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ABSTRACT 
 

While the Atlantic coast of the United States and Canada is a major wintering area 

for sea ducks, habitat use and movement patterns of sea ducks, such as the black scoter 

(Melanitta americana), are vastly unknown and understudied. The lack of information in 

conjunction with a rise in human activity in and near the Atlantic Ocean has led to an 

increased effort for the conservation and management of sea ducks, while minimizing 

human conflicts. The objectives of my study were to 1) identify variables that had the 

most influence on black scoter distribution in the Atlantic Ocean along the southeastern 

coast of the United States and 2) investigate the winter movement patterns of black 

scoters in the Atlantic Ocean by quantifying the number of wintering sites, arrival and 

departure dates to and from the wintering grounds, days at a wintering site, area of a 

wintering site, distance between wintering site, and test if winter movement patterns 

varied by sex or geography. 

To identify the variables that were the most influential on black scoter distribution 

along the southeastern coast of the United States, I used aerial survey data from 2009 to 

2012 provided by the United States Fish and Wildlife Service. I ran a Least Absolute 

Shrinkage and Selection Operator (LASSO) with broad and fine scale oceanographic and 

weather variables. The oceanographic variables of bathymetry, ocean floor slope, and 

distance to shore were found to have the greatest association with the distribution of 

black scoter. Additionally, my results suggest that oceanographic variables have a 

stronger relationship with black scoter distribution than weather variables. 
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To quantify winter movement patterns of black scoters, I used satellite telemetry 

data from 2009 to 2012 that was provided by the Sea Duck Joint Venture. I used Mann-

Whitney U-tests to quantify the differentiation between sex and geography. While there 

was no difference between sexes, average wintering site area and distance between 

wintering sites differed by geographic region. Southern wintering sites were larger and 

farther apart than northern wintering sites. These results suggest that black scoter habitat 

use and movement patterns vary regionally. My results enable managers to focus 

sampling effort for black scoter abundance and distribution along the Atlantic coast. 

Habitat characteristics for black scoters identified in my study area should be carefully 

considered when planning anthropogenic activities along the southeast coast of the 

United States, such as offshore energy development. 
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CHAPTER ONE 

INTRODUCTION 

Ecological and behavioral physiological phases of the annual life cycle of wildlife 

can influence individual- and population-level processes during subsequent phases (e.g., 

carry-over effects; Harrison et al. 2011, Marra et al. 2015). These carry-over may impact 

ecological and evolutionary processes in birds (Ebbinge and Spaans 1995, Baker et al. 

2004, Norris et al. 2004, Saino et al. 2004, Gunnarsson et al. 2006, Sorensen et al. 2009, 

Sedinger and Alisauskas 2014). While research on birds is primarily conducted on the 

breeding grounds, migratory birds spend the majority of their annual life cycle off the 

breeding grounds (Marra et al. 2015). Poor quality habitat and a scarcity of resources 

during the wintering period and spring migration can decrease chances of survival and 

lower body condition for the subsequent phases of the annual cycle (Heitmeyer and 

Fredrickson 1981, Kaminski and Gluesing 1987, Ebbinge and Spaans 1995, Gunnarsson 

et al. 2006, Martin and Wiebe 2004, Studds and Marra 2007, Osnas et al. 2016, Rushing 

et al. 2017).  

Availability of quality non-breeding habitats may influence population dynamics 

(Scott 1998, Harrison et al. 2011, Marra et al. 2015). The quality and quantity of habitats 

and associated resources during the non-breeding season may be important limiting 

factors for waterfowl (Lack 1966, Fretwell 1972). Poor winter habitat conditions have 

been associated with large mortality events (Camphuysen et al. 2002), decreased 

reproductive success (Nichols et al. 1983, Kaminski and Gluesing 1987, Raveling and 

Heitmeyer 1989, Oosterhuis and Dijk 2002, Guillemain et al. 2008), and decreased 
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population growth rates (Petersen and Douglas 2004, Saino et al. 2004, Sorensen et al. 

2009).  

Sea duck (tribe Mergini) distribution within the wintering range may be based on 

a variety of site-specific factors including local environmental conditions, food 

availability, predation risk, site fidelity, and human activity (Greenwood 1980, 

Guillemette et al. 1993, Madsen and Fox 1995, Lewis et al. 2008, Loring et al. 2014, 

Beuth et al. 2017). Sea ducks spend winters on large bodies of water, such as the Great 

Lakes and oceans, which are complex and difficult to study due to their dynamic nature, 

making it challenging to quantify habitat quality for sea ducks during the non-breeding 

season. While the Atlantic coast of the United States and Canada is a major wintering 

area for sea ducks, movement patterns and habitat use of sea ducks is mostly unknown 

and understudied (Kaplan 2011, Jodice et al. 2013, Boyd et al. 2015).  

The 15 species of sea ducks are the least studied group of waterfowl in North 

America (Sea Duck Joint Venture 2014, Boyd et al. 2015). Very little is known about 

their life history traits, habitat preferences, and movement (Zipkin et al. 2010, Sea Duck 

Joint Venture 2014). As recently as 1999, basic biological information was lacking or 

non-existent for most sea ducks, as they inhabit remote, hard to access locations (Sea 

Duck Joint Venture 2014). Sea ducks breed in the tundra and boreal forest in the artic and 

winter on large bodies of waters, such as the Great Lakes and the oceans. In the early 

1990s, sea duck populations were declining with unknown causes (Caithamer et al. 2000, 

Sea Duck Joint Venture 2014). In 1999, the North American Waterfowl Management 

Plan (NAWMP) Plan Committee endorsed the Sea Duck Joint Venture (SDJV) to focus 
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on filling information gaps to improve the management and conservation of sea ducks in 

North America (Sea Duck Joint Venture 2014). In the first 10 years of the SDJV’s 

existence, most of the studies on sea ducks were done on populations in the Pacific and 

Arctic regions of North America with comparatively little work done in the Atlantic 

flyway. Recently, there has been an increased focus to learn more about sea duck 

breeding habitat and success, migration timing and routes, and non-breeding habitat in 

the Atlantic flyway (Sea Duck Joint Venture 2015). 

Five of 12 species of sea ducks that winter along the Atlantic coast are considered 

high priority due to historical or current population decline, habitat limitations, and 

concern about the impact of harvest (Sea Duck Joint Venture 2014). The five species are 

the long-tailed duck (Clangula hyemalis), American common eider (Somateria 

mollissima), black scoter (Melanitta americana), surf scoter (M. perspicillata) and white-

winged scoter (M. fusca). Of these species, black scoters were found in high densities 

along the southern half of the Atlantic coast and had the most annual variation in their 

wintering distribution (Silverman et al. 2013). While there are no reliable data to estimate 

the long-term trends of the Atlantic black scoter population (Bowman et al 2015), the 

black scoter is listed on the International Union for Conservation of Nature and Natural 

Resources (IUCN) Red List of Threatened Species as “Near Threatened.” (BirdLife 

International 2013). A species is “Near Threatened” when it does not qualify for 

“Endangered” or “Vulnerable” currently, but is likely to qualify for a threatened category 

possibly in the future. The “Near Threatened” category was assigned due to the current 
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decreasing population trend related to a variety of mixed evidence suggesting a 

moderately rapid decline (BirdLife International 2013).  

There has been an increase in human activity in the Atlantic Ocean in the past 

several years (Silverman et al. 2013), but it remains unknown how anthropogenic activity 

might affect sea duck wintering distributions. These activities range from coastal 

development, aquaculture, shipping, sand mining, and energy production. The potential 

development of wind farms in off-shore areas in the Atlantic Ocean could lead to the 

possible displacement of black scoters due to loss of habitat and collisions with 

structures. Proposed wind energy development along the Atlantic coast that occurs in 

core black scoter wintering area increases potential to displace black scoters and decrease 

resources necessary to maintain physiological body condition (Studds and Marra 2007, 

Rushing et al. 2017).  

Understanding wildlife population distribution and population dynamics as it 

relates to habitat use promotes effective conservation planning, minimizing human 

conflicts, and better survey planning for future monitoring programs (Newbold and Eadie 

2004, Rushing et al. 2017). The objective of this study is to increase knowledge on the 

wintering habitat use and movement patterns of black scoters along the Atlantic coast of 

the United States and provide new insight into black scoter conservation and 

management. 
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CHAPTER TWO 

BLACK SCOTER HABITAT USE ALONG THE SOUTHEASTERN COAST OF THE 

UNITED STATES 

Introduction 
 

Different phases of the annual life cycle can influence individual- and population-

level processes during ensuing phases (e.g., carry-over effects; Harrison et al. 2011, 

Marra et al. 2015). These carry-over effects can strongly impact both ecological and 

evolutionary processes in birds (Ebbinge and Spaans 1995, Norris et al. 2004, Sorensen et 

al. 2009). While avian research is primarily conducted on the breeding grounds, 

migratory birds spend the majority of their annual life cycle off the breeding grounds 

(Marra et al. 2015). Poor quality habitat and variable resources during the wintering 

period and migration can decrease chances of survival and lower body condition for the 

subsequent phases of the annual cycle (Gunnarsson et al. 2006, Studds and Marra 2007, 

Rushing et al. 2017). 

The quality and quantity of habitats and resources during the non-breeding season 

may be important limiting factors for waterfowl (Lack 1966, Fretwell 1972, Sedinger and 

Alisauskas 2014), and can have a detrimental effect on population dynamics (Alisauskas 

and Ankney 1992, Scott 1998, Martin and Wiebe 2004). Poor winter habitat conditions 

have been associated with large mortality events (Camphuysen et al. 2002), decreased 

reproductive success (Nichols et al. 1983, Oosterhuis and Dijk 2002, Guillemain et al. 

