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ABSTRACT 

Recent literature suggests that several North Carolina bog turtle (Glyptemys 

muhlenbergii) populations are in decline, and many of these populations have few 

remaining individuals with low annual survival probability. Most populations appear 

dominated by older adults with few juveniles encountered; however, the proportion of 

juveniles encountered at two populations is dramatically higher. The reason for this 

variability is unknown. We conducted a nest monitoring study in 2016 and 2017 to test 

the hypothesis that nest survival patterns explain the observed population age structure. 

We collected the largest dataset yet compiled on the fate of naturally-incubated bog turtle 

eggs as well as the first study of its kind in North Carolina. Predation was the primary 

driver of nest failure across all sites. Populations with more juvenile encounters had 

substantially higher egg survival. These observations support the hypothesis that 

variation in egg survival may be linked to observed variation in recruitment patterns. We 

subsequently incorporated site-specific population parameters, including site-specific egg 

survival, into a stage-based matrix model to estimate population growth rates and to 

assess potential management scenarios for five bog turtle populations. Only two of the 

five populations modeled were stable or growing under current vital rates. Our results 

demonstrated that management scenarios targeting increased recruitment (especially a 

head-start scenario) may substantially contribute to some populations reaching stability. 

Population growth rates will likely be higher when recruitment augmentation coincides 

with wetland restoration efforts that increase survival and site fidelity at other life stages. 
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CHAPTER 1 

HATCH SUCCESS OF THE BOG TURTLE, GLYPTEMYS MUHLENBERGII, IN 

NORTH CAROLINA 

Abstract. — Recent literature suggests that several North Carolina bog turtle populations 

are in decline, and many of these populations have few remaining individuals with low 

annual survival probability. Most populations appear dominated by older adults with few 

juveniles encountered; however, the proportion of juveniles encountered at two 

populations is dramatically higher. The reason for this variability is unknown. We 

conducted a nest monitoring study in 2016 and 2017 to test the hypothesis that nest 

survival patterns explain the observed population age structure. We documented the fate 

of 272 eggs from 83 nests encountered across seven sites. This represents the largest 

dataset yet compiled on the fate of naturally incubated bog turtle eggs as well as the first 

study of its kind in North Carolina. Approximately 28% of eggs hatched across all sites 

over both years. Predation was the primary driver of nest failure across all sites. Both 

mesopredators and smaller mammals substantially contributed to nest failure. Cooler 

temperatures, which prolong incubation and thus predation risk, may also hinder 

recruitment at higher elevation sites. Populations with more juvenile encounters had 

substantially higher egg survival. Although our dataset is limited, these observations 

support the hypothesis that variation in egg survival may be linked to observed variation 

in recruitment in these populations. Reduced vital rates at other life stages may inflate the 

importance of successful recruitment events in order to maintain population stability.    
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Introduction 

Habitat loss and degradation is the leading cause of species extinction in North 

America (Diamond 1984; Noss et al. 1995) and among the leading causes of global 

declines of turtle populations (Gibbon et al. 2000). Land conversion and landscape 

fragmentation can also increase secondary threats such as genetic isolation, road 

mortality, and predation by human-commensal mammals on turtles and their nests 

(Mitchell & Klemens 2000; Gibbs & Shriver 2002; Fahrig 2003; Macey 2015). Semi-

aquatic turtle species are particularly susceptible to decline because they have very 

specific habitat requirements, making their populations vulnerable to habitat alteration 

(Litzgus & Brooks 2000; Litzgus & Mousseau 2004; Pittman & Dorcas 2009).  

Bog turtles (Glyptemys muhlenbergii) are a semi-aquatic species found in bogs, 

wet meadows, and fens (Ernst et al. 1994; Buhlmann et al. 2009; Pittman & Dorcas 

2009). In the southern portion of their range, bog turtles are found primarily in fens, 

referred to as mountain bogs by land managers. These wetlands are among the most 

imperiled wetland types found in the United States today. Residential development, road 

construction, and the drainage of these wetlands for agricultural use have resulted in a 

90% decline in mountain bog habitat throughout the region such that less than 500 ha 

remain (Weakley & Schafale 1994; Noss et al. 1995; Herman & Tryon 1997). Many 

remnant bogs are moderately to highly degraded as a result of nutrient enrichment 

(Drexler & Bedford 2002; Bedford & Godwin 2003), which promotes the growth of 

woody vegetation (Kiviat 1978; Lee & Norden 1996; Tesauro & Ehrenfeld 2007) and 
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invasive plant species (Dick 2013). Other forms of degradation include drain tile 

installation and ditching, extensive beaver activity, overgrazing of cattle, and mining 

activities (Bedford & Godwin 2003). Together, these events create a continuum of 

wetlands in different stages of degradation (Stratmann 2015). 

Bog turtles are considered to be one of the most imperiled chelonians in North 

America (Seigel & Dodd Jr 2000; Rosenbaum et al. 2007). Although quantitative range-

wide estimates are not available, a 90% decline in bog turtle populations over the course 

of the 20th century is likely (van Dijk 2011). The bog turtle’s geographic range is 

discontinuous, split into a northern population network (extending from Massachusetts to 

Maryland) and a southern population network (extending from southern Virginia to 

northern Georgia (Ernst & Lovich 2009). The northern population network was listed as 

federally threatened under the Endangered Species Act (ESA) in 1997. While bog turtle 

habitat in the southern population network does not receive protection under the ESA, 

southern bog turtles are protected from collection due to a "similarity of appearance" to 

those in the northern population (Somers 2000; USFWS 2001). Bog turtles are state listed 

in every state in which they occur and are ranked Critically Endangered by the IUCN Red 

List of Threatened Species (van Dijk 2011).   

A recent study across several North Carolina bog turtle populations (Tutterow et 

al. 2017) indicated adult survival probabilities were dramatically lower compared to some 

northern populations of bog turtles (Shoemaker et al. 2013) and closely related species 

such as the spotted turtle (Clemmys guttata; Enneson & Litzgus 2008). These low 
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estimates of apparent adult survival indicate that certain bog turtle populations in NC 

may be in decline, as small changes in adult survival are known to have the greatest 

impact on population growth rate for turtles (Congdon et al. 1993; Heppell 2000). 

Records of juveniles are also absent or rare in most of these sites with the exception of 

two populations, where > 40% of encounters over more than two decades have been 

juveniles (Tutterow et al. 2017). The mechanism(s) driving this disparity in proportion of 

juveniles encountered is not well understood but may be linked to variation in fecundity, 

nest success, hatchling or juvenile survival (Tutterow et al. 2017). Extended recruitment 

(defined as turtles transitioning from eggs to hatchlings, hatchlings to juveniles, or 

juveniles to adults) failures compounded with deflated survival at other life stages may 

destabilize populations (Congdon et al. 1983; Daigle & Jutras 2005; Chapter 2). Thus, 

early life-stages may have become an increasingly important limiting factor for many bog 

turtle populations (Tutterow et al. 2017).  

It is widely reported that nest and hatchling survival are dramatically low for most 

turtle species (Mitchell 1988; Frazer et al. 1990, 1991; Iverson 1991b; Congdon et al. 

