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ABSTRACT 

It has been well observed and reported that much of the great losses in past 

earthquakes, such as the 2011 Tohoku earthquake and the 2010-2011 Canterbury 

earthquake, were attributed to soil liquefaction and the associated ground deformation. 

Thus, any relevant research that contributes to the worldwide efforts to assess and 

mitigate liquefaction hazards is considered timely and worthwhile. This dissertation is 

aimed at addressing two aspects of liquefaction research: (1) improving the existing 

probabilistic methods for both location-specific and areal liquefaction potential 

evaluation, (2) creating visualization-based procedure for assessing the effectiveness of 

dynamic compaction in the liquefaction hazards mitigation. Both are deemed timely 

contributions to the course of earthquake hazard mitigation efforts by the engineering 

communities, which are the main objectives of the research.  

The dissertation research consists of three separate but related efforts that as a whole 

address the two main objectives of this research. The first part, “Predicting liquefaction 

probability based on shear wave velocity: an update”, was intended to improve the 

existing liquefaction evaluation method using shear wave velocity (Vs). The liquefaction 

evaluation models using Vs were calibrated based on the expanded Vs-based database was 

created. In this work, the scientific merits of various generalized linear regression models 

were investigated. Based on the findings of this investigation, the optimal models were 

recommended for the evaluation of location-specific liquefaction probability. 
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In the second part of the dissertation research, concerning the “Random field-based 

regional liquefaction hazard mapping — data inference and model verification using a 

synthetic digital soil field”, the focus was on the areal or regional evaluation of 

liquefaction potential. Although the random field has been applied to many geotechnical 

problems, including liquefaction evaluation, abundant field data for assessing various 

issues of random field modeling, such as the accuracy and the computational demand, are 

lacking. To this end, an extremely detailed three-dimensional synthetic digital soil field 

was created, which enabled an extensive data inference and model calibration using the 

random field theories. This part of the dissertation work was more on fundamental 

scientific exploration. Nevertheless, it set the foundation for establishing the random 

field-based visualization procedure for liquefaction mitigation problem in the third part of 

this dissertation work. 

In the third and last part of the dissertation work: “Mitigation of liquefaction hazard 

by dynamic compaction — a random field perspective”, the effectiveness of dynamic 

compaction (DC) in the mitigation of liquefaction hazards was assessed from a random 

field perspective. The traditional assessment of this effectiveness was through in situ tests 

before and after DC, and the effectiveness of such approach depends on whether the one-

to-one and side-by-side field tests before and after DC are available. In reality, such ideal 

situation almost always does not exist due to the construction practicality in the operation 

of DC. The random field modeling removed such need for the one-to-one and side-by-

side field tests before and after DC. In this part, a random field based visualization 

procedure was created so that the liquefaction potential at the entire project site before 
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and after DC could be clearly compared. The random field based visualization procedure 

was demonstrated as a practical tool by which the effect of DC could be easily 

communicated between the engineers and their clients. The scientific endeavor in the 

creation of a random field based visualization procedure to help solve a practical problem 

was deemed significant.  

In summary, the three parts of this dissertation work as a whole have achieved the 

two main objectives of the research regarding the liquefaction potential evaluation and 

the liquefaction mitigation. The scientific merits through these three parts of dissertation 

work have been demonstrated.  
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CHAPTER I 

INTRODUCTION 

Problem Statement 

Soil liquefaction and liquefaction-induced damage to buildings, lifeline systems and 

harbor facilities, have been widely observed in many past earthquakes. For example, in 

the 1995 Kobe earthquake, the impact of liquefaction was found to be greatest on 

lifelines, mainly on the failure of bridges, buried pipelines, and port facilities (Hamada et 

al. 1996; Ishihara 1997). In the 1999 Chi-Chi earthquake, soil liquefaction was one of the 

main causes to the losses of buildings and infrastructures ranging from $20 billion to $30 

billion (Uzarski and Arnold, 2001). More recently, about 27,000 houses were damaged in 

the Tohoku and Kanto districts due to liquefaction during the 2011 Tohoku, Japan 

earthquake (Ogasawara et al. 2012), and in the 2010-2011 Canterbury, New Zealand 

earthquakes, approximately half of the $30-billion losses was attributed to soil 

liquefaction (Cubrinovski et al., 2014).  

In light of the great losses attributed to liquefaction in the past earthquakes, especially 

in the recent Tohoku earthquake and Canterbury earthquake, it is considered timely and 

significant to conduct research that contributes to the worldwide efforts to assess and 

mitigate liquefaction hazards. In this dissertation work, the effort is directed to two 

aspects of liquefaction research: (1) improve the existing probabilistic methods for both 

location-specific and areal liquefaction potential evaluation, (2) create visualization-

based procedure for assessing the effectiveness of ground improvement in the mitigation 
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of liquefaction hazards. Thus, the main thrust of this dissertation work is to 

improve/create methods for the liquefaction evaluation and the mitigation of liquefaction 

hazards through the use of probabilistic and random field approaches. 

Objectives and Scope 

The main objectives of this research are: (1) to improve the existing probabilistic 

liquefaction evaluation methods, (2) to study the effectiveness of dynamic compaction in 

the mitigation of liquefaction hazards. 

The scope of this research covers the evaluation of liquefaction probability of sand 

and silty sand using shear wave velocity (Vs)-based and cone penetration test (CPT)-

based liquefaction databases. It covers the location-specific and areal (or regional) 

evaluation of the probability of liquefaction using case histories and synthetic data. The 

research work covers the liquefaction potential evaluation and the mitigation of 

liquefaction hazard. All in all, the scope of the dissertation work is covered by three 

separate but related journal papers that as a whole address the two main objectives of this 

research. 

Dissertation Organization 

This dissertation consists of six chapters. In Chapter I (this chapter), an introduction, 

including the problem statement, the objectives and scope, and organization of the 

dissertation, is presented that sets the stage for the entire dissertation. Chapter II, presents 

the background and methodologies that are required for conducting the dissertation 

research. This chapter covers the deterministic and probabilistic methods for evaluation 
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of liquefaction potential of soils, and the countermeasures for liquefaction hazard 

mitigation. Chapter III through Chapter V present, in sequence, the contents of three 

journal papers that deal with different aspects of this dissertation work. 

In Chapter III, a similar form of a journal paper on “Predicting liquefaction 

probability based on shear wave velocity: an update” is presented. Here, logistic 

regression as a form of the generalized linear regression is adopted to assess and update 

the probabilistic liquefaction potential models using an expanded database of case 

histories. The optimal models are recommended for both the existing and the expanded 

liquefaction database.  

Chapter IV presents a similar form of a journal paper, “Random field-based regional 

liquefaction hazard mapping - data inference and model verification using a synthetic 

digital soil field.” In this chapter, an extremely detailed three-dimensional synthetic 

digital soil field is artificially generated and used to assess and compare three random 

field-based models for liquefaction hazard mapping. 

Chapter V presents the contents of a journal paper, “Mitigation of liquefaction hazard 

by dynamic compaction - a random field perspective”, which is under review. Here the 

effect of dynamic compaction is assessed through a case study using a random field 

model. The outcome of the study demonstrates this random field-based visualization 

procedure as an effective tool in assessing the effect and benefits of dynamic compaction 

in the mitigation of liquefaction hazard. 

Finally, the conclusions and recommendations are made in Chapter VI.  
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CHAPTER II 

METHODS FOR LIQUEFACTION POTENTIAL ASSESSMENT AND 

LIQUEFACTION MITIGATION 

Deterministic Methods for Liquefaction Potential Assessment 

Cyclic stress-based simplified methods have been widely used for liquefaction 

potential evaluation. While the original simplified procedure pioneered by Seed and 

Idriss (1971 & 1982) was based on a large number of fundamental laboratory studies 

supplemented with some field observations, the more recent simplified methods were 

almost always developed solely based on the database of field cases using the framework 

of the original simplified procedure. In the simplified methods, the seismic loading that 

can cause a soil to liquefy is generally expressed in terms of cyclic stress ratio (CSR). 

Because the simplified methods were developed based on calibration with field data that 

were derived from different earthquake magnitudes and with different overburden 

stresses, CSR is often “normalized” to a reference state with moment magnitude Mw = 7.5 

and effective overburden stress s¢v = 100 kPa. At the reference state, the CSR is often 

denoted as CSR7.5,s, which may be expressed as follows (e.g., Youd et al. 2001; Juang et 

al. 2006; Boulanger and Idriss 2012): 

max
7.5,CSR 0.65 v d

v

a r
g MSF Ks

s

s
s
æ ö æ öæ ö

= ç ÷ ç ÷ç ÷¢ ×è øè ø è ø
                                    (2.1) 
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where sv = the total overburden stress at the depth of interest (kPa), s¢v = the effective 

stress at the depth of interest (kPa), g = the unit of the acceleration of gravity, amax = the 

peak horizontal ground surface acceleration (amax/g is dimensionless), rd = the depth-

dependent stress reduction factor (dimensionless), MSF = the magnitude scaling factor 

(dimensionless), and Ks = the overburden stress adjustment factor (dimensionless). For 

the convenience of presentation hereinafter, the normalized cyclic stress ratio CSR7.5,s is 

simply labeled as CSR whenever no confusion would be caused by such use. Details on 

the input parameters for CSR and the associated component models can be found in the 

cited references.  

In the simplified methods, the liquefaction resistance of a soil is often expressed as 

cyclic resistance ratio (CRR), based on the concept that CRR is the limiting CSR beyond 

which the soil will liquefy. An intuitive and empirical method to establish an equation for 

CRR is to plot the CSR values and in situ test data of the collected case histories, such as 

the corrected SPT blow count (N1,60), the corrected CPT tip resistance (qt1N), or the 

corrected shear wave velocity (Vs), in a two-dimensional chart, and the curve separating 

the liquefied cases from the non-liquefied cases may be considered as the limiting CSR 

beyond which the soil will liquefy. This limiting CSR curve thus defines CRR, which 

may then be expressed as a function of the adopted in situ test data. For example, for a 

saturated sand with little fines, CRR can be expressed as follows (Robertson and Wride, 

1998): 

 1 1
3

1 1

0.833[ /1000] 0.05    if    50
CRR

93[ /1000] 0.08        if    50 <160
t N t N

t N t N

q q
q q

+ <ìï= í
+ £ïî

 (2.2) 
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When the soil contains a significant amount of fines, the CRR obtained from Eq. (2.2) 

has to go through some adjustments. Different ways to adjust CRR for fines content have 

been recommended and can be found in the literature (e.g., Seed et al., 1983; Youd et al. 

2001; Robertson and Wride 1998; Robertson 2010; Boulanger and Idriss 2015).  

In a deterministic approach, liquefaction of a soil is predicted to occur if the factor of 

safety (FS), defined as the ratio of cyclic resistance ratio (CRR) over cyclic stress ratio 

(CSR), is less than or equal to 1; on the other hand, no soil liquefaction is said to occur if 

FS>1. 

Because of the uncertainties that exist in the adopted model and the input data, the 

computed factor of safety FS cannot be expressed as a fixed (certain) value; rather, it is 

more logical to be presented as a random variable. In a deterministic approach, however, 

these uncertainties are not included in the analysis; rather, a nominal factor of safety, a 

fixed value, is computed using nominal values of input parameters. The term “nominal” 

value is used herein to refer to a fixed-value estimate of a random variable. For instance, 

FS is in fact a random variable, and the nominal FS is a fixed-value estimate that is based 

on the standards of practice (e.g., computing with an acceptable procedure using a set of 

reasonably estimated fixed parameter values). In practice, the nominal factor of safety FS 

is often required to be greater than a limiting value (for example, 1.2 to 1.5 as per BSSC 

1997) to assure of no occurrence of liquefaction. Use of a limiting (target) FS value of 

greater than 1 allows for compensation of the uncertainties that were not included in the 

deterministic analysis. Choice of a suitable limiting FS value, however, requires a sound 

engineering judgment.  
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Probabilistic Methods for Liquefaction Potential Assessment 

To account for all the uncertainties that exist in the adopted model and the input data, 

probabilistic assessment of liquefaction potential may be performed. The probabilistic 

assessment of liquefaction potential yields the probability of liquefaction (PL) for a future 

case. Thus, the occurrence of liquefaction or not is no longer a “yes-or-no” question. To 

this end, the liquefaction classes suggested by Chen and Juang (2000) may be used for 

interpretation of the computed liquefaction probability. For example, if PL < 0.15, it is 

“almost certain that the soil will not liquefy;” on the other hand, if PL > 0.85, it is “almost 

certain that the soil will liquefy.” The common probabilistic methods for liquefaction 

potential assessment include the discriminant analysis method, the logistic regression 

method, artificial neural network method, Bayesian methods, and performance-based 

methods (Juang et al., 2017a). The logistic regression method and Bayesian methods are 

more popular thus reviewed as below: 

Logistic Regression Method 

In the absence of the complete knowledge of model and/or parameter uncertainties, 

simplified probabilistic models may be established based on database of case histories 

and later used to estimate the probability of liquefaction of a future case. The simplified 

models are generally derived from a given database of case histories. For example, many 

investigators (e.g., Christian and Swiger 1975; Liao et al. 1988; Toprak et al. 1999; Juang 

et al. 2002; Lai et al. 2006) have derived simplified equations by the logistic regression. 
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These equations may be expressed in the following form (although a more general form 

may be used): 

[ ] 1 2 3ln / (1 ) ( ) ln(CSR)L LP P a a X a- = + +                          (2.3) 

where X is the clean-sand equivalence of corrected SPT blow count or CPT cone tip 

resistance or shear wave velocity (e.g., Juang et al. 2002).  

Logistic regression is often used to predict the response of a binary system. Whether 

or not a soil will liquefy when subjected to a seismic loading may be considered as a 

binary event; thus, the logistic regression can be used to predict liquefaction potential. 

The widespread application of logistic regression may be due to its ease of use (e.g., 

Juang et al. 2002 & 2015). 

The logistic regression is a popular member of the generalized linear regression 

models, which are a class of statistical models used for the analysis of binary systems 

(e.g., Hoffmann 2004). However, Zhang et al. (2013) assessed the applicability of 

different generalized linear models for liquefaction potential assessment, and found that 

the logistic regression model may not always be the optimal solution for constructing 

liquefaction models.  

It is noted that in each case of the database with which Eq. (2.3) is derived, the true 

values of parameters X and CSR are unknown. Rather, nominal values are computed and 

these nominal values are used in the logistic regression analysis. Therefore, when Eq. 

(2.3) is applied to a future case, the nominal values of parameters X and CSR must first 

be determined and then the liquefaction probability is evaluated. Obtaining the nominal 
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values is part of the traditional deterministic approach, and thus, it requires little 

additional effort.  

Bayesian Mapping Method 

Recognizing that the true values of parameters X and CSR are unknown (and thus, the 

true factor of safety FS of a given case history is unknowable), Juang et al. (2002) 

analyzed the case histories data by their nominal values. By examining the distributions 

of the nominal factor of safety (FS) in the group of liquefaction cases and the group of 

non-liquefaction cases, respectively, Juang et al. (2002) established a mapping function 

that relates FS to the probability of liquefaction (PL) based on Bayes’ theorem (Juang et 

al. 1999 & 2000): 

( | ) ( )( | )
( | ) ( ) ( | ) ( )

S
L S

S S

P F L P LP P L F
P F L P L P F NL P NL

= =
+

                       (2.4) 

where P(L) and P(NL) are the prior probabilities of liquefaction and no-liquefaction, 

respectively; and P(FS|L) and P(FS|NL) are the probabilities of a given case with known 

FS value for the liquefied group and the non-liquefied group, respectively. Juang et al. 

(2002) assumed that the prior probabilities of a given case are the same [i.e., P(L) = 

P(NL) = 0.5], as they argued that when there was no information to suggest otherwise, the 

assumption of P(L) = P(NL) was assured by the principle of maximum entropy. Thus, the 

Bayesian mapping function can be reduced into the form of PL = f (FS), where f is an 

empirical function derived from the database. An example of such equation is expressed 

as (Ku et al. 2012): 
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6
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1 ( / 0.9)S

LP F
=

+
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where FS is the nominal factor of safety obtained for a given soil using the Robertson and 

Wride (1998) method with CPT data. When applying Eq. (2.5) to a future case, the 

nominal input parameters should be used to compute the nominal FS, the same procedure 

to perform a deterministic analysis of liquefaction potential. The nominal FS is then 

entered Eq. (2.5) for an estimate of the liquefaction probability. The implication is that on 

average, the uncertainty level in a future case is approximately the same as the level of 

uncertainty of the cases in the calibration database. The reader is referred to Ku et al. 

(2012) for applications to future cases.  

In recent years, substantial efforts have been made in the process of model 

development and model calibration to address the uncertainties in the case histories in the 

calibration database. To this end, Bayes’ theorem has been proven as a powerful tool to 

consider different sources of uncertainties in a consistent way. 

Bayesian Regression Method 

Cetin et al. (2004) developed a probabilistic model using the principle of maximum 

likelihood with an updated database of case histories. The work of Cetin et al. (2004) was 

comprehensive and had several unique features, for example, use of the maximum 

likelihood method for the first time in liquefaction data analysis, a specific treatment of 

sampling bias in the database, and a complete treatment of model and parameter 

uncertainties. A simplified form of their probabilistic model could be expressed as: 
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where F  is the cumulative standard normal distribution function; FC is fines content; 

N1,60 is the corrected SPT blow count; CSR is the cyclic stress ratio without adjustment to 

the reference state of Mw = 7.5 and vs ¢= 100 kPa, where Mw is the moment magnitude and 

vs ¢  is the effective stress; and pa is the reference pressure (1 atm ≈ 101 kPa). It is noted 

that the probabilistic model as expressed in Eq. (2.6) by-passed the safety factor FS in its 

development process and has no obvious relation with FS. In fact, they established a 

deterministic model (limit state) that is simply an equivalence of Eq. (2.6) with PL = 0.15. 

Because input parameters were treated as random variables in the model development 

by Cetin et al. (2004), the parameters FC, N1,60, CSR, Mw, and vs ¢  in Eq. (2.6) are random 

variables. To evaluate the liquefaction probability PL for a future case using Eq. (2.6), 

one has to characterize these input parameters statistically first, and then perform a Monte 

Carlo simulation to obtain the distribution of PL (and to determine its mean and standard 

deviation as desired).  

Following the Bayesian method by Cetin et al. (2004) in the development of new 

liquefaction models, Moss et al. (2006) also developed a similar model for evaluating the 

liquefaction probability using CPT. Based on re-assessed databases of case histories, 

Boulanger and Idriss (2012) developed liquefaction potential models using SPT, and later 

further developed liquefaction potential models using CPT (Boulanger and Idriss 2015). 

While these latest developments basically followed the one developed by Cetin et al. 

(2006), a significant exception was that Boulanger and Idriss (2012 & 2015) assigned the 
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coefficients of variation to key input parameters such as N1,60 and CSR, rather than 

developing site-specific estimations of the magnitudes and distributions of these 

uncertainties for each case history. Similar to the probabilistic model by Cetin et al. 

(2004), input parameters are treated as a random variable by Boulanger and Idriss (2012 

& 2015) in their model development, thus, the parameters CSR and CRR are random 

variables, and so is the FS. Therefore, to evaluate the liquefaction probability for a future 

case, one has to characterize the input parameters statistically first, and then perform a 

Monte Carlo simulation to obtain the distribution of the liquefaction probability.  

