuration:

Mft :“ Min
!

(4.26a): (4.26b)-(4.26i); yi “ 1 @i P t1, ..., |Ea|u
)

ô y˚ft,C
˚
ft

where Mα is the optimization model for case α; y˚α and C˚α represent the optimal first-

stage decisions and objective function value, respectively. The values of y˚α and C˚α are

obtained by solving Mα. Case C0 identifies the optimal first-stage decisions y˚mean (i.e.,

generation and topology) and evaluates the objective C˚mean according to the mean geo-

electric fields (V/km) in the northward and eastward directions. Case C1 identifies a solution

for the two-stage DR-OTSGMD model assuming uncertain GMDs. Case C2 finds a solution

to the worst-case expected cost C˚fm of the DR optimization model using the generation

and topology decisions of Case C0. Finally, Case C3 is similar to Case C1, but topology

reconfiguration is not allowed.

4.4.2.1 Case C0: GIC mitigation for the mean geo-electric fields

Case C0 assumes that power system operators use the mean value of a storm level

(i.e., strong, severe and extreme) to optimize power generation and system topology. It is
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assumed that the induced northward and eastward geo-electric fields equal the correspond-

ing mean values µN and µE , respectively. In Table 4.5, we summarize the computational

results for Case C0 under different storm levels and ramping limits. The results suggest

that the cost of mitigating the impacts of a storm decreases as ramping limits increase.

The highest cost occurs when generator ramping in not allowed (i.e., uRi “ 0). This is

the reason why increasing ramping limits from 0 to 30% leads to a 66.1% cost decrease for

strong GMD events. Additionally, the total cost varies with storm levels; increasing the

intensity of geoelectirc field induced by a storm results in higher cost. Costs increase with

storm level; however, this increase is not significant, mainly because the cost changes due

to generator dispatch are small. For example, the cost difference between strong and severe

storms is only 0.29% when ramping limits equal 10%.

Table 4.5: Computational results for Case C0 with respect to different storm levels (SL) and ramping
limits (uRi ). TC denotes the minimum total cost for generator dispatch and load shedding. µE and
µN are the mean values of geo-electric fields for northward and eastward components, respectively.
z˚ represents the optimal line switching decisions.

SL(55˝–60˝) uRi (%) TC ($) µE , µN (V/km) z˚ Wall Time (sec)

Strong

0 379,209 5.6, 6.6 13, 15, 18, 21, 22 261
5 341,199 5.6, 6.6 13, 15, 17, 21, 22 276
10 307,682 5.6, 6.6 13, 15, 18, 21, 22 243
15 280,176 5.6, 6.6 13, 15, 18, 21, 22 244
20 257,539 5.6, 6.6 13, 15, 17, 21, 22 99
25 240,465 5.6, 6.6 13, 15, 20, 21, 22 262
30 228,336 5.6, 6.6 13, 15, 18, 21, 22 251

Severe

0 379,177 3.1, 3.7 13, 15, 17, 18, 21, 22 85
5 341,167 3.1, 3.7 13, 15, 18, 21, 22 254
10 306,794 3.1, 3.7 13, 15, 17, 18, 21, 22 106
15 280,149 3.1, 3.7 13, 15, 17, 18, 21, 22 262
20 257,513 3.1, 3.7 13, 15, 17, 18, 21, 22 268
25 240,394 3.1, 3.7 13, 15, 17, 18, 21, 22 197
30 227,872 3.1, 3.7 13, 15, 17, 18, 21, 22 263

Extreme

0 379,181 3.6, 4.2 13, 15, 17, 18, 21, 22 267
5 341,171 3.6, 4.2 13, 15, 17, 21, 22 273
10 307,654 3.6, 4.2 13, 15, 17, 18, 21, 22 284
15 280,152 3.6, 4.2 13, 15, 17, 18, 21, 22 297
20 257,516 3.6, 4.2 13, 15, 18, 21, 22 274
25 240,445 3.6, 4.2 13, 15, 17, 18, 21, 22 204
30 228,316 3.6, 4.2 13, 15, 18, 21, 22 266
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4.4.2.2 Case C1: DR optimization for GIC mitigation under uncertainty

