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Abstract

When commissioning a system, a myriad of potential designs can successfully fulfill the

system’s goals. Deciding among the candidate designs requires an understanding of how the design

affects the system’s quality attributes and how much effort is needed to realize the design. The

difficulty of the process compounds if the system to be designed includes dynamic run-time self-

adaptivity, the ability for the system to self-modify its architecture at run-time in response to either

external or internal stimuli, as the type and location of the dynamic self-adaptivity within the

architecture must be co-decided.

In this proposal, we introduce a Decision Support System, which contains a new Dynamic

Software Product Line-centric cost / effort estimation technique, the Structured Intuitive Model for

Dynamic Adaptive System Economics (SIMDASE), that will allow system designers / architects to

select the most appropriate design for systems where the candidates can be structured as a Dynamic

Software Product Line. We will focus on using the Decision Support System to select designs for a

system where at least one component of the system is a low-level embedded system for use within

the Internet of Things (IoT), particularly embedded systems whose purpose is to exist as “things”

(either intelligent sensors or actuators).

The Decision Support System we introduce is a multi-step process that begins with a high-

level system architecture generated from the system requirements and goals. Candidate designs

that can fulfill all goals / requirements of the high-level architecture are selected. Each design is

then annotated using SIMDASE so that the effort, risk, cost and return on investment that can be

expected from the realization of the design(s) can be compared in order to select the best design for

a given organization.

ii



Dedication
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Chapter 1

Introduction

Dynamic Software Product Lines (DSPLs) [28] are a variation of Software Product Lines

(SPLs) [13] that can be used to represent Dynamic Adaptive Systems (DASs) [18, 38], systems that

are able to monitor the environment in which they reside and self-adapt in response to changes in

that environment [5]. Even though they are a variant of SPLs and share many of the same concepts,

DSPLs have several unique facets that differentiate them from SPLs. First, DSPLs focus on a

local environment and respond to changes in the environment rather than changing in accordance

with market desires [28]. Second, in SPLs, designers are not typically concerned with run-time

variations whereas in DSPLs, designers are typically not concerned with pre-run-time variations.

However, both areas acknowledge that mixtures of variation types are sometimes necessary [28].

Finally, the central tasks of each are different. In SPLs, the primary focus is to provide as wide a

variety of products as the market demands reusing as much as possible. In DSPLs, monitoring the

environment and, either manually or automatically, self-adapting into a new configuration are the

central tasks [28].

Consider an example DAS that monitors select properties of its environment, in this case

signal strengths of various wireless transmission protocols, and can reason about the measured values

of those properties in order to determine what behaviors the system should adopt in order to best

operate in the detected environment. Such a system is a classic example of a DAS [45].

Our example DAS will be placed into a manufacturing facility and will be used to monitor

forklift drivers to ensure that 1) they are following the posted speed limits with the facility, 2) they

are completing a route circuit in a timely manner, and 3) they are completing the required number

1



of circuits during a work shift. To do this, the DAS will periodically transmit location, speed and

direction to a central server that will produce reports for management. The manufacturing facility,

due to sensitive robotic machinery, has placed strict limits on which protocols are allowed within

certain parts of the facility. They have also placed strict limits on which protocols are allowed overall.

These accepted protocols are Bluetooth Low Energy (BLE) [26], Standard 2.4 Gigahertz Wireless,

and Zigbee [33]. The DAS will be required to monitor the location of the forklift so that certain

protocols can be disabled within specified zones. It will also be required to monitor signal strengths

of the various protocols so that it can select the best protocol, from those currently available, for

transmission.

The inclusion of dynamic self-adaptivity, or the decision to use a DSPL versus a SPL, is

a decision not to be made rashly. Its inclusion can lead to partially specified requirements [25],

increased complexity of the design [31], increased effort required to implement and increased time

needed to test [36]. However, if included, dynamic self-adaptivity has several benefits. It can increase

the reliability / availability of systems that are forced to operate in rapidly changing conditions [46],

and it can also decrease the effort required for deployment as the system can be made capable of

selecting the correct configuration rather than having the correct configuration pre-selected.

In our example, including dynamic adaptivity will lead to increased hardware costs. In

order to accommodate real-time monitoring, it will be necessary to use a more powerful chip than

what might have otherwise been used. It is also likely that a custom board will have to be fabricated

rather than using commodity hardware due to using three protocols. Testing the DAS to ensure

that it does disable protocols in restricted zones properly will also take additional time.

The decision of whether to include dynamic self-adaptivity into a software system or product

line of software systems is also compounded by the fact that rarely does only a single design fulfill

the goals of a project. Often, a myriad of candidate designs will satisfy the goals of the project

with each design trading off a different set of quality attributes. It is also possible for several of the

candidate designs to offer the opportunity for incorporating dynamic self-adaptivity. Deciding among

the candidates, and to what extent, if any, to include dynamic self-adaptivity, requires weighing the

benefits offered by each design against the effort required to realize the design understanding the

trade-offs made to achieve the benefits.

Software cost, or effort, estimation techniques, which provide trade-off / risk analysis and

return on investment analysis [6], provide potential methods of comparing designs. It is also common

2



for Decision Support Systems (DSSs), interactive computer based systems which help decision makers

utilize data and models to solve unstructured problems [47], to include cost estimation to be used

in situations where one or many of the decisions could have long-lasting detrimental effects on the

ability of the organization to carry out its goals. To the best of our knowledge, no DSS exists for

selecting between designs of a DSPL.

1.1 Problem Statement

In this dissertation, we address the lack of an existing DSS for DSPLs. As few system

development projects are “greenfield,” our method will also guide existing design modification.

The DSS will include three main components: a method of estimating the cost / effort (which

leverages architectural information) required of a DSPL design, guidance concerning common system

attributes degraded by self-adaptivity, and an improved method of validating DSPL architectures.

1.2 Research Approach

We will begin by identifying the quality attributes that are commonly degraded / improved

by the addition of dynamic self-adaptivity. These attributes will be identified through both the

conduction of a survey of existing literature as well as an analysis comparing DASs with functionally

equivalent non-adaptive systems. These attributes will be provided as part of the DSS as a suggestion

of which quality attributes should be closely monitored during design / implementation.

We will then produce a method of estimating the cost, or effort, of a DSPL design. This

method will leverage architectural models of the design, which increases accuracy in calculating the

cost of DSPL designs. For this research, our method will use the Architecture Analysis & Design

Language (AADL) exclusively as we are focused on embedded Cyber-Physical Systems (CPSs) [3,

52].

Finally, we will produce an improved method of validating DSPL architectures that accounts

for the fact that many DSPL designs use inheritance. Once again, for this research, our method will

use AADL exclusively.

3



1.3 Contributions

The primary contributions of the dissertation will be

• The introduction of an improved method of verifying a DSPL architecture modeled using

AADL, especially those that include inheritance.

• The identification of quality attributes which, in general, improve / degrade when dynamic

adaptivity is introduced.

• The introduction of a cost, or effort, estimation technique tailored for use with DSPLs which

leverages architectural knowledge of the DSPL to produce a more accurate estimate of cost.

• The introduction of a DSS, utilizing the aforementioned contributions, that allows designers

to select the best design for a given organization from a set of candidate DSPL designs.

1.4 Dissertation Statement

In this dissertation, we assert:

• That the inclusion of dynamic self-adaptivity, even when designed, implemented and tested

successfully, has definite impacts on system design.

• That the identification of the aspects of a system’s design which can degrade in the presence of

dynamic self-adaptivity will enable designers to make better decisions concerning if dynamic

self-adaptivity should be included in the system’s design.

• That a DSS can be provided to allow a designer to select the best DSPL design for an organi-

zation from a set of candidate designs.

1.5 Dissertation Organization

We provide an overview of Dynamic Adaptive Systems, the Architecture Analysis & Design

Language, Dynamic Software Product Lines, and the SIMPLE framework in section 2. In section 3,

we provide an overview our an extension we made to the AADL AGREE annex to support AADL’s

inheritance features, and we provide an overview of our proposed framework in section 4 including

4



an introduction to our cost / effort estimation technique. In section 5, we provide an evaluation

of the cost / effort estimation technique introduced as well as an evaluation of the improvements

to the AGREE annex. We provide a discussion of the broader impacts of both our cost / effort

estimation technique as well as the impacts of our DSS in section 6. Finally, we discuss related work

in section 7, and section 8 introduces plans for future enhancements.

5



Chapter 2

Background

In this section, we present relevant background material for understanding the work reported

in this dissertation. This section will provide an overview of Dynamic Adaptive Systems (DASs),

Dynamic Software Product Lines (DSPLs), the Architecture Analysis & Design Language (AADL),

relevant AADL annexes / plugins and the Structured Intuitive Model for Product Line Economics

(SIMPLE) framework.

2.1 Dynamic Adaptive Systems

Dynamic Adaptive Systems (DASs) are systems which are capable of monitoring themselves

and their environment, and, when the requirements or environment (context) changes, self-modifying

(reconfiguring) to optimize their execution in the new context [5]. A DAS has multiple adaptation

points throughout its architecture, and each adaptation point has a set of associated adaptations

that can be swapped at run-time as contextual changes dictate. The adaptivity is made possible

through the use of one or more MAPE (Monitor, Analyze, Plan, Execute) loops. These monitor

both the system / the system’s context and analyze the feeds from monitoring. After analysis, the

loop plans which variation points require reconfiguration as well as the most appropriate variant to

be swapped into the variation point. Finally, the loop executes the formulated plans on the system.

An example architectural diagram of a simple DAS is shown in figure 2.1.

DAS offer several benefits each taking advantage of the ability to self-modify at run-time.

However, the benefits offered are not without trade-offs, which will be discussed in section 4. Some of

6



Figure 2.1: DAS Example

these benefits, depending on the dynamic adaptivity framework / design pattern used, are enhanced

reliability, increased ability to meet goals and greater portability. We will discuss each of these, in

turn, to answer why an architect might choose to include dynamic adaptivity into a new or existing

system.

Several DAS frameworks offer the ability to self-modify in the face of faults, increasing the

reliability of the system (see [16, 48, 23]). Frameworks leveraging dynamic adaptivity to increase fault

tolerance or reliability fall into one of two categories: prevention and recovery. The first, prevention,

extends a DAS’s reconfiguration process adding a testing phase to ensure that the about-to-be-

enabled module answers within tolerance under the restrictions imposed by the new context. This

process could perform simple tests to check common behavior of configurations, or it could perform

extensive tests that determine which features are available in the newly selected variant. The second

set of frameworks, recovery, are systems that use dynamic adaptivity to recover from a fault after

the fact. These systems detect the failure of a configuration and reconfigure accordingly. The

reconfiguration could be guided in that, an appropriate configuration is known and can be selected,

or the system could be allowed to explore the configuration space, randomly selecting configurations

until it learns which configurations work best under various detected conditions.

Other frameworks allow DASs to alter their execution profile in response to either external

7



/ internal stimuli to better meet goals [55, 34, 44]. For example, a DAS might monitor core usage

to determine if it is possible to spread a calculation on one core across other, under-utilized cores

to increase efficiency. The system might also recognize the need to scale back multi-core execution

to allow other, more urgent computations to execute. The idea of DASs self-modifying to increase

efficiency is not limited to just multi-core or high-performance computing. It has also been explored

in the domain of energy harvesting systems. Dynamic adaptivity in this domain allows the systems

to tailor their cycles to the amount of energy currently available. This can increase the time which

the device can remain active and the battery lifetime by using the battery only when an absolute

minimum level of energy cannot be harvested from the environment.

A final reason for choosing to build a dynamic adaptive system is their increased portability.

Because DASs can switch between configurations on the fly in response to detected environmental

stimulus, it is possible to build a single system that can operate in a wide range of environments.

However, this does not mean that a DAS can be deployed to an unknown / untested environment

and operate successfully. Provided that the new environment is similar to a previously known

environment, it may be possible, but it is not guaranteed.

2.2 Dynamic Software Product Lines

A Software Product Line (SPL) is a set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment / mission

and are developed from a common set of core assets in a prescribed way [13]. SPLs have achieved

remarkable benefits including productivity gains, increased agility, increased product quality and

mass customization [12].

The systems, or products, derived from a SPL are the result of instantiating variation

points with appropriate variants. Each product shares a common architecture, known as a family

architecture, with choices of variants for a set of variation points which are the only differences

among the various products. This reuse of a common core permits shortened development schedules

and increased product quality.

Using figure 2.2 as an example, consider that we have a system that we plan to instantiate.

Inside are two variation points, sub-components to be replaced with variants at instantiation time.

Each variation point has several variants which are options; for example, the variants A’ and A”
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Figure 2.2: SPL Example

can be used for the variation point A and the variants B’ and B” can be used for the variation point

B. It is common in SPLs to place restrictions on the combination of variants that can be selected.

For example, A’ and B’ may not be compatible with one another and instantiating a product with

that combination may lead to erratic behavior. Thus a restriction stating that A’ and B’ can never

be in the same product would be created.

In a SPL, variation points are usually instantiated before run-time, either during the design,

implementation or deployment phases. It is possible, however, for a SPL to instantiate a variation

point while the system is operating. SPLs that bind a variation point at run-time and allow that

variation point to be changed without restarting the system are known as Dynamic Software Prod-

uct Lines (DSPLs), an accepted method of modeling DASs. Variants (which could be the DAS’s

adaptations) and variation points (which could be the DAS’s adaptation points) are also used by

DPSL, where instantiation of a variation point does not necessarily lead to a new product but could

lead to a new run-time configuration.

Variation points of both SPLs and DSPLs possess two primary properties: state and variant

addition state [49]. We add to this list the variation point’s type [17]. The state of a variant can be

one of three mutually exclusive values:

• Implicit - These are variation points that have not yet been specifically created in the archi-

tecture. They represent uncertainty or variability that has not yet been decided and has not

yet been explicitly left as a decision to be bound by the product. These types of variation

points tend to be created early in the project life-cycle and are migrated to designed variation

9



points as the project progresses.

• Designed - These are variation points where the design decision has been deliberately left

unanswered.

• Bound - A variation point that has been replaced by a variant.

[49] The second property, variant addition state, deals with whether it is possible to add new

variants to the system. This property can assume one of two values:

• Open - An open variation point is one that can still have additional variants added to its list

of potential variants.

• Closed - A closed variation point cannot have any further variants added to its list of potential

variants.

[49] The final property is the variant type. This property can also assume one of two values:

• Static - A static variation point is a variation that, once bound, cannot be rebound. This

binding occurs as the result of a decision outside the system.

• Dynamic - A dynamic variation point is a variation point that can be rebound, even after bind-

ing. This binding usually, but not always, occurs as a result of a decision made autonomously

by the system.

[17]

2.3 Architecture Analysis & Design Language

The Architecture Analysis & Design Language (AADL) is an architecture modeling language

that uses a common description language to bind together both hardware and software elements into

a unified model [21]. The language is a standard of the Society of Automotive Engineers (SAE) and

is actively maintained, at the time of this writing being in its second revision. AADL features a

robust type system, and the language can be extended through the use of annexes, each of which

can have separate syntax / functionality and each of which is standardized independently.
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2.3.1 Language Overview

AADL is a description language used to represent architectures. The language has keyword

constructs for representing hardware (device, processor, bus, memory), software (process, thread,

subprogram) and the integration of the two (system). The language is particularly suited for a

Cyber-Physical System (CPS), systems where the hardware is directly controlled and monitored via

software. At its highest level, AADL allows for the intermixing of hardware and software elements

within the system construct. It is also possible to create abstract components that can be refined

into either hardware or software at a later time. This ability to incrementally increase specificity

is beneficial in the system engineering process where the engineer knows that a specific component

is needed, but he is unsure whether this component will be implemented and maintained as a

hardware or software artifact. The component and its functionality can be declared and used in

the architecture as an abstraction. Then, once a decision is made, it can be refined into either a

hardware or software component. An example system in AADL can be seen in listings 2.1 and 2.2.

In listings 2.1 and 2.2, we have a description / representation of an ITS (Intelligent Trans-

portation System) CPS that posts an event if the distance between the vehicle to which the system

is attached and another vehicle falls below some threshold. Such a device might be used on a ve-

hicle to determine if the vehicle is following another vehicle too closely. The system described has

one output, an alert named too close alert. The system has two sub-components, a distance sensor

named sensor and a distance evaluator named evaluator. The connections section of the system

defines how the sub-components are connected. In this example, the distance value of the sensor is

connected to the input of the evaluator. The system’s alert value is also directly connected to the

alert value of the evaluator.

AADL components are split into two separate definitions. The first is a specification of the

features, inputs and outputs, that a component consumes and produces respectively. The complete

set of features is referred to as a contract. An example contract is shown in listing 2.1.

1 system prox im i ty a l e r t s y s t em

2 f e a t u r e s

3 t o o c l o s e a l e r t : out event port ;

4 end p rox im i ty a l e r t s y s t em ;

Listing 2.1: AADL Contract Snippet
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The second definition is an implementation of the contract. Contract implementations are

represented by using the implementation keyword as well as providing a name for the implementation

which is comprised of two pieces. The first piece is the name of the contract being implemented,

and the second piece is a unique identifier for the implementation. The two are concatenated

using a single dot in the form contract name.unique identifier. The implementation of the contract

listing 2.1 is shown in listing 2.2. It is possible and common for contracts to have more than one

implementation. It is also common for the internal components of each implementation to vary

drastically from one another.

1 system implementation p rox im i ty a l e r t s y s t em . impl

2 subcomponents

3 s enso r : dev i c e d i s t an c e s e n s o r . impl ;

4 eva lua to r : p roce s s d i s t an c e e va l u a t o r . impl ;

5 connec t i ons

6 s e n s o r t o p r o c e s s o r : port s enso r . d i s t anc e −> eva lua to r . d i s t ance ;

7 pro c e s s o r ou t : port eva lua to r . t o o c l o s e a l e r t −> t o o c l o s e a l e r t ;

8 end p rox im i ty a l e r t s y s t em ;

Listing 2.2: AADL Contract Implementation Snippet

AADL’s functionality is augmented through the language’s provision for extensions, or an-

nexes. An annex in AADL provides additional functionality not native to the core language. They

are usually maintained by outside groups that have a vested interest in the AADL language, although

some annexes are published and maintained by the language maintainers.

2.3.2 Behavior Annex

The behavior annex [54] allows users to specify how a component reacts under normal

circumstances. Let’s return to our example of a distance sensor. From our previous AADL snippet,

the behavior of the distance evaluator is unknown. We know that it will receive an input value,

distance. If that input value should fall below a specific threshold, an event should be fired. In

listing 2.3, we show the description for this behavior along with the associated behavior specification.

1 proce s s implementation d i s t an c e eva l u a t o r . impl

2 annex b e h a v i o r s p e c i f i c a t i o n {∗∗

3 va r i a b l e s
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4 min di s tance : i n t ;

5 s t a t e s

6 s t a r t : i n i t i a l s t a t e ;

7 ready : complete s t a t e ;

8 c a l c u l a t i n g : s t a t e ;

9 t r a n s i t i o n s

10 s t a r t −[]−> ready { min di s tance := 5 } ;

11 ready −[on d i spatch ]−> c a l c u l a t i n g ;

12 c a l c u l a t i n g −[ d i s t anc e < min di s tance ]−> ready { t o o c l o s e a l e r t !

} ;

13 c a l c u l a t i n g −[ d i s t anc e >= min di s tance ]−> ready ;

14 ∗∗} ;

15 end d i s t an c e eva l u a t o r . impl ;

Listing 2.3: AADL Behavior Annex Snippet

The behavior annex defines a component’s reactions to inputs via a finite state machine

syntax. The user defines a set of internal variables which represent the data that describe the com-

ponent. These variables maintain their value between transitions, and unless they are deliberately

modified, they do not change their value.

The user also defines a set of states. A state defined in the state machine of the behavior

annex has four possible attributes: initial, complete, final and “normal”. Each state is defined to

have one or more of these attributes. The initial state is analogous to the start state of a finite

state machine. It is the state into which the machine is initially placed when the component is

instantiated. A complete state can be thought of as a yield state; the component has completed its

work for the time being and is suspended until an event or input causes it to begin execution anew.

A final state is a state at which execution has completed, and the component “turns off”. Normal

states are simply intermediary states between any of the other three primary state types. A behavior

description may contain many states with the complete and final attributes, but only one state may

be the initial state. Let us consider listing 2.3 as an example. From the start state to the ready

state, there is an unconditional transition, meaning as soon as the system enters the start state, it

immediately transitions to the ready state. However, this transition also has a side effect indicated

by the expression in curly braces to the right of the transition. In this case, the min distance variable
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is set to 5. From the ready state, there is a single conditional transition. The keywords on dispatch

here mean on input received, and the system transitions from ready to calculating whenever input

is received. The final two transitions are also conditional, but they are based on the value received

from the distance sensor. If the value from the distance sensor is less than the minimum distance,

the system transitions back to the ready state, but, as a side effect, fires the too close alert event.

If the value is equal or greater, the system simply transitions back to the ready state with no side

effects.

2.3.3 Error Annex

The error annex [19] of AADL allows the specification of how components react under

abnormal conditions. It also allows specification of which types of errors are anticipated, and if those

errors are handled within the component or if they are propagated to connected components. The

error annex ships with a structured set of pre-defined errors types (referred to as an ontology), shown

in appendix C. These existing types can be aliased or extended to create user-defined error types.

The large number of error types in the ontology provides a rich set of considerations when evaluating

a system for potential hazards. For example, given a system, an engineer could walk throughout

the ontology asking if a specific error or error type from the ontology could be encountered by the

system. Each error that could be encountered should be listed in the error annex so that the behavior

of the system when encountering that error can be specified.

Let us once again consider the distance evaluator. We will assume that the sensor which

sends us a value can encounter two types of errors. It could become stuck, perhaps hitting a floor or

a ceiling, never being able to update its value, or, it could send us a value that is out of the range of

possible or expected values, say a negative value. In the case of a negative value, the component will

“fail”, but it can recover as soon as the value is updated. In the case of a stuck value, the component

will need to permanently fail because something has happened from which it cannot recover. If this

were to occur, it is likely that the sensor will need to be cleaned or replaced for normal operations

to resume. In either case, the system will be powered down and put through a hard reset, so it will

fail and not provide an option for recovery. A snippet of the AADL error annex, EMV2, is shown

in listing 2.4 which models the error behavior described above.

1 proce s s implementation d i s t an c e eva l u a t o r . impl

2 annex EMV2 {∗∗
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3 use types ErrorLibrary ;

4 use behavior EvaluatorBehavior ;

5 e r r o r propagat ions

6 d i s t ance : in propagat ion {OutOfRange , StuckValue } ;

7 t o o c l o s e a l e r t : out propagat ion {StuckValue } ;

8 end propagat ions ;

9 component e r r o r behavior

10 t r a n s i t i o n s

11 normal −[ d i s t anc e {OutOfRange}]−> t r a n s i e n t f a i l u r e ;

12 normal −[ d i s t anc e {StuckValue}]−> f u l l f a i l u r e ;

13 propagat ions

14 f u l l f a i l u r e −[]−> t o o c l o s e a l e r t ;

15 end component ;

16 ∗∗} ;

17 end d i s t an c e eva l u a t o r . impl ;

Listing 2.4: AADL Error Annex Snippet

Listing 2.4 references an error type library which defines the standard ontology including the

two specific errors we mentioned previously, StuckValue and OutOfRange. The annex description also

defines which errors are propagated to the component, given by the in propagation. In the distance

evaluator, both of the error types that can be encountered are propagated to the component by the

distance sensor. The distance evaluator can handle an OutOfRange error so it does not propagate it,

but it cannot handle the StuckValue error, so it is propagated. The transitions section of the error

annex is similar to the specification of the behavior annex in that it is also a finite state machine.

However, this is only a partial definition of the state machine. The rest of the machine is imported

by the use behavior statement and is shown in listing 2.5. The primary machine is defined outside of

the component so that it can be reused in other components. Notice, however, that components can

introduce individual transitions. In our case, the distance evaluator adds two, one for the occurrence

of an OutOfRange error and one for the occurrence of a StuckValue error.

1 annex EMV2 {∗∗

2 e r r o r behavior EvaluatorBehavior

3 events
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4 f a i l u r e : e r r o r event ;

5 s e l f r e c o v e r : r e cove r event ;

6 s t a t e s

7 normal : i n i t i a l s t a t e ;

8 t r a n s i e n t f a i l u r e : s t a t e ;

9 f u l l f a i l u r e : s t a t e ;

10 t r a n s i t i o n s

11 normal −[ f a i l u r e ]−> ( t r a n s i e n t f a i l u r e with 0 . 9 , f u l l f a i l u r e with

0 . 1 ) ;

12 t r a n s i e n t f a i l u r e −[ s e l f r e c o v e r ]−> normal ;

13 end behavior ;

14 ∗∗} ;

Listing 2.5: AADL Error Annex Behavior Snippet

2.3.4 AGREE

Even with specifying the normal behavior and abnormal behavior of the model, it is still

necessary to perform verification and validation activities. AADL facilitates these activities in

multiple ways. Its strong syntax and typing have allowed for the creation of multiple simulators that

can be used to confirm the architecture. Several formal verification tools have also been constructed,

one of which is AGREE.