1993; Paterson et al. 2012; Dragon 2015; Spencer et al. 2017). Predation is recognized as 

a major source of freshwater turtle nest failure (Congdon et al. 1983; Marchand & 

Litvaitis 2004). Although multiple taxa have been identified as predating turtle nests 

(Buhlmann & Coffman 2001; Butler et al. 2004; Draud et al. 2004), mesopredators 

appear to be the greatest source of nest predation in many systems (Snow 1982; Congdon 

et al. 1983; Christens & Bider 1987; Temple 1987; Robinson & Bider 1988; Feinberg & 

Burke 2003). Changes in vegetation and hydrology decrease available nesting area and 
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likely elevate mesopredator densities, both of which may further increase probability of 

nest predation beyond the historical norm (Temple 1987; Kolbe & Janzen 2002b; 

Marchand & Litvaitis 2004). Infertility, flooding, heat stress, and an inadequate thermal 

environment are additional sources of nest failure (Christens & Bider 1987) and are likely 

linked to both landscape and in-site characteristics.   

We hypothesize that reduced egg survival is primarily driven by mesopredators 

and that these predation events may dampen bog turtle recruitment rates. We also 

hypothesize that some wetland-scale habitat characteristics may increase predator access 

to and detection of bog turtle nests. In addition, as these focal populations represent a 

wide elevation gradient, we hypothesize that a colder thermal nest environment will 

result in longer incubation periods that reduce probability of egg survival. The purpose of 

this research was to evaluate the above hypotheses via intensive nest monitoring over a 

two-season period.  

Study Area 

The wetlands studied here are located in western North Carolina, USA. The exact 

locations of these populations (defined as a group of turtles living in a particular wetland) 

have been withheld due to poaching concerns. Although we monitored nests across seven 

sites during the 2016 and 2017 field seasons, most nest observations came from four 

locations, sites identified as A, B, D, and H in Tutterow et al. (2017). These sites range 

from high elevation populations in the Blue Ridge Mountains, to lower populations off 
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the Blue Ridge Escarpment. These wetlands are owned privately or by land conservancy 

organizations.  

Sites A and B are lower elevation populations that exist off the Blue Ridge 

Escarpment at 416 – 547 m in elevation. Encounter data suggest that these sites are likely 

two of the most robust bog turtle populations in the state. Age estimated by counting 

scute annuli over the 2016 and 2017 field seasons indicate successful recruitment in each 

of the last 10 years. Juveniles were highly represented in both populations over the course 

of this study (observed juvenile fractions > 0.4).  

Sites D & H are high elevation populations (approximately 869 and 954 m, 

respectively). As evidenced by encounters over the 2016 and 2017 field seasons, both 

populations are dominated by older turtles (median age >25 years) with an obvious 

recruitment event having also occurred 12 – 14 years ago at both sites as estimated by 

counting scute annuli. Juveniles represent 0.1 – 0.2 of total encounters at Site D from 

2003 – 2017 and Site H from 1992 – 2017.   

Collectively, these sites represent a range of bog turtle population demography. 

The demography and status of our aging populations, particularly Site H, appear 

representative of many other populations in the region. Although other populations in NC 

are likely in greater risk of extirpation, the underlying abundance in those populations is 

so low as to limit our ability to draw inference as it relates to egg survival. For this 

reason, only populations where encounter data over the past 10 – 15 years suggests an 
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abundance of at least 15 adult turtles (North Carolina Wildlife Resources Commission, 

unpublished data) were included for intensive nest monitoring.   

Methods 

Field methods 

We primarily found bog turtles by probing (Carter et al. 1999) and visual 

encounters. Trapping was also employed at lower abundance sites. Traps consisted of 

non-baited wire mesh devices that were placed in rivulets and other wet areas (Somers 

2008). The bottom of the traps were partially submerged (1 – 2 cm) in water and were 

covered with vegetation to prevent overheating of trapped turtles. The traps were checked 

daily. We searched each wetland an average of 30 hours per week from May 15 – June 15 

in both years. All females were palpated in May, June, and July to determine whether 

they were gravid. Most female turtles that were of adequate size or had signs of gravidity 

were monitored via radio-telemetry with a 3.6 gram R1680 model Advanced Telemetry 

System unit, attached with epoxy putty (J-B Weld-WaterWeld) to the mid/posterior 

pleural scutes. We tracked these turtles every 2 – 3 days until the first nesting event of the 

season and then twice a day until they nested. Once the nesting season began, we also 

employed the use of thread-bobbins to aid in nest recovery. These bobbins were wrapped 

in cellophane and PlastiDip® (Wilson 1994) and placed on the posterior marginal and 

pleural scutes utilizing a 5-minute two-part epoxy (Devcon home 5-Minute Two-Part 

Epoxy). These 150 m thread-bobbins weighed approximately 3 g (3.5 g attached). In 

order to limit weight related stress, we made sure to keep these devices ≤ 7% of the 
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turtle’s weight, thus we only used this combination on turtles that weighed ≥ 115 g. As 

the gravid turtles frequently made substantial within-wetland movements through the 

nesting period, it was important to replace the thread-spool every 1 – 3 days.   

We primarily located nests by radio-tracking gravid female turtles in the evenings 

to their respective nesting areas. Red headlamps were employed after dusk to limit 

disturbance to nesting turtles. An active turtle at or after dusk suggests nest searching 

and/or laying behavior. Thus, once the active turtle was observed, we would place 

flagging on vegetation 1 – 2 m away from the turtle to aid in nest recovery the next 

morning. Upon return, we would track the turtle and determine if she was still gravid via 

palpation. If she was no longer gravid, we would carefully check the tussock area where 

she had been observed the night prior wearing nitrile gloves. If the nest was not found 

this way, we would backtrack along the thread from her encounter location that day to the 

previous one approximately 12 hours earlier, carefully searching for disturbed areas along 

the thread. Twenty nests were also found opportunistically, either by observing females 

without transmitters laying eggs or by carefully searching in nesting areas.   

Once the nest was found (generally within 12 hours of laying), we recorded nest 

characteristics and counted the number of eggs. At each nest site, we estimated the % 

standing water within 2 m of the nest and the % scrub or shrub habitat within 0.5 m of the 

nest. We assigned a value from 0 – 4 (none to maximum density) to represent the density 

of emergent vegetation and the density of woody stems. Finally, we measured the 

distance from the nest to the edge of the wetland and to the nearest forest edge. In 
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addition, to record variation in thermal nest conditions across sites and nest inundation, 

we placed a sealed (PlastiDip®) thermochron iButton (stream-rinsed to remove odor) in 

the nest tussock or hummock approximately 100 – 150 mm away from the eggs at a 

comparable depth. We recorded temperature at hourly intervals from first placement until 

signs of hatching. If the nest was predated, the iButton was left in place until other nests 

within the wetland hatched. A trail camera (Bushnell Trophy® Cam HD Essential E2) 

was placed on a stake approximately 1 – 3 m from the nest to record nest predation 

events. The trail cameras and surface of the nests were periodically checked for evidence 

of predation through the incubation period. Through the hatching window (August – 

October), the eggs were periodically exposed to document their hatching status. In order 

to better assess fertility, eggs that had failed and begun decomposition were opened to 

determine whether an embryo was present.     

Analysis Methods 

We categorized the fate of all nests throughout the incubation period. As 

predation was the dominate source of all failed eggs, we used binary logistic regression 

(GLM function) to test hypotheses about the relationship between nest predation (a nest 

was defined as having been predated if  ≥ 1 egg was eaten) and environmental conditions 

within and among sites. Before analyzing the data, we evaluated all bivariate correlations 

among variables, and eliminated one variable from any pair with a correlation coefficient 

> 0.70. We also converted all covariate measurements to z-scores prior to analysis. We 

evaluated six models that represented various hypotheses about the environmental drivers 
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of nest predation (Table 1). In order to generate an overdispersion parameter, we 

evaluated the global model using a quasibinomial distribution. Because the estimate of 

the overdispersion parameter was ~1 in that model, all subsequent models used a 

binomial distribution. We compared the relative support for all models using Akaike 

information criterion corrected for small sample size (AICtab function, AICcmodavg 

package in R (Mazerolle 2017). We subsequently created an AICc table for the two best 

supported models and utilized the modavg function to average the parameter estimates 

appearing in these models, because the modes had similar AIC support and model 

weights. 

