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Abstract

Digital dating abuse is a form of interpersonal violence carried out using text messages,

emails, and social media sites. It has become a significant mental health crisis among the college-

going population, nearly half (43%) of college women who are dating report experiencing violent

and abusive dating behaviors. Existing technology and non-technology based intervention programs

do not provide assistance at the onset of abuse.

The overall goal of this dissertation is to create a mobile phone application that consists of

a detection tool that classifies abusive digital content exchanged between partners, an educational

component that provides information about healthy relationships, and a list of nearby resources for

users to locate help.

For the user-interface design of this application, we conducted a focus group study and

incorporated the themes generated from the study to create our Android prototype. We used

this prototype to conduct a usability study to evaluate the overall user-interface design and the

effectiveness of the features we incorporated into the app. Due to the lack of a publicly available

dataset that could be used to create training and testing sets for the classifiers to detect abusive vs

non-abusive text messages in the context of digital dating abuse, we first created and validated a

dataset of abusive text messages. This dissertation describes the dataset creation, validation process

and the results of an evaluation of different classification and feature extraction techniques. The

combination of linear support vector machine, unigram input and tf-idf feature extractor with an

accuracy of 91.6% was the most balanced classifier, classifying abusive and non-abusive text messages

equally well.

Finally, we conducted a user study to investigate different visualization paradigms that will

assist users to trust the feedback regarding the possible abusive nature of their online communication.

Three different visualization techniques were evaluated using survey questionnaires to understand
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which one is the most effective in invoking user trust and encourages them to access resources for

help.
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Dedication

”Where the mind is without fear and the head is held high,

Where knowledge is free

Where the world has not been broken up into fragments

By narrow domestic walls

Where words come out from the depth of truth

Where tireless striving stretches its arms towards perfection

Where the clear stream of reason has not lost its way

Into the dreary desert sand of dead habit Where the mind is led forward by thee

Into ever-widening thought and action

Into that heaven of freedom, my Father ...,”

—Rabindra Nath Tagore, Translation from Naibadya

To all the courageous survivors of interpersonal violence. #MeToo
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Chapter 1

Introduction

1.1 Motivation

Sierra Landry from Lancaster (South Carolina) started dating Tanner Crolley and within

a few months she had isolated herself from her family, dropped out of high school and her parents

started noticing bruises, which kept increasing in size. Sierra tried to get away from this abusive

relationship but her controlling boyfriend continued harassing and stalking her. On December 30,

2013, she went out of the house to meet her friends and a couple of hours later her body was

discovered in an isolated yard. She had been shot in the head, and the local police found her

boyfriend trying to flee the town and arrested him [81].

Ortralla Mosley, a high school student from Reagan High School in Austin, Texas was

stabbed to death by her running back boyfriend, Marcus McTear, in March 2003. Marcus was an

extremely popular athlete but he had a history of violent behavior, which led to him stabbing his

girlfriend six times in the school hallway when she tried to break up with him [57].

In May 2010, a similar story unfolded again but this time in a college setting, where Yeardley

Love, a sophomore lacrosse player from the University of Virginia, was found dead in her apartment.

Her boyfriend George Huguely confessed to having a bitter altercation and shaking her repeatedly

resulting in her head striking against the wall multiple times [15]. Brittany Henderson, a freshman

at the University of Wisconsin, attended a speech on dating abuse and realized that she was in

an abusive dating relationship. She was dating a popular football star but he kept analyzing her

appearance and reminding her that many girls wondered why he had chosen to be with “someone
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like her”. This often escalated to verbal abuse and threats of physical violence using social media.

Brittany’s father came to her rescue and helped her out of her tragic relationship [23]. The story

of Sierra, Brittany, Ortralla and Yeardley are not isolated newspaper headlines - it is the story of

one in three women in United States. They are victims of dating abuse and this statistic is higher

than any other youth violence related crime [81]. This dissertation is organized into seven chapters.

Chapter 1 describes the motivation behind this research and background information. Chapter 2

describes the research approach and specific aims. Chapter 3 illustrates the first iteration of creating

the user interface of an Android app; Chapter 4 describes the pilot study to evaluate the mockup

of the app’s user interface. Chapter 5 describes the use of machine learning in abuse detection,

Chapter 6 describes the performance evaluation of different machine learning algorithms. Chapter 7

describes the development process of the prototype android phone app. In Chapter 8 we evaluate the

usability of the phone app and discuss user trust and effectiveness. Chapter 9 describes a preliminary

user study to investigate different visualization paradigms that will assist users to trust the feedback

regarding the possible abusive nature of their online communication, Chapter 10 discusses limitation

and future work and Chapter 11 discusses the overall research contributions.

1.2 Defining Dating Violence

Dating violence is defined as “encompassing a range of violent, abusive, or threatening

behaviors including physical, psychological, or emotional and sexual violence or abuse, in addition

to behaviors which may be considered as controlling or dominating toward a romantic or dating

partner and that cause harm, pain or injury to the victim” [68]. Dating violence is considered

digital dating abuse when the perpetrator communicates through text messages, instant messaging

services and social media sites such as Facebook, Twitter, or Snapchat. The categories of digital

dating abuse are similar to that of dating violence.

1.3 Defining Categories of Dating Abuse

Physical violence is the most visible form of abuse in an abusive relationship. The victims

face serious consequences like severe bruises, or broken bones and such injuries can result in the

loss of life. Physical abuse is the red flag that friends and family notice and this is also often the
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final phase of abuse. Thirty-two percent (32%) women in United States have reported experiencing

physical abuse from age fourteen (14) to their college years [79]. The National Longitudinal Study of

Adolescent Health conducted a survey among seven thousand (7000) high school students; they found

that ten percent (10%) of young women have reported being pushed around by a romantic partner

and three percent (3%) reported having something thrown at them [36][38] ]. Rape, attempted rape

and coercive sex are all forms of sexual abuse. These terms point towards sexual relationships where

the victim does not give consent or is coerced to give consent to get out of dangerous situations

like beating or physical abuse from the perpetrator.[37] Financial control is another form of abuse,

though more prevalent in cases of domestic violence. The abuser, in this case, may stop the victim

from getting a job or completing school. This in turn leads to the victim being dependent on

the abuser financially. In some cases where the victim is earning, it has been reported that their

abusers have taken control over their finances [34][16]. Emotional abuse is the invisible form of

abuse, which often goes undetected and this makes it an easy and lethal weapon. Hoffman, et al.,

defined emotional abuse as “behavior sufficiently threatening to the woman so that she believes her

capacity to work, interact with family or society or to enjoy good physical or mental health, has

been or might be threatened” [40] [67]. Insult, humiliation, use of abusive language, in either public

or private, all constitute emotional abuse. This usually results to a lowered self-esteem, extreme

confusion and severe depression. Common forms of emotional abuse include yelling, name-calling,

verbal intimidation and constant check on the partner’s whereabouts. Some perpetrators stalk their

girlfriends, read their emails or private messages from other people and go to the extent of monitoring

them even when they talk to family or close friends. According to the Center for Disease Control and

Prevention (CDC), each year twenty-five percent (25%) of adolescents report experiencing “verbal,

physical, emotional, or sexual abuse” from a dating partner [32].

1.4 Dating Abuse Related Statistics

Nearly 1.5 million high school students nationwide experience physical abuse from a dating

partner in a single year. Girls and young women between the ages of sixteen to twenty four (16-

24) experience the highest rate of dating abuse, almost triple the national average. Among female

victims of dating abuse, a current or former boyfriend or girlfriend has victimized ninety-four percent

(94%) of those aged sixteen to nineteen (16-19) and seventy-percent (70%) of those aged twenty to
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twenty-four (20-24). Nearly half (43%) of college women who are dating report experiencing violent

and abusive dating behaviors. College students are not equipped to deal with dating abuse – fifty-

seven percent (57%) say it is difficult to identify and fifty-eight percent (58%) say they do not know

how to help someone who is experiencing it. One in three (36%) college students who are dating have

given a dating partner their computer, email or social network passwords and these students are

more likely to experience digital dating abuse. One in six (16%) college women have been sexually

abused in a dating relationship [31].

1.5 Risk factors associated with abuse (Consequences)

The consequences of such violence can result in higher academic dropout rates, drug use,

unwanted pregnancies, depression, suicide attempts and even fatalities. Younger women who have

been in abusive relationships are at a higher risk of becoming pregnant or contracting sexually

transmitted infections as they are unable to negotiate safe sex behaviors with their partners[71].

Being in a violent relationship often leads to depression, low self-esteem and can lead to suicidal

tendencies. In a study, adolescent girls who have recently faced dating violence reported sixty

percent (60%) more likelihood of attempting one or more suicides [63]. A study conducted in South

Carolina in 2000 found that victims of dating abuse are more prone to drinking (32.7%) and doing

drugs (48.5%) [7].

1.6 Demographics of the victims

Data collected from the CDC’s Youth Risk Behavior Surveillance System (YRBSS), a na-

tional survey administered to high school students, shows that both male and female students

reported being “hit, slapped, or physically hurt on purpose by their boyfriend or girlfriend during

the 12 months before the survey” [28]. Dating violence is also more prevalent in communities of

color due to their minority status, socio-economic status and cultural beliefs. Studies have sug-

gested that African American females are at greater risk (35% higher) from dating violence and

other forms of physical abuse compared to white females and twenty two percent (22%) higher than

other races. The study conducted in rural counties of North Carolina found that adolescents from

minority groups, single parent homes and homes where parents are less educated, reported facing

4



more physical violence compared to others [33].

1.7 Digital Dating Abuse

Technology has changed the way in which young adults communicate. Internet services

such as social media sites, instant messaging and email applications have made communication more

accessible. Unfortunately, these internet services can also be used to harass people indiscriminately

[54]. One such form of harassment is digital dating abuse (DDA), where a dating partner leaves

repeated threat messages over the phone or social media. Studies have shown that undergraduate

college students are prone to this form of aggression. One-third (1/3) of college students have

reported facing some form of cyber-based harassment [82]. In the focus group studies conducted by

Melander [54], themes were identified relating to the use of technology in abusing someone. The study

concluded that online harassment is a form of “quick and easy violence” where “private becomes

public” knowledge. Participants also said that in-person, aggressive, and private arguments could

easily become an aggressive public domain conversation [17]. This can increase the threat and shame

that the abused partner feels, and force them to reconcile to the terms set by the abuser. Digital

dating abuse has become a major mental health crisis for the college-going population. Advancement

in technology has made it easier to keep the partner ‘captive’ even when the abuser is not in the

same physical location. Constant threats via text messages, surveillance using the GPS locations of

the victim’s digital footprint and control tactics has made dating violence a menace that needs to

be detected and stopped at an early stage.

1.8 Relevance of Technology in Dating Abuse among Young

Adults

A growing body of literature has acknowledged that electronic communication technology

has had a significant effect on the lives of young adults. These methods include mobile phones,

communication through text messages, instant messaging services and social media sites such as

Facebook, Twitter, or Snapchat [70] . Nine in ten (9 in 10) college students use a laptop or smart-

phone on a regular basis. Half of them regularly use a tablet, while roughly one in ten (1 in 10)

regularly use all or a mix of all [44]. Using these communication media, bullying and abuse has
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moved from in-person to the cyber world. Online bullying or cyberbullying amongst peers has been

a topic of research for several years [27][4][3] but digital dating abuse is yet to be fully explored.

The Centers for Disease Control and Prevention has recognized the relevance of technology within

its definition of dating violence, whereby emotionally abusive and controlling behaviors may be per-

petrated electronically, in addition to behaviors such as stalking [4]. Hate or abusive speech refers

to speech which demeans or attacks a person or people as members of a group with shared charac-

teristics such as race, gender, religion, sexual orientation, or disability [[30]. Digital Dating Abuse

(DDA) is targeted specifically towards dating partners whereas hate/abusive speech and cyberbully-

ing can be targeted towards anyone even if the abuser is unknown to the victim. DDA has recently

been compared to cyberbullying as the “willful and repeated harm inflicted through the medium of

electronic text” [65]. Cyberbullying tends to occur between individuals who do not like or want to

be around each other, whereas DDA transpires between two people who are attracted to each other

on some level [88].

1.9 Current Abuse Prevention and Awareness Programs

State and federal governments and Non-Governmental Organizations have initiated several

dating abuse prevention and awareness programs. One such program is the Relationship Abuse Pre-

vention Program that includes lesson plans, parent workshops, and staff development materials for a

school-based curriculum [17].This program has been developed in New York City to teach students

to recognize and prevent teen relationship abuse. Former President Barack Obama and the White

House have also been very active in protesting against such violence, making a proclamation in 2013

designating February as National Teen Dating Violence Awareness and Prevention Month [3]. Along

with awareness campaigns, technological interventions have been created: two such web-based educa-

tional platforms are Dating Matters and thatisnotcool.com [62][85]. Dating Matters: Understanding

Teen Dating Violence Prevention is an initiative launched by The Centers for Disease Control and

Prevention and is designed to help educators, school personnel, youth leaders, and others working

to improve the health of teens. This is an online course with interactive visuals and scenario based

learning modules that communicate the relevance of dating violence prevention. Thatisnotcool.com

provides educational material related to dating violence and prevention too. It also has material to

support teens going through abusive situations that motivates them to get help. Another example
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of technology-based intervention is Love is Not Abuse, an iPhone application launched by Liz Clai-

borne Inc. that is designed to provide parents with a simulation of situations common in digital

abuse, such as threatening to remove friends from social networks or posting illicit photos. While

the application does not actually access the user’s Facebook account, parents get an insight into the

controlling nature of a negative teen relationship [29]. The Apps Against Abuse Technology Chal-

lenge led by former Vice President Joe Biden and Secretary of Health and Human Services Kathleen

Sibelius, was created to engage software developers to help find a solution to the alarmingly high

incidences of sexual violence and abuse of female college students [34]. OnWatchOnCampus and

Circle of 6, the winners of the 2011 Challenge, were developed to give college students a sense of

safety when they are traveling alone [1][2][6]. These application interfaces can be used by a person to

alert the authorities and loved ones about where they are if they feel unsafe. Distress messages and

the exact GPS location of the person are relayed so help can reach them sooner. Though both these

approaches are novel ideas, they do not cater specifically to digital dating abuse victims because

dialing 911 might be the victim’s last cry for help. By then, the situation may have gone so out of

hand that even if she can be saved from physical harm, the mental scars might be left forever. None

of the above-mentioned technical and non-technical approaches provide help directly to the victim

at the onset of abuse. Abuse often begins as emotional abuse and goes undetected. A detection

application, which analyzes the victim’s digital content, is needed for preemptive action before the

abuse escalates to physical harm. For our research, we use text messages exchanged between two

partners as a mode of digital communication and use supervised machine-learning techniques to

detect abusive text messages. We also want to understand how we can support the design of the

application based on the results of the classifier.

This dissertation document outlines the process of design, creation and evaluation of a phone

application that consists of a detection tool that flags abusive digital content exchanged between

partners, an educational component that provides information about digital dating abuse, and a list

of nearby resources for users to locate help.
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Chapter 2

Research Approach

2.1 Target Population

The target population for this phone application are college going female students above

the age of eighteen (18) years who are in a dating relationship. In the US, a woman is three to six

times more likely to become a victim of violence than a man. Although women and girls are more

exposed to risk of violence against them, interpersonal violence affects individuals of both genders

as well as those of different sexual orientations [25].