In Case C1, uncertain GMD events are modeled via an ambiguity set which repre-

sents the probability distributions of geo-electric field properties (see Section 4.2.4). The

proposed outer approximation of Ω consists of 90 linear cuts. This results in 90 extreme

points, and consequently, 90 distinct values of rω (i.e., |K| “ 90) which are evaluated in

formulation (4.26). Similar to Case C0, we conduct sensitivity analysis with respect to

storm levels and ramping limits. Table (4.6) summarizes these computational results. The

results show that, similar to Case C0, the worst-case expected total cost (WETC) decreases

as the ramping limits increase. This decrease is as large as 57.2% for a strong storm (i.e.,

uRi “ 30% versus uRi “ 0%).

Table 4.6: Computational results for Case C1 with respect to different strom levels (SL) and ramping
limits (uRi ). WETC denotes the worst-case expected total cost. rν˚E , rν˚N represent the worst-case
geo-electric fields for eastward and northward components, respectively. z˚ represents the optimal
line switching decisions.

SL(55˝–60˝) uRi (%) WETC ($) rν˚E , rν˚N (V/km) z˚ Wall Time (sec)

Strong

0 454,447 8.1, 8.1 2, 3, 15, 17–20, 22, 27, 28 5,264

5 401,735 8.1, 8.1 1, 2, 9, 10, 15, 17–22, 28 6,758

10 369,019 8.1, 8.1 1, 2, 9, 10, 15, 17–22, 28 7,950

15 340,884 8.1, 8.1 1, 2, 9, 10, 15, 17–22, 27 5,808

20 318,382 8.1, 8.1 1, 2, 9, 10, 15, 17–22, 27 6,152

25 301,321 8.1, 8.1 1, 2, 9, 10, 15, 17–22, 27 5,637

30 288,987 8.1, 8.1 1, 2, 9, 10, 15, 17–22, 28 7,804

Severe

0 379,294 4.7, 4.7 15, 17, 19, 27, 28 2,324

5 341,280 4.7, 4.7 15, 17, 19, 20, 27, 28 1,264

10 307,760 4.7, 4.7 15, 19, 20, 27, 28 2,077

15 280,246 4.7, 4.7 15, 19, 20, 27, 28 905

20 257,605 4.7, 4.7 15, 17, 20, 27, 28 535

25 240,528 4.7, 4.7 15, 17, 19, 27, 28 417

30 228,394 4.7, 4.7 15, 19, 20, 27, 28 3,496

Extreme

0 379,586 7.1, 5.7 2, 8, 18–20, 21, 27, 28 4,605

5 341,564 7.1, 5.7 2, 8, 18–20, 21, 27, 28 2,114

10 308,031 7.1, 5.7 2, 8, 18–20, 21, 27, 28 4,468

15 280,486 7.1, 5.7 2, 8, 17, 19, 20, 22, 27, 28 2,266

20 257,826 7.1, 5.7 2, 8, 17, 19, 20, 21, 27, 28 2,932

25 240,743 7.1, 5.7 2, 8, 17, 20, 21, 27, 28 1,426

30 228,590 7.1, 5.7 2, 8, 17, 19, 20, 22, 27, 28 3,172
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Moreover, we observe that, for a given storm level, the worst-case geo-electric field

remains the same at different ramping limits. For example, in extreme storm, rν˚E and rν˚N

always equal 7.1 and 5.7 V/km, respectively. This indicates that, for a given storm level, the

worst scenario for the system is always due to the same extreme point of Ω. In addition, the

difference in the WETC between strong and extreme (and severe) events is considerable. For

example, the cost difference between strong and severe events is 19.8% when uRi “ 0. Table

4.7 reports the amount and percentage of the WETC due to load shedding. The results

suggest that, for Case C1 the increase in WETC under a strong event is primarily due to

changes in load shedding. For example, no load shedding is observed for any ramping limit

in severe storms. However, in the case of strong storms, an average 16.94% of the WETC

on average is due to load shedding.