AGREE (Assume Guarantee REasoning Environment) is a compositional verification tool

that can be used to confirm the behavior of a component [39]. It follows the popular assume-

guarantee reasoning model, which states that provided the assumptions about a component’s inputs

are met the component can provide certain guarantees about its output. AGREE works by using

the model to construct a state machine that is fed into a Satisfiability Modulo Theorem (SMT)

prover which confirms that the state machine, given the assumptions the contract makes, can pro-

duce the values guaranteed by the contract. As it is a compositional verification tool, it can also

be used to ensure that all sub-components of a component correctly contribute towards the parent

component’s goal. The annex utilizes the fact that AADL components are split between a contract

and contract implementation. A component’s assume-guarantee contracts are attached to the com-

ponent contract. The component’s AGREE model is then placed in the contract implementation.
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It is necessary to specify the AGREE model even if the behavior annex is used as AGREE and the

behavior annex are not compatible. It is also necessary to install a third-party SMT solver as one is

not currently, at the time of this writing, prepackaged with the tool.

As an example, let’s consider the distance sensor device. The particular sensor that we

are using has a maximum range of 25 meters. Any readings beyond that distance are likely to be

erroneous. Physical measurements such as distance cannot be negative. We will, therefore, specify a

guarantee that our device will return a value between 0 and 25. A snippet of AGREE that matches

this description is shown in listing 2.6. In this case, the error model could handle an OutOfRange

error by ignoring it because we will have a sufficient gap at that point.

1 dev i ce d i s t an c e s e n s o r

2 f e a t u r e s

3 d i s t ance : out data port Base Types : : I n t eg e r ;

4 annex agree {∗∗

5 guarantee ” the output d i s t ance i s between 0 and 25” : d i s t anc e >= 0

and d i s t anc e <= 25 ;

6 ∗∗} ;

7 end d i s t an c e s e n s o r ;

8

9 dev i ce implementation d i s t an c e s e n s o r . impl

10 annex agree {∗∗

11 a s s e r t d i s t ance =

12 i f d i s t anc e < 0 then

13 0

14 e l s e

15 i f d i s t anc e > 25 then

16 25

17 e l s e

18 d i s t ance ;

19 ∗∗} ;

20 end d i s t an c e s e n s o r . impl ;

Listing 2.6: AADL AGREE Annex Snippet
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2.4 Structured Intuitive Model for Product Line Economics

The Structured Intuitive Model for Product Line Economics (SIMPLE) is a method of

predicting the cost and return on investment of developing a SPL. It is capable of modeling a range

of real-world scenarios and allows product line decision makers to determine whether or not a product

line is an appropriate option for development [14].

The primary idea of SIMPLE is that a company has m product lines and it wants to

transition to having m’ product lines. The existing product lines could be standalone products, or

they could be product lines each having several products. Along the way, the company plans to add

and / or delete products from its lineup. SIMPLE can be used to compare one or more product

line approaches to determine which is the best fit for an organization, based on the cost required to

adopt the product line vs. the benefit it brings.

SIMPLE is structured as a set of cost / benefit functions that allow a decision maker to

determine how much benefit and cost savings adopting a product line approach will yield. The

framework is comprised of four primary cost functions:

• Corg() - This function returns the cost the organization incurs by adopting a product line

strategy. Some example costs are reorganization, training, process improvement, etc.

• Ccab() - This function returns the cost of developing the common base shared by all the prod-

ucts. An extensive amount of analysis work is usually required to determine which components

are common to all, or a subset, of the products and which components are unique to individual

products.

• Cunique() - This function returns the cost of developing unique components of a single product.

This might result in a complete product, or it could result in an intermediate product (or a

common sub-base) shared by a subset of products in the product line.

• Creuse() - This function returns the cost of building a product using the core assets. This

includes checking out the shared models, configuration, insertion of unique components and

testing.

[14] These four primary functions can also be paired with two other functions which are used to

model the cost of evolving the product line.
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• Ccabu() - This function returns the cost of updating the base of the product line. These changes

could introduce new variation points, or it could be bug fixes to correct discovered issues.

• Cuniqueu() - This function returns the cost of updating a single product. This function accounts

for the fact that not all products will require updating, and represents only the cost of updating

the unique components of the product.

[14]

Combining the above functions, we can create a “super” function which provides a definition

of the cost of constructing a product line. The equation Cprod() is written

Cprod(t) = Corg(t) + Ccab(t) +

n∑
i=1

(Cunique(producti, t) + Creuse(producti, t)) (2.1)

.
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Chapter 3

Dynamic Software Product Line

Model Validation

As stated in section 1.3, the first goal of this research is

• The introduction of an improved method of verifying a DSPL architecture modeled using

AADL, especially those that include inheritance.

The traditional version of AGREE, AADL’s verification / validation tool, does not support AADL’s

inheritance features [1], thus, as part of the work for this dissertation, we have created an extended

version of AGREE, XAGREE, with additional behavior and keywords that support AADL’s in-

heritance features. This allows models of DSPLs to be verified compositionally reusing verification

assets to a greater extent reducing duplication and complexity.

We now cover the modified / additional statements added to the XAGREE language to

facilitate inheritance. A short overview of the statements that have been added or modified is

presented in table 3.1. Each statement will be discussed and an example of its use provided.

3.1 Assume / Guarantee Statements

The assume and guarantee statements of the AGREE language are analogous to the pre-

condition / post-condition concepts of other verification tools. With traditional AGREE, the as-

sumptions and guarantees of parent components are not inherited by their children even though
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Table 3.1: XAGREE Syntax Overview

Keyword Description
assume declare that the system expects input to conform to the following statement
do not inherit explicitly disable inheritance
eq declare a concrete variable or override an abstract variable
eq abstract declare an abstract variable
guarantee declare that output of the system will conform to the following statement
inherit explicitly state that inheritance from a parent occurs

children will often use the same inputs, outputs, assumptions and guarantees as their parents. eX-

tended AGREE (XAGREE) allows for such inheritance. We also recognize that it is sometimes

necessary to tweak the assumptions or guarantees of your parent, particularly if the child introduces

new inputs or outputs that the parent does not have. This overriding of parent assume / guarantees

is also possible with XAGREE.

1 system parent

2 f e a t u r e s

3 ip : in data port Base Types : : I n t eg e r ;

4 op : out data port Base Types : : I n t e g e r ;

5 annex xagree {∗∗

6 assume ” input req ” : ip >= 0 ;

7 guarantee ”output req ” : op >= 1 ;

8 ∗∗} ;

9 end parent ;

10

11 system implementation parent . impl

12 annex xagree {∗∗

13 a s s e r t op = ip + 1 ;

14 ∗∗} ;

15 end parent . impl ;

Listing 3.1: AADL Child Guarantee / Assume Example

1 system ch i l d extends parent

2 f e a t u r e s

3 −−ip : in data port Base Types : : I n t eg e r ;

4 −−op : out data port Base Types : : I n t eg e r ;
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5 op2 : out data port Base Types : : I n t eg e r ;

6 annex xagree {∗∗

7 −−assume ” input req ” : ip >= 0 ;

8 guarantee ”output req ” : op >= 1 and op2 >= 1 ;

9 ∗∗} ;

10 end ch i l d ;

11

12 system implementation ch i l d . impl extends parent . impl

13 annex xagree {∗∗

14 −−a s s e r t op = ip + 1 ;

15 a s s e r t op2 = ip + 1 ;

16 ∗∗} ;

17 end ch i l d . impl ;

Listing 3.2: AADL Child Guarantee / Assume Example

An example of XAGREE’s assume and guarantee statements are shown in figures 3.1 and

3.2. Also shown in these figures is a demonstration of how XAGREE permits verification assets to be

reused across different components of the model hierarchy as well as how assumptions and guarantees

can be overridden by children if necessary. The parent component, introduced in figure 3.1 has two

features, a single input and output, and the XAGREE annex assumes that the input will be greater

than or equal to 0 while guaranteeing that the output will be greater than or equal to 1. The behavior

of the parent is simply to take the input value and set the output to the input plus 1. The child,

shown in figure 3.2, adds a second output. Note that in figure 3.2 all inherited statements are shown

using comments (denoted by a double dash in AGREE / XAGREE and AADL). The guarantees of

the child have to be modified or amended to account for this extra output. The override is driven

by the descriptor string, or, children who have an assumption or guarantee with a descriptor that

matches a parent assumption / guarantee’s descriptor will override the parent’s matching descriptor.

3.2 Eq / Eq Abstract Statements

In traditional AGREE, the eq statement allows for the declaration of a single variable.

In introducing inheritance, we modified the eq statement to either introduce a new variable or to
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override an existing variable if the variable in the child has the same name and type, or a related

polymorphic subtype [20] of the parent’s type, as a variable in the parent. We also introduced an eq

abstract statement that provides a way to define a variable without providing an implementation for

that variable. Abstract variables in XAGREE are much like abstract variables in Java or C++. They

can be used in calculations and statements just like any other variable but their implementation is left

for children, or extenders, to provide. We also introduce the concept of an abstract implementation,

a contract implementation that contains an XAGREE annex which introduces or inherits an abstract

variable. For an implementation specification to be non-abstract, or concrete, it must override and

provide an implementation for all inherited abstract variables without introducing any new abstract

variables.

1 system parent

2 f e a t u r e s

3 type : out data port Base Types : : S t r ing ;

4 annex xagree {∗∗

5 guarantee ”output req ” : type = nu l l ;

6 ∗∗} ;

7 end parent ;

8

9 system implementation parent . impl

10 annex xagree {∗∗

11 eq abs t r a c t myType : s t r i n g ;

12 a s s e r t type = myType ;

13 ∗∗} ;

14 end parent . impl ;

Listing 3.3: AADL Eq Example

1 system ch i l d extends parent

2 −−f e a t u r e s

3 −−type : out data port Base Types : : S t r ing ;

4 annex xagree {∗∗

5 guarantee ”output req ” : type = ” ch i l d ” ;

6 ∗∗} ;

7 end ch i l d ;
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8

9 system implementation ch i l d . impl extends parent . impl

10 annex xagree {∗∗

11 eq myType : s t r i n g = ” ch i l d ” ;

12 −−a s s e r t type = myType ;

13 ∗∗} ;

14 end ch i l d . impl ;

Listing 3.4: AADL Child Eq Example

An example of eq / eq abstract statements and how they are used in inheritance is shown

in figures 3.3 and 3.4. Once again comment lines (those starting with a double dash) represent

statements that have been inherited. The parent figure, shown in figure 3.3, has one output, a string

representing the type. In the parent figure, the type produced by the component is guaranteed to

be null. This is reflected in the parent’s implementation as myType has been declared abstract and

not provided with an implementation. The child figure, shown in figure 3.4, overrides the parent’s

guarantee and asserts that the component will declare its type as “child”. The child, however,

does not have a full implementation, only a provision of a definition for the inherited abstract

variable. The assert that ties the abstract variable to the output is inherited and does not require

re-specification.

3.3 Inherit / Do Not Inherit Statements

The inherit and do not inherit statements are unique to XAGREE. The do not inherit

statement allows inheritance to be explicitly disabled reverting to the behavior of the AGREE. This

statement was introduced to provide a means of backward compatibility. The inherit statement is

similar to the do not inherit statement in that it allows a developer to state explicitly that inheritance

does occur.

1 system parent

2 f e a t u r e s

3 ip : in data port Base Types : : I n t eg e r ;

4 op : out data port Base Types : : I n t e g e r ;

5 annex xagree {∗∗
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6 assume ” input req ” : ip >= 0 ;

7 guarantee ”output req ” : op >= 1 ;

8 ∗∗} ;

9 end parent ;

10

11 system implementation parent . impl

12 annex xagree {∗∗

13 a s s e r t op = ip + 1 ;

14 ∗∗} ;

15 end parent . impl ;

Listing 3.5: AADL Inherit Example

1 system ch i l d extends parent

2 f e a t u r e s

3 −−ip : in data port Base Types : : I n t eg e r ;

4 −−op : out data port Base Types : : I n t eg e r ;

5 op2 : out data port Base Types : : I n t eg e r ;

6 annex xagree {∗∗

7 do not i n h e r i t ;

8 assume ” input req ” : ip < 1 ;

9 guarantee ”output req ” : op <= 0 and op2 <= 0 ;

10 ∗∗} ;

11 end ch i l d ;

12

13 system implementation ch i l d . impl extends parent . impl

14 annex xagree {∗∗

15 do not i n h e r i t ;

16 a s s e r t op = ip − 1 ;

17 a s s e r t op2 = ip − 1 ;

18 ∗∗} ;

19 end ch i l d . impl ;

Listing 3.6: AADL Child Inherit Example
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Finally, we provide an example where inheritance is controlled using the inherit and do not

inherit statements. This example is shown in figures 3.5 and 3.6 and can be seen in the implemen-

tation’s XAGREE annexes. Note that the child annex does not inherit the assert of the parent due

to the child specifying that inheritance should not be used. Note, however, that the do not inherit

statement does not affect extends. The child will still inherit the features of the parent even though

the AGREE annex will not inherit any attributes of the parent.
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Chapter 4

Dynamic Software Product Line

Model Comparison

As stated in section 1.3, the remaining goals of this research are

• The identification of quality attributes which, in general, improve / degrade when dynamic

adaptivity is introduced.

• The introduction of a cost, or effort, estimation technique tailored for use with DSPLs which

leverages architectural knowledge of the DSPL to produce a more accurate estimate of cost.

• The introduction of a DSS, utilizing the aforementioned contributions, that allows designers

to select the best design for a given organization from a set of candidate DSPL designs.

Each of these goals are discussed, in turn, throughout the remainder of this section. In section 4.1,

we discuss the effects of dynamic adaptivity on quality attributes. In section 4.2, we introduce a

cost / effort estimation framework tailored for DSPL models. Finally, in section 4.3, we introduce a

DSS framework for comparing designs of a DSPL model.

4.1 Dynamic Adaptivity Effects on System Quality Attributes

The benefits offered by DASs are not free, and several trade-offs must be taken into account

when deciding whether or not to incorporate dynamic adaptivity. However, not all trade-offs occur
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in every situation. DASs, like many other software engineering decisions, exist along a continuum of

possible choices. In some situations, incorporating dynamic adaptivity changes only how the quality

attributes are measured. In other situations, dynamic adaptivity affects the quality attribute itself.

However, this depends on why and how dynamic adaptivity was incorporated.

An example of dynamic adaptivity changing how a quality attribute is measured would

be dynamic adaptivity’s affect on fault recoverability. Traditionally, recoverability focuses on the

component’s ability to handle a particular fault. For a dynamic adaptive system, the design question

is whether a component can switch to another configuration which handles that particular fault.

An example of dynamic adaptivity changing a quality attribute would be dynamic adap-

tivity’s affect on testability. Dynamic adaptive systems have extra run-time configurations that

must be covered as well as an adaptation mechanism that must be tested to ensure that it works

as expected. The method of measuring testability, based on the number of system states, remains

unchanged, but dynamic adaptivity adds additional states increasing the effort required to satisfy

the same level of test coverage.

To determine which quality attributes are affected, we conducted a systematic literature

review of existing DAS / DSPL literature. The survey revealed several common quality attributes

which receive general improvement with the addition of dynamic adaptivity, and some literature

results listed the trade-offs made to achieve the improvements in other attributes. However, a

number of quality attributes were not listed in the literature, and no information was provided to

indicate how dynamic adaptivity affected them. To determine the effects on these attributes, we

took the architectures of several systems and introduced dynamic adaptivity into the architecture,

analyzing the systems before and after to determine how dynamic adaptivity affected the system.

We now provide some guidelines, from the DAS literature and an analysis of system archi-

tectures, for attributes that can be improved or degraded. The existing body of DAS literature also

provides some mitigation tactics that can be used to offset or lessen the effects of dynamic adaptivity

on some quality attributes. For purposes of discussion, we limit ourselves to the quality attributes

given in ISO (International Standards Organization) 25010 [2], also listed in appendix B.

4.1.1 Functionality

With the addition of dynamic adaptivity, changes to characteristics related to functionality

are, in general, mixed. Suitability changes seem to be largely dependent on whether or not extra
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processing power is available for performing the computational work for dynamic adaptivity. If

extra processing power is available, then suitability will largely remain unchanged. However, if

extra processing power or extra hardware components are needed, then suitability can be negatively

affected [37, 36]. Accuracy can either improve or degrade. If the dynamic adaptivity permits the

system to adhere more completely to its goals by avoiding failure, then accuracy is likely to increase.

However, if the system is forced to spend long periods of time searching for the best configuration

or dynamic adaptivity allows the system to respond in an incorrect manner for the context, then

accuracy will be negatively affected. Compliance, likewise, can either improve or degrade depending

on the function dynamic adaptivity serves. If dynamic adaptivity allows for fault recovery, then

compliance is likely to improve, however, for other purposes, how compliance is affected will depend

on whether or not the dynamic adaptivity allows for configurations that are not compatible with the

context. Security has been shown, in general, to improve with the addition of dynamic adaptivity.

4.1.2 Reliability

As a sizeable portion of dynamic adaptivity literature focuses on fault recovery and avoid-

ance, reliability appears to be one of the primary motives for introducing dynamic adaptivity

(see [16, 48, 23]). Therefore, it should come as no surprise that, in general, dynamic adaptivity

improves the characteristics related to reliability. However, there are cases where reliability can

suffer.

Maturity can be improved by dynamic adaptivity due to the increased fault tolerance and

recoverability. Fault tolerance and recoverability both assume that there exists a reconfiguration

which handles the error or context in which the software currently exists. Provided that uncertainty

and requirements have been appropriately managed, there is little reason that this should not be

the case. However, some of the approaches used to enhance fault tolerance involve run-time testing

of about-to-be-deployed configurations to ensure that they will not fail. Other approaches involve

solution space searches to find a configuration that will not fail in the current context. There exist

several domains where the offline time necessary for these tests and searches does not exist unless

extra processing capabilities are added. Thus, these techniques are not suitable for each such domain,

such as real-time safety-critical CPS [36].
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4.1.3 Usability

How characteristics related to usability are affected depends on whether or not dynamic

adaptivity changes the interfaces used to interact with other software components. If this is the

case, then both learnability and operability will both degrade, however, if this is not the case, then

both sub-characteristics will remain unchanged.

Regardless of whether or not the interface is modified as part of dynamic adaptivity, the

understandability of the software will almost always be negatively affected. Dynamic adaptivity

is complex, and explaining to end users how the software arrives at a decision without human

intervention through the monitoring of sensors and stimulus is, in our experience, difficult and easily

misunderstood.

4.1.4 Efficiency

Characteristics related to efficiency are affected with mixed results when dynamic adaptivity

is introduced. Dynamic adaptivity can allow the system to better utilize existing resources [55, 34].

This is especially true for dynamic adaptive software that can consolidate computation onto a

minimal number of cores saving energy. This is also true for systems which use dynamic adaptivity

to get better total lifetime out of batteries, like energy harvesting systems [44]. Time behavior can

either improve or degrade. For systems that explore solution spaces or require pre-reconfiguration

testing, the time behavior can be adversely affected, especially if reconfigurations occur frequently.

However, time behavior can be improved if the dynamic adaptivity allows computation to continue

when it would have otherwise not been able to do so.

4.1.5 Maintainability

Characteristics related to maintainability are, in general, negatively affected by the incor-

poration of dynamic adaptivity; however, some sub-characteristics do see general improvement.

Analyzability of the software is negatively affected by dynamic adaptivity. This is due, in part,

to the fact that much of the behavior of the system is not static and occurs largely at run-time.

Changeability, provided that the software remains modular, can be improved by dynamic adaptivity.

This is especially true if the change requires simply adding a configuration. Stability of software

usually remains unaffected by dynamic adaptivity.
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Testability of software is negatively affected by dynamic adaptivity [36], but it is also the

area where the greatest amount of work has been completed to offset the trade-off (see [53, 40]).

Many of these approaches rely on formal methods or run-time testing. As mentioned previously,

run-time testing is not applicable to every domain, and more work on methods for fully modeling a

dynamic system’s context using formal methods are needed. However, most of the work in this field

has shown promise at improving the testability of software systems including dynamic adaptivity

despite the compounded number of states adaptivity introduces.

4.1.6 Portability

With the addition of dynamic adaptivity, portability sub-characteristics are generally im-

proved or remain unchanged. Adaptability is usually improved as it is now possible for the software

to respond to a greater number of contextual situations without additional changes. It still may not

be possible for the software to respond correctly to unknown or unforeseen contexts, but steps can

be taken to manage this uncertainty. Installability is usually enhanced; it is now usually possible

to deploy the software to a new installation with little to no additional configuration. Conformance

will, in general, remain unchanged. However, it is possible for it to degrade if it is possible for

the software to choose the wrong configuration for a context or if the software can adversely affect

the environment. Finally, replaceability will usually degrade. The software is required to manage

not only a large number of configurations, but it is also responsible for switching between those

configurations as the need arises. Any new piece of software that replaces the system will have to

meet those requirements on the first deployment or find a way to mitigate them. However, adding

additional features to a DAS can be easier, particularly if the addition requires only a new variant.

4.1.7 Summary

DAS are adopted to achieve specific gains with respect to a focused set of quality attributes,

however, these gains come at the cost of other attributes which degrade. Care must be taken to

ensure that, even though the gains desired were achieved, unacceptable losses were not incurred

elsewhere. It must also be noted that not every quality attribute improves or degrades consistently

in the presence of dynamic adaptivity; the scenario and reason for incorporating dynamic adaptivity

both play a role.
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4.2 Cost / Effort Estimation for Dynamic Software Product

Lines

As DSPLs can be modeled with SPL techniques, it follows that it should also be possible

to estimate the instantiation cost / effort in a fashion similar to SPLs. SIMPLE is one such cost

estimation technique that provides a method for comparing SPL designs.

However, directly applying SIMPLE to a DSPL architecture yields sub-optimal results since

the reasons for adopting a SPL strategy differ from the reason for adopting a DSPL strategy. SPLs

are selected because they allow an organization to produce better products more quickly and with

less cost. This is accomplished by related products sharing a common base that is populated with

variation points that each product instantiates. The variation points in a product are traditionally

closed, bound and static, that is, once the product has been instantiated, it is no longer possible to

change the variation point binding. Some product lines delay the instantiation of a product until

run-time, but the result is still the same, once bound, the variation point cannot be rebound.

DSPL systems are adopted to account for run-time uncertainty, which takes many forms. For

example, the environment in which the system will be deployed may not be completely determined.

It might also be possible that the system will require complex tradeoffs due to the environment that

will require it to evolve on the fly. Also, unlike traditional SPL architectures, the variation points of

a DSPL are typically fluid. The system is free, at any time, to unbind and rebind another variant

to the variation point. Due to this fluidity, DSPL architectures exact heavier trade-offs.

In addition to DSPL being adopted for different reasons than SPL, several differences exist

between the costs incurred by DSPL adoption and the costs incurred by SPL adoption. First,

when building a DSPL, the company is no longer building a set of products, rather the company

is either building a single product which can operate in many configurations or a product line of

products of which some can operate in many configurations. The ramifications of the difference touch

many aspects of the software development life cycle. In addition to requirements which govern

the family architecture shared by all configurations and the requirements that govern individual

variants, requirements are also needed to govern the adaptation process. The cost of these extra

requirements must be accounted for. Design costs could also be increased due to the possible addition

of components to control adaptivity.

Second, each variation point within a DSPL can incur additional costs atypical of a variation
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point in a traditional SPL. DSPL variation points typically have the ability to change on the fly

without human intervention while SPL variation points typically do not. This ability can require

extra hardware, and the decision planning and execution process must be supplied with all data

needed in order to make a decision. This could compound the number of connections a variation

point component needs increasing the cost of instantiation.

Following the above reasoning, more accurate effort / cost estimation results can be obtained

if adaptive and non-adaptive components of the family architecture are considered separately. Split-

ting components allows the cost of each variation point to be tailored specifically to the adaptivity

style being considered while enabling reuse of the effort / cost estimation for the non-adaptive

components.

We now introduce the Structured Intuitive Model for Dynamic System Economics (SIM-

DASE). SIMDASE is a model-based estimation technique and, as such, requires an architectural

model from which it can obtain additional information to produce more accurate estimates. SIM-

DASE, unlike SIMPLE, is therefore provided as an annotation for architecture description languages.

At the time of this writing, tooling for SIMDASE exists only for AADL and its development envi-

ronment OSATE. SIMDASE for AADL can be installed from the plugin update site,

https://bitbucket.org/strategicsoftwareengineering/simdase-osate. Support for other architectural

modeling languages is planned as part of future efforts, see section 8.

4.2.1 Overview

SIMDASE is based on SIMPLE, and shares some of SIMPLE’s design philosophy as well

as some of SIMPLE’s core functions. However, in order to leverage the recursive nature of an

architectural model, SIMDASE is split across 5 equations. Each is listed below, along with the

definitions of the sub-functions of each.

Cpl(c) = Csetup() + Corg() + Ccomp(c, 0) (4.1)

Cpl represents the cost of constructing a product line. The parameter c is the top-most

component of the architectural model / sub-model to be evaluated. Csetup represents the cost of

developing the architectural model for evaluation within SIMDASE. Corg represents the cost the

organization incurs by adopting a DSPL strategy. Some example organizational costs are reorgani-
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zation / training / process improvement needed by the organization before a DSPL design can be

adopted.