2008), and decreased population growth rate (Petersen and Douglas 2004, Saino et al. 

2004, Sorensen et al. 2009). Despite the importance of high quality wintering habitat, 
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there is limited information on winter habitat preference and use for sea ducks, 

particularly along the Atlantic coast of the United States (Kaplan 2011, Jodice et al. 2013, 

Boyd et al. 2015, Sea Duck Joint Venture, 2015).  

Avian distribution results from the selection of habitats at multiple scales 

(Fretwell and Lucas 1970, Wiens 1985, Cummingham and Johnson 2016). Greater 

abundance of birds may indicate areas of higher quality habitat across a species’ 

distribution (Einarsson 1988). Sea duck distribution within the wintering range may be 

based on a variety of factors including local environmental conditions (Loring et al. 2014, 

Beuth et al. 2017), food availability (Guillemette et al. 1993, Lewis et al. 2008), predation 

risk, site fidelity (Greenwood 1980), and human activity (Madsen and Fox 1995). Sea 

ducks winter on large bodies of water, such as the Great Lakes and oceans, which are 

complex and difficult to study due to their dynamic nature, making it challenging to 

quantify habitat quality for sea ducks during the non-breeding season. Therefore, because 

these dynamic systems are challenging to study using the environmental data currently 

available, quantitative methods are needed to analyze data with few observations and 

variables with small effects.  

In an effort to quantify the abundance and wintering distribution of sea duck 

populations along the Atlantic coast, the U.S. Fish and Wildlife Service (USFWS) 

initiated the Atlantic Coast Wintering Sea Duck survey in 2008 and conducted aerial 

surveys from 2008 to 2012 along the Atlantic coast of the United States (Silverman et al. 

2013). These surveys focused primarily on five species of concern due to current 

population declines, potential harvest implications, or habitat limitations (Sea Duck Joint 
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Venture 2014). The species surveyed were the common eider (Somateria mollisma), 

long-tailed duck (Clangula hyemalis) surf scoter (Melanitta perspicillata) white-winged 

scoter (Melanitta fusca) and the black scoter (Melanitta americana). Preliminary analyses 

from those aerial surveys indicated that black scoters had not only the largest range of the 

sea ducks surveyed, but also had the most variability in their inter-annual distribution 

(Silverman et al. 2013). A better understanding of the factors that are driving this inter-

annual distribution will help improve future survey design. 

Black scoter distribution can be influenced on a fine (< 2 km) and broad scale by 

oceanographic and weather conditions (Zipkin et al. 2010). Distance to shore and water 

depth effect black scoter winter distribution (Loring et al. 2014), as well as the North 

Atlantic Oscillation (Zipkin et al. 2010). In addition to oceanographic and weather 

variables, the wintering distribution of black scoters could be affected by a variety of 

anthropogenic sources, such as off-shore wind energy development, coastal development, 

aquaculture, shipping, sand mining, and energy production. It remains unknown how 

anthropogenic activity might affect sea duck wintering distributions (Silverman et al. 

2013, Sea Duck Joint Venture 2015). The potential development of wind farms in off-

shore areas in the Atlantic Ocean could lead to the possible displacement of black scoters 

due to loss of habitat and collisions with structures. In Europe, sea duck density was 

affected due to sea ducks avoiding areas with wind turbines in shallow water (Larsen and 

Guillemette 2007, Langston 2013). In New England, Loring et al. (2014) found that large 

core use areas for black scoters in near shore areas were surrounding the federal lease 

block for off-shore wind energy that could cause barrier effects and increase the 
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susceptibility to collisions (Fox et al. 2006, Langston 2013). Identifying key 

environmental factors could help identify near-shore and off-shore areas of the Atlantic 

coast where wind power facilities and other developments would have the least impact on 

black scoters (Silverman et al. 2013, Sea Duck Joint Venture 2015). The objective of this 

study was to identify environmental covariates that explained the most variation black 

scoter distribution along the Atlantic Coast of the Southeastern United States. 

Understanding what factors correlate black scoter habitat use can help to minimize 

human conflict, improve survey design, and increase knowledge for black scoter 

conservation and management. 

 

Methods 

Survey Design 

The U.S. Fish and Wildlife Service conducted aerial off-shore winter surveys 

from 2009 to 2012. From 2009 to 2011, pilots flew from the North Carolina-Virginia 

border (36°55’ N) U.S.-Canada border to Jacksonville, Florida (30°21’ N) in February. In 

February 2012, pilots flew from the South Carolina-North Carolina border (33°75’ N) to 

the Florida-Georgia border (30°70’ N). Surveys consisted of east-west transects spaced at 

5 nautical mile (nm) intervals of latitude (2.5 nm in 2012). Transect length was the longer 

of the two following distances: 14.8 km or the distance to the 16-m depth boundary 

starting from the coastline and heading east. Twelve 2-person crews (pilot-observer and 

observer) conducted the surveys using USFWS fixed-winged aircrafts flown at ca. 70 m 

and 204 km/h. The pilot-observer and observer counted all sea ducks within 250 m of 



 9

their side of the aircraft (Figure 1). More details about the survey methodology are 

described in Silverman et al. (2013). 

In order to account for unoccupied areas in the survey, I subset the transects flown 

by USFWS during the aerial surveys into grid cells that were 1000 m long and 550 m 

wide (275 m on each side of the transect) using the packages Dspat (Johnson et al. 2014), 

GISTools (Brunsdon and Chen 2014), and spatstat (Baddeley et al. 2017) in program R 

(v. 3.4.0; R Development Core Team 2017). I used a width of 550 meters to encompass 

the area surveyed plus an additional 25 meters to each side of the surveyed area to 

account for possible global positioning system (GPS) error. I summed the number of 

black scoters observed in each grid cell as the response variable, ranging from zero to the 

maximum count value. To calculate the value for each environmental covariate of interest 

(below), I either used the center of the grid cell (for distance to shore) or calculated the 

mean of a given variable for each grid cell using the raster package (Hijmans et al. 2016).  

Habitat Variables 

Because distributions of sea ducks appear to respond to a combination of local 

habitat conditions and broad-scale weather patterns (Zipkin et al. 2010), I considered the 

following oceanic environmental variables in my analysis. A broad-scale variable, I 

considered was marine ecoregion and the fine-scale variables were distance to shore, 

bathymetry, ocean floor slope, and ocean floor substrate. Marine ecoregions are regions 

of relatively similar benthic and shelf pelagic (neritic) species composition and are 

clearly distinct from adjacent systems as a result of several variables including 

temperature regimes, currents, bathymetry, and sediments (Spalding et al. 2007). The 
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three ecoregions included in this study were Virginian, Carolinian, and Floridian. 

Distance to shore is a fine-scale factor that may have a substantial impact on black scoter 

distribution. Black scoters in New England and Newfoundland primarily use subtidal 

(<20 m from shore) or near-shore habitats (<5km from shore; Goudie and Ankney 1988, 

Loring et al. 2014). Bathymetry, or water depth, also may affect black scoter distribution; 

black scoters primarily use water depths averaging 13-15 m in New England (Loring et 

al. 2014), but it is not known what water depth black scoters use along the southeastern 

coast of the United States. The slope of the ocean floor may influence black scoter 

distribution (Zipkin et al. 2010, Silverman et al. 2013), but given the variable nature of 

ocean-floor topography along the Southern Coast relative to the Northern Coast, it is 

unclear how slope will influence black scoters along the southeastern coast of the United 

States.  

In addition to oceanographic variables, I also considered weather variables that 

could affect black scoter distribution. A broad-scale variable I considered was North 

Atlantic Oscillation (NAO) and the fine-scale variables were average wind speed and 

average time between waves. The NAO index is a broad-scale weather pattern that can 

affect black scoter distribution (Zipkin et al. 2010). The NAO index is based off the 

difference in air pressure at the surface sea-level between the semi-permanent low near 

southwest Iceland and the semi-permanent high over Gibraltar (Hurrell 1995, Hurrell et 

al. 2003). Positive phase NAO tends to be associated with above-normal temperatures 

and above-average precipitation along the eastern coast of the United States, while 

negative phase NAO tends to be associated with below-normal temperature and below-
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normal precipitation along the eastern United States. Many influential fine-scale weather 

variables in terrestrial habitats (i.e. precipitation, air temperature) can have little influence 

in marine systems. Average wind speed (meters/sec) and average wave period (time 

between wave crests or troughs, sec) are fine-scale weather variables believed to more 

relevant variables in marine systems (Palm et al. 2013).  

I acquired the following four data sets to assess possible effects of ocean 

environmental variables on black scoter wintering distribution. I obtained bathymetric 

data from the National Oceanic and Atmospheric Administration’s (NOAA) National 

Geophysical Data, ETOPO1 Global Relief Model (Amante and Eakins 2009). I 

calculated ocean floor slope (degrees) by using the bathymetry data (Amante and Eakins 

2009), and finding the difference of the values between neighboring cells (Table 1). I 

calculated distance to shore by finding the Euclidean distance between the center of the 

grid cell and the nearest shoreline. I obtained shoreline shapefile from NOAA’s National 

Centers for Environmental Information Global Self-consistent, Hierarchical, High-

resolution Geography Database (GSSH), version 2.3.6, using the intermediate resolution 

(i) and the boundary between land and ocean (L1; Wessel & Smith 1996). I obtained the 

ocean floor substrate data from NOAA’s Office of Coastal Management Digital Coast, 

Atlantic Seafloor Sediment Continental Margin Mapping (CONMAP; Poppe et al. 2014). 