To evaluate hypotheses related to thermal environments of bog turtle nests, we 

used general linear models (GLM). We considered seven different measures of the 

thermal environment; however, after eliminating correlated variables (R > 0.7) we used 

only three in our analyses: mean daily nest temperature, mean minimum nest 

temperature, and mean maximum daily range of nest temperature. We first used a GLM 

to assess the effect of site and year on temperature variables (glm function, Gaussian 

family; Car package in R; (Fox 2011) for 55 nests. We compared candidate models using 

Akaike information criterion (AIC). If we established that a difference existed amongst 

the means, we utilized the Tukey test (post hoc) for pairwise comparisons. To test for a 

relationship between thermal environment and incubation period, we applied a GLM to 

18 of the 55 available thermal datasets where incubation period was known. 
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Results 

Over 300 individual bog turtles and 83 bog turtle nests (272 eggs) were found 

across both field seasons. This nest dataset represents the largest yet compiled on the fate 

of naturally incubated bog turtle nests. Seventy-eight of those nests (252 eggs) came from 

four sites (Table 2). Approximately 28% of eggs (75 eggs) hatched across all sites over 

both years. Average egg survival by site ranged from <1 – 56% over both years. The 

highest egg survival observed at one site (Site A) in a given year was 60%. 

Predation accounted for the greatest source of nest failure (Table 2). The two sites 

with robust data (≥25 eggs per season) over both field seasons showed limited inter-

annual change in egg predation, with Site A experiencing 12 and 22% predation and Site 

D experienced 96 and 84% predation in 2016 and 2017, respectively. As evidenced by 

both trail camera images of the predators digging up nests and eggshell fragments (Fig. 

1), mesopredators accounted for 98 of 144 (68%) predated eggs over both seasons across 

all sites. Striped skunks (Mephititis mephitis) accounted for 92% (48/50) of predated eggs 

and 84% (47/56) of total egg failure at Site D over both field seasons. Raccoons (Procyon 

lotor) and Virginia opossums (Didelphis virginiana) predated nests as well. Collectively, 

these two species depredated 10 eggs across 4 events (defined as all nests predated by the 

same predator in a single night) across sites. Of nests with known lay dates, mesopredator 

events took place 3 – 59 days after laying (mean= 18.6 days).   

        Small mammals accounted for ~31% of all predated eggs but as much as 100% of 

predated eggs at Site H in 2017 (85% of the total eggs documented at that site). Multiple 
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small mammal species may have been responsible since there were a wide range of 

predation signs observed: all eggs missing with no obvious disturbance, single eggs 

missing, or egg(s) partially chewed on (Fig. 1). Although we do not have photos of these 

small mammals actively predating nests (small mammal predators either emerge from 

below the nests or are too small to trigger cameras), we do have photos of them in the 

wetlands and other physical evidence of their presence (burrows, tracks, scat) around the 

nests. Of nests with known lay dates, small mammal predation events (as defined above; 

n=15) took place from the night of laying through egg piping (1 – 94 days, mean= 54 

days). Other animal sources of nest destruction include trampling by cows (n = 5) and 

one case where a nest was exposed and partially predated by a crayfish (Cambarus sp.) 

while excavating its burrow. Other apparent sources of egg failure included flooding, 

overheating, infertility, and developmental problems (Table 2).   

         Among nests lost to predation, two models (Predator Access and Predator Access + 

Site) received substantial support. These models collectively represented 74% of the 

Akaike weight of all models (Table 1). For the shared variables, parameter estimates 

were not substantially different; nevertheless, we used model averaging to generate final 

parameter estimates for variables hypothesized to influence predator access to nests. Of 

the four variables included in the top model, only emergent density and distance to 

wetland boundary had a significant effect size (Fig. 2). The probability of nest predation 

decreased with higher emergent density and increased with greater distance to the edge of 

the wetland.   
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Mean incubation temperature ranged from 20.45 – 23.21 °C and was significantly 

different both across our four sites and years for the 55 nests with thermal data (GLM, 

Table 3). All sites possessed significantly different mean daily nest temperatures, mean 

minimum temperatures and mean maximum daily range except sites D & H (Tukey HSD; 

Fig 3, Table 3). Of 18 nests with known incubation periods and thermal data, incubation 

periods ranged from 60 – 95 days (mean = 75 days). Among the four nests in sites with 

elevations > 869 m, incubation periods were approximately 21 days longer than nests (n 

= 14) at lower elevations (< 548 m). Mean nest temperature was the only significant 

predictor of incubation period (GLM, p = < 0.0001, df = 14, parameter estimate = -7.23).  

Nests with lower mean temperatures during their incubation had longer incubation 

periods (Fig. 4).  

Discussion 

A limited but growing body of research has been conducted on bog turtle nest 

survival across its range (Whitlock 2002; Byer 2015; Macey 2015; Zappalorti et al. 

2017). Our research represents the first large-scale study of bog turtle nest survivorship in 

the southern population. No other study is yet available that has specifically targeted nest 

survival in populations representing a wide latitudinal or elevation gradient, or that 

possess dramatically different estimated vital rates and demographic characteristics. Bog 

turtle nest success varied dramatically among the four wetlands we surveyed; however, it 

was relatively consistent within sites across the two years of the study. Nest predation 

was the most prevalent driver of nest failure and among those nests predated most were 
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consumed by mesopredators. Although it has been assumed that human-commensal 

predators such as northern raccoon, striped skunk, and red fox (Vulpes vulpes) are likely 

to represent the largest sources of increased bog turtle predation in altered habitats 

(USFWS 2001), our study is the first to positively identify mesopredators as bog turtle 

nest predators. In the case of Site D, a striped skunk or skunks systematically predated 27 

of 33 known nests across multiple nights and over both years. Interestingly, the skunk(s) 

predated the nests nearly exactly one year apart, with the 2016 episode occurring 7/2–7/3 

and the 2017 episode occurring 6/31 – 7/1, suggesting that this may be a learned 

behavior.  

Several studies have demonstrated that mammalian predation is higher along 

ecological edges (Wilcove 1985; Temple 1987; Paton 1994; Kolbe & Janzen 2002a, b). 

Similar to Byer (2015), our data showed nest predation may be reduced along wetland 

boundaries for the bog turtle. We also observed higher probability of predation for nests 

surrounded by lower densities of emergent vegetation. Many turtle species have a known 

preference for nesting in open patches where higher nest temperatures accelerate 

embryonic development (Janzen 1994; Wilson 1998; Janzen & Morjan 2001; Kolbe & 

Janzen 2002a; Spencer & Thompson 2003; Micheli-Campbell et al. 2013; Petrov et al. 

2018). The risk of large predation events is likely high if nests are clustered in these open 

areas in wetlands with abundant mesopredator activity. Site D, which had particularly 

high predation rates, may illustrate this phenomenon. A large proportion of nests at Site 

D were found within two meters of a rivulet that represents an edge between an open area 

and emergent vegetation. Further, mesopredators are known to use linear search patterns 
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(Congdon et al. 1993), so in some cases turtles may be selecting to nest in the very same 

areas that are preferred predator corridors.   