Ccomp(c, i) = (Cstatic(c))
s(i) +

n(c)∑
(Cnvp(n, i + 1)) +

a(c)∑
(Cavp(a, i + 1))) (4.2)

Ccomp represents the cost of building a single component. The parameter c is the component

being evaluated, and i is the depth at which c occurs in the architecture’s hierarchy. Cstatic represents

the cost of c’s sub-components that do not contain variation points. s(i) is the user-definable scaling

factor. The scaling factors allow costs to be scaled based on depth in the architecture hierarchy

as well as architectural style. For example, if you have a component that is reused across multiple

architectures, but its cost(s) vary depending on its depth within the architecture, you can provide a

scaling factor that will allow you account for the difference so that the component does not have to

be forked and modified for each architecture. n(c) returns all of the non-dynamic variation points

within c, and a(c) will return all of the dynamic variation points within c.

Cnvp(n, i) =

v(n)∑
(Cvar(v, i)) (4.3)

Cnvp represents the cost of building a non-dynamic variation point. The parameter n is

the non-dynamic variation point under consideration, and i is the level at which n occurs in the

architecture’s hierarchy. The function v(n) will return all of the variants for the non-dynamic

variation point, n.

Cavp(a, i) = Cadapt(a)s(i) +

v(a)∑
(Cvar(v, i)) (4.4)

Cavp represents the cost of building an adaptive variation point. The parameter a is the

dynamic variation point under consideration, and i is the level at which a occurs in the architecture’s

hierarchy. Cadapt is the cost of the adaptation mechanisms for a. Note that this cost will depend

heavily on which adaptation mechanism is chosen. s(i) is the user-definable scaling factor. The

function v(a) will return all of the variants for the dynamic variation point, a.
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Cvar(v, i) = (Cstatic(v))s(i) + Creuse(v)s(i) +

n(v)∑
(Cnvp(n, i + 1)) +

a(v)∑
(Cavp(a, i + 1))) (4.5)

Cvar represents the cost of building a variant. The parameter v is the variant under consid-

eration, and and i is the level at which v occurs in the architecture’s hierarchy. Cstatic represents

the cost of v’s components that do not contain variation points, somewhat equivalent to SIMPLE’s

Cunique. Creuse represents the cost of building a variant by reusing the core assets, and s(i) is the

user-definable scaling factor. Finally, n(v) will return all of the non-dynamic variation points within

v, and a(v) will return all of the dynamic variation points within v.

4.2.2 Use

SIMPLE defines 29 categories among which the development costs of a project can be divided

(listed below) and SIMPLE relies on managerial knowledge of a company and teams to produce an

estimate for each of these categories for a given function definition. This does not mean that the

values are strictly integers; the values for these subareas could be function definitions, such as a

sinusoidal function, if the user wishes.

• Software Engineering

– Architecture Definition

– Architecture Evaluation

– Component Development

– Mining Existing Assets

– Requirements Engineering

– Software System Integration

– Testing

– Understanding Relevant Domains

– Using Externally Available Software

• Technical Management
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– Configuration Management

– Make/Buy/Mine/Commission Analysis

– Measurement and Tracking

– Process Discipline

– Scoping

– Technical Planning

– Technical Risk Management

– Tool Support

• Organizational Management

– Building a Business Case

– Customer Interface Management

– Developing an Acquisition Strategy

– Funding

– Launching and Institutionalizing

– Market Analysis

– Operations

– Organizational Planning

– Organizational Risk Management

– Structuring the Organization

– Technology Forecasting

– Training

SIMDASE, derived from SIMPLE, uses these 29 categories as well, but it also adds the

ability to define custom categories. These categories form the basis for the Csetup, Corg, Csetup,

Cstatic, Cadapt and Creuse functions. Managerial knowledge is also leveraged to produce a definition

for the scaling factor function, s(i), as not all projects will have a scaling factor and factors can

differ between projects.
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SIMDASE also uses a different representation of cost. Where as SIMPLE represents each

category’s cost as either an integer or a function returning an integer, SIMDASE represents cost as

the number of employee’s required to complete the tasks in a given category as well as how much

time is required of each employee. However, SIMDASE does also allow fixed costs which cannot be

assigned to a single employee or group of employees to also be returned.

An example of such a situation might be that a given task will require 5 developers. In

addition to developer time, several software purchases will have to be made so that the developers

can complete their assigned tasks. The fixed cost of the software will be returned along with the

employee costs by the function to account for the fixed costs that are not assigned to a given

developer.

The reason for choosing to make the cost estimation employee based rather than using solely

numeric functions is that, in our experience, managers often think of costs in terms of how many

employees will be assigned to a given task rather than in fixed numbers. Having SIMDASE represent

cost as the number of employees reduces the cognitive load required to use the tool. In addition,

raw numeric costs can be obtained by taking the total number of hours required for each employee

and multiplying it by their estimated hourly salary.

4.2.3 Annex Example

To calculate an estimation of a project’s cost, a user must first provide an architectural

definition of the system. Note that this definition does not need to be complete, but it must contain

enough information to loosely outline the system, its variation points, variation point types and the

variants. Afterwards, a list of the various components needed for the system can be forwarded to a

manager so that cost information can be supplied. The information provided can then be annotated

into the model through the use of the SIMDASE annex.

After defining and annotating architecture, the SIMDASE evaluation engine can determine

which specified entities are variation points as well as the variation point’s type. For each variation

point, the variants for the variation point must be specified. Also, for dynamic variation points, the

costs of adaptivity must be specified. An example SIMDASE annex is given in listing 4.1.

In listing 4.1, an example SIMDASE annex is given in which component development will

occur for 31 time periods. During the first time period, several employees will be used to plan

development and assess risk on the project. 2 Business Leads will be used for 20 hours to do
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organizational planning and 20 hours to do organizational risk management. Note that the variable t

is available in all formulas within the annex and represents the current time period. Another variable

i, which represents the annex’s containing component’s level within the architecture hierarchy, is

also injected into all formulas.

1 annex simdase {∗∗

2 −− the systems con s t ruc t i on w i l l occur over 31 spaced time pe r i od s

3 time min => 0 . 0 ;

4 time max => 3 0 . 0 ;

5 co s t => {

6 o r g an i z a t i ona l p l ann i ng => {

7 2 .0 ”Bus iness Lead” f o r 30 .0

8 } ;

9 scop ing => {

10 2 .0 ” Pro j e c t Manager” f o r 40 .0

11 } ;

12 } ;

13 ∗∗} ;

Listing 4.1: AADL Contract Snippet

The output from SIMDASE is an aggregated list of components in the architecture and the

employees required to build them. Note that top level components in the architecture aggregate the

costs of their sub-components as well as their own costs in the report. Reports also contain which

components are under active development during a time period.

4.3 Decision Support System

As of the writing of this dissertation, the full DSS is not yet fully completed and there is

more work to be completed as future work (discussed in section 8). The DSS’s outline is shown

in figure 4.1. The parts of the framework shown in green are mostly completed and have been

discussed in previous sections (Cost Estimation [SIMDASE] in section 4.2, Architecture Validation &

Verification [XAGREE] in section 3). We briefly discuss Quality Attribute Estimation in section 4.1,

but work in this area is still ongoing. We now introduce how these various parts will ultimately fit
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Figure 4.1: Decision Support System Outline

together to provide a complete DSS.

Unfortunately, comparison of DPSL designs on the basis of cost solely might lead to sub-

optimal results. There are two primary reasons for this. First, the cost of testing a DSPL differs

from the cost of testing of a traditional SPL. In a traditional SPL, each product can be individually

tested as it is to be released. It is not necessary to test the entire line of products all at once. Since

a DSPL can be a single product with many run-time configurations or a product line of products

some with many run-time configurations, the amount of effort required to test a deployable project

is usually greater since more testing must be done up front rather than in gradual increments.

Second, DSPLs make more significant trade-offs than traditional SPLs, and the measurement

and accounting for each trade-off incurs additional cost. These trade-offs can drastically affect

deployments of the system. Dynamic adaptivity is chosen for specific reasons to improve specific

quality attributes, however, thought is not always given to the quality attributes that are traded-

off. The trade-offs can make the system harder to maintain, more difficult to deploy, less secure or

more prone to failure. Each trade-off incurs a cost to either mitigate the cost or to ensure that the

trade-off is acceptable.
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We now introduce our DSS for selecting between designs of a DSPL. The first phase requires

that an architect select which verified, candidate designs they wish to compare against one another.

The cost / effort to instantiate each design is then calculated so that any designs that are out of

budget can be eliminated. The second phase involves analyzing the detailed architectural designs of

candidates selected from the results of the first phase to estimate the design’s quality attributes. The

DSS we present is tool agnostic. Any framework, description language, cost estimation framework,

validation tool, etc. can be used. Naturally, we recommend the tools created as part of this research,

but we do not require them.

4.3.1 Phase 1

The first phase of our DSS involves the creation of several validated and verified DPSL

designs for a given to-be-constructed system. Each design’s high-level goals and requirements should

be inline with the requirements of the to-be-constructed-system.

The cost / effort to construct each design will be calculated and a set of designs that meet

the budget criteria established by the organization will be produced. Note that it is generally

advised to set boundaries for the budget criteria. For example, perhaps the best design is 105% of

the budget. In some organizations, spending the extra 5% to achieve the most optimal design is

acceptable whereas in some other organizations it is not.

There are multiple cost / effort estimations frameworks that are available to be used in this

step. The estimation framework presented in this research, SIMDASE, is an option as is SIMPLE.

Other estimation frameworks related to these two frameworks, discussed in section 7, are also viable

options.

4.3.2 Phase 2

As comparison on cost / effort alone is not enough, the second phase of our DSS involves

the selection of one or more candidates from phase 1 whose efforts / cost are within the budgeted

range, or within acceptable deviation of the budget, for the organization. The architectural models

of the designs accepted in phase 1 will be used to estimate the current compliance of each design’s

quality attributes.

Two sets of quality attributes will be selected by the system architect. The first set of ISO
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25010 quality attributes will be the set of attributes the architect seeks to improve by incorporating

dynamic adaptivity. For example, the architect might choose to include dynamic adaptivity so that

reliability is improved, specifically fault tolerance and recoverability.

The second set of quality attributes is the set for which a trade-off is acceptable to the

system architect. This will leave a third, implied set of attributes which are not in the union of the

two identified sets. These are attributes which the architect is not necessarily seeking to improve

but which the architect is unsure if degradation is acceptable.

Once an architectural model is constructed, estimations of the first and third set of quality

attributes should be taken. These estimations provide additional insight into the appropriateness of

each candidate design for the organization. It can also alert the system architect to a design’s need

for reconsideration or modification to bring attributes back into compliance.

Note that it is not sometimes necessary to include the second set of attributes in the esti-

mation process as well. This is true if any of the quality attributes of the second set have minimum

thresholds. If this is true, those attributes having minimum thresholds must be measured in addition

to the first and third set of attributes to ensure compliance.

4.3.3 Decision

Once the cost and quality attribute compliance of each design has been calculated, in general,

the design with the lowest cost and highest compliance will be the best choice. However, this choice

will ultimately be an organizational decision.

Occasionally, designs will be heavily modified during the second phase to bring the design

into compliance. If this occurs, the DSS can be used in an iterative manner where the updated

design has its cost / effort recalculated followed by an additional estimation of quality attribute

compliance. This iteration can be done as many times as deemed necessary for as many of the

candidate designs for which iteration is needed.
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Chapter 5

Analysis & Evaluation

In this section, we evaluate the completed portions of our DSS for comparing designs of

DSPLs. In this research, we focus exclusively on evaluating the cost / effort estimation framework,

SIMDASE, and XAGREE, the improved verification / validation tool for DSPL architectures. The

remaining portions of the DSS will be evaluated as part of future work (discussed in section 8.

We make two claims concerning SIMDASE.

• Claim C1 SIMDASE is sufficiently flexible to support the estimating of cost / effort for a

wide range of development strategies.

• Claim C2 SIMDASE’s effort estimation formula is robust with regard to input parameters,

including user-defined input parameters that could return periodic or sinusoidal values.

We also make one claim concerning XAGREE.

• Claim C3 XAGREE, in general, reduces the size of verification assets, reduces the complexity

of verification assets, and reduces the amount of duplication across verification assets when

compared to traditional AGREE.

Each claim is discussed individually in the remaining sections. Throughout the evaluation,

we will use 3 primary examples. The first example is a forklift tracking system that originates from

a project encountered during our research. The two remaining examples are testing exemplars pro-

posed and accepted by the DSPL community as part of the International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS). The first is a dynamic adaptive
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Table 5.1: Evaluation Examples Overview

Example (Scenario)
Case Study

Analysis
Sensitivity
Analysis

Complexity Reduction
Analysis

Tracking System 5.1.2 5.3.2
Tracking System

(Waterfall)
5.1.2.1

Tracking System
(Agile)

5.1.2.2

Tracking System
(Undetermined)

5.1.2.3 5.2.2

DAS - Nutrition 5.1.3 5.3.3
DAS - Nutrition

(Waterfall)
5.1.3.1

DAS - Nutrition
(Components Same Periods)

5.1.3.2

DAS - Nutrition
(Purchased Component)

5.1.3.3

DAS - Nutrition
(Undetermined)

5.1.3.4 5.2.3

DAS - Underwater 5.1.4 5.3.4
DAS - Underwater

(Undetermined)
5.1.4.1 5.2.4

nutrition system [4] and the second is a dynamic adaptive underwater vehicle [24]. Full models for

each example along with additional examples can be found on the project’s homepage:

https://bitbucket.org/account/user/strategicsoftwareengineering/projects/SIMDASE. For each of our

selected examples, we will present multiple scenarios, some of which will be reused across evalua-

tions. The table below lists each scenario as well as which evaluations the scenario is associated with

and in which section the evaluation using that particular scenario occurs. In addition to providing

full models, the majority of the data plots in the evaluation are available as manipulable data plots.

These plots can be accessed by navigating to the link associated with each graph. The full data set

for each graph is also available via this link.

5.1 Demonstrating Cost / Effort Estimation Model Flexibil-

ity

Claim C1 : SIMDASE is sufficiently flexible to support the estimating of cost / effort for a

wide range of development strategies.
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5.1.1 Evaluation Plan

To demonstrate claim C1, we will evaluate each of our selected examples. For each system,

we will first introduce the system and its architecture. We will then produce an estimate of the

cost of implementation for that system under various scenarios (3 scenarios for the first system,

4 scenarios for the second system and 1 scenario the last system). In both the introduction and

scenario analysis, we will provide snippets of the AADL architecture as they relate to the discussion.

Full models can be found online at

https://bitbucket.org/strategicsoftwareengineering/simdase-examples-2. With each scenario, we show

that our model is capable of supporting the unique complexities introduced by that scenario.

5.1.2 Forklift Tracking System

The first system we introduce is a forklift tracking system for an industrial manufacturing

facility. The goals of this system are to monitor the location and speed of forklifts as they make

their rounds through the facility on a daily basis to determine if 1) the forklift drivers are obeying

posted speed limits throughout the facility, 2) the forklift drivers are completing one circuit in an

appropriate length of time (with acceptable standard deviation) and 3) that drivers are completing

enough circuits during a given shift.

Due to manufacturing facility regulations, only three communication protocols are allowed:

2.4 GHz Wireless, Bluetooth Low Energy (BLE) [26] and Zigbee Wireless [33]. No single protocol

is available throughout the entire facility due to assembly machinery sensitivity to certain radio

frequencies, but at least one of the three protocols is available for use in all of the areas that forklifts

travel. In addition, there are areas in the facility where certain protocols are banned due to the

aforementioned machinery sensitivity. It is a necessity that the forklift tracker be able to determine

that it is inside one of these zones so that the protocol can be disabled. In addition, the tracker

must select the best protocol from the remaining protocols to transmit data to the central receiver.

In this example, we will focus exclusively on the tracker which transmits data to a receiver.

The receiver will then transmit the data to a database for storage and reporting. The development

team of the manufacturing facility claimed responsibility for reading and analyzing data contained

in the database. We were responsible for building the system and ensuring data reliably reached the

database.
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Figure 5.1: Tracking System Architecture

Determining how the forklift’s location would be calculated proved to be a challenge. Global

Positioning System (GPS) calculations were not possible due to interference as was triangulation

due to sparsely located Wifi, BLE and Zigbee transmitters. It was eventually decided that passive

Radio-Frequency IDentification (RFID) tags would be placed around the facility. They would be

placed at the start and end of each “road” as well as at the entrance and exit of each “frequency-

offline zone.” The tracker would transmit the speed and last RFID tag read to the central receiver

along with a timestamp.

A diagram overview of our tracking system is shown in figure 5.1. We will now provide and

discuss the individual core components of the architecture.

1 dev i ce r f i d r e a d e r

2 f e a t u r e s

3 x : out data port Base Types : : F loat 64 ;

4 y : out data port Base Types : : F loat 64 ;

5 t a g i d : out data port Base Types : : S t r ing ;

6 end r f i d r e a d e r ;

Listing 5.1: Tracking System

In listing 5.1, we show the first primary component of the architecture: the interface for the

RFID reader tag. This interface shows that the rfid reader component produces 3 values. The first

two are a x and a y value that represent the location of the RFID tag within the facility. The final
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is the id of the tag itself.

1 abs t r a c t communication module

2 f e a t u r e s

3 power on : in event port ;

4 power o f f : in event port ;

5 s i g n a l s t r e n g t h : out data port Base Types : : I n t e g e r ;

6 send : in event data port f o r k l i f t t r a c k i n g s y s t em : : t r a ck i ng i n f o rmat i on ;

7 data send event : out event data port

f o r k l i f t t r a c k i n g s y s t em : : t r a ck i ng i n f o rmat i on ;

8 end communication module ;

Listing 5.2: Tracking System

In listing 5.2, we have the abstract interface that each communication protocol implements.

Each interface has two event ports, power on and power off, that allow the protocol to be enabled

or disabled in software. The interface also allows each protocol, when powered on, to provide the

current signal strength. The interface also has two data events: send and data send event. send

alerts the protocol to send a data packet and data send event performs the actual sending of data.

1 thread p o l l p o s i t i o n i n g t a g

2 f e a t u r e s

3 coo rd ina t e s : r e qu i r e s data a c c e s s f o r k l i f t t r a c k i n g s y s t em : : c oo rd ina t e s ;

4

5 x : in data port Base Types : : F loat 64 ;

6 y : in data port Base Types : : F loat 64 ;

7 t a g i d : in data port Base Types : : S t r ing ;

8

9 t r a c k i n g i n f o : out event data port

f o r k l i f t t r a c k i n g s y s t em : : t r a ck i ng i n f o rmat i on ;

10 end p o l l p o s i t i o n i n g t a g ;

11

12 thread implementation p o l l p o s i t i o n i n g t a g . impl

13 p r op e r t i e s

14 Dispatch Protoco l => Per i od i c ;

15 Period => 5000 ms ;
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16 annex b e h a v i o r s p e c i f i c a t i o n {∗∗

17 va r i a b l e s

18 p r e v i o u s l o c a t i o n : f o r k l i f t t r a c k i n g s y s t em : : c oo rd ina t e s ;

19 c u r r e n t l o c a t i o n : f o r k l i f t t r a c k i n g s y s t em : : c oo rd ina t e s ;

20 speed : Base Types : : F loat 64 ;

21 t r a ck i ng i n f o rmat i on : f o r k l i f t t r a c k i n g s y s t em : : t r a ck i ng i n f o rmat i on ;

22 s t a t e s

23 s t a r t : i n i t i a l s t a t e ;

24 o f f l i n e : complete s t a t e ;

25 on l i n e : s t a t e ;

26 t r a n s i t i o n s

27 s t a r t −[]−> o f f l i n e ;

28 o f f l i n e −[on d i spatch ]−> on l i n e {

29 p r e v i o u s l o c a t i o n := cu r r e n t l o c a t i o n ;

30 coo rd ina t e s . bu i l d c o o rd i n a t e s ! ( x , y , tag id , c u r r e n t l o c a t i o n ) ;

31 coo rd ina t e s . compute speed ! ( speed ) ;

32 coo rd ina t e s . bu i l d t r a c k i n g i n f o rma t i on ! ( c u r r en t l o c a t i on , speed ,

t r a ck i ng i n f o rmat i on ) ;

33 t r a c k i n g i n f o ! ( t r a ck i ng i n f o rmat i on )

34 } ;

35 on l i n e −[]−> o f f l i n e ;

36 ∗∗} ;

37 end p o l l p o s i t i o n i n g t a g . impl ;

Listing 5.3: Tracking System

In listing 5.3, we have the thread which checks every 5 seconds for new RFID tag readings.

Each reading is packaged and sent to the server via the active communication protocol, whatever

that may be. The behavior specification block of this component gives the behavior, in a state

machine format, of the component. On each firing of the thread, a coordinate reading is taken,

speed computed, and a tracking information data set built. All of this information is finally placed

into the tracking info event queue for sending.

1 thread mon i t o r s i g na l and l o c a t i on

2 f e a t u r e s

47



3 i s e n a b l e d a t l o c a t i o n i n t e r f a c e : r e qu i r e s data a c c e s s

f o r k l i f t t r a c k i n g s y s t em : : i s e n a b l e d a t l o c a t i o n i n t e r f a c e ;

4 t r a ck i ng i n f o rmat i on : r e qu i r e s data ac c e s s

f o r k l i f t t r a c k i n g s y s t em : : t r a ck i ng i n f o rmat i on ;

5

6 t r a c k i n g i n f o e v e n t : in event data port

f o r k l i f t t r a c k i n g s y s t em : : t r a ck i ng i n f o rmat i on ;

7

8 wi r e l e s s power on : out event port ;

9 w i r e l e s s p ow e r o f f : out event port ;

10 w i r e l e s s s i g n a l s t r e n g t h : in data port Base Types : : I n t eg e r ;

11

12 bluetooth power on : out event port ;

13 b lue t oo th powe r o f f : out event port ;

14 b l u e t o o t h s i g n a l s t r e n g t h : in data port Base Types : : I n t eg e r ;

15

16 rad io power on : out event port ;

17 r ad i o powe r o f f : out event port ;

18 r a d i o s i g n a l s t r e n g t h : in data port Base Types : : I n t eg e r ;

19

20 u s e w i f i : out event port ;

21 u s e b l e : out event port ;

22 us e r ad i o : out event port ;

23 end mon i t o r s i g na l and l o c a t i on ;

24

25 thread implementation mon i t o r s i g na l and l o c a t i on . impl

26 annex b e h a v i o r s p e c i f i c a t i o n {∗∗

27 va r i a b l e s

28 t r a c k i n g i n f o : f o r k l i f t t r a c k i n g s y s t em : : t r a ck i ng i n f o rmat i on ;

29 l o c a t i o n : f o r k l i f t t r a c k i n g s y s t em : : c oo rd ina t e s ;

30 w i r e l e s s e n ab l e d : Base Types : : Boolean ;

31 b lue tooth enab l ed : Base Types : : Boolean ;

32 r ad i o enab l ed : Base Types : : Boolean ;
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33 w i r e l e s s r a t i n g : Base Types : : I n t eg e r ;

34 b lu e t o o th r a t i n g : Base Types : : I n t eg e r ;

35 r a d i o r a t i n g : Base Types : : I n t eg e r ;

36 s t a t e s

37 s t a r t : i n i t i a l s t a t e ;

38 o f f l i n e : complete s t a t e ;

39 on l i n e : s t a t e ;

40 t r a n s i t i o n s

41 o f f l i n e −[on d i spatch t r a c k i n g i n f o e v e n t ]−> on l i n e {

42 t r a c k i n g i n f o e v e n t ?( t r a c k i n g i n f o )

43 } ;

44 on l i n e −[]−> o f f l i n e {

45 t r a ck i ng i n f o rmat i on . g e t l o c a t i o n ! ( t r a c k i n g i n f o , l o c a t i o n ) ;

46 i s e n a b l e d a t l o c a t i o n i n t e r f a c e . i s w i r e l e s s e n a b l e d a t l o c a t i o n ! ( l o ca t i on ,

w i r e l e s s e n ab l e d ) ;

47 i s e n a b l e d a t l o c a t i o n i n t e r f a c e . i s b l u e t o o t h e n a b l e d a t l o c a t i o n ! ( l o ca t i on ,

b lue tooth enab l ed ) ;

48 i s e n a b l e d a t l o c a t i o n i n t e r f a c e . i s r a d i o e n a b l e d a t l o c a t i o n ! ( l o ca t i on ,

r ad i o enab l ed ) ;

49 i f ( w i r e l e s s e n ab l e d )

50 wi r e l e s s power on ! ;

51 w i r e l e s s r a t i n g := w i r e l e s s s i g n a l s t r e n g t h

52 e l s e

53 w i r e l e s s p ow e r o f f ! ;

54 w i r e l e s s r a t i n g := 0

55 end i f ;

56 i f ( b lue too th enab l ed )

57 bluetooth power on ! ;

58 b lu e t o o th r a t i n g := b l u e t o o t h s i g n a l s t r e n g t h

59 e l s e

60 b lue t oo th powe r o f f ! ;

61 b lu e t o o th r a t i n g := 0

62 end i f ;
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63 i f ( r ad i o enab l ed )

64 rad io power on ! ;

65 r a d i o r a t i n g := r a d i o s i g n a l s t r e n g t h

66 e l s e

67 r ad i o powe r o f f ! ;

68 r a d i o r a t i n g := 0

69 end i f ;

70 i f ( w i r e l e s s r a t i n g > b lu e t o o th r a t i n g )

71 i f ( w i r e l e s s r a t i n g > r a d i o r a t i n g )

72 u s e w i f i !