The reader is referred to Juang et al. (2013) for comparison of these probabilistic 

models that were developed using the Bayesian methods.  

Random Field Modeling for Liquefaction Hazard Mapping 

The location-specific evaluation of the liquefaction potential has been reviewed 

previously. This section focuses on the areal or regional evaluation of liquefaction 

potential, which is essential for liquefaction hazard zoning and mitigation. As the number 

of test data in a given geotechnical investigation is usually limited, soil properties at a 

given site may not be characterized adequately. How to map the liquefaction potential in 

an areal or regional scale based on the limited test data is thus an urgent issue facing the 

geotechnical engineer.  

The early studies of regional liquefaction hazard mapping focused on the occurrence 

of liquefaction and relied upon the correlations that relate surficial geology to 

liquefaction susceptibility and potential (Youd and Perkins 1978; Knudsen et al. 2000; 
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Witter et al. 2006). Later, use of supplementary data such as hydrological and 

geotechnical data (Holzer et al. 2006a&b; Brankman and Baise 2008; Hayati and Andrus 

2008; Heidari and Andrus 2010&2012) or geomorphological data (Papathanassiou et al. 

2017) along with the surficial geology data in characterizing and mapping the 

liquefaction hazards has been reported. In these studies, the liquefaction hazard level 

(quantified in terms of either liquefaction susceptibility or liquefaction potential) was 

often assumed to be constant within each surficial geologic unit. This assumption, though 

convenient for traditional geological mapping, ignores the inherent spatial variability of 

soil properties and therefore may hinder the accuracy of the generated liquefaction hazard 

maps (Juang et al, 2018).  

In the last two decades, random field theory has been applied to assessing and 

mapping liquefaction potential or hazards over an area or region (Elkateb et al, 2003; 

Baise et al., 2006; Lenz and Baise, 2007; Chen et al., 2015; Wang et al, 2017; Juang et 

al., 2017b; Bong and Stuedlein 2017&2018). The random field model method can 

consider the spatial variability and dependency, as well as associated uncertainties. The 

spatial variability and dependence of soil properties has long been recognized: soil 

properties measured at one location are more similar to those at neighboring locations 

than those further away (Fenton and Vanmarcke 1998; Vanmarcke, 2010). By drawing 

multiple random samples, the overall characteristics of the spatial variability and 

dependence, and the uncertainties involved, can be mathematically modeled by random 

field models. 
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Using the random field theories with the known properties (from the actual tests) at 

limited test locations, the soil properties at unsampled locations can be learned through 

the knowledge of the spatial variability and dependence of soil properties, and thus the 

soil properties in a given area with limited test data can be characterized statistically. The 

gained knowledge of the soil properties in an area allows an areal evaluation and 

mapping of the liquefaction potential. 

Ground Improvement Methods for Liquefaction Hazard Mitigation 

In the last four decades, there has been a steady trend toward the use of ground 

improvement as a countermeasure against the hazard of liquefaction. The ground 

improvement techniques, such as densification, solidification (e.g., cementation), vibro-

compaction, explosive compaction, deep soil mixing, deep dynamic compaction, 

permeation grouting, jet grouting, pile-pinning and gravel drains or stone columns, have 

been used in engineering practice to reduce the risk of liquefaction and associated ground 

deformation (Asgari et al., 2013; Lukas 1995; Han 2015; Shen et al. 2018). The 

effectiveness of ground improvement in liquefaction mitigation is well observed in the 

past earthquakes as the sites with ground improvement suffer less ground deformation 

and subsidence than adjacent, unimproved areas (Mitchell et al., 1991; Dise et al., 1994; 

Hausler and Sitar 2001; Lee et al., 2001; Martin et al., 2002; Olgun 2003; Hausler and 

Koelling, 2004).  

Dynamic compaction (DC), as one of the ground improvement methods, has been 

successfully used to strengthen many types of weak ground deposits, including 



 15 

hydraulically placed silty sands, clay or silty clay fills, miscellaneous fills, sanitary 

landfills, mine spoils, rockfills, sinkholes, and collapsible soils (Ghassemi et al., 2010; 

Lukas 1995). Because of its cost efficiency, simplicity and significant reinforcement 

effect, DC has been extensively used worldwide for soil treatment on a large scale. DC 

consists of the repeated dropping of heavy weight (tamper) in a pre-determined pattern on 

the weak ground that needs to be densified. After release, the free-falling heavy tamper 

builds up energy. The powerful stress wave generated during the impact process destroys 

the skeleton of the soil grain, decreases the porosity, and effectively compacts the ground 

(Feng et al., 2015). DC usually progresses in phases. In the first phase (high energy 

phase), large masses are dropped from greater heights repeatedly. The mass of tamper 

generally ranges from 5 to 30 tons, drop height ranges from 12 to 30 m, and often 

between 7 and 15 drops on each compaction point (Mayne et al., 1984; Lukas 1995). 

During this stage, deep soil layers are usually affected up to the depth of 15 m. 

Completion of the initial phase is usually followed by a low energy phase, called 

‘‘ironing”, intended to densify the surficial layers in the upper 1.5 m (Ghassemi et al., 

2010; Mayne et al., 1984).  

DC reduces the risk of liquefaction hazards by densifying the soil thus increasing 

liquefaction resistance. In this dissertation work, the effect of DC in the mitigation of 

liquefaction is studied in detail through a case study. 
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CHAPTER III1 

PREDICTING LIQUEFACTION PROBABILITY BASED ON SHEAR 

WAVE VELOCITY: AN UPDATE 

Introduction 

Liquefaction is one of the most common geotechnical hazards triggered by 

earthquakes. It may cause lateral spreading, surface settlements, and sand boiling, which, 

in turn, may damage structures and infrastructures and induce losses of life. Among 

methods for soil liquefaction potential evaluation, simplified methods based on in situ 

tests, such as standard penetration test (SPT), cone penetration test (CPT), and shear 

wave velocity (Vs) test, are preferred in geotechnical engineering practices as it is usually 

difficult and expensive to sample and conduct dynamic testing. With the simplified 

methods, the liquefaction potential of soil is usually expressed as a factor of safety FS, 

which is defined as the ratio of cyclic resistance ratio (CRR) over the cyclic stress ratio 

(CSR). The soil is said to be liquefied if FS ≤ 1 and be non-liquefied if FS > 1. The 

liquefaction resistance chart, with a horizontal axis to indicate the strength of soil and a 

vertical axis to indicate the shaking level in terms of CSR, is usually used in a 

deterministic approach. In such a chart, a single boundary line is used to separate 

                                                

1A similar form of this chapter is published as: Shen, M., Chen, Q., Zhang, J., Gong, W., & Juang, C. H. 
(2016). Predicting liquefaction probability based on shear wave velocity: an update. Bulletin of 
Engineering Geology and the Environment, 75(3), 1199-1214, doi:10.1007/s10064-016-0880-8. 
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liquefied and non-liquefied case histories (e.g., Seed & Idriss 1971, Robertson & Wride 

1998, Youd et al. 2001, and Andrus & Stoke 2000). 

Due to the uncertainties in soil parameters and seismic loading, it may be desirable to 

represent the liquefaction potential in terms of liquefaction probability (PL) rather than 

safety factor FS. A number of probabilistic models have been developed for liquefaction 

potential evaluation using the simplified methods (SPT, CPT and Vs test) derived from 

the corresponding database (e.g., Christian & Swiger 1975, Liao et al. 1988, Toprak et al. 

1999, Juang et al. 2001 & 2012a, Cetin et al. 2004, Ku et al. 2012, and Boulanger & 

Idriss 2012). Among these models, the logistic regression is widely used for developing 

the probabilistic contours, which are a set of curves showing liquefaction probabilities 

(conditional probabilities) in a liquefaction resistance chart. Although probabilistic 

models based on logistic regression are widely used, there are several other equally 

competitive models, in the form of generalized linear models (GLMs). GLMs have wide 

applications in geology, soil science, hydrology, agronomy and ecology (e.g., Gotway & 

Stroup 1997, Gessler et al. 1995, Lane 2002, and McKenzie & Ryan 1999). The widely 

used logistic regression in geotechnical engineering is simply one example of the GLMs. 

By treating the liquefaction potential of a soil deposit during an earthquake as a binary 

system (i.e., whether or not liquefaction occurs), GLMs can be applied to develop the 

optimal probabilistic model for liquefaction potential evaluation. It should be of interest 

to check different model assumptions when developing an empirical model based on a 

given database such that an optimal model for liquefaction prediction can be attained. 



 18 

This chapter focuses on the Vs-based simplified methods. The advantages of Vs test 

include: (1) Vs test can be conducted in gravelly soils and sites where the SPT and CPT 

are unreliable; (2) Vs test can be also conducted on laboratory samples so that comparison 

can be made between laboratory test and field test; (3) Vs is an engineering property that 

can be related to small-strain shear modulus directly (Andrus et al. 1999). In particular, 

Andrus and Stokoe (2000) pioneered the application of Vs test for liquefaction potential 

evaluation. They assembled a database with 225 case histories (Andrus et al. 1999) which 

is widely used to develop the liquefaction model. Generally, the amount of statistical 

uncertainty involved in liquefaction models may be decreased, as more data become 

available. Therefore, it is quite necessary to collect new case histories and update the 

liquefaction models when possible. Between 2010 and 2011, the Canterbury region of 

New Zealand was shocked by four major earthquake events. Extensive liquefaction 

phenomena were observed, which provides a good chance to update our knowledge 

towards the potential of soil liquefaction in a given seismic event. The objective of this 

chapter is thus two folded: (1) to compile new case histories relating shear wave velocity 

with soil liquefaction observation; and (2) to assess and update the existing probabilistic 

models for liquefaction potential evaluation. The structure of this chapter is as follows. 

First, develop and compare generalized linear models using the adopted database. Then, 

the new case histories compiled in this study from 22 February 2011 Canterbury 

earthquake are used to evaluate the performance of developed models. Finally, the 

models based on the existing database are updated based on the combined database and 
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the optimal model is recommended for liquefaction potential evaluation using the shear 

wave velocity measurements. 

New Liquefaction Cases from the 22 February 2011 Canterbury earthquake 

and the adopted databases  

Between 2010 and 2011, the Canterbury region of New Zealand experienced a total 

of four major earthquake events and numerous small aftershocks. The four main 

earthquakes were on 4 September 2010, 22 February 2011, 13 June 2011 and 23 

December 2011. The detailed information of these four major earthquakes is summarized 

in Table 3.1 (Tonkin & Taylor 2013).  

Table 3.1: Summary of Canterbury earthquakes in 2010 and 2011 (Tonkin & Taylor 
2013). 

Earthquake  NZ Standard 
Date Mw 

Epicenter 
Depth 
(km) Location 

Darfield earthquake 
(Greendale)  Sep. 4th 2010 7.1  10 35 km W of Christchurch 

Christchurch 1 Earthquake 
(Lyttelton)  Feb. 22nd 2011 6.2  5 10 km SE of Christchurch  

Christchurch 2 Earthquake 
(Sumner, 2 events)  Jun. 13th 2011 6.2  6 10 km SE of Christchurch  

9 10 km SE of Christchurch 

Christchurch 3 Earthquake 
(New Brighton, 2 events) Dec. 23rd 2011 6.1  

8 20 km E of Christchurch 

6 10 km E of Christchurch 

These earthquakes caused widespread liquefaction, lateral spreading, and ground 

settlement, which brought extensive damages to residential dwellings and infrastructures, 

especially in Christchurch (Cubrinovski et al. 2011). In particular, the 22 February 2011 
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earthquake was the most damaging event due to its shallow focal depth and the close 

proximity of its rupture plane to Christchurch (Green et al. 2014, Orense et al. 2011). 

Ground Motions of the 22 February 2011 Earthquake 

New Zealand is passed through by the active Pacific-Australian Plate boundary, 

which produces earthquakes, volcanoes, steep terrain and active deformation. As an 

earthquake-prone nation, New Zealand is well monitored by a dense network of 

geophysical instruments and automated software applications, as evidenced by GeoNet 

project (http://geonet.org.nz). 

In order to calculate the cyclic stress ratio CSR, the Peak Ground Acceleration (PGA) 

should be evaluated at each subject location. Using the recorded strong motion data of 

seismographs in the Canterbury region, the conditional PGA distributions at the case 

history sites were computed using the spatial PGA contour maps by Bradley & Hughes 

(2012), which is shown in Figure 3.1. For locations between median contours, the 

conditional PGA may be obtained by linear interpolation (Khoshnevisan et al. 2015). 
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Figure 3.1: Contour map of the computed median of conditional PGAs for the 22 
February 2011 earthquake (Bradly & Hughes 2012). Inset is a zoom-in view of the 

studied area showing contours of PGAs and locations of CPT data. 

Site Investigation Data in the Canterbury Region 

After the September 4, 2010 earthquake, the Earthquake Commission (EQC) of New 

Zealand engaged Tonkin & Taylor (T&T) to undertake geotechnical investigations, 

which comprised CPT, machine boreholes, geophysical testing, groundwater 

observations, laboratory testing, and survey monitoring and environment boreholes. The 

staged land reports of the investigations can be downloaded from the website of EQC 

(http://www.eqc.govt.nz). Moreover, the data from geotechnical site investigations in the 

Canterbury region is enlarged by the delivery agents and clients who are involved in the 

geotechnical work there.  

The compiled data are available in the online database, Canterbury Geotechnical 

Database (CGD, https://canterburygeotechnicaldatabase.projectorbit.com). 

The shear wave velocity dataset studied in this chapter is based on the results of 

active Multichannel Analysis of Surface Waves (MASW) test, seismic CPT test, and 

borehole profiles. The geophysical MASW tests are used to provide shear wave velocity 
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profiles with depth (the average depth is around 13.0 m below the ground level). The 

CPT profiles are used for Ic calculation to obtain clean sand equivalent Vs. Moreover, the 

representative samples from borehole are collected for laboratory testing for index 

properties. In this study, only locations with complete Vs, CPT, and borehole profiles are 

selected. All the CPT locations and active MASW lines of the cases examined are shown 

in Figure 3.2. 

 

Figure 3.2: CPT locations and active MASW lines. Insets on the left are two additional 
studied regions not included in the larger area map on the right. 

To illustrate how to obtain shear wave value at each location, CPT-116 in Figure 

3.3(a) is used as an example. As shown in Figure 3.3(a), the active MASW lines are very 

close to the most CPT test locations. In A-A’ section, the shear wave velocity profile of 

the point, which is along the MASW 200m-300m line and nearest to the location of CPT-

116, is used to represent the shear wave velocity at CPT-116. Then, the shear wave 

velocity profile with depth can be read from color contour shown in Figure 3.3(b) where 

CPT-116 is at the chainage of 248 m. When determining the Vs value at the critical layer, 
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the critical value is taken as the average Vs over a 0.5 m interval to reduce potential biases 

(Zhou et al. 2012). 

 
(a) 

 
(b) 

Figure 3.3: Determination of shear wave velocity for CPT-116; (a) Location of CPT-116 
and nearby MASW lines; (b) Color contour of shear wave velocity along the 200-300 m 

MASW line. 

The laboratory tests include the particle size distribution and the fines content (wet 

sieve). The fines content (FC) of the critical layer is required in the cyclic resistance ratio 

(CRR7.5) calculation to adjust the measured shear wave velocity to a clean sand 

equivalence. For locations without fines content tests, FC is estimated using the site-
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specific Ic-FC correlation relationship proposed by Green et al. (2014). The Ic value is 

calculated using the CPT data and the empirical correlation proposed by Robertson and 

Wride (1998). 

Using the information described previously, the case histories from the 22 February 

2011 Canterbury earthquake are summarized in Table 3.2. The table consists of 45 cases 

in total, among which 36 cases are serious liquefied and 9 cases are marginal liquefied. 



 25 

Table 3.2: Summary information of case histories from the 22 February 2011 Canterbury earthquake. 

Site No. CPT Database No. Test Date 

Ground 
Water 
Table 

Median 
depth 

Upper 
bound 

Total 
stress 

Effective 
stress Field Test Data Calculated Data 2011.02.22 Earthquake 

Mw=6.3 

GWT dm du σv σv' qc fs Vs FC1 Ic Vs1,cs amax CSR7.5 Liq.2 

    m m m (kPa) (kPa) (Mpa) (Mpa) (m/s) (%)  (m/s) (g)   

Avondale 1 CPT-37 11/19/2010 2.1  6.3  4.5  116.4  75.7  6.69  0.043  154  14  1.90  167  0.37  0.227  2 

 2 CPT-855 11/9/2010 2.4  5.5  2.5  100.6  70.7  6.59  0.030  155  5  1.81  169  0.44  0.250  2 

 3 CPT-857 11/9/2010 2.4  5.1  3.4  93.0  67.0  7.18  0.035  142  7  1.78  157  0.41  0.230  2 
Avonside 4 CPT-116 12/1/2010 1.5  3.8  2.0  69.5  47.4  9.28  0.048  133  41  1.64  166  0.43  0.253  2 

 5 CPT-117 11/16/2010 1.3  3.3  1.5  60.2  41.1  4.49  0.026  124  21  1.91  158  0.44  0.261  2 

 6 CPT-111 11/18/2010 1.3  3.3  2.5  60.2  41.1  6.91  0.045  136  5  1.77  170  0.46  0.275  2 

 7 CPT-135 7/18/2010 2.1  6.0  5.5  111.6  73.4  17.54  0.057  195  11  1.37  215  0.49  0.298  2 

 8 CPT-136 7/18/2011 2.0  8.5  7.0  159.5  95.8  13.87  0.082  204  »10* 1.66  209  0.51  0.329  2 
Richmond 9 CPT-540 12/7/2010 2.0  5.2  4.4  96.4  65.1  7.41  0.036  154  3  1.76  171  0.45  0.267  2 

 10 CPT-516 11/22/2010 2.4  3.5  3.0  63.4  52.6  6.14  0.037  138  28* 1.85  167  0.44  0.214  2 

 11 CPT-525 11/5/2010 1.2  3.6  2.4  66.1  43.0  5.28  0.019  130  1  1.75  160  0.42  0.262  2 

 12 CPT-514 11/22/2010 2.0  3.0  2.0  54.4  44.6  2.30  0.010  124  £ 5* 2.13  152  0.45  0.223  2 

 13 CPT-542 12/7/2010 1.5  4.0  2.4  74.2  49.7  7.40  0.034  137  £ 5* 1.70  163  0.43  0.256  2 

 14 CPT-520 1/20/2010 1.1  4.5  2.0  84.4  51.1  6.54  0.023  137  £ 5* 1.70  162  0.42  0.279  2 

 15 CPT-543 12/7/2010 1.0  3.8  2.4  71.1  43.7  7.39  0.033  141  £ 5* 1.67  173  0.42  0.277  2 
Bexley-aranui 16 CPT-155 11/3/2010 1.5  6.1  3.2  114.4  69.3  3.80  0.024  132  10  2.10  145  0.57  0.374  2 