I acquired the shapefile for the marine ecoregions of the world (MEOW; Spalding et al. 

2007) from the World Wildlife Fund (WWF).  

I acquired the following three data sets to determine the effects of weather on 

black scoter wintering distribution. I obtained monthly values for NAO from the Climatic 
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Research Unit, University of East Anglia, Norwich, UK 

(https://crudata.uea.ac.uk/cru/data/nao/). I obtained daily values of average wind speed 

for the corresponding dates of the aerial surveys for all grid cells from NOAA’s National 

Data Buoy Center. I then averaged the daily wind speed of survey dates for each grid cell 

to calculate the average wind speed. I acquired data from 20 buoys located along the 

southeastern U.S. coast from the Virginia coast (37°60’ N) to the Florida-Georgia border 

(30°70’ N). I calculated the average wind speed across this region by using inverse 

distance interpolation over the latitude range of 28° to 39° N and over the longitude range 

of -82° to -72° N with the gstat package (Pebesma and Graeler 2017). Inverse distance 

interpolation is when cell values are predicted based on their distance from known cell 

values. Cells that are closer to known values will be more influential than points further 

away. The power value determines the influence distance from the known values, with a 

higher power value the distance influenced by the known values increases. I used a power 

value of 2 to calculate the average wind speed along the southeastern coast of the United 

States between the buoys. I obtained daily values of average wave period for the 

corresponding dates of the aerial surveys for all grid cells from the NOAA’s National 

Data Buoy Center. I then averaged the daily average wave period of survey dates for each 

grid cell to calculate the average wave period. I acquired data from nine buoys located 

along the southeastern U.S. coast from the Chesapeake Bay (36°91’ N) to the Georgia 

border (31°40’ N). I calculated the daily wave period across this region by using inverse 

distance interpolation over the latitude range of 28° to 39° N and over the longitude range 

of -82° to -72° N with the gstat package (Pebesma and Graeler 2017). I used a power 
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value of 2 to calculate the average time between waves (sec) along the southeastern coast 

of the United States between the buoys (Table 1).  

Model Fitting 

I used the least absolute shrinkage and selection operator (LASSO; Tibshirani 

1996) to determine environmental variables that best predicted black scoter wintering 

distribution along the southern Atlantic coast of the United States. The lasso regression is 

a penalized estimation method that reduces (i.e. shrinks) non-significant variables to zero, 

keeping only variables important to the model at a user-specified cutoff value (Tibshirani 

1996, Hastie et al. 2015). While the cutoff value (lambda) can influence inference of the 

results, there are cutoffs that are commonly applied and therefore provide some level of 

standardization to the lasso process. The minimum lambda cutoff value is the log value of 

lambda that best minimizes the mean square error estimate by ten-fold cross-validation. 

When the minimum lambda cutoff is used, the variables remaining form the “best 

predicting model in cross-validation.” The minimum lambda cutoff also yields the model 

with the most parameters relative to the other cutoff values. Alternatively, the one 

standard error of lambda cutoff value is where the mean square error is within one 

standard error of the minimum error of lambda leaving the “simplest model whose 

accuracy is comparable with the best model (i.e. minimum error of lambda)” (Breiman et 

al. 1984, Hastie et al. 2015). The one standard error of lambda yields the most reduced 

model. I ran the lasso with a Poisson regression, using the glmnet package (Friedman et 

al. 2017) and with four cutoff values: 1) minimum lambda, 2) one standard error of 

lambda, 3) ¼ lambda, the value between the minimum lambda and the one standard error 
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of lambda and 4) ½ lambda, the lambda value halfway between the minimum lambda and 

the one standard error of lambda. I considered four cutoff values to assist in identifying 

the most parsimonious model. I included the cutoff values of ¼ lambda and ½ lambda to 

determine which variables may be of secondary importance to the model relative to the 

most important variables identified at one standard error of lambda. There is currently no 

consensus on a statistically valid method to calculate standard error of beta estimates for 

lasso regressions (Friedman et al. 2010, Kyung et al. 2010, Lockhart et al. 2014, Goeman 

et al. 2016), therefore I used a Poisson generalized linear model (GLM) with the 

coefficients remaining at ½ lambda and ¼ lambda to calculate standard errors of 

regression coefficients. 

I included nine independent variables in the model of black scoter distribution. 

There was no collinearity between variables and all variables were standardized to a 

mean value of zero and a standard deviation of 1. The six oceanographic variables 

evaluated were: bathymetry (m), ocean floor slope (degrees), distance to shore 

(Euclidean), ocean floor substrate, marine ecoregion, and survey year. I evaluated the 

following three weather variables: North Atlantic Oscillation (NAO), average wind 

speed, and average time between waves (Table 1). I also examined the quadratic terms 

for bathymetry, average wind speed, and distance to shore to see if black scoter 

abundance has a non-linear relationship with those variables, e.g., indicating a peak point 

of water depth for abundance. I included three interactive terms: bathymetry and distance 

to shore, NAO and bathymetry, and NAO and distance to shore. I incorporated the three 

interactive terms to see if fine-scale oceanographic variables were influenced by a broad-



 15

scale weather variable. I choose these variables because Zipkin et al. (2010) observed that 

scoter species were observed in higher abundances in the nearshore (closer to shore) 

during cold, snowy winters (negative phase NAO). 

 

Results 

Over the four survey years, there was a total 16,733 grid cells, of which 509 had 

≥1 black scoter. The number of black scoter surveyed varied annually and spatially (Fig. 

1, Table 2). The lasso regression of black scoter abundance at the minimum lambda 

cutoff value retained all the variables, while the lasso regression at the one standard error 

of lambda cutoff value did not retained any variables (Table 3). The lasso at the ¼ 

lambda cutoff value retained eight variables: ecoregion, bathymetry, quadratic 

bathymetry, distance to shore, survey year, ocean floor slope, average time between 

waves, and average wind speed. The lasso regression at the ½ lambda cutoff value 

retained three variables: bathymetry, distance to shore, and ocean floor slope (Table 3).  

There were three ocean environmental variables that remained after the lasso 

regression at the½ lambda cutoff value. Bathymetry had a positive relationship with black 

scoter abundance and increased as water depth decreased (Fig. 2). Distance to shore had a 

negative relationship with black scoter abundance (Fig. 3). Ocean floor slope had a 

positive relationship with black scoter abundance (Fig 4). No weather variables remained 

in the lasso regression with a cutoff value of ½ lambda. 

There were five oceanographic variables and two weather variables that remained 

after the lasso regression at the cutoff value of ¼ lambda. The quadratic effect of 



 16

bathymetry indicated that black scoter abundance was the lowest at 22 m depth (Fig 5). 

The Virginian ecoregion and had a smaller black scoter abundance than the other two 

ecoregions (Table 3). The 2010 survey year had a positive relationship with black scoter 

abundance. The average wind speed had a negative relationship with black scoter 

abundance (Fig 6, Table 3). Average time between waves also had a negative relationship 

with black scoter abundance (Fig 7, Table 3). 

 

Discussion 

Few studies have examined sea duck habitat use along the Atlantic coast of North 

America, especially in the southeastern United States (Kaplan et al. 2011, Jodice et al. 

2013, Bowman et al. 2015). My study shows that from North Carolina to the northern 

coast of Florida black scoter distribution is related to a combination of fine-scale habitat 

and weather conditions (Zipkin et al. 2010). Additionally, it reveals that the ocean 

environmental variables may have a stronger influence on black scoter distribution than 

weather variables.  

Of the habitat characteristics used in my model for black scoter abundance along 

the southeastern coast of the United States, the most influential were bathymetry, distance 

to shore, and ocean floor slope. There was a negative relationship between abundance of 

black scoters and bathymetry. The average water depth that the black scoters selected in 

this study was ca. 6 meters, almost half the depth compared to habitats used by black 

scoters in New England (13 – 15 m, Loring et al. 2014). While the same water depths are 

available along the southeastern coast of the United States, they are located farther from 
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the nearest shoreline, indicating the importance of other environmental conditions in 

addition to bathymetry. Black scoters are not the only sea duck that show this regional 

variance in the relationship with bathymetry. Common eiders in southern New England 

were found in areas with an average depth of ca.15 m (Beuth et al. 2017), yet in the Gulf 

of St. Lawrence common eiders strongly selected shallow water depths 0-6 m where prey 

densities were the highest (Guillemette et al. 1993). Although black scoters can dive at 

depths exceeding 20m (Nilsson 1972), black scoters may occur in shallower water depth 

along the southeast coast because their primary food source, bivalves, could occur there 

in high densities.  

The second habitat characteristic that is important to black scoter distribution in 

the southeastern region is distance to shore. The average distance to shore for black 

scoters in this study was 9.05 km, which was farther than black scoters in New England 

that used the nearshore (<5 km) and subtidal habitats (<20 m; Loring et al. 2014). The 

nearshore and subtidal habitats along the southeastern coast were available to black 

scoters but were mostly not used. The local topography could be the reason why black 

scoters that are located along the New England coastline and along the southeastern 

coastline are at different distances from shore. The water depth off the New England 

coast increases quickly over a relatively short distance, whereas the water depth off the 

southeastern coast increases slowly over a relatively long distance. The rapid increase in 

water depth restricts the area available to black scoters for diving and foraging.  