4.4.2.3 Case Comparisons: Cost Benefits of the DR optimization

Figure 4.2 summarizes the total cost C˚ for all cases defined in Section (4.4.2). The

DR optimization model results in higher costs for all problems solved. These costs are

highest when the storm level is strong. Tables 4.5 and 4.6 suggest that the computation

time required for solving Case C1 are higher than Case C0. Hence, modeling uncertainty

in geo-electric fields results in a significant increase in computational efforts, but it also

provides significant cost savings over the deterministic model which ignores uncertainty.

The cost benefits of the DR optimization can be evaluated by comparing Case C1

with C2. Similar to Case C1, the worst-case expected cost of Case C2 decreases as ramping

limits increase. For all storm levels, the cost benefits of the DR-OTSGMD vary with

ramping limits. The differences in cost are statistically significant. For example, when a

strong storm is exposed, the cost savings are as much as 122.12% (i.e., pC˚fm ´ C˚drq{C
˚
dr).

This is because the generation and topology decisions in Case C1 are determined by the

DR model; however, these decisions for Case C2 are fixed to Case C0.

We also compare Case C1 with C3 to evaluate the performance of network recon-

figuration. The results displayed in Figure 4.2 suggest that line switching decisions could
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Figure 4.2: Cost comparisons among all cases.

significantly lower the cost of GIC mitigation under uncertainty, in particular for strong

and extreme storms. For example, Figure 4.2(a) shows that the WETC is higher than Case

C2 and has significantly increased when line switching is not allowed in the two-stage DR-

OTSGMD model. Notice that when uRi “ 10%, the cost increase in Case C3 as compared

to C1 is 206.4% and the increase in cost in Case C2 as compared to C1 is 116.5%.

Table 4.7 demonstrates the impacts of load shedding on cost. The results indicate

that the cost differences between any two cases are primarily because of load shedding. For

example, in the case of extreme storms, the total cost of Case C2 is much higher than Case

C1. This is due to the fact that the topology control in Case C1 enables all of the load

to be served. In contrast, the fixed topology in Case C2 results in a load shedding cost of

39.28% on average. Similarly, for severe storms, load shedding is observed only in Case C2.

As a consequence, Case C2 yields the highest cost in comparison to the other three cases.
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Table 4.7: Load shedding costs for all cases. The average (Avg.), minimum (Min.), maximum (Max.)
and the standard deviation (Std.) of load shedding cost (LSC) are computed over ramping limits
from 0% – 30%. For Case C1, C2 and C3, LSC is associated with the worst-case geo-electric fields.
Solutions displayed in parentheses denote the percentage of the total cost ( C˚) due to load shedding.
“-” indicates that no load shedding is observed.

LSC(% of the C˚)

SL(55˝–60˝) Case Avg. Min. Max. Std.

Strong

C0 - - - -

C1 59,995 (16.94) 53,289 (13.73) 94,839 (20.87) 15,377 (2.40)

C2 243,842 (37.78) 242,923 (33.05) 244,951 (41.34) 923 (3.10)

C3 421,148 (45.58) 420,558 (41.48) 421,569 (48.68) 367 (2.64)

Severe

C0 - - - -

C1 - - - -

C2 113 (0.03) 71 (0.02) 121 (0.04) 19 (0.01)

C3 - - - -

Extreme

C0 - - - -

C1 - - - -

C2 182,874 (33.05) 158,603 (28.33) 191,813 (37.78) 14,605 (4.00)

C3 223,739 (39.28) 216,536 (34.37) 227,672 (42.39) 4,940 (3.06)

4.5 Conclusions and Future Research

In this chapter, we propose a two-stage DR-OTSGMD formulation for solving OTS

problems that take into account reactive power consumption induced by uncertain geo-

electric fields. We construct an ambiguity set to characterize a set of probability distribu-

tions of the geo-electric fields, and aim to minimize the worst-case expected total cost over

all geo-electric field distributions defined in the ambiguity set. Since the proposed DR for-

mulation is intractable, we derive a reformulation that leads to a decomposition framework

for solving our problem based on the C&CG algorithm. We prove that that solving this

reformulation yields a lower bound of the original proposed DR model. The case studies

based on the modified Epri21 system show that considering the uncertainty of the GMD-

induced geo-electric field is crucial and the DR optimization method is an effective approach

to deal with this uncertainty.