Similar to other authors, we have evidence of substantial nest predation events via 

small mammals (Whitlock 2002; Byer 2015; Macey 2015; Zappalorti et al. 2017). Small 

predator species may include short-tailed shrew (Blarina brevicauda), mice (Peromyscus 

sp.), and American mink (Neovison vison). Black racers (Coluber constrictor) were also 

observed within Sites A and B and may account for some of the missing eggs. These 

predation events occurred from the night of laying through piping, but were a more likely 

source of nest failure later in the incubation period relative to predation via 

mesopredators. Collectively, the bog turtle nest predation events we recorded were later 

in the incubation period in comparison with other aquatic turtle species (Tinkle et al. 

1981; Congdon et al. 1983; Congdon et al. 1987; Marchand et al. 2002; Spencer 2002; 

Butler et al. 2004). Most research has documented turtle nest predation primarily within 

the first week of laying (Riley & Litzgus 2014). Similar to observations by Byer (2015), 

it appears that nest predation remains a threat for bog turtles across the entire incubation 

period, which may be linked to the combination of predation tactics employed by both 

mesopredators and smaller mammals. 

Of the four studies known to the author involving bog turtle nest fate in the 

northern population, average egg survival was low, ranging from 13 – 33% (Whitlock 

2002; Byer 2015; Macey 2015; Zappalorti et al. 2017). Predation was the primary driver 

of egg failure across all studies and ranged from 51 – 73% (Table 4). Bog turtle egg 
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predation and survival rates varied considerably by study, site, and year in these northern 

populations. Whitlock (2002) observed egg predation rates from 0.05 – 100% (18 eggs at 

Site 1 in 1995 and 46 eggs at Site 2 in 1997), while Zappalorti et al. (2017) recorded 

hatch success as high as 83% (18 eggs) in a given season. Similar to these studies, we 

found egg predation was the most substantial driver of egg failure across sites and years. 

Although substantial nest predation events were documented by (Whitlock 2002) and 

(Byer 2015), the predator was not identified. It is possible that mesopredators were 

responsible for some of these events.  

Although egg failure was primarily driven by predation, other sources of failure 

were identified as well. The true proportion of eggs potentially affected by other variables 

(destroyed, infertility, developmental problems, flooding and heat stress) would likely be 

higher had nest predation rates been lower. Of those eggs that were not predated, ~10% 

did not develop across all sites; a state we attributed to infertility. In some cases, what 

was identified as infertility may have been failed embryonic development related to the 

thermal environment or other factors. The developmental problems observed (embryonic 

death or death at emergence and/or malformed hatchlings) may also be linked to genetic, 

epigenetic, and/or thermal characteristics as well. For example, only 11 of 106 known 

eggs were not predated at the high elevation Site D. Only two embryos clearly developed 

of those 11. In both cases, the eggs that developed were positioned at the top of each 

respective nest. Only one of those two survived the hatching process. As flooding was not 

an issue at this site, it is possible that thermal limitations prohibited development of the 

deeper eggs. Two nests were laid in areas of high emergent density and subsequently 
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were buried atypically in the thatch of dead rush (Juncus sp.). Both of these nests 

experienced extreme and extended thermal variability as evidenced by iButton data and 

likely failed due to heat stress. Similar to Zappalorti et al. (2015), we also documented 

bog turtle egg mortality associated with inundation. Four eggs from two nests at Site A 

failed after the nearly fully formed embryos drowned. The highest egg in one of these 

nests was found partially inundated but successfully hatched. The hatchling had signs of 

extreme hypoxia (limb swelling, lethargy), but recovered over several hours. Four other 

eggs would likely have succumbed to drowning at Site A as well had we not elevated 

them 50 mm with additional sphagnum moss. Although it appears to play a minor role in 

comparison with nest predation, the effects of landscape and in-site characteristics on 

hydrological stability and limiting total viable nesting area may be an important 

consideration at some sites. 

As these sites represent a wide elevation gradient (416 – 954 m), it appears that 

the thermal environment experienced by bog turtle eggs is dramatically different across 

sites and is primarily elevation dependent. It is possible that high elevation sites that also 

have high densities of emergent vegetation may thermally limit the size of viable nesting 

areas and force atypical nesting placement that increases risk of failure. It is clear that 

incubation temperature has a strong influence on incubation period and that nests with 

lower mean temperatures during their incubation had longer incubation periods (Fig. 4). 

As catastrophic predation was recorded at our high elevation sites, we were unable to 

observe egg survival trends as it relates to the thermal environment in a statistically 

significant way. Several literature sources have demonstrated that colder incubation 
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temperature reduces embryonic survival, body size and performance, and increases time 

to maturity in turtles (Ewert & Legler 1978; Yntema 1978; Ewert 1979; Bobyn & Brooks 

1994; Wilson 1998; Wood & Bjorndal 2000; Kolbe & Janzen 2002a; Spencer 2002; Du 

2003; Schwanz et al. 2010; Dormer et al. 2016; Petrov et al. 2018). 

It appears that a cooler climate and shorter breeding season may place additional 

constraints on our higher elevation populations analogous to bog turtles existing at the 

northern limits of the species geographic range (Whitlock 2002). Lower mean 

temperatures may result in insufficient windows for development, resulting in fewer eggs 

taking longer to hatch. Longer incubation periods may result in greater opportunity for 

nest predation events (Whitlock 2002), thermal extremes, and flooding. The hatchlings 

that emerge at the end of the growing season have a shorter window to find a suitable 

overwintering location to survive a harsher winter. Conversely, the low elevation 

populations appear to have been released from the ecological constraints that limit the 

scale and frequency of successful recruitment episodes in the montane populations.  

Management implications 

 The lower proportion of juveniles encountered at sites D & H appears to be a 

genuine reflection of poorer recruitment in these populations. Limited and greatly 

punctuated successful recruitment episodes appear to be the norm for many sites in the 

region, with a few notable exceptions such as Sites A and B. Observed age structure in 

these populations mirrors our observations in nest survival, suggesting that these trends 

have continued for well over a decade. It should be noted that juvenile detection 
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probabilities may vary by site, thus it is possible that differences in relative abundance 

may not be as dramatic as raw encounter data suggests. Annual survival probabilities of 

hatchlings and/or juveniles may also be different enough across sites to influence 

recruitment success. Future research that attempts to better understand differences in 

hatchling and juvenile survival as well as the linkages between nest predation rates and 

the surrounding land use would likely benefit conservation efforts for bog turtles.  

High nest predation rates may not only reduce recruitment but may eventually 

impact the size and viability of these bog turtle populations and other threatened turtle 

species (Crouse et al. 1987; Marchand & Litvaitis 2004; Tutterow et al. 2017; Chapter 2). 

This is particularly amplified when multiple life-stages have deflated survival estimates, 

which appears characteristic of many North Carolina bog turtle populations. As our data 

suggest nest predation may pose serious threats to population persistence, we suggest 

potential solutions that include: vegetative and hydrological management that increase 

total viable nesting area and site fidelity, predator removal, protection of nests, and head-

start programs at spatially and temporally explicit scales. As adult abundance is so low at 

some sites to severely limit the potential output of hatchling turtles regardless of time and 

financial investment, we would also suggest focusing efforts to create a surplus of turtles 

at pre-existing highly abundant populations from which to periodically seed small and 

declining populations (Spencer et al. 2017). An important next step is to assess site-

specific population growth rates and the relative benefits of these management options to 

stabilizing and grow these bog turtle populations. This will be of critical value to aid in 

strategic conservation plans.    
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Table 1. AICc table ranking five hypotheses on the drivers of bog turtle nest predation 

across four wetlands and two years in western North Carolina, USA (data were pooled 

between sites and years). The Access Model included all factors hypothesized to 

influence mesopredator access to a nest (% standing water, distance to edge of the 

wetland, emergent density and the distance to the forest edge). The Detection Model 

included factors hypothesized to influence mesopredator nest detection (woody stem 

density, % scrub shrub, and emergent density). The site model represents the fact that 

each of these wetlands occurs in a different landscape context and there may be many 

drivers at that scale influencing nest vulnerability to mesopredators.  