Another habitat characteristic that is important to black scoter distribution is slope 

of the ocean floor. In this study there was a positive relationship with ocean floor slope 
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and black scoter abundance. However, although there is a positive relationship with 

ocean floor slope, the average slope that black scoters were seen at was only 0.05 

degrees. Black scoter abundance and the slope of the ocean floor possibly reflects the 

associations with their preferred prey and substrate. Black scoters have been noted to 

prefer the flat topography predominantly found on the South Atlantic Bight (Zipkin et al. 

2010, Silverman et al. 2013) over sandy substrates (Stott and Olson 1973; Loring et al. 

2013) which is supported by the results from this study. In comparison, common eiders in 

southern New England preferred areas with a steeper topography over shallow reefs 

possessing an average slope of 0.7 degrees (Guillemette et al. 1993, Beuth et al. 2017). 

The differences in slope of the ocean floor however slight are important to black scoters 

and other sea ducks. 

In this study, the oceanographic variables had more influence on black scoter 

distribution than weather variables. The quadratic bathymetry, average wind speed, 

average time between waves, the Virginian ecoregion and the 2010 survey year were 

variables influential to the model but were less important than the three afore mentioned 

variables. Black scoter abundance was the lowest at about 22 m water depth when 

bathymetry in the quadratic form black scoter abundance slightly increased at water 

depths greater than 22 meters. The abundance of black scoters may have decreased at 

water depths of 22 m because the benthic community at 22 m has little desirable prey 

species for black scoters. Black scoter abundance had a negative relationship with both 

average wind speed and average time between waves. Increased wind speed may have 

resulted in undesirable conditions that raised energetic demands and resulted in increased 
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feeding for black scoters (Paulus 1984, Lovvorn 1996). Diving is energetically expensive 

(de Leeuw 1996), and negative environmental conditions could require large energy 

expenditures for black scoters. Therefore, black scoters could have moved to areas of 

more favorable conditions (i.e., less wind) to conserve more energy (Pelletier et al. 2008). 

Black scoter abundance was lower in the Virginian ecoregion compared to the Carolinian 

ecoregion. A possible reason for this is that in the Virginian ecoregion, with the exception 

of Pamlico Sound, the water depth increases rapidly in a relatively short distance from 

the shoreline. The Carolinian ecoregion includes the South Atlantic Bight where the 

water depth increases relatively little over a longer distance. The rapid increase in water 

depth in the Virginian ecoregion limits the area that black scoters are capable of diving 

and obtaining food resources. The 2010 survey year differed in comparison to the other 

survey years. In 2010, one unusual and extremely large flock of black scoters was 

observed, off the coast of South Carolina, which was not seen in the other survey years. 

While survey year does not explain black scoter abundance spatially it does explain the 

variance in the data temporally. A wide range of oceanographic and weather variables 

were examined in this study but one common marine variable that I did not include was 

sea surface temperature. Sea surface temperature is a variable that is frequently important 

for understanding seabird distribution, but does not appear to affect black scoters and 

therefore I chose to omit it (Zipkin et al. 2010, Flanders et al. 2015). 

Conditions occurring during one phase of the annual cycle often continue to affect 

individuals and populations during ensuing phases (Marra et al. 2015). Poor quality 

habitat and a shortage of available resources during the wintering period can limit the 
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amount of fat reserves for scoters preceding migration (Studds and Marra 2007). The lack 

of fat reserves increases their vulnerability to the harsh conditions that are faced during 

migration (Alisauskas and Ankney 1992, Ebbinge and Spaans 1995, Guillemain et al. 

2008). Abiotic conditions encountered on the wintering grounds may affect black scoter 

population dynamics thru the indirect effects of dispersal decision, spring migration, and 

reproductive success (Scott 1998, Martin and Wiebe 2004). Black scoters breed in the 

artic and experience more variation in environmental conditions (i.e. wind, temperature, 

precipitation, etc.) on the breeding grounds than birds that breed at lower latitudes 

(Martin and Wiebe 2004), which can be exacerbated by arriving from the wintering 

grounds in poor condition (Fretwell 1972, Alisauskas and Ankney 1992). In response to 

the growing interest in off-shore wind energy development, it is important to identify 

areas of high quality habitat for black scoters. Minimizing the degradation and 

destruction of wintering habitat will help to alleviate negative impacts on black scoter 

population dynamics, both directly and indirectly. 

The lasso regression is a developing area of research in the field of ecology, but 

provides an alternate method to examining variable selection. Lasso regression focuses 

on variable selection rather than model selection to reduce overfitting of models. A 

common method of model selection is ranking models by Akaike’s Information Criterion 

(AIC; Burnham and Anderson 2002). While this is a useful method, it focuses on the best 

candidate model to explain the data rather than which variables have the most impact on 

the data. In comparison, lasso regression shrinks coefficients towards zero leaving only 

the variables that profoundly contribute to the model (Tibshirani 1996). While AIC 
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model selection relies on creating a set of candidate models based on hypotheses, lasso 

regression is a good alternate method to use when there are no a priori predictions, as was 

the case in this study. Lasso, and other shrinkage models used when there are few 

observations, have been shown to produce models with smaller mean squared prediction 

error (Dahlgren 2010). Shrinkage models have also been shown in simulations to 

outperform subset models, when scenarios had few observations and many variables with 

small effects (Tibshirani 1996, Ribbing et al. 2007). Lasso and other shrinkage models 

are similar to subset models but are more continuous and are not as affected from high 

variability (Hastie et al. 2009). Lasso is another method to consider applying for variable 

selection, especially when there are few observations and several variables being 

examined, which is often the case with ecological data. 

Local ocean environmental variables as well as weather variables are important to 

understanding black scoter distribution. My results also show the importance of 

oceanographic variables, both on a local and regional scale. The identification of key 

habitat variables provides valuable insight into black scoter wintering distribution and 

habitat use. Identifying the areas of high quality wintering habitat and resources enables 

the protection of those areas through preservation and minimizing human conflicts. 

Understanding wildlife population distribution and population dynamics as it relates to 

habitat use allows for more effective conservation planning, minimizing human conflicts, 

and better survey planning for future monitoring programs (Newbold and Eadie 2004, 

Rushing et al. 2017). 
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Management Implications 

Black scoters along the southeastern coast of the United States were located an 

average of 9 km from the nearest shoreline where water depths were <6 m and at areas 

with a slight slope (0.05 degrees, Table 4). Managers interested in protecting wintering 

habitat for black scoters in the southeast should prioritize areas that are shallow (<15m 

deep), close to shore (<15 km from land) and have a slight slope (<1 degrees). My results 

enable managers to focus sampling effort for black scoter abundance and distribution 

along the southeastern coast. Habitat characteristics for black scoters identified in my 

study area should be carefully considered when planning anthropogenic activities along 

the southeast coast of the United States, such as offshore energy development. 
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TABLES 

Table 1: The eight covariates examined in relation to black scoter abundance along the 
southeastern coast of the United States during the winters from 2009 to 2012, the 
covariates’ spatial scale or resolution and the source of variable. 
 

Variable Spatial Scale/Resolution Source 
Bathymetry (water depth) WGS 84 

1 arc-minute (cell size) 
NOAA National Centers for 
Environmental Information 
(Amante and Eakins 2009) 

Wind Speed  Inverse distance weights 
between 20 buoys 

NOAA National Data Buoy 
Center 

Average Wave Period Inverse distance weights 
between 9 buoys 

NOAA National Data Buoy 
Center 

North Atlantic Oscillation Monthly Value, Feb 2009 to 
Feb 2012 

Climatic Research Unit, 
University of East Anglia, 
Norwich, UK 

Ocean Substrate 0.00001 lat/long resolution 
vector data, shapefile 
NAD 83 

NOAA Office of Coastal 
Management Digital Coast 
Atlantic Seafloor Sediment 
(CONMAP) data (provider 
USGS) 

Distance to Shore Euclidean distance between 
black scoter location and 
edge of the Atlantic 
coastline 

NOAA National Centers for 
Environmental Information 
GSHHG data (shoreline 
data) 

Ocean Bottom Slope Calculated from bathymetry 
layer, difference of the 
values between neighboring 
cells 

NOAA National Centers for 
Environmental Information 
ETOPO1 data 

Marine Ecoregion  World Wildlife Fund 
(Sprawling et al 2007) 

 

 

 

 



 32

 

Table 2: The mean, minimum, and maximum count of black scoters observed and the 
number of grid cells where black scoter abundance was ≤ 1 during each survey year in a 
given cell among all surveyed cells, during the winters from 2009 to 2012 along the 
southeastern coast of the United States. 
 

Survey Year Mean Minimum Maximum 
No. of Occupied 

Cells 

2009 39.75 1 475 80 

2010 100.40 1 9,080 157 

2011 66.63 1 2,910 164 

2012 93.94 1 2,900 108 
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Table 3: Black scoter abundance along the southeastern coast of the United States during 
the winters from 2009 to 2012 response to the significant variables for black scoter 
distribution. The lasso beta values for the cutoff value halfway between the one standard 
error of lambda and the minimum lambda (½ lambda) and the cutoff value ¼ between the 
minimum lambda and the one standard error of lambda (¼ lambda) were calculated using 
the lasso regression. The standard error values for the cutoff value ½ lambda and ¼ 
lambda were calculated using generalized linear models. 
 