 17 CPT-176 9/30/2010 1.9  3.5  2.0  64.1  48.4  4.97  0.013  118  12  1.74  143  0.57  0.306  2 

 18 CPT-173 9/30/2010 1.1  4.5  2.0  84.4  51.1  6.53  0.023  126  20  1.70  152  0.56  0.374  2 

 19 CPT-178 11/24/2010 1.5  5.5  3.4  101.9  63.2  3.66  0.026  126  17  2.12  143  0.56  0.361  2 

 20 CPT-170 11/24/2010 1.5  3.4  2.6  62.8  44.1  2.81  0.026  122  17  2.21  151  0.56  0.320  2 
Burwood 21 CPT-277 11/10/2010 1.1  3.0  1.5  55.7  37.1  2.87  0.013  113  13  2.01  146  0.34  0.209  2 

 22 CPT-280 11/9/2010 1.6  4.0  1.0  74.1  50.6  4.07  0.017  138  3  1.92  164  0.34  0.201  2 
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 23 CPT-279 11/8/2010 1.7  3.8  1.7  69.2  49.1  3.68  0.016  114  1  1.96  136  0.35  0.197  2 
Dallington 24 CPT-1088 11/17/2010 2.1  9.5  8.0  178.5  105.9  13.60  0.103  187  2  1.75  184  0.47  0.300  2 
Lower 25 CPT-1085 11/19/2010 0.9  4.4  2.6  82.8  48.5  3.74  0.020  120  4  1.99  144  0.49  0.338  2 

 26 CPT-1086 11/18/2010 1.5  4.0  2.6  74.2  49.7  3.57  0.014  139  16  1.96  168  0.51  0.304  2 

 27 CPT-1092 11/18/2010 2.4  4.8  4.0  87.2  64.2  12.21  0.062  134  5  1.59  149  0.48  0.262  2 

 28 CPT-1098 11/17/2010 2.4  7.8  6.0  144.6  92.1  14.57  0.076  216  3  1.60  221  0.45  0.279  2 
Kaiapoi 29 CPT-1267 11/10/2010 1.4  4.5  3.2  83.0  53.1  7.14  0.029  115  2  1.70  135  0.18  0.116  1 
North 30 CPT-1293 11/10/2010 1.5  4.0  3.5  73.3  49.3  5.55  0.028  125  20  1.83  152  0.18  0.109  2 
Kaiapoi 31 CPT-1316 11/11/2010 2.0  5.0  3.5  92.6  63.2  4.19  0.030  130  39* 2.06  151  0.18  0.107  1 
    South 32 CPT-1315 11/10/2010 2.1  3.5  2.0  63.8  50.1  4.76  0.031  129  6  1.95  154  0.19  0.096  1 

 33 CPT-1344 12/8/2010 3.3  8.3  6.5  152.8  104.3  7.53  0.035  231  6  1.84  230  0.19  0.108  1 
New  34 CPT-300 12/3/2010 2.0  6.3  3.6  117.5  75.3  5.91  0.029  148  30* 1.89  163  0.35  0.213  2 
    Brighton 35 CPT-317 12/9/2010 0.7  4.0  2.6  75.4  43.1  5.65  0.026  114  £ 5* 1.78  141  0.35  0.244  2 

 36 CPT-318 12/9/2010 0.5  4.4  2.4  83.3  45.1  4.83  0.022  122  £ 5* 1.85  149  0.34  0.254  2 

 37 CPT-301 12/3/2010 2.7  4.8  2.7  86.8  66.7  5.19  0.019  125  £ 5* 1.85  138  0.34  0.177  2 

 38 CPT-319 12/9/2010 0.7  4.3  2.5  80.2  45.4  4.44  0.021  119  £ 5* 1.89  145  0.34  0.238  2 

 39 CPT-320 12/9/2010 0.8  5.2  2.7  98.2  55.1  5.10  0.023  167  £ 5* 1.86  194  0.33  0.235  2 
Spencerville 40 CPT-667 10/28/2010 0.9  3.7  3.0  69.4  41.9  5.35  0.021  127  £ 5* 1.76  157  0.25  0.164  1 

 41 CPT-668 10/28/2010 1.6  3.9  3.0  71.2  49.2  6.80  0.017  115  4  1.61  137  0.25  0.144  1 

 42 CPT-669 10/28/2010 1.5  3.6  2.7  65.6  45.5  5.64  0.028  130  26* 1.81  162  0.25  0.144  1 

 43 CPT-670 10/28/2010 1.1  3.2  1.1  59.5  39.0  4.93  0.022  136  1  1.80  172  0.25  0.154  1 

 44 CPT-671 10/28/2010 2.0  3.1  2.2  56.3  45.5  6.72  0.042  133  26* 1.80  165  0.25  0.125  1 
Wainoni 45 CPT-846 11/15/2010 2.0  5.3  4.0  97.4  65.5  13.66  0.072  182  »10* 1.56  204  0.51  0.302  2 

Notes:  
1 The FC value with * mark was estimated using site specific Ic-FC correlation proposed by Green et al. (2014); 
2 Liq.=0 means non-liquefaction; Liq.=1 means marginal liquefaction; Liq.=2 means serious liquefaction. 
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Databases and Review of Deterministic Method 

Two databases will be used in this study according to different studied purposes. The 

first database is assembled by Andrus et al. (1999), denoted as Andrus 1999 database 

herein. It consists of 105 liquefied cases and 120 non-liquefied cases for a total of 225 

cases. It includes the shear wave velocity measurements from over 70 sites and soil 

liquefaction data from 26 earthquakes, as summarized in Table 3.3. The shear wave 

velocity tests along with liquefaction observations, acceleration data from ground motion 

stations, and results of laboratory tests were used to determine the cyclic resistance ratio 

CRR7.5 and cyclic stress ratio CSR7.5. The deterministic approach proposed by Andrus 

(2000) is summarized in Appendix A. 

The second database is called combined database here, which is the Andrus 1999 

database supplemented with the 36 serious liquefied case histories from the 22 February 

2011 Canterbury earthquake for a total of 261 cases. The 9 marginal liquefied cases are 

not included in the combined database to reduce the data uncertainty.  

The Andrus 1999 database is adopted to develop the optimal model using the GLMs. 

The combined database is used to update the proposed model. 
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Table 3.3: Ranges of measurements of the Andrus 1999 database. 

Earthquake In Situ Ttest Type1 
Number of Cases Average Depth amax Mw Vs FC 

Liq. Non-liq. (m) (g)  (m/s) (%) 
1906 San Francisco, California Xhole 8 4 4.2-9.9 0.32-0.36 7.7 131-200 <5-44 
1957 Daly City, California SASW 0 5 3.5-7.9 0.11 5.3 105-220  2-12 
1979 Imperial Valley, California Xhole & SASW 4 7 3-4.7 0.12-0.51 6.5 90-173 10-75 
1981 Westmorland, California Xhole & SASW 6 5 3-4.7 0.03-0.36 5.9 90-173 10-75 
1983 Borah Peak, Idaho Xhole & SASW 15 3 1.9-3.7 0.23-0.46 6.9 94-274 <5-6 
1987 Elmore Ranch, California Xhole & SASW 0 11 3-4.7 0.03-0.24 5.9 90-173 10-75 
1987 Superstition Hills, California Xhole & SASW 3 8 3-4.7 0.18-0.21 6.5 90-173 10-75 
1989 Loma Prieta, California Xhole, SASW & SCPT 42 25 2.3-9.9 0.13-0.42 7 91-220 1-57 
1994 Northridge, California SCPT 3 0 5.4-5.6 0.51 6.7 129-160 ~10 
1975 Haicheng, China Dhole 5 1 3-10.2 0.12 7.3 98-147 42-92 
1985 Taiwan (event LSST2) Xhole 0 4 5.3-6.1 0.05 5.3 127-156 50 
1985 Taiwan (event LSST3) Xhole 0 4 5.3-6.1 0.02 5.5 127-156 50 
1986 Taiwan (event LSST4) Xhole 0 4 5.3-6.1 0.22 6.6 127-156 50 
1986 Taiwan (event LSST6) Xhole 0 4 5.3-6.1 0.04 5.4 127-156 50 
1986 Taiwan (event LSST7) Xhole 0 4 5.3-6.1 0.18 6.6 127-156 50 
1986 Taiwan (event LSST8) Xhole 0 4 5.3-6.1 0.04 6.2 127-156 50 
1986 Taiwan (event LSST12) Xhole 0 4 5.3-6.1 0.18 6.2 127-156 50 
1986 Taiwan (event LSST13) Xhole 0 4 5.3-6.1 0.05 6.2 127-156 50 
1986 Taiwan (event LSST16) Xhole 0 4 5.3-6.1 0.14 7.6 127-156 50 
1964 Niigata, Japan SASW 3 1 3.2-6.2 011-0.16 7.5 112-162 <5 
1980 Mid-Chiba, Japan Dhole 0 2 6.1-14.8 0.08 5.9 155-195 25-30 
1985 Chiba-Ibaragi, Japan Dhole 0 2 6.1-14.8 0.05 6 155-195 20-35 
1987 Chiba0Toho-Oki, Japan Dhole 0 1 9 0.1 6.5 150 15 
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1993 Kushiro-Oki, Japan Susp. 2 0 4.2-4.5 0.41 8.3 135-152 5~7 
1993 Hokkaido-Nansei-Oki, Japan Dhole & Susp. 3 1 2.0-7.0 0.15-0.19 8.3 74-143 <5-54 
1995 Hyogoken Nanbu, Japan Dhole & Susp. 11 8 3.3-15 0.12-0.65 6.9 110-214  2-18 

Notes: 
1 In Situ Test Type: Xhole = Crosshole Seismic Test; Dhole = Downhole Seismic Test; SCPT = Seismic Cone Penetration Test; SASW = Spectral Analysis of Surface 

Wave Test; Susp. = Suspension Logger Test 
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Prediction of Soil Liquefaction Based on GLMS 

Generalized Linear Models (GLMs) 

Denote the independent variable as X = (x1, x2,…, xi,…, xp), the response of n 

independent observations as Y = (y1, y2,…, yi,…, yn) with expectation of each observation 

µi = E(yi). The generalized linear model usually consists of three components, i.e., a 

random component, a linear predictor and a link function (Fox 2015, Gelman et al. 1995). 

The link function g(×) is a link to relate the expectation of the response variable µi to the 

linear predictor hi as 

( )i igh µ=                                                           (3.1) 

where the linear predictorhi is a linear combination of independent variables X. The 

linear combination of Vs1, cs and ln(CSR7.5) used in Juang et al. (2002) is adopted here as 

the independent variables and hi is therefore given as 

0 1 1 2 2 0 1 1, 2 7.5...+ ( ) ln[( ) ]i i i p ip s cs i ib b x b x b x b b V b CSRh = + + + = + +         (3.2) 

The effect of linear predictor as defined in Eq. (3.2) has been investigated by Juang et 

al. (2002), therefore it is not considered here. Rather, the effect of link functions on 

liquefaction potential evaluation will be explicitly considered in this chapter. The 

commonly used link functions and their inverse functions are listed in Table 3.4 (Fox 

2015).  
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Table 3.4: Common link functions and their inverses (Fox 2015). 

No. Model ( )i igh µ=  1( )i igµ h-=  

1 Identity iµ  ih  

2 Log ln iµ  exp( )ih  

3 Inverse 1
iµ
-  1

ih
-  

4 Inverse-square 2
iµ
-  1/2

ih
-  

5 Square-root 1/2
iµ
-  2

ih  

6 Logit (logistic) ln
1

i

i

µ
µ-

 1
1 exp( )ih+ -

 

7 Probit 1( )iµ
-F  ( )ihF  

8 Log-log ln[ ln( )]iµ- -  exp[ exp( )]ih- -  

9 Complementary log-log ln[ ln(1 )]iµ- -  1 exp[ exp( )]ih- -  

The last four link functions in Table 3.4, namely logit (logistic), probit (inverse of 

normal), log-log and complementary log-log (c-log-log), are commonly used for analysis 

of binary data and are adopted in this chapter. 

For liquefaction potential evaluation considered herein, the response variable yi can 

only have two possible values, i.e., 1 for liquefaction and 0 for non-liquefaction. The 

probability of yi can be defined as  

( 1) for liquefied cases
Probability of 

( 0) 1 for non-liquefied cases
i Li

i

i Li

P y P
y

P y P

ì = =ï= í
= = -ïî             (3.3) 

Then, the expectation µi will be equal to the probability of liquefaction, PLi, as 

( ) 1 0 (1 )i i Li Li LiE y P P Pµ = = ´ + ´ - =                                (3.4) 

Substituting Eq. (3.1) to Eq. (3.4), the probability of liquefaction PLi is expressed as 

1 1
0 1 1, 2 7.5( ) { ( ) ln[( ) ]}Li i i s cs i iP g g b b V b CSRµ h- -= = = + +                (3.5) 
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With the Eq. (3.5), using logistic, probit, log-log and complementary log-log models 

listed in Table 3.4, the probabilistic models can be established and shown from Eq. (3.6) 

to Eq. (3.9). 

Logistic:  

0 1 1, 2 7.5

1
1 exp{ [ ln( )]}L

s cs

P
b bV b CSR

=
+ - + +                      (3.6) 

Probit: 

 0 1 1, 2 7.5[ ln( )]L s csP b bV b CSR=F + +                                    (3.7) 

Log-log: 

 0 1 1, 2 7.5exp{ exp[ ( ln( ))]}L s csP b bV b CSR= - - + +                 (3.8) 

C-log-log:  

0 1 1, 2 7.51 exp{ exp[ ln( )]}L s csP b bV b CSR= - - + +                  (3.9) 

Maximum Likelihood Estimation Considering the Sampling Bias 

Assume there are nL liquefied cases and nNL non-liquefied cases in a database. Denote 

q = (b0, b1, b2,…, bp) as the model parameters to be estimated, and f(yi|q) as the 

probability density function of Y given q, which can be obtained from Eq. (3.5). Then, 

the likelihood function l (q |Y), namely, the chance to observe Y given q, is equal to the 

joint probability function as follows 

1 1

1 1 1 1

( | ) ( | ) [1 ( | ) ( | ) [1 ( | )]
NL NLL Ln nn n

i j i j
i j i j

l f y f y g gq q q h q h q- -

= = = =

= - = -Õ Õ Õ ÕY
       (3.10) 
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The sampling bias effect should be considered for the database. The bias mainly 

comes from two aspects. One is that the earthquake investigators are more inclined to 

conduct in situ tests in liquefied sites than in non-liquefied sites. The field tests are not 

randomly distributed over the studied region. The other is that the observed data may be 

collected or excluded by prior researchers based on their own prior knowledge and 

experience or judgment on data quality. Therefore, the compiled database may be varied. 

Due to the perception that sampling bias exists in the database, a weighted likelihood 

function, widely used in previous studies (Cetin et al. 2002, Juang et al. 2009, Ku et al. 

2012, and Boulanger & Idriss 2012), is adopted in this chapter for sampling bias 

correction. 

1 1

1 1

( | ) ( | ) [1 ( | )]Y
NLL NLL
ww nn

i j
i j

l g gq h q h q- -

= =

= -Õ Õ
                     (3.11) 

where wL and wNL are the weighting factors for liquefied cases and non-liquefied cases, 

respectively. Then, the model parameter q can be determined by maximizing the value of 

likelihood function given by Eq. (3.11), or equivalently, the logarithmic of the likelihood 

function namely log-likelihood L(q |Y) for computation efficiency. 

A proper estimation of wL and wNL will decrease the sampling bias and reduce the 

uncertainties of model prediction. There are two approaches commonly used to obtain the 

weighting factors. The first approach is proposed by Ku et al. (2012), which is an 

intuitive approach. For the calculation of weighting factor wL, firstly take the nL
th root of 

the product 
1

1

( | )
Ln

i
i
g h q-

=
Õ

 in Eq. (3.11) to find an “equivalent” likelihood case. While for 
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the calculation of wNL, take nNL
th root of the product 

1

1

[1 ( | )]
NLn

j
j

g h q-

=

-Õ
. Secondly, the 

[(nL+nNL)/2]th power is taken for the products of liquefied and non-liquefied cases in last 

step to “raise” the likelihood back to the parity “structure”. With these steps, equations 

for wL and wNL are obtained and expressed in Eq. (3.12) and Eq. (3.13) respectively. 

2
L NL

L
L

n nw
n
+

=
                                                    (3.12) 

2
L NL

NL
NL

n nw
n
+

=
                                                  (3.13) 

For the Andrus 1999 database, nL = 105 and nNL = 120; thus, weighting factors are 

determined to be: wL = 1.0714 and wNL = 0.9375 (and thus, wNL/wL = 0.875). 

The other approach is proposed by Cetin et al. (2002). The calculations of weighting 

factors are shown below: 

L p sw Q Q=                                                      (3.14) 

(1 ) (1 )NL p sw Q Q= - -                                              (3.15) 

where Qp is the true population proportion of liquefied cases in nature, and Qs is sample 

population proportion of liquefied cases in studied database. It is easy to calculate Qs for 

current database, which is 105/225 = 0.4667. However, it is impossible to know the Qp 

value. Cetin et al. (2002) proposed two options to get the weighting factors. The first 

option is to consult with experts on the ratio of weighting factors (wNL/wL). Cetin et al. 

(2002) recommended the ratio of weighting factors should be between 1.0 and 3.0 and the 

most common range is 1.5 to 2.0. The second option is to conduct sophisticated Bayesian 
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updating analyses for wNL and wL values. Based on the SPT database, Cetin et al. (2002) 

obtained wNL and wL values of 1.2 and 0.8 (wNL/wL = 1.5), respectively. The values of 

weighting factors used for the current database will be discussed later. 

Model Assessment Criteria 

With the developed general linear models, model assessment criteria are used to 

determine the optimal model. There are several criteria available to assess model 

performance (Myung & Pitt 2004), including the Akaike information criterion (AIC) 

(Akaike 1973), the Bayesian information criterion (BIC) (Schwarz 1978), and the cross-

validation (CV) (Stone 1974).  

Assume there are r candidate models, which are denoted as M1, M2,…, Mm,…, Mr. 

The AIC, BIC and CV of the mth model are defined as follow: 

*2 ln ( | , ) 2m mAIC l M k= - +θ Y                                          (3.16) 

*2 ln ( | , ) lnm mBIC l M k n= - +θ Y                                      (3.17) 

*
val cal2 ln [ | ( | , )]m mCV f y M y= - θ                                      (3.18) 

where l(q*|Mm, Y) is likelihood function which gets its maximum value in point q* given 

the model Mm and the observation Y; k is the number of model parameters; n is the 

number of data points in the database; ycal is the calibration samples and yval is the 

validation samples; f (×) is the probability density function. A model with minimum value 

of AIC, BIC and CV is the preferred (optimal) model for each corresponding criterion. 

The AIC and BIC are easy to calculate using Eqs. (3.16) & (3.17). The first term is 

the log-likelihood function, which represents the model fitting effect. The second term 
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represents the complexity of the model to be evaluated, which is a function of number of 

model parameters k for the AIC criterion, and of the sampling size n and k for the BIC 

criterion, respectively. The AIC and BIC criteria are easy to calculate but they do not 

consider the specific functional form of the probabilistic models. The CV is able to 

account for the functional form, e.g., the probabilistic models Eqs. (3.6) - (3.9). 