2.2 Design Justifications

2.2.1 Mobile phone application and design process

Globally, the use of mobile phones and broadband services has been rising, especially

amongst young adults. In 2015, sixty-five percent (65%) of American adults owned a smartphone

[78]. Fifteen percent, (15%) of Americans aged eighteen to twenty nine years (18-29) were heavily

dependent on a smartphone for online access and sixty two percent (62%) of this population had

used their phone in the past year to look up information on a health condition [78]. Thus, we chose

a smart phone platform to build our detection application to let resources be available at anytime,

anywhere and at the convenience of the user [10]. As using a smartphone in public is perceived

as “normal”, people can access this tool without drawing unwanted attention. Mobile phone ap-
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Figure 2.1: Illustrates the different research phases of this dissertation, indicating completed work

plications have been used as health trackers, mental health intervention tools, and for simulating

text-based dating abuse. PTSDCoach, a smartphone app for post-traumatic stress symptoms was

developed by the VA’s National Center for PTSD-Dissemination and Training Division. It was

designed to be used as a psycho-education and self-management tool to supplement treatment by

a healthcare professional [45]. Another similar example is MoodHacker, which provides effective

interventions for people struggling with depression. It is a self-guided intervention tool that helps

adults with mild to moderate depression learn more about strategies based on cognitive behavioral

therapy to manage their mood [10]. Figure 2.1 illustrates the different phases of this dissertation.

2.2.2 Research Aims and Outcomes

My specific research aims that have been achieved are as follows:

1. Design a user-interface for the phone app using a participatory design process.

2. There is currently no publicly available dataset specific to digital dating abuse that can be
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used to create training and testing sets for machine learning algorithms. Therefore, our aim

is to create and validate a dataset of abusive text messages.

3. Evaluate different machine learning classification algorithms and feature extraction techniques

to determine their accuracy in identifying abusive versus non-abusive text messages.

(a) Creating an Android phone application that incorporates the results from the partici-

patory design process to create the user interface and the detection application which

uses supervised machine learning algorithms to classify text messages as abusive or non-

abusive.

4. Presented with a set of text messages which contains both abusive and non-abusive text mes-

sages

(a) Are the individual features of the app i.e. Awareness, Detection, and Resources designed

in an intuitive manner that helps the user acquire the information they require?

(b) Presented with a set of text messages which contains both abusive and non-abusive text

messages

(c) What is the threshold of abusive text messages (in percentage or count) to be considered

in an abusive relationship?

(d) Does the way the data is visualized have an impact on user’s trust when it comes to using

the detection application?

(e) Is there a change in the user’s perception of abusive vs. non-abusive in observing the

text messages classified by the machine learning algorithm (as displayed on the app) vs.

labeling the text messages themselves?

(f) What is the threshold of abusive text messages that encourages users to seek help and if

they do, which is their most preferred resources?
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Chapter 3

PARTICIPATORY DESIGN

PROCESS FOR INTERFACE

DESIGN
1

3.1 Introduction to Participatory Design Process

We adopted a participatory design approach for the development of our mobile application.

A participatory design process is an “approach towards computer systems design in which people

destined to use the systems play a critical role in designing it” [77]. Specifically, the goal of the

process should be the enrichment of the user’s interaction behavior; the work should be collaborative

in nature and finally, the process should be iterative [14][12]. The users are at the center of the design

process and are involved in every iteration of the design [56]. Thus, the users are considered as domain

experts who guide the developers with technical skills to build a certain technology [24]. These ideas

are very different from other conceptions of technology development where the developers are the

domain experts and develop a system through a trial and error process [89]. When this process has

been successfully used, it has resulted in higher user satisfaction and the application has a higher

likelihood of being used [60]. This design process has also helped in creating applications with higher

user productivity and better user experience [24]. While developing an application, it is essential to

1This work has been published in [72]
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Figure 3.1: Illustrates the three phases of the participatory design process.

Age
Mean = 19.8 yrs.

Standard Deviation =2.089
Gender Female = 100%

Ethnicity
Caucasian = 90.0%

African American = 10%

Education

Freshman = 60 %
Junior =10 %
Senior = 20%

Master’s Degree = 10%
Relationship Status Single =100%

Table 3.1: Demographic Questionnaire Results

understand the function of the application and the needs of the user group—both of which have a

high effect on system acceptance. If users are involved from the beginning of the technology design,

then they also have the opportunity to develop ownership of the technology and expertise on how to

use it [18]. The design goals for our application were 1) user-friendly design 2) high user-acceptance

and 3) just-in-time intervention. The design process will be carried out in three phases (Illustrated

in 3.1); Section 3.2. onwards describes the first phase.
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3.2 Participants

For the first focus group, we recruited ten (10) female college students who were all above the

age of eighteen (18) years. Recruiting women who have been in an abusive dating relationship would

be ideal for getting the users’ mental model. Due to the sensitive nature of this topic and limited

resources, we recruited female college students as our domain experts instead of abuse victims. We

conducted two focus group sessions, which were held on separate days over a duration of two hours.

The researcher present with each group conducted these semi-structured sessions using open-ended

questions to lead the discussion. All the discussion points were approved by the Institutional Review

Board to ensure human subject research protocols were followed. For efficient data collection, the

sessions were audio recorded and later transcribed into text.

3.3 Procedure

The participants were first given a demographic questionnaire to obtain their age, gender,

educational status, marital status and ethnicity (Table 3.1.). Along with this, they were given a

dating abuse awareness questionnaire [87], which asked about their knowledge about dating abuse.

This questionnaire also asked the participants to choose from a given list, words which described signs

of an unhealthy dating relationship. The remaining part of the questionnaire was about personal

experiences with abuse. They were asked if they were in an abusive relationship, did they know of

anyone in an abusive relationship, were they aware of resources on campus that could help them

with dating abuse, did they have the friends or family they would be willing to share their ordeals

with and, finally, did they want to use technology to detect digital dating abuse? After filling out the

questionnaires, the researcher led a discussion with the participants. The focus group was guided by

open-ended questions to encourage discussions to establish a definition of dating abuse, understand

opinions on different kinds of abuse, and discuss personal experience with abuse as well as signs that

can be used to recognize abuse. In the next phase part of the discussion, topics about abuse on a

college campus were covered and the change in the medium of dating abuse from in-person to digital

was introduced. In reference to digital dating abuse, discussions regarding medium of abuse and

using technology to detect abuse were conducted. The participants also talked about their concerns

regarding the use of technology to detect dating abuse. Then they were asked to draw their design

ideas for the user interface for the hypothetical application. While the participants sketched their
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ideas, the researcher asked them questions about design choices and inspiration. The participants

were not shown any user-interface designs created by the research team. This was done intentionally

to reduce introducing bias into the process.

3.4 Analysis

After the completion of both the focus groups, we transcribed the audio recordings and

aggregated the data into separate paragraphs depending on the focus group discussion questions.

The focus group questions not only led to discussions, but lent a structure to the whole process to

allow the researchers to collect quality data for further analysis. After the initial data clustering,

we used the thematic analysis technique to identify themes or recurring patterns present in the data

collected for the design of the user interface [13]. For this particular qualitative data analysis, the

inductive or bottom up way was used to generate themes [21]. In this approach the themes are

directly related to the data generated from the focus group. Inductive thematic analysis requires

minimal preconception bias in the part of the researchers and the coding process does not try to

label data into pre-defined categories. Themes evolve as the researchers familiarize themselves with

the data and multiple iterations of data clustering. Our initial analysis process was conducted using

paper and sticky notes. Later this was transferred to a digital format for further analysis. The

drawings that were collected from the users were used along with the themes to create the digital

mockup of the application. Quantitative data analysis was done using the demographic questionnaire

and the modified dating abuse awareness questionnaire.

3.5 Results

3.5.1 Qualitative Data Analysis

[73] Several themes emerged during the focus group. Discussion about dating abuse and the

use of technology in detecting it. These categories are listed below and are illustrated with sample

quotes from study participants.

1. Definition of dating abuse and its prevalence on a college campus

All the participants agreed on the definition of dating abuse as a combination of emotional
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and physical abuse. Direct quotes from two participants focus on emotional or verbal abuse

as being a larger threat than physical abuse.

”Sticks and stones can break your bones but words can hurt you more. Breaking the bone is

huge but words can be powerful”

”.. Breaking your bones can get better but words you always remember the words”

2. Behavior changes in abuse victims

Participants shared stories about friends who were in abusive relationships, and how their

behavior changed over a period of time. They emphasized the fact that the changes were not

apparent to the abuse victim but was conspicuous to a third party. This direct quote below

is a classic example of controlling behavior [5]. It also describes how a form of technology was

being used for dating abuse.

“I have never seen her without him and when in class her phone is attached to her telling him

where she is.”

3. Inability to identify signs of emotional abuse

Though in the dating abuse awareness survey the participants answered that they knew how

to identify signs of emotional abuse, during the focus group discussion this was not the case.

They mentioned the dichotomy between knowing what abuse is and being unable to identify

signs when it happens to them. A direct quote from one of the participants mentions that a

third entity is required to have an unbiased view about their relationship.

“Recognizing [abuse in] other people is easier, if you are the one in love it’s super hard to take

a step back and say ok this is actually what I want, but in other people you can see how changes

happen easily”

4. Use of technology to detect digital dating abuse All the participants agreed that dating abuse

through digital media such as text messages and social media sites are extremely relevant in

a college setting. During the focus group session, most participants were interested in using

technology as a tool to flag abusive content.

“They are like started getting suspicious, but they don’t want to raise a red flag, might be good

to have an app that you can do it anonymously and know if you want to talk to your friends.”
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5. Privacy concerns

All the participants had privacy concerns and feared that if the abuser found this app on the

partner’s phone, it may escalate the situation very rapidly. They also feared that if a non-

abusive partner chanced upon this app it may cause a rift between them. Privacy concerns

led them to come up with ideas on how to hide the application in plain view. The benefits of

mobile app interventions mentioned in Section 2.3.1, was reiterated by the participants. The

direct quote below talks about just in time anonymous interventions.

“You do not have to talk about [abuse] during any [therapy] session, and just handing it ossut

can be anonymous and they can do it on their own time.”

6. Method of delivery

A few participants felt more secure with their data if it was integrated into the University’s

existing IT framework like Blackboard. Others expressed reluctance at the notion of a third

party browsing through their personal communications.

“I don’t think it would be too bad, if Clemson University would have it, I trust everything like

Blackboard and stuff”

3.5.2 Qualitative data analysis: Mock-ups

We collected 10 separate user mental models of the hypothetical application. As shown in

Figures 3.2,3.3,3.4 the participants drew out the user interface and listed the features they would

like to see in the application. To increase ownership we also asked the users to name their app,

and chose a particular layout style or color scheme if they wanted to customize the app. While the

users drew out the images, the researchers asked them to describe each feature and provide design

justifications. This process was influenced by the “think aloud” protocol used in usability studies

[88]. All the participants included the detection component in their images, but along with that,

they wanted a “help” or “resources button” (Fig.3.2 and Fig.3.4) to provide hotline numbers. Most

of the participant’s designs were inspired by everyday technology interfaces they use.
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Figure 3.2: Participant B’s mock up describing a familiar user-interface style.

Figure 3.3: Shows a user’s design closely resembling the health tracker Fitbit’s user portal.
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Figure 3.4: Shows Participant C’s user-interface displaying three features - Awareness, resources
and quiz

3.6 Quantitative Data Analysis

Figure 3.5 shows the results of the dating abuse and technology acceptance questionnaire.

This questionnaire was administered before the focus group sessions.

3.7 Discussion

A different response was noticed between the results of Questions 3 and 4 from the survey

and the focus group interview. In the survey, seven out of ten participants mentioned they knew

what to do if they found themselves in an abusive situation, and all ten participants said they

would go to a friend or counselor to confide about relationship trouble. In contrast, during the

interview sessions they mentioned the difficulties in self-identifying abuse and the need of a third

party intervention (Theme 3, Inability to identify signs of emotional abuse, elaborates this idea).

In terms of using technology as a detection tool, eight out of ten people answered “yes” and this

was validated during the focus group sessions (Theme 5, privacy concerns). In the question “Which

words describe signs of an unhealthy dating relationship?” six out of ten participants chose the

option “Physically violent (hitting or kicking)” and others picked words like “(coerced, possessive

and name-calling)”. This result was more comprehensive than the definition that the participants

came up with during the focus group. All these findings further supports the development of a mobile

application that can act as a complete tool for dating abuse awareness, detection and prevention.

The next phase of the participatory design process is described in the next Chapter 4 and the final
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Figure 3.5: Dating Abuse and Technology acceptance questionnaire. Question 1) Have you or
someone you know ever been in an unhealthy dating relationship? Question 2) Are you aware of
unhealthy dating relationships at your school/ community or work place? Question 3) Do you know
what to do if you find yourself in an unhealthy relationship? Question 4) Is there a friend or adult
or counselor you know you can go and confide in if you were facing trouble in your relationship?
Question 5) Do you want to use technology (for example - phone or web application) to help you
understand if you are being abused?
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phase of the participatory design process is described in Chapter 7.
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Chapter 4

Pilot Study to Evaluate The

Interface Design

4.1 Study design and participants

During the qualitative and quantitative analysis of the data gathered during the focus group

study, we designed a low fidelity prototype of the phone application. The low fidelity prototype was

developed using Fluid UI, which is a browser-based wire framing and prototyping tool and is used

to design mobile touch interfaces. The purpose of the low fidelity prototype for our development

process was to develop a quick mock-up, test the interactions, and design elements with experts who

have experience conducting user experience research. Five (5) participants were recruited from a

graduate-level computer science class at Clemson University. We did not apply for IRB approval to

conduct this study, as we wanted to use this pilot to refine the design aspects before we conducted

the usability study. The participants were given tablets, which had the app simulator on it. Fluid

UI’s simulator allows the user to interact with the prototype as if it was a working application. This

re-creation of real-life interaction was essential for us to get accurate results related to usability.
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Figure 4.1: Login screen

4.2 Heuristic evaluations

4.2.1 Scale used

We performed our usability testing on this mock-up illustrated in the Figures below (Fig

4.1- 4.8). For evaluation, we used the Heuristic evaluation technique [59]. The goal of heuristic

evaluation is to find usability problems in an existing design. Our participants where are asked to

do a series of tests on the user interface and determine the flaws in it. For our usability testing, we

used selected, our participants who had intermediate levels of doing usability testing.

The participants were asked to carry out three different tasks using the FluidUI simulator.

After the completion of the tasks, the users were asked to rate the severity of the issues using a five
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Figure 4.2: Sign in / Sign up Screen
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Figure 4.3: Homes Screen
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Figure 4.4: Choosing a contact
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Figure 4.5: Uploading all text messages
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Figure 4.6: Displaying the results of the analysis
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Figure 4.7: Shows the abusive phrases
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Figure 4.8: Displays the nearest resource users could avail
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scale severity rating.

4.2.2 The heuristic categories tested were [86][58][55]

1. Visibility of System Status: The system should always keep users informed about what is going

on, through appropriate feedback within reasonable time.

2. Match Between system and the real world: The system should speak the users’ language, with

words, phrases, and concepts familiar to the user, rather than system-oriented terms. Follow

real-world conventions, making information appear in a natural and logical order.

3. User Control and Freedom: Users often choose system functions by mistake and will need

a marked ”emergency exit” to leave the unwanted state without having to go through an

extended dialogue. Support undo and redo.