There remain a number of future directions. For example, considering additional

moment information, such as the variations of random variables, could enhance the modeling
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of the ambiguity set. Additionally, improving the proposed algorithm is necessary for solving

large-size instances. Another potential extension is to extending the formulation to integrate

N-1 security (contingency) constraints in order to increase the resiliency of transmission

systems under GMD extreme events.
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Chapter 5

Conclusions and Future Research

An electric power system consists of various components that generate and deliver

large amounts of electricity from distant sources to demanding consumers. Given the rapid

growth in electricity demand, the cost-effective utilization of power utilities while providing

reliable accessibility is extremely important. The alternating current optimal power flow

(ACOPF) problem is one of the most fundamental optimization problems for identifying the

economic and reliable operations of electric power systems. Solving the ACOPF problem

for large-sized systems is computationally challenging because of the complexities imposed

by nonlinear and non-convex AC physics. In the first phase of this dissertation, we focus

on developing computationally efficient approaches for the ACOPF problem in order to

improve power dispatch efficiency, as this could significantly save generation cost each year.

Next, we shift our study to the impacts of geomagnetic disturbances (GMDs) on

electrical power systems. GMDs, casued by solar storms, create geo-electric fields which then

induce quadi-DC currents (GICs) in grounded sections of power system networks. GICs can

saturate transformers, resulting in hot-spot heating and reactive power consumption which

can severely impact the ability of a power system to deliver power. To address this security

issue, we develop a mixed-integer, nonlinear model which incorporates these effects into

the optimal transmission switching (OTS) problem. This optimization problem (which we

call OTS-GMD) is the network design version of the ACOPF problem that allows topology
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reconfiguration to mitigate GMD-induced effects. We seek to identify an optimal topology

control and generator dispatch within a timeframe that is compatible with real-time actions

for GMD mitigation. Further, GMDs are unpredictable in reality, which makes it difficult

to accurately predict the induced geo-electric field. Hence, it is essential to consider the

uncertain amplitude and direction of the induced geo-electric field. In this context, we

propose a distributionally robust (DR) approach to produce solutions that are robust to

these uncertainties.

This dissertation makes three key contributions to the literature related to OPF and

its variations. The first contribution of this dissertation is the development of a computa-

tionally efficient algorithm for solving the ACOPF problem to global optimality (Chapter

2). There has been an increasing interest on convex relaxation-based solution approaches

for the ACOPF problem, such as second-order-conic (SOC) relaxations [64], quadratically

constrained (QC) relaxations [56], and semi-definite programming (SDP) relaxations [13].

These relaxations typically yield tight lower bounds for practical problems. However, there

are still problem instances for which these lower bounds are weak. Based on state-of-the-

art QC relaxations, we propose novel formulations for tight piecewise convex relaxations of

trilinear and quadratic functions in the AC power flow equations. Further, we develop an

adaptive, multivariate partitioning (AMP) algorithm with bound tightening and heuristic

branching strategies that progressively improves these tight relaxations. Except for a few

challenging instances, our methodologies close the best known gaps for many hard instances

found in the literature.

The second contribution of this dissertation is our modeling of GIC impacts on

transmission systems and developing a heuristic to quickly solve the OTS problem that

incorporates GICs with AC power flow physics (Chapter 3). This research builds upon our

work on convex relaxations of the ACOPF problem in Chapter 2. The proposed models

design transmission systems able to better withstand GMD events. Although a few studies

propose models for mitigating the impact of GICs on the power grid, there is a lack of

research on modeling the impacts of GICs in combination with AC power flow physics. Our
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model captures the impacts of GICs to power systems which consider different transformer

types. In addition, we incorporate AC power flow and exploit line switching to mitigate

the risks associated with GICs. Further, we create a local search algorithm that yields

high-quality solutions quickly. This heuristic method starts from a reference topology deci-

sion and iteratively improves solution quality by locally searching around the best known

solution. Our experimental results for the modified RTS96 system [48] show that our pro-

posed local branching search method can find near-optimal solutions and offer a significant

improvement in computational time as compared to the Gurobi MIP optimizer.

The third contribution of this dissertation is the modeling of uncertain GMD events.