Minimum 
Lambda 
(s=0.007) 

¼ Lambda 
(s=0.484) 

Beta 
Standard 

Error 
½ Lambda 
(s=0.968) 

Beta 
Standard 

Error 

One 
Standard 
Error of 
Lambda 
(s=1.944) 

Intercept Intercept 0.577 0.023 Intercept 0.768 0.008 No 
Variables 
Retained 

Bathymetry Bathymetry 0.898 0.037 Bathymetry 0.344 0.006  

Distance to 
Shore 

Distance to 
Shore 

-0.548 0.009 Distance to 
Shore 

-0.252 0.009  

Ocean 
Floor Slope 

Ocean 
Floor Slope 

0.164 0.004 Ocean 
Floor Slope 

0.021 0.003  

Quadratic 
Bathymetry 

Quadratic 
Bathymetry 

-0.440 0.024     

Wind 
Speed 

Wind 
Speed 

-0.237 0.009     

Time 
Between 
Waves 

Time 
Between 
Waves 

-0.164 0.014     

Quadratic 
Wind 
Speed 

Survey 
Year 2010 

0.341 0.020     

Quadratic 
Distance to 

Shore 

Virginian 
Ecoregion 

-0.145 0.022     

Virginian 
Ecoregion 
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Floridian 
Ecoregion 

       

Survey 
Year 2010 

       

Survey 
Year 2011 

       

Survey 
Year 2012 

       

Sediment 
(sand) 

       

Sediment 
(gravel-
sand) 

       

Sediment 
(clay-

silt/sand) 

       

Sediment 
(sand/silt/ 

clay) 

       

NAO x 
Distance to 

Shore 

       

Distance to 
Shore x 

Bathymetry 

       

NAO x 
Bathymetry 
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Table 4: The mean (standard error, minimum, and maximum of each variable for the grid 
cells that had black scoters abundance greater than zero (n = 509) during the winters from 
2009 to 2012 along the southeastern coast of the United States. 
 

Variable Mean (SE) Minimum Maximum 

North Atlantic Oscillation -0.264 (0.12) -3.924 2.791 

Bathymetry (meters) -5.612 (0.14) -24.000 0.0 

Slope (degrees) 0.054 (0.002) 0.0 0.327 

Distance to Shore (km) 9.051 (0.56) 0.023 40.508 

Average Wind Speed (m/s) 5.106 (0.04) 2.562 6.918 

Average Time between waves (sec) 5.063 (0.02) 4.293 5.943 
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FIGURES 

Figure 1: The distribution and flock size of black scoters by year along the southeastern 
coast of the United States during the winters from 2009 to 2012. 
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Figure 2: Black scoter abundance in response to bathymetry along the southeastern coast 
of the United States during the winters from 2009 to 2012 at the lasso cutoff value ½ 
between minimum lambda and one standard error of lambda. 
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Figure 3: Black scoter abundance in response to distance to shore along the southeastern 
coast of the United States during the winters from 2009 to 2012 at the lasso cutoff value 
½ between minimum lambda and one standard error of lambda. 
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Figure 4: Black scoter abundance in response to ocean floor slope along the southeastern 
coast of the United States during the winters from 2009 to 2012 at the lasso cutoff value 
½ between minimum lambda and one standard error of lambda (scaled). 
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Figure 5: Black scoter abundance in response to the quadratic effect of bathymetry along 
the southeastern coast of the United States during the winters from 2009 to 2012 at the 
lasso cutoff value ¼ between minimum lambda and one standard error of lambda. 
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Figure 6: Black scoter abundance in response to average wind speed along the 
southeastern coast of the United States during the winters from 2009 to 2012 at the lasso 
cutoff value ¼ between minimum lambda and one standard error of lambda (scaled). 
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Figure 7: Black scoter abundance in response to average time between waves along the 
southeastern coast of the United States during the winters from 2009 to 2012 at the lasso 
cutoff value ¼ between minimum lambda and one standard error of lambda (scaled). 
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CHAPTER THREE 

WINTER MOVEMENT OF BLACK SCOTERS IN THE ATLANTIC OCEAN, USA 

Introduction 
 
The availability of good quality non-breeding habitats affect population dynamics 

(Scott 1998, Harrison et al. 2011, Marra et al. 2015). Poor quality habitat and a scarcity 

of resources during the wintering period and spring migration can decrease chances of 

survival and lower body condition for the subsequent phases of the annual cycle (e.g. 

carry-over effects; Gunnarsson et al. 2006, Studds and Marra 2007, Rushing et al. 2017). 

These carry-over effects can strongly impact both ecological and evolutionary processes 

in birds (Ebbinge and Spaans 1995, Norris et al. 2004, Sorensen et al. 2009). While avian 

research is primarily conducted on the breeding grounds, migratory birds spend the 

majority of their annual life cycle off the breeding grounds (Marra et al. 2015). The 

quality and quantity of habitats and resources during the non-breeding season may be 

important limiting factors for waterfowl (Lack 1966, Fretwell 1972, Sedinger and 

Alisauskas 2014), and can have a detrimental effect on population dynamics (Alisauskas 

and Ankney 1992, Scott 1998, Martin and Wiebe 2004). Poor winter habitat conditions 

have been associated with large mortality events (Camphuysen et al. 2002), decreased 

reproductive success (Nichols et al. 1983, Oosterhuis and Dijk 2002, Guillemain et al. 

2008), and decreased population growth rate (Petersen and Douglas 2004, Sorensen et al. 

2009, Wilson et al. 2011). Information on winter habitat preference and use for sea ducks 

is needed to identify areas of good quality habitat, but that information is limited (Sea 

Duck Joint Venture, 2015). 
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Sea duck distribution within the wintering range may be based on a variety of 

factors including local environmental conditions (Loring et al. 2014, Beuth et al. 2017), 

food availability (Guillemette et al. 1993, Lewis et al. 2008), predation risk, site fidelity 

(Greenwood 1980), and human activity (Madsen and Fox 1995). Sea ducks spend the 

winters on large bodies of water, such as the Great Lakes and oceans, which are complex 

and difficult to study due to their dynamic nature, making it challenging to quantify 

habitat quality for sea ducks during the non-breeding season. Sea duck movements and 

site use in relation to environmental factors are vastly unknown and understudied along 

the Atlantic coast of the United States (Kaplan 2011, Jodice et al. 2013, Boyd et al. 

2015), but may have carry-over effects throughout their annual cycle (Alisauskas and 

Ankney 1992, Scott 1998, Martin and Wiebe 2004). 

Most North American sea duck research conducted during the non-breeding 

season is focused on portions of the population that winter in northern locations (off the 

coast of Alaska and British Columbia in the Pacific Ocean and off the coast of eastern 

Canada and New England in the Atlantic Ocean). Research on the southern wintering 

populations, those that winter along the Pacific coast of the continental United States and 

the Mid-Atlantic and southeastern coast of the United States, is limited. Northern and 

southern wintering sites have different tidal regimes, sediments, food resources, 

temperature regimes as well as ice conditions (Spalding et al. 2007, Boyd et al. 2015), 

which could influence the movement and distribution of sea ducks in different regions 

(Nilsson 1972, Stott and Olson 1973, Kirk et al. 2008, Schummer et al. 2008).  
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In addition to regional variation in geography, sea ducks encounter potential 

impacts from a variety of anthropogenic activities, but it is unknown how these activities 

might affect the wintering distribution of sea ducks (Silverman et al. 2013), or if these 

affects vary between northern and southern wintering sites. The potential development of 

wind farms in offshore areas in the Atlantic Ocean could lead to the possible 

displacement of black scoters due to loss of habitat and collisions with structures. In 

Europe, sea duck density decreased in response to sea ducks avoiding areas with wind 

turbines in shallow water (Larsen and Guillemette 2007, Langston 2013). In New 

England, Loring et al. (2014) found that large core use areas for black scoters in near 

shore areas were surrounding the federal lease block. The future wind turbines in the 

federal lease block could cause barrier effects and increase the susceptibility to collisions 

(Fox et al. 2006, Langston 2013). Proposed wind energy development along the Atlantic 

coast that occurs in core black scoter wintering sites has a higher potential to displace 

black scoters and increases the risk of reduced available resources (Studds and Marra 

2007, Rushing et al. 2017). Understanding spatiotemporal dynamics of black scoters is 

important to recognize the potential impacts of future offshore energy development and 

additional anthropogenic activities. 

In the early 1990s, it was noted that several sea duck populations were declining 

due to unknown causes (Caithamer et al. 2000, Sea Duck Joint Venture 2014). In 

response, there has been an increased effort to learn more about the life cycle of sea 

ducks in North America, particularly focusing on breeding habitat and reproductive 

success, migration timing and route, and non-breeding habitat. One of the sea duck 
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species declining and of high conservation concern is the black scoter (Melanitta 

americana, Sea Duck Joint Venture 2014). The black scoter is listed on the International 

Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened 

Species as “Near Threatened” (BirdLife International 2013). Black scoters are long-lived 

sea ducks with delayed breeding that breed in Canada and winter off the coastlines of the 

United States (Sea Duck Joint Venture 2015). The Pacific black scoter population breeds 

in Alaska and winters off the southern Alaska and western coast of United States and 

Canada, while the Atlantic population of black scoters breeds in northern Canada and 

winters off the eastern coast of the United States. While there is considerable information 

known about the Pacific population of black scoters, there is very little information 

known about the Atlantic population of black scoters (Bordage and Savard 2011, Boyd et 

al. 2015, Sea Duck Joint Venture 2015). As anthropogenic activity along the Atlantic 

coast has risen, there has been an increased effort to learn more about the life cycle of 

black scoters in the Atlantic population. Knowledge of wintering habitat use and 

movement patterns for black scoters along the Atlantic coast is particularly limited 

(Bordage and Savard 2011, Bowman et al. 2015). However, the identification of limiting 

factors on the wintering grounds (e.g. Atlantic Ocean along the United States), even 

within the Atlantic population, may vary among wintering sites (i.e. core use areas) 

within the Atlantic.  