4. Consistency and standards: Users should not have to wonder whether different words, situa-

tions, or actions mean the same thing. Follow platform conventions.

5. making objects, actions, and options visible. The user should not have to remember informa-

tion from one part of the dialogue to another. Instructions for the use of the system should

be visible or easily retrievable whenever appropriate.

6. Flexibility and efficiency of use: Accelerators – unseen by the novice user – may often speed

up the interaction for the expert user such that the system can cater to both inexperienced

and experienced users. Allow users to tailor frequent actions.

7. Aesthetic and minimalist design: Dialogues should not contain information that is irrelevant

or rarely needed. Every extra unit of information in a dialogue competes with the relevant

units of information and diminishes their relative visibility

The scale used was a five-point severity scale where -

0 = I do not agree that this is a usability problem at all

1 = Cosmetic problem only: need not be fixed unless extra time is available on the project

2 = Minor usability problem: fixing this should be given low priority

3 = Major usability problem: important to fix, so should be given high priority

4 = Usability catastrophe: imperative to fix this before the product can be released
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Evaluation Categories
Expert users A B C D E F G

Expert 1 1 3 1 0 1 0 0
Expert 2 3 1 0 0 0 0 2
Expert 3 3 0 0 0 0 2 2
Expert 4 3 0 2 1 0 0 2
Expert 5 3 1 1 1 1 0 3

Table 4.1: Heuristic evaluation raw score

4.2.3 Tasks given

1. Log into the system and choose a contact whose conversation you want to analyze.

2. Log into the system, choose to analyze messages and view the results and read the physically

abusive words aloud.

3. Go back to the home screen. Next, send the results to a friend. After completing, that return

to the home screen and view previous reports. After viewing, the reports exit out of the

system.

4.2.4 Results from the Evaluation

Most of the evaluators rated the system to have one major usability problem, and this was

related to visibility of system status and minimalist design. The users were not being informed about

where they were in the system through appropriate feedback. Specific terms used in the screens were

ambiguous, such as the “Home Screen.” The user was confused between the initial welcome screen

(Figure 4.1) and the menu option (Figure 4.3). During task 3 when the users were asked to share

the generated reports with a friend, they could not complete the task successfully as Fig. 4.2 and

Fig. 4.5 both have share with a friend option, which led to confusion. Fig.4.6, all the users had

difficulty understanding and following the instructions of clicking the image to find the words and

phrases related to individual forms of abuse. The pink colored labels were misleading to most users

as they thought it corresponded with the picture below. None of the users understood that the

images displayed were a clickable button and not a static image. Users all suggested that navigating

from Fig.4.6 to Fig. 4.3 which is the main control page is time-consuming as they have to use the

back button several times to reach there. Users also disliked the checkerboard pattern of text and

image present in Fig. 4.6 and reported that it was very distracting. Other minor usability concerns
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raised were related to the way the buttons were being displayed and the text-heavy labels on them.

Users reported concerns over the lack of a sign-up page for new users. When the user was using the

system for the first time, they should not have the option of sharing or viewing reports with a friend

as there are no previous reports. Overall, the users found the system interactive and beneficial for

detecting dating abuse.

4.3 User Interface Changes

We made two design changes to the user interface after our heuristic evaluation. The two

primary usability flaws were visibility of the system and minimalist design. We incorporated the

home and exit button options on all pages to allow the user to exit the application whenever they

wanted. The “home screen” was labeled as so, to avoid the confusion that the users expressed.

Finally, the wording of the labels was rewritten to give clear instructions without redundancy. This

user-interface design only tested the detection feature of the phone app, after analyzing the data

from the focus group study described in Chapter 3 we changed our design direction to create a phone

app with features which promotes dating abuse awareness and provides the user with resources that

they can use for help.
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Chapter 5

Using Machine Learning to Detect

Abuse
1

5.1 Use of Machine Learning in Abuse Detection

Supervised and unsupervised machine learning algorithms have been used to identify pat-

terns in texts. These techniques have wide-ranging uses from SPAM detection to identifying internet

sexual predators. McGhee et al. used machine learning to classify online posts from online forums as

sexual predation. They developed phrase matching and rule-based systems to identify appropriate

features for their supervised learning algorithms. Using a decision tree and an instance-based learn-

ing algorithm they achieved a sixty-eight percent (68%) accuracy [53]. Dinakar’s work on text-based

cyber bullying looked at classifying comments from YouTube videos involving sensitive topics related

to race, culture, sexuality, and intelligence. They performed two text classification experiments, first

training binary classifiers to label a topic as sensitive or not and then a multiclass classifier that

classifies a comment into a specific label. JRip (Repeated Incremental Pruning to Produce Error

reduction), Näıve Bayesian, J48 (decision tree based classifier based on the C4.5 method proposed

by Quinlan) and Support vector machine algorithms were used as classifiers. Their results showed

that binary classifiers trained on individual topics performed better than multiclass classifiers. The

rule-based JRip classifier gave the best accuracy of approximately eighty (80.20%) percent [27]. De

1This work has been published in [74]

33



Chowdhury et al., in their work in detecting depression from social media posts used Twitter as a

tool for measuring and predicting depression in individuals. They focused on creating a depression

lexicon from the Mental Health forum on Yahoo! Answers. A support vector machine was used to

predict the likelihood of depression and the classifier had a seventy (70%) percent accuracy rate [20].

In his work on analyzing domestic abuse on social media data, Schrading used Reddit and Twitter

data to show that a classifier can detect a reason for leaving or staying in an abusive relationship.

A perceptron algorithm, support vector machine and neural network classifiers were used. A ninety

percent (90%) accuracy rate was achieved with Linear Support Vector Machine [76] [75]. Our re-

search in the domain of digital dating abuse is closely related to the work mentioned above. The

researchers have successfully used machine-learning algorithms in detecting issues related to mental

health and interpersonal violence. As digital dating abuse falls under the domain of interpersonal

violence, we predicted that we could use similar machine learning methods to conduct our studies.

5.2 Text Messages and Sociolinguistic Patterns

The type of language that people use when they communicate with each other using

computer-mediated communication is usually very different from speech-based communication [84].

Including abbreviations, initializations and short forms are common characteristics of text-based

conversation. For example, laughter can be expressed in several ways, such as lol, lmao or ha-ha.

[84]. To use Natural Language Processing (NLP) tools, it is essential to understand the semantics

used and incorporate them into the training set.

5.3 Approach

Fig. 5.1. illustrates the research approach we took to address these aims.

5.4 Dataset Creation

Due to the lack of a publicly available dataset, we first had to create a dataset of abusive

text messages. In this section, we describe the methodology used to create that dataset.
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Figure 5.1: Flowchart illustrating research approach

5.4.1 Source of Abuse Scenarios

MTV’s website, athinline.org is a crowdsourced feedback and advice forum for distressed

young adults [62]. Teenagers and adolescents anonymously share stories, and when a story is posted,

everyone can read it and vote on the severity of the story. There are three levels - over the line

(severe), on the line (moderate to mild) and under the line (not very serious). The topics including

sexting, online harassment, social network bullying, dating abuse, physical abuse and sexual abuse.

We analyzed an anonymous corpus of 728 of these personal stories and specifically picked 70 stories

that were closely aligned to different scenarios of dating abuse. These stories were then used as a

starting point to create scenarios to motivate the creation of abusive text messages.

5.4.2 Participants and Procedures

We recruited forty-four (44) participants from Clemson University. Each participant was

given a demographic questionnaire, followed by a dating abuse awareness questionnaire to establish

a knowledge level baseline. The demographic questionnaire asked about their age, gender, ethnicity,

educational background and relationship status. The demographic distribution is shown below in

Table 5.1. Participants were then allotted five stories each from the abuse scenarios and asked to

create abusive text messages by pretending to be the abusive romantic partner. This activity was

conducted using Google forms, and the participants typed out their responses. They were also given

instructions to create responses as if they were texting someone so that we could capture unique
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Figure 5.2: Abuse scenario story and resulting text message

linguistic patterns and short forms that young adults use while texting. A total of 170 responses

were collected. Fig. 5.2. is an example of an abuse scenario story and the resulting text message

created by a participant. Some of these responses contained multiple text messages, which were split

into individual units of 182 text messages. Before the participants created their messages, they were

verbally instructed (during the informed consent stage) on what DDA is and were shown examples

of abusive text messages. They were also given instructions about including general characteristics

such as acronyms, spelling and grammatical errors. The researchers then reviewed the messages

for their relevance before giving them to the domain experts for validation. Although some of our

participants reported being single, we believe the language structure and word usage would be similar

to that of abusers in the same age group.

5.5 Dataset Validation

5.5.1 Annotators

The dataset of text messages created in Section 5.4. was given to a group of four annotators.

The criteria for choosing these annotators were that they either were victims of abusive relationships,

family members of victims of interpersonal violence, or they were researchers in this domain.
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Age
Mean = 20.5 yrs.

Standard Deviation =2.089

Gender
Male = 87.36 %
Female = 12.3%

Ethnicity

Caucasian = 70.45%
African American = 20.45%

Asian/ Pacific Islander = 6.48%
Hispanic = 2.62%

Education

Bachelor’s Degree = 15.91%
Freshman= 15.91%

High school graduate = 15.91%
Junior =2.27%

Master’s Degree = 2.27%
Senior = 11.36%

Some college credit = 18.18%
Sophomore = 18.18%

Relationship Status
Single = 23.26%

In a relationship= 76.74%

Table 5.1: Illustrates the demographic data for all the participants

5.5.2 Procedure

The annotators were each given 182 text messages. The annotators then labeled each text

message as either abusive or non-abusive. If a message was judged abusive, they were then asked

to rate their confidence concerning the type of abuse or abuses it represented on a scale of 1 to 5.

A one indicating that the abusive text entirely did not belong to that category and five indicating

that the abusive text unquestionably belonged to the category. The annotators were also provided

with standard definitions of each abuse categories. The definitions of the categories of dating abuse

provided to the annotators were as follows [4]:

• Physical abuse - Occurs when a partner threatens to pinch, hit, shove, slap, punch, or kick a

partner.

• Physiological /Emotional abuse - Threatening a partner or harming his or her sense of self-

worth. Examples include name-calling, shaming, bullying, embarrassing on purpose, or keeping

him/her away from friends and family.

• Sexual abuse - Forcing a partner to engage in a sex act when he or she does not or cannot

consent. Can be physical or non-physical, like threatening to spread rumors if the partner

refuses to have sex.
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• Stalking - Refers to a pattern of harassing or threatening tactics that are unwanted and cause

fear in the victim.

5.5.3 Calculating Inter-rater Agreement

After the annotators labeled the text messages as abusive or non-abusive and classified

abusive text messages into different categories of abuse, we calculated joint agreement between the

annotators using Light’s Kappa, an inter-rater agreement statistical consistency measure (5.1).

K =
P0 − Pe

1 − Pe

(5.1)

Light’s kappa [49] is designed for studies with three or more annotators. Light suggests

computing agreement for all coder pairs then using the arithmetic mean of these values to provide an

overall index of agreement. The factor 1 − Pe gives the degree of agreement that is attainable above

chance, and P0 − Pe gives the degree of agreement actually achieved above chance. The statistic

takes values between 0 and 1, where a value of 1 means complete agreement. For this dissertation,

we only report the agreement between annotators for the task of labeling sentences as abusive or

non-abusive. The overall agreement between annotators when annotating the text messages for our

study was 0.58, which in this context is considered as a moderate overall agreement [35][46]. For

our final dataset of text messages, we chose 157 (of 182) text messages that were labeled as abusive

by at least three out of four annotators. In four cases where there was a tie between annotators as

to whether or not the text was abusive the researchers broke the tie by labeling the text as abusive.

The final dataset contains 161 abusive text messages. As this app addresses a highly sensitive issue

such as inter-personal violence the accuracy of the classifier is essential to help the user trust this

app and use it to prevent escalation of violence. Thus training the machine learning algorithm with

a diverse set of abusive and non-abusive training data was essential. The next chapter (Chapter 6)

discusses the three different datasets we use for training and testing purposes and evaluation metrics

and results which prompted us to choose one classifier over others.
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Chapter 6

Classifiers and Performance

Evaluation

1 To train a machine-learning classifier to recognize abusive versus non-abusive text messages

we created a balanced dataset of abusive and non-abusive text messages. Two different corpora were

used to collect non-abusive text messages: the SMS Spam Corpus v.0.1 [22] and the Mobile Forensics

Text Message Corpus [61]. To validate consistent classifier performance we created three different

datasets for training and testing purposes. The text message combinations were as follows:

• SPAM - One hundred and sixty-one (161) abusive messages with one hundred and forty (140)

non-abusive text messages from the SPAM corpus

• Critical - One hundred and sixty-one (161) abusive messages with one hundred and forty (140)

non-abusive text messages from the Mobile Forensics Text Message Corpus

• Mixed - One hundred and sixty-one (161) abusive messages with seventy (70) non-abusive text

messages from the Mobile Forensics Text Message Corpus and seventy (70) non-abusive text

messages from the SPAM corpus.

We then divided each of these datasets (301 text messages) into a training set ( 70%) and a testing

set ( 30%). To derive features that could be used by a classifier we used the python-based Natural

1This section has been published in [74]
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Language Toolkit to clean, tokenize and lemmatize the text messages and then used two separate

feature extraction methods [66].

6.1 Cleaning Text

We removed extra spaces, carriage returns and HTML tags from the text messages.

6.2 Tokenization and Lemmatization

Sentences can be decomposed into words, multi-word expression, contractions (e.g., couldn’t),

non-alphabetic characters such as symbols and emoticons. An automated process of breaking up

strings into word-like units is called tokenization. Another common step when using natural lan-

guage data is to lemmatize all tokens. The process of lemmatization converts tokens to their base

dictionary form. In doing so, dimensionality reduction is achieved, which can help to improve ap-

plication performance [9]. We used both tokenization and lemmatization to break up our training

sentences into individual units.

6.3 Feature Extraction

We used two different feature extraction methods, countvectorizer and tf-idf [69]. Countvec-

torizer converts a collection of text documents to a matrix of token counts. Tf-idf is a common term

weighting scheme in information retrieval, often used in document classification, that is computed

as term-frequency times inverse document-frequency. Using tf-idf instead of the raw frequencies of

occurrence of a token in a given document scales down the impact of tokens that occur very fre-

quently in a given dataset and that are hence empirically less informative than features that occur

in a small fraction of the training corpus.

6.4 Classifiers and n-gram input

The three different classifiers used were: Linear Support Vector Classification with a linear

kernel and penalty parameter C= 0.1 of the error term Multinomial Näıve Bayesian Classifier Deci-

sion Tree All three classifiers were implemented using Python’s sci-kit learn libraries [29]. We then
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tested each classifier with different input variations of unigrams, bigrams, and trigrams. In natural

language processing (NLP) an n-gram is composed of n words that appear beside each other. For

example, if the input sentence is “where are you now”. Unigrams would be ‘where’, ‘are’, ‘you’, and

‘now’. Bigrams would be ‘where are’, ‘are you’, and ‘you now’. Trigrams would be ‘where you are’

and ‘are you now’ [52].

6.5 Evaluation

To evaluate the performance of the classifiers we used six different performance metrics:

Accuracy, Confusion Matrix, Receiver Operating Characteristic Curve( ROC-AUC score and ROC

– curveplot) , Precision, Recall and F1 score. All these performance metrics were implemented

python’s sklearn metrics package [66].