73 end i f

74 end i f ;

75 i f ( b l u e t o o th r a t i n g > w i r e l e s s r a t i n g )

76 i f ( b l u e t o o th r a t i n g > r a d i o r a t i n g )

77 u s e b l e !

78 end i f

79 end i f ;

80 i f ( r a d i o r a t i n g > b lu e t o o th r a t i n g )

81 i f ( r a d i o r a t i n g > w i r e l e s s r a t i n g )

82 us e r ad i o !

83 end i f

84 end i f

85 } ;

86 ∗∗} ;

87 end mon i t o r s i g na l and l o c a t i on . impl ;

Listing 5.4: Tracking System

In listing 5.4, we have the primary adaptive component of this architecture. This thread

listens for new RFID tags to compute location, but it also uses these readings to determine if a

communication protocol should be disabled. In addition to monitoring for RFID tag readings, this

thread also monitors the signal strength of active protocols. After protocols have been enabled or

disabled based on location, the protocol with the best signal strength is activated for use by the

sending thread.

50



As previously mentioned, these components represent the core components of the architec-

ture. There are additional components which “glue” the sending and adaptive threads together,

however, in the following scenarios, we will focus exclusively on the above components along with

any components that inherit from them (such as the ble module, radio module and wifi module that

extend the communication module).

5.1.2.1 Forklift Tracking System Waterfall Scenario

In this scenario, we analyze the development of the tracking system using a waterfall based

approach. The system will be developed over 10 time periods. Organizational training will occur

during the first time period, and architecture / requirements will be co-generated during the second

and third time periods continuing into the fourth time period. Development work will also begin in

the fourth period and continue until the eighth period. Testing will start in the eighth period and

continue until the tenth period. Deployment preparations will also occur in the tenth period. A

visual overview of this scenario can be seen in figure 5.2.

Figure 5.2: Example 1 Waterfall Timeline

We now provide architecture snippets with the SIMDASE implementation of the above

scenario. Note, to conserve space, previously listed component parts are omitted (i.e. features,

51



subcomponents, behavior specification, etc.).

1 annex simdase {∗∗

2 time min => 0 . 0 ;

3 time max => 9 . 0 ;

4 va r i an t s => {

5 ” w i f i e n ab l e d ” :{

6 ”wi r e l e s s modu l e ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a w i f i ” , ” protoco l management process ”

7 } ;

8 ” b l e enab l ed ” :{

9 ” bluetooth module ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a b l e ” , ” protoco l management process ”

10 } ;

11 ” rad io enab l ed ” :{

12 ” radio module ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a r a d i o ” , ” protoco l management process ”

13 } ;

14 } ;

15 a c t i v e v a r i a n t s => { ” f o r k l i f t t r a c k e r . impl ” : [ ” w i f i e n ab l e d ” ,

” b l e enab l ed ” , ” rad i o enab l ed ” ] ; } ;

16 co s t => {

17 o r g an i z a t i ona l p l ann i ng => {

18 2 .0 ” Pro j e c t Manager” f o r i f ( t == 0 . 0 ) { 40 .0 } e l s e { 0 .0 }

19 } ;

20 r equ i r ement s eng ine e r i ng => {

21 2 .0 ”Bus iness Analysts ” f o r i f ( t == 1 .0 | | t == 2 . 0 ) { 40 .0 } e l s e { i f ( t

== 3 . 0 ) { 20 .0 } e l s e { 0 .0 } }

22 } ;

23 a r c h i t e c t u r e d e f i n i t i o n => {

24 2 .0 ” Software Arch i t e c t s ” f o r i f ( t == 1 .0 | | t == 2 . 0 ) { 30 .0 } e l s e {

i f ( t == 3 . 0 ) { 20 .0 } e l s e { 0 .0 } }

25 } ;

26 a r c h i t e c t u r e e v a l u a t i o n => {

27 2 .0 ” Software Arch i t e c t s ” f o r i f ( t == 1 .0 | | t == 2 . 0 ) { 10 .0 } e l s e {

i f ( t == 3 . 0 ) { 5 .0 } e l s e { 0 .0 } }

28 } ;
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29 component development => {

30 3 .0 ” Software Developers ” f o r i f ( t >= 3.0 && t <= 7 . 0 ) { 40 .0 } e l s e { 0 .0

}

31 } ;

32 t e s t i n g => {

33 2 .0 ”Tes te r s ” f o r i f ( t >= 7.0 && t <= 9 . 0 ) { 40 .0 } e l s e { 0 .0 }

34 } ;

35 s o f twa r e s y s t em in t e g r a t i on => {

36 1 .0 ”System Administrator ” f o r i f ( t == 9 . 0 ) { 40 .0 } e l s e { 0 .0 }

37 } ;

38 } ;

39 ∗∗} ;

Listing 5.5: Tracking System Cost Scenario 1

In listing 5.5, we present the representation for specifying the hours required for the tracking

system’s first scenario. In this scenario, note that each task has the precise ranges specified during

which the activity occurs. As activities do not reoccur on a regular basis, exact specification is

acceptable. The output giving the total hours required for each time period can be found in figure 5.3.

Note that once again, as activities do not reoccur, their costs appear only during the periods specified.

5.1.2.2 Forklift Tracking System Agile Scenario

In this scenario, we analyze the development of the tracking system using an agile based

approach. The system will once again be developed over 10 time periods, however, it will be

developed in 5 cycles of two periods each. The first cycle will consist of organizational training

and restructuring. The remaining 4 cycles will consist of requirements / architecture generation

(beginning of cycle), development (middle of cycle) and testing (end of cycle). A visual overview of

this scenario can be seen in figure 5.4.

We now provide architecture snippets with the SIMDASE implementation of the above

scenario. Note, to conserve space, previously listed component parts are omitted (i.e. features,

subcomponents, behavior specification, etc.).

1 annex simdase {∗∗

2 time min => 0 . 0 ;
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Figure 5.3: Tracking System Cost Report Scenario 1 (https://plot.ly/˜bulletshot60/33)

Figure 5.4: Example 1 Agile Timeline
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3 time max => 9 . 0 ;

4 va r i an t s => {

5 ” w i f i e n ab l e d ” :{

6 ”wi r e l e s s modu l e ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a w i f i ” , ” protoco l management process ”

7 } ;

8 ” b l e enab l ed ” :{

9 ” bluetooth module ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a b l e ” , ” protoco l management process ”

10 } ;

11 ” rad io enab l ed ” :{

12 ” radio module ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a r a d i o ” , ” protoco l management process ”

13 } ;

14 } ;

15 a c t i v e v a r i a n t s => { ” f o r k l i f t t r a c k e r . impl ” : [ ” w i f i e n ab l e d ” ,

” b l e enab l ed ” , ” rad i o enab l ed ” ] ; } ;

16 co s t => {

17 o r g an i z a t i ona l p l ann i ng => {

18 2 .0 ” Pro j e c t Manager” f o r i f ( t == 0 .0 | | t == 1 . 0 ) { 40 .0 } e l s e { 0 .0 }

19 } ;

20 r equ i r ement s eng ine e r i ng => {

21 2 .0 ”Bus iness Analysts ” f o r i f ( t > 0 .0 && t \% 2.0 == 0 . 0 ) { 20 .0 } e l s e {

0 .0 }

22 } ;

23 a r c h i t e c t u r e d e f i n i t i o n => {

24 2 .0 ” Software Arch i t e c t s ” f o r i f ( t > 0 .0 && t \% 2.0 == 0 . 0 ) { 20 .0 } e l s e

{ 0 .0 }

25 } ;

26 a r c h i t e c t u r e e v a l u a t i o n => {

27 2 .0 ” Software Arch i t e c t s ” f o r i f ( t > 0 .0 && t \% 2.0 == 0 . 0 ) { 20 .0 } e l s e

{ 0 .0 }

28 } ;

29 component development => {

30 3 .0 ” Software Developers ” f o r i f ( t > 1 . 0 ) { i f ( t \% 2.0 == 0 . 0 ) { 20 .0 }

e l s e { 10 .0 } } e l s e { 0 .0 }
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31 } ;

32 t e s t i n g => {

33 2 .0 ”Tes te r s ” f o r i f ( t > 1 .0 && t \% 2.0 == 1 . 0 ) { 30 .0 } e l s e { 0 .0 }

34 } ;

35 s o f twa r e s y s t em in t e g r a t i on => {

36 1 .0 ”System Administrator ” f o r i f ( t > 1 .0 && t \% 2.0 == 1 . 0 ) { 20 .0 }

e l s e { 0 .0 }

37 } ;

38 } ;

39 ∗∗} ;

Listing 5.6: Tracking System Cost Scenario 2

In listing 5.6, we present the representation for specifying the hours required for the tracking

system’s second scenario. In this scenario, costs that occur on a rotating basis (every other time

period) are introduced. Note that such costs can be represented using the modulus operator on

time. As will be shown in later examples, SIMDASE also supports more complex representations

such as sinusoidal functions. The output giving the total hours required for each time period can

be found in figure 5.5. Note that activities do reoccur now on a regular basis. This has the added

benefit that the project’s number of time periods can be extended without having to modify the

annex’s cost structure as long as the extension is a multiple of two.

5.1.2.3 Forklift Tracking System Undetermined Scenario

In this scenario, we analyze the development of the tracking system using an agile approach

but when exact values for testing costs are undetermined. It has been decided that while it is

possible to estimate some of the costs up front (such as organizational restructuring and training)

other costs can only be estimated as a range. The system will still follow an agile timeline similar

to that of scenarios 1 and 2.

We now provide architecture snippets with the SIMDASE implementation of the above

scenario. Note, to conserve space, previously listed component parts are omitted (i.e. features,

subcomponents, behavior specification, etc.).

1 annex simdase {∗∗

2 time min => 0 . 0 ;
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Figure 5.5: Tracking System Cost Report Scenario 2 (https://plot.ly/˜bulletshot60/35)

3 time max => 9 . 0 ;

4 va r i an t s => {

5 ” w i f i e n ab l e d ” :{

6 ”wi r e l e s s modu l e ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a w i f i ” , ” protoco l management process ”

7 } ;

8 ” b l e enab l ed ” :{

9 ” bluetooth module ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a b l e ” , ” protoco l management process ”

10 } ;

11 ” rad io enab l ed ” :{

12 ” radio module ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a r a d i o ” , ” protoco l management process ”

13 } ;

14 } ;

15 a c t i v e v a r i a n t s => { ” f o r k l i f t t r a c k e r . impl ” : [ ” w i f i e n ab l e d ” ,

” b l e enab l ed ” , ” rad i o enab l ed ” ] ; } ;

16 co s t => {

17 o r g an i z a t i ona l p l ann i ng => {
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18 2 .0 ” Pro j e c t Manager” f o r i f ( t == 0 .0 | | t == 1 . 0 ) { 40 .0 } e l s e { 0 .0 }

19 } ;

20 r equ i r ement s eng ine e r i ng => {

21 2 .0 ”Bus iness Analysts ” f o r i f ( t > 0 .0 && t \% 2.0 == 0 . 0 ) { random ( ) ∗

40 .0 } e l s e { 0 .0 }

22 } ;

23 a r c h i t e c t u r e d e f i n i t i o n => {

24 2 .0 ” Software Arch i t e c t s ” f o r i f ( t > 0 .0 && t \% 2.0 == 0 . 0 ) { random ( ) ∗

40 .0 } e l s e { 0 .0 }

25 } ;

26 a r c h i t e c t u r e e v a l u a t i o n => {

27 2 .0 ” Software Arch i t e c t s ” f o r i f ( t > 0 .0 && t \% 2.0 == 0 . 0 ) { random ( ) ∗

40 .0 } e l s e { 0 .0 }

28 } ;

29 component development => {

30 3 .0 ” Software Developers ” f o r i f ( t > 1 . 0 ) { i f ( t \% 2.0 == 0 . 0 ) { random ( )

∗ 40 .0 } e l s e { random ( ) ∗ 20 .0 } } e l s e { 0 .0 }

31 } ;

32 t e s t i n g => {

33 2 .0 ”Tes te r s ” f o r i f ( t > 1 .0 && t \% 2.0 == 1 . 0 ) { random ( ) ∗ 40 .0 } e l s e

{ 0 .0 }

34 } ;

35 s o f twa r e s y s t em in t e g r a t i on => {

36 1 .0 ”System Administrator ” f o r i f ( t > 1 .0 && t \% 2.0 == 1 . 0 ) { 20 .0 }

e l s e { 0 .0 }

37 } ;

38 } ;

39 ∗∗} ;

Listing 5.7: Tracking System Cost Scenario 3

In listing 5.7, we present the representation for specifying the hours required for the tracking

system’s final scenario. In this scenario, we continue with costs that occur on a rotating basis, but

we introduce an unknown scaling factor (a randomly selected number between 0 and 1). This allows

58



Figure 5.6: Tracking System Cost Report Scenario 3 (https://plot.ly/˜bulletshot60/47)

us to represent costs for which we do not have a firm guess on the number of hours required. In this

situation, the typical evaluation might include evaluating the annex repeatedly a sufficient number

of types to determine the average, worst and best costs. (Such an analysis will be done as part of

the evaluation for claim C2).

The output giving the total hours required for each time period can be found in figure 5.6.

Note the increase in the precision of the costs introduced. However, with each run of the annex

through the evaluator subsystem of SIMDASE, the values produced will change so the costs repre-

sented in the figure cannot be counted as exact or final; more analysis is needed. This is due to the

use of the random() function in the annex which will pick a pseudo-random value between 0 and 1

inclusive with each call.

5.1.3 Dynamic Adaptive Nutrition System

The second system we introduce is a dynamic adaptive nutrition system [4]. The goal of

this system is to monitor the total output of a country’s farmers as well as the needs of each citizen.

Through careful monitoring, the production of highly perishable goods, such as meat, dairy, bread
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and vegetables, can be limited to only what is going to be used preventing spoilage.

An overview of the information flow of this system is shown in figure 5.7. The system has

7 major components: an individual caloric expenditure monitor, family meal planners, community

needs monitors, national needs monitors, national food production monitors, national distributors

and community distributors.

The architecture is divided up into four primary layers: the individual, the family, the

community and the nation. Individuals have caloric needs based on their metabolic rate and activity

levels. They also have food preferences and allergies. For each family, the caloric needs, allergies and

preferences are aggregated and fused to produce a meal plan that satisfies the needs of the entire

family without endangering them (causing contact with allergens). The meal plans of each family

are then reported to the community monitor that aggregates the needs of all families within the

community. This information is then reported to the national monitor which provides suggestions

to farmers. Production from farmers is then passed into distributors which account for the needs of

individual communities and families attempting to fulfill all needs and ensures fair distribution of

goods. We will now describe each component while showing architecture snippets relating to that

component.

We begin with the individual, shown in listing 5.8. The architecture model that we use to

represent the system concerns itself only with the perishable goods previously mentioned: vegetables,

bread, dairy and meat. Thus allergies to items not monitored are not considered nor is their

production. In addition to allergies, the model also reports the individual’s preference to each

perishable item. This is used in the case of an individual placing himself on a specialized diet that

excludes one of the four perishable food groups.

1 abs t r a c t i nd i v i dua l

2 f e a t u r e s

3 avg c a l o r i c n e ed s : out data port Base Types : : I n t eg e r ;

4 v e g e t a b l e a l l e r g y : out data port Base Types : : Boolean ;

5 b r e ad a l l e r g y : out data port Base Types : : Boolean ;

6 d a i r y a l l e r g y : out data port Base Types : : Boolean ;

7 meat a l l e r gy : out data port Base Types : : Boolean ;

8 no v eg e t ab l e p r e f : out data port Base Types : : Boolean ;

9 no bread pre f : out data port Base Types : : Boolean ;
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Figure 5.7: Nutrition System Information Flow

10 no da i r y p r e f : out data port Base Types : : Boolean ;

11 no meat pre f : out data port Base Types : : Boolean ;

12 end i nd i v i dua l ;

Listing 5.8: Nutrition System Individual

As previously mentioned each individual’s calorie monitor reports to a dynamically adaptive

meal planner, shown in listing 5.9. There are four types of meal planners: normal, allergy, preference

and preference allergy. The meal planner for each family will dynamically adapt in response to family

needs between one of these four.

The reasoning for dynamically adapting in the meal planner is due to the possibility of

an individual having a new allergy diagnosed or gaining a new allergy due to medication. By

dynamically adapting, the meal planner can alter the meals it generates accordingly. Because the

allergy versions of the meal planner ”forget” about the allergen, meaning that meals containing that
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allergen are also forgotten, the allergy meal planner is safer than using if statements alone. Even if

the allergy meal planner receives invalid input, it still cannot give meals containing the allergen.

1 abs t r a c t mea l p l anne r abs t ra c t

2 f e a t u r e s

3 t o t a l v e g e t ab l e s n e ed ed : out data port Base Types : : I n t eg e r ;

4 t o ta l b r ead needed : out data port Base Types : : I n t eg e r ;

5 t o t a l d a i r y n e ed ed : out data port Base Types : : I n t eg e r ;

6 to ta l meat needed : out data port Base Types : : I n t eg e r ;

7 end mea l p l anne r abs t ra c t ;

8

9 abs t r a c t implementation mea l p l anne r abs t ra c t . impl

10 subcomponents

11 member 1 : ab s t r a c t i nd i v i dua l : : i n d i v i dua l . impl ;

12 member 2 : ab s t r a c t i nd i v i dua l : : i n d i v i dua l . impl ;

13 member 3 : ab s t r a c t i nd i v i dua l : : i n d i v i dua l . impl ;

14 member 4 : ab s t r a c t i nd i v i dua l : : i n d i v i dua l . impl ;

15 end mea l p l anne r abs t ra c t . impl ;

Listing 5.9: Nutrition System Meal Planner

From the meal planner needs are aggregated to the community and national levels, both of

which share the same architectural component description shown in listing 5.10. The gather takes

the needs of each sub-unit (either communities or families) and anonymizes those needs so that

they cannot be traced back to individual families or communities, protecting privacy and medical

information.

1 abs t r a c t consumer gatherer

2 f e a t u r e s

3 t o t a l v e g e t ab l e s n e ed ed : out data port Base Types : : I n t eg e r ;

4 un i t 1 v eg e t ab l e s n e ed ed : out data port Base Types : : I n t eg e r ;

5 un i t 2 v eg e t ab l e s n e ed ed : out data port Base Types : : I n t eg e r ;

6 un i t 3 v eg e t ab l e s n e ed ed : out data port Base Types : : I n t eg e r ;

7 un i t 4 v eg e t ab l e s n e ed ed : out data port Base Types : : I n t eg e r ;

8 t o ta l b r ead needed : out data port Base Types : : I n t eg e r ;

9 un i t 1 bread needed : out data port Base Types : : I n t e g e r ;
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10 un i t 2 bread needed : out data port Base Types : : I n t e g e r ;

11 un i t 3 bread needed : out data port Base Types : : I n t e g e r ;

12 un i t 4 bread needed : out data port Base Types : : I n t e g e r ;

13 t o t a l d a i r y n e ed ed : out data port Base Types : : I n t eg e r ;

14 un i t 1 da i r y ne eded : out data port Base Types : : I n t e g e r ;

15 un i t 2 da i r y ne eded : out data port Base Types : : I n t e g e r ;

16 un i t 3 da i r y ne eded : out data port Base Types : : I n t e g e r ;

17 un i t 4 da i r y ne eded : out data port Base Types : : I n t e g e r ;

18 to ta l meat needed : out data port Base Types : : I n t eg e r ;

19 unit 1 meat needed : out data port Base Types : : I n t eg e r ;

20 unit 2 meat needed : out data port Base Types : : I n t eg e r ;

21 unit 3 meat needed : out data port Base Types : : I n t eg e r ;

22 unit 4 meat needed : out data port Base Types : : I n t eg e r ;

23 end consumer gatherer ;

24

25 abs t r a c t implementation consumer gatherer . impl

26 subcomponents

27 common 1 : ab s t r a c t common object ;

28 common 2 : ab s t r a c t common object ;

29 common 3 : ab s t r a c t common object ;

30 common 4 : ab s t r a c t common object ;

31 connec t i ons

32 conn 1 : port common 1 . t o t a l v e g e t ab l e s n e ed ed −> un i t 1 v eg e t ab l e s n e ed ed ;

33 conn 2 : port common 2 . t o t a l v e g e t ab l e s n e ed ed −> un i t 2 v eg e t ab l e s n e ed ed ;

34 conn 3 : port common 3 . t o t a l v e g e t ab l e s n e ed ed −> un i t 3 v eg e t ab l e s n e ed ed ;

35 conn 4 : port common 4 . t o t a l v e g e t ab l e s n e ed ed −> un i t 4 v eg e t ab l e s n e ed ed ;

36 conn 5 : port common 1 . t o ta l b r ead needed −> un i t 1 bread needed ;

37 conn 6 : port common 2 . t o ta l b r ead needed −> un i t 2 bread needed ;

38 conn 7 : port common 3 . t o ta l b r ead needed −> un i t 3 bread needed ;

39 conn 8 : port common 4 . t o ta l b r ead needed −> un i t 4 bread needed ;

40 conn 9 : port common 1 . t o t a l d a i r y n e ed ed −> un i t 1 da i r y ne eded ;

41 conn 10 : port common 2 . t o t a l d a i r y n e ed ed −> un i t 2 da i r y ne eded ;

42 conn 11 : port common 3 . t o t a l d a i r y n e ed ed −> un i t 3 da i r y ne eded ;
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43 conn 12 : port common 4 . t o t a l d a i r y n e ed ed −> un i t 4 da i r y ne eded ;

44 conn 13 : port common 1 . tota l meat needed −> unit 1 meat needed ;

45 conn 14 : port common 2 . tota l meat needed −> unit 2 meat needed ;

46 conn 15 : port common 3 . tota l meat needed −> unit 3 meat needed ;

47 conn 16 : port common 4 . tota l meat needed −> unit 4 meat needed ;

48 end consumer gatherer . impl ;

Listing 5.10: Nutrition System Gatherer

Finally, once needs have been announced and farmers have produced goods to fulfill them,

the food units are passed through distributors that divide the goods up among markets from which

families can purchase the goods needed to fill their meal plans. The distributor’s definition is shown

in listing 5.11.

There are two types of distributors in the architecture between which the system dynami-

cally swaps: a normal distributor and an excess distributor. The excess distributor is used when food

production generates more units than are needed. In this case, the additional units are stored tem-

porarily (until their expiration date nears) in case of a food shortage. Both community distributors

and national distributors have the ability to store.

The reasoning behind introducing dynamic adaptivity into the distributor is due to food

production continuously changing. Droughts, environmental disasters, excess rain, etc can all af-

fect harvests and food production. Dynamically adapting to ever changing variables is one of the

hallmarks of a dynamic system.

1 abs t r a c t a b s t r a c t r e d i s t r i b u t o r

2 f e a t u r e s

3 t o t a l v e g e t a b l e s r e c e i v e d : in data port Base Types : : I n t eg e r ;

4 un i t 1 v eg e t ab l e s n e ed ed : in data port Base Types : : I n t eg e r ;

5 un i t 2 v eg e t ab l e s n e ed ed : in data port Base Types : : I n t eg e r ;

6 un i t 3 v eg e t ab l e s n e ed ed : in data port Base Types : : I n t eg e r ;

7 un i t 4 v eg e t ab l e s n e ed ed : in data port Base Types : : I n t eg e r ;

8 t o t a l b r e a d r e c e i v e d : in data port Base Types : : I n t e g e r ;

9 un i t 1 bread needed : in data port Base Types : : I n t eg e r ;

10 un i t 2 bread needed : in data port Base Types : : I n t eg e r ;

11 un i t 3 bread needed : in data port Base Types : : I n t eg e r ;
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12 un i t 4 bread needed : in data port Base Types : : I n t eg e r ;

13 t o t a l d a i r y r e c e i v e d : in data port Base Types : : I n t e g e r ;

14 un i t 1 da i r y ne eded : in data port Base Types : : I n t eg e r ;

15 un i t 2 da i r y ne eded : in data port Base Types : : I n t eg e r ;

16 un i t 3 da i r y ne eded : in data port Base Types : : I n t eg e r ;

17 un i t 4 da i r y ne eded : in data port Base Types : : I n t eg e r ;

18 t o t a l mea t r e c e i v ed : in data port Base Types : : I n t eg e r ;

19 unit 1 meat needed : in data port Base Types : : I n t eg e r ;

20 unit 2 meat needed : in data port Base Types : : I n t eg e r ;

21 unit 3 meat needed : in data port Base Types : : I n t eg e r ;

22 unit 4 meat needed : in data port Base Types : : I n t eg e r ;

23 end a b s t r a c t r e d i s t r i b u t o r ;

24

25 abs t r a c t implementation a b s t r a c t r e d i s t r i b u t o r . impl

26 subcomponents

27 common 1 : ab s t r a c t common object ;

28 common 2 : ab s t r a c t common object ;

29 common 3 : ab s t r a c t common object ;

30 common 4 : ab s t r a c t common object ;

31 v e g g i e d i v i d e r : ab s t r a c t d i v i d e r . impl ;

32 br ead d iv i d e r : ab s t r a c t d i v i d e r . impl ;

33 da i r y d i v i d e r : ab s t r a c t d i v i d e r . impl ;

34 meat d iv ider : ab s t r a c t d i v i d e r . impl ;

35 end a b s t r a c t r e d i s t r i b u t o r . impl ;

Listing 5.11: Nutrition System Distributor

5.1.3.1 Dynamic Adaptive Nutrition System Waterfall Scenario

For example 2’s first scenario, we begin with a traditional waterfall development scenario

which will be modified in the remaining scenarios. In this scenario, whose timeline is shown in

figure 5.8, development will consist of 166 time periods (each one week long) with 3 phases. Phase

1 will consist of the caloric expenditure sensor development followed by development of the meal

planners. In the final phase the aggregators and distributors will be co-developed.
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Figure 5.8: Nutrition System Scenario 1 Timeline

We now provide architecture snippets with the SIMDASE implementation of the above

scenario. Note, to conserve space, previously listed component parts are omitted (i.e. features,

subcomponents, behavior specification, etc.). The output from the evaluation of the SIMDASE

instantiation is shown in figure 5.9. Note that the bulk of the costs, development of the redistributors

/ aggregators, are situated towards the end of development.