For the CV criterion (Myung & Pitt 2004), the database is firstly divided into two 

sub-samples, i.e., the calibration samples ycal and the validation samples yval. The 

calibration samples will be used to find the model parameters q* using the maximum 

likelihood method. Then, the validation samples will be used to calculate the CV index 

defined in Eq. (3.18) given the q* from the calibration samples. For the current database, 

we assign the U.S. liquefaction case histories as the calibration samples and the 

remaining case histories as the validation samples. 

Development of Optimal Model Using Andrus 1999 Database 

Sampling Bias Effect 

According to Eqs. (3.12) - (3.15), the wL and wNL are related and can be calculated 

from each other. Therefore, the sensitivity study of wNL/wL ratio is performed to 

investigate the weighting factors effect. Five levels of wNL/wL (0.875, 1.0, 1.5, 2.0 and 

3.0) are selected to construct liquefaction resistance chart using logistic model (PL = 

50%) based on recommendations from previous studies by Ku et al. (2012) 

(wNL/wL=0.875) and Cetin et al. (2002) (wNL/wL ranging from 1.0 - 3.0). Results of the 

sensitivity study are shown in Figure 3.4. 
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The solid circles in this figure represent sites where liquefaction occurred and open 

circles represent sites where liquefaction did not occur. It can be seen from Figure 3.4 

that the wNL/wL affects the liquefaction probability prediction. With the decrease of 

wNL/wL, the probabilistic curve moves toward the non-liquefied cases, which means a 

more conservative prediction. Since the nL is smaller than nNL for the current shear wave 

Vs database, the wNL/wL value should be smaller than 1. The Ku et al. (2012) approach 

seems more acceptable and reasonable than the Cetin et al. (2002) approach which is 

based on an SPT database and nL > nNL. Therefore, wL = 1.0714 and wNL = 0.9375 (wNL/wL 

= 0.875) are adopted for the weighted maximum likelihood function.  

 
Figure 3.4: Sensitivity study of wNL/wL ratio (logistic model, PL = 50%) 

It should be noted that some non-liquefied cases in Figure 3.4 clearly fall within the 

range of liquefied cases. There are at least two possible reasons. One is the existence of a 

thick capping clay layer, which might have prevented surface manifestation of liquefied 
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soil. Such cases would have been recorded as non-liquefied even if liquefaction had 

occurred as discussed in Andrus et al. (2004). Another possible reason is the 

measurement error in shear wave velocity, ground water table, and/or peak ground 

acceleration. The issue of data quality is, however, not the focus of this chapter. 

Models Comparison and Selection of the Optimal Model 

The model parameters of the probabilistic models established in Eqs. (3.6) - (3.9) are 

determined using the maximum likelihood estimation considering sampling bias as 

described previously, and the results are listed in Table 3.5.  

Table 3.5: Model parameters and assessment index of GLMs for Andrus 1999 database 

Model 
Model parameters 

L(q|D) AIC BIC CV 
b0 b1 b2 

Logistic 14.9935  -0.0614  2.6331  -91.83  189.65  199.90  43.89  
Probit 8.6420  -0.0355  1.5139  -91.85  189.69  199.94  44.76  
Log-log 11.5106  -0.0453  1.9321  -90.09  186.17  196.42  43.22  
C-log-log 8.1913  -0.0355  1.5193  -95.54  197.07  207.32  48.89  

To compare the developed logistic, probit, log-log and complementary log-log 

models, the liquefacion resistant charts of these four models are plotted for 6 PL levels 

(5%, 10%, 30%, 50%, 85% and 95%) in Figure 3.5. It is observed that at lower levels of 

probability (i.e., PL < 30%), the probabilistic curves from different GLMs are very 

different. The probabilistic curves of probit and logistic models are bracketed by those of 

log-log and c-log-log models, and the difference is more obvious with the decrease of PL 

value. The c-log-log model gives the most conservative prediction, while log-log is the 

least convervative. For PL = 30% and 85%, the probabilistic curves yield by the four 
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models are about the same. For 30% < PL < 85%, the differences among these four 

models are negligible. For PL > 85%, the log-log model becomes the least conservative 

and deviates from the other three models. It is noted that the probability curves of logistic 

and probit model are very similar for all PL levels.  
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(a) PL = 5%                                                     (b) PL = 10% 
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(c) PL = 30%                                                  (d) PL = 50% 
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(e) PL = 85%                                                    (f) PL = 95% 

Figure 3.5: Performances of the four generalized linear models under different PL levels 
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The developed four generalized linear models are also ranked based on the three 

model assessment criteria, namely AIC, BIC and CV, as expressed in Eqs. (3.16) - (3.18). 

The results are shown in Table 3.3. It can be concluded that the log-log model is the most 

optimal since it has the highest log-likelihood value and smallest AIC, BIC and CV 

values. The logistic model is a close second and is very attractive due to its simple 

functional form. Therefore, both log-log and logistic model are recommended for 

liquefaction evaluation based on the shear wave velocity. The model expressions are 

summarized in Eqs. (3.19) & (3.20). 

Log-log: 

1, 7.5exp{ exp[ 11.5106 0.0453 1.9321ln(CSR )]}L s csP V= - - + -            (3.19) 

Logistic: 

1, 7.5

1
1 exp[ 14.9935 0.0614 2.6331ln(CSR )]L

s cs

P
V

=
+ - + -

                (3.20) 

Comparison with Existing Model 

The log-log model, as a new proposed probabilistic model for Vs-based liquefaction 

evaluation, is compared with two existing models that were developed using the same 

database (Juang et al. 2002). The first model, denoted as the Juang 2002 logistic model, is 

developed by a simple logistic regression approach. The expression is shown in Eq. 

(3.21). The second model, denoted as the Bayesian model, is developed using the 

Bayesian mapping function. It is expressed in terms of factor of safety FS and shown in 

Eq. (3.22). 
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1, 7.5

1
1 exp[ 14.8967 0.0611 2.6418ln( )]L

s cs

P
V CSR

=
+ - + -               (3.21) 

3.4

1

[1 ( ) ]
0.73

L
S

P F=
+

                                              (3.22) 

The Juang 2002 logistic model is similar in functional form as the logistic model 

proposed in this chapter, Eq. (3.20), but the model parameters are slightly different. The 

differences may be caused by the sampling bias effect correction. The comparison 

between Juang 2002 logistic model and the log-log model proposed in this chapter is 

shown in Figure 3.6(a). For PL < 0.3 and PL > 0.85, probabilistic curves of the proposed 

log-log model locate to the left side of the Juang 2002 logistic model, which means the 

proposed log-log model gives less conservative prediction than the Juang 2002 logistic 

model. For PL = 0.3 and PL = 0.85, the probabilistic curves of the two models yield very 

similar predictions. For PL between 0.3 and 0.85, the proposed log-log model is slightly 

more conservative than the Juang 2002 logistic model. Such conservative prediction from 

log-log model has also been observed in Figure 3.5 when compared to the proposed 

logistic model. 
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(a) 

 
(b) 

Figure 3.6: Comparison of log-log model with the existing Juang 2002 logistic model and 
the Bayesian model; (a) Log-log model and Juang 2002 logistic model; (b) Log-log 

model and the Bayesian model. 

The Bayesian model, which is expressed in terms of FS, can be converted to forms 

comparable to the GLMs recoganizing that FS = CRR7.5/CSR7.5 and CRR7.5 is a function 

of Vs1,cs as shown in Eq. (A.5). For FS = 1, which is the critical state for a deterministic 
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method, PL = 0.26 according to Eq. (3.25). The comparison of the Bayesian model and 

the log-log model is shown in Figure 3.6(b). From the plot, it can be seen that 

probabilistic curves yield by the Bayesian model deviate from the log-log model 

especially for larger values of Vs1,cs and CSR7.5. For instance, for PL = 0.26, which 

corresponding to FS = 1 in the Bayesian model, the log-log model yields significantly 

lower CSR7.5 compared to the Bayesian model for Vs1,cs greater than 200 m/s. The lack of 

case history data in region of the high shear wave velocity, along with the choice of 

functional form, might have contributed to such significant disparity between two 

models. When PL = 0.6, the probabilistic curves of Bayesian model and log-log model are 

most close to each other. Finally, when PL < 0.6 the log-log model is more conservative 

than Bayesian model, while less conservative when PL > 0.6. 

An Update of Proposed Models Using Combined Database 

Model Performance for the 22 February 2011 Earthquake 

Before updated the proposed models using the combined database, these models are 

first checked for their performance against the newly compiled case histories from the 22 

February 2011 Canterbury earthquake.  

The 45 case histories data listed in Table 3.1, and the proposed log-log and logistic 

model in Eqs. (3.19) & (3.20), are plotted in Figure 3.7. It is noted that 36 of the 45 data 

are serious liquefied cases and the other 9 are marginal liquefied cases. It can be seen 

from Figure 3.7 that 30 of the 36 serious liquefied cases are above the probabilistic curve 

PL = 0.65, which, according to the liquefaction likelihood classification defined by Chen 



 44 

and Juang (2000), is very likely to liquefy. Only two liquefied cases are shown to have a 

probability of less than 35%. Thus, the proposed models are quite satisfactory in 

predicting the liquefaction in the 22 February 2011 Canterbury earthquake. 

 
Figure 3.7: Performance of the proposed log-log and logistic model in 22 February 2011 

Canterbury earthquake. 

Update of the Proposed Models 

The above analysis shows that the developed log-log model and logistic model are 

able to predict new case histories with reasonable accuracy. As more data are available, 

the developed models can be updated by incorporating more data into the database. In 

this section, the original Andrus 1999 database is expanded with the 36 serious liquefied 

case histories compiled in this study from the 22 February 2011 Canterbury earthquake, 

which results in a combined database of 261 cases. The statistics of the key variables for 

liquefaction models based on the combined database is shown in Table 3.6. 
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Table 3.6: Statistics of the variables for combined database 

Statistics index 
Depth σv σv' amax Mw Vs 

(m) (kPa) (kPa) (g) / (m/s) 
Minimum 1.9 38.4 27.8 0.02 5.3 74 
Maximum 15 299.3 195.4 0.65 8.3 274 
Mean 5.4  98.2  65.0  0.26  6.7  143  
Standard deviation 2.1  39.5  28.2  0.16  0.6  31  
Coefficient of variation 0.400  0.402  0.434  0.628  0.092  0.214  

Following the methodology proposed in Section of Ground Motions of the 22 

February 2011 Earthquake, the four GLMs can be developed based on the combined 

database. The weighting factors using Ku et al. (2012) approach are calculated to be wL = 

0.9255 and wNL = 1.0875 (wNL/wL = 1.175), which is adopted for the sampling bias 

correction. The updated model parameters and the results of model assessments are 

summarized in Table 3.7.  

Table 3.7: Model parameters and assessment index of GLMs for combined database 

Model 
Model parameters 

L(q|D) AIC BIC CV 
b0 b1 b2 

Logit 14.3931  -0.0552  2.8628  -105.89  217.77  228.47  50.38  
Probit 8.3135  -0.0320  1.6468  -105.95  217.91  228.60  51.36  
Log-log 10.9640  -0.0397  2.1304  -104.09  214.17  224.87  49.43  
C-log-log 7.9444  -0.0328  1.6283  -110.02  226.04  236.73  55.90  

The log-log model remains the optimal model by AIC, BIC and CV criteria while the 

logistic model ranks second for the combined database. Those results are consistent with 

results based on the Andrus 1999 database. The updated functional form for the log-log 

and logistic models are shown in Eqs. (3.23) & (3.24), respectively. 

Updated log-log: 
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1, 7.5exp{ exp[ 10.9640 0.0397 2.1304ln( )]}L s csP V CSR= - - + -            (3.23) 

Updated logistic:  

1, 7.5

1
1 exp[ 14.3931 0.0552 2.8628ln( )]L

s cs

P
V CSR

=
+ - + -                (3.24) 

The liquefaction resistance charts using the updated log-log and logistic models based 

on the combined database are shown in Figure 3.8(a) and Figure 3.8(b), respectively.  

 

 

 
(a) 
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(b) 

Figure 3.8: Liquefaction resistance charts of updated log-log/logistic model for combined 
database and log-log/logistic model for Andrus 1999 database; (a) Log-log model; (b) 

Logistic model. 

The log-log and logistic models based on the Andrus 1999 database are also plotted. 

Compared to the original models based on Andrus 1999 database, the probability curves 

of the updated log-log or logistic model shift down to accommodate more liquefied cases 

added from the Canterbury earthquake, especially in the region with high Vs1,cs and 

CSR7.5 values. The probabilistic curves of generalized linear models are found sensitive 

to the database used for model development. 

Summary 

In this chapter, probabilistic models for liquefaction potential evaluation based on Vs 

measurements are developed. Four probabilistic models based on generalized linear 
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models (GLMs) are developed and calibrated. The maximum likelihood estimation is 

used to determine the model parameters. Then, the developed generalized linear models 

are ranked using multiple statistical criteria and applied to assess new case histories 

derived from the 22 February 2011 Canterbury Earthquake. Based on the assessment 

criteria adopted, the log-log and logistic models were recommended for the adopted 

database. The updated log-log model and logistic model were recommended for Vs-based 

liquefaction potential evaluation. 
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CHAPTER IV2 

RANDOM FIELD-BASED REGIONAL LIQUEFACTION HAZARD 

MAPPING — DATA INFERENCE AND MODEL VERIFICATION 

USING A SYNTHETIC DIGITAL SOIL FIELD 

Introduction 

Liquefaction evaluation is an important issue in the field of geotechnical earthquake 

engineering. Many simplified liquefaction evaluation models have been developed based 

on collected databases of case histories in the past earthquakes, following the framework 

of the original simplified procedure (Seed and Idriss, 1971 & 1982). These simplified 

methods rely on in situ testing, e.g., the standard penetration test (SPT), the cone 

penetration test (CPT), or the shear wave velocity (Vs) test, as a way to obtain and 

characterize the strength of the soil to resist liquefaction (e.g., Seed et al. 1985; Robertson 

and Wride 1998; Andrus and Stokoe 2000; Youd et al. 2001; Finn 2002, Juang et al. 

2002&2003; Cetin et al. 2004; Moss et al. 2006; Boulanger and Idriss 2012; Sara et al. 

2015; Shen et al. 2016). 

Those simplified methods have been used to evaluate liquefaction potential at an in 

situ test location. To estimate or map liquefaction potentials over an extended region, the 

                                                

2 A similar form of this chapter is published as: Juang, C. H., Shen, M., Wang C., & Chen, Q. (2017). 
Random field-based regional liquefaction hazard mapping - data inference and model verification using a 
synthetic digital soil field. Bulletin of Engineering Geology and the Environment, doi:10.1007/s10064-017-
1071-y. 
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spatial variation and dependence of soil properties and liquefaction potentials need to be 

considered. To this end, geostatistical tools and random field models have been 

increasingly used in recent regional liquefaction mapping.  

Focusing on how spatial variations and dependence are considered and incorporated 

in the mapping process, three types of approaches may be proposed and will be 

investigated in this study, i.e., the averaged index approach, the two-dimensional (2D) 

local soil property approach, and the three-dimensional (3D) local soil property approach. 

To illustrate these approaches, the liquefaction potential at a given location is quantified 

through an index called the liquefaction potential index (LPI) (Iwasaki et al. 1978&1982; 

Sonmez 2003). In the averaged index approach, the spatial dependence of liquefaction 

potential (quantified by LPI) at the test locations is characterized and used as input to 

random field-based LPI mapping. This approach is widely used in current liquefaction 

hazard mapping studies (e.g., Holzer et al. 2006a&b; Li et al. 2006; Baise et al. 

2006&2008; Lenz and Baise 2007; Juang et al. 2008; Chen et al. 2015; van Ballegooy et 

al. 2015; Wang et al. 2017). In the 2D and 3D local soil property approaches, the spatial 

dependence of soil properties, e.g., the cone tip resistance (qc) and the sleeve resistance 

(fs) obtained from CPT tests, or the corrected blow counts N1,60 from SPT tests, are 

characterized and treated as spatially correlated random variables. Once soil properties of 

interest are generated through random field models for the entire studied region, the 

corresponding liquefaction potential can be calculated. In the 2D local soil property 

approach, only the horizontal correlation is considered. The random soil property field is 

generated layer-by-layer considering the horizontal correlation within the current layer 
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(e.g., Fenton, 1999; Liu and Chen, 2006; Baker and Faber, 2008; Vivek and 

Raychowdhury, 2014). In contrast, 3D local soil property approach considers the 

horizontal and vertical correlations simultaneously. There are few studies that employ a 

full 3D soil field in regional liquefaction mapping. Examples include the work by 

Dawson and Baise (2004), and that by Liu et al. (2016), where the authors applied 3D 

interpolation to evaluate the extent of liquefiable materials. 

While geostatistical tools and random field models are increasingly used in 

liquefaction mapping studies, a systematic assessment and verification of different 

approaches to account for spatial variation and dependence of soil properties or 

liquefaction potentials are missing and the implications of various random field-based 

mapping approaches are unknown. The main challenge is the lack of sufficient data, and 

therefore lack of knowledge about the soil properties and liquefaction potentials of the 

field. Moreover, in situ test data are typically sampled at selected and sometimes 

clustered locations, resulting in additional complexities to assess random field-based 

model performance. 

To overcome these challenges, in this chapter, an extremely detailed three-

dimensional synthetic digital soil field is artificially generated and used as a basis to 

assess and verify various random field-based approaches for liquefaction mapping. Soil 

properties of interest (e.g., the CPT tip resistance) are known at every location in the 

synthetic field. The benchmark liquefaction potential fields can, therefore, be obtained for 

any given hypothetical earthquake event. Moreover, different virtual field test plans are 

designed to assess their effects on data inference and model performances. 
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Given such an extensive amount of information, this study will assess and verify 

various common and uncommon random field-based liquefaction mapping approaches. In 

particular, this study will assess: (1) the performance and effectiveness of various 

approaches in mapping quantities of interest (e.g., soil properties, LPIs) over studied 

region; (2) the effect of amount of field data on the relative performances of different 

approaches, and (3) the optimal random field-based liquefaction model for mapping 

liquefaction hazards. This study aims to provide insights on approaches that are 

commonly used to account spatial variability and dependence in random field-based 

liquefaction mapping studies.  

The remainder of the chapter is structured as follows: in Section of Random Field-

Based Approaches for Liquefaction Mapping, details of the three random field-based 

approaches and the adopted random field models are presented; Section of Synthetic 

Digital Soil Field and Benchmark Liquefaction Potential Field provides details of the 

synthetic digital soil field, where the equivalent clean-sand normalized CPT penetration 

tip resistance (qc1N)cs is considered as soil property of interest and the corresponding 

benchmark liquefaction potential field is calculated; Section of Procedure for Model 

Verification describes the procedure for model verification, including virtual field testing 

plans and measures to quantify model performance; Section of Results and Discussions 

presents and discusses results of model verification. 

Random Field-Based Approaches for Liquefaction Mapping 

In this section, three random field-based approaches for liquefaction mapping are 
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described along with details of the random field model used in the following simulations.  

Mapping Liquefaction Potentials 

In this study, a classical CPT-based liquefaction model proposed by Robertson 

and Wride (1998) and subsequently updated by Robertson (2009) is used to evaluate 

liquefaction potential of a soil layer. The liquefaction hazard is then quantified and 

mapped over a region in terms of the liquefaction potential index (LPI) (Iwasaki et al. 