6.6 Accuracy

We calculated the accuracy for each of the three classifiers and compared it to combinations

of unigram, bigram and trigram inputs and two separate feature extraction methods. If y′i is the

predicted value of the i-th sample and yi is the corresponding true value, then the fraction of correct

predictions over n-samples is defined as the accuracy score (6.1). Accuracy scores range between 0

and 1.

accuracy(y, y′) =
1

nsamples

nsamples−1∑
i=0

1(y′i = yi) (6.1)

5-fold cross-validation [43] statistical analysis was conducted on the training set, and average

accuracy for every fold was calculated. After the classifiers were trained, we used an unseen test

set to evaluate performance. Accuracy was calculated for every unseen test set across all the three

datasets (Critical, SPAM and Mixed). Figure 6. 1 ( 5-fold cross validation) and Figure 6.2 (unseen

testset) illustrates the accuracy results for each of the classifiers across all the datasets .
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Figure 6.1: Illustrates average classifier accuracy for 5-fold cross validation of all the different clas-
sifiers, n-gram input and feature extractors across three different datasets
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Figure 6.2: Illustrates classifier accuracy for unseen test set for all the different classifiers, n-gram
input and feature extractors across three different datasets

Figure 6.3: Illustrates the structure of a confusion matrix

43



6.7 Confusion matrix

We also used a confusion matrix to evaluate the accuracy of classification. A confusion

matrix is a 2 by 2 array that reports the number of false positives, false negatives, true positives

and true negatives produced by the classifier. This allows for a more detailed analysis than just the

number of correct classifications. Fig. 6.3. Illustrates a confusion matrix. For our study, abusive

text messages are considered positive, and non-abusive text messages are considered negative.

• A true positive (tp) was when an abusive sentence is classified as abusive.

• A true negative (tn) was when a non-abusive sentence is classified as non-abusive.

• A false positive (fp) was when a non-abusive sentence is classified as abusive.

• A false negative (fn) was when an abusive sentence is classified as non-abusive.

In a binary decision problem, a classifier labels examples as either positive or negative. The

decision made by the classifier can be represented in a structure known as a confusion matrix or

contingency table. Figure 6.4 shows the results of the confusion matrix in the format [TP, FN] [FP,

TN].

6.7.1 Precision and Recall

A false positive rate (FPR) is defined as the fraction of negative examples that are mis-

classified as positive. The true positive rate (TPR) measures the fraction of positive examples are

labeled correctly. Recall is equivalent to true positive rate and precision measures the fraction of

examples classified as positive that are truly positive [80].

Precision =
tp

tp + fp
(6.2)

Recall =
tp

tp + fn
(6.3)

For both Equations 6.2 and 6.3 as shown above tp is true positive, fp is false positive, and

tn is true negative. Figure 6.6 and 6.7 illustrates the values of precision and recall.
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Figure 6.4: Confusion matrix results of the unseen test set for all the different classifiers, n-gram
input and feature extractors across three different datasets. The following notations indicate: three
classifiers (LVC – Linear Support Vector Classifier, DT- Decision Tree, MNB – Multinomial Näıve
Bayesian Classifier) , two feature extractor conditions ( countvectorizer and tf-idf) and six input
combinations ( Uni – unigrams, Bi – bigrams, Tri- trigrams, U,B,T – unigrams, bigrams and trigrams,
U, B – unigrams and bigrams, B,T – bigrams and trigrams). The format of the confusion matrix is
[true positive, false negative] [false positive, true negative].
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6.7.2 F1 Score

The third evaluation metric we used was the F1 score (also F-score or F-measure) which

is another measure of a test’s accuracy (Fig.6.5) [90]. F1 score considers both the precision p and

the recall r of the test to compute the score: p is the number of correct positive results divided by

the number of all positive results returned by the classifier, and r is the number of correct positive

results divided by the number of all relevant samples (all samples that should have been identified

as positive). The F1 score is the harmonic average of the precision and recall, on a scale of 0-1, a

score of 1 is considered the best F1-score The formula for the F1 score is 6.4:

F1Score =
2

1
recall + 1

precision

(6.4)

6.7.3 Area Under the Receiver Operating Characteristic Curve (ROC –

AUC score and plot)

The final metric used was the ROC AUC Score (Fig. 6.8). A Receiver Operating Character-

istic Curve (ROC) “is a plot of the true positive rate against the false positive rate for the different

possible thresholds during a test. It is created by plotting the fraction of true positives out of the

positives (TPR = true positive rate) vs. the fraction of false positives out of the negatives (FPR =

false positive rate), at various threshold settings. TPR is also known as sensitivity, and FPR is one

minus the specificity or true negative rate.” On a scale of 0-1, a score of 1 is considered an excellent

ROC-AUC score [39]. We also used the roc-curve function in sklearn, to plot the ROC curves and

they are illustrated in Appendix A

6.8 Results

Evaluations were carried out on all three dataset combinations, to establish which classifier

consistently performed better compared to the others. Fig 6.2. illustrates the results of average

accuracy across all five folds in the 5-fold cross-validation tests. For all three datasets, the com-

bination of a linear support vector machine, tf-idf, and unigrams performed better than the other

classifier, feature extractor, and n-gram input combination. The accuracy values are 0.943, 0.92 and

0.8863 respectively. Amongst the unseen test sets, the best accuracy result achieved was ninety-one
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Figure 6.5: Illustrates the F1 Score for all the different classifiers, n-gram input and feature ex-
tractors across three different datasets.In the Figures 3a,3b and 4 the following notations indicate
three classifiers (LVC – Linear Support Vector Classifier, DT- Decision Tree, MNB – Multinomial
Näıve Bayesian Classifier) , two feature extractor conditions ( countvectorizer and tf-idf) and six
input combinations ( Uni – unigrams, Bi – bigrams, Tri- trigrams, U,B,T – unigrams, bigrams and
trigrams, U, B – unigrams and bigrams, B,T – bigrams and trigrams
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Figure 6.6: Illustrates the Precision for all the different classifiers, n-gram input and feature ex-
tractors across three different datasets. In the Figures 3a,3b and 4 the following notations indicate
three classifiers (LVC – Linear Support Vector Classifier, DT- Decision Tree, MNB – Multinomial
Näıve Bayesian Classifier) , two feature extractor conditions ( countvectorizer and tf-idf) and six
input combinations ( Uni – unigrams, Bi – bigrams, Tri- trigrams, U,B,T – unigrams, bigrams and
trigrams, U, B – unigrams and bigrams, B,T – bigrams and trigrams).
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Figure 6.7: Illustrates the Recall for all the different classifiers, n-gram input and feature extractors
across three different datasets.In the Figures 3a,3b and 4 the following notations indicate three
classifiers (LVC – Linear Support Vector Classifier, DT- Decision Tree, MNB – Multinomial Näıve
Bayesian Classifier) , two feature extractor conditions ( countvectorizer and tf-idf) and six input
combinations ( Uni – unigrams, Bi – bigrams, Tri- trigrams, U,B,T – unigrams, bigrams and trigrams,
U, B – unigrams and bigrams, B,T – bigrams and trigrams).
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Figure 6.8: Illustrates the ROC AUC Score for all the different classifiers, n-gram input and
feature extractors across three different datasets. In the figure the following notations indicate :
three classifiers (LVC – Linear Support Vector Classifier, DT- Decision Tree, MNB – Multinomial
Näıve Bayesian Classifier) , two feature extractor conditions ( countvectorizer and tf-idf) and six
input combinations ( Uni – unigrams, Bi – bigrams, Tri- trigrams, U,B,T – unigrams, bigrams and
trigrams, U, B – unigrams and bigrams, B,T – bigrams and trigrams).
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percent (0.9166) using unigrams with tf-idf feature extractor and a linear support vector classifier.

This result is similar to the accuracy achieved by the researchers whose work was discussed in the

related works section. Fig 6.1. illustrates the accuracy values of all the different classifiers, n-gram

input and feature extracts across three different datasets. An ideal configuration for a confusion

matrix is when the number of true positive and true negatives conforms to the actual input. For our

data we would like to see numbers approximating forty-eight (48) true positives and forty (40) true

negatives, indicating that both abusive and non-abusive text messages have been labeled correctly.

The best balance of correctly identifying both true positives and true negatives was obtained by

using unigrams with the tf-idf feature extractor and a linear support vector classifier on the unseen

test sets. This was consistent for all three variations of the dataset, and these results support the

accuracy values described above. Table 6.2 illustrates the results from the confusion matrices for

all the datasets across all combinations. To further validate our results, we calculated the F1-score

and ROC AUC scores which have been described in Section 6.5.5 [75]. Fig 6.4. illustrates all the

F1 scores with the highest value of 0.94 being achieved with a Support Vector Machine, a unigram

input, and a tf-idf feature extractor when we used the SPAM dataset. In case of the other two

datasets (Critical and Mixed), the values for the combination mentioned above was 0.92 and 0.89

respectively. The ROC AUC score (Fig. 6.5) was 0.9895 in case of the SPAM dataset - a Support

Vector Machine, a unigram input, and a tf-idf feature extractor. The ROC AUC scores for the

other two datasets (Critical and Mixed) were 0.98 and 0.979 respectively for the same combination

of classifier, feature extractor and n-gram input (Support Vector Machine, unigram input, and tf-idf

feature extractor). [76]. Across the three datasets the evaluation metrics do not have identical

values, but for all of them, the combination of a linear support vector machine classifier, unigram

input, and tf-idf feature extractor outperform other classifiers. Although we have found no other

published studies in this area of research, we can compare our accuracy with studies carried out in

the broader domain related to interpersonal violence prevention and mental health. Across all three

datasets, the accuracy percentage has ranged from approximately eighty-eight to ninety-one percent

( 88-91%). This range of accuracy is closely aligned with the performance evaluation data collected

in the studies that are described in the related work section. The list below shows the the binary

classification results of the combination of a linear support vector machine classifier, unigram input,

and tf-idf feature extractor on the unseen test set. Each text message is followed by a ‘:’ and then

a label ‘a’ or ‘na’ which indicates abusive and non-abusive respectively.
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1. Why won’t you message me back? Call me or the tape goes on the internet. I have the tape

you whore. How do you think your family will like the tape bitch? :a

2. why won’t you respond to me?! Text me back bitch know you got these. Stop avoiding me!why

don’t you want to talk! I can’t :a

3. stand this I’m going to find you and then we’ll see how much talking you do :a

4. WTH.Bitch.Asshole :a

5. Do thisfor me.DO it.WTH :a

6. You are an annoying bitch and I cannot believe that I believed what you told me. :a

7. gimme ur fb pw right now you crazy girl. right now. who r u tslking to you? tell me ASAP :a

8. Who are you always texting? I know that you’re cheating? If I catch you don’t send me the

passwords, I’ll kill you and who ever you are tweeting. :a

9. Send me nudes or i will hit you. titsz please :a

10. If you do not send me nudes then I will slander your name :a

11. Im tired of your shit Dana. If you don’t get back with me then I will force you too :a

12. send me nudes.why u not answering me,if u dont fuckin send me nudes i’ll tell everyone how

much of a prude u are u little bitch :a

13. Im not wearing any rubber and you should understand where im coming from itll be better

for both of us. If you ever tell em that i have to wear a rubber to fuck ill tell everyone of FB

you have the clap. Youre completely fucking stupid if you think im wearing a condom just to

fuck you. :a

14. I always knew you were a whore. Now I have proof you’re a whore, and your dad will know

you’re a whore too....unless you think it’s about time we start having sex. That dude can kiss

you on the first night and I can’t fuck after months? :a

15. Sometimes I thought ””you know what, she’s a good girl, no need to pressure her””, but now

I know that is the furthest thing from the truth so it’s about time to feel some pressure. Sex

tonight or I show this picture to your dad and you know how much he likes me. :a
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16. Who do you think you are?! Cheating on me?! I’ve never met a girl with that kind of nerve.

To be honest, I need to feel like I’m special, so I say you come over tonight and we have sex

or else this secret kiss will be in your dad’s messages tomorrow. :a

17. Come on. Just one more time. You better come over or I will spread things about you that

you will not like. :a

18. hey what you doing? you talking to some other guy rn? wtf is wrong with you i love youcome

on babe dont be like that wtf this isnt cool im your bf, not those guys :a

19. wtf how could u betray me like that? quit looking at other dudees y arent you replying to

me? fuck u im sending those pics to your sororit ywtf is wrong with you why dont you wanna

come over? i know youre not sleeping im gonna send those pics :a

20. Hey I saw you hanging out with that girl the other day. What the hell!? You would rather

spend time with a girl instead of your man. you must be high cause your making stupid

choices. No lesbian is gonna treat me like a piece of s****t. :a

21. Hey girl send me some nude pics. Everyone is doing it I don’t see why you can’t. Nothing is

wrong with it it’s not like i’m gonna show it to someone else. Like what the hell i touch you

all the time and when i ask you to send me a freakin nude pic you start acting like a b***h.

I’m comin over there right now to set you straight. :a

22. Why the f***k are you calling me. You don’t need to know what I’m doing all the time, that

is information only I need to know.So shut the hell up and stop texting me you b***h. I don’t

have time for you s***t tonight. :a

23. I know you like me. Come one just let me have a feel. It’s ok you may not like it now but

trust me you will. No one else is :a

24. gonna give you the same amount of attention I do so just let me do what I want. You think

your some prize?!? That some other guy is gonna treat you like princess. Well get over yourself

if you want to stay with me you better start following my rules. :a

25. Girl what the hell happened to you. You looked fine before but now what the hell. Your so

freaking fat. Have you looked in a mirror? Oh i’m sorry i shouldn’t have asked because you
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obviously haven’t. I bet the other guys are thankful that i saved from you. Man your lucky

IM sticking this out to see where this goes. :a

26. ay shawty you paid the bill yet.I know you got money. Go ahead and pay the bill.You wasting

my damn time. Wait til I get home :a

27. Where the heck are you? dont be lying to me. you dont ever tell me anywhere you aregoing.

I am going to start following you around if you dont tell me. :a

28. Youre so fucking stupid the ass was OK at best but im gonna show all my homies. Youre

a pretty decent booty call, but making me wait was a complete pain in the ass so im gonna

show the whole school how good you are. I cant believe you really thought that after i fucked

i would stay youre so stupid, im showing everyone the video. Dating you was a complete waist

of time so i hope you enjoy becoming a porn star. :a

29. i dont want to see you talking to other guys”.i should be the only one you want to talk to”.you

have no reason to be seeing people over than me :a

30. Hey whats up. Okay don’t text back. for real what are you doing. I stg if you dont text me

back im gonna freak out. Im coming over. :a

31. give me your facebook password now.I’m not gonna stop annoying you until you give me your

password.if you don’t give it to me right now i am gonna hack your facebook :a

32. What you up to babe.Babe?Where are you right now?Probably having fun with guys. Alright

thats cool im going dt tonight and what happens with other girls happens :a

33. Send me nudes or i will hit you. titsz please :a

34. Cunt.Bitch.Slut :a

35. lets hook up tonight. cmon. i know you want to.you better, or else. :a

36. Bitch didnt I tell yo ass I was wit the boys. Stop texting my muthafuckin phone I will be there

when I get there. Dont let me have to tell you again or imma beat yo ass. :a

37. Wtf you need to know for. Ill be there when I get there. You asking me questions aint going

to get me there no faster so leave me tf alone before I break for fuckin neck. :a
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38. Gtfoh I told you where I was you need to chill before I slap yo ass again. sick of you textin

my phone with this bullshit. Dont let me have to repeat myself. :a

39. WTH.Slut.Whore :na

40. you dont know any better than to just fool around. you are dumb and dont get it :a

41. Why are you acting like a scared little bitch? It’s not like I haven’t seen it before. I’ll just tell

everyone I’ve seen you naked anyways, so you might as well send it. :a

42. why I gotta use a condom.If you loved me then you wouldnt make me wear one If I have to

wear a condom I’m gonna tell everybody that youre a dub bitch that has a chlamydia and you

want me to wear one because you want to keep fucking :a

43. and you dont want me to find out :a

44. I want to hold you all the time. Do you miss me? I want to be with you all the time.Text me

back NOW. I NEED TO HEAR FROM YOU Please call me. I need to know how you feel.