We begin with the SIMDASE instantiation for the individual, shown in listing 5.12. To

simplify the annex instantiations, we will focus solely on building the components of the architecture

not their planning. In the instantiation for the individual, we see that it will be developed for 36

time periods with requirements, architecture, development and testing spread throughout the time

periods.

1 abs t r a c t implementation i nd i v i dua l . impl

2 annex simdase {∗∗

3 time min => 1 . 0 ;

4 time max => 3 6 . 0 ;

5 co s t => {
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Figure 5.9: Nutrition System Scenario 1 Output (https://plot.ly/˜bulletshot60/43)

6 r equ i r ement s eng ine e r i ng => {

7 4 .0 ”Bus iness Analysts ” f o r i f ( 1 . 0 <= t && t <= 5 . 0 ) { 40 .0 } e l s e { 0 .0 }

8 } ;

9 a r c h i t e c t u r e d e f i n i t i o n => {

10 2 .0 ” Software Arch i t e c t s ” f o r i f ( 5 . 0 <= t && t <= 15 . 0 ) { 40 .0 } e l s e {

0 .0 }

11 } ;

12 component development => {

13 3 .0 ” Software Developers ” f o r i f ( 15 . 0 <= t && t <= 30 . 0 ) { 40 .0 } e l s e {

0 .0 }

14 } ;

15 t e s t i n g => {

16 2 .0 ” Software Tes te r s ” f o r i f ( 30 . 0 <= t && t <= 36 .0 ) { 40 .0 } e l s e { 0 .0

} ,

17 1 .0 ”Hardware Tes te r s ” f o r i f ( 30 . 0 <= t && t <= 36 .0 ) { 40 .0 } e l s e { 0 .0

}
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18 } ;

19 } ;

20 ∗∗} ;

21 end i nd i v i dua l . impl ;

Listing 5.12: Nutrition System Scenario 1 Individual

Next, we show, in listing 5.13, the instantiation of the meal planner, which will be developed

from periods 37 to 88. The other meal planners (allergy, preference and allergy preference), not

shown, will be co-developed alongside the normal meal planner.

1 abs t r a c t implementation meal p lanner . impl extends mea l p l anne r abs t ra c t . impl

2 annex simdase {∗∗

3 time min => 3 7 . 0 ;

4 time max => 8 8 . 0 ;

5 co s t => {

6 r equ i r ement s eng ine e r i ng => {

7 2 .0 ”Bus iness Analysts ” f o r i f ( 37 . 0 <= t && t <= 45 .0 ) { 40 .0 } e l s e {

0 .0 }

8 } ;

9 a r c h i t e c t u r e d e f i n i t i o n => {

10 2 .0 ” Software Arch i t e c t s ” f o r i f ( 45 . 0 <= t && t <= 60 . 0 ) { 40 .0 } e l s e {

0 .0 }

11 } ;

12 component development => {

13 3 .0 ” Software Developers ” f o r i f ( 60 . 0 <= t && t <= 80 . 0 ) { 40 .0 } e l s e {

0 .0 }

14 } ;

15 t e s t i n g => {

16 2 .0 ” Software Tes te r s ” f o r i f ( 80 . 0 <= t && t <= 88 .0 ) { 40 .0 } e l s e { 0 .0

} ,

17 2 .0 ”Hardware Tes te r s ” f o r i f ( 80 . 0 <= t && t <= 88 .0 ) { 40 .0 } e l s e { 0 .0

}

18 } ;

19 } ;
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20 ∗∗} ;

21 end meal p lanner . impl ;

Listing 5.13: Nutrition System Scenario 1 Meal Planner

Next, we show, in listing 5.14, the instantiation of the community gatherer, which will be

developed from periods 88 to 166. As the same gatherer specification is used both at the community

and the national levels, a scaling factor is applied here. This allows the costs to vary from the

national to the community while reusing architectural components. It is assumed that developing a

community gatherer will be easier than a national one, thus the hours are scaled so that less hours

will be required from each person for the community gatherer.

1 abs t r a c t implementation consumer gatherer . impl

2 annex simdase {∗∗

3 time min => 8 8 . 0 ;

4 time max => 166 . 0 ;

5 s c a l i n g f a c t o r => 1 . 0/ ( i +1.0) ;

6 co s t => {

7 r equ i r ement s eng ine e r i ng => {

8 2 .0 ”Bus iness Analysts ” f o r i f ( 88 . 0 <= t && t <= 100 .0 ) { 40 .0 } e l s e {

0 .0 }

9 } ;

10 a r c h i t e c t u r e d e f i n i t i o n => {

11 2 .0 ” Software Arch i t e c t s ” f o r i f ( 100 . 0 <= t && t <= 115 .0 ) { 40 .0 } e l s e

{ 0 .0 }

12 } ;

13 component development => {

14 3 .0 ” Software Developers ” f o r i f ( 115 . 0 <= t && t <= 155 .0 ) { 40 .0 } e l s e

{ 0 .0 }

15 } ;

16 t e s t i n g => {

17 2 .0 ” Software Tes te r s ” f o r i f ( 155 . 0 <= t && t <= 166 .0 ) { 40 .0 } e l s e {

0 .0 } ,

18 2 .0 ”Hardware Tes te r s ” f o r i f ( 155 . 0 <= t && t <= 166 .0 ) { 40 .0 } e l s e {

0 .0 }
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19 } ;

20 } ;

21 ∗∗} ;

22 end consumer gatherer . impl ;

Listing 5.14: Nutrition System Scenario 1 Gatherer

Finally, we show, in listing 5.15, the definition of the distributor which will be co-developed

alongside the gatherer. The distributor, like the gatherer, is scaled as the same component definition

is used at the community and national levels yet different costs can be used in each level.

1 abs t r a c t implementation a b s t r a c t r e d i s t r i b u t o r . impl

2 annex simdase {∗∗

3 time min => 8 8 . 0 ;

4 time max => 166 . 0 ;

5 s c a l i n g f a c t o r => 1 . 0/ ( i +1.0) ;

6 co s t => {

7 r equ i r ement s eng ine e r i ng => {

8 2 .0 ”Bus iness Analysts ” f o r i f ( 88 . 0 <= t && t <= 100 .0 ) { 40 .0 } e l s e {

0 .0 }

9 } ;

10 a r c h i t e c t u r e d e f i n i t i o n => {

11 2 .0 ” Software Arch i t e c t s ” f o r i f ( 100 . 0 <= t && t <= 115 .0 ) { 40 .0 } e l s e

{ 0 .0 }

12 } ;

13 component development => {

14 3 .0 ” Software Developers ” f o r i f ( 115 . 0 <= t && t <= 155 .0 ) { 40 .0 } e l s e

{ 0 .0 }

15 } ;

16 t e s t i n g => {

17 2 .0 ” Software Tes te r s ” f o r i f ( 155 . 0 <= t && t <= 166 .0 ) { 40 .0 } e l s e {

0 .0 } ,

18 2 .0 ”Hardware Tes te r s ” f o r i f ( 155 . 0 <= t && t <= 166 .0 ) { 40 .0 } e l s e {

0 .0 }

19 } ;
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Figure 5.10: Nutrition System Scenario 2 Timeline

20 } ;

21 ∗∗} ;

22 end a b s t r a c t r e d i s t r i b u t o r . impl ;

Listing 5.15: Nutrition System Scenario 1 Distributor

5.1.3.2 Dynamic Adaptive Nutrition System Components During Same Periods Sce-

nario

In the nutrition system’s second scenario, shown in figure 5.10, all components will be co-

developed with the caloric tracker finishing development first followed by the meal planners. Finally,

the gatherers and distributors will follow the meal planners. As each system finishes development, the

result of the development will be integrated into the next component to ensure correct functionality.

In this scenario, annex instantiations are the same as the previous scenario except for time

minimum and time maximum. The minimum time is set to 1.0 and the maximum time has been

moved backwards to reflect the change in the minimum time. The evaluation of the SIMDASE

instantiation is shown in figure 5.11. Note that costs are more evenly spread now. In addition, some
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Figure 5.11: Nutrition System Scenario 2 Output (https://plot.ly/˜bulletshot60/41)

costs, like requirements engineering, is done for all components around the same time rather than

being spread out over time. This would allow the requirements engineers from this project to be

allocated for a shorter period of time, allowing them to be moved to other projects as their work on

the nutrition monitor completes.

5.1.3.3 Dynamic Adaptive Nutrition System Purchased Components Scenario

In the nutrition system’s third scenario, shown in figure 5.12, it has been decided that a

caloric expenditure tracker will not be built. A pre-existing tracker, developed by another company,

will be used in its place. For purposes of this example, the Fitbit Alta will be used and several will

be procured for development purposes.

We now provide architecture snippets with the SIMDASE implementation of the above

scenario. Note, to conserve space, previously listed component parts are omitted (i.e. features,

subcomponents, behavior specification, etc.). The evaluation of the SIMDASE annex is shown in

figure 5.13. Note the small reductions in time needed for requirements engineering and architecture

definition found in periods 1 through 20.
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Figure 5.12: Nutrition System Scenario 3 Timeline

For this scenario, only the individual SIMDASE instantiation, shown in listing 5.16, needs

to change. The system will now be developed in 5 time periods. Procurement of the Altas for

development and testing will occur during the first time period. Development (integration of the

Fitbit API) and testing will occur after procurement.

1 abs t r a c t implementation i nd i v i dua l . impl

2 annex simdase {∗∗

3 time min => 1 . 0 ;

4 time max => 5 . 0 ;

5 co s t => {

6 component development => {

7 1200 .0 f o r ” F i t b i t Procurement” at 1 .0

8 } ;

9 s o f twa r e s y s t em in t e g r a t i on => {

10 2 .0 ”Developers ” f o r i f ( 1 . 0 <= t && t <= 3 . 0 ) { 40 .0 } e l s e { 0 .0 } ,

11 1 .0 ”Tester ” f o r i f ( 3 . 0 <= t && t <= 5 . 0 ) { 40 .0 } e l s e { 0 .0 }

12 } ;
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Figure 5.13: Nutrition System Scenario 3 Output (https://plot.ly/˜bulletshot60/39)

13 } ;

14 ∗∗} ;

15 end i nd i v i dua l . impl ;

Listing 5.16: Nutrition System Scenario 3 Individual

5.1.3.4 Dynamic Adaptive Nutrition System Undetermined Scenario

In the final scenario for the nutrition system, it has been decided that it is not possible

to directly estimate the costs of each component and that some costs, for the meal planner, will

fluctuate throughout the development process.

We now provide architecture snippets with the SIMDASE implementation of the above

scenario. Note, to conserve space, previously listed component parts are omitted (i.e. features,

subcomponents, behavior specification, etc.). The evaluation of the SIMDASE instantiation is shown

in figure 5.14. Note the wide variability in each period introduced now where as before costs were

relatively stable.

The individual component, which consists of procured components does not change for this
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Figure 5.14: Nutrition System Scenario 4 Output (https://plot.ly/˜bulletshot60/37)

scenario. Thus, we first present the SIMDASE instantiation for the the meal planner component,

shown in listing 5.17. In this scenario, note that the meal planner costs are placed on a sinusoidal

wave as well as randomized. This will cause costs to fluctuate greatly between 0 and 60 throughout

the entire development of the meal planner.

1 abs t r a c t implementation meal p lanner . impl extends mea l p l anne r abs t ra c t . impl

2 annex simdase {∗∗

3 time min => 1 . 0 ;

4 time max => 5 2 . 0 ;

5 co s t => {

6 r equ i r ement s eng ine e r i ng => {

7 2 .0 ”Bus iness Analysts ” f o r i f ( 1 . 0 <= t && t <= 8 . 0 ) { ( (Math . cos ( t ) + 1)

∗ random ( ) ) ∗ 40 .0 } e l s e { random ( ) ∗ 5 .0 }

8 } ;

9 a r c h i t e c t u r e d e f i n i t i o n => {

10 2 .0 ” Software Arch i t e c t s ” f o r i f ( 8 . 0 <= t && t <= 20 . 0 ) { ( (Math . cos ( t ) +

1) ∗ random ( ) ) ∗ 40 .0 } e l s e { random ( ) ∗ 20 .0 }
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11 } ;

12 component development => {

13 3 .0 ” Software Developers ” f o r i f ( 20 . 0 <= t && t <= 45 . 0 ) { ( (Math . cos ( t )

+ 1) ∗ random ( ) ) ∗ 40 .0 } e l s e { random ( ) ∗ 20 .0 }

14 } ;

15 t e s t i n g => {

16 2 .0 ” Software Tes te r s ” f o r i f ( 45 . 0 <= t && t <= 52 .0 ) { ( (Math . cos ( t ) +

1) ∗ random ( ) ) ∗ 40 .0 } e l s e { random ( ) ∗ 20 .0 } ,

17 2 .0 ”Hardware Tes te r s ” f o r i f ( 45 . 0 <= t && t <= 52 .0 ) { ( (Math . cos ( t ) +

1) ∗ random ( ) ) ∗ 40 .0 } e l s e { random ( ) ∗ 20 .0 }

18 } ;

19 } ;

20 ∗∗} ;

21 end meal p lanner . impl ;

Listing 5.17: Nutrition System Scenario 4 Meal Planner

For the remaining two systems, the gatherer (shown in listing 5.18) and the distributor

(shown in listing 5.19), now have random fluctuations also inserted. These fluctuations will not vary

as greatly as those of the meal planner and they will remain between 0 and 40.

1 abs t r a c t implementation consumer gatherer . impl

2 annex simdase {∗∗

3 time min => 1 . 0 ;

4 time max => 7 8 . 0 ;

5 s c a l i n g f a c t o r => 1 . 0/ ( i +1.0) ;

6 co s t => {

7 r equ i r ement s eng ine e r i ng => {

8 2 .0 ”Bus iness Analysts ” f o r i f ( 1 . 0 <= t && t <= 12 .0 ) { random ( ) ∗ 40 .0 }

e l s e { random ( ) ∗ 5 .0 }

9 } ;

10 a r c h i t e c t u r e d e f i n i t i o n => {

11 2 .0 ” Software Arch i t e c t s ” f o r i f ( 12 . 0 <= t && t <= 30 . 0 ) { random ( ) ∗

40 .0 } e l s e { random ( ) ∗ 20 .0 }

12 } ;

76



13 component development => {

14 3 .0 ” Software Developers ” f o r i f ( 30 . 0 <= t && t <= 65 . 0 ) { random ( ) ∗

40 .0 } e l s e { random ( ) ∗ 20 .0 }

15 } ;

16 t e s t i n g => {

17 2 .0 ” Software Tes te r s ” f o r i f ( 65 . 0 <= t && t <= 78 .0 ) { random ( ) ∗ 40 .0 }

e l s e { random ( ) ∗ 20 .0 } ,

18 2 .0 ”Hardware Tes te r s ” f o r i f ( 65 . 0 <= t && t <= 78 .0 ) { random ( ) ∗ 40 .0 }

e l s e { random ( ) ∗ 20 .0 }

19 } ;

20 } ;

21 ∗∗} ;

22 end consumer gatherer . impl ;

Listing 5.18: Nutrition System Scenario 4 Gatherer

1 abs t r a c t implementation a b s t r a c t r e d i s t r i b u t o r . impl

2 annex simdase {∗∗

3 time min => 1 . 0 ;

4 time max => 7 8 . 0 ;

5 s c a l i n g f a c t o r => 1 . 0/ ( i +1.0) ;

6 co s t => {

7 r equ i r ement s eng ine e r i ng => {

8 2 .0 ”Bus iness Analysts ” f o r i f ( 1 . 0 <= t && t <= 12 .0 ) { random ( ) ∗ 40 .0 }

e l s e { random ( ) ∗ 5 .0 }

9 } ;

10 a r c h i t e c t u r e d e f i n i t i o n => {

11 2 .0 ” Software Arch i t e c t s ” f o r i f ( 12 . 0 <= t && t <= 30 . 0 ) { random ( ) ∗

40 .0 } e l s e { random ( ) ∗ 20 .0 }

12 } ;

13 component development => {

14 3 .0 ” Software Developers ” f o r i f ( 30 . 0 <= t && t <= 65 . 0 ) { random ( ) ∗

40 .0 } e l s e { random ( ) ∗ 20 .0 }

15 } ;
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Figure 5.15: Underwater Vehicle System Architecture

16 t e s t i n g => {

17 2 .0 ” Software Tes te r s ” f o r i f ( 65 . 0 <= t && t <= 78 .0 ) { random ( ) ∗ 40 .0 }

e l s e { random ( ) ∗ 20 .0 } ,

18 2 .0 ”Hardware Tes te r s ” f o r i f ( 65 . 0 <= t && t <= 78 .0 ) { random ( ) ∗ 40 .0 }

e l s e { random ( ) ∗ 20 .0 }

19 } ;

20 } ;

21 ∗∗} ;

22 end a b s t r a c t r e d i s t r i b u t o r . impl ;

Listing 5.19: Nutrition System Scenario 4 Distributor

5.1.4 Dynamic Adaptive Underwater Vehicle

The final system we introduce is a dynamic adaptive underwater manned vehicle [24]. The

vehicle, whose architecture is given in figure 5.15, has 5 sets of sensors, 4 external sets and 1 internal

set, that monitor the environment. The underwater vehicle also has a mission controller that reads

from the sensors as well as an energy source that enables / disables the sensors and provides them

power in accordance with the mission controller’s plan.

The sensors, of which there are 7 types, all have the same profile. They each have a port

allowing them to be disabled and enabled. In addition, they have ports allowing them to report

the power draw, sensor readings and error rates. In each external sensor group there is a water

salinity sensor, a water temperature sensor, a water pressure sensor and a radar sensor. In the

internal group, there is a carbon dioxide sensor, a carbon monoxide sensor, an oxygen sensor and a

air pressure sensor.
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1 abs t r a c t s enso r

2 f e a t u r e s

3 powered on : in event data port Base Types : : Boolean ;

4 power draw : out data port Base Types : : I n t eg e r ;

5 s en so r da ta : out event data port Base Types : : I n t eg e r ;

6 e r r o r r a t e : out data port Base Types : : I n t eg e r ;

7 end senso r ;

Listing 5.20: Underwater Vehicle System Sensor

Each sensor is attached to an adaptive energy source, shown in listing 5.21 that continuously

monitors the power draw as well as power production. In cases where power draw exceeds power

production, the energy source can disable sensors in a round robin like manner ensuring that each

sensor is enabled for a short time to produce data before it is disabled again. The energy source

has three modes, normal, degraded and critical, that it can adapt between freely. Each adaptation

dictates how many sensors should be disabled. Note that the internal sensor group always has

priority over the external sensor groups.

Due to the inability of underwater vehicles to recharge, it was decided that dynamic adap-

tivity was a necessary component of the energy source. If for any reason the energy source degrades,

or power consumption spikes above what the source is able to provide, it can adapt to the new

scenario.

1 abs t r a c t abstract power manager

2 f e a t u r e s

3 e x t e r i o r s e n s o r l e f t f r o n t 1 p ow e r e d o n : out event data port

Base Types : : Boolean ;

4 e x t e r i o r s e n s o r l e f t f r o n t 2 p ow e r e d o n : out event data port

Base Types : : Boolean ;

5 e x t e r i o r s e n s o r l e f t f r o n t 3 p ow e r e d o n : out event data port

Base Types : : Boolean ;

6 e x t e r i o r s e n s o r l e f t f r o n t 4 p ow e r e d o n : out event data port

Base Types : : Boolean ;

7 e x t e r i o r s e n s o r r i g h t f r o n t 1 p owe r e d on : out event data port

Base Types : : Boolean ;
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8 e x t e r i o r s e n s o r r i g h t f r o n t 2 p owe r e d on : out event data port

Base Types : : Boolean ;

9 e x t e r i o r s e n s o r r i g h t f r o n t 3 p owe r e d on : out event data port

Base Types : : Boolean ;

10 e x t e r i o r s e n s o r r i g h t f r o n t 4 p owe r e d on : out event data port

Base Types : : Boolean ;

11 e x t e r i o r s e n s o r l e f t r e a r 1 p ow e r e d o n : out event data port

Base Types : : Boolean ;

12 e x t e r i o r s e n s o r l e f t r e a r 2 p ow e r e d o n : out event data port

Base Types : : Boolean ;

13 e x t e r i o r s e n s o r l e f t r e a r 3 p ow e r e d o n : out event data port

Base Types : : Boolean ;

14 e x t e r i o r s e n s o r l e f t r e a r 4 p ow e r e d o n : out event data port

Base Types : : Boolean ;

15 e x t e r i o r s e n s o r r i g h t r e a r 1 p owe r e d on : out event data port

Base Types : : Boolean ;

16 e x t e r i o r s e n s o r r i g h t r e a r 2 p owe r e d on : out event data port

Base Types : : Boolean ;

17 e x t e r i o r s e n s o r r i g h t r e a r 3 p owe r e d on : out event data port

Base Types : : Boolean ;

18 e x t e r i o r s e n s o r r i g h t r e a r 4 p owe r e d on : out event data port

Base Types : : Boolean ;

19 i n s i d e s en so r 1 powe r ed on : out event data port Base Types : : Boolean ;

20 i n s i d e s en so r 2 powe r ed on : out event data port Base Types : : Boolean ;

21 i n s i d e s en so r 3 powe r ed on : out event data port Base Types : : Boolean ;

22 i n s i d e s en so r 4 powe r ed on : out event data port Base Types : : Boolean ;

23

24 e x t e r i o r s e n s o r l e f t f r o n t 1 p ow e r d r aw : in data port Base Types : : I n t eg e r ;

25 e x t e r i o r s e n s o r l e f t f r o n t 2 p ow e r d r aw : in data port Base Types : : I n t eg e r ;

26 e x t e r i o r s e n s o r l e f t f r o n t 3 p ow e r d r aw : in data port Base Types : : I n t eg e r ;

27 e x t e r i o r s e n s o r l e f t f r o n t 4 p ow e r d r aw : in data port Base Types : : I n t eg e r ;

28 e x t e r i o r s e n s o r r i g h t f r o n t 1 p owe r d r aw : in data port Base Types : : I n t eg e r ;

29 e x t e r i o r s e n s o r r i g h t f r o n t 2 p owe r d r aw : in data port Base Types : : I n t eg e r ;
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30 e x t e r i o r s e n s o r r i g h t f r o n t 3 p owe r d r aw : in data port Base Types : : I n t eg e r ;

31 e x t e r i o r s e n s o r r i g h t f r o n t 4 p owe r d r aw : in data port Base Types : : I n t eg e r ;

32 e x t e r i o r s e n s o r l e f t r e a r 1 p owe r d r aw : in data port Base Types : : I n t eg e r ;

33 e x t e r i o r s e n s o r l e f t r e a r 2 p owe r d r aw : in data port Base Types : : I n t eg e r ;

34 e x t e r i o r s e n s o r l e f t r e a r 3 p owe r d r aw : in data port Base Types : : I n t eg e r ;

35 e x t e r i o r s e n s o r l e f t r e a r 4 p owe r d r aw : in data port Base Types : : I n t eg e r ;

36 e x t e r i o r s e n s o r r i g h t r e a r 1 p owe r d r aw : in data port Base Types : : I n t eg e r ;

37 e x t e r i o r s e n s o r r i g h t r e a r 2 p owe r d r aw : in data port Base Types : : I n t eg e r ;

38 e x t e r i o r s e n s o r r i g h t r e a r 3 p owe r d r aw : in data port Base Types : : I n t eg e r ;

39 e x t e r i o r s e n s o r r i g h t r e a r 4 p owe r d r aw : in data port Base Types : : I n t eg e r ;

40 i n s i d e s en so r 1 power d raw : in data port Base Types : : I n t eg e r ;

41 i n s i d e s en so r 2 power d raw : in data port Base Types : : I n t eg e r ;

42 i n s i d e s en so r 3 power d raw : in data port Base Types : : I n t eg e r ;

43 i n s i d e s en so r 4 power d raw : in data port Base Types : : I n t eg e r ;

44 end abstract power manager ;

Listing 5.21: Underwater Vehicle System Energy Source

In addition to being attached to an energy source, each sensor is also attached to the

mission controller, shown in listing 5.22. The mission controller, like the energy source, can also

adapt between a normal and a degraded mode. The degraded mode has additional functionality

that allows the mission controller to continue operation even if insufficient data is being received.

The decision to make the energy source dynamic was due to the need for the controller to

continue operation even if sensors fail. As the data and error rates of the sensors are variable, adding

adaptivity to accommodate this fluctuation was deemed necessary.