1978&1982). Details of the CPT-based liquefaction model and the LPI calculations are 

included in Appendixes B and C. Depending on how the spatial dependence and 

variation are integrated in the mapping process, three common and uncommon 

random field-based approaches will be assessed and verified: the averaged index 

approach, the two-dimensional (2D) local soil property approach and three-dimensional 

(3D) local soil property approach, which are denoted herein as M1, M2 and M3, 

respectively. A schematic detailing these three approaches is shown in Figure 4 . 1 .  
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Figure 4.1: The approaches for random field-based liquefaction mapping. 

As shown in the figure, the averaged index approach (M1) treats the LPI as the 

spatially correlated random variable while the 2D and 3D local soil property 

approaches (M2 and M3) treat the soil properties of interest (e.g., tip resistance from 

CPT test) as spatially correlated random variables. In the 2D local soil property 

approach, the random field of soil properties is generated layer-by-layer considering 

the horizontal correlation within each layer. In contrast, the 3D local soil property 

approach considers both horizontal and vertical spatial correlations. All approaches 

will rely on the random field models (described in the next section) and Monte Carlo 

simulations to generate regional liquefaction potential maps. 

Random Field Models 

Spatial structures commonly exist in natural soil deposits as evidenced by the fact that 
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soil properties measured at one location are more similar to those at neighboring 

locations than those further away. In this work, spatial structure is described using a form 

of covariance known as the semivariogram γ (h) , which is equal to half the variance of 

two variables separated by a vector distance h 

1( ) Var[ ( ) ( )]
2

Z Zg = - +h u u h                                      (4.1) 

where Z(u) and Z(u+h) are the values of the variable under consideration at locations u 

and u+h, respectively. A scalar form of the vector distance, denoted as h, is commonly 

used to account for both separation distance and geometric anisotropy  

h = (
hx
ax
)2 + (

hy
ay
)2 + (

hz
az
)2                                          (4.2) 

where hx, hy and hz are the scalar components of the vector distance along the principal 

axes of the field; and ax, ay and az are the corresponding ranges or correlation lengths 

used to specify how quickly the spatial dependences decrease along those axes.  

To generate random field realizations of the variables of interest, a conditional 

sequential Gaussian simulation method (Goovaerts, 1997) is implemented, which has 

been extensively used by mining scientists and geostatisticians for natural resource 

evaluations and spatial prediction of geohazards. It is worth noting that a multiscale 

extension of this conditional sequential Gaussian simulation method has been developed 

in recent studies (Baker et al., 2011, Chen et al., 2012, 2015, &2016, Liu et al. 2017).  

Following the sequential simulation method, the simulation process could be briefly 

described as 
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1 2 1( ) ~ ( , )n p np pp n np pp pnZ N z s- -= S ×S × -S ×S ×SZ z                                (4.3) 

in which the unknown value, Zn, at an unsampled location n is drawn from the 

conditional normal distribution with the mean 1( )np pp z
-S ×S ×  and the variance 

2 1( )n np pp pns --S ×S ×S ; Zp is the vector known data; S  is the covariance matrix of 

neighboring measurements; the subscription p and n mean “previous” and “next”, 

respectively. Once the unknown value Zn is generated, it is inserted into the “previous” 

vector, i.e., the known data vector Zp, upon which the “next” unknown value at another 

un-sampled location will be generated. Detailed process of random field modeling may 

be found in Chen et al. (2012) and Chen et al. (2015). 

Random field models incorporate the spatial dependence of the measured parameter 

through the covariance matrix. The covariance of values at two separated locations could 

be expressed as 

,COV[ , ]
i j i ji j Z Z Z ZZ Z r s sS = = × ×                                      (4.4) 

where ,i jZ Zr  is the correlation between the random variables Zi and Zj with standard 

deviations of 
iZ

s and 
jZ

s , respectively. The correlation r is used to describe the 

similarity of spatial measurements and is related to the semivariogram g (h) by 

( ) 1 ( )h hr g= -                                                   (4.5) 

An exponential semivariogram model can be expressed as 

γ (h) =1− e−h                                                   (4.6) 

where h can be calculated by Eq.(4.2).  

Once the empirical semivariogram g (h) is characterized, it will be plugged into the 
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covariance matrix Eq. (4.4) through Eq. (4.5). Thus the unknown value Zn at location n 

could be drawn using Eq. (4.3). The generated value is then assigned to location n and 

treated as known data. This process is repeated until all the unsampled locations are 

assigned with values. 

Synthetic Digital Soil Field and Benchmark Liquefaction Potential Field 

To verify the random field-based liquefaction models generated by the approaches 

presented in Section of Mapping Liquefaction Potentials, a spatially correlated synthetic 

digital soil field is created and its liquefaction potential fields are used as benchmarks. 

Spatially Correlated Synthetic Digital Soil Field 

The dimension of the synthetic digital soil field is set as 1000 ×1000 ×20 m (width × 

length × deep) and a soil element size is correspondingly set as 10 ×10 ×0.05 m. There 

are a total of 4,010,000 soil elements in the field. The depth of the digital field (20 m) 

corresponds to the integration depth in LPI calculation defined in Eq. (C.1). The soil 

element is assigned to have a thickness of 0.05 m to match the vertical sampling interval 

of a typical CPT test. 

Within this field, a three-dimensional and spatially correlated clean sand equivalent 

tip resistance (qc1N)cs field is generated and its values are assigned to each soil element as 

shown in Figure 4.2(a). The parameters used to generate the synthetic field are based on 

the experience gained through the spatial analysis of CPT database in Alameda County of 

California (Chen et al., 2016; USGS, 2015).  
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(a) Three-dimensional view                                 (b) Histogram 

 

(c) Semivariogram in XY plane                     (d) Semivariogram in YZ plane 

Figure 4.2: The three-dimensional view, the histogram and semivariograms of the 
synthetic digital (qc1N)cs field. The empirical semivariograms (c) and (d) show both the 
mean values as well as the error bars (± standard deviation) from the averaging of all 

layers. 

The (qc1N)cs of the digital soil field is assumed to follow a lognormal distribution, and 

the spatial correlation of the field is specified as isotropic in the horizontal plane and 

anisotropic in the vertical plane. The histogram of the (qc1N)cs is shown in Figure 4.2(b), 

with the mean µ and the variance s2 as 123.98 kPa and 2182.68 kPa, respectively. The 

semivariogram g (h) in the XY plane and YZ plane are respectively shown in Figure 
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4.2(c) and Figure 4.2(d). The error bars (± one standard deviation s) represent the 

variance of empirical semivariogram in the 401 XY planes and 100 YZ planes. The 

magenta line is the fitted g by Eq. (4.6), and the correlation length ax = ay = 82.59 m, az = 

0.915 m. For simplicity, the synthetic digital (qc1N)cs field is denoted as the “true” (qc1N)cs 

field for use in subsequent model verifications. It should be noted that the true 

distribution and spatial structure of this digital soil field are unknown to random field-

based liquefaction modeling and mapping, same as in the case of a real soil field. The 

lognormal and assumptions made on spatial correlation are for the convenience of 

generating the digital field.  

Benchmark Liquefaction Potential Field 

To calculate the benchmark liquefaction potential index (LPI) field, the following 

input data for liquefaction model and for a hypothetical earthquake scenario are used: the 

moist unit weight of the soil γm is taken as a constant at 15 KN/m3, the saturated unit 

weight γsat is 19 KN/m3, the ground water table GWT is at 3 m below ground surface, the 

maximum horizontal acceleration at the ground surface amax = 0.3g and the moment 

magnitude Mw = 7.0.  

The resulting benchmark LPI field is shown in Figure 4.3. It will be used as the 

benchmark liquefaction potential field for further verification and is denoted as the “true” 

LPI field. According to the severity class of liquefaction listed in Table 5.1 (Sonmez, 

2003), most areas of the field are classified as “high” (IV) or “very high” (V) under the 

hypothetical earthquake scenario. 



 60 

 
Figure 4.3: The true LPI field under the hypothetical earthquake (amax = 0.3g and Mw = 

7.0). 

Table 4.1: The classification of the Liquefaction Potential Index (LPI) (Sonmez, 2003). 

Liquefaction potential index (LPI) Severity class of liquefaction 
LPI = 0 I: Non-liquefiable 
0 < LPI ≤ 2 II: Low 
2 < LPI ≤ 5 III: Moderate 
5 < LPI ≤ 15 IV: High 
LPI > 15 V: Very high 

The semivariogram of the true LPI field are shown in Figure 4.4(a), and the 

correlation length ax = ay =114.63 m. Figure 4.4(b) is the histogram of the true LPI field. 

The true LPI approximately follows a lognormal distribution as indicated by the magenta 

line, and the mean µ and variance s2 are 14.20 and 33.66, respectively.  
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(a) Semivariogram                                          (b) Histogram 

Figure 4.4: The semivariogram and histogram of the true LPI field. 

Procedure for Model Verification 

Virtual Site Investigation Plans 

As suggested by Webster and Oliver (1992), a sample size of 100 should give 

acceptable confidence to estimate variograms or semivariograms of soil properties. Two 

investigation plans are designed in this chapter to compare the model performances under 

the scenarios of sufficient and insufficient sample size. As shown in Figure 4.5, plan #1 is 

designed with a total of 225 evenly -spaced CPT soundings, where the (qc1N)cs is 

extracted from the digital soil field at each sounding location. As a comparison, plan #2 

has only 36 evenly-spaced CPT soundings and is used to gauge the random field model 

performance under insufficient test samples. For the investigation purpose, the element 

size for investigation plans is designed with 20 m×20 m×0.05 m, which is identical in the 

vertical direction but four times larger in the XY plane than that of the synthetic digital 

(qc1N)cs field. Five locations marked in the figure, A, B, C, D and E, are used for 

verification of (qc1N)cs profiles. It should be noted that evenly-spaced sampling plans are 
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considered in the current study, which simplifies the inference process for random field 

model parameters. In the real-world field investigations, unevenly spaced or clustered 

sampling locations are commonly used and the inference of random field model 

parameters can be more challenging. A preliminary analysis in an ongoing study, 

however, shows that the conclusions reached and presented in this chapter are still valid 

with unevenly spaced sampling plans. 

 

Figure 4.5: The layouts of the virtual site investigation plans (Locations A, B, C, D and E 
are marked and used subsequently for model verification). 

Sample (qc1N)cs profiles at selected locations (points A and B in Figure 4.5) are 

shown in Figures 4.6(a) and 4.6(b), respectively. The corresponding profiles of cyclic 

resistance ratio (CRR), the cyclic stress ratio (CSR) and the factor of safety (FS) are 
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calculated and plotted. With the FS profile, the LPI value at a specific location can be 

calculated by integrating the FS along the soil depth using Eq. (C.1).  

 
(a) The profiles at location A                  (b) The profiles at location B 

Figure 4.6: The profiles for the test samples at location A and B marked in Figure 4.5 (the 
blue dash lines at depth of 3 m represent the ground water table; the black dash lines in 
CSR or CRR subplots represent the CSR and the black solid lines represent the CRR). 

Data Inference and Random Field-Based Liquefaction Model Generation 

The previously described investigation plans provide “field data” necessary to infer 

random field model parameters. For the averaged index approach (M1), the LPI values at 

field testing location are needed. For the local soil property approaches (M2 and M3), soil 

property, e.g., (qc1N)cs values, are needed. Regardless of the mapping approach, 

statistical parameters (e.g., the statistical distribution, mean µ and variance s2) are 

inferred from field data. Empirical semivariograms are calculated, from which analytical 

semivariogram models (e.g., an exponential semivariogram function) can be fitted. With 

the parameters for statistics and semivariogram of the test samples, the random field-

based liquefaction models can be generated using procedures discussed in Section of 

Random field-based approaches for liquefaction mapping. For each mapping approach, 
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1000 Monte Carlo simulations (MCSs) are performed, providing data to estimate not only 

the expected values of the mapped quantities across the field but also the associated 

uncertainties.  

Assessment of Model Performance 

The model performances of random field-based liquefaction models are assessed 

using the “true” data from the synthetic digital soil field and the benchmark liquefaction 

potential field (true fields). The models are assessed for two aspects: 1) histogram 

assessments to check if the random field models can simulate the data distribution of the 

true fields, and 2) semivariogram assessments to verify if the random field models can 

capture the spatial variability of the true fields. These assessments are made for both 

(qc1N)cs field and LPI field. For (qc1N)cs field, the comparisons of (qc1N)cs profiles at 

specific locations are made to verify the random field-based liquefaction model 

performances. And for LPI field, the cumulative frequency plot and differences between 

true and simulated fields are assessed to evaluate the model performance. 

In addition, three information theory-based measures are adopted to quantitively 

assess model performances, i.e., the mean absolute percentage error (MAPE), the root 

mean square deviation (RMSD) and the bias factor (Armstrong and Collopy, 1992; 

Prasomphan and Mase, 2013; Kung et al., 2007; Juang et al., 2012b). 

true sim
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where n is the number of data; i is the ith data; X is the model output value, e.g., the LPI 

or (qc1N)cs value in this chapter; Xtrue is the true LPI or (qc1N)cs value, and Xsim is the 

simulated or predicted value. 

Smaller MAPE or RMSD value indicates a better model performance. For the bias 

factor, a value of greater than 1 means the model overestimates the true field, a value of 

less than 1 means an underestimation, and a value of 1 means an unbiased prediction. As 

discussed in the Introduction Section, the element size of the adopted investigation plans 

is larger than the synthetic digital field and the liquefaction potential field in XY plane. 

Therefore, an average operation is taken when the data from synthetic digital field and 

liquefaction potential field are used in the calculation of values of the MAPE, RMSD and 

bias factor.  

Results and Discussions 

Following the procedure of the above Section, results of random field-based 

liquefaction models by the averaged index approach, and the 2D and 3D local soil 

property approaches (M1, M2, and M3) are assessed and verified in this section. Unless 

otherwise stated, results of the random field-based liquefaction models are averaged over 

1000 Monte Carlo simulations. 

Model Assessment and Verification: Soil Property Fields 

The histograms of the true and simulated (qc1N)cs values for both investigation plans 
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are plotted in Figure 4.7. The blue bins represent the true (qc1N)cs histogram, and the red 

dash lines and cyan dash-dot lines represent histogram fitting curves for simulated 

(qc1N)cs values using M2 and M3, respectively. It can be seen from Figure 4.7(a) that both 

random field models predict the statistical distribution of the true soil property field well, 

providing that sufficient field data (investigation plan #1) are available to infer model 

parameters. On the other hand, the model performance deteriorates for the case with 

insufficient field data (investigation plan #2), as shown in Figure 4.7(b). The differences 

between predictions using 2D (M2) and 3D (M3) local soil property approaches are 

almost negligible.  

 
(a) Plan #1 (15 × 15)                                  (b) Plan #2 (6 × 6) 

Figure 4.7: The histograms of true and simulated (qc1N)cs fields of M2 and M3 for the both 
investigation plans. 

The ability of random field models to capture the underlying spatial structure of the 

soil property field is also examined. Empirical semivariograms of the true (qc1N)cs field 

and the simulated (qc1N)cs fields are shown in Figure 4.8.  
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(a) Plan #1 (15 × 15) in XY plane                 (b) Plan #1 (15 × 15) in YZ plane 

 
(c) Plan #2 (6 × 6) in XY plane               (d) Plan #2 (6 × 6) in YZ plane 

Figure 4.8: The semivariograms of true (qc1N)cs field and simulated (qc1N)cs fields of M2 
and M3 for the both investigation plans. 

The red triangles and cyan circles represent the mean values of the calculated 

empirical semivariograms by M2 and M3 in the XY plane and in the YZ plane, 

respectively. The error bars indicate ± one standard deviation from the mean. It can be 

seen from the plots that for investigation plan #1, both models capture the spatial 

structure of the soil property field well. For investigation plan #2, the semivariograms of 

M2 and M3 deviate from the trend of the true semivariogram, which is not surprising as 

insufficient data yield less accurate estimate of model parameters. 
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Figures 4.9(a) and 4.9(b) plot the (qc1N)cs profiles at selected locations (marked as 

point C, D and E in Figure 4.5) for investigation plans #1 and #2, respectively. It can be 

seen from Figure 4.9 that with sufficient sampling data (plan #1), the simulated (qc1N)cs 

profiles of M2 and M3 match the true profile very well. As the amount of sampling data 

decreases (plan #2), the (qc1N)cs profiles of M2 and M3 deviates from the true soil profile, 

indicating information loss and a reduction in the accuracy of predicted soil profiles.  

 
(a) Plan #1 (15 × 15)                                  (b) Plan #2 (6 × 6) 

Figure 4.9: The profiles of the true and simulated (qc1N)cs fields at the sampling locations 
C, D, and E marked in Figure 4.5 (the black, red and cyan lines correspond to the true 

(qc1N)cs profiles, the simulated (qc1N)cs profiles of M2 and M3, respectively). 

To quantitatively assess model performances, the three measures introduced in 

Section of Assessment of model performance, i.e., the MAPE, RMSD and the bias factor, 

are calculated and summarized in Table 4.2 for the simulated (qc1N)cs fields by the local 

soil property approaches (M2 and M3). Note that in the averaged index approach (M1), 

(qc1N)cs field is not needed and therefore, no result from M1 is presented in Table 4.2. 

Smaller MAPE and RMSD values mean better performance, and bias factor closer to 

one means more accurate model. MAPE and RMSD values for both local soil property 
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approaches (M2 and M3) are relatively small compared with the mean (123.98 kPa) and 

variance (2182.68) of the true field, which indicates a relatively good prediction. M3 

performs slightly better than M2. For the bias factors, all model results yield slightly 

greater than one bias factor, which means the random field-based models slightly 

overpredict. The sampling size also affects the prediction accuracy, simulations with 

sufficient field data (plan #1) yield better results. For all cases considered, the 3D local 

soil property approach (M3) outperforms the 2D local soil property approach (M2).  

Table 4.2: The criteria index for the (qc1N)cs random fields. 

Index Approach 1 (M1) Approach 2 (M2) Approach 3 (M3) 
Plan #1 Plan #2 Plan #1 Plan #2 Plan #1 Plan #2 

MAPE NA NA 0.147 0.238 0.136 0.226 
RMSD NA NA 24.569 36.480 22.887 35.157 

Bias factor NA NA 1.029 1.071 1.024 1.066 

Note: NA means not available 

Model Assessment and Verification: Liquefaction Potential Fields 

In this section, the LPI fields predicted using random field-based approaches are 

assessed and verified.  

Figure 4.10 plots the histograms of the true and simulated LPI fields. All of the 

random field-based liquefaction models perform well for investigation plan #1 as the 

histogram fitting curves of M1, M2 and M3 are close to the true LPI histogram. The 

prediction accuracy decreases with the reduction in sample size, as indicated by Figure 

4.10(b).  
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(a) Plan #1 (15 × 15)                                        (b) Plan #2 (6 × 6) 

Figure 4.10: The histograms of the true LPI field and simulated LPI fields of M1, M2 and 
M3 for the both investigation plans. 