 

 

 

 

 

 

 

 

 

 

Model K AICc ΔAICc AICcWt Cum. Wt LL 

Predator Access + Site 8 86.12 0 0.42 0.42 -34.01 

Predator Access 5 86.64 0.52 0.32 0.74 -37.9 

Site (Latent) 4 88.22 2.10 0.15 0.89 -39.84 

Predator Detection + Site 7 89.18 3.06 0.09 0.98 -36.79 

Predator Detection 4 92.17 6.05 0.02 1 -41.81 
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Table 2.  Bog turtle egg fate (%) across four wetlands in western North Carolina, USA. 

Only sites with known fate of at least eight nests were included in the summary.  

Destroyed eggs were defined as non-predated eggs smashed or broken by animals; 

infertility was defined as eggs with no evidence of embryonic development (from visual  

inspection); developmental problems were those eggs that died after some period of  

development or while hatching without signs of inundation or heat stress; drowned was  

defined as eggs that became submerged during observed inundation events; heat stress  

was defined by desiccated failed eggs having undergone multiple days of temperatures  

<32 °C as evidenced by iButton data. 

 

 

  

Site 

# 

Eggs 

Hatche

d 

Predate

d Destroyed Infertile 

Dev. 

Prob. 

 

Drowned 

Heat 

Stress 

A 71 0.56 0.18 0.03 0.13 0.04 0.06 - 

B 49 0.45 0.23 0.41 0.08 0.10 - 0.10 

D 106 0.01 0.90 - 0.09 0.09 - - 

H 26 0.15 0.81 - - 0.39 - - 
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Table 3.  Bog turtle nest temperature comparisons across sites and years (n = 55 nests 

across four sites) with either known or hypothesized incubation periods. All sites were 

located in western North Carolina, USA. Site A is represented by the intercept. 

Temperature variables were calculated from the duration of the incubation period; 

however, for failed nests (n = 37) we estimated duration based on hatch dates of other 

nests within the wetland. 

 Parameter estimate t-value p Value df 

Response: mean daily temperature 

Intercept 23.21 110.86 < 0.0005 51 

Site B -0.97 -2.87 0.006 51 

Site D -2.63 -9.43 < 0.0005 51 

Site H -2.76 -7.11 < 0.0005 51 

Year 1.17 4.39 < 0.0005 51 

Response: mean minimum temperature 

Intercept 14.20 28.70 < 0.0005 51 

Site B 0.75 0.944 0.35 51 

Site D -2.33 -3.54 0.0009 51 

Site H -4.27 -4.66 < 0.0005 51 

Year 0.75 1.18 0.24 51 

Response: mean maximum daily temperature range 

Intercept 7.65 15.46 < 0.0005 51 

Site B -1.11 -1.40 0.167 51 

Site D 0.14 0.21 0.84 51 

Site H 0.80 0.87 0.39 51 

Year 2.08 3.29 0.002 51 
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Table 4. A literature review of the fate of wild, non-protected bog turtle eggs 

summarized by study, research years, and state(s). Data from all sites involved in each 

study were combined for one estimate per study and are represented as a percent of 

each total. 

Author 

Survey 

years 

State 

Byer (2015) 

(2013-2014) 

MD 

Knoerr et al. 

(2016-2017) 

NC 

Macey 

(2015) 

(2008-2012) 

NY 

Whitlock 

(2002) 

(1994-1997) 

MA 

Zappalorti et al. 

(2017) 

(1974-2012) 

NJ and PA 

# Eggs 135 272 80 150 161 

% Eggs 

predated 0.71 0.53 0.60 0.73 0.51 

% Other 

Sources of 

Failure 0.16 0.19 0.10 0.07 0.16 

% Eggs 

Hatched 0.13 0.28 0.30 0.19 0.33 
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Figure 1. Sample camera trap photos depicting bog turtle nest predation events of (A and 

B) striped skunks (Mephititis mephitis) and (C) Virginia opossum (Didelphis virginiana).

Predation events of (D) small mammals were evident from the damage pattern on 

eggshells.  

Figure 2. The effect size estimate and associated 95% confidence intervals for a model of 

environmental covariates and bog turtle nest predation. The “Predator Access Model” 

included four variables; however only emergent density and distance to edge had a 

significant effect. The probability of predation increased with lower emergent density and 

greater distance to wetland edge. 

Figure 3. Mean daily nest temperature (°C) for 55 bog turtle nests across four sites in 

North Carolina, USA with either known or hypothesized incubation periods. 

Hypothesized incubation periods were generated for failed nests where iButtons were left 

in place until other nests within the wetland hatched (n = 37).   

Figure 4. The effect of mean nest temperature on incubation period for 18 bog turtle 

nests at four sites in North Carolina, USA with known lay and hatch dates.  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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CHAPTER 2 

POPULATION MODELS REVEAL THE IMPORTANCE OF MANAGEMENT 

INTERVENTION FOR AN ENDANGERED TURTLE SPECIES 

Abstract. — Demographic models are useful for estimating population trends, identifying 

life stages most important to population dynamics, and investigating the demographic 

effects of potential management scenarios. We incorporated site-specific population 

parameters into a stage-based matrix model to estimate population growth and to assess 

potential management scenarios for five populations of federally threatened bog turtle in 

North Carolina. Only two of the five populations modeled were stable or growing under 

current vital rates. The declining populations share many characteristics with many other 

populations in the region. Elasticity analysis revealed small changes in adult survival 

have the largest effect on population growth. These models also highlighted the 

synergistic effects of multiple inflated or deflated survival rates on population growth 

rates. Our results demonstrated that management scenarios targeting increased 

recruitment (especially a head-start scenario) may substantially contribute to some 

populations reaching stability. Population growth rates will likely be dramatically higher 

when these efforts coincide with wetland restoration efforts that increase survival and site 

fidelity at other life stages.   

https://www-sciencedirect-com.libproxy.clemson.edu/science/article/pii/S0006320708001262
https://www-sciencedirect-com.libproxy.clemson.edu/science/article/pii/S0006320708001262
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Introduction 

Effective conservation plans for species of concern can often be developed 

through knowledge of species–habitat relationships or positive identification and 

remediation of species-specific threats (Joyal et al. 2001; Lawler et al. 2002). 

Nevertheless, there are many species, especially those with few remaining individuals or 

subpopulations, where information on population dynamics is critical to promote the best 

use of limited conservation resources (Dahlgren et al. 2016). For this latter group, 

accurate vital rate estimations offer a starting point for identifying conservation 

opportunities and assessing their long-term costs and benefits.   

Demographic models are useful for projecting population trends, identifying life 

stages most important to population dynamics, and investigating the demographic effects 

of potential management scenarios (Carslake et al. 2009). Population projection matrices 

(PPM) classified by age (Leslie 1945) or stage (Lefkovitch 1965) are commonly used to 

determine population growth rates and to conduct perturbation analyses (Heppell et al. 