1 abs t r a c t m i s s i o n c o n t r o l l e r a b s t r a c t

2 f e a t u r e s

3 i n t e r i o r s e n s o r 1 s e n s o r d a t a : in event data port Base Types : : I n t eg e r ;

4 i n t e r i o r s e n s o r 1 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

5 i n t e r i o r s e n s o r 2 s e n s o r d a t a : in event data port Base Types : : I n t eg e r ;

6 i n t e r i o r s e n s o r 2 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

7 i n t e r i o r s e n s o r 3 s e n s o r d a t a : in event data port Base Types : : I n t eg e r ;

8 i n t e r i o r s e n s o r 3 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

9 i n t e r i o r s e n s o r 4 s e n s o r d a t a : in event data port Base Types : : I n t eg e r ;
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10 i n t e r i o r s e n s o r 4 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

11 e x t e r i o r l e f t f r o n t s e n s o r 1 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

12 e x t e r i o r l e f t f r o n t s e n s o r 1 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

13 e x t e r i o r l e f t f r o n t s e n s o r 2 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

14 e x t e r i o r l e f t f r o n t s e n s o r 2 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

15 e x t e r i o r l e f t f r o n t s e n s o r 3 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

16 e x t e r i o r l e f t f r o n t s e n s o r 3 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

17 e x t e r i o r l e f t f r o n t s e n s o r 4 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

18 e x t e r i o r l e f t f r o n t s e n s o r 4 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

19 e x t e r i o r r i g h t f r o n t s e n s o r 1 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

20 e x t e r i o r r i g h t f r o n t s e n s o r 1 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

21 e x t e r i o r r i g h t f r o n t s e n s o r 2 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

22 e x t e r i o r r i g h t f r o n t s e n s o r 2 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

23 e x t e r i o r r i g h t f r o n t s e n s o r 3 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

24 e x t e r i o r r i g h t f r o n t s e n s o r 3 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

25 e x t e r i o r r i g h t f r o n t s e n s o r 4 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

26 e x t e r i o r r i g h t f r o n t s e n s o r 4 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

27 e x t e r i o r l e f t r e a r s e n s o r 1 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

28 e x t e r i o r l e f t r e a r s e n s o r 1 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

29 e x t e r i o r l e f t r e a r s e n s o r 2 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

30 e x t e r i o r l e f t r e a r s e n s o r 2 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

31 e x t e r i o r l e f t r e a r s e n s o r 3 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;
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32 e x t e r i o r l e f t r e a r s e n s o r 3 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

33 e x t e r i o r l e f t r e a r s e n s o r 4 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

34 e x t e r i o r l e f t r e a r s e n s o r 4 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

35 e x t e r i o r r i g h t r e a r s e n s o r 1 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

36 e x t e r i o r r i g h t r e a r s e n s o r 1 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

37 e x t e r i o r r i g h t r e a r s e n s o r 2 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

38 e x t e r i o r r i g h t r e a r s e n s o r 2 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

39 e x t e r i o r r i g h t r e a r s e n s o r 3 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

40 e x t e r i o r r i g h t r e a r s e n s o r 3 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

41 e x t e r i o r r i g h t r e a r s e n s o r 4 s e n s o r d a t a : in event data port

Base Types : : I n t eg e r ;

42 e x t e r i o r r i g h t r e a r s e n s o r 4 e r r o r r a t e : in data port Base Types : : I n t eg e r ;

43

44 u s e i n t e r i o r s e n s o r 1 : out data port Base Types : : Boolean ;

45 u s e i n t e r i o r s e n s o r 2 : out data port Base Types : : Boolean ;

46 u s e i n t e r i o r s e n s o r 3 : out data port Base Types : : Boolean ;

47 u s e i n t e r i o r s e n s o r 4 : out data port Base Types : : Boolean ;

48 u s e e x t e r i o r l f s e n s o r 1 : out data port Base Types : : Boolean ;

49 u s e e x t e r i o r l f s e n s o r 2 : out data port Base Types : : Boolean ;

50 u s e e x t e r i o r l f s e n s o r 3 : out data port Base Types : : Boolean ;

51 u s e e x t e r i o r l f s e n s o r 4 : out data port Base Types : : Boolean ;

52 u s e e x t e r i o r r f s e n s o r 1 : out data port Base Types : : Boolean ;

53 u s e e x t e r i o r r f s e n s o r 2 : out data port Base Types : : Boolean ;

54 u s e e x t e r i o r r f s e n s o r 3 : out data port Base Types : : Boolean ;

55 u s e e x t e r i o r r f s e n s o r 4 : out data port Base Types : : Boolean ;

56 u s e e x t e r i o r l r s e n s o r 1 : out data port Base Types : : Boolean ;

57 u s e e x t e r i o r l r s e n s o r 2 : out data port Base Types : : Boolean ;

58 u s e e x t e r i o r l r s e n s o r 3 : out data port Base Types : : Boolean ;

59 u s e e x t e r i o r l r s e n s o r 4 : out data port Base Types : : Boolean ;
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60 u s e e x t e r i o r r r s e n s o r 1 : out data port Base Types : : Boolean ;

61 u s e e x t e r i o r r r s e n s o r 2 : out data port Base Types : : Boolean ;

62 u s e e x t e r i o r r r s e n s o r 3 : out data port Base Types : : Boolean ;

63 u s e e x t e r i o r r r s e n s o r 4 : out data port Base Types : : Boolean ;

64 end m i s s i o n c o n t r o l l e r a b s t r a c t ;

Listing 5.22: Underwater Vehicle System Mission Control

5.1.5 Dynamic Adaptive Underwater Vehicle Waterfall Scenario

We present a single cost scenario for the underwater vehicle system, a traditional waterfall

scenario, whose timeline is shown in figure 5.16. In this scenario, the software for the underwater

vehicle will be developed in 5 overlapping phases. During the first phase, sensor readers that can

determine the error rate and power draw will be developed. During the second phase, the adaptive

energy managers will be developed. Phase 3 will be used to develop the two mission controllers.

Finally, phase 4 will be used to integrate the sensors and phase 5 will be used for full system testing.

Time periods once again are one week.

We now provide architecture snippets with the SIMDASE implementation of the above

scenario. Note, to conserve space, previously listed component parts are omitted (i.e. features,

subcomponents, behavior specification, etc.). The evaluation of the SIMDASE instantiation is shown

in figure 5.17. Note that some subcomponents have widely fluctuating costs while some have steady

recurring costs. Also note that sensor procurement costs, which occur during later periods, are

represented as relatively expensive, one-time costs.

In listing 5.23, we present the SIMDASE instantiation for one of the 8 sensors used in the

system. The sensors will be developed and integrated into readers, one at time, throughout the

fourth phase. This sensor will be developed from period 78 to 88. The sensor will be purchased

during the first period and integration and testing will occur during the remainder of the period.

1 dev i ce implementation wate r t emperature sensor . impl extends s enso r . impl

2 annex simdase {∗∗

3 time min => 7 8 . 0 ;

4 time max => 8 8 . 0 ;

5 co s t => {

6 u s i n g e x t e r n a l l y a v a i l a b l e s o f tw a r e => {
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Figure 5.16: Underwater Vehicle System Scenario 1 Timeline

7 600 .0 f o r ” s enso r purchase ” at 78 .0

8 } ;

9 s o f twa r e s y s t em in t e g r a t i on => {

10 2 .0 ” Software Developers ” f o r 40 . 0 ,

11 2 .0 ”Tes te r s ” f o r 40 .0

12 } ;

13 } ;

14 ∗∗} ;

15 end wate r t emperature sensor . impl ;

Listing 5.23: Underwater Vehicle System Scenario 1 Sensor

In listing 5.24, we present the SIMDASE instantiation for the normal energy manager which

will be developed during periods 27 to 48. The remaining two energy managers will be co-developed

alongside the normal manager.

1 abs t r a c t implementation normal power manager . impl extends

abstract power manager . impl
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Figure 5.17: Underwater Vehicle System Scenario 1 Output (https://plot.ly/˜bulletshot60/45)

2 annex simdase {∗∗

3 time min => 2 7 . 0 ;

4 time max => 4 7 . 0 ;

5 co s t => {

6 r equ i r ement s eng ine e r i ng => {

7 2 .0 ”Bus iness Analysts ” f o r i f ( 27 . 0 <= t && t <= 30 .0 ) { 40 .0 } e l s e {

5 .0 ∗ random ( ) }

8 } ;

9 a r c h i t e c t u r e d e f i n i t i o n => {

10 3 .0 ” Software Arch i t e c t s ” f o r i f ( 30 . 0 <= t && t <= 33 . 0 ) { 40 .0 } e l s e {

10 .0 ∗ random ( ) }

11 } ;

12 component development => {

13 3 .0 ” Software Developers ” f o r i f ( 33 . 0 <= t && t <= 40 . 0 ) { 40 .0 } e l s e {

10 .0 ∗ random ( ) }

14 } ;
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15 t e s t i n g => {

16 2 .0 ” Software Tes te r s ” f o r i f ( 40 . 0 <= t && t <= 47 .0 ) { 40 .0 } e l s e { 5 .0

∗ random ( ) }

17 } ;

18 } ;

19 ∗∗} ;

20 end normal power manager . impl ;

Listing 5.24: Underwater Vehicle System Scenario 1 Energy Source

In listing 5.24, we present the SIMDASE instantiation for the normal mission controller

which will be developed during periods 53 to 104. The remaining mission controller will be co-

developed alongside the normal controller.

1 abs t r a c t implementation no rma l m i s s i o n c on t r o l l e r . impl extends

m i s s i o n c o n t r o l l e r a b s t r a c t . impl

2 annex simdase {∗∗

3 time min => 5 3 . 0 ;

4 time max => 104 . 0 ;

5 co s t => {

6 r equ i r ement s eng ine e r i ng => {

7 2 .0 ”Bus iness Analysts ” f o r i f ( 53 . 0 <= t && t <= 58 .0 ) { 40 .0 } e l s e {

5 .0 ∗ random ( ) }

8 } ;

9 a r c h i t e c t u r e d e f i n i t i o n => {

10 3 .0 ” Software Arch i t e c t s ” f o r i f ( 58 . 0 <= t && t <= 70 . 0 ) { 40 .0 } e l s e {

10 .0 ∗ random ( ) }

11 } ;

12 component development => {

13 3 .0 ” Software Developers ” f o r i f ( 65 . 0 <= t && t <= 95 . 0 ) { 70 .0 } e l s e {

10 .0 ∗ random ( ) }

14 } ;

15 t e s t i n g => {

16 2 .0 ” Software Tes te r s ” f o r i f ( 90 . 0 <= t && t <= 104 .0 ) { 40 .0 } e l s e {

5 .0 ∗ random ( ) }
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17 } ;

18 } ;

19 ∗∗} ;

20 end no rma l m i s s i o n c on t r o l l e r . impl ;

Listing 5.25: Underwater Vehicle System Scenario 1 Mission Control

5.1.5.1 Summary

In this section, we have introduced three examples of varying complexity and scenarios

for each example. For each scenario, we have provided an instantiation of the SIMDASE annex

representing the introduced cost scenario as well as a visual representation of the output produced

by the SIMDASE evaluator.

The purpose of these examples is to demonstrate that SIMDASE is sufficiently flexible

to support a number of common and uncommon cost scenarios. For each scenario, we have also

demonstrated not only the ability to represent the scenario in the architectural model but the

ability to evaluate the representation to produce analyzable data.

5.2 Demonstrating Cost / Effort Estimation Model Robust-

ness

Claim C2 : SIMDASE’s effort estimation formula is robust with regard to input parameters,

including user-defined input parameters that could return variodic or sinusoidal values.

5.2.1 Evaluation Plan

To demonstrate claim C2, we take the most complex scenario from each example introduced

in the flexibility analysis and we perform a sensitivity analysis on each. These examples contain

user-defined sinusoidal functions, ranges, periodic / random scaling and other complexities that

can have an undetermined effect on cost. To ensure that both our cost / effort framework and

our evaluations of these examples are sound, we repeatedly evaluated the models 100, 10000 and

1000000 times taking the average, mean, minimum and maximum cost each time. We show that the

estimation model responds appropriately no matter the input.
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The primary reason for this claim is not due to the input being wildly variable, although

that is a factor. The evaluation of an annex instantiation is not influenced solely by user input,

but also by the architectural style chosen as well as time. Some of the analyses for this section will

demonstrate this.

5.2.2 Tracking System Undetermined Scenario Sensitivity Analysis

For example 1 in this evaluation, we will use the third scenario of the tracking system which

includes multiple unknown values. We will specifically focus on time period 2 which includes both

architecture activities (definition and evaluation) as well as development activities. For architecture

definition, 2 software architects will work between 0 and 40 hours during the time period. For

architecture evaluation, 2 software architects will work between 0 and 40 hours during the time

period. For development, 3 software developers will work between 0 and 40 hours during the time

period. In the simulation results below, we will report our results using 3 values. The first will be

the number (between 0 and 100) representing the percentage of time used by software architects.

The second will be the number (between 0 and 100) representing the percentage of time used by

software developers. The final will be a number representing the total number of hours worked by

both software architects and software developers during the simulation of time period 2.

In figure 5.18, we present the analysis resulting from repeatedly evaluating the tracking

system third scenario’s model 100 times. As was previously stated, the y axis represents the software

developers percentage of hours used and the x axis represents the software architects percentage of

hours used. The z axis represents the cost, or number of hours required by both groups.

For this simulation, several discontinuities were present due to randomly selecting scaling

factors for each group. With only 100 selections, several groups of scaling factors were not selected.

Discounting the discontinuities, the graph has the expected gradually increasing slope.

In figure 5.18, we present the analysis resulting from repeatedly evaluating the tracking

system third scenario’s model 10,000 times. In this model, there are less discontinuities present due

to the larger number of evaluations. Once again, discounting the few discontinuities present, the

graph has the expected slope from 0,0 to 100,100.

In figure 5.18, we present the analysis resulting from repeatedly evaluating the tracking

system third scenario’s model 1,000,000 times. In this model, there are even less discontinuities

present than the 10,000 simulation. Once again, discounting the few discontinuities present, the
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graph has the expected slope from 0,0 to 100,100.

5.2.3 Dynamic Adaptive Nutrition System Undetermined Scenario Sen-

sitivity Analysis

For example 2 of the sensitivity analysis, we will use the data from the fourth scenario of

the nutrition system, and we will use this data to provide two different sensitivity analysis. The first

will be with respect to architecture definition and component development. The second will be with

respect to architecture definition and time.

For the first analysis, we will use component development costs (percentage of 40 hours

used) as one axis and software architecture costs (percentage of 40 hours used) as the other axis. As

before, we will conduct the analysis at a particular point in time, period 20. The z axis will, as with

the previous sensitivity analysis, represent total total hours needed. This analysis provides results

similar to our previous sensitivity analysis as can be seen in figures 5.21, 5.22 and 5.23.

In figure 5.21, several discontinuities are present, yet as expected, they disappear with larger

iteration counts (figures 5.22 and 5.23). Overall, these data plots show a stable increase from 0 to

80 with no unexpected spikes.

As SIMDASE evaluations are influenced not only by user-entered cost estimations, it is

necessary to perform sensitivity analyses that take into account other external factors. One of the

external factors that can affect estimations is that of time.

For the second analysis, the SIMDASE instantiation for the fourth scenario of the nutrition

system also includes costs that exist along a sinusoidal wave. As this wave varies based on the time

period, we will do another sensitivity analysis using time as one of the axes. Architecture definition,

represented by the percentage of 40 hours used, will be the other axis. An example of doing this

with 100 randomly selected data plots can be seen in figure 5.24.

No outstanding plot points appear in the 100 iteration version. The same is true for both

10000 (figure 5.25) and 1000000 (figure 5.26). However, with more plot points randomly chosen, the

sinusoidal nature of the costs are easier to visualize.

Both analyses using the data from the fourth scenario of the nutrition system result in a

stable evaluation despite the usage of a sinusoidal wave.
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5.2.4 Dynamic Adaptive Underwater Vehicle Sensitivity Analysis

The other external influencing factor of cost estimations is that of the architecture style.

SIMDASE uses the structure the architecture to produce cost estimations. As such, performing a

sensitivity analysis that includes architecture scaling was deemed necessary. For this simulation, we

randomly generated 100 architectures and assigned the same SIMDASE instantiation to one of the

components.

For the final sensitivity analysis, we use the sole scenario of the underwater vehicle. This

scenario includes our most complex input, a component that includes a cost scaled logarithmically

based on the component’s depth in the architecture. In the following graphs, we once again evaluate

the SIMDASE instantiation 100, 10000 and 1000000 times. One axis will represent the architecture

definition costs (percentage of 40 hours used) and the second axis will represent the depth of the

chosen component within the randomly generated architectures (between 0 and 100).

Figure 5.27 results in a very uninteresting graph. The logarithmic nature of the cost scaling

can barely be discerned due to the large number of discontinuities. However, no unexpected rises or

falls are visible either.

In figure 5.28, the logarithmic nature of the cost scaling starts to become visible as is the

effect of randomly selecting a percentage of hours used for the architecture definition costs. The full

nature of both are, as expected, visible in the 1000000 iteration version (figure 5.29).

This analysis demonstrates that SIMDASE is also able to robustly and reliably handle

complex scaling such as an inverted logarithmic scale in addition to sinusoidal costs.

5.2.4.1 Summary

In this evaluation, we have taken three examples which contain one or more unknown

development costs. Each example was evaluated 100, 10,000 and 1,000,000 times plotting the results

on a topological graph.

The purpose of this evaluation was to demonstrate the robustness (no unexpected irregu-

larities) of SIMDASE with regard to user defined input as well as external factors. In example 1,

we provided a simple example containing no sinusoidal functions or scaling. This demonstrates that

SIMDASE can robustly evaluate simple scenarios. Example 2 introduced sinusoidal functions and

example 3 introduced logarithmic functions. These examples taken together show that SIMDASE

91



can also robustly evaluate complex and specific scenarios.

5.3 Demonstrating Improvements of XAGREE over AGREE

Claim C3 : XAGREE, in general, reduces the size of verification assets, reduces the com-

plexity of verification assets, and reduces the amount of duplication across verification assets when

compared to traditional AGREE.

5.3.1 Evaluation Plan

To demonstrate claim C3, we verify the models introduced in the flexibility analysis using

both XAGREE and AGREE. We then measure the cyclomatic complexity [35], duplication and lines

of code of each analysis. We show that, in general, XAGREE has equal or lower average cyclomatic

complexity across all verification assets, equal or lower duplicated lines of code across all verification

assets, and equal or lower lines of code across all verification assets.

Note, for simplicity, we will show samples containing both the AGREE and XAGREE

annexes for the first example only. For cases where the AGREE and XAGREE annexes are exactly

the same, the AGREE annex will contain only a comment stating that it is an exact duplicate of

the XAGREE annex. For the remaining examples, we will list only the measured values of the

verification assets.

5.3.2 Tracking System Verification / Validation

Verification of the tracking system is comprised of evaluating two claims. First, it must be

verified that all data produced by the system is within the expected range, and, second, it must be

verified that the system sends information via one and only one protocol at a time.

In listing 5.26, we present the verification of information being sent via only one protocol.

Note that the evaluation also includes verification of data being within range. Since AGREE /

XAGREE reason compositionally about models, this is only a part of the evaluation for that claim.

We will present additional components containing verification assets for that claim shortly.

1 system f o r k l i f t t r a c k e r

2 annex xagree {∗∗

3 guarantee ” w i f i x i s p o s i t i v e ” : w i f i t r a c k i n g x >= 0 . 0 ;
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4 guarantee ” w i f i y i s p o s i t i v e ” : w i f i t r a c k i n g y >= 0 . 0 ;

5 guarantee ” w i f i e r r o r margin i s p o s i t i v e ” : w i f i t r a c k i n g e r r o r ma r g i n >=

0 . 0 ;

6 guarantee ” w i f i speed i s p o s i t i v e ” : w i f i t r a c k i n g s p e e d >= 0 . 0 ;

7

8 guarantee ” b luetooth x i s p o s i t i v e ” : b l u e t oo th t r a ck i ng x >= 0 . 0 ;

9 guarantee ” b luetooth y i s p o s i t i v e ” : b l u e t oo th t r a ck i ng y >= 0 . 0 ;

10 guarantee ” b luetooth e r r o r margin i s p o s i t i v e ” :

b l u e t oo th t r a ck i ng e r r o r ma rg i n >= 0 . 0 ;

11 guarantee ” b luetooth speed i s p o s i t i v e ” : b l u e t oo th t r a ck i ng spe ed >= 0 . 0 ;

12

13 guarantee ” rad io x i s p o s i t i v e ” : r a d i o t r a c k i n g x >= 0 . 0 ;

14 guarantee ” rad io y i s p o s i t i v e ” : r a d i o t r a c k i n g y >= 0 . 0 ;

15 guarantee ” rad io e r r o r margin i s p o s i t i v e ” : r ad i o t r a c k i n g e r r o r ma r g i n >=

0 . 0 ;

16 guarantee ” rad io speed i s p o s i t i v e ” : r ad i o t r a c k i n g sp e ed >= 0 . 0 ;

17

18 guarantee ”x i s only sent by one p ro to co l at a time” : ( w i f i t r a c k i n g x >=

0.0 and b lu e t oo th t r a ck i ng x = 0 .0 and r ad i o t r a c k i n g x = 0 . 0 ) or

19 ( w i f i t r a c k i n g x = 0 .0 and b lu e t oo th t r a ck i ng x >= 0.0 and

r ad i o t r a c k i n g x = 0 . 0 ) or

20 ( w i f i t r a c k i n g x = 0 .0 and b lu e t oo th t r a ck i ng x = 0 .0 and

r ad i o t r a c k i n g x >= 0 . 0 ) ;

21 guarantee ”y i s only sent by one p ro to co l at a time” : ( w i f i t r a c k i n g y >=

0.0 and b lu e t oo th t r a ck i ng y = 0 .0 and r ad i o t r a c k i n g y = 0 . 0 ) or

22 ( w i f i t r a c k i n g y = 0 .0 and b lu e t oo th t r a ck i ng y >= 0.0 and

r ad i o t r a c k i n g y = 0 . 0 ) or

23 ( w i f i t r a c k i n g y = 0 .0 and b lu e t oo th t r a ck i ng y = 0 .0 and

r ad i o t r a c k i n g y >= 0 . 0 ) ;

24 guarantee ” e r r o r margin i s only sent by one p ro to co l at a time” :

( w i f i t r a c k i n g e r r o r ma r g i n >= 0.0 and b lu e t oo th t r a ck i ng e r r o r ma rg i n

= 0 .0 and r ad i o t r a c k i n g e r r o r ma r g i n = 0 . 0 ) or

25 ( w i f i t r a c k i n g e r r o r ma r g i n = 0 .0 and
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b lu e t oo th t r a ck i ng e r r o r ma rg i n >= 0.0 and

r ad i o t r a c k i n g e r r o r ma r g i n = 0 . 0 ) or

26 ( w i f i t r a c k i n g e r r o r ma r g i n = 0 .0 and

b lu e t oo th t r a ck i ng e r r o r ma rg i n = 0 .0 and

r ad i o t r a c k i n g e r r o r ma r g i n >= 0 . 0 ) ;

27 guarantee ” speed i s only sent by one p ro to co l at a time” :

( w i f i t r a c k i n g s p e e d >= 0.0 and b lu e t oo th t r a ck i ng spe ed = 0 .0 and

r ad i o t r a c k i n g sp e ed = 0 . 0 ) or

28 ( w i f i t r a c k i n g s p e e d = 0 .0 and b lu e t oo th t r a ck i ng spe ed

>= 0.0 and r ad i o t r a c k i n g sp e ed = 0 . 0 ) or

29 ( w i f i t r a c k i n g s p e e d = 0 .0 and b lu e t oo th t r a ck i ng spe ed =

0 .0 and r ad i o t r a c k i n g sp e ed >= 0 . 0 ) ;

30 ∗∗} ;

31 annex agree {∗∗

32 −−dup l i c a t e o f xagree annex

33 ∗∗} ;

34 end f o r k l i f t t r a c k e r ;

35

36 system implementation f o r k l i f t t r a c k e r . impl

37 annex xagree {∗∗

38 node Counter ( i n i t : r ea l , i n c r : r ea l , r e s e t : bool ) r e tu rn s ( count : r e a l ) ;

39 l e t

40 count = i f r e s e t then i n i t e l s e prev ( count , i n i t ) + in c r ;

41 t e l ;

42 eq p ro to co l : r e a l = Counter ( 0 . 0 , 1 . 0 , prev ( p ro to co l = 2 . 0 , f a l s e ) ) ;

43

44 a s s e r t w i f i t r a c k i n g x = i f p ro to co l = 0 .0 then 1 .0 e l s e 0 . 0 ;

45 a s s e r t w i f i t r a c k i n g y = i f p ro to co l = 0 .0 then 1 .0 e l s e 0 . 0 ;

46 a s s e r t w i f i t r a c k i n g e r r o r ma r g i n = i f p ro to co l = 0 .0 then 1 .0 e l s e 0 . 0 ;

47 a s s e r t w i f i t r a c k i n g s p e e d = i f p ro to co l = 0 .0 then 1 .0 e l s e 0 . 0 ;

48

49 a s s e r t b l u e t oo th t r a ck i ng x = i f p ro to co l = 1 .0 then 1 .0 e l s e 0 . 0 ;

50 a s s e r t b l u e t oo th t r a ck i ng y = i f p ro to co l = 1 .0 then 1 .0 e l s e 0 . 0 ;
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51 a s s e r t b l u e t oo th t r a ck i ng e r r o r ma rg i n = i f p ro to co l = 1 .0 then 1 .0 e l s e

0 . 0 ;

52 a s s e r t b l u e t oo th t r a ck i ng spe ed = i f p ro to co l = 1 .0 then 1 .0 e l s e 0 . 0 ;

53

54 a s s e r t r ad i o t r a c k i n g x = i f p ro to co l = 2 .0 then 1 .0 e l s e 0 . 0 ;

55 a s s e r t r ad i o t r a c k i n g y = i f p ro to co l = 2 .0 then 1 .0 e l s e 0 . 0 ;

56 a s s e r t r ad i o t r a c k i n g e r r o r ma r g i n = i f p ro to co l = 2 .0 then 1 .0 e l s e 0 . 0 ;

57 a s s e r t r ad i o t r a c k i n g sp e ed = i f p ro to co l = 2 .0 then 1 .0 e l s e 0 . 0 ;

58 ∗∗} ;

59 annex agree {∗∗

60 −−dup l i c a t e o f xagree annex

61 ∗∗} ;

62 end f o r k l i f t t r a c k e r . impl ;

Listing 5.26: Tracking System Verification Sample 1

In listing 5.26, note in this sample that XAGREE offers no improvements over traditional

AGREE. This is expected as inheritance is not used in this part of the model.