The semivariogram for simulations with investigation plan #1 and plan #2 are shown 

in Figures 4.11(a) and 4.11(b), respectively. The blue squares, red triangles and cyan 

circles represent the mean values of the calculated empirical semivariograms by M1, M2 

and M3, respectively. The error bars indicate ±one standard deviation from the mean. It 

shows that the semivariograms of M1, M2 and M3 are very close to the true empirical 

semivariograms using sufficient samples (investigation plan #1). The variability 

increased when the distance of semivariogram is greater than 800 m as evidenced by 

longer error bars. However, the use of insufficient samples (plan #2) yields significant 

differences between the results of the three models and true empirical semivariograms. 
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(a) Plan #1 (15 × 15)                                        (b) Plan #2 (6 × 6) 

Figure 4.11: The semivariograms of the true LPI field and simulated LPI fields of M1, 
M2 and M3 for the both investigation plans. 

The performances of random field-based liquefaction models throughout the studied 

site are next analyzed with the cumulative frequencies shown in Figure 4.12. From Figure 

4.12, it can be seen that the cumulative frequencies of M1 and M3 are very close to the 

true ones for both investigation plans. The model performance of M2 is worse than M1 

and M3, especially under the insufficient test samples, as shown in Figure 4.12(b). With 

severity class of liquefaction defined in Table 4.1, it is possible to estimate the percentage 

of the studied site that may experience a particular level of liquefaction damage. For 

instance, from Figure 4.12(a), 96% of the studied site may experience a moderate to high 

liquefaction (LPI > 5) and 37% may experience a very high liquefaction (LPI > 15). 
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(a) Plan #1 (15 × 15)                                        (b) Plan #2 (6 × 6) 

Figure 4.12: The cumulative frequency of the true LPI field and simulated LPI fields of 
M1, M2 and M3 for the both investigation plans. 

The contours in Figure 4.13 are the differences between the simulated LPI values of 

M1, M2 and M3 and the true LPI values. The red color represents an overestimation, blue 

color represents an underestimation and green color represents an unbiased prediction. 

Observations of the contours clearly reveal that for investigation plan #1, most of the 

areas are within the unbiased or little bias region, indicating good model performances of 

the three random field models. Over- and underestimations happen mostly around the 

edges of the field due to a lack of sampling data. Again, the reduction of the sample size 

increases the bias of the prediction, as indicated by the contours corresponding to 

simulations with plan #2 data.  
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(a) M1, plan #1                                                        (b) M1, plan #2 

 
(c) M2, plan #1                                                          (d) M2, plan #2 

 
(e) M3, plan #1                                                          (f) M3, plan #2 

Figure 4.13: Contours of the simulated LPI values (LPIsim) of M1, M2 and M3 minus true 
LPI values (LPItrue) for the both investigation plans. 

To further examine the model performances, a set of scatter plots for true LPI values 
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(LPItrue) versus simulated LPI values (LPIsim) of M1, M2 and M3 for the both 

investigation plans are shown in Figure 4.14. The data for investigation plan #1 are 

concentrated around 1:1 line, while many variabilities observed in the data for 

investigation plan #2. All of the three the random field models (M1, M2 and M3) 

overestimate the field at low LPI values and underestimation at high LPI values. 

However, the over or under estimations are mainly located around edges of the field, 

which is similar to the trends observed in Figure 4.13.  

 
(a) M1, plan #1                                                          (b) M1, plan #2 

 
(c) M2, plan #1                                                          (d) M2, plan #2 
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(e) M3, plan #1                                                          (f) M3, plan #2 

Figure 4.14: The true LPI values (LPItrue) versus simulated LPI values (LPIsim) of M1, M2 
and M3 for the both investigation plans. 

The model performances of LPI field are also quantitatively assessed with the MAPE, 

RMSD and bias factor. The calculated indices for M1, M2 and M3 are summarized in 

Table 4.3. All three models predict relatively accurate LPI values over the entire field 

when the data from plan #1 are used. The M3 outperforms M1, and the latter outperforms 

M2. All three approaches slightly overestimate the LPI field as the bias factors are all 

greater than one. When the number of test samples are insufficient (Plan #2), the model 

performances based on MAPE and bias factor are M3 (best), M2 (second), and M1 

(worst). By RMSD, however, M2 (3.876) is slightly better than M3 (3.897) and better 

than M1 (3.965). It indicates that the local soil property approach (M2 and M3) is 

superior to the averaged index approach (M1) in predicting the liquefaction potential field 

when the sampling data is insufficient.  

The computational efficiency of a model is also of concern when evaluating the 

model performance. The computational time required for obtaining the 1000 LPI random 

fields based on investigation plan #2 are 4.5 mins, 1090.6 mins, and 5237.4 mins for M1, 
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M2 and M3, respectively. These numbers are meaningful only on a relative basis, as they 

depend on the computer used in the computation. The averaged index approach (M1) 

dominates in terms of computational efficiency and would be the clear choice when 

computational cost is of major concern.  

Table 4.3: The criteria index for the LPI random fields. 

Index 
Approach 1 (M1) Approach 2 (M2) Approach 3 (M3) 

Plan #1 Plan #2 Plan #1 Plan #2 Plan #1 Plan #2 
MAPE 0.146 0.300 0.150 0.293 0.130 0.285 
RMSD 2.030 3.965 2.047 3.876 1.878 3.897 

Bias factor 1.085 1.151 1.088 1.138 1.070 1.120 

Based on the comparisons of the accuracy criteria and the computational efficiency, 

M3 outperforms M2 in predicting the local soil property field, but M2 is more efficient 

than M3 in both scenarios of sufficient and insufficient test samples. For the liquefaction 

potential field, M3 performs better than M1 than M2 given the sufficient test samples. 

However, the performance of M1 is similar to M3 when the comparisons are based on 

histogram, semivariogram and cumulative frequency. In addition, M1 is the most 

efficient random field model. Therefore, under the scenario of sufficient test samples, M1 

is recommended for constructing the liquefaction potential field. Under the scenario of 

insufficient test samples, however, M3 is recommended as it is more accurate than M2, 

and offers more information than M1. 

Discussions 

In this work, data inference and model verification are carried out based on a 

synthetic digital soil field. The synthetic field affords us an extremely detailed 
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information on soil properties and a benchmark field for liquefaction potential. The focus 

of this work is on understanding and verifying different random field-based approaches 

for liquefaction potential mapping, and use of synthetic digital field in this fundamental 

study has distinctive advantages over any real-world site investigation data.  

On the other hand, it is important to note the assumptions and limitations of the 

synthetic field and the associated model verification process when drawing conclusions 

from the analysis. For instance, in preparing the synthetic field and in generating random 

field models, stationarity of the random field is assumed. Soil properties are assumed to 

be isotropic on a horizontal plane and anisotropic on a vertical plane. In reality, non-

stationary variations of soil properties are quite common. In addition, only evenly-spaced 

virtual field investigation plans are considered in this study, which simplifies the 

inference of random field model parameters. In real-world field investigations, unevenly 

spaced and/or clustered sampling locations are common in engineering practice. Further 

study to consider the effect of unevenly spaced and/or clustered sampling plans on the 

data inference and model verification processes and outcomes for random field-based 

liquefaction hazard mapping is warranted.  

Summary 

In this chapter, a three-dimensional synthetic digital soil field is artificially generated 

and used as a basis to assess and verify various random field-based models for 

liquefaction mapping. The liquefaction potential is assessed using a classical CPT-based 

liquefaction model, and the result is expressed in terms of the liquefaction potential index. 
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Three random field-based liquefaction models are assessed and verified, namely, the 

averaged index approach (M1), the two-dimension local soil property approach (M2), and 

the three-dimension local soil property approach (M3). Two virtual field testing plans are 

designed. Here, performances of the three models are evaluated in terms of resulting 

sample histograms, empirical semivariograms and are compared using three information 

theory-based criteria, i.e., the mean absolute percentage error (MAPE), the root mean 

square deviation (RMSD) and the bias factor. Results show that all random field-based 

models examined in the study yielded a slightly more conservative prediction of 

liquefaction potential over the studied field. All these models captured fairly well the 

benchmark liquefaction potentials in the studied field. 
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CHAPTER V3 

MITIGATION OF LIQUEFACTION HAZARD BY DYNAMIC 

COMPACTION — A RANDOM FIELD PERSPECTIVE 

Introduction 

Soil liquefaction and liquefaction-induced damage to buildings, lifeline systems, and 

port facilities, have been widely observed in recent earthquakes, e.g., 1999 Chi-Chi 

earthquake, 2008 Sichuan earthquake, 2010 Chile earthquake, 2010-2011 New Zealand 

earthquakes, 2011 Tohoku earthquake, etc. For example, in 1999 Chi-Chi earthquake, 

soil liquefaction was one of the main causes to the buildings and infrastructures loss 

ranging from $20 billion to $30 billion (Uzarski and Arnold, 2001); and in the 2010-2011 

New Zealand earthquakes, approximately half of the $30-billion losses were attributed to 

soil liquefaction (Cubrinovski et al., 2014). Mitigating liquefaction hazards is a 

significant part of the earthquake resistant design (Seed, 1981; Seed, 1982). 

Dynamic compaction (DC) is one of the common ground improvement methods and 

has been successfully applied to strengthen many types of weak ground deposits, such as 

loose sands and silts, hydraulic fill deposits, and landfill deposits (Lukas, 1995). DC has 

                                                

3 A similar form of this chapter is under review: Shen, M., Juang, C. H., & Chen, Q. (2018). Mitigation of 
liquefaction hazard by dynamic compaction - A random field perspective. 
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also been found to be an effective technique to mitigate liquefaction hazards, as 

evidenced by the improved ground performance to resisting liquefaction during past 

earthquakes (Dise et al., 1994; Hausler and Koelling, 2004; Hausler and Sitar, 2001; Lee 

et al., 2001). Dynamic compaction reduces the risk of liquefaction hazards by densifying 

the soil, leading to increased liquefaction resistance. To evaluate the effect of dynamic 

compaction, in situ tests, such as cone penetration test (CPT), are usually conducted 

before and after DC. With CPT data and using deterministic liquefaction models 

(Robertson, 2009; Robertson and Wride, 1998), the liquefaction potential of soil at a CPT 

location before and after DC can be evaluated. However, the locations of CPT before and 

after DC in a ground improvement project may not match, often far away from each 

other, due to the local construction practice, project management style, and client 

requirements. This reduces the effectiveness of the conventional one-to-one comparison 

of the factor of safety (FS) or liquefaction potential values before and after DC at a given 

CPT location. Furthermore, due to the complexity of the depositional history and 

environment, engineering properties of a soil often vary in the subsurface space from one 

point to another. Consequently, soils in some areas of a project site are much susceptible 

than the soils in other parts. Therefore, it is desirable to investigate and visualize the 

liquefaction potential of the entire site to aid in the design of DC and to assess the 

effectiveness of DC in mitigating the liquefaction hazard. 

In the last two decades, geostatistical tools and random field theory have been applied 

to assessing and mapping liquefaction potential or hazards (Baise et al., 2006; Chen et al., 

2016a; Chen et al., 2016b; Elkateb et al., 2003; Juang et al., 2017b; Lenz and Baise, 
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2007; Liu et al., 2016; Wang and Chen, 2017; Wang et al., 2017). The spatial variability 

and dependence of soil properties have long been recognized (Fenton and Vanmarcke, 

1998; Onyejekwe et al., 2016; Popescu et al., 1997; Vanmarcke, 2010): soil properties 

measured at one location are more similar to those at neighboring locations than those 

further away. By drawing multiple random samples, the overall characteristics of the 

spatial variability and dependence and the uncertainties involved can be mathematically 

modeled with random fields. Random field modeling provides an effective approach to 

estimate liquefaction potential of soils at unsampled locations based on the characterized 

statistical distribution and spatial variability, thus permitting an effective mapping of 

liquefaction hazard over an area of interest. By visualizing and comparing the 

liquefaction hazard of the entire project site before and after DC that is enabled through 

the random field modeling approach, the effect and benefits of DC in the mitigation of 

liquefaction hazard can be easily demonstrated.  

In this study, a dynamic compaction (DC) project with before and after CPT 

investigations for a reclaimed ground in Taiwan is adopted as an example to demonstrate 

the effectiveness of the proposed random field-based evaluation procedure. The location-

specific liquefaction potential analysis using the deterministic (i.e., FS-based) approach is 

firstly performed. Then, the areal liquefaction is assessed in terms of liquefaction 

potential index (LPI), followed by the random field modeling of LPI and the creation of 

the liquefaction hazard map of the study site. The effectiveness of DC in the mitigation of 

liquefaction hazard is demonstrated through visualization of this hazard at different 

ground shaking levels for both before and after DC. 
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Liquefaction Potential: from Location-Specific to Areal Analysis 

In this section, the formulations for two liquefaction potential indicators, the factor of 

safety (FS) against liquefaction and the liquefaction potential index (LPI), are first 

summarized in Section Factor of safety (FS) against liquefaction and Section 

Liquefaction potential index (LPI), respectively. The FS-based liquefaction potential 

indicator is usually adopted in a location-specific analysis, in which an FS profile along 

the depth can be created and used to identify the critical layer(s) that is susceptible to 

liquefaction at the sampling location. The LPI based liquefaction potential indicator is a 

single value at the sampling location that integrates weighted FS values along the depth 

(Iwasaki et al., 1982). The random field modeling based on the LPI values at sampled 

locations is then presented in Section Liquefaction mapping by random field modeling. 

These formulations and modeling procedures provide the working knowledge for 

evaluating the liquefaction potential of soil from location-specific to areal perspective. 

Factor of Safety (FS) Against Liquefaction 

Among methods for soil liquefaction potential evaluation, simplified methods based 

on in situ tests, such as standard penetration test (SPT), cone penetration test (CPT), and 

shear wave velocity (Vs) test, are preferred in geotechnical engineering practices (Andrus 

and Stokoe II, 2000; Robertson and Wride, 1998; Seed and Idriss, 1971; Youd et al., 

2001). With the simplified methods, the factor of safety (FS) against liquefaction is used 

to express the liquefaction potential. FS is defined as the ratio of cyclic resistance ratio 

(CRR) over the cyclic stress ratio (CSR) as shown in Eq. (1). The soil is said to be 
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liquefied if FS ≤ 1 and be non-liquefied if FS > 1. 

 
CRR
CSRSF =  (5.1) 

The liquefaction resistance CRR is typically computed using the in situ test data. The 

CPT-based liquefaction model proposed by Robertson and Wride (1998) and 

subsequently updated by Robertson (2009) is adopted in this study to calculate the CRR, 

which is summarized in Eq. (2). The CRR is a function of the clean-sand equivalence of 

the normalized cone tip resistance, qt1N,cs. The reader is referred to (Robertson, 2009; 

Robertson and Wride, 1998) for details regarding the evaluation of qt1N,cs. 
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It should be noted that Eq. (2) is applicable only to soils with soil behavior type index 

Ic of no greater than 2.6. For a soil with Ic > 2.6, it is considered too clay-rich to liquefy, 

and CRR is set to a high value (in such case, however, the value of qt1N,cs is meaningless 

and by-passed in the evaluation of CRR). If qt1N,cs ≥ 160, CRR is also set to a high value, 

e.g., 1.0, indicating no liquefaction is expected under any known seismic loading. 

The CSR represents the earthquake loading as applied to soil in the context of 

liquefaction, and the following adjusted form is adopted (Juang et al., 2006; Youd et al., 

2001): 
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where amax is the maximum horizontal acceleration at the ground surface; g is the 
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gravitational acceleration and equal to 9.81 m/s2; svo and s¢vo are the total and effective 

vertical overburden stresses, respectively; rd is the stress reduction factor; MSF is the 

magnitude scaling factor and Kσ is the overburden correction factor. 

The stress reduction factor rd is a function of depth z and defined below (Youd et al., 

2001): 

 
0.5 1.5

d 0.5 1.5 2

1.000 0.4113 0.04052 0.001753
1.000 0.4177 0.05729 0.006205 0.001210
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=
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 (5.4) 

The magnitude scaling factor MSF is related to the moment magnitude Mw as (Youd 

et al., 2001): 

 
2.24

2.56
w

10MSF
M

=  (5.5) 

The Kσ in Eq. (6) is the overburden correction factor for CSR (Youd et al., 2001). 

The correction is applied when the s¢vo greater than 100 kPa. 

 ( 1)'( ) fvo

a

K
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s -=  (5.6) 

where Pa is the atmospheric pressure; f is an exponent and recommended as: f = 0.7 to 0.8 

for relative densities between 40 and 60%; f = 0.6 to 0.7 for relative densities between 60 

and 80%. 

Liquefaction potential index (LPI) 

The liquefaction potential index (LPI) defined by Sonmez (2003), which was 

originated by Iwasaki et al. (1982), is adopted in this study as the index for mapping the 

liquefaction hazard. LPI is defined based on the assumption that the liquefaction severity 
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is related to the thickness of the potentially liquefiable layers and the factor of safety (FS) 

against liquefaction. LPI is defined as follows (Sonmez, 2003 after Iwasaki et al., 1982):  

 
20

0
LPI ( ) dLw z F z= ò  (5.7) 

where z is the soil depth in meters (only the top 20 m of soil profile is considered); w(z) is 

a function of soil depth; FL is a function of FS against liquefaction.  
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Sonmez (2003) provided an updated significance scale, or severity class, for LPI 

values as shown in Table 5.1, with which the liquefaction severity at the location can be 

assessed. 

Table 5.1: Classification of the Liquefaction Potential Index (Sonmez, 2003) 

Class Liquefaction potential index (LPI) Severity class of liquefaction 
1 LPI = 0 I: Non-liquefiable 
2 0 < LPI ≤ 2 II: Low 
3 2 < LPI ≤ 5 III: Moderate 
4 5 < LPI ≤ 15 IV: High 
5 LPI > 15 V: Very high 

 

Liquefaction Mapping by Random Field Modeling 

As indicated by Toprak and Holzer (2003), LPI provides a convenient tool for risk-

based decisions and liquefaction hazard mapping. Focusing on how spatial variability and 
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dependence are considered and incorporated in the liquefaction mapping process, three 

approaches may be used to generate LPI hazard map (Juang et al., 2017b). They are the 

averaged index approach, the two-dimensional (2D) local soil property approach, and the 

three-dimensional (3D) local soil property approach. The averaged index approach is 

adopted in this chapter as it is widely used in current liquefaction hazard mapping studies 

(Baise et al., 2006; Bong and Stuedlein, 2017; Bong and Stuedlein, 2018; Chen et al., 

2016a; Lenz and Baise, 2007; Wang and Chen, 2017; Wang et al., 2017), and it is the 

most computationally efficient among the three approaches. In the averaged index 

approach, the probability distribution and the spatial dependence of LPI values at the test 

locations are characterized and used as inputs for random field modeling. The probability 

distribution can be easily inferred from test data. The LPI values at the test locations are 

fitted to a lognormal distribution, thus ln(LPI) will be used in the characterization of 

spatial dependence and the random field simulation process, which are introduced as 

follow. 

Spatial characterization of LPI 

In this study, spatial dependence or spatial variation structure is described using a 

form of covariance known as the semivariogram g, which is equal to one half of the 

variance of two variables separated by a vector distance h: 

 
1( ) Var[ ( ) ( )]
2

Z Zg = - +h u u h   (5.10) 

where Z(u) and Z(u+h) are the values of the variable (i.e., ln(LPI) in this study) under 

consideration at locations u and u+h, respectively. A scalar form of the vector distance h, 
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denoted as h, is commonly used to account for both separation distance and orientation 

(e.g., Chen et al., 2012), and therefore can be used to simulate anisotropic random fields:  

 ( ) ( ) ( )
22 2

yx z
x y z

hh h
a a ah = + +  (5.11) 

where hx, hy and hz are the scalar components of the vector distance along the principal 

axes of the field; and ax, ay and az specify how quickly the spatial dependences decrease 

along the respective axes. The LPI random field studied in this chapter is two-

dimensional, thus hz = 0. Further, the ln(LPI) is assumed to be anisotropic in x and y axes 

thus ax = ay. 