To better understand wintering site use and movement patterns of black scoters 

during the non-breeding season, I analyzed locations of black scoters acquired via 

satellite telemetry scoters to 1) delineate arrival and departure dates to and from the 
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wintering grounds; 2) identify the number of sites used, area of each site, and duration of 

time spent at each site during the wintering period; 3) delineate the distance traveled 

between wintering sites; 4) quantify the differentiation of migration timing and site use 

between sex and geography; and 5) identify differences in habitat features for wintering 

sites by geographic location. The information from this study will increase the knowledge 

on wintering ecology of black scoters and provide new insight into black scoter 

conservation and management. 

 

Methods 

Chaleur Bay, New Brunswick/Quebec, Canada is a major spring stopover for 

migrating sea ducks, including black scoters (Sea Duck Joint Venture 2015). Sea Duck 

Joint Venture captured black scoters at this “bottleneck” location of the Atlantic Flyway 

to obtain representative sample of ducks using this travel corridor. Sea Duck Joint 

Venture used floating mist nests to capture 19 adult female black scoters in 2009 and 47 

adult black scoters (19 females and 28 males) in 2010 (Sea Duck Joint Venture 2015). 

Each scoter was surgically implanted with a satellite telemetry transmitters (PTTs) in the 

abdominal cavity, following Korschgen et al. (1996). The PTTs weighed 38 - 50 grams 

and had a battery life of ≥ 750 hours. The duty-cycle of the transmitters in 2009 was 6 

hours on and 72 hours off which resulted in an average battery life of 438 days. The duty-

cycle of the transmitters in 2010 was 2 hours on and 72 hours off which resulted in an 

average battery life of 803 days (Sea Duck Joint Venture 2015). The telemetry data from 

the PTTs were collected via the Argos system of satellites, downloaded nightly and 
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archived, and filtered with the Douglas Argos Filter to remove redundant data and errant 

points (Douglas et al. 2012). 

Data Formatting 

To incorporate 2009 and 2010 data, I removed any points that occurred later than 

2 hours after the first point recorded for each duty cycle, resulting in both years having 

points in a 2-hour window. The Douglas Argos Filter assigns a location class based on 

the quality (accuracy) of the location recorded. The location classes are: L3, L2, L1, L0, 

LA, LB, and LZ, listed from high to low accuracy. I removed points with location classes 

of L0, LA, LB, and LZ while retaining the location classes of L3, L2, and L1 with the 

possible location errors of ± 1 km, 5 km, and 10 km respectively (Douglas et al. 2012). 

Preliminary examination of the data indicated that using the location error associated with 

the L3, L2, and L1 location classes would not greatly affect the delineation of wintering 

sites, due to the size of the wintering sites relative to the possible location error. The data 

for each scoter was separated by year, with points occurring after 31 August and before 1 

May of the following year. I excluded any points that were further west than the coast of 

Florida (-81°50’W) and further north than the US-Canada border (44°50’ N) were 

excluded. One point, per bird per wintering season, was randomly selected per day to 

minimize spatial bias when comparing between birds and years. An individual was 

included in the calculations if there were ≥ 30 points for a given winter season (Seaman 

et al. 1999).  
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Wintering Sites and Arrival and Departure Dates 

For each bird, the arrival date and departure date to the wintering grounds (i.e. 

Atlantic Ocean off the United States) was specified as the earliest and latest date recorded 

at the individual’s first and last wintering site, respectively. The number of “core” 

wintering sites that were used annually for each scoter was determined by applying a 

50% fixed kernel utilization distribution (UD; i.e. core habitat use) with the plug-in 

method for bandwidth selection using the “ks” package (Duong 2017) in Program R, 

version 3.4.0 (R Development Core Team 2017). Each polygon created after applying a 

50% fixed kernel UD was delineated as a separate “wintering site.” The first wintering 

site birds arrived on once they reached the wintering grounds was the “first wintering 

site,” if a bird then moved to another wintering site that wintering site was referred to as 

the “second wintering site”. A wintering site was used more than once if the scoter spent 

more than 14 days away from the wintering site and then returned to the wintering site. 

Fourteen consecutive days was chosen because it was deemed a long enough time period 

for a scoter to establish another wintering site before returning to the original wintering 

site (Phillips et al. 2006). Because a wintering site could be used multiple times, the “first 

period of time at a wintering site” was the time spent continuously at a wintering site 

before leaving the wintering site. The next time spent continuously at a wintering site was 

considered the “second period of time at a winter site”, regardless of whether it was the 

previously used wintering site or a new wintering site.  
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Wintering Site Area and Distance between Wintering Sites 

I removed non-available habitat (i.e., land) from the 50% home range area and 

calculated the area of each polygon using ArcMap 10.5.1 (ESRI 2011). The center of the 

polygons representing each wintering site was calculated by using the “Feature to Point” 

tool in ArcGIS. The distance traveled between the wintering sites was calculated by using 

the points representing the center of each wintering site and the “Point Distance” tool in 

ArcGIS (Figure 1). I calculated the average area of the wintering sites by averaging the 

size of all wintering sites for each bird annually. I calculated the average distance 

between wintering sites by averaging all of the distances between wintering sites for each 

bird annually. 

Statistical Analyses 

I used Mann-Whitney U-tests in R (Mann and Whitney 1947) to test differences 

between sex and geographic locations (northern or southern population) for 1) the arrival 

date to the wintering grounds, 2) the departure date from the wintering grounds, 3) 

average areal extent of each wintering site, and 4) average distance between the wintering 

sites. I defined wintering “geographic locations” as where a scoter spent the majority of 

its time on the wintering ground, and partitioned the Atlantic coast of North America into 

two regions. I defined the Chesapeake Bay and any location north as the “northern coast 

of the United States” and any location south of the Chesapeake Bay as the “southern 

coast of the United States.” I then assigned scoters to a region based on where they spent 

the most days. I assigned birds to either region by summing the total number of days 

spent between the northern (Chesapeake Bay and north) and southern (south of 
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Chesapeake Bay) coasts of the United States. For example, if a bird spent 20 days at a 

wintering site north of Chesapeake Bay and 42 days at a wintering site south of the 

Chesapeake Bay, I classified it to the southern region. 

Habitat Use of Northern and Southern Wintering Sites 

I examined the habitat features of the wintering sites based on their geographic 

location. I assigned each individual wintering site as defined above. I compared the 

bathymetry, ocean floor slope, distance to shore, ocean floor substrate, and marine 

ecoregion with a GLM with a binomial regression examining between northern wintering 

sites and southern sites. I additionally examined one post-hoc model, which contained the 

bathymetry, ocean floor slope, and distance to shore variables. To calculate the value for 

each covariate of interest for a wintering site, I either used the center of the wintering site 

(for distance to shore) or calculated the mean of a given variable for each wintering site 

using the raster package (Hijmans et al. 2016). I obtained bathymetric data from the 

National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical 

Data, ETOPO1 Global Relief Model (Amante and Eakins 2009). I calculated ocean floor 

slope by using the bathymetry data (Amante and Eakins 2009), and finding the difference 

of the values between neighboring cells. I calculated distance to shore by finding the 

Euclidean distance between the center of the wintering site and the shoreline. I obtained 

shoreline shapefile from NOAA’s National Centers for Environmental Information 

Global Self-consistent, Hierarchical, High-resolution Geography Database (GSSH), 

version 2.3.6, using the intermediate resolution (i) and the boundary between land and 

ocean (L1; Wessel & Smith 1996). I obtained the ocean floor substrate data from 



 52

NOAA’s Office of Coastal Management Digital Coast, Atlantic Seafloor Sediment 

Continental Margin Mapping (CONMAP; Poppe et al. 2014). I acquired the shapefile for 

the marine ecoregions of the world (MEOW; Spalding et al. 2007) from the World 

Wildlife Fund (WWF).  

 

Results 

Arrival and Departure Dates 

There were 44 birds that provided data for a least one winter season with 18 birds 

providing data for more than one wintering season. The average arrival date to the first 

wintering site on the wintering grounds was 12 November (95% CI: ± 3.8 days, range = 6 

September – 17 December). There was no difference in the arrival date between the sexes 

(U = 665.0, P = 0.084). There was no statistical difference in arrival date between the 

wintering geographic location (U = 384.5, P = 0.222; Fig 2). The average departure date 

from the final wintering site was 25 March (95% CI: ± 3.0 days, range = 22 January – 27 

April). There was no statistical difference in the departure date between the sexes (U = 

518.0, P = 0.860) or in the departure date between the geographic locations (U = 517.0, P 

= 0.546; Fig 3). 

Wintering Sites 

Black scoters used 1.8 (95% CI: 1.6 – 2.0) distinct wintering sites on average (one 

wintering site n = 25, two wintering sites n = 27, and three wintering sites n = 14; Fig 4). 