In listing 5.27, we show further assets for verifying the claim that data produced is within

the expected range. For this sampling of the verification assets, we will focus on the communication

modules which all implement from an abstract interface. We include both the interface and the

wireless module.

1 abs t r a c t communication module

2 annex xagree {∗∗

3 assume ”x i s p o s i t i v e ” : send x >= 0 . 0 ;

4 assume ”y i s p o s i t i v e ” : send y >= 0 . 0 ;

5 assume ” er ro r marg in i s p o s i t i v e ” : s end er ro r marg in >= 0 . 0 ;

6 assume ” speed i s p o s i t i v e ” : send speed >= 0 . 0 ;

7

8 guarantee ”x i s p o s i t i v e ” : data send x >= 0 . 0 ;

9 guarantee ”y i s p o s i t i v e ” : data send y >= 0 . 0 ;

10 guarantee ” e r ro r marg in i s p o s i t i v e ” : da ta s end e r ro r marg in >= 0 . 0 ;

11 guarantee ” speed i s p o s i t i v e ” : data send speed >= 0 . 0 ;

12 guarantee ” s i g n a l s t r ength between 0 and 100” : 0 <= s i g n a l s t r e n g t h and
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s i g n a l s t r e n g t h <= 100 ;

13 ∗∗} ;

14 annex agree {∗∗

15 −−dup l i c a t e o f xagree annex

16 ∗∗} ;

17 end communication module ;

18

19 abs t r a c t implementation communication module . impl

20 annex xagree {∗∗

21 a s s e r t data send x = send x ;

22 a s s e r t data send y = send y ;

23 a s s e r t da ta s end e r ro r marg in = send er ro r marg in ;

24 a s s e r t data send speed = send speed ;

25 node Counter ( i n i t : int , i n c r : int , r e s e t : bool ) r e tu rn s ( count : i n t ) ;

26 l e t

27 count = i f r e s e t then i n i t e l s e prev ( count , i n i t ) + in c r ;

28 t e l ;

29 a s s e r t s i g n a l s t r e n g t h = Counter (0 , 1 , prev ( s i g n a l s t r e n g t h = 100 , f a l s e ) ) ;

30 ∗∗} ;

31 annex agree {∗∗

32 −−dup l i c a t e o f xagree annex

33 ∗∗} ;

34 end communication module . impl ;

35

36 dev i ce w i r e l e s s modu l e extends communication module

37 annex xagree {∗∗ i n h e r i t ; ∗∗} ;

38 annex agree {∗∗

39 assume ”x i s p o s i t i v e ” : send x >= 0 . 0 ;

40 assume ”y i s p o s i t i v e ” : send y >= 0 . 0 ;

41 assume ” er ro r marg in i s p o s i t i v e ” : s end er ro r marg in >= 0 . 0 ;

42 assume ” speed i s p o s i t i v e ” : send speed >= 0 . 0 ;

43

44 guarantee ”x i s p o s i t i v e ” : data send x >= 0 . 0 ;
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45 guarantee ”y i s p o s i t i v e ” : data send y >= 0 . 0 ;

46 guarantee ” e r ro r marg in i s p o s i t i v e ” : da ta s end e r ro r marg in >= 0 . 0 ;

47 guarantee ” speed i s p o s i t i v e ” : data send speed >= 0 . 0 ;

48 guarantee ” s i g n a l s t r ength between 0 and 100” : 0 <= s i g n a l s t r e n g t h and

s i g n a l s t r e n g t h <= 100 ;

49 ∗∗} ;

50 end wi r e l e s s modu l e ;

51

52 dev i ce implementation w i r e l e s s modu l e . impl extends communication module . impl

53 annex xagree {∗∗ i n h e r i t ; ∗∗} ;

54 annex agree {∗∗

55 a s s e r t data send x = send x ;

56 a s s e r t data send y = send y ;

57 a s s e r t da ta s end e r ro r marg in = send er ro r marg in ;

58 a s s e r t data send speed = send speed ;

59 node Counter ( i n i t : int , i n c r : int , r e s e t : bool ) r e tu rn s ( count : i n t ) ;

60 l e t

61 count = i f r e s e t then i n i t e l s e prev ( count , i n i t ) + in c r ;

62 t e l ;

63 a s s e r t s i g n a l s t r e n g t h = Counter (0 , 1 , prev ( s i g n a l s t r e n g t h = 100 , f a l s e ) ) ;

64 ∗∗} ;

65 end wi r e l e s s modu l e . impl ;

Listing 5.27: Tracking System Verification Sample 2

Note, in listing 5.27, that XAGREE does not improve on the specification of the abstract

interface, but for the communication modules which inherit from the abstract interface, XAGREE

reduces their verification assets down to a single line.

In this case, XAGREE reduced the amount of duplication necessary to fully verify the model.

It also reduced the overall length of the verification assets. We will see in the next examples how

XAGREE can improve cyclomatic complexity as well as duplication / size.
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Table 5.2: Nutrition System AGREE Summary

Component Name Total Lines Duplicated Lines Cyclomatic Complexity
meal planner 4 4 1

meal planner.impl 12 12 1
allergy meal planner 8 4 1

allergy meal planner.impl 12 8 5
preference meal planner 8 4 1

preference meal planner.impl 12 8 5
preference allergy meal planner 12 4 1

preference allergy meal planner.impl 12 8 5
divider and storer 9 9 1

divider and storer.impl 9 9 4
community gatherer 20 20 1

community gatherer.impl 4 4 1
community redistributor 20 20 1

community store for later redistributor 20 20 1
national gatherer 20 20 1

national gatherer.impl 4 4 1
national redistributor 20 20 1

national store for later redistributor 20 20 1

Average 12.55555556 11 1.833333333

5.3.3 Dynamic Adaptive Nutrition System Verification / Validation

For the nutrition system, we will list a summary of the measured qualities of the verification

assets using both AGREE (table 5.2) and XAGREE (table 5.3). Note that any component having

equal verification asset qualities with both AGREE and XAGREE are not listed. A discussion of

the verification assets and the differences between AGREE and XAGREE is also included.

5.3.3.1 Nutrition System Verification / Validation Discussion

From the two tables summarizing components with different line counts, cyclomatic com-

plexity and / or duplication, we can see that XAGREE, on average, decreases some or all of the

qualities for most components. It should be noted, as in the forklift tracking system, all of the

components listed use inheritance. As can be expected, there is no demonstrable benefit to using

XAGREE over AGREE in models not incorporating inheritance.

The primary goals needed to verify the nutrition system were to ensure 1) food production

and food needs values were always positive, 2) that the amount of food received by a family was not

more than the family needed, and 3) the amount of food received by a community was not more

than the community needed. The last two goals help to ensure fair distribution. It should be noted,
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Table 5.3: Nutrition System XAGREE Summary

Component Name Total Lines Duplicated Lines Cyclomatic Complexity
meal planner 1 0 1

meal planner.impl 4 0 1
allergy meal planner 4 0 1

allergy meal planner.impl 4 0 5
preference meal planner 4 0 1

preference meal planner.impl 4 0 5
preference allergy meal planner 8 0 1

preference allergy meal planner.impl 4 0 5
divider and storer 1 0 1

divider and storer.impl 1 0 1
community gatherer 1 0 1

community gatherer.impl 1 0 1
community redistributor 1 0 1

community store for later redistributor 1 0 1
national gatherer 1 0 1

national gatherer.impl 1 0 1
national redistributor 1 9 1

national store for later redistributor 1 0 1

Average 2.388888889 0.5 1.666666667

however, that it is completely acceptable for food amounts given to be less than needed indicating

a food shortage. The verification assets throughout the entire model account for the possibility. It

is also possible for food production to exceed needs. In this case, food will be temporarily stored

until its expiration date nears. Food whose expiration date has passed is discarded.

5.3.4 Dynamic Adaptive Underwater Vehicle Verification / Validation

For the underwater vehicle system, we will list a summary of the measured qualities of

the verification assets of the individual components using both AGREE (table 5.4) and XAGREE

(table 5.5). Note that any components having equal verification asset qualities with both AGREE

and XAGREE are not listed. A discussion of the verification assets and the differences between

AGREE and XAGREE is also included.

5.3.4.1 Underwater Vehicle Verification / Validation Discussion

From the two tables summarizing components with different line counts, cyclomatic com-

plexity and / or duplication, we can see that XAGREE, on average, decreases some or all of the

counts for most components. It should be noted, as in the forklift tracking system and the nutrition
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Table 5.4: Underwater Vehicle AGREE Summary

Component Name Total Lines Duplicated Lines Cyclomatic Complexity
sensor 4 0 1

sensor.impl 3 0 1
water temperature sensor 4 4 1

water temperature sensor.impl 3 2 1
water salinity sensor 4 4 1

water salinity sensor.impl 3 2 1
radar sensor 4 4 1

radar sensor.impl 3 2 1
pressure sensor 4 4 1

pressure sensor.impl 3 2 1
oxygen sensor 4 4 1

oxygen sensor.impl 3 2 1
carbon dioxide sensor 4 4 1

carbon dioxide sensor.impl 3 2 1
carbon monoxide sensor 4 4 1

carbon monoxide sensor.impl 3 2 1
normal mission controller 61 61 1

normal mission controller.impl 20 20 1
degraded mission controller 61 60 1

degraded mission controller.impl 20 20 1
normal power manager 20 20 1

normal power manager.impl 21 0 15
degraded power manager 20 20 1

degraded power manager.impl 21 0 15
critical power manager 20 20 1

critical power manager.impl 21 0 15
exterior sensor set 16 16 1
interior sensor set 16 16 1
exterior aggregator 64 64 1

Average 15.06896552 12.37931034 2.448275862

100



Table 5.5: Underwater Vehicle XAGREE Summary

Component Name Total Lines Duplicated Lines Cyclomatic Complexity
sensor 3 0 1

sensor.impl 4 0 1
water temperature sensor 1 0 1

water temperature sensor.impl 1 0 1
water salinity sensor 1 0 1

water salinity sensor.impl 1 0 1
radar sensor 1 0 1

radar sensor.impl 1 0 1
pressure sensor 1 0 1

pressure sensor.impl 1 0 1
oxygen sensor 1 0 1

oxygen sensor.impl 1 0 1
carbon dioxide sensor 1 0 1

carbon dioxide sensor.impl 1 0 1
carbon monoxide sensor 1 0 1

carbon monoxide sensor.impl 1 0 1
normal mission controller 1 0 1

normal mission controller.impl 1 0 1
degraded mission controller 1 0 1

degraded mission controller.impl 1 0 1
normal power manager 1 0 1

normal power manager.impl 1 0 1
degraded power manager 1 0 1

degraded power manager.impl 1 0 1
critical power manager 1 0 1

critical power manager.impl 1 0 1
exterior sensor set 1 0 1
interior sensor set 1 0 1
exterior aggregator 1 0 1

Average 1.172413793 0 1
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system, all of the components listed use inheritance. As can be expected, there is no demonstrable

benefit to using XAGREE over AGREE in models not incorporating inheritance.

Note, however, that despite a general decrease across all three measurements, it is possible

for individual components to fare worse when using XAGREE. This is particularly true if abstract

components needed to be added to account for inheritance of verification assets, as was true with

sensor.impl.

The primary goals needed to verify the underwater vehicle system were to ensure that 1)

sensors correctly transmitted sensor data as well as error rates, 2) the energy source could disable

and enable sensors, 3) sensors correctly responded to being disabled and 4) the mission controller

correctly responded to having multiple sensors with high error rates or multiple offline sensors. The

last goal primarily revolved around checking the ability to swap between mission controllers based

on sensor degradation and unavailability.

5.3.4.2 Summary

In this evaluation, we have evaluated the effectiveness of XAGREE to produce verification

assets that are equal or better in terms of complexity and size with regard to traditional AGREE.

The purpose of this evaluation is to show the improvement that XAGREE makes on traditional

AGREE.

To demonstrate the stated improvements, we have taken three models and annotated them

with assume / guarantee assets using both AGREE and XAGREE. Several measures of size and

complexity were then taken of each model and reported. In general, XAGREE’s assets had less

duplication and lower complexity than those of AGREE.
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Figure 5.18: Tracking System Cost Sensitivity Analysis - 100 (https://plot.ly/˜bulletshot60/6)
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Figure 5.19: Tracking System Sensitivity Analysis - 10000 (https://plot.ly/˜bulletshot60/8)
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Figure 5.20: Tracking System Sensitivity Analysis - 1000000 (https://plot.ly/˜bulletshot60/10)
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Figure 5.21: Nutrition System Sensitivity Analysis 1 - 100 (https://plot.ly/˜bulletshot60/12)
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Figure 5.22: Nutrition System Sensitivity Analysis 1 - 10000 (https://plot.ly/˜bulletshot60/14)
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Figure 5.23: Nutrition System Sensitivity Analysis 1 - 1000000 (https://plot.ly/˜bulletshot60/16)
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Figure 5.24: Nutrition System Sensitivity Analysis 2 - 100 (https://plot.ly/˜bulletshot60/18)
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Figure 5.25: Nutrition System Sensitivity Analysis 2 - 10000 (https://plot.ly/˜bulletshot60/20)
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Figure 5.26: Nutrition System Sensitivity Analysis 2 - 1000000 (https://plot.ly/˜bulletshot60/22)
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Figure 5.27: Underwater Vehicle System Sensitivity Analysis - 100
(https://plot.ly/˜bulletshot60/31)
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Figure 5.28: Underwater Vehicle System Sensitivity Analysis - 10000
(https://plot.ly/˜bulletshot60/29)
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Figure 5.29: Underwater Vehicle System Sensitivity Analysis - 1000000
(https://plot.ly/˜bulletshot60/27)
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Chapter 6

Discussion

In this section, we will first discuss the limitations of the techniques used to evaluate the

tools developed as part of this research. We will justify the choices made during the evaluation, and

we will also discuss the contributions of both XAGREE and SIMDASE.

6.1 Justification of & Limitations of Evaluation

In the first evaluation (for claim C1), we chose to leave the cost amounts in hours per

employee. The rationale behind this choice was twofold. First, any average hourly amount chosen

for a particular type of employee will eventually become outdated dampening the relevance of the

evaluation results. Second, it is straightforward to compute the dollar cost once an average salary

amount is chosen for each employee type.

Additionally, all analysis for the claim C1’s evaluation was done within the research group.

For that reason, most planning costs are not represented within any of the evaluations, only con-

struction costs (architecture definition, development, testing). The reason for this choice is due to

the author of this work having 8 years of practical experience developing software but very little

practical experience planning software. In order to avoid having unreasonable or unfeasible planning

costs as part of the examples, the decision was made to limit cost estimation to the construction

phase only.

In the second evaluation (for claim C2), it has been noted that the sensitivity analysis

might seem an unreasonable evaluation considering that the majority of the SIMDASE formulas
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are nothing more than recursive addition. However, the sensitivity analysis is actually focused on

a single term rather than the entirety of the framework. Cstatic(v))s(i) represents the cost of a

single variant. However, both portions of this equation are user-definable. Additionally, due to the

recursive nature of the formulas, this equation can be evaluated multiple times, and this formula is

evaluated in the context of an architecture and calendar time, both of which have an effect on the

outcome of an evaluation. For example, costs may change over time, or the style of architecture

chosen might cause the cost to fluctuate. For these reasons, we decided that a sensitivity analysis

that evaluated the architecture style, time and variant costs was necessary.

Finally, in the third evaluation (claim C3), we choose three simple measures of complexity:

cyclomatic complexity, line count and amount of duplication. These three measures were chosen

because they are objective and not limited by author subjectivity like measures of reusability. The

measures also not do require averaging the subjective estimation of a group of people, such as

most measures of maintainability. Additionally, our initial findings suggested that, in general, asset

complexity and duplication are reduced when inheritance is used. We choose to use measures that

reflect and measure those findings. We realize that cases exist where this is not true, thus we provide

a way to disable inheritance within XAGREE.

6.2 SIMDASE Field Contributions

In our evaluation of claim C1, we demonstrate that SIMDASE is not only flexible enough

to support both common and uncommon development scenarios, we have also demonstrated that

it is quite robust and the formulas can handle complex user-defined formulas reliably. However,

SIMDASE’s primary contributions do not lie just in its flexible syntax and reliability. SIMDASE

makes three primary contributions / advancements to the field of DSPLs and cost estimation.

First, with respect to cost estimation, SIMDASE takes a unique approach in representing

cost. SIMDASE represents cost as the number of employees required to complete a task and the

number of hours required of those employees rather than using a fixed number. This matches the

way that many managers, in our experience, choose to calculate cost. This representation also yields

additional information that traditional cost analysis methods do not natively yield. This includes

the total number of employees that will be required over the course of a project as well as the total

number of man-hours that will be contributed. While SIMDASE is not the first cost estimation
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method to use an hourly representation, it is the first method within the AADL community to do

so. It is also one of the first to use this as the sole representation method rather than “tacking it

on” as an additional option.

Second, also with respect to cost information, SIMDASE places the cost information into the

architecture as an annotation. This allows project managers to track cost in the same manner that

they track the attributes of the architecture of a project. Having the cost tied to the architecture

also means that as requirements change, morphing the system architecture, it is less likely that

the cost calculations will become out of sync with the architecture. This differentiates SIMDASE

from other model-based methods as the model used is an accepted standards-based architecture

description language rather than a custom language used only with the cost description language.

Finally, with respect to the DSPL community, SIMDASE provides an objective method of

choosing between the designs of a DSPL. This will hopefully allow experts in the domain to quantify

why certain DSPL designs are better than others as well as yield additional insight into how much

additional cost adopting a DPSL design over a SPL design incurs. It also allows developers as well

as managers to calculate the expected return on investment that can be expected from a given DSPL

design. This will hopefully help convince potential industrial partners that DSPLs are worth the

risk and extra development effort.

6.3 XAGREE Field Contributions

XAGREE makes two main contributions to the field of verification with AADL. First, it

introduces the idea of polymorphic subtyping [20], but only with simple data types. AGREE does

not support complex data types, nor does XAGREE. This is a planned feature for future work in

XAGREE that will further serve to differentiate XAGREE from AGREE (see section 8). Second,

XAGREE introduces the idea of inherited verification assets that can be overridden or extended. This

allows for duplication of assets to be partially eliminated improving maintainability and complexity.

This also has the added benefit of making it easier to add and verify new components provided they

extend existing components.
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Chapter 7

Related Work

In this section, we will discuss works related to both XAGREE and SIMDASE. We will also

discuss work that is loosely related to our DSPL DSS framework, including research that is likely to

be incorporated into the framework at a later date.

7.1 Works Related to XAGREE

Compositional assume-guarantee verification is a popular verification technique, and it has

been used successfully in many other ecosystems outside of AADL. Some examples of this are [11]

and [22]. Our work differs from these groups in where in the development process verification is

applied to the system. We apply compositional verification to the architecture during the design

phase of the development life cycle, while these other projects apply verification later in the process.

Our work is most similar to the work performed by the following groups, particularly [39]

and [56], both of which used AADL. Additional architecture-based techniques exist, such as [29],

[15] and [27]. Our work differs from these groups in that we are explicitly focused on allowing the

verification assets to be reused in the same manner as SPL assets, exploiting the inheritance features

of the AADL language.
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7.2 Works Related to SIMDASE

SIMDASE is a model-based software cost estimation framework. There are many other

model-based cost estimation techniques, for example, COCOMO II [9], COCOMO [8], SLIM [43,

42], Checkpoint [10], SEER [32], COPLIMO [7] and SIMPLE [14]. We differ from each of these

primarily in focus. SIMDASE is focused on DSPLs and SPLs, estimating the costs associated with

variability and dynamic adaptive components which are unique to DSPLs. Additionally, SIMDASE,

like SIMPLE, works by leveraging managerial knowledge to produce an estimate instead of using

data from other projects, such as COCOMO II.

Our framework is most similar to SIMPLE, the framework from which SIMDASE is de-

rived. We differ from SIMPLE in several key respects. First, we require an architectural model for

estimations whereas SIMPLE can be executed without a model. However, the presence of a model

allows SIMDASE to produce more accurate estimates. Second, SIMDASE allows scaling of the cost

of estimation with the depth at which an entity occurs within the architecture. Finally, SIMDASE

considers adaptive and non-adaptive variation points as separately estimated entities.

7.3 Additional Related Works

Our work in creating a framework to decide between designs of a DSPL is, to the best of

our knowledge, not being undertaken by any group. However, certain parts of the process we have

outlined, including tracking of quality attributes are similar to many other groups. Our work is

heavily based on two (2012 and 2013) literature surveys [51, 50] which track quality attributes that

are commonly measured in dynamic adaptive systems and how dynamic adaptivity changed these

attributes. Our work differs in that we attempt to make the process more rigorous rather than

simply tracking dynamic adaptive projects through to completion.

Other research groups have already produced results from the inclusion of quality attribute

measurement in a decision support system [41, 30]. Inclusion of quality attribute estimation into

our DSS would allow for a more detailed analysis of the appropriateness of a design basing the

comparison of designs on multiple factors rather than just cost and return on investment alone. As

work on our DSS continues, these works and others like them will need to be reviewed to see what

can be reused.
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Chapter 8

Future Work

As mentioned in section 4, and shown in figure 8.1, not all of the framework required for

selecting between DSPL designs has been completed in this work. The parts of the framework shown

in green are mostly completed and have been evaluated as part of the work for this dissertation. The

parts shown in yellow are partially complete but require a great deal more work. While XAGREE

(Architecture Validation & Verification) and SIMDASE (Cost Estimation) are mostly complete,

there is still additional work that can be completed in these areas.

8.1 Future Work in Quality Attribute Estimation

Estimation or measurement of quality attributes is an important step within our DSS, how-

ever, at the current time, we have only completed work determining how specific quality attributes

change when dynamic adaptivity is introduced into the model. Many of the techniques for mea-

suring these quality attributes work well for architectural models that do not incorporate dynamic

adaptivity, but they are less than optimal for architecture models that do include dynamic adaptivity.

Future work in this area will include evaluating existing measurement techniques for the

quality attributes that are commonly affected by dynamic adaptivity’s presence. Changes or im-

provements that can be made to these techniques to make them more efficient for architectures

which include variability will be explored. Also, determining which quality attribute measurements

can be calculated from within SIMDASE will be determined.
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Figure 8.1: Decision Support System Outline

8.2 Future Work in SIMDASE

SIMDASE’s support for cost estimation of architectural models including variability and

its ability to infer information from the architecture’s structure are powerful. However, due to

the exacting nature of AADL specifications, SIMDASE could infer additional information from the

model that would prove useful in cost estimation. For example, it is possible in AADL through

the use of additional annexes to represent the complexity of components. Using this information,

the cost of a component could be scaled based on the component’s complexity which would allow

some degree of automatic cost calculation. Additionally, inheritance support in SIMDASE would be

useful as would the idea of packages (costs that are common to multiple components packaged into

a reusable asset).

8.3 Future Work in XAGREE

At the current moment, XAGREE supports subtype polymorphism [20] and inheritance

between XAGREE instantiations in related components for non-timing related statements. Tra-
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ditional AGREE also has excellent support for validating timing and event occurrence, however,

XAGREE does not add inheritance or subtype polymorphism support in these statements. Adding

support for inheritance for these areas of AGREE would be the primary additional work left in this

area. However, there are other areas that could be considered. One such area would be support for

complex data types and port groupings.
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Chapter 9

Conclusion

In the proposal for dissertation, we promised to provide cost estimation and improved veri-

fication / validation tooling for DASs. In this dissertation, we have presented the outline of a new

framework for deciding between designs of a DSPL. We have also presented two specific compo-

nents of this framework: SIMDASE (section 4.2) and XAGREE (section 3). SIMDASE is a cost

estimation tool, based on SIMPLE, that provides for architecture-led cost estimation of SPLs and

DSPLs, or any architecture that can be expressed as a SPL or DSPL, such as DASs. XAGREE is

an extension of the AADL tool AGREE adding inheritance support to the language. This addition

allows XAGREE to produce more maintainable and less complex verification assets than AGREE

for architectures that incorporate inheritance such as SPLs and DSPLs.