Let me look into your eyes :a

45. hey baby I saw you winking at me in the bar, why don’t we get out of her so I can make you

smile I want you and I’m sure you want me to, give me your address so we can want each other

together I’m bet you miss my touch, why don’t you come over here so I can give you what you

need :a

46. Hey baby, wheres your sexy ass been? I know you want this dick girl dont try to be hard to

get. I saw that ass today in your leggings;) you know i wanna fuck. Bitch stop playing and

come get this dick. :a

47. What are you doing? WTH Bitch :a

48. You wanna see something *eggplant emojiSend me a pic tho. Nah a different type of pic. I

already know what your face looks like.Why you taking so long to text back. You trying to be

with somebody else other than ya boy :a

49. Please don’t text me anymore. I have nothing else to say. :na

50. Okay name ur price as long as its legal! Wen can I pick them up? Y u ave x ams xx :na
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51. I’m still looking for a car to buy. And have not gone 4the driving test yet. :na

52. As per your request ’Melle Melle (Oru Minnaminunginte Nurungu Vettam)’ has been set as

your callertune for all Callers. Press *9 to copy your friends Callertune :na

53. wow. You’re right! I didn’t mean to do that. I guess once i gave up on boston men and

changed my search location to nyc, something changed. Cuz on my signin page it still says

boston. :a

54. Umma my life and vava umma love you lot dear :na

55. Thanks a lot for your wishes on my birthday. Thanks you for making my birthday truly

memorable. :na

56. Aight, I’ll hit you up when I get some cash :na

57. How would my ip address test that considering my computer isn’t a minecraft server :na

58. I know! Grumpy old people. My mom was like you better not be lying. Then again I am

always the one to play jokes... :a

59. Dont worry. I guess he’s busy. :na

60. What is the plural of the noun research? :a

61. Going for dinner.msg you after. :na

62. I’m ok wif it cos i like 2 try new things. But i scared u dun like mah. Cos u said not too loud.

:na

63. GENT! We are trying to contact you. Last weekends draw shows that you won a -1000 prize

GUARANTEED. Call 09064012160. Claim Code K52. Valid 12hrs only. 150ppm :na

64. Wa, ur openin sentence very formal... Anyway, i’m fine too, juz tt i’m eatin too much n puttin

on weight...Haha... So anythin special happened? :na

65. As I entered my cabin my PA said, ” Happy B’day Boss !!”. I felt special. She askd me 4

lunch. After lunch she invited me to her apartment. We went there. :na

66. You are a winner U have been specially selected 2 receive -1000 or a 4* holiday (flights inc)

speak to a live operator 2 claim 0871277810910p/min (18+) :na
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67. Goodo! Yes we must speak friday - egg-potato ratio for tortilla needed! :na

68. Hmm...my uncle just informed me that he’s paying the school directly. So pls buy food. :na

69. PRIVATE! Your 2004 Account Statement for 07742676969 shows 786 unredeemed Bonus

Points. To claim call 08719180248 Identifier Code: 45239 Expires :na

70. URGENT! Your Mobile No. was awarded -2000 Bonus Caller Prize on 5/9/03 This is our final

try to contact U! Call from Landline 09064019788 BOX42WR29C, 150PPM :na

71. here is my new address -apples& pairs& all that malarky :na

72. Todays Voda numbers ending 7548 are selected to receive a $350 award. If you have a match

please call 08712300220 quoting claim code 4041 standard rates app :na

73. I am going to sao mu todayẆill be done only at 12 : na

74. predict wat time ’ll finish buying? :na

75. Good stuff, will do. :na

76. Just so that you know,yetunde hasn’t sent money yet. I just sent her a text not to bother

sending. So its over, you dont have to involve yourself in anything. I shouldn’t have imposed

anything on you in the first place so for that, i apologise. :a

77. Are you there in room. :na

78. HEY GIRL. HOW R U? HOPE U R WELL ME AN DEL R BAK! AGAIN LONG TIME NO

C! GIVE ME A CALL SUM TIME FROM LUCYxx :na

79. K..k:)how much does it cost? :na

80. I’m home. :na

81. Dear, will call Tmorrow.pls accomodate. :na

82. First answer my question. :na

83. I only haf msn. It’s yijue@hotmail.com :na

84. He is there. You call and meet him :na
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85. Nah I don’t think he goes to usf he lives around here though :na

86. Did you hear about the new Divorce Barbie It comes with all of Kenś stuff: na

87. SMS. ac Sptv: The New Jersey Devils and the Detroit Red Wings play Ice Hockey. Correct

or Incorrect? End? Reply END SPTV :na

88. Congrats! 1 year special cinema pass for 2 is yours. call 09061209465 now! C Suprman V,

Matrix3, StarWars3, etc all 4 FREE! bx420-ip4-5we. 150pm. Dont miss out! :na

6.9 Implications on the design of the phone application

In the book titled ‘In Love and in Danger,’ Levy describes ways to identify relationship abuse.

He describes insecurities that abuse victims have, for example, “I thought things would change” and

“I thought maybe it is me that is the problem.” Both of these phrases show the self-blaming nature of

some victims and speak to the fact that it is challenging to detect dating abuse if you are in an abusive

relationship. The purpose of our machine learning algorithm is to identify abusive text messages to

help users get an unbiased review of their digital communication [48]. Throughout the chapter, we

describe the process of creating and validating an initial dataset, training different machine learning

algorithms and evaluating the performance of these classifiers on three different variations of the

unseen dataset. This forms the backbone for the phone application. As this application is targeted

towards college-aged women, the training set was created to represent the socio-linguistic patterns

of this demographic. As mentioned earlier, the text-based conversation usually involves spelling and

grammatical errors and abbreviations. During the dataset creation process, we asked the participants

to simulate these patterns as much as possible to get an accurate representation. A representative

training set and a classifier with high accuracy will directly influence the effectiveness of this app

and the general willingness to use this application. Six different evaluation parameters were used

(Accuracy, Confusion matrix, F1-score and ROC AUC Score, Precision and Recall) to determine

which classifier labels both abusive and non-abusive text messages accurately. The combination of

linear support vector machine, unigram input, and tf-idf feature extractor had the best accuracy

(91.6 %) with the unseen SPAM test dataset. The results of the confusion matrix illustrated that

some of the classifiers performed well when labeling either abusive or non-abusive text messages,

but we chose the most balanced classifier, i.e., the one that labeled non-abusive and abusive texts
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equally well. The combination of linear support vector machine, unigram input, and tf-idf labeled

both these categories with balanced accuracy (Figure 6.4). This was consistent across all three

datasets. For the F1-score, the same classifier and input combination outperformed other classifiers.

For the design of this application, we are focusing on the balance of the classifier between abusive and

non-abusive text messages. The goal is to avoid raising unnecessary false positive or false negatives

while labeling the texts as accurately as possible. The results from the F1 score and ROC AUC

score further support our choice of a balanced classifier, feature extractor, and n-gram input. Every

relationship is unique, and people communicate differently. From the design standpoint, a 100%

accuracy is not necessary. The users will be able to see the text messages that are labeled as abusive

or non-abusive. Since the user makes the final judgment of a text being abusive or non-abusive,

we hypothesize that some percentage of misclassification will not invalidate the usefulness of the

application and deter users from trusting it.

6.10 Discussion

The final goal of this dissertation is to build a phone application to detect digital dating

abuse from text messages. The work discussed in Chapter 5 is intended to support the backend of

this application. The results of the annotation study and inter-rater agreement calculations using

Light’s Kappa indicated a moderate level of overall agreement among annotators when labeling

the text messages as abusive and non-abusive. We can conclude that the dataset created after the

labeling process can be considered as an abusive text message dataset. In the classification evaluation

phase, we explored a combination of classifiers and feature extractors to identify the best possible

combination that will give us the most accurate results. We conducted a 5-fold cross-validation

and used a testing set to evaluate the accuracy of the classifiers. Although we have found no other

published studies in this area of research, we are able to compare our accuracy with studies carried

out in the broader domain related to interpersonal violence prevention and mental health. The

accuracy value of eighty-seven point five percent (87.5%) is closely aligned with the performance

evaluation data collected in the studies that were described in Section 5.1. The following chapter

describes the prototype phone app with a working backend machine learning algorithm which is a

combination of a linear support vector machine classifier, unigram input, and tf-idf feature extractor

on the unseen test set.
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Chapter 7

SecondLook- Development of the

Prototype Android Phone

Application

7.1 SecondLook: Features

Figure 7.1 shows above the phone app (SecondLook) consist of three features and several

sub-features which are listed below.

• A. Understanding Digital Dating Abuse

• a. Healthy Relationships – The relationship spectrum

• b. FAQs

• c. Healthy Relationship Quiz

• B. Detection: Analyze Text Messages

• C. List of resources for help

• a. The results of the focus group study (as described in Chapter 3) influenced us to answer

three questions a potential user has. Firstly, what is dating digital dating abuse and are there
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Figure 7.1: Illustrates the home screen
of the phone app, which shows the three
features (Feature A: Understanding Dig-
ital Dating Abuse, Feature B: Detection:
Analyze Text Messages and Feature C:
Resources for Help)

Figure 7.2: Illustrates the menu inside
Feature A.

any data to prove this is a significant health concern, secondly how do I [user] know I [user]

am in an abusive relationship and finally what are the resources that can be used for helping

me [user] or others.

7.2 Feature A: Understanding Digital Dating Abuse

The content used to create Feature A has been developed and made publicly available by

Loveisrespect which is a project of the National Domestic Violence Hotline funded through Admin-

istration on Children, Youth and Families, Family and Youth Services Bureau, U.S. Department of

Health and Human Services [50]. These resources have not been modified; they are only presented
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Figure 7.3: Shows the page with FAQs
related to Dating Abuse Statistics.

Figure 7.4: Iillustrates The relationship
spectrum screen in the app.

to the user in a mobile-friendly environment.

7.2.1 Healthy Relationships - The relationship spectrum

This feature is designed to help the user understand characteristics of healthy vs. unhealthy

vs. abusive relationships. It provides scenarios for each kind of relationship and also words such as

“Breakdown in communication” for unhealthy, “Equality” for a healthy relationship and “Manipu-

lation” for abusive relationships to help users understand the relationship spectrum clearly. Figure

7.4 shows the page on the phone app [51].

7.2.2 Dating Abuse Statistics: FAQs

This feature contains a list of statistics related to Dating Abuse which has been collected and

assimilated by various national and local organizations such as the Department of Justice, Bureau of
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Figure 7.5: Illustrates the Dating Rela-
tionship Quiz as displayed on the app
with each question and corresponding
answer radio buttons.

Figure 7.6: Shows three questions that
have been answered and a resulting
score.

Justice Statistics and Centers for Disease Control and Prevention Refworks:899 . This aggregation

of information lets the user know how rampant dating abuse is especially amongst girls and young

women between the ages of 16 and 24 [19], school and college students, long-lasting effects of dating

abuse and the lack of awareness. This feature is crucial for the phone app as it shows the relevance

of dating abuse especially amongst young adults and college students (Figure 7.3).

7.2.3 Healthy Relationship Quiz

The Healthy Relationship Quiz feature is a twenty six-question yes and no questionnaire

that is developed by Loveisrespect [5].This questionnaire is part of their resource category, which is

publicly available for users online or offline. This questionnaire was modified to make it accessible

for mobile phone users, and the users are provided with a score (Figure 7.5 and Figure 7.6). The
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scoring criteria, which is part of the resource package provided is adapted into the app’s program.

The user is also provided the scoring rubric, which allows them to see which category they fall under

(Figure 7.7.). The scoring categories are zero, one-two points, three-four points and five points and

above. Each category describes a particular type of relationship in conjunction with the relationship

spectrum that was described in the feature “Healthy Relationships - The relationship spectrum.”

7.3 Feature B- Detecting abusive text messages

The detection component of the phone application analyzes text messages that are ex-

changed between the user and their respective partner. For this application SMS (short messaging

service), which is a text messaging service component of most mobile-device systems, is used to de-

tect abusive text messages. SMS text messages were chosen as the input for several reasons: firstly,

SMS texting is a widely used medium of communication all around the world especially amongst

people in the United States. Although Internet-messaging services are getting increasingly popular,

one of the reasons SMS texting is still popular as the top three American carriers have offered free

SMS with almost all phone bundles since 2010, a stark contrast to Europe where SMS costs have

been on the higher end [41]. In a study conducted by Pew all teens who spend time communicating

with friends via different communication mediums. Text messaging, at 55%, is the most popular

medium of communication [47]. Secondly, as digital dating abuse is a form of intimate partner

violence, it is most unlikely that the perpetrator will use public social media posts to intimidate the

victim. The user selects the text messages they want to be analyzed by choosing the contact number.

They are provided three options; they can type the phone number associated with the contact or

the contact name or select contact from the phone’s contact list. Figures 7.8, 7.9 show the screens

allowing the user to select the contact. The app then uses the selected contact’s phone number to

access all the text messages that were sent from this number to the user. These text messages are

then uploaded to a server which uses a python based machine learning algorithm to classify the text

messages as abusive or non-abusive. The processed data is then sent back to the phone app; Figure

7.10 illustrates the results page. Description related to the output is present at the top of the page

to let the users understand the results better. Beside each text message, the corresponding label is

displayed. A resources button is also located below the list of text messages, for quick access.
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Figure 7.7: shows the screen which dis-
plays the user’s score along with the
rubric description.

Figure 7.8: Shows the screens of the de-
tection feature and different ways the
user can select a contact(type the contact
name to select from the phone contacts

7.4 FEATURE C Resource

The feature called resource (Fig. 7.11) contains a list of resources, such as contact informa-

tion to the National Help Line, Counseling, and Psychological Services on campus, nearest support

shelter, links to online resources and text message support. This aggregate of resources is provided

to the user, to allow them to choose depending on what they think the severity of the situation is.

7.5 Software Requirements And Architecture

Android Studio 2.3.1 [26] was used to develop this phone app, after the initial user-interface

being designed using a prototype designer called Balsamiq [83] . Both Features A (Understanding

Digital Dating Abuse) and Feature C (Resources) are programmed using the Android studio IDE
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Figure 7.9: Shows the screens of the de-
tection feature and different ways the
user can select a contact typing in the
number manually

Figure 7.10: shows the phone screen
witht analyzed text messages
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Figure 7.11: Illustrates the home screen
of the phone app, which shows the three
features (Feature A: Understanding Dig-
ital Dating Abuse, Feature B: Detection:
Analyze Text Messages and Feature C:
Resources for Help)

Figure 7.12: Illustrates the menu inside
Feature A.

and completed in stage 1 as shown in Figure 7.12. The content of Feature A is stored as pdf files on

a Google drive account and can be accessed by the user. The scores for the ‘Healthy Relationship

Quiz’ are calculated by an Android based Java program within stage 1 and the results are displayed

to the user. For Feature B both stage 2 and 3 are required for the detection application to work.