We propose a solution approach which is robust to prediction errors related to the amplitude

and direction of a GMD (Chapter 4). Our model extends the work presented in Chapter 3 by

relaxing the assumptions that the strength and direction of the GMD-induced geo-electric

field are deterministic. In reality, solar activities are unpredictable and vary with time, thus

there is often uncertainty in predictions of solar storms and the induced geo-electric fields.

To capture these uncertainties, we develop a two-stage DR optimization model which we call

DR-OTSGMD. As the true probability distribution of the induced geo-electric field is hard

to estimate, we construct an ambiguity set to characterize a set of probability distributions

that the geo-electric field may follow. The objective is to minimize the expected total

costs for the worst-case distribution defined in the ambiguity set. Further, we derive a

reformulation that leads to a decomposition framework for solving our problem based on a

column-and-constraint generation (C&CG) algorithm. The resulting solution yields a valid

lower bound of the original proposed two-stage DR-OTSGMD model. Our computational

results for the modified Epri21 system show that the DR optimization method is effective

for generating robust solutions.

We have identified other interesting problems for future research. In Chapter 2, we

use the proposed tight piecewise convex relaxations to solve the polar form of the ACOPF

formulation. Testing the performance of our methods for equivalent formulations of the

ACOPF problem is a future research direction to consider. Since power flow networks are

102



sparse, exploiting this network structure can lead to the development of computationally

efficient algorithms. Next, we acknowledge that there are other branching strategies lead-

ing to better convergence of AMP and are worth investigating in the future. The heuristic

proposed in Chapter 3 provides high-quality solution bounds for the proposed OTS-GMD

problem. Thus, the development of exact solution algorithms which can solve the problem

in a timely manner may be a research direction worth pursuing. Researchers may also be

interested to investigate the following extensions of our OTS-GMD problem: (a) captur-

ing other effects of GMD on transformers (e.g., harmonic distortion), (b) modeling time-

extended variations in the geo-electric field, and (c) considering N-1 security constraints are

crucial to increase the resiliency of transmission systems under GMD extreme events.

In Chapter 4, the ambiguity set is formulated by exploiting empirical means of the

uncertain amplitude and direction of the induced geo-electric field. Considering additional

moment information, such as the standard deviation of the uncertainties in the geo-electric

field, could enhance the modeling of the ambiguity set. The computation time required

to solve small test cases implies that a key practical barrier for adopting the proposed

two-stage DR-OTSGMD model is scalability. Hence, the development of computationally

efficient algorithms is essential to solve practically-sized power systems. Finally, there are

other resiliency options, such as building new lines and phase-shifting transformers, that

can be used to mitigate GIC effects — these are additionally promising directions for future

exploration.
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Appendix A Convert from Magnetic to Geographic Coordi-

nates

Table 1: The dipole coefficients from the International Geophysical Reference Field (IGRF)

Epoch g01 g11 h11

1965 -30334 -2119 5776
1970 -30220 -2068 5737
1975 -30100 -2013 5675
1980 -29992 -1956 5604
1985 -29873 -1905 5500
1990 -29775 -1848 5406
1995 -29692 -1784 5306
2000 -29619 -1728 5186
2005 -29554 -1669 5077
2010 -29496 -1586 4944
2015 -29442 -1501 4797

Denote geomagnetic (MAG) and geographic (GEO) coordinates asQm “ rxm, ym, zms
T

and Qg “ rxg, yg, zgs
T , respectively. In some coordinate systems, position rx, y, zsT is often

defined by latitudes ϕ, longitude Θ and radial distance R [52], such that:

x “ R cospϕq cospΘq (1a)

y “ R cospϕq sinpΘq (1b)

y “ R sinpϕq (1c)

And

R “ px2 ` y2 ` z2q1{2 (2a)

ϕ “ arccosp
x

px2 ` y2q
1
2

(2b)

Θ “

$

’

&

’

%

arccosp z

px2`y2q
1
2
, if y ě 0

´arccosp z

px2`y2q
1
2
, otherwise

(2c)
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Using above notation, the MAG coordinates can be converted to the GEO coordinates using

the following equation:

Qm “ T ¨Qg (3a)

where

T “ xφ´ 90˝, Y y ¨ xλ, Zy (4a)

xφ´ 90˝, Y y “

»