The mean number of days spent during the first period of time at a wintering site was 

70.8 days (95% CI: 59.4 days – 82.3 days, range = 7 – 167 days). The mean number of 
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days spent during the second period of time at a winter site was 64.0 days (95% CI: 53.1 

days – 75.0 days, range = 9– 119 days). The average number of days spent during the 

third period of time at a winter site was 41.4 days (95% CI: 26.4 days – 56.3 days, range 

= 7 – 115 days). In four winter seasons, black scoters used 3 separate wintering sites and 

used a previous site a second time. The mean number of days spent during the fourth 

period of time at a winter site was 27.0 days (95% CI: 8.1 days – 45.8 days, range = 14 – 

51 days; Fig 5).  

Distance between Wintering Sites 

The average distance between the first wintering site and the second wintering site 

was 346.7 km (95% CI: 258.2 km – 435.1 km, n = 41, range = 45.2 – 1239.5 km). The 

average distance between the second duration of time at a wintering site and the third 

duration of time at a wintering site was 441.0 km (95% CI: 227.2 km – 6543.8 km, n = 

14, range = 38.5 km – 1412.4 km). The average distance between the third duration of 

time at a wintering site and the fourth duration of time at a wintering site was 353.0 km 

(95% CI: 325.8 km – 380.2 km, n = 4, range = 321.7 – 388.7 km; Fig 6). There was no 

statistical difference in the average distance between wintering sites between sexes (U = 

178.0, P = 0.965). There was a statistical difference in the average distance between 

wintering geographic locations (U = 50.0, P = 0.004; Fig 7). 

Wintering Site Area 

The average size of the first wintering site was 2,711.2 km2 (95% CI: 1929.6 km2 

- 3492.9 km2, n = 66). The smallest first wintering site was 28 km2 and the largest first 

wintering site was 12,298 km2. The average size of the second wintering site was 3,219.3 
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km2 (95% CI: 2144.7 km2 – 4293.9 km2, n = 41), and the average size of the third 

wintering site was 2,029.6 km2 (95% CI: 1188.4 km2 – 2870.7 km2, n = 14; Fig 8). There 

was no difference in the average wintering site area between the sexes (U = 535.0, P = 

0.974). There was a statistical difference in the average wintering site area between 

wintering geography locations (U = 125.5, P < 0.001; Fig 9). 

Habitat Use of Northern and Southern Wintering Sites 

Northern wintering sites were located in deeper waters, closer to shore, and on 

steeper slopes compared to the southern wintering sites (Table 1). The global model 

failed to converge (standard error > 8,000 for ocean floor sediment and marine 

ecoregion), therefore a second model without the ocean floor sediment and marine 

ecoregion variables was created, post-hoc. In the second model, P < 0.05 for both 

bathymetry and ocean floor slope. Bathymetry was positively correlated to the wintering 

site’s geographic location (P = 0.005), with deeper water depth in the northern wintering 

sites. Ocean floor slope was negatively correlated to wintering site’s geographic location 

(P < 0.001), with steeper ocean floor slope in the northern wintering sites. 

 

Discussion 

Movement patterns of black scoters in the Atlantic during winter varies greatly 

among individuals and geographic locations along the coast. My results provide greater 

insight into black scoter movement on the wintering grounds. The results of this study 

indicate that while a few individuals arrived relatively early or late and departed 

relatively early or late from the wintering grounds, the majority of black scoters arrived 
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and departed within a two-week period. Moreover, my results suggest that there are 

differences in movement patterns and the wintering ecology of black scoters primarily 

located in northern locations compared to southern locations along the Atlantic Coast of 

the United States.  

Arrival and departure dates to and from the wintering grounds differed greatly 

among individuals but this difference was not related to sex. The arrival date to the first 

wintering site ranged over four months (September to December). While there was a 

wide time period in the arrival date to the first wintering site, there was not a lot of 

variability. The small variability emphasizes that the peak arrival time for the scoters to 

reach their first wintering site is mid-November. Another sea duck, king eiders 

(Somateria spectabilis), also have a wide range in arrival dates to the wintering grounds 

(Oppel et al. 2008). There was also a four-month range (January to April) in the departure 

date for black scoters. Similar to the lack of variability with the arrival date, the departure 

date also had limited variation, highlighting that the departure date from the last 

wintering site, for the majority of the birds, is late-March.  

The average time spent on the wintering grounds was about 4.5 months, similar to 

king eiders (Oppel et al. 2008) but less than harlequin ducks (Histrionicus histrionicus) 

(Iverson and Esler 2006). Black scoters may spend less time on the wintering grounds 

compared to other sea ducks because they have to migrate a longer distance to the 

breeding grounds than other sea ducks. The majority of black scoters that winter along 

the Atlantic coast breed in northern Manitoba, northern Saskatchewan, and southeast 

Northwest Territories, Canada (< 3,500 km; Sea Duck Joint Venture 2015). In 
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comparison, harlequin ducks spend almost a month and a half longer on the wintering 

grounds along the coast of Alaska before migrating to inland Alaska to breed (> 1,000 

km; Robertson and Goudie 1999, Iverson and Esler 2006). 

While some species of sea duck are relatively sedentary and remain at one 

wintering site (Robertson and Cooke 1999, Iverson and Esler 2006), other sea ducks are 

known to conduct extensive winter movements (Vaitkus 1999). My study supports the 

results found by Loring et al. (2014) that 1-3 wintering sites were used by black scoters 

along the Atlantic coast of the United States. Although black scoters were fairly 

sedentary, using up to a possible three wintering sites, they often made long-distance 

movements between these sites. It is likely that black scoters remained at a location until 

the food resources were depleted and chose to move to a habitat with greater prey 

abundance rather than remain and increase foraging effort (Kirk et al. 2007). 

The average distance black scoters traveled between wintering sites on the 

Atlantic coast was more than double the distance traveled between wintering sites on the 

New England shelf (Loring et al. 2014). Similar to black scoters in the Atlantic Ocean, 

king eiders in the Bering Sea can move hundreds of kilometers between wintering sites 

(Oppel et al. 2008). This may be because black scoters and king eiders are less restrictive 

in their habitat requirements during winter and are able to move away from areas with 

less ideal conditions (Phillips et al. 2006). Although king eiders also traveled large 

distances between wintering sites like the black scoter, the distance traveled between 

wintering sites by black scoters was noticeably larger than that of most other sea ducks 

(Iverson and Esler 2006, Merkel et al. 2006). Black scoters might travel further along the 
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coast of the United States because resources, such as food, could be less concentrated due 

to variation in habitat features, resulting in the scoters moving further distances to find 

resources (Marzluff et al. 1997, Kirk et al. 2007). The concentration of resources may 

affect the distance between wintering sites and the area of the wintering site as well 

(Marzluff et al. 1997). The size of each wintering site range (i.e. core home ranges) 

widely varies for black scoters in the Atlantic. King eiders in the Bering Sea have an 

average winter home range (Oppel et al. 2008) over twice the average size of one 

wintering site of black scoters along the Atlantic coast of the United States. King eiders 

may have larger winter home ranges than black scoters due regional variance in 

ecological conditions such as ice conditions forcing king eiders to travel farther to find 

open water (Petersen and Douglas 2004). My results therefore suggest that the size of 

core home ranges for black scoter is larger compared to those reported for most other sea 

duck species (Iverson and Esler 2006, Merkel et al. 2006, Reed and Flint 2007, Kirk et al. 

2008). The distribution of resources in the Atlantic, resulting from regional variation in 

habitat features, may result in black scoters having larger wintering sites than other sea 

ducks. 

Habitat features associated with different benthic prey types and densities can 

greatly influence the movement and distribution of diving ducks, such as sea ducks 

(Nilsson 1972, Stott and Olson 1973, Kirk et al. 2008, Schummer et al. 2008). Regional 

variance in ecological conditions may vary not only by latitude but also by longitude. 

Different tidal regimes, sediments, temperature regimes as well as ice conditions could 

contribute to different prey dynamics on the west and east coasts of North America 
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(Spalding et al. 2007, Derksen et al. 2015). On the Pacific coast, black scoters use 

habitats characterized by gravel and cobble shores (Savard 1988, Savard 1989, Bordage 

and Savard 1995); however, black scoters are found in areas with a sandy ocean floor 

along the Atlantic coast of the United States (Stott and Olson 1973, Loring et al. 2013, 

Loring et al. 2014). Black scoters that wintered along the coast of New England traveled 

on average half the distance than black scoters wintering in both the Mid-Atlantic and 

New England regions (Chesapeake Bay and north; Loring et al. 2014), suggesting that 

food resources are more concentrated along the New England coast and become less 

concentrated towards the Chesapeake Bay. 

There was no difference found between sex and the arrival date to the first 

wintering site, departure from the last wintering site, the average wintering site area, and 

the average distance between wintering sites. The lack of differentiation between males 

and female arrival date has been reported in other sea ducks (Merkel et al. 2006, Oppel et 

al. 2008, Loring et al. 2014). Several species of ducks form pair bonds during the fall and 

winter and travel together during migration, resulting in similar migration phenology 

between sexes (Rohwer and Anderson 1988). King eiders (Oppel et al. 2008), Steller’s 

eiders, and harlequin ducks (Reed and Flint 2007) similarly did not differ in the size of 

the wintering range based on sex. A reason for the lack of variation in wintering range 

and distance between males and females is that they are similar in size and have 

comparable energetic costs (Bordage and Savard 2011). There was no difference in 

distance traveled for king eiders (Oppel et al. 2008) and common eiders (Merkel et al. 

2006) for males and females. This may be the result because males and females largely 
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overlap in wintering locations and have similar experiences in acquiring resources. 