2000; Sibly & Hone 2002; Unger et al. 2013). Stage-based PPM allow for more 

flexibility when modeling the population dynamics of long-lived species that may exhibit 

similar vital rates across ages or when age is not easily discernible. Most importantly, 

stage-based PPM are the most readily interpretable for management purposes; they allow 

wildlife managers to compare the effects of proposed conservation interventions for each 

life stage. For example, they have been applied widely to inform sustainable harvesting 
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plans (Zimmer-Shaffer et al. 2014) and explore the potential demographic impacts of 

conservation actions (Crowder et al. 1994; Reed et al. 2009). 

Long-term demographic data is critical to understand population trends of species 

with long generation times, such as freshwater turtles. It is well documented that long-

lived species are slow to recover from demographic perturbations (Wheeler et al. 2003; 

Enneson & Litzgus 2008). There also may be time lags between reductions in vital rates 

to unsustainable levels (particularly of early life stages that are difficult to monitor) and 

observed population declines, complicating efforts to identify populations at risk for 

extirpation.  

The bog turtle (Glyptemys muhlenbergii) exhibits a suite of life history traits 

characteristic of long-lived species that may increase its vulnerability to population 

declines: low fecundity, high nest mortality, and delayed sexual maturity (Ernst & Lovich 

2009; Zappalorti et al. 2017). Bog turtles are highly cryptic, semi-aquatic turtles that 

occupy open-canopy freshwater wetlands (e.g., bogs, fens, and wet meadows) in the 

eastern United States. The bog turtle is one of the most rare and imperiled turtle species 

in North America (Herman & Tryon 1997; USFWS 1997; Seigel & Dodd Jr 2000; 

Rosenbaum et al. 2007) and is recognized as critically endangered on the IUCN Red List 

(van Dijk 2011). Although detailed quantitative range-wide estimates are not available, a 

90% decline in species level abundance over the course of the 20th century is likely (van 

Dijk 2011). The species is affected by multiple stressors (e.g., poaching and human-

subsidized predators), but habitat fragmentation, degradation and loss primarily limit 
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population persistence (USFWS 2001). The bog turtle’s geographic range is 

discontinuous, split into a northern population network (extending from Massachusetts to 

Maryland) and a southern population network (extending from southern Virginia to 

northern Georgia (Ernst & Lovich 2009). Although bog turtles are listed as federally 

threatened in the United States, the two population networks receive different levels of 

protection under the Endangered Species Act. Bog turtles in the southern population 

network are protected from poaching as a result of their “similarity in appearance” status 

to turtles in the northern population network, but do not receive federal protection from 

destructive activities affecting their habitat (USFWS 1997).   

Life history theory suggests that because turtles display high egg mortality and 

delayed sexual maturity, high adult survivorship is critical to population persistence 

(Congdon et al. 1993; Pittman et al. 2011). However, Tutterow et al. (2017) found 

relatively low annual adult survival for eight intensively studied North Carolina bog turtle 

populations as compared to northern bog turtle populations (Shoemaker et al. 2013) and 

other closely-related species such as the spotted turtle (Clemmys guttata; Enneson & 

Litzgus 2008). The effects of low adult survival on population growth rate (λ) has not 

been estimated for these populations; however, the urgency for doing so is further 

bolstered by observations that many populations in North Carolina are dominated by 

older turtles with few to no juveniles encountered in recent decades (Tutterow et al. 

2017). It has been suggested that a combination of low adult survival and low recruitment 

has driven population declines of bog turtles and other species (Haskell et al. 1996; Hays 

et al. 1999; Spinks et al. 2003; Kuhns 2010; Crawford et al. 2014; Tutterow et al. 2017). 
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Population models that incorporate survival estimates for each bog turtle life-stage would 

therefore be useful for testing these suggestions. 

Although the mechanisms behind the reduced recruitment observed in many 

North Carolina bog turtle populations is not well understood, the early stages of life are 

often the most vulnerable for many turtle species. Nest and hatchling survival are 

dramatically low for many species and may dampen recruitment rates (Congdon et al. 

1993). It is well documented that survival of hatchlings is significantly lower than that of 

juvenile and adult turtles (Iverson 1991a; Heppell et al. 1996; Green 2015). Although 

small changes in adult survival are known to make the largest improvements to 

population growth for freshwater turtles (Congdon et al. 1983; Heppell 1998), protection 

of early life stages may be necessary to maintain stable populations, particularly when 

adult survival is reduced (Enneson & Litzgus 2008; Spencer et al. 2017). The factors 

most limiting the survival of these life stages (i.e., predation) are also the most readily 

addressed by management interventions (Heppell et al. 1996). One of the possible 

management strategies to aid in the recovery of declining turtle populations is to increase 

recruitment by collecting eggs from the wild and rearing hatchlings to larger sizes to 

boost survival probabilities (i.e., head-starting). Several publications have been critical of 

head-starting as an effective tool to stabilize turtle populations (Mrosovsky 1983; Crouse 

et al. 1987; Woody 1990; Frazer 1992; Crowder et al. 1994; Heppell et al. 1996) as 

modeling demonstrated that population growth rates are far more sensitive to changes in 

adult survivorship than earlier life-stages. Recent research has suggested that head-

starting may be an effective management tool to speed up recovery time for diminished 
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populations, to increase underlying abundance, and to establish new populations of 

imperiled aquatic turtle species (Spinks et al. 2003; Mitrus 2005; Vander Haegen et al. 

2009; Kuhns 2010; Buhlmann et al. 2015; Green 2015; Masin et al. 2015; Michell & 

Michell 2015; Penaloza et al. 2015; Spencer et al. 2017).  

We used stage-based population projection matrices to examine the effects of 

estimated annual survival rates on bog turtle population growth and to evaluate 

population growth response to recruitment augmentation in the form of nest protection, 

lab-incubation of eggs, and a head-start scenario. Population growth rates provide 

managers with a base line to categorize the status of populations. Altering specific vital 

rates to mimic potential management efforts can illustrate the effects of various 

management scenarios. Comparisons of growth rates and the effects of management 

intervention across five bog turtle populations illustrate a wide spectrum of population 

status across the region.  

Study Area 

We built matrix models for five bog turtle populations located in western North 

Carolina, USA. The exact locations of these populations have been withheld due to 

poaching concerns. These sites are a part of a long-term monitoring effort (>15 years) 

initiated by Project Bog Turtle and the North Carolina Wildlife Resources Commission. 

These sites range from high elevation populations in the Blue Ridge Mountains, to lower 

populations just off the Blue Ridge Escarpment. One highly isolated population exists in 

the NC piedmont. Each site varies in size and degree of connectivity to other wetlands, 
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from larger wetlands (1.25 ha) existing within mostly intact watersheds characterized by 

a mosaic of wetland, woodland and pasture, to small (0.3 ha) isolated wetlands nestled 

within developed areas. These wetlands are hydrologically complex, but all maintain a 

strong groundwater connection, and are thus most accurately described as fens, although 

they are generally referred to as mountain bogs amongst land managers. Within these 

wetlands, limited nutrient availability has historically prohibited highly competitive 

wetland and woody plants from dominating these systems. The result is a highly diverse 

and iconic open canopy vegetative community. Several of these wetlands are dominated 

by sphagnum and are vegetatively complex with patches of woody shrubs interspersed 

amongst emergent vegetation. Cattle graze some of these fens while others are 

periodically managed with fire or manual vegetation thinning. These properties are in 

private ownership or owned and/or managed by land conservancy organizations. 