—

—

—

—

–

cospφ´ 90˝q 0 sinpφ´ 90˝q

0 1 0

´ sinpφ´ 90˝q 0 cospφ´ 90˝q

fi

ffi

ffi

ffi

ffi

fl

, xλ, Zy “

»

—

—

—

—

–

cospλq sinpλq 0

´ sinpλq cospλq 0

0 0 1

fi

ffi

ffi

ffi

ffi

fl

(4b)

λ “ arctan
`h11

g11

˘

(4c)

φ “ 90˝ ´ arcsin
´g11 cospλq ` h11 sinpλq

g01

¯

(4d)
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[20] Léonard Bolduc, Michel Granger, Gregoire Pare, Jean Saintonge, and Luc Brophy.
Development of a DC current-blocking device for transformer neutrals. Power Deliv-
ery, IEEE Trans on, 20(1):163–168, 2005.

[21] DH Boteler. Geomagnetically induced currents: present knowledge and future re-
search. Power Delivery, IEEE Trans. on, 9(1):50–58, 1994.

[22] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[23] Waqquas A Bukhsh, Andreas Grothey, Ken IM McKinnon, and Paul A Trodden.
Local solutions of the optimal power flow problem. IEEE Transactions on Power
Systems, 28(4):4780–4788, 2013.

[24] Mary B Cain, Richard P O’neill, and Anya Castillo. History of optimal power flow
and formulations. Federal Energy Regulatory Commission, pages 1–36, 2012.

[25] Paul Cannon, Matthew Angling, Leslie Barclay, Charles Curry, Clive Dyer, Robert
Edwards, Graham Greene, Mike Hapgood, Richard B Horne, David Jackson, et al.
Extreme space weather: impacts on engineered systems and infrastructure. Royal
Academy of Engineering, 2013.

[26] J Carpentier. Contribution to the economic dispatch problem. Bulletin de la Societe
Francoise des Electriciens, 3(8):431–447, 1962.

108



[27] Chen Chen, Alper Atamtürk, and Shmuel S Oren. Bound tightening for the alter-
nating current optimal power flow problem. IEEE Transactions on Power Systems,
31(5):3729–3736, 2016.

[28] Yuwei Chen, Qinglai Guo, Hongbin Sun, Zhengshuo Li, Wenchuan Wu, and Zihao Li.
A distributionally robust optimization model for unit commitment based on kullback-
leibler divergence. IEEE Transactions on Power Systems, 2018.

[29] C. Coffrin, H. L. Hijazi, and P. Van Hentenryck. The qc relaxation: A theoretical
and computational study on optimal power flow. IEEE Trans. on Power Systems,
31(4):3008–3018, July 2016.

[30] Carleton Coffrin, Russell Bent, Kaarthik Sundar, Yeesian Ng, and Miles Lubin. Pow-
ermodels. jl: An open-source framework for exploring power flow formulations. arXiv
preprint arXiv:1711.01728, 2017.

[31] Carleton Coffrin, Dan Gordon, and Paul Scott. NESTA, the NICTA energy system
test case archive. arXiv preprint arXiv:1411.0359, 2014.

[32] Carleton Coffrin, Hassan L Hijazi, and Pascal Van Hentenryck. Strengthening con-
vex relaxations with bound tightening for power network optimization. In Inter-
national Conference on Principles and Practice of Constraint Programming, pages
39–57. Springer, 2015.

[33] Carleton Coffrin, Hassan L Hijazi, and Pascal Van Hentenryck. The qc relaxation: A
theoretical and computational study on optimal power flow. IEEE Transactions on
Power Systems, 31(4):3008–3018, 2016.

[34] Payman Dehghanian and Mladen Kezunovic. Impact assessment of transmission line
switching on system reliability performance. In Intelligent System Application to
Power Systems (ISAP), 2015 18th International Conference on, pages 1–6. IEEE,
2015.

[35] Erick Delage and Yinyu Ye. Distributionally robust optimization under moment un-
certainty with application to data-driven problems. Operations research, 58(3):595–
612, 2010.

[36] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language for
mathematical optimization. SIAM Review, 59(2):295–320, 2017.
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