As part of this dissertation work, we have provided an analysis (section 5) of XAGREE’s

improvements on AGREE for architectural models using inheritance. We have also provided an

analysis of SIMDASE’s flexibility as well as its ability to robustly evaluate user input, including input

containing sinusoidal and logarithmic functions with respect to time and architecture description.

Due to the work presented in this dissertation, it is now possible to more fully use the

language capabilities of AADL during the verification / validation of systems utilizing inheritance.

It is also possible to annotate the architecture of a SPL or DSPL with cost information, analyzing

that cost information on demand. Both of these advancements to AADL and its annexes will provide

benefit for the DAS / DSPL communities which heavily use AADL architectures having inheritance.
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Appendix A List of Abbreviations

• AADL - Architecture Analysis & Design Language

• AGREE - Assume Guarantee REasoning Environment

• BLE - Bluetooth Low Enegery

• CPS - Cyber Physical System

• DAS - Dynamic Adaptive System

• DSPL - Dynamic Software Product Line

• DSS - Decision Support System

• GPS - Global Positioning System

• HTML - HyperText Markup Language

• ISO - International Standards Organization

• ITS - Intelligent Transportation System

• MAPE - Monitor Analyze Plan Execute

• OSATE - Open Source AADL Tool Environment

• PDF - Portable Document Format

• RFID - Radio Frequency IDentifier

• SAE - Society of Automotive Engineers

• SDLC - Software Development Life Cycle

• SIMDASE - Structured Intuitive Model for Dynamic Adaptive System Economics

• SIMPLE - Structured Intuitive Model for Product Line Economics

• SMT - Satisfiability Modulo Theorem

• SPL - Software Product Line

• XAGREE - eXtended Assume Guarantee REasoning Environment
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Appendix B ISO 25010 Quality Attributes

• Functional Suitability - degree to which a product or system provides functions that meet

stated and implied needs when used under specified conditions

– Functional Completeness - degree to which the set of functions covers all the specified

tasks and user objectives

– Functional Correctness - degree to which a product or system provides the correct results

with the needed degree of precision

– Functional Appropriateness - degree to which the functions facilitate the accomplishment

of specified tasks and objectives

• Performance Efficiency - performance relative to the amount of resources used under stated

conditions

– Time Behaviour - degree to which the response and processing times and throughput

rates of a product or system, when performing its functions, meet requirements

– Resource Utilization - degree to which the amounts and types of resources used by a

product or system, when performing its functions, meet requirements

– Capacity - degree to which the maximum limits of a product or system parameter meet

requirements

• Compatibility - degree to which a product, system or component can exchange information

with other products, systems or components, and/or perform its required functions, while

sharing the same hardware or software environment

– Co-existence - degree to which a product can perform its required functions efficiently

while sharing a common environment and resources with other products, without detri-

mental impact on any other product

– Interoperability - degree to which two or more systems, products or components can

exchange information and use the information that has been exchanged

• Usability - degree to which a product or system can be used by specified users to achieve

specified goals with effectiveness, efficiency and satisfaction in a specified context of use

126



– Appropriateness Recognizability - degree to which users can recognize whether a product

or system is appropriate for their needs

– Learnability - degree to which a product or system can be used by specified users to achieve

specified goals of learning to use the product or system with effectiveness, efficiency,

freedom from risk and satisfaction in a specified context of use

– Operability - degree to which a product or system has attributes that make it easy to

operate and control

– User Error Protection - degree to which a system protects users against making errors

– User Interface Aesthetics - degree to which a user interface enables pleasing and satisfying

interaction for the user

– Accessibility - degree to which a product or system can be used by people with the widest

range of characteristics and capabilities to achieve a specified goal in a specified context

of use

• Reliability - degree to which a system, product or component performs specified functions

under specified conditions for a specified period of time

– Maturity - degree to which a system, product or component meets needs for reliability

under normal operation

– Availability - degree to which a system, product or component is operational and acces-

sible when required for use

– Fault Tolerance - degree to which a system, product or component operates as intended

despite the presence of hardware or software faults

– Recoverability - degree to which, in the event of an interruption or a failure, a product

or system can recover the data directly affected and re-establish the desired state of the

system

• Security - degree to which a product or system protects information and data so that persons

or other products or systems have the degree of data access appropriate to their types and

levels of authorization

– Confidentiality - degree to which a product or system ensures that data are accessible

only to those authorized to have access
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– Integrity - degree to which a system, product or component prevents unauthorized access

to, or modification of, computer programs or data

– Non-repudiation - degree to which actions or events can be proven to have taken place,

so that the events or actions cannot be repudiated later

– Accountability - degree to which the actions of an entity can be traced uniquely to the

entity

– Authenticity - degree to which the identity of a subject or resource can be proved to be

the one claimed

• Maintainability - degree of effectiveness and efficiency with which a product or system can

be modified by the intended maintainers

– Modularity - degree to which a system or computer program is composed of discrete com-

ponents such that a change to one component has minimal impact on other components

– Reusability - degree to which an asset can be used in more than one system, or in building

other assets

– Analysability - degree of effectiveness and efficiency with which it is possible to assess the

impact on a product or system of an intended change to one or more of its parts, or to

diagnose a product for deficiencies or causes of failures, or to identify parts to be modified

– Modifiability - degree to which a product or system can be effectively and efficiently

modified without introducing defects or degrading existing product quality

– Testability - degree of effectiveness and efficiency with which test criteria can be estab-

lished for a system, product or component and tests can be performed to determine

whether those criteria have been met

• Portability - degree of effectiveness and efficiency with which a system, product or component

can be transferred from one hardware, software or other operational or usage environment to

another

– Adaptability - degree to which a product or system can effectively and efficiently be

adapted for different or evolving hardware, software or other operational or usage envi-

ronments
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– Installability - degree of effectiveness and efficiency with which a product or system can

be successfully installed and/or uninstalled in a specified environment

– Replaceability - degree to which a product can replace another specified software product

for the same purpose in the same environment
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Appendix C EMV2 Error Ontology

• ServiceError

– ItemOmission

– ServiceOmission

– SequenceOmission

∗ TransientServiceOmission

∗ LateServiceStart

∗ EarlyServiceTermination

∗ BoundedOmissionInterval

– ItemCommission

– ServiceCommission

– SequenceCommission

∗ EarlyServiceStart

∗ LateServiceTermination

• TimingRelatedError

– ItemTimingError

∗ EarlyDelivery

∗ LateDelivery

– SequenceTimingError

∗ HighRate

∗ LowRate

∗ RateJitter

– ServiceTimingError

∗ DelayedService

∗ EarlyService

• ValueRelatedError
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– ItemValueError

∗ UndetectableValueError

∗ DetectableValueError

· OutOfRange

· BelowRange

· AboveRange

· OutOfBounds

– SequenceValueError

∗ BoundedValueChange

∗ StuckValue

∗ OutOfOrder

– ServiceValueError

∗ OutOfCalibration

• ReplicationError

– AsymmetricReplicatesError

∗ AsymmetricValue

· AsymmetricApproximateValue

· AsymmetricExactValue

∗ AsymmetricTiming

∗ AsymmetricOmission

· AsymmetricItemOmission

· AsymmetricServiceOmission

– SymmetricReplicatesError

∗ SymmetricValue

· SymmetricApproximateValue

· SymmetricExactValue

∗ SymmetricTiming
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∗ SymmetricOmission

· SymmetricItemOmission

· SymmetricServiceOmission

• ConcurrencyError

– RaceCondition

– ReadWriteRace

– WriteWriteRace

– MutExError

– Deadlock

– Starvation
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Appendix D SIMDASE Annex Language Reference

D.1 Active Variants Statement

D.1.1 Format

1 a c t i v e v a r i a n t s => {

2 <IDENTIFIER 1> : [<VARIANT 1>, <VARIANT 2>, . . . <VARIANT N> ] ,

3 <IDENTIFIER 2> : [<VARIANT 1>, <VARIANT 2>, . . . <VARIANT N> ] ,

4 . . .

5 <IDENTIFIER N> : [<VARIANT 1>, <VARIANT 2>, . . . <VARIANT N> ] ,

6 } ;

D.1.2 Description

The active variants statement allows you to specify the variants are to be part of the current

cost estimation for individual subcomponents (the current component included). The identifier for

each substatement is a fully qualified component name (¡package name¿::¡component classifier¿.¡implementation name¿)

and the variant name references an identifier from that components variant list.

D.1.3 Example

1 annex simdase {∗∗

2 va r i an t s => {

3 ” w i f i e n ab l e d ” :{

4 ”wi r e l e s s modu l e ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a w i f i ” ,

5 ” protoco l management process ”

6 } ;

7 ” b l e enab l ed ” :{

8 ” bluetooth module ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a b l e ” ,

9 ” protoco l management process ”

10 } ;

11 } ;

12 a c t i v e v a r i a n t s => {

13 ” f o r k l i f t t r a c k e r . impl ” : [ ” w i f i e n ab l e d ” , ” b l e enab l ed ” ] ;

14 } ;
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15 } ;

D.2 Cost Properties Statement

D.2.1 Format

1 co s t => {

2 <COST CATEGORY 1> => {

3 <EMPLOYEE BASED COST 1>,

4 <EMPLOYEE BASED COST 2>,

5 . . .

6 <EMPLOYEE BASED COST N>,

7 <FIXED COST 1>,

8 <FIXED COST 2>,

9 . . .

10 <FIXED COST N>

11 } ;

12 <COST CATEGORY 2> => {

13 <EMPLOYEE BASED COST 1>,

14 <EMPLOYEE BASED COST 2>,

15 . . .

16 <EMPLOYEE BASED COST N>,

17 <FIXED COST 1>,

18 <FIXED COST 2>,

19 . . .

20 <FIXED COST N>

21 } ;

22 . . .

23 <COST CATEGORYN> => {

24 <EMPLOYEE BASED COST 1>,

25 <EMPLOYEE BASED COST 2>,

26 . . .

27 <EMPLOYEE BASED COST N>,

28 <FIXED COST 1>,
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29 <FIXED COST 2>,

30 . . .

31 <FIXED COST N>

32 } ;

33 } ;

D.2.2 Description

The cost properties statement allows you to specify one or more costs for a given category.

The default categories provided with SIMDASE are default categories used by the Structured In-

tuitive Model for Product Line Economics (SIMPLE), see section D.9 for listing. However, custom

categories can be specified using any valid XText identifier.

The costs are represented as either fixed or employee based costs where employee based

costs have the form:

1 <NUMBEROFEMPLOYEES> ”<EMPLOYEETYPE>” f o r <STATEMENT>

and fixed costs have the form:

1 <COST> f o r ”<COST DESCRIPTION>” at <TIME PERIOD>

Statements, used with employee based costs, can have any standard mathematical operation

(+, -, *, /, %) as well as exponentiation (**) along with several functions (sin, cos, tan, random).

Also available is the depth of the component in the architecture (i), the current time period (t) and

the scaling factor for the current component (s()).

Statements also support branching logic statements.

1 i f (<BOOLEAN CONDITION>) { <TRUE STATEMENT> } e l s e { <FALSE STATEMENT> }

Boolean conditions support all statement operators as well as the standard C logical oper-

ators (&&, ‖, !, ==, ¡=, ¡, ¿=, ¿, !=).

D.2.3 Example

1 annex simdase {∗∗

2 co s t => {

3 o r g an i z a t i ona l p l ann i ng => {

4 2 .0 ” Pro j e c t Manager” f o r i f ( t == 0 . 0 ) { 40 .0 } e l s e { 0 .0 } ,
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5 20000.0 f o r ”Planning Software Purchase” at 0 .0

6 } ;

7 } ;

8 } ;

D.3 Is Adaptive Statement

D.3.1 Format

1 i s a d ap t i v e => <TRUE | FALSE>;

D.3.2 Description

The is adaptive statement is a reporting statement that allows you to specify whether the

costs specified included adaptation based costs as well as traditional costs.

D.3.3 Example

1 annex simdase {∗∗

2 i s a d ap t i v e => t rue ;

3 } ;

D.4 Reevaluate Averaging Statement

D.4.1 Format

1 run f o r <COUNT> t imes tak ing <AVERAGE | MINIMUM | MAXIMUM> r e s u l t ;

D.4.2 Description

When cost statements include calls to the random() function, it is sometimes desirable to

calculate the cost for those components many times taking either the average, minimum or maximum

result rather than computing the cost only once. This statement facilitates that purpose.

D.4.3 Example

1 annex simdase {∗∗

2 run f o r 2 .0 t imes tak ing average r e s u l t ;
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3 } ;

D.5 Scaling Factor Statement

D.5.1 Format

1 s c a l i n g f a c t o r => <STATEMENT>;

D.5.2 Description

For abstract components that are included in multiple layers of the architecture, it sometimes

necessary to scale the cost of that layers component based on either time, depth in architecture or

other factors. This statement allows you to scale the cost of a component based on any factor

available via a normal statement.

Statements, used with employee based costs, can have any standard mathematical operation

(+, -, *, /, %) as well as exponentiation (**) along with several functions (sin, cos, tan, random).

Also available is the depth of the component in the architecture (i), the current time period (t) and

the scaling factor for the current component (s()).

Statements also support branching logic statements.

1 i f (<BOOLEAN CONDITION>) { <TRUE STATEMENT> } e l s e { <FALSE STATEMENT> }

Boolean conditions support all statement operators as well as the standard C logical operators (&&,

‖, !, ==, ¡=, ¡, ¿=, ¿, !=).

D.5.3 Example

1 annex simdase {∗∗

2 s c a l i n g f a c t o r => 1 / ( i + 1) ;

3 } ;

D.6 Time Minimum Statement

D.6.1 Format

1 tmin => <STARTING TIME PERIOD>;
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D.6.2 Description

Components are rarely developed during a single time period or sprint. The time minimum

and time maximum statements allow cost to be calculated across multiple time periods or sprints.

D.6.3 Example

1 annex simdase {∗∗

2 tmin => 1 . 0 ;

3 } ;

D.7 Time Maximum Statement

D.7.1 Format

1 tmax => <ENDING TIME PERIOD>;

D.7.2 Description

Components are rarely developed during a single time period or sprint. The time maximum

and time minimum statements allow cost to be calculated across multiple time periods or sprints.

D.7.3 Example

1 annex simdase {∗∗

2 tmax => 2 0 . 0 ;

3 } ;

D.8 Variants Statement

D.8.1 Format

1 va r i an t s => {

2 <VARIANT 1>: {<COMPONENT 1>, <COMPONENT 2, . . . <COMPONENTN>};

3 <VARIANT 2>: {<COMPONENT 1>, <COMPONENT 2, . . . <COMPONENTN>};

4 . . .

5 <VARIANT N>: {<COMPONENT 1>, <COMPONENT 2, . . . <COMPONENTN>};

6 } ;
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D.8.2 Description

The variants statement allows you to specify a list of variants and which subcomponents of

the current component are associated with that variant. Active variant statements can then be used

to determine which subcomponents should have their cost factored into the current calculation.

D.8.3 Example

1 annex simdase {∗∗

2 va r i an t s => {

3 ” w i f i e n ab l e d ” :{

4 ”wi r e l e s s modu l e ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a w i f i ” ,

5 ” protoco l management process ”

6 } ;

7 ” b l e enab l ed ” :{

8 ” bluetooth module ” , ” r f i d r e a d e r ” , ” s e n d t r a c k i n g i n f o v i a b l e ” ,

9 ” protoco l management process ”

10 } ;

11 } ;

12 } ;

D.9 SIMDASE Default Cost Categories

• architecture definition

• architecture evaluation

• component development

• mining existing assets

• requirements engineering

• software system integration

• testing

• understanding relevant domains
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• using externally available software

• configuration management

• commission analysis

• measurement tracking

• process discipline

• scoping

• technical planning

• technical risk management

• tool support

• building business case

• customer interface management

• developing acquisition strategy

• funding

• launching institutionalizing

• market analysis

• operations

• organizational planning

• organizational risk management

• structuring organization

• technology forecasting

• training
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Appendix E XText Grammar

1 AnnexLibrary r e tu rn s aadl2 : : AnnexLibrary :

2 SimdaseLibrary ;

3

4 AnnexSubclause r e tu rn s aadl2 : : AnnexSubclause :

5 SimdaseSubclause ;

6

7 SimdaseLibrary :

8 {SimdaseContractLibrary } cont rac t=SimdaseContract ;

9

10 SimdaseSubclause :

11 {SimdaseContractSubclause } cont rac t=SimdaseContract ;

12

13 SimdaseContract r e tu rn s Contract :

14 {SimdaseContract} ( statement+=SIMDASEStatement ) ∗ ;

15

16 SIMDASEStatement :

17 { IsAdaptiveStatement } ’ i s adap t i v e ’ ’=>’ va lue=Boolean ’ ; ’

18 | {TMax} ’ time max ’ ’=>’ va lue=Number ’ ; ’

19 | {TMin} ’ time min ’ ’=>’ va lue=Number ’ ; ’

20 | { Sca l ingFacto r } ’ s c a l i n g f a c t o r ’ ’=>’ statement=Statement ’ ; ’

21 | {Variants } ’ va r iant s ’ ’=>’ ’{ ’ v a r i an t s=Var iants ? ’} ’ ’ ; ’

22 | {Act iveVar iants } ’ a c t i v e v a r i a n t s ’ ’=>’ ’{ ’ v a r i an t s=Act iveVar iants ? ’} ’

’ ; ’

23 | {ReEvaluateAveraging} ’ run ’ ’ fo r ’ count=Number ’ times ’ ’ taking ’

type=( ’ average ’ | ’minimum ’ | ’maximum’ ) ’ r e su l t ’ ’ ; ’

24 | CostProper t i e s ’ ; ’ ;

25

26 Variants :

27 f i r s t=Variant ( ’ ; ’ r e s t+=Variant ) ∗ ’ ; ’ ;

28

29 Variant :

30 name=STRING ’ : ’ ’{ ’ v a r i an t s=VariantNames? ’ } ’ ;
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31

32 Act iveVar iants :

33 f i r s t=Act iveVar iant ( ’ ; ’ r e s t+=ActiveVar iant ) ∗ ’ ; ’ ;

34

35 ActiveVar iant :

36 name=STRING ’ : ’ ’ [ ’ v a r i an t s=VariantNames? ’ ] ’ ;

37

38 VariantNames :

39 f i r s t=STRING (” ,” r e s t+=STRING) ∗ ;

40

41 CostProper t i e s :

42 {CostProper t i e s } ’ cost ’ ’=>’ ’{ ’ costStatements+=CostStatement∗ ’ } ’ ;

43

44 CostStatement :

45 type=’ a r c h i t e c t u r e d e f i n i t i o n ’ ’=>’ va lue=CostValue

46 | type=’ a r ch i t e c t u r e e v a l u a t i on ’ ’=>’ va lue=CostValue

47 | type=’component development ’ ’=>’ va lue=CostValue

48 | type=’m in i n g e x i s t i n g a s s e t s ’ ’=>’ va lue=CostValue

49 | type=’ r equ i r ement s eng inee r ing ’ ’=>’ va lue=CostValue

50 | type=’ s o f twa r e sy s t em in t eg r a t i on ’ ’=>’ va lue=CostValue

51 | type=’ t e s t i ng ’ ’=>’ va lue=CostValue

52 | type=’ unders tand ing re l evant domains ’ ’=>’ va lue=CostValue

53 | type=’ u s i n g e x t e r n a l l y a v a i l a b l e s o f twa r e ’ ’=>’ va lue=CostValue

54 | type=’ conf iguration management ’ ’=>’ va lue=CostValue

55 | type=’ commiss ion ana lys i s ’ ’=>’ va lue=CostValue

56 | type=’measurement tracking ’ ’=>’ va lue=CostValue

57 | type=’ p r o c e s s d i s c i p l i n e ’ ’=>’ va lue=CostValue

58 | type=’ scoping ’ ’=>’ va lue=CostValue

59 | type=’ t e chn i ca l p l ann ing ’ ’=>’ va lue=CostValue

60 | type=’ technica l r i sk management ’ ’=>’ va lue=CostValue

61 | type=’ too l suppor t ’ ’=>’ va lue=CostValue

62 | type=’ bu i l d i n g bu s i n e s s c a s e ’ ’=>’ va lue=CostValue

63 | type=’ customer inter face management ’ ’=>’ va lue=CostValue
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64 | type=’ d e v e l o p i n g a c qu i s i t i o n s t r a t e g y ’ ’=>’ va lue=CostValue

65 | type=’ funding ’ ’=>’ va lue=CostValue

66 | type=’ l a u n c h i n g i n s t i t u t i o n a l i z i n g ’ ’=>’ va lue=CostValue

67 | type=’market ana lys i s ’ ’=>’ va lue=CostValue

68 | type=’ operat ions ’ ’=>’ va lue=CostValue

69 | type=’ o rgan i z a t i ona l p l ann ing ’ ’=>’ va lue=CostValue

70 | type=’ organ izat iona l r i sk management ’ ’=>’ va lue=CostValue

71 | type=’ s t r u c tu r i n g o r g an i z a t i on ’ ’=>’ va lue=CostValue

72 | type=’ t e chno l o gy f o r e c a s t i n g ’ ’=>’ va lue=CostValue

73 | type=’ t ra in ing ’ ’=>’ va lue=CostValue

74 | type=ID ’=>’ va lue=CostValue ;

75

76 CostValue :

77 ’{ ’ f i r s t=EmployeeStatement ( ’ , ’ r e s t+=EmployeeStatement ) ∗ ’} ’ ’ ; ’ ;

78

79 EmployeeStatement :

80 {HourlyCost} count=Number employeeType=STRING ’ for ’ co s t=Statement

81 | {FixedCost} co s t=Number ’ for ’ costReason=STRING ’ at ’ per iod=Number ;

82

83 Boolean :

84 value=’ true ’ | value=’ f a l s e ’ ;

85

86 Number :

87 ( negat ive =’− ’)? f l o a tVa lue=FLOAT ;

88

89 Statement :

90 statement=StatementLvl2 ( op+=(’+’ | ’− ’) r e s t+=StatementLvl2 ) ∗ ;

91

92 StatementLvl2 :

93 statement=StatementLvl3 ( op+=( ’∗ ’ | ’ / ’ | ’% ’) r e s t+=StatementLvl3 ) ∗ ;

94

95 StatementLvl3 :

96 statement=StatementLvl4 ( op+=’∗∗ ’ r e s t+=StatementLvl4 ) ∗ ;
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97

98 StatementLvl4 :

99 { I n t eg e r } value=Number | {T} ’ t ’ | { I } ’ i ’

100 | {Sin } ’ s i n ( ’ statement=Statement ’ ) ’

101 | {Cos} ’ cos ( ’ statement=Statement ’ ) ’

102 | {Tan} ’ tan ( ’ statement=Statement ’ ) ’

103 | {Paren} ’ ( ’ statement=Statement ’ ) ’

104 | { I f } ’ i f ( ’ booleanStatement=BooleanStatement ’ ) ’ ’{ ’

t rueStatement=Statement ’} ’ ( ’ e l s e ’ ’{ ’ f a l s eS ta t ement=Statement ’} ’ ) ?

105 | {Random} ’ random ( ) ’

106 | { StatementSca l ingFactor } ’ s ( ) ’ ;

107

108 BooleanStatement :

109 statement=BooleanStatementLvl2 ( op+= ’ | | ’ r e s t+=BooleanStatementLvl2 ) ∗ ;

110

111 BooleanStatementLvl2 :

112 statement=BooleanStatementLvl3 ( op+=’&&’ r e s t+=BooleanStatementLvl3 ) ∗ ;

113

114 BooleanStatementLvl3 :

115 statement=BooleanStatementLvl4 ( op+=(’>’ | ’>=’ | ’< ’ | ’<=’ | ’==’)

r e s t+=BooleanStatementLvl4 ) ∗ ;

116

117 BooleanStatementLvl4 :

118 {WithNot} ’ ! ’ statement=BooleanStatementLvl4 | {WithoutNot}

statement=BooleanStatementLvl5 ;

119

120 BooleanStatementLvl5 :

121 statement=BooleanStatementLvl6 ( op+=(’+’ | ’− ’) r e s t+=BooleanStatementLvl6 ) ∗ ;

122

123 BooleanStatementLvl6 :

124 statement=BooleanStatementLvl7 ( op+=( ’∗ ’ | ’ / ’ | ’% ’)

r e s t+=BooleanStatementLvl7 ) ∗ ;

125
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126 BooleanStatementLvl7 :

127 statement=BooleanStatementLvl8 ( op+=’∗∗ ’ r e s t+=BooleanStatementLvl8 ) ∗ ;

128

129 BooleanStatementLvl8 :

130 {BoolBoolean} value=Boolean | {BoolT} ’ t ’ | {BoolI } ’ i ’ | {Boo l Integer }

value=Number

131 | {BoolSin } ’ s i n ( ’ statement=Statement ’ ) ’

132 | {BoolCos} ’ cos ( ’ statement=Statement ’ ) ’

133 | {BoolTan} ’ tan ( ’ statement=Statement ’ ) ’

134 | {BoolParen} ’ ( ’ statement=BooleanStatement ’ ) ’

135 | {BoolRandom} ’ random ( ) ’

136 | {BoolSca l ingFactor } ’ s ( ) ’ ;

137

138 t e rmina l FLOAT: INTEGER LIT ’ . ’ INTEGER LIT ;
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