Overall, there was no statistical difference between males and females black scoters in 

their ecology and movement on their wintering grounds on the Atlantic coast of the 

United States.  

While there was no difference between males and female in temporal patterns of 

movement, there were some pronounced differences between black scoters a larger 

portion of the winter along the northern coast of the United States compared to the 

southern coast of the United States. Scoters that spent a higher portion of the winter along 

the southern coast had more than double the average wintering site area and traveled 

twice as far between wintering sites than the scoters that spent the majority of the winter 

along the northern coast. The concentration of resources could vary along the Atlantic 

coast resulting in the disparity of wintering site areas in different regions. An increase of 

prey variability and higher rates of prey depletion have been associated with higher home 

ranges (Tufto et al 1996, Marzluff et al. 1997, Ferguson et al. 1999).  

Black scoters rarely used the same wintering site more than once. All of the 

wintering sites used more than once were used before the scoter moved further south and 

then the sites were used a second time as scoters moved back north. Black scoters may 

return to a winter site as they are preparing for spring migration because they are familiar 

with the resources available at the wintering site (Robertson and Cooke 1999). Oppel et 

al. (2008) found that half of king eiders in their study, returned to a more northerly 

wintering site after leaving it and traveling further south. Only in 4 winter seasons, black 

scoters spent several days moving between two wintering sites. Most of the scoters would 
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spend time at a wintering site and then move to another wintering site. In the four winter 

seasons, black scoters spent an extended period time at a wintering site and then would 

move to a new wintering site for a few days before returning to the previous wintering 

site for a few days. The scoter would spend a few days at each wintering site several 

times before the scoter chose to remain at the new wintering site.  

The wintering sites use by black scoters varied by water depth, ocean floor slope, 

and distance to shore based on their geographic location. Wintering sites situated along 

the northern coast of the United States were located in deeper waters, closer to shore, and 

on steeper slopes compared to the wintering sites along the southern coast. The average 

water depth for northern wintering sites was 14 meters deeper than the southern wintering 

sites. The water depth for northern wintering sites in this study were deeper than what 

was found by Loring et al. (2014) for black scoters in southern New England. Common 

eiders in southern New England used on average a slightly deeper water depth than black 

scoters (Beuth et al. 2017) and in the Gulf of St. Lawrence they spent a large amount of 

time in shallow water (< 6 m, Guillemette et al. 1993). Although black scoters can dive at 

depths exceeding 20m (Nilsson 1972), black scoters might occur in shallower water 

depth along the southeastern coast than in New England because bivalves could occur in 

higher densities in shallower water than in New England (Guillemette et al. 1993). Black 

scoters may occur in shallower water depth along the southeast coast because their 

primary food source, bivalves, could occur there in high densities. Thus, bathymetry may 

be a surrogate for the bivalve distribution along the Atlantic coast of the United States 
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and why black scoters occur in shallower water depth along the southeastern coast than in 

New England.  

The average ocean floor slope for northern wintering sites was steeper than the 

southern wintering sites. The slope of the ocean floor possibly reflects the associations 

with their preferred prey and substrate. In the southern portion of their wintering range, 

black scoters have been noted to prefer the flat topography predominantly found on the 

South Atlantic Bight (Zipkin et al. 2010, Silverman et al. 2013) over sandy substrates 

(Stott and Olson 1973; Loring et al. 2013) which is supported by the results from this 

study. In comparison, common eiders in southern New England preferred areas with a 

much steeper topography (Beuth et al. 2017).  

The average distance to shore for northern wintering sites was slightly further 

than the results found by Loring et al. (2014). Common eiders wintering in southern New 

England, in comparison, are located much closer to shore than black scoters (Beuth et al. 

2017). The average distance to shore for southern wintering sites was further from shore 

then the northern wintering sites by about 2.5 kilometers. Southern wintering sites might 

be further away from shore than northern wintering sites because water depth increases 

rapidly in a relatively short distance from shore in New England, where the water depth 

increases slowly as the distance from shore increases in the southeast.  

Understanding wildlife population distribution and population dynamics as it 

relates to habitat selection allows for more effective conservation planning, minimizing 

human conflicts, and better survey planning for future monitoring programs (Newbold 

and Eadie 2004, Rushing et al. 2017). This study provides insight on the wintering 
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ecology and movement of black scoters along the Atlantic coast of the United States. 

Geography showed a decisive difference in the average wintering site area and distance 

between wintering sites. Habitat use of wintering sites for black scoters does vary 

geographically between northern and southern populations. Biotic or abiotic conditions 

encountered on the wintering grounds may be important to the black scoter population 

dynamics thru the indirect effects of dispersal decision, spring migration, and 

reproductive success (Scott 1998, Martin & Wiebe 2004). This information, coupled with 

other studies on black scoter wintering ecology and movement, allows for more effective 

conservation and management of this species, while minimizing human conflicts and for 

future monitoring programs. 

Management Implications 

The average arrival date to the first wintering site for black scoters was 12 

November. The average departure date for black sctoters from the last wintering site was 

25 March. There was no difference in habitat use and movement between male and 

female black scoters. Wintering sites located along the northern coast of the United States 

(Chesapeake Bay and north) are smaller and closer to shore than wintering sites located 

along the southern coast of the United States (south of the Chesapeake Bay). Black scoter 

wintering sites along the northern coast of the United States are located closer to shore 

and in deeper waters with a steeper slopes than wintering sites along the southern coast of 

the United States.  

My results increase the knowledge on black scoter wintering use and movement, 

information that was lacking. Managers interested in protecting wintering habitat for 
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black scoters along the Atlantic coast of the United States should consider that high 

quality habitat for black scoters varies geographically. High quality black scoter habitat 

in New England may not be high quality habitat in the southeast. My results enable 

managers to focus sampling effort for black scoter abundance and distribution along the 

Atlantic coast. Habitat characteristics for black scoters identified in my study area should 

be carefully considered when planning anthropogenic activities along the southeast coast 

of the United States, such as offshore energy development. 
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TABLES 

 
Table 1: The mean bathymetry (m), ocean floor slope (degrees), and distance to shore 
(km) and range for individual black scoter wintering sites obtained via satellite telemetry 
along the Atlantic coast of the United States from September 2009 to April by geography. 
Northern wintering sites are wintering sites that are located at the Chesapeake Bay and 
north. Southern wintering sites are wintering sites that are located south of the 
Chesapeake Bay. 
 
Wintering Site Bathymetry  

(m, range) 
Ocean Floor Slope  
(degree, range) 

Distance to Shore  
(km, range) 

Northern  
(n = 92) 

-22.22  
(-125.00 – 1.00) 

0.12  
(0.04 – 0.47) 

6.47  
(0.02 – 18.42) 

Southern  
(n = 46) 

-7.91  
(-13.99 – 0.00) 

0.05  
(0.02 – 0.08) 

9.02  
( 0.005 – 25.99) 
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FIGURES 

Figure 1: 50% fixed kernel density map for one black scoter (as an example) that was 
satellite tagged with a Platform Transmitting Terminal (PTT) during on wintering season 
along the Atlantic coast of the United States during the winter of 2010 – 11. The map 
identifies the number of wintering sites used during the wintering period, the area of each 
wintering site (km2), and the distance between the wintering sites (km).  
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Figure 2: Violin plot showing the frequency (kernel density plot on its side), interquartile 
range, 95% confidence interval, and median (♦) of black scoter arrival dates to the first 
wintering site (Julian date) along the Atlantic coast of the United States from September 
2009 to April 2012 by geographic location (the Chesapeake Bay and north or south of the 
Chesapeake Bay). 
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Figure 3: Violin plot showing the frequency (kernel density plot on its side), interquartile 
range, 95% confidence interval, and median (♦) of black scoter departure dates from the 
last wintering site (Julian date) along the Atlantic coast of the United States from 
September 2009 to April 2012 by geographic location (the Chesapeake Bay and north or 
south of the Chesapeake Bay). 
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Figure 4: Number of distinct wintering sites (one wintering site n = 25, two wintering 
sites n = 27, and three wintering sites n = 14) used by black scoters that winter along the 
Atlantic coast of the United States during a wintering season from September 2009 to 
April 2012. 
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Figure 5: Box plot of days black scoters spent during each period of time (the period of 
time spent continuously at a wintering site before leaving the wintering site) at a 
wintering site along the Atlantic coast of the United States from September 2009 to April 
2012. 
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Figure 6: Box plot of distance between wintering sites (km) used by black scoters 
wintering along the Atlantic Coast of the United States from September 2009 to April 
2012 (Site 1 – Site 2 n = 41, Site 2 – Site 3 n = 14, Site 3 – Site 4 n = 4). 
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Figure 7: Violin plot showing the frequency (kernel density plot on its side), interquartile 
range, 95% confidence interval, and median (♦) of the average distance between 
wintering sites (km) used by black scoters wintering along the Atlantic coast of the 
United States by geographic location (the Chesapeake Bay and north or south of the 
Chesapeake Bay). 
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Figure 8: Box plot of the wintering sites (km2) used by black scoters wintering along the 
Atlantic coast of the United States from September 2009 to April 2012. 
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Figure 9: Violin plot showing the frequency (kernel density plot on its side), interquartile 
range, 95% confidence interval, and median (♦) of the average wintering site area (km2) 
used by black scoters wintering along the Atlantic coast of the United States by 
geographic location (the Chesapeake Bay and north or south of the Chesapeake Bay). 
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