In stage 2 ( which is a python-based server called Flask) we host the machine learning algorithm

( combination of linear support vector machine with unigram and tf-idf ). The content uploaded

from Stage 1 is processed in Stage 2 and in Stage 3 the server communicates with the android app

to display the results of Stage 2 to the user on the phone screen as shown in Figure 7.11.
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7.5.1 Functionalities of Stage 2 and Stage 3.

On selection of the contact on the Detection screen, a method searches for the SMSes

from that particular contact in the Android SMS inbox. After it passes specific validation checks

(example: there are messages from that contact), a new file is created in the primary external storage

space of the Android device, and the SMSes are copied in understandable text format. Appropriate

messages are displayed on the Android device screen after each stage, providing feedback to the

user regarding the success or failure of each step (example: failure message if there is an exception

while writing to the file). With the help of HTTP Post request method, data from the Android

application is uploaded to the server. The HTTP connection is kept alive/open for the result data

which comes from the server to the Android application after the sent file which contained the SMSes

has been processed by the machine learning system in Python. The result data which comprises

of the individual messages with appropriate abusive or non-abusive tags are now displayed on the

device screen.
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Chapter 8

Evaluating The usability of the

Phone App and Understanding

User Trust and Effectiveness

8.1 Research Questions

The previous chapter describes the software development of the Android prototype. In this

chapter, we will be discussing the app’s level of usability as evaluated by qualitative and quantitative

usability metrics. The research questions we focused on for this study are:

1. Are the individual features of the app, i.e., Awareness, Detection, and Resources designed in

an intuitive manner that helps the user acquire the information they require?

2. Presented with a set of text messages which contains both abusive and non-abusive text mes-

sages

(a) What is the threshold of abusive text messages (in percentage or count) to be considered

in an abusive relationship?

(b) Does the way the data is visualized have an impact on user’s trust when it comes to using

the detection application?
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Gender
Female 77.78%
Male 22.22%

Ethnicity
Caucasian 27.78%

Asian 38.89%
African American 16.67%

Hispanic 5.56%
Other 11.11%

Education
Bachelor’s Degree 33.33%
Doctorate Degree 16.67%
Master’s Degree 50.00%
Marital Status
In a relationship 22.22%

Married 44.44%
Single 33.33%

Table 8.1: Demographic Information of all the participants

(c) Is there a change in the user’s perception of abusive vs. non-abusive in observing the

text messages classified by the machine learning algorithm (as displayed on the app) vs.

labeling the text messages themselves?

(d) What is the threshold of abusive text messages that encourages users to seek help and if

they do, which is their most preferred resources?

8.2 Study Design and participants

We designed a within-subject study where every participant would be interacting with the

phone app, complete a set of three tasks and provide qualitative and quantitative feedback. We

recruited eighteen (n=18) participants to complete this study in a lab experiment setting. The

participants were asked to complete a demographic questionnaire (Table 8.1), and a dating abuse

awareness questionnaire. To get an accurate sample of our target population (college-aged women),

we primarily recruited women from Clemson University and members of the community. Five out of

all the participants were considered as expert participants as all have more than a year of experience

conducting usability studies or doing user-experience research.
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Figure 8.1: Shows the participants responses to the questions a) Have you conducted academic
research in the field of interpersonal violence? (domestic violence, cyber bullying, dating abuse,
interpersonal violence) b) Would you want to use technology (for example - phone or web application)
to help you understand if you are being abused?
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Figure 8.2: Shows the participants responses to the questions a) Are you aware of unhealthy dating
relationships at your community or workplace? b) Have you or someone you know ever been in an
unhealthy dating relationship?
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8.3 Method

The participants were provided an Android phone that had the phone app installed, and the

list of tasks was provided; they completed each task and answered the questions before completing

the next one. While they completed the tasks, the participants were asked to verbally report about

the process/opinions about the results and feedback on the design. Task 1

1. Use the feature “Understanding Digital Dating Abuse.”

2. Click on the button “Understanding Digital Dating Abuse” and find out more about “Healthy

Relationships.”

3. Click on the button FAQs to know more about ‘digital dating abuse.’

4. Complete the dating quiz.

Task 2

1. Use the feature “Detection” to select any contact number and choose the analyze feature to

view the results.

Task 3

1. Select the “Resources” feature and observe the options provided to you and answer the follow-

ing questions.

8.3.1 Measures

To evaluate each task we used a modified Heuristic evaluation Metric [55, 56] , heuristic

evaluation is a method for finding the usability problems in a user interface design so that they can

be attended to as part of an iterative design process . Table 8.2 and Table 8.3 list the questions that

the users were asked after every task was completed and the severity rating scale.

Each task also included specific questions such as

1. After completing Task 1, the participants were asked to report the score they received after

completing the healthy relationship quiz, what the score translated to and one characteristic

of a healthy relationship. The rationale behind asking these three questions was to ascertain if

the user had completed the quiz, read through the “ Relationship Spectrum” and if they were

able to locate the rubric related to each score and understood it clearly.
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Visibility of System Status
Are you kept aware about the system progress with
appropriate feedback within reasonable time?
Match between System and Real World –
Does the system use concepts and language familiar to
the user rather than system-oriented terms.
Does the system use real-world conventions and display
information in a natural and logical order?
User control - Can the users do what they
want to do when they want to do?
Consistency and Standards -Do design elements such
as objects and actions have the same meaning or
effect in different situations? i.e.user knowledge required
to use the system by letting users
generalize from existing experience of the
system or other systems.
Recognition rather than recall –Are design elements such
as objects actions and
options visible? Is the user forced to remember information from
one part of a system to another?
Flexibility and efficiency of use – Are the task methods efficient and
can users customize frequent actions or use shortcuts?
Aesthetic and minimalist design. Do dialogues contain irrelevant
or rarely needed information?
Dialogues should not contain information that is
irrelevant or rarely needed.
Every extra unit of information in a dialogue competes with the
relevant units of information and diminishes
their relative visibility

Table 8.2: Modified heuristic evaluation metrics

2. After completing Task 2, the participants were asked

(a) Based on the results presented, would you consider yourself in an abusive dating relation-

ship?

(b) Have the results been presented in an effective manner such that you understand the

analysis of the text messages clearly?

(c) Would you trust the information about the abusive text messages that the app has pro-

vided to you?

These three questions were asked to answer Research Question 2a and 2b. We used a 5-point

Likert Scale (Strongly Agree, Somewhat Agree, Neither Agree or Disagree, Somewhat Disagree

and Strongly Disagree) for measuring their responses [8]. We also asked the participants to read
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0= I don’t agree that this is a usability problem at all
1 = Cosmetic problem only need not be fixed unless extra
time is available on the project
2 = Minor usability problem fixing this should be given
low priority
3 = Major usability problem important to fix, so should be
given high priority
4 = Usability catastrophe imperative to fix this before product
can be released

Table 8.3: The scale used was a five-point severity scale where:

the text messages (which were identical to the ones displayed to them on the app) (FIGURE

NUMBER) and based on the definition of digital dating abuse provided earlier, arrange the

text messages into three categories (Abusive, Non-Abusive Not-Sure). The last question was

asked to explore whether there is a change in the user’s perception of abusive vs. non-abusive

in observing the text messages classified by the machine learning algorithm (as displayed on

the app) vs. labeling the text messages themselves?

3. After completing Task 3, the participant was asked 1) Based on the text message analysis

that was shown to you in the detection feature, would you get help? They were also asked to

rank each resource in the order of preference (they were instructed that 1 would indicate their

primary choice).

8.4 Results

8.4.1 Task 1

Table 8.4, 8.5 and 8.6 illustrates the results from Task1, 2 and 3 respectively, the first column

contains all the questions, and every column is a participant’s response to the questions. For Task

1, for the first four participants, only the button Understanding Digital Dating Abuse, Detection

Analyze Text messages, and Resources for help (circled in the green in the image below in Figure

8.2 ) was clickable. All four participants clicked on the images above the buttons (circled in pink

in Figure 8.3) in the figure, and expressed their confusion regarding how they would proceed to the

next task. As this was a recurrent issue for the next screen too, for the next fourteen participants,

we modified the application in such a way, both the images and buttons were clickable and led to

the same page. This considerably decreased participant frustrations but some participants stressed
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Figure 8.3: Home Page
Figure 8.4: Quiz Page with
Score

Figure 8.5: Quiz Page with ru-
ubric

the point that this was a functional fix but a design redundancy.

When completing Task 1a and 1b, i.e., reading about Healthy Relationships and FAQs,

one of the participants (expert) said that the pdf documents we were using for the app, “was not

optimized for a mobile phone application.” Other participants were able to use the inbuilt feature

in the phone such as finder tap zooming and changing the screen orientation to read the material

intended. While completing Task 1c) the participants were able to complete the Healthy Relationship

Quiz, but after they saw the score, some participants were alarmed at the score they received, as it

only displayed the score and not the rubric (Figure 8.4). To view the rubric the participants had to

scroll down, but there was no visual cue that was guiding them to do that. One participant (expert)

mentioned, “There was no feedback to say that I completed the task or any end trail.”

8.4.2 Task 2

For Task 2, the HEM scores are listed in Table 8.5. The scores and verbal feedback received

from the first four participants (2 experts) all listed two primary issues with the user-interface design.

Firstly, the application was designed so that the Analyze button appears on the screen if the contact

is selected which would result in a tap on the select contact box. This event triggered the Analyze
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Figure 8.6: Illustrates the results from the Heuristic Evaluation Metric Questionnaire for Task 1

button to appear on the screen. But none of the first fours participants followed the workflow that

was designed. This lead to comments such as “ The select button did not change, how I am supposed

to know I am supposed to click on it,” “Where is the Analyze button? Do I need to type something

else?” and on average participants spent 40 seconds to find the button. To reduce user frustration

and confusion, we changed the design flow of the app such that the Analyze Button would appear

on the screen along with the “Select the Contact” button. For the next fourteen participants, we

tested the modified user-interface and received no negative feedback related to this particular issue.

For the first four participants, when the results from the classifier were displayed ( Figure

8.5 ) the message ( as circled in the pink box) was not displayed. The participants were unable to

understand what these results meant, and comments such as “ Where are the labels?” was made.

We modified the user-interface for the following fourteen participants, and the message as shown

in Figure 8.6 was included for the participants. Participants on an average spent 120 secs on this

page to read the text messages. Majority of the participants complained about the display not

being intuitive and suggested ways to make the text more distinguishable such as one participant

suggested “ Separate the text messages by color” and “Put it in a table with columns to make it

clear”, “It is difficult to read the text messages, make the text larger and color code the labels”.

The Heuristic Evaluation Metrics reveal the usability issue that the participants faced and suggested
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Figure 8.7: The pink boxes in-
dicate features that were added
after feedback was received from
four participants.

Figure 8.8: The pink boxes in-
dicate features that were added
after feedback was received from
four participants
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Figure 8.9: Illustrates the results from the Heuristic Evaluation Metric Questionnaire for Task 2

modifications.

8.4.3 Task 3

For Task 3, most participants found some major usability issues and the scores for the

questions “Can the users do what they want to do when they want to do” and “Flexibility and

efficiency of use” show us that. The major feedback we received was that they are unable to click on

the icons which displayed contact information or website links. These were static images with texts

and hence did not provide any visual or textual feedback. The participants found this aspect of the

interface limiting and hence not flexible for use. Some comments our expert participants mentioned

were “ I don’t want to type the phone number in if I want to call the helpline in. It should let me

call right away” and “ The link is not working [while clicking on a webpage link].”

Along with the heuristic evaluation metrics for Task 2, we asked the user three questions

which they answered on 5 point Likert Rating Scale. Figure 10 shows the responses to the three

questions 1) Based on the results presented would you consider yourself in an abusive dating rela-

tionship? - Twelve out of the eighteen participants (66.67 %) reported they strongly disagreed. For

the question 2) Have the results been presented in an effective manner such that you understand

the analysis of the text messages clearly? - 50% of the participants Strongly Agreed and 33.33%

somewhat agreed with that statement. For the question 3) Would you trust the information about
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Figure 8.10: Illustrates the results from the Heuristic Evaluation Metric Questionnaire for Task 3

Figure 8.11: Participants responses to the following questions
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Figure 8.12: User labelled correct abusive text messages

the abusive text messages that the app has provided to you? Eight of the participants Strongly

Agreed and Eight Somewhat Agreed (44.44% each).

The participants were also asked to label the list of text messages that they viewed on the

screen as abusive, non-abusive and don’t know. Figure 8.11 shows the results of the responses. They

list provided consisted of 7 abusive and 3 non-abusive text messages which had been validated by the

domain experts as mentioned in Chapter 5. Fourteen out of eighteen participants labeled the abusive

text messages correctly, and nine out of eighteen participants labeled both abusive and non-abusive

text messages correctly. The text message “One of my friends said he saw you walking on campus?

I thought you were busy all day today. Shouldn’t you be in the library? If you had all this free

time, you should’ve been it at my place” was the misclassified text message (either non-abusive or

I don’t know). For Task 3, the participants were asked the following questions “based on the text

message analysis that was shown to you in the detection feature, would you get help?” Eleven out

of eighteen participants strongly agreed to get help (Figure 8.12). The participants were also asked

to rank the list of resources in order of preference (1 being the most preferred), Table 1 shows the

ranks the participants assigned for every resource.
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Figure 8.13: Responses to questions: Based on the text message analysis that was shown to you in
the detection feature, would you get help?

Figure 8.14: Shows the rank each participant provided to the list of resources. 1 indicates the one
that would be used most frequently.
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From the results, Online resources such as (a link to loveisnotabuse.org) were the highest

rated resource, followed by chat support, counseling and psychological services, text message support

and women’s shelter. Participants also had the option to suggest an alternate resource; participants

suggested “Talking to friends, supported family members” and one participant suggested “Talk to

the sender about the tone of messages being sent to me” and ranked it as the primary resource.

8.5 Discussion

From the user-interface design standpoint, the results of both quantitative and qualitative

feedback revealed specific major usability issues. Such as for the “Healthy Relationship Quiz,” the

lack of a visual cue to inform the users about scrolling down to view the rubric, the labeled text

messages in the Detection page are not easily readable and need to be structured more intuitively.

Another major concern that all the participants expressed was the lack of a back button. While

designing the app, we designed it to use Android’s inbuilt features such as the back button on the

phone to be used as the default backward navigation feature. But the participants expressed their

concern about not being able to understand that navigation feature and suggested we build in a

navigation system within the app’s user interface such as including a shortcut on each screen which

allows the user’s flexibility to navigate the app without having to return to the home screen multiple

times. All these suggestions will be incorporated into future iterations of the phone app and will be

discussed in detail in the Future Work section.

The participant responses also concluded that the text messages were labeled accurately and

over 50% of the participants strongly agreed, and 33.33% participants somewhat agreed that the

data was effectively displayed and about 44.44% participants strongly agreed or somewhat agreed

that the results where trustworthy. These results strongly indicate that the detection application

was effective and trustworthy. For the question that asked the participants if they thought they

were in an abusive relationship or not, 66.7% of the participants responded that they strongly

disagreed although fourteen out of eighteen participants labeled the abusive text messages correctly.