 The five focal sites are a subset of sites evaluated in Tutterow et al. (2017). To 

facilitate comparison and future study we follow their naming convention. Compared to 

other known bog turtle sites in North Carolina, Sites A and B represent two of the three 

most robust bog turtle populations known in the state (Tutterow et al. 2017). These 

populations exist off the Blue Ridge Escarpment approximately 4.3 km from each other 

at 416–547 m elevation. Data collected in 1996–2017 indicated that juveniles were highly 

represented in both populations (observed juvenile fractions > 0.4) and juvenile survival 

(0.81 and 0.77, respectively) was an average of 38% higher in these populations than in 

declining populations (Sites D & E; Tutterow et al. 2017). Sites A and B experienced 

successful recruitment in each of the last 10 years, as evidenced by counting scute annuli 
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over the 2016 and 2017 field seasons. The highest egg survival was also observed at these 

sites (average = 0.52 egg survival) over both field seasons (Chapter 1).   

Sites D & H are high elevation populations (approximately 954 and 869 m, 

respectively). Site D is one of the three most robust populations known in the state. Both 

populations are dominated by older turtles (median age >25 years) with an obvious 

recruitment event having also occurred 10 – 12 years ago at both sites. Juveniles 

represent 10 – 20% of total encounters at Site D from 2003 – 2017 and site H from 1992 

– 2017. Similar to Daigle & Jutras (2005) we believe that the low proportion of juveniles

encountered likely reflects poorer recruitment (we define recruitment as turtles entering 

every life stage, e.g. eggs to hatchlings, hatchlings to juveniles, juveniles to adults) in 

these populations. Juvenile survival is estimated at 0.49 at site D and is not empirically 

available for Site H. Egg survival (n = 106) was  <0.01 at Site D across 2016 and 2017 

due to catastrophic predation (Chapter 1). Egg survival at Site H was 0.15 in 2018.  

Site E harbors a highly isolated population of bog turtles in the North Carolina 

piedmont at 218 m elevation. The population declined from an estimated 36 turtles in 

1994 to 11 turtles in 2007 (Pittman et al. 2011). Based on exhaustive sampling from 2012 

– 2015, this population appears be primarily comprised of older adults (median estimated

age > 25 y). This population has a lower proportion of juvenile captures and lower 

juvenile and adult survival rates relative to Sites A and B (Tutterow et al. 2017). It is 

estimated that fewer than 10 turtles existed in this wetland as of 2018. 
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Collectively, these sites represent the broadest range of demographic states for 

North Carolina bog turtle populations, from highly abundant populations that display 

annual recruitment to a nearly extirpated population with no recruitment observed in 

recent decades (Tutterow et al. 2017). It is likely that the demography and status of these 

populations (particularly Sites H & E) are representative of many others in the region.   

Methods 

Matrix Model: We parameterized deterministic 3x3 stage-based population projection 

matrices to examine the demographic effects of different management scenarios in each 

population (Caswell 1989). We defined life stages as 1) eggs/hatchlings 2) juveniles (<80 

mm carapace length; CL), and 3) adults (≥80 mm CL), according to a published age of 

sexual maturity for the species  (Ernst et al. 1994; Whitlock 2002). Although there 

appears to be some variation among sites in growth patterns that correlate with changes in 

elevation and temperature, our data suggests that many turtles reach 80 mm CL by 

approximately year seven. We define the egg/hatchling stage as beginning when eggs are 

laid and persisting until the following May (approximately 10 months). The stage-based 

matrix (A) contained the following parameter structure:  

𝐴 = [
0 0 𝐹3

𝑃12 𝑃22 0
0 𝑃23 𝑃33

] 

F3 is the fertility of adult females and Pji is the probability that individuals in class j 

survive and transitions into stage i (Enneson & Litzgus 2008). The projected population 

growth rate (lambda; λ) is the dominant eigenvalue, the stable stage distribution (i.e., the 
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proportion of individuals in each stage class when λ stabilizes) is the right eigenvector, 

and the reproductive value (i.e., the relative contribution of individuals in each stage class 

to future population growth) is the left eigenvector of the matrix (Morris & Doak 2002). 

The stage-based matrix was a females-only model, which is consistent with other 

demographic studies using matrix population models (Enneson & Litzgus 2008; Hyslop 

et al. 2012; Zimmer-Shaffer et al. 2014). 

To determine the life stage that contributed most to bog turtle population growth, 

we conducted elasticity analyses for each population. The elasticity matrix estimates the 

proportional sensitivity of each stage class, and accounts for differences in the scaling of 

sensitivity values among different vital rates (Morris & Doak 2002). When a matrix 

element corresponds to a high elasticity value, small changes to the associated vital rate 

will result in larger changes to λ. We calculated all matrix parameters, including λ, stable 

stage distributions, reproductive values, and stage class sensitivities (effect of additive 

change in survival on population growth) and elasticities with the popbio package in R 

(Stubben & Milligan 2007, R Core Team 2017).  

Parameter estimates: Eighty-three bog turtle nests were found across both field seasons 

primarily via performing radio-telemetry on gravid female turtles in the evenings, as well 

as by following thread bobbins, opportunistically observing nesting events of gravid 

females not on radio-telemetry and nest searching (Chapter 1). The number of eggs in 

each nest was recorded at first discovery, generally (>80%) within 12 hours of nesting, 

providing an estimation of clutch size. Site-specific and regional average egg survival 
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was estimated by monitoring egg fate throughout the summer with camera trap and visual 

inspection (Chapter 1). Four of the five sites modeled in this manuscript were monitored 

for egg survival. To our knowledge, this nest dataset is the largest yet compiled on the 

fate of naturally incubated bog turtle nests. As adult female abundance is so low at Site E 

to limit inference of egg survival, this site was excluded from the nest study. Thus, we set 

Site E egg survival to the regional average. 

We estimated fertility using the following equation (Enneson & Litzgus 2008): 

𝐹3 =  (𝑎𝑣𝑔. 𝑐𝑙𝑢𝑡𝑐ℎ 𝑠𝑖𝑧𝑒) × (𝑎𝑣𝑔. 𝑐𝑙𝑢𝑡𝑐ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) × (𝑎𝑑𝑢𝑙𝑡 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙) × 0.5 

Where clutch frequency (0.85) was derived by palpating all adult female turtles in the 

month of June 2016 and 2017 in our most intensively monitored populations to determine 

whether they were gravid (Chapter 1). We generated site-specific clutch sizes (2.96 –

3.77) for sites where we detected at least eight nests. As encounter data are slightly 

female biased, Tutterow et al. (2017) estimated annual adult survival for each NC bog 

turtle population individually and found no evidence of sex-specific differences in 

survival in the population. Considering also that bog turtle sex is genetically determined 

(Literman et al. 2017), differences in survival may exist at the juvenile stage (Tutterow et 

al. 2017). For the purposes of the model, we assume a 1:1 sex ratio, thus the estimate of 

annual fertility was halved as we used a females-only model. 

Bog turtle hatchling survival has not been empirically estimated from this or any 

study. Yet it is well documented that hatchling turtle survival is significantly lower than 

that of later life-stages and Shoemaker et al. (2013) estimated egg/hatchling survival to be 
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low (0.33) for stable New York bog turtle populations. With this in consideration, we 

calculated hatchling survival as 0.40 times the site-specific juvenile survival estimate. 

Subsequent sensitivity analysis (Fig. 1) suggested the results was not greatly influenced 

by our choice of parameter value for hatchling survival. We scaled this adjusted annual 

parameter to an 8-month period and multiplied it by egg survival to calculate an estimate 

for the egg/hatchling stage (P12).