Sequential simulation process 

To generate random field realizations of the variables of interest, a conditional 

sequential Gaussian simulation method (e.g., Goovaerts, 1997; Baker and Faber 2008; 

Baker et al., 2011) is implemented, which has been extensively used by mining scientists 

and geostatisticians for natural resource evaluations and spatial predictions of 

geohazards. Following the sequential simulation method, the simulation process could be 

briefly described as 

 1 2 1( ) ~ ( , )n p np pp n np pp pnZ N z s- -= S ×S × -S ×S ×SZ z  (5.12) 

in which the unknown value, Zn, at an unsampled location n is drawn from the 

conditional normal distribution with the mean 1( )np pp z
-S ×S ×  and the variance 

2 1( )n np pp pns --S ×S ×S . It is noted here that 1
np pp

-S ×S  are essentially the weights assigned in 

the simple Kriging process (Goovaerts, 1997); Zp is the vector of known data; S  is the 
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covariance matrix of neighboring measurements; the subscriptions p and n mean 

“previous” and “next”, respectively. For the realization, one value of Zn is drawn at 

random from the posterior univariate normal distribution. Once the unknown value Zn is 

generated, it is inserted into the “previous” vector, i.e., the known data vector Zp, upon 

which the “next” unknown value at another un-sampled location will be generated. 

Detailed process of random field modeling may be found in Chen et al. (2015) and Wang 

et al. (2017). 

Random field models incorporate the spatial dependence of the measured parameter 

through the covariance matrix. The covariance of values at two separated locations could 

be expressed as 

 ,,cov[ ]
i j i ji j Z Z Z ZZ Z r s s= = × ×S  (5.13) 

where ,cov[ ]i jZ Z  is the covariance of the random variables Zi and Zj, and ,i jZ Zr  is the 

correlation coefficient between the random variables Zi and Zj with standard deviations of 

iZ
s  and 

jZ
s , respectively. The correlation coefficient r is used to describe the similarity 

of spatial measurements and is related to the semivariogram g by 

 ( ) 1 ( )h hr g= -  (5.14) 

The semivariogram g can be calculated using Eq. (5.10), which is termed empirical g 

(i.e., experimental semivariogram) herein. Then the empirical g is fitted with a 

theoretical model, such as spherical, exponential, Gaussian or power model (Goovaerts, 

1997), to determine three model parameters, including nugget effect, sill, and range. The 

exponential semivariogram model is adopted and expressed as 
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 ( ) [1 exp( )]
hh
a

g w t= - +  (5.15) 

where t presents the nugget, i.e., the semivariance when h equals zero; w + t is the 

sill, namely the constant semivariance when h is greater than the range, indicated by 

3a. It is noted here that the nugget effect is a geostatistical term used to describe the 

variability seen between samples that are closely spaced. The nugget effect is composed 

of a geological component, which can be thought of as inherent, and a sampling 

component, which is subjected to randomness.  

Once the semivariogram g  is characterized, it will be plugged into the covariance 

matrix Eq. (5.13) through Eq. (5.14). Thus, the unknown value Zn (i.e., ln(LPI) in this 

study) at location n could be drawn using Eq. (5.12). The generated value is then 

assigned to location n and treated as known data. This process is repeated until all the 

unsampled locations are assigned with values. Each sequential Gaussian simulation 

realization varies in space, although it is conditional on observed samples. Thus, Monte 

Carlo simulations (MCSs) will be used to generate realizations of the ln(LPI) random 

fields, then the results will be transformed back to lognormal distribution, which are 

used for the probabilistic and spatial assessment of LPI evaluation over the area of 

interest. 

Location-specific Liquefaction Potential Analysis 

In this section, the site conditions and dynamic compaction at the study site are first 

introduced. Then, two CPT samples are used as an example to illustrate the location-

specific liquefaction potential analysis. 
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Site Conditions 

The location of the study site is shown in Figure 5.1, and the size of the study site is 

2000 m ´ 800 m. It is located in the Lukang district of the Chang-Hwa Coastal Industrial 

Park (CHCIP) on the west coast of central Taiwan, where a large-scale land reclamation 

project was completed. As described in Lee et al. (2001) and Shen et al. (2018), the 

CHCIP area is an extension of the recent alluvial plains (Qa) of the Changhua County. 

The alluvium forms the flood plains and recent terraces of the larger streams that dissect 

the island. The alluvium also includes coastal sand dunes, recent lacustrine and swamp 

deposits, and cave deposits in limestone terrain (Ho, 1988). The study site was reclaimed 

by hydraulic filling. The filling material comes from sediments under the waterways and 

the sea, which consists mainly of silty sand to fine sand. The thickness of the hydraulic 

fill is approximately 4 to 5 m. A backfill of gravel of approximately 0.2 m is placed over 

the hydraulic fill. From the soil profiles that were derived through the standard 

penetration tests (SPTs), within the top 20 m, the site mainly consists of silty sands (SM 

or SP–SM according to the Unified Soil Classification System) with thin layers of silts 

(ML) or silty clays (CL).  
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Figure 5.1: Location of the study site. 

 

Dynamic Compaction at the Site 

The study site is located in the seismic zone II according to the seismic design 

specifications for highway bridges (Ministry of Communication 1996), which specifies 

the earthquake seismic loading defined by a maximum horizontal acceleration at the 

ground surface amax of 0.23g and a moment magnitude Mw of 7.5 based on a return period 

of 475 years. 

The loose sand in the upper layer of the study site was considered to have high 

potential to liquefy when subjected to the design earthquake (Lee et al., 2001). Thus, a 

ground improvement project through dynamic compaction (DC) was undertaken at the 

study site to mitigate the liquefaction hazard. The reader is referred to the literature (e.g., 

Lukas 1995; Han 2015) for details of the DC technique. In the study area, DC was carried 

out with a main pounder that weighed 25 tons, which had a base area of 3 m2 and a drop 
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height of 20 m. The sequence of DC with the main ponder is illustrated in Figure 5.2 with 

three passes in a subzone of 10 m by 10 m. After the completion of DC with the main 

pounder, the craters and surrounding soils were leveled and the surface tamped with a 

smaller pounder that weighted 12 tons and had a base area of 6 m2 and a drop height of 

10 m.  

 
Figure 5.2: Dynamic compaction in each zone in three passes. 

Before DC, 27 cone penetration tests, denoted as CPTBC, were conducted over the 

entire site to investigate the soil properties. After the DC, additional 27 cone penetration 

tests, denoted as CPTAC, were performed again at the locations near the CPTBC to 

estimate the effect of dynamic compaction. Figure 5.3 shows the layout of the CPT tests 

both before and after the compaction. The coordinates of the 27 CPTBC and CPTAC are 

listed in Table 5.2 and Table 5.3, respectively. It can be seen from Figure 5.3 that the 27 

CPTBC and CPTAC spread over the study area, which affords the evaluation of 

liquefaction potential for the entire study area. Next, the location-specific liquefaction 
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potential analysis is performed to illustrate the use of the traditional deterministic 

method. 

 
Figure 5.3: Layout of the CPT investigations before compaction (CPTBC) and after 

compaction (CPTAC). (Note: locations marked are used for location-specific liquefaction 
analysis). 

 

Table 5.2: Locations of 27 CPT soundings at the project site before compaction (CPTBC) 
and its LPI values (LPIBC) under two seismic shaking levels. 

CPTBC 
No. 

Before Compaction (BC) LPIBC 
XBC (m) YBC (m) Design earthquake Chi-Chi earthquake 

1 1358 749 12.5 1.1 
2 1788 508 18.6 1.8 
3 1366 247 18.9 2.0 
4 706 236 11.6 3.8 
5 288 465 20.2 2.3 
6 690 748 12.0 0.6 
7 697 635 12.8 0.5 
8 417 466 19.8 2.6 
9 307 117 12.4 0.4 

10 1774 139 14.1 1.4 
11 1708 369 15.5 2.7 
12 1268 573 21.6 5.8 
13 1699 753 14.8 1.1 
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14 1580 708 17.0 1.8 
15 1507 242 17.9 1.7 
16 1963 184 24.0 7.7 
17 1321 670 11.2 0.9 
18 1043 586 12.6 0.9 
19 801 672 12.7 0.7 
20 521 718 14.3 0.5 
21 326 387 14.5 0.7 
22 464 474 16.3 0.8 
23 103 159 15.2 0.3 
24 603 133 10.1 1.5 
25 1095 134 14.2 0.4 
26 1258 269 20.7 5.7 
27 1359 133 22.0 6.2 

 

Table 5.3: Locations of 27 CPT soundings at the project site after compaction (CPTAC) 
and its LPI values (LPIAC) under two seismic shaking levels. 

CPTAC 
No. 

After Compaction (AC) LPIAC 
XAC (m) YAC (m) Design earthquake Chi-Chi earthquake 

1 1387 753 2.0 0.00382 
2 1790 457 1.7 0.00381 
3 1352 278 3.2 0.34916 
4 698 237 1.8 0.40665 
5 329 438 6.3 0.08327 
6 677 722 0.7 0.00000 
7 677 596 4.9 0.02116 
8 442 440 3.0 0.00508 
9 262 139 3.7 0.03093 

10 1732 198 1.9 0.00000 
11 1679 299 3.1 0.15454 
12 1274 578 5.4 0.85594 
13 1722 662 4.4 0.00407 
14 1573 662 1.8 0.00082 
15 1529 242 2.7 0.00797 
16 1967 147 2.0 0.00470 
17 1336 644 3.2 0.07942 
18 1045 558 2.6 0.00224 
19 761 671 1.4 0.00000 
20 548 744 2.1 0.02032 
21 327 376 4.2 0.07450 
22 482 497 3.5 0.00265 
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23 95 136 2.8 0.01370 
24 592 131 11.1 2.35815 
25 1051 140 3.7 0.02302 
26 1254 233 3.0 0.01693 
27 1339 137 7.7 0.26813 

 

Location-specific Liquefaction Potential Analysis 

To calculate the factor of safety (FS) against liquefaction, the following set of input 

data is adopted for the CPT-based liquefaction model: the moist unit weight of the soil γm 

is 16 KN/m3, the saturated unit weight γsat is 19 KN/m3, and the groundwater table 

(GWT) in the study site is observed at 2 m below the ground surface. The design 

earthquake at the study site is adopted as the level of seismic loading: amax = 0.23 g and 

Mw = 7.5. 

Figure 5.4(a) shows the location-specific FS-based liquefaction analysis at location #4 

(marked in the layout in Figure 5.3). The first subplot of Figure 5.4(a) is the profiles of 

qt1N,cs before compaction (BC) and after compaction (AC), which clearly shows the 

increase in soil strength over the depths between 1 m and 8 m. Below the depth of 8 

m, there was little change in the soil strength. It can be seen that DC tends to disturb 

and loosen the top layers (top 1 m) even though it compacts the deeper layers (up to 8 m). 

The second subplot of Figure 5.4(a) shows the CSR and CRR profiles along the depth 

for both BC and AC. It can be seen that before DC, the CRR is much smaller than 

CSR between the depths of 2 m and 5 m, which is the critical layer of soil 

liquefaction at the location #4. Within the critical layer, there were very thin layers of 

non-liquefiable clay material, which is reflected by the abrupt change of CRR in 
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these very thin layers. If these noises (exhibited in these very thin layers) are ignored, 

the critical layer is easily identified. Below the depth of 6.5 m, there exists a layer of 

clayey silt and silty sand mixtures (Lee et al., 2001), which is deemed non-liquefiable 

(assigned herein with CRR = 1), although the qt1N,cs values are very low. After DC, 

the CRR is greatly increased, especially in the critical layer. The third subplot of 

Figure 5.4(a) shows the FS profiles of BC and AC, and the effect of DC in the increase 

of FS, especially in the critical layer, is evidenced. 
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(a) 

 
(b) 

Figure 5.4: Location-specific liquefaction potential analysis at (a) location #4; (b) 
location #12 under the shaking level of the design earthquake. 
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Figure 5.4(b) shows the location-specific FS-based liquefaction analysis at location 

#12 (marked in the layout in Figure 5.3). It can be inferred from the third subplot of 

Figure 5.4(b), the critical layer at this location is between the depths of 2 m and 7 m 

based on the FS profile before DC. After DC, the liquefaction potential at this 

location has been reduced virtually to zero (i.e., FS > 1) within the first 5 m from the 

ground surface. However, the DC is not effective when the depth is greater than 5 m 

under the shaking level of the design earthquake. In short, based on the results shown 

in Figure 5.4, the liquefaction potential at one location varies from the other due in 

part to the spatial variation of the natural deposit and the depositional variation of the 

hydraulic fill. 

It should be noted that the distances between CPTBC and CPTAC at both location # 4 

and location #12 are approximately 8 m. The distance between CPTBC and CPTAC can 

affect the accuracy of comparison of their liquefaction resistance. As can be seen from 

the data shown in Table 5.2 and Table 5.3, the distance between each pair of CPTBC and 

CPTAC is in a range of 8 m to 94 m with an average of 37 m. This may lead to an 

inaccurate evaluation of the effect of DC using the location-specific liquefaction potential 

analysis as presented previously. This problem may be overcome by adopting the areal 

liquefaction potential analysis through the use of random field modeling, which will be 

introduced in the next section. 
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Areal Liquefaction Potential Analysis 

To improve the communication of the effect of DC between the engineers, 

contractors and clients, the visualization of the liquefaction potential at a project site that 

covers a significant area is conceptually attractive. To visualize the liquefaction potential 

in the project area under a given earthquake-shaking scenario, random field modeling of 

the LPI field is performed. In addition, through the generated LPI maps before and after 

DC, the effect of DC over the entire study site can be evaluated. 

The LPI Hazard Map Generated by Random Field Modeling 

The shaking level of the design earthquake at the DC project site is adopted in the 

liquefaction analysis discussed in this section. Firstly, the LPI values of the 27 CPT 

samples before compaction, denoted as LPIBC, and after compaction, denoted as LPIAC, 

are calculated using the CPT-based liquefaction evaluation method summarized in 

Section Liquefaction potential index (LPI). The calculated LPIBC and LPIAC values are 

listed in Table 5.2 and Table 5.3, respectively. It can be seen from Table 5.2 that, before 

compaction, all of the LPIBC values are in the range between 10.1 and 24.0, 

corresponding to “high” to “very high” liquefaction severity class (refer to Table 5.1). 

This indicates that the study area, in general, has very high liquefaction potentials. After 

compaction, the LPIAC values are significantly reduced to a range of 0.7 to 11.1. 

To characterize the statistical and spatial distributions of the LPIBC and LPIAC values 

in the study area, the histogram and semivariogram of the LPI values are first 

constructed. Figure 5.5(a) and Figure 5.5(b) are the histograms of the LPIBC and LPIAC 
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values obtained at the CPT locations. The lognormal distribution is used to fit both 

histograms. The descriptive statistics including the minimum value, maximum value, 

mean, standard deviation, and coefficient of variation (COV) of 27 LPIBC and 27 LPIAC 

values for design earthquake are provided in Table 5.4. 

  

(a)                                                                      (b) 
Figure 5.5: The histogram of the LPI values of the 27 CPT samples under the seismic 

loading of the design earthquake: (a) before compaction; (b) after compaction. 

 

Table 5.4: Descriptive statistics of the LPIBC and LPIAC values of 27 CPT 
soundings under two seismic shaking levels. 

Statistics 
Design Earthquake Chi-Chi Earthquake 
LPIBC LPIAC LPIBC LPIAC 

Minimum 10.1 0.7 0.3 0.00 
Maximum 24.0 11.1 7.7 2.36 
Mean 15.8 3.5 2.1 0.18 
COV 0.24 0.62 0.98 2.67 

As the LPI follows the lognormal distribution, the ln(LPI) is used to characterize 

semivariogram and generate random fields in the sequential Gaussian simulation. 

Accordingly, the semivariograms of the ln(LPIBC) and ln(LPIAC) values of the 27 CPT 
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samples are shown in Figure 5.6(a) and Figure 5.6(b), respectively. The blue squares are 

the empirical g calculated from the ln(LPIBC) or ln(LPIAC) values at CPT locations. A 

weighted least square method by Cressie (1985) is used to fit the empirical g. The red 

lines are the fitted g using the exponential semivariogram model expressed in Eq. (5.15) 

and the fitting parameters are marked in the figures. It can be seen that the empirical g of 

ln(LPIAC) is more scatter than the one ln(LPIBC), and the nugget effect is prominent for 

the fitted g of ln(LPIAC). 

 
(a)                                                                      (b) 

Figure 5.6: The semivariogram of the LPI values of the 27 CPT samples under the 
shaking level of the design earthquake: (a) before compaction; (b) after compaction. 

With the histogram and semivariogram as inputs, the random field model can be 

established and used for generating the liquefaction hazard map. In this case study, grid 

size of the random field is set as 10 m, which is the same as the subzone size in Figure 

5.2. Through a parametric study, it is found that 1000 Monte Carlo Simulations (MCSs) 

is enough to get a stable random field, as the COV of the LPI values is barely varied with 

additional increase of MCS number. Each MCS generates one realization of the ln(LPI) 
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field. Then, the LPI field (transformed back to lognormal distribution) averaged from 

1000 MCSs is used to present the liquefaction hazard of the entire site.  

Figure 5.7(a) shows the LPIBC map averaged from 1000 MCSs. It can be seen that the 

project site has very high potential to liquefy under the shaking level of the design 

earthquake. The associate uncertainty of the outcomes of random field modeling can also 

be visualized. Figure 5.7(b) shows the COV of LPIBC at each location calculated from 

1000 MCSs. It can be seen that the COV become larger at locations far away from the 

CPT sounding locations, especially at the margins of the study site. The COV map in this 

case offers a means to visualize the precision of the random field modeling. 
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(a) 

 
(b) 

Figure 5.7: The pre-compaction LPI map (LPIBC) under the shaking level of the design 
earthquake: (a) mean value of LPIBC; (b) COV of LPIBC calculated from 1000 MCSs. 

The liquefaction hazard map can also be interpreted with the liquefaction severity 

class. Using the Figure 5.7(a) and the liquefaction severity classification in Table 5.1, the 

liquefaction map based on the severity class can be generated and shown in Figure 5.8(a). 

It can be clearly seen that the liquefaction severity of the study area was in Class 4 (high) 

to Class 5 (very high) before DC.  
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(a) 

 
(b) 

Figure 5.8: The LPI severity class map under the shaking level of the design 
earthquake: (a) before compaction; (b) after compaction. 

With the liquefaction hazard map, including the LPI value map in Figure 5.7(a) and 

the LPI severity class map in Figure 5.8(a), the liquefaction risk can be easily visualized. 