To understand this result further, we conducted a study to understand the effect of data visualization

on user trust and what are the factors that people take into account when concluding they are in

an abusive relationship. The next chapter discusses the method and results of the study.
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Chapter 9

Understanding user perception and

trust when results from a dating

abuse detection application are

displayed

9.1 Introduction

Chapter 5 evaluates the performance of various machine learning algorithms, and the success

of the detection application of the phone app is heavily dependent on the accuracy of the classifier

we are using. The performance of the Linear Support Vector Machine with a tf-idf feature extractor

with a unigram input compared to the other classifiers is approximately 91%, which is in the same

range of the other mental health-related apps reported in the literature. Due to the sensate nature of

the information that is being presented to the user, it is also essential to be extremely cautious about

how the results are displayed. We are interested in understanding how data visualization has an

impact on a user’s trust in the information reported by the app. The reasons behind exploring this

paradigm are 1) how can we support the credibility of the detection algorithm to enable the user to

trust the results they view and 2) is there a correlation between users trust in the results presented
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and their likelihood in seeking help. As the purpose of the phone app is to stop abuse preemptively in

its early stages, user trust plays a huge role in the intervention and success of this app. Interpersonal

relationships, what is acceptable in a relationship, and language usage are subjective and unique to

every couple. Our training set is a representative sample but does not account for the diversity in

language and relationship dynamics. We propose designing an user-interface that will empower the

user to choose whether they want help or not. The purpose of the detection feature and the machine

learning classifier is to support the decision-making process of whether the user is in an abusive

relationship or not. We also want to explore the social question What is the threshold value of a

user considering themselves in an abusive relationship, i.e., what are the number of text messages

that would enable the user to consider themselves in an abusive relationship.

We conducted a user study to answer these two research questions

1. What is the threshold of abusive text messages that would motivate the user to consider

themselves in an abusive relationship?

2. What is the most effective way to visualize the results of the detection classifier that would

invoke user trust and encourage them to receive necessary help?

The following chapter discusses the study design and preliminary data analysis trends that would

help us answer the research mentioned above questions.

9.2 Methods

9.2.1 Participants and study design

To gain an understanding related to our research questions described above, we conducted

a cross-sectional survey. The survey was a within-subject study where we recruited 202 participants

who were randomly assigned to one of the nine conditions (Table). In this section, we describe how

we developed the survey, recruited participants, overview of the survey questionnaires, and study

procedure Participant selection and Demographic Questionnaire As the target population of the

phone app is college-aged women in the United States, we primarily recruited female participants

who had a minimum U.S. High School Education as a representative sample to participate in this

study. They were given a demographic questionnaire (Appendix D) and a modified dating abuse
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awareness questionnaire asking about their knowledge or personal experience related to interpersonal

violence.

9.2.2 Survey Development, Conditions and Participant Recruitment

There were two primary research questions and three conditions to support to each of these

questions -

1. Presented with a set of text messages which contained both abusive and non-abusive text

messages

(a) What is the threshold of abusive text messages (in a percentage value) that will lead a

user to conclude they are in an abusive relationship? Three conditions are

i. 50% -50% ( abusive-non-abusive)

ii. 70%-30% ( abusive – non-abusive)

iii. 30%-70% ( abusive – non-abusive)

(b) Does data visualization have an impact on the user’s trust when it comes to using the

detection application? Three conditions

i. Pie chart showing a percentage value for abusive and non-abusive text messages.

ii. Text messages that have been labeled as abusive and non-abusive.

iii. Pie chart showing the percentage value text messages that have been labeled as

abusive and non-abusive.

The survey was developed using Balsamiq’s online wireframe tool to create the user-interface

mockups and deployed through Qualtrics.com. The participants were recruited through Mechanical

Turk is a crowdsourcing web service that manages the supply and demand of tasks requiring human

intelligence to complete. This service allows requesters to post small tasks called Human Intelligence

Tasks (HITS). Workers selected HITS and completed in exchange for a small payment based on the

requesters’ set rate [42] [64]. We recruited 202 participants in all with approximately 21 (Mean=22.4,

SD= 1.13) participants per condition due to the elimination of incomplete surveys.
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Percentage of Abusive vs.
non-Abusive Text messages

Visualization 1 –
Pie Chart only

Visualization 2 –
Text Messages with

corresponding labels only

Visualization 3 -
Pie & Text

50%-50% Condition 1 Condition 4 Condition 7
70%-30% Condition 2 Condition 5 Condition 8
30%-70% Condition 3 Condition 6 Condition 9

9.2.3 Survey Questions

For all participants Questions 1 2 which described the experiment, introduced the home

screen and provided them the definition of digital dating abuse was constant. (Figure 9.1, 9.2 and

9.3). The following questions were randomly selected from the nine different conditions to show

the user-interface mockup of the detection page with the analyzed results. Figure 9.4a – 9i below

illustrates all the nine conditions. The participants were then asked to answer the following questions

using a 5-point Likert scale ( Strongly Disagree – Strongly Agree) 1) If you were Jane, based on

the results presented in Figure 4, would you consider yourself in an abusive dating relationship? 2)

Have the results been presented in an effective manner such that you understand the analysis of

the text messages clearly? 3a) If you were Jane, would you trust the information about the abusive

text messages that the app has provided to you? 3b) Based on the definition of digital dating abuse

provided earlier, please drag and drop the texts in the three boxes provided and arrange the text

messages into three two categories (Abusive, Non-Abusive Not-Sure). All the participants were

shown in Figure 9.5 which is the mock-up of the resources page and asked the following questions

1) In your opinion, would Jane use the resources feature as shown above to get help? 2) As a user,

would you use the resources feature as shown above to get help? 3) Moreover, Rank the list of

resources in order of preference ( 1- most preferred)
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Figure 9.1: illustrates the home screen or landing page of the app
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Figure 9.2: illustrates the page containing the definition of digital dating abuse
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Figure 9.3: In a hypothetical scenario imagine you are Jane. To evaluate the text messages, Jack
has sent you, click on the ‘Detecting Abusive Text Messages Button’ (To simulate this click, please
click on the arrow at the bottom of the page
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Figure 9.4: illustrates the home screen or landing page of the app

Figure 9.5: illustrates the home screen or landing page of the app
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Figure 9.6: illustrates the home screen or landing page of the app

Figure 9.7: illustrates the home screen or landing page of the app
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Figure 9.8: illustrates the home screen or landing page of the app

Figure 9.9: illustrates the home screen or landing page of the app93



Figure 9.10: illustrates the home screen or landing page of the app

Figure 9.11: illustrates the home screen or landing page of the app94



Figure 9.12: illustrates the home screen or landing page of the app

Figure 9.13: illustrates the home screen or landing page of the app
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Figure 9.14: Illustrates the results of the demographic questionnaire

9.3 Results

9.4 Demographic Questionnaire

Table 9.2 illustrates the demographic information of all our participants. The mean age

of all the participants was 36 years (SD=11.727), they were primarily female ( 96.53%), Caucasian

(57.43%), had a bachelor’s degree ( 42.57%) and married ( 48.51%). The participant pool is a

representative of our target population regarding ethnicity, gender and education level. 65.5% of

the participants selected Definitely yes when asked if they or someone they knew had ever been

in an unhealthy relationship and 41.5% responded Definitely yes when asked if they were aware of

unhealthy dating relationships at school/community or workplace. Both these responses reinforce

the necessity of the phone app. In response to the question would you want to use technology, for

example, phone or web application to help you understand if you are being abused, 50.50% replied

yes, and 35.64% said maybe.

9.5 Data Analysis

From the survey, we collected Likert Scale responses from all the participants, which were

coded as Strongly Agree, Somewhat Agree, Neither Agree or Disagree, Somewhat Disagree or

Strongly Disagree. The responses were re-coded to numerical values 1 -5 where one was consid-
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Gender
Male 3.47%
Female 96.53%
Ethnicity
Caucasian 57.43%
Hispanic 6.44%
African American or Black 10.89%
Native American or American Indian 2.48%
Asian / Pacific Islander 20.30%
Other 1.49%
Do not want to answer 0.99%
Education
Some high school, no diploma 1.98%
High School graduate or the equivalent 11.88%
Some college credit no degree 22.77%
Sophomore 0.99%
Junior 1.98%
Freshman 0.00%
Senior 0.50%
Bachelor’s Degree 42.57%
Master’s Degree 17.33%
Marital Status
Single 27.23%
Married 48.51%
Divorced 3.96%
In a relationship 16.83%
Others 2.97%
Do not wish to disclose 0.50%

Table 9.1: Demographic data for all participants

Figure 9.15: Illustrates the results of the demographic questionnaire
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Figure 9.16: For the question have the results been presented in an effective manner such that you
understand the analysis of the text messages clearly, comparing percentage abusive text messages,
grouped by the three visualizations

ered as Strongly Agree and five was coded for Strongly Disagree. All further analysis was conducted

on the re-coded numerical values.

We used SPSS to analyze each of the results for the questions mentioned in the previous

section.We first conducted a full factorial ANOVA to determine if there is an interaction effect

between any of the nine conditions (Visualizations - pie, text and pie & text and Percentage of

abusive text messages - 30-70, 70-30 and 50 -50). As none of the factors had any interaction effect

between each other, we did a uni variate posthoc multiple comparisons for observed means with

Bonferonni correction[11].

For the questions have the results been presented in an effective manner such that you

understand the analysis of the text messages clearly? we conducted multiple comparisons and across
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Figure 9.17: For the question have the results been presented in an effective manner such that you
understand the analysis of the text messages clearly, comparing visualizations

Figure 9.18: For the question have the results been presented in an effective manner such that you
understand the analysis of the text messages clearly, comparing percentage abusive text messages

99



Figure 9.19: For the question If you were Jane, based on the results, would you consider yourself in
an abusive dating relationship?, comparing comparing percentage abusive text messages, grouped
by the three visualization conditions

three visualizations ( text, pie and pie and text). We found significant mean difference between the

conditions Pie vs Text (mean difference= -.67) and Pie vs Pie&Text (mean difference =-.49). There

was no significance difference between the conditions Pie& Text and Text. Figure 9.17 illustrates the

results for this question For the same question, we found significant difference between the conditions

where the users where presented with the conditions 30% abusive vs 50% abusive (mean difference=

0.77) and conditions 70% abusive vs 50% abusive ( mean difference0̄.96). Figure 9.18 illustrates the

results.

For the question If you were Jane, based on the results, would you consider your-

self in an abusive dating relationship? , we did not find any significant difference when

comparing the three different visualizations(Figure 9.20). When comparing percentage abusive vs
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Figure 9.20: For the question If you were Jane, based on the results, would you consider yourself in
an abusive dating relationship?, comparing visualizations

non-abusive text messages displayed to the user (Figure 9.21) we found significant differences be-

tween the conditions 70% vs 50% and 30% vs70%.

For the question If you were Jane, would you trust the information about the

abusive text messages that the app has provided to you? , when comparing the three

different visualizations(Figure 9.23). there was significant difference between the conditions Pie

vs Text. When comparing percentage abusive vs non-abusive text messages displayed to the user

(Figure 9.24) we found significant differences between the conditions 70% vs 50% and 30% vs50%.

For the questions In your opinion, would Jane use the resources feature as shown

above to get help?, comparing comparing percentage abusive text messages and As a

user, would you use the resources feature as shown above to get help? none of the

conditions had any significant differences. Figures 9.26, 9.27 and 9.29, 9.30 illustrates the results.
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Figure 9.21: For the question If you were Jane, based on the results, would you consider yourself in
an abusive dating relationship?, comparing comparing percentage abusive text messages
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Figure 9.22: For the question If you were Jane, would you trust the information about the abusive text
messages that the app has provided to you?, comparing percentage abusive text messages, grouped
by the three visualization
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Figure 9.23: For the question If you were Jane, would you trust the information about the abusive text
messages that the app has provided to you?, comparing comparing percentage abusive text messages

Figure 9.24: For the question If you were Jane, would you trust the information about the abusive text
messages that the app has provided to you?, comparing comparing percentage abusive text messages
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Figure 9.25: For the question In your opinion, would Jane use the resources feature as shown above
to get help?, comparing percentage abusive text messages, grouped by the three visualizations

Figure 9.26: For the questions, In your opinion, would Jane use the resources feature as shown above
to get help?,comparing visualizations
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Figure 9.27: For the question, In your opinion, would Jane use the resources feature as shown above
to get help?, comparing comparing percentage abusive text messages

Figure 9.28: For the question As a user, would you use the resources feature as shown above to get
help?, comparing percentage abusive text messages, grouped by the three visualizations
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Figure 9.29: Illustrates the results of the demographic questionnaire

Figure 9.30: Illustrates the results of the demographic questionnaire
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9.6 Discussion

The preliminary data trends indicate that when presented with a set of text messages with

the percentage of abusive vs non-abusive text messages range 30%, 50% and 70% for the question if

you were Jane would you consider yourself in an abusive relationship, there was significant difference

between 30% abusive vs 70% and 50% vs 70% conditions respectively.For the thresholds mentioned

above, we used three different visualizations a) Text messages- the labeled text messages displayed

to the user b) Pie chart only - percentage abusive vs. non-abusive text messages displayed to the

user c) Text messages and Pie chart - Displaying both the percentage of abusive vs. non-abusive

text messages and labeled text messages.

Our hypothesis was the Text message the only condition would outperform the Pie and Text

and Pie chart condition. From our analysis, we were unable to find a significant difference amongst

any of these conditions.When considering data visualization and the user is trusting the information

we found significant differences between the conditions Pie vs. Text which was aligned with our

initial hypothesis. We hypothesized that if the user is presented with the labeled text messages,

they will tend to trust the results rather than only depending on percentage output values presented

from an unknown black box algorithm. We were unable to find any significant differences between

the Text only vs. Pie and Text condition.

Based on this preliminary finding we propose extending this study and this is discussed in

the Future work section (Chapter 10). The broader research impact of this study is further discussed

in Chapter 12.
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Chapter 10

Limitations and Future Work

This phone app is a proof of concept prototype promoting a mobile phone intervention to

stop digital dating abuse. Throughout the process of development of this app, we have conducted

user evaluation studies both on the usability of the app in general and the accuracy of the detection

application. Listed below are certain limitations of the app and our future direction that we will be

taking to addressing these limitations.

1. Design iteration of the android phone app We used a participatory design process in creating

the android phone app, we received user and expert feedback on the design of the user-interface

and we have updated the app based on those reviews. During the final usability evaluation

where the participants interacted with the Android prototype we received feedback and sug-

gestion on two specific issues which we will address in the next iteration of the android app.

(a) Lack of navigation flexibility - Most of the participants pointed out the lack of a back

button or navigation side bar which would allow them to access all the features without

having to go to the landing page. We will be incorporating this side navigation bar into

our app for the next iteration.

(b) Analyzed text message is difficult to read- The participants also pointed out how that the

layout of the analyzed text messages was not very readable. We propose to create a more

readable and user friendly layout with color coded labels that would enable the user to

understand this information at a quicker pace.
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(c) Remove the design redundancy on the landing page - We also received feedback regarding

the design of the landing page of the app (the redundant buttons and clickable image),

we would redesign this page to eliminate conflicting tasks.