A previous study leveraged long-term recapture data to produce site-specific 

juvenile and adult apparent survival estimates (Tutterow et al. 2017). We obtained annual 

estimates of adult survival within the five populations using Cormack-Jolly-Seber models 

by incorporating the 2016 – 2017 recapture data into a size-based analysis described by 

Tutterow et al. (2017) (Table 6). P33 was set equal to the annual adult survival rate as we 

did not include a maximum age in the model.  We used multistate capture–recapture 

analyses (Lebreton & Cefe 2002) that allowed individuals to transition from the juvenile 

(<80 mm CL, corresponding to approximately 1 – 6 years) to the adult (> 80 mm CL, 

corresponding to approximately 7+ years) stage during each annual sampling period to 

estimate juvenile survival probabilities (σj) and juvenile transition probabilities (ψ) for 

Sites A, B, D & E. We used the top-ranked CJS model to inform our multistate analyses 

(Tutterow et al. 2017). As we had insufficient data to generate juvenile survival at Site H, 

we took an average of the four other empirically estimated juvenile survival estimates to 

derive this site-specific vital rate. The multistate transition probabilities had narrow 

confidence intervals for Sites A and B but wide confident intervals around values not 

deemed biologically feasible for Sites D and E. Thus, for Sites D, E and H we generated 
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transition probabilities by deriving the mean survival:transition ratio for Sites A and B, 

and then dividing site-specific survival at Sites D, E, and H by this ratio. To calculate the 

probability of juveniles surviving and persisting in the juvenile class (P22), we used the 

following equation derived from (Enneson & Litzgus 2008) where:  

𝑃22 = (1 − ψ) ∗ 𝜎𝑗

Next, we calculated the matrix element P23 as the product of ψ and 𝜎𝑗, 

representing the probability of transitioning from the juvenile to adult stage, conditional 

on survival (Morris & Doak 2002). 

𝑃23 =  ψ ∗ 𝜎𝑗  

Parameterizing the stage-based matrix: We generated three alternative stage-based 

matrix parametrizations to model three egg survival scenarios for each of the five NC bog 

turtle populations. First, we generated site-specific lambda (λ) values by using site-

specific parameters. We then generated a second round of lambda (λ) values where we 

replaced the observed site-specific egg survival estimate, which may fluctuate in any 

given year, with the regional average egg survival estimate to assess the effects of this 

more moderate estimation on population growth. As juveniles are less frequently 

encountered than adults (Shoemaker et al. 2013), we aimed to generate stable stage 

distributions that equaled or exceeded the raw proportion of juveniles observed in these 

wetlands. In the cases of Sites A and B, the observed proportion of juveniles encountered 

exceeded the proportion of juveniles estimated to exist under the regional average model. 

Thus, we generated a third model specifically for the eigenvalue analysis where we 
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incorporated the pooled average egg survival at Sites A & B for those sites (“High”) and 

the regional average egg survival for the remaining sites (“Average”). We refer to this as 

“High vs. Average” egg survival model (see Appendix 1).  

Incorporating management scenarios into the matrix: To evaluate the efficacy of 

potential management strategies to improve bog turtle population growth, we varied egg 

survival in the matrix models using the hatching success of eggs from three treatments: 

eggs protected with predator excluder cages in the field (protected eggs), eggs incubated 

in the laboratory (lab-incubated eggs), and a 1 year head-start scenario. Collectively we 

refer to these management strategies as “recruitment augmentation scenarios”.   

  Each recruitment augmentation scenario assumed 0.70 of available nests are 

recovered for management intervention in each respective wetland (except for the largest 

population Site A, where we modeled 0.40 nest recovery), which translates to a 

maximum of 25 nests recovered when incorporating site-specific abundance estimates 

and clutch frequency.  For protected eggs, we model 0.40 average hatch success, which is 

based on recent observations (Macey 2015; Zappalorti et al. 2017). If observed 

unprotected egg hatch success was above the 0.40 estimate (as they were at Sites A & B), 

the protected egg survival estimate was arbitrarily set 10% beyond the site-specific one. 

Similarly, data averaged from Macey (2015) and Zappalorti et al. (2017) derived a lab-

incubated egg survival estimation of 0.81. Both head-start scenarios also assume 0.81 

average egg survival and 0.95 hatchling survival during captivity (M. Ogle, 2018, Pers. 

comm. 10 March). As released head-started turtles would be approximately equal in size 
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to wild 3-year old bog turtles, we set released head-start survival probabilities equal to 

the site-specific juvenile survival estimate. We also arbitrarily increased head-start model 

transition probabilities by 1.17 times the site-specific estimate as we predict these turtles 

will spend 2-3 fewer years in the juvenile stage. Finally, survival of eggs not recovered 

for management efforts (0.60 for Site A and 0.30 for remainder), was set equal to the 

“High vs. Average” egg survival parameterization.  

The resulting egg/hatchling survival equation for a recruitment augmentation 

scenario involving all sites except sites A (where proportion of eggs recovered = 0.40 and 

eggs remaining in their wild state = 0.60): 

𝑃21 =  ((𝜎𝑎𝑟𝑡.𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 ∗  𝜎𝑐𝑎𝑝𝑡𝑖𝑣𝑒 ℎ𝑎𝑡𝑐ℎ𝑙𝑖𝑛𝑔) ∗  .7))  + ((𝜎good/avg egg

∗  𝜎8 𝑚𝑜𝑛𝑡ℎ ℎ𝑎𝑡𝑐ℎ𝑙𝑖𝑛𝑔) ∗  .3)) 

We calculated site-specific λ values for each recruitment augmentation scenario. 

In addition to examining the success of potential conservation measures, we generated 

sensitivity curves to evaluate the effects of incremental changes to vital rates (i.e., egg, 

juvenile, and adult survival) on λ. To create the sensitivity curves for each site, we 

perturbed each vital rate individually while other vital rates retained original values. We 

considered the matrix model with the hatching success of unprotected eggs as the 

“original” matrix that we altered by perturbing vital rates in increments of 5% (from 0 –

100%). We recalculated λ after each perturbation trial.    
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Results 

 Average clutch size for the 83 nests recorded across the region was 3.28 eggs. The 

regional average egg survival was approximately 0.28. Site-specific stage-based 

parameters for various conservation scenarios related to egg survival as well as juvenile 

/adult survival and transition probabilities are provided in Appendix 1.  

 The stable stage distribution results estimated via the “High vs. Average” egg 

survival model suggests that the greatest proportion of individuals should be in the 

egg/hatchling stage for Sites D & E (~0.52; Table 1), whereas Site A would have the 

lowest proportion in the egg/hatchling stage (0.40).  Sites A & B should have the largest 

proportion of individuals in the juvenile stage (0.24 and 0.28, respectively), while Site D 

is estimated to have the lowest (0.09). Excluding eggs/hatchlings, these estimates 

translate to approximately 48% juveniles at Site B and 20% at Site D, a slightly higher 

proportion than what we have observed in field encounters.    

The reproductive values of juveniles and adults were similar for Sites A and B, 

with juveniles contributing approximately four times more to future generations than 

eggs/hatchlings, and adults contributing 10-13 times more to future population growth 

than eggs/hatchlings. The reproductive value of the adult class for Sites D, E, & H were 

drastically greater, with adults contributing 36-96 times more to future generations than 

eggs/hatchlings (Table 2).  

Elasticity analyses indicated that the survival of the adult class (P33) 

proportionally contributed the most to population growth (Table 3), with adult survival 
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elasticities above 0.7 for all sites. The matrix element corresponding to juvenile survival 

(P22) was also considered important for population growth of Sites A and B (Table 3). 

Juvenile survival elasticities ranged from 0.22 at Site B to 0.025 at Site D. 

Under site-specific hatching conditions