The visualization maps are a useful tool in the design and construction processes of 

dynamic compaction, especially for communications between the engineers, contractors 

and the clients. 
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Effectiveness of Dynamic Compaction based on Areal Analysis 

Following the same procedure presented above, the after-compaction liquefaction 

hazard map can be obtained through random field modeling and the results are shown in 

Figure 5.8(b). The liquefaction hazard maps derived for the scenarios of before DC and 

after DC, namely Figure 5.8(a) and Figure 5.8(b), can be compared and the effectiveness 

of the DC can be visualized.  

Additional quantitative comparison, in terms of LPIAC vs. LPIBC, using all data from 

the entire site, is shown in Figure 5.9(a). For the study area, the effectiveness of DC in 

reducing LPI values is clearly demonstrated. It is noted that some LPI pairs are close to 

1:1 line, which means less improvement is achieved with DC at these locations.  

 
(a)                                                                      (b) 

Figure 5.9: The effect of dynamic compaction under the shaking level of the design 
earthquake: (a) LPIAC vs. LPIBC; (b) cumulative frequency plot of LPIBC and LPIAC. 

Figure 5.9(b) shows the cumulative frequency distributions of simulative LPIAC and 

LPIBC values. The cumulative frequency of LPI is defined by the percentage of LPI 

values equal and greater than a threshold LPI value. For example, after DC, the LPIAC 

values greater than 5 is 18%. In other words, there is only 18% chance that the LPIAC 
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values will exceed 5 in this study area after DC. As a comparison, there is 100% chance 

that the LPIBC values will exceed 5 in this study area before DC. Reducing the chance of 

exceeding LPI = 5, which is a threshold suggested by Toprak and Holzer (2003) for 

surface manifestations of liquefaction, from 100% before DC to 18% after DC is indeed 

very significant. Similarly, the chance of exceeding LPI = 15 drops from 54% before DC 

to zero after DC. As indicated in Table 5.1 (Sonmez, 2003), LPI > 15 indicates a “very 

high” liquefaction hazard. Such reduction in the likelihood from 54% to zero is drastic, 

which again demonstrates the effectiveness of DC at this project site. All these easy-to-

see effects of DC in the mitigation of liquefaction hazard are enabled through random 

field modeling, and as such, the latter is demonstrated as a useful tool in geotechnical 

practice, not just an academic exercise.  

Finally, an index called ground improvement ratio (RI) is defined below for 

estimation of the effect of dynamic compaction on a relative basis: 

BC AC
I

BC

LPI LPI( ) 100%
LPI

R -
= ´                                       (5.16) 

Figure 5.10 shows the improvement ratio (RI) of the entire study area (project site) 

under the shaking level of the design earthquake. Other than a subzone in the lower left 

part of the project site, identified as location #24 in Figure 5.3, the entire study area is 

shown with an improvement ratio ranging approximately from 65% to 90%. To 

investigate this exception in the effect of DC, the location-specific liquefaction analysis 

before and after DC is carried out at location #24 and the results are shown in Figure 

5.11. It can be seen that below the depth of 7 m, the qt1N,cs values after compaction are 
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smaller than those before compaction, which leads to a decrease in LPI (i.e., LPIBC < 

LPIAC) and a lower LPI severity class. This abnormal outcome might be caused by the 

errors in the CPT soundings, the variation in the DC operation, and the soil variability 

between the two CPT test locations. Further study is needed to confirm this observation 

at this local location. Nevertheless, the effectiveness of the random field-based 

visualization for assessing the effect of DC is further confirmed. 

 
Figure 5.10: The improvement ratio (RI) for the study site under the shaking level of the 

design earthquake. 
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Figure 5.11: Location-specific analysis at location #24 under the shaking level of the 

design earthquake. 

 

Performance of the site during the 1999 Chi-Chi earthquake   

During the progression of the dynamic compaction (DC) project at the study site, a 

major earthquake, known as the 21 September 1999 Chi-Chi earthquake (Mw = 7.6), 

struck the central Taiwan. The earthquake caused a peak ground surface acceleration of 

amax = 0.12 g at the study site, and soil liquefaction manifestation was observed in the 

zone where the DC had not been carried out. To check the accuracy of the random field 

modeling, the LPI hazard maps of the study site under the shaking level of the Chi-Chi 

earthquake (Mw = 7.6 and amax = 0.12 g) are generated and compared with liquefaction 

observation.  
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Similar to the analysis made previously for the design earthquake, the histograms and 

semivariograms of the LPIBC and LPIAC values at CPT sounding locations using the Chi-

Chi earthquake ground motion parameters are first characterized. The descriptive 

statistics of 27 LPIBC and LPIAC values are shown in Table 5.4. Following the same 

procedure as in the previous analysis, the LPI hazard maps (in terms of severity class) 

before and after DC under the shaking level of the 1999 Chi-Chi earthquake are obtained, 

as shown in Figures 5.12(a) and (b), respectively. It should be noted that at the time of the 

1999 earthquake, the DC had been carried out only in part of the site, as illustrated in 

Figure 5.12 where the completed area is marked with dash lines.  
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Loc. #4

Loc. #7

 
(a) 

Loc. #4

 
(b) 

Figure 5.12: The LPI map averaged from 1000 MCS under the shaking level of the 21 
September 1999 Chi-Chi earthquake (the area enclosed by dash line is the DC area 

completed prior to the Chi-Chi earthquake): (a) before compaction (LPIBC); (b) after 
compaction (LPIAC). 

As reported in Lee et al. (2001), there was no observed liquefaction manifestation in 

the area that the DC work had been completed. This is consistent with the results of 

random filed modeling shown in Figure 5.12(b), as the area enclosed by dash lines is 

assessed with a liquefaction severity of Class 2 (minor). In the unimproved area at this 

site, however, the evidences of soil liquefaction were found during the 1999 Chi-Chi 
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earthquake. For example, in the vicinity of location #4, where DC had not been carried 

out, the sand boiling was observed with the ground settlement of 33–45 cm. The field 

observation is quite consistent with the generated LPI hazard map shown in Figure 

5.12(a), as the liquefaction severity at location #4 was in Class 3 (moderate). For another 

example, in the vicinity of C-7 wet surface was observed after the 1999 event, which is 

consistent with the random field modeling of minor liquefaction prediction (see Figure 

5.12a). 

Compared to Figure 5.8(a) and Figure 5.8(b), the liquefaction potential of the project 

site (study area) is much smaller due to a smaller level of seismic loading. The effect of 

the shaking level and the effectiveness of DC may be more obviously observed with 

Figure 5.13, which is the box plots of simulated LPIBC and LPIAC values for both the 

design earthquake level and the Chi-Chi earthquake level of shaking. The dynamic 

compaction is shown as an effective technique to mitigate liquefaction hazards regardless 

of the shaking level, although in this case, the effect is more profound at higher ground 

shaking level.  
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Figure 5.13: The box plot of simulated LPIBC and LPIAC values for both design 
earthquake and the Chi-Chi earthquake. (Note: data points beyond the whiskers are 

displayed by symbol +). 

 

Limitations of the Study 

The index LPI has been widely used in mapping the liquefaction hazard over an 

extended area or a region (Bong and Stuedlein, 2017; Bong and Stuedlein, 2018; Chen et 

al., 2016a; Holzer et al., 2006; Toprak and Holzer, 2003). It was adopted in this study for 

its convenience in assessing the effect of dynamic compaction (DC) on the liquefaction 

hazard under the seismic shaking. However, the LPI is a complex index, affected by 

many factors (Lee et al., 2004; Li et al., 2006). A careful calibration of LPI is always 

desirable. In this study, the calibration by Sonmez (2003) was adopted. Although no re-

calibration of this LPI was carried out in this study, the use of this LPI is believed to be 

appropriate, since the focus was to assess the effect of DC (i.e., the relative performance 
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of the ground before and after DC) from the random field perspective. The use of 

improvement ratio (RI) helps ease the concern of different interpretations of the LPI, as it 

provides an assessment of the ground improvement for the purpose of mitigating 

liquefaction hazard by DC on a relative basis.  

Another limitation on the use of LPI in this study is the fact that most CPT soundings 

carried out after DC were limited to a shallower depth (up to the depth of approximately 

10 m), as the design of DC in this project focused on the mitigation of the liquefaction 

potential of the critical layers, typically at the depths of 2 m to 6 m. The effect of DC at 

this project site was limited to the depth of approximately 8 m by design. Thus, post DC 

tests were limited to this depth accordingly. This is different from the definition of LPI 

that is extended to the depth of 20 m, although the weights given to the deeper layers (> 

10 m) in the LPI are much lower than those at shallower depths. 

Summary 

In this chapter, the effect of dynamic compaction was assessed from a random field 

perspective. Specifically, a random field-based visualization procedure was developed as 

a means to assess the effect and benefits of dynamic compaction in the mitigation of 

liquefaction hazard. The CPT data before and after dynamic compaction in a ground 

improvement project were seldom available in an ideal one-to-one and side-by-side 

correspondence, which often complicated the evaluation of the effectiveness of dynamic 

compaction in the mitigation of liquefaction hazard. The random field-based visualization 

procedure developed in this study overcame this obstacle, and enabled an easy 
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observation of the effect and benefits of the dynamic compaction in the mitigation of 

liquefaction hazard. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The main objectives of this dissertation research as stated in Chapter I were: (1) to 

improve the existing probabilistic liquefaction evaluation methods, (2) to study the 

effectiveness of dynamic compaction in the mitigation of liquefaction hazards. These 

objectives have been accomplished through the work of three journal papers that cover a 

wide range of aspects: (I) in terms of the data employed, this dissertation work used Vs-

based and CPT-based liquefaction databases, as well as synthetic data; (II) the work 

covered both location-specific evaluation and areal (or regional) evaluation of the 

probability of liquefaction; (III) the work addressed the problems from liquefaction 

potential evaluation to liquefaction hazard mitigation; (IV) the work utilized the random 

field theory to assess the effect of dynamic compaction in the mitigation of the 

liquefaction hazards. The conclusions of this dissertation work are summarized below: 

The following conclusions were drawn from the results of the study, “Predicting 

liquefaction probability based on shear wave velocity: an update” presented in Chapter 

III: 

(1) Among the four GLMs developed, the log-log is found the optimal based on the 

Akaike information criterion (AIC), Bayesian information criterion (BIC), cross-

validation (CV). The widely used logistic model, which has a simpler form, ranks 
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second based on these model assessment criteria. The log-log and logistic models 

are recommended for evaluating liquefaction probability based on Vs 

measurements. 

(2) The sampling bias effect should be considered for developing probabilistic models. 

The weighted log-likelihood function is adopted to correct sample bias. The 

sensitivity study of the wNL/wL ratio shows that the Ku et al. (2012) approach for 

weighting factors is effective for correcting sampling bias effect.  

(3) The generalized linear models are found to be sensitive to the database used for 

model development. The recommended probabilistic models are found quite 

satisfactory when they are checked against the new case histories derived from the 

22 February 2011 Canterbury Earthquake. Further, with the combined database 

(with additional 36 serious liquefied cases), the updated log-log and logistic model 

are recommended for Vs-based liquefaction evaluation.  

The following conclusions were drawn from the results of the study, “Random field-

based regional liquefaction hazard mapping - data inference and model verification 

using a synthetic digital soil field” presented in Chapter IV:  

(1) All three random field models examined can capture closely the statistical 

distribution and spatial structure of the true (qc1N)cs and LPI fields, provided that 

the amount of field test data for model parameter inference is sufficient. The 

model performances deteriorate with the reduction of test samples as expected.  

(2) All random field models are found to overestimate slightly liquefaction potentials 

over the studied area, compared to the benchmark liquefaction potential fields. 
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(3) When there is sufficient amount of field data for model parameter inference, the 

3D local soil property approach (M3) slightly outperforms the averaged index 

approach (M1) and the 2D local soil property approach (M2) in terms of the 

accuracy in predicting the liquefaction potentials, while M1 is significantly more 

efficient than M2 and M3. 

(4) When there are sufficient field test data to infer model parameters, it is 

recommended that the averaged index approach (M1) be used for liquefaction 

mapping considering a tradeoff between efficiency (in terms of computational 

effort) and accuracy. On the other hand, under the scenario of insufficient data, 

the 3D local soil property approach (M3) is recommended for its highest accuracy 

among the three models examined.  

The following conclusions are drawn from the results of the study, “Mitigation of 

liquefaction hazard by dynamic compaction - a random field perspective” presented in 

Chapter V: 

(1) The random field-based visualization procedure developed in this study was 

shown effective in assessing the effect of dynamic compaction using CPT data at 

limited locations at a project site before and after the dynamic compaction. The 

effectiveness of this visualization procedure was demonstrated in a case study of a 

ground improvement project on a reclaimed ground in western Taiwan.  

(2) The developed random field-based approach removed the need for side-by-side, 

one-to-one correspondence in the pre- and post-compaction CPT tests.  
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(3) The developed visualization procedure greatly facilitated the communications 

among the engineers and with their clients, as the effect and benefit of dynamic 

compaction in the mitigation of liquefaction hazard was easily visualized.  

Recommendations for future studies 

(1) In general, uncertainties in the seismic loading (shaking level), the liquefaction 

case histories, and the empirical liquefaction model, and errors in measurement 

(testing) and soil variability all demand use of the probabilistic approaches. 

Research to reduce the uncertainty through improved knowledge adds to the world-

wide efforts in assessing and mitigating liquefaction hazards and should be 

pursued. To this end, recent development in robust geotechnical design may be 

followed to develop robust procedures for robust design of liquefaction mitigation 

effort (such as ground improvement).  

(2) In Chapter III, the model calibration methodologies are applied to Vs-based 

liquefaction databases. There have been efforts by various parties in many parts of 

the world to collect and expand databases of liquefaction case histories. Applying 

these model calibration methodologies to new and expanded databases may be a 

worthwhile effort to improve the existing models. To this end, perhaps a more 

pressing issue is to determine how much more data is necessary to gain a robust 

assessment of liquefaction hazard. What are the data that are really needed and 

currently missing? Answering these questions may be more important than simply 

to collect more data and expand the database. 
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(3) In Chapter IV, the random field models were studied and assessed using a synthetic 

digital field with the assumptions of stationarity of the random field and evenly-

spaced virtual field investigation plans. These assumptions may be appropriate for 

the intended purpose of evaluating and comparing different random field models in 

terms of accuracy and time-efficiency. In reality, the number of test data that are 

available may be limited, and the test pattern at a project site may not be evenly-

spaced, the most suitable random field model in such scenario may not necessarily 

be the same as the one reached in this study. Thus, the conclusions should be 

viewed with caution and further study to quantify the effect of these assumptions is 

warranted.  

(4) In Chapter V, the random-field-based visualization procedure has been 

demonstrated effective to aid in the evaluation of the effect of dynamic compaction 

using CPT soundings at limited locations at a project site before and after the 

dynamic compaction. The findings were obtained through modeling the 

liquefaction hazard of the project site as a random field of the liquefaction potential 

index (LPI). As a careful calibration of LPI is always desirable, and the depth of in 

situ test does not always reach to 20 m (the depth in the definition of LPI), 

additional work to adopt other liquefaction potential measure, e.g., the liquefaction 

probability (PL), to model the liquefaction hazard of the site should be a 

worthwhile effort.  
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Appendix A  

Summary of the Andrus and Stokoe (2000) method 

Factor of safety FS is computed as: 

7.5

7.5

CRR
CSRSF =                                                         (A.1) 

Cyclic stress ratio CSR7.5 is computed as:   

max
7.5

1
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where tav is the average equivalent uniform cyclic shear stress caused by the earthquake 

and assumed to be 0.65 of the maximum induced stress; amax is the peak horizontal 

ground surface acceleration; g is the acceleration of gravity; sv is the total overburden 

stress in kPa; s¢v is the initial effective overburden stress in kPa, and gd is a shear stress-

reduction coefficient given as 

1.0 0.00765 for z 9.15m
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                             (A.3) 

where z is the depth below the ground surface. 

MSF is the magnitude scaling factor, defined as: 

2.56MSF ( / 7.5)wM
-=                                                     (A.4) 

Cyclic resistance ratio CRR7.5 is computed as:  



 122 

1, 2
7.5

1,

1 1CRR 0.022( ) 2.8( )
100 215 215
s cs

s cs

V
V

= + -
-

                               (A.5) 

where Vs1,cs is the clean sand equivalence of stress-corrected shear wave velocity 

designated as modified shear wave velocity here. 
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where Kfc is a fines content correction to adjust values to a clean soil equivalent. 
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2
1 1 1( ) 0.009 0.0109( 100) 0.0038( 100)s s sf V V V= - +                               (A.8) 

The Vs1 is the stress-corrected shear wave velocity; Cvs is a factor to correct measured 

Vs for overburden pressure; Pa is a reference stress of 100 kPa. 
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Appendix B  

CPT-based liquefaction model 

The CPT-based liquefaction model proposed in Robertson and Wride (1998) and 

subsequently updated by Robertson (2009) is adopted in this study. The factor of safety 

against liquefaction (FS) is defined as the ratio of cyclic resistance (CRR) and cyclic 

stress (CSR). 

 CRR=
CSRSF                                                     (B.1) 

The CRR provides soil resistances and it is defined in Eq. (B.2), which is a function 

of the equivalent clean sand normalized CPT penetration tip resistance (qc1N)cs. 

1 cs 1 cs
3

1 cs 1 cs

0.8333[( ) /1000] 0.05    if    ( ) 50
CRR

93[( ) /1000] 0.08    if    50<( ) <160
c N c N

c N c N

q q
q q

+ <ìï= í
+ïî

                 (B.2) 

The CSR represents the earthquake loadings, and the following adjusted form is 

adopted (Youd et al. 2001) 

 max vo

vo

1 1
CSR 0.65( )( )( )( )( )

g MSFd
a r

Ks

s
s

=
¢

                             (B.3) 

where amax is the maximum horizontal acceleration at the ground surface; g is the 

gravitational acceleration and equal to 9.81 m/s2, svo and s¢vo are the respective total 

and effective vertical overburden stresses. 

The stress reduction factor rd is a function of depth z and defined below (Youd et 

al. 2001) 
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0.5 1.5

d 0.5 1.5 2

1.000 0.4113 0.04052 0.001753
1.000 0.4177 0.05729 0.006205 0.001210

z z zr
z z z z

- + +
=
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The MSF is the magnitude scaling factor and related to the moment magnitude Mw 

as (Youd et al. 2001) 

2.24

2.56
w

10MSF
M

=                                                  (B.5) 

The Kσ in Eq.(B.6) is the overburden correction factor for CSR (Youd et al. 2001). 

The correction is applied when the s¢vo greater than 100 kPa. 

( 1)'( ) fvo

a

K
Ps
s -=                                                  (B.6) 

where Pa is the atmospheric pressure; f is an exponent and recommended as: f = 0.7–0.8 

for relative densities between 40 and 60%; f = 0.6–0.7 for relative densities between 60 

and 80%. 
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Appendix C  

Liquefaction potential index 

The liquefaction potential index (LPI) was developed by Iwasaki et al. (1978&1982). 

It is based on the assumption that the liquefaction potential is related to the thickness of 

the liquefied layer and the factor of safety against liquefaction, and its equation is 

expressed as follows:  

20

0
LPI ( ) dLz F zw= ò                                                  (C.1) 

where z is the soil depth in meters and it is commonly evaluated top 20 m of soil profile; 

w(z) is the function of soil depth and FL is a function of factor of safety (FS) against 

liquefaction listed as follow:  

( ) 10 0.5z zw = -                                                  (C.2) 
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