(d) Enable the links on the Resources page – For this current version the user’s are unable

to directly use the links on the resources page as it is a static display. We will be making

these icons clickable to let the user’s call the help line or access a web-page link directly

from the app.

2. Increasing the size and linguistic diversity of the data-set for training machine learning algo-

rithms Due to the sensitive nature of this problem space collecting abusive text messages is a

challenge. Hence one of the limitations of this research is that the size of the initial data-set set

consisting of both training and testing set is not adequate to capture all the features related

to dating abuse. As a next step we plan to crowd source text messages using Mechanical Turk

to increase the size and linguistic diversity of the training set. This would help us improve the

validity of this method and establish a training set that can be used by future researchers.

3. For this dissertation, we only analyzed results related to binary labeling of text messages as

abusive or non-abusive. For future work, we will be analyzing the classification of abusive

sentences into different categories of abuse and use classifiers for multi-class classification. We

will also explore other methods such as neural network and clustering techniques and compare

the results with our current findings.

4. Exploring the visualization paradigm in supporting machine learning algorithms to increase

user trust. Visualization paradigms are another research aspect that we will be exploring

in the future in order to investigate different visualization techniques that can be used for

conveying the information produced by the classifiers effectively to the user. The results

from the preliminary study described in Chapter 9 is a step towards exploring this important

paradigm especially in the field of mental health intervention apps. For future work we will be

increasing our sample size for each condition (N=40) for a larger effect size and analyze the

data to observe if the existing trends continue to be significant for a larger dataset.

5. Digital dating abuse is an important issue for young adults of all genders and sexual orientation.

For this current project, we only explore females being abused in a heterosexual relationship.
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With a more diverse dataset we want to extend, the reach of this application to other groups

as well and help young adults make informed decisions about their relationships.
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Chapter 11

Conclusion

Designing, building and evaluating SecondLook was motivated by the following research

questions. Our goals were to -

1. Are the individual features of the app i.e. Awareness, Detection, and Resources designed in

an intuitive manner that helps the user acquire the information they require?

2. Presented with a set of text messages which contains both abusive and non-abusive text mes-

sages

3. What is the threshold of abusive text messages (in percentage or count) to be considered in

an abusive relationship?

4. Does the way the data is visualized have an impact on user’s trust when it comes to using the

detection application?

5. Is there a change in the user’s perception of abusive vs. non-abusive in observing the text

messages classified by the machine learning algorithm (as displayed on the app) vs. labeling

the text messages themselves?

6. What is the threshold of abusive text messages that encourages users to seek help and if they

do, which is their most preferred resources?

For question 1) We used a modified Heuristic Evaluation Approach and provided the users

with specific tasks to evaluate the individual features of the phone app. We received feedback
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from 18 participants out of which majority were female participants. Overall usability of the phone

application was rated to be between cosmetic usability problem to minor usability issues. The

primary issues have been listed in Chapter 10.

When presented with a set of text messages with the percentage of abusive vs non-abusive

text messages range 30%, 50% and 70% for the question if you were Jane would you consider yourself

in an abusive relationship, there was significant difference between 30% abusive vs 70% and 50%

vs 70% conditions respectively. We hypothesized that irrespective of the percentage of abusive text

messages, the user would consider themselves in an abusive relationship, but from the preliminary

data analysis, we conducted we were not able to obtain a clear answer to that question. We were

also interested in understanding whether data visualization or amount of information provided to

the user related to the results of the machine learning algorithm affected the user’s perception of

being in an abusive relationship.

For the thresholds mentioned above, we used three different visualizations a) Text messages-

the labeled text messages displayed to the user b) Pie chart only - percentage abusive vs. non-abusive

text messages displayed to the user c) Text messages and Pie chart - Displaying both the percentage

of abusive vs. non-abusive text messages and labeled text messages. Our hypothesis was the Text

message the only condition would outperform the Pie and Text and Pie chart condition. From our

analysis, we were unable to find a significant difference amongst any of these conditions.

When considering data visualization and the user is trusting the information we found signif-

icant differences between the conditions Pie vs. Text which was aligned with our initial hypothesis.

We hypothesized that if the user is presented with the labeled text messages, they will tend to trust

the results rather than only depending on percentage output values presented from an unknown

black box algorithm. We were unable to find any significant differences between the Text only vs.

Pie and Text condition.

We were unable to find any significant difference amongst the three thresholds of abusive vs.

non-abusive text messages that would motivate the user to get help. Amongst our 18 participants,

the preferred resources were online resources such as websites, forums. We will use this information

to restructure our resources page on the phone app to allow the users to get the most preferred

resource on top.

We wanted to understand if there is a difference between the user self-labeling abusive text

messages vs. rely on the machine learning results. We asked 18 of our participants to complete the
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task, we found that majority of the participants were able to label the messages correctly, but when

they read the results did not conclude themselves to be in an abusive relationship. This result was

of great significance to us, as it sheds light on the psychology of perception.

Although we were unable to draw concrete conclusions from all our research questions, we

were able to see certain useful trends related to broader impact questions such as user trust in

machine learning algorithms, the role of data visualizations in impacting user trust and societal

and cultural perceptions as to what can be considered as an abusive relationship. These results

also allude to the complexity of this research domain, and for future work, we propose to run more

extensive and diverse participant groups for concrete answers to the research questions.
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Chapter 12

Contributions and Broader Imapct

12.1 Contributions

1. Creating SecondLook : a prototype mobile intervention for digital dating abuse with three

features

2. Created a detection application that uses the combination of a Linear Support Vector Machine,

tf-idf feature extractor and unigram input to label text messages as abusive vs. non-abusive

in the context of digital dating abuse with an accuracy of 91.4%.

3. Creating and validating a dataset of abusive text messages that can be used by future re-

searchers as a training/testing dataset. A total of 161 abusive text messages are part of this

dataset. We also created three additional balanced datasets with these abusive text messages

and non-abusive text messages from two different publicly available datasets. We tested the

robustness of our classifier on all three datasets, and the results were in the same range on all

three datasets.

4. Designed, built and conducted a usability study of an android prototype app with the following

features-

(a) That allows users to understand more about healthy relationships regarding Character-

istics of Healthy Relationships vs. unhealthy and abusive ones. This is provided through

words that can be associated with these relationships and example scenarios. The aware-
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ness feature framework has been developed to be portable and easily expandable. As

the information is hosted on a Google Drive, it’s relatively easy to update or add new

information material.

(b) We also provide users with an FAQ sheet (part of the same framework used for 1.3.1)

which educates the user about global impact and deadly nature of dating abuse. It

also serves the purpose of allowing the user who may be a victim of dating abuse to

realize they are not alone in this and enable them to get help. itemThe app contains

a mobile-friendly version of the Healthy Relationships Quiz which is available for the

user on loveisrespect.org as a web page or a printable document. The app version allows

the user to complete the quiz more discretely and the scoring rubric is programmed into

this feature thus eliminating the user having to use the printable documents self-scoring

rubric.

(c) The backend of the phone app is hosted on a python-based server called Flask, which is not

computationally intensive compared to other servers. The backend framework (classifier

and training set) is modular, so it can be updated/expanded without dismantling the

working framework. This framework can also be used for other apps that use machine

learning to understand patterns about a user’s phone data.

12.2 Broader Impact

The broader impact of this research is not only limited to the immediate research domain

of digital dating abuse. We created a framework and designed a modular android phone app that

can be modified to analyze digital content on mobile phones to detect mental health issues such as

user stress, depression, financial management issues and interpersonal violence-related issues such

as workplace and racial harassment.

The framework that has been developed relies on three principles – awareness, detection

and help resources. This framework can be expanded to address a broad domain of issues related

to mental health, wellbeing and personal safety. It is important to know that oneself is in the

middle of an issue, but it is equally important to understand the particular issue and have access to

resources to combat the problem. Machine Learning has become an integral part of our everyday

life and interactions with technology. They are being used in applications in health-care to detect
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cancer from imaging data to recommending movies and restaurants. There has always been a form

of distrust between humans and technology and with the increase in the use of machine learning

algorithms in sensitive areas such as healthcare and recommender systems we need to understand

how to design systems that use machine learning algorithms and also motivate users to trust these

technologies. This was extremely critical for our phone app, as the backbone of this app uses machine

learning to address a sensitive and subjective topic such as dating abuse and relationships. This

research explores data visualizations, the effect it has on user trust on the results presented, and we

have seen promising trends with visualizations which show how the classifier worked vs. displaying

only the final results from the machine learning algorithm.
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Appendix A

SPAM DATASET

Figure A.1: ROC curve all three classifiers with unigram, bigram and trigram input respectively
using tf-idf feature extractor

Figure A.2: ROC curve all three classifiers with the combination of unigram, bigram and trigram
input respectively using tf-idf feature extractor
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SPAM DATASET

Figure A.3: ROC curve all three classifiers with unigram, bigram and trigram input respectively
using count feature extractor

Figure A.4: ROC curve all three classifiers with the combination of unigram, bigram and trigram
input respectively using count feature extractor
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CRITICAL DATASET

Figure A.5: ROC curve all three classifiers with unigram, bigram and trigram input respectively
using tf-idf feature extractor

Figure A.6: ROC curve all three classifiers with the combination of unigram, bigram and trigram
input respectively using tf-idf feature extractor

121



CRITICAL DATASET

Figure A.7: ROC curve all three classifiers with unigram, bigram and trigram input respectively
using count feature extractor

Figure A.8: ROC curve all three classifiers with the combination of unigram, bigram and trigram
input respectively using count feature extractor
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MIXED DATASET

Figure A.9: ROC curve all three classifiers with unigram, bigram and trigram input respectively
using tf-idf feature extractor

Figure A.10: ROC curve all three classifiers with the combination of unigram, bigram and trigram
input respectively using tf-idf feature extractor
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MIXED DATASET

Figure A.11: ROC curve all three classifiers with unigram, bigram and trigram input respectively
using count feature extractor

Figure A.12: ROC curve all three classifiers with the combination of unigram, bigram and trigram
input respectively using count feature extractor

124



125



Appendix B

126



Appendix C

Focus Group Questions 1) What does dating abuse mean to you? 2) In your opinion do you

think there are multiple kinds of dating abuse, if so please describe a few 3) Do you know anyone

who has experienced dating abuse? 4) Do you know how to recognize signs of abuse if it happened

to a friend? 5) Do you think you can identify the signs of dating abuse if it happened to you? 6)

Are you aware of resources available that can help abuse victims? 7) Do you think women are

more abused than men? 8) In your opinion, are college campus, greek life institutions a hotspot for

dating abuse? 9) Can technology be used to abuse a partner? If so please elaborate the different

technology sources that can be used and how? 10) Rank them in order of most likely to be used to

not used 11) Do you think technology can be used to help dating abuse victims? 12) Do you have

concerns using technology to detect dating abuse? 13) Do you have any privacy concerns related to

using this technology? 14) How would you hide the apps actual purpose? 15) Please draw how you

would want your app to look, what features it would have? Write detailed explanation about each

feature so we can understand your intent.
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Appendix D

Focus Group Questions 1) What does dating abuse mean to you? 2) In your opinion do you

think there are multiple kinds of dating abuse, if so please describe a few 3) Do you know anyone

who has experienced dating abuse? 4) Do you know how to recognize signs of abuse if it happened

to a friend? 5) Do you think you can identify the signs of dating abuse if it happened to you? 6)

Are you aware of resources available that can help abuse victims? 7) Do you think women are

more abused than men? 8) In your opinion, are college campus, greek life institutions a hotspot for

dating abuse? 9) Can technology be used to abuse a partner? If so please elaborate the different

technology sources that can be used and how? 10) Rank them in order of most likely to be used to

not used 11) Do you think technology can be used to help dating abuse victims? 12) Do you have

concerns using technology to detect dating abuse? 13) Do you have any privacy concerns related to

using this technology? 14) How would you hide the apps actual purpose? 15) Please draw how you

would want your app to look, what features it would have? Write detailed explanation about each

feature so we can understand your intent.

128



Appendix E

SAMPLE QUESTION FROM DATASET CREATION STUDY

Read story 1 related to dating abuse and pretend to be the abusive boyfriend. Simulate a series of

text messages you would send if you were the abuser. For example : SAMPLE STORY

“My current boyfriend is extremely jealous. He made me delete all the guys on my Facebook. He

is constantly asking me who I am texting and talking to, and trying to go through my phone. He

won’t leave me alone.”

SAMPLE RESPONSE

“Hey babe what are you doin?? Why aren’t you replying back to my texts? I sent you 4 texts on

FB and your phone and you just don’t care. Who are you talking to now? I am sure you are

talking to someone. Give me his name RIGHT NOW b***h”

Q1) My boyfriend talks to other girls but gets annoyed when I talk to other guys. He forbid me

from being ’friendly’ with them. At first it was not that rude, but now he really acts out and sends

me texts every 30 minutes to check up on me. Write a series of text messages (at least three,

preferably more if possible) that her boyfriend might have sent her that was over the line.
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Appendix F

The list of text messages presented to the user for the three different conditions

discussed in Chapter 9

Based on the definition of digital dating abuse provided earlier, please drag and drop the texts in

the three boxes provided and arrange the text messages into three two categories (Abusive,

Non-Abusive & Not-Sure)

Condition 50 50 2. I can’t stand this I’m going to find you and then we’ll see how much talking

you do 3. Ok we will text when we leave 4. Sorry for not responding, got sidetracked 5. Ok we will

text when we leave 6. Had a big pizza earlier, where are ya thinken? 7. gimme ur fb pw right now

you crazy girl. right now. who r u tslking to you? tell me ASAP 8. Who are you always texting? I

know that you’re cheating? If I catch you don’t send me the passwords, I’ll kill you and whoever

you are tweeting 9. If you do not send me nudes then I will slander your name 10. Still at dinner,

in a good conversation. Didn’t forget about you 11. One of my friends said he saw you walking on

campus? I thought you were busy all day today. Shouldn’t you be in the library? If you had all

this free time, you should’ve been it at my place

Condition 30 70 1. I can’t stand this I’m going to find you and then we’ll see how much

talking you do 2. Ok we will text when we leave 3. Sorry for not responding, got sidetracked 4.

WTH.Bitch.Asshole 5. Do thisfor me.DO it.WTH 6. gimme ur fb pw right now you crazy girl.

right now. who r u tslking to you? tell me ASAP 7. Who are you always texting? I know that

you’re cheating? If I catch you & don’t send me the passwords, I’ll kill you and whoever you are

tweeting. 8. If you do not send me nudes then I will slander your name- 9. Still at dinner, in a

good conversation. Didn’t forget about you 10. One of my friends said he saw you walking on

campus? I thought you were busy all day today. Shouldn’t you be in the library? If you had all

130



this free time, you should’ve been doing it at my place

Condition 70 30 1. I can’t stand this I’m going to find you and then we’ll see how much talking

you do 2. Ok we will text when we leave 3. Sorry for not responding, got sidetracked 4. Nice we re

just leavin lol 5. Cool will try to make it. hungry?- 6. Had a big pizza earlier, where are ya

thinken? 7. Who are you always texting? I know that you’re cheating? If I catch you don’t send

me the passwords, I’ll kill you and whoever you are tweeting.- 8. U hanging out with Mike and

Marvin? 9. Still at dinner, in a good conversation. Didn’t forget about you 10. One of my friends

said he saw you walking on campus? I thought you were busy all day today. Shouldn’t you be in

the library? If you had all this free time, you should’ve been doing it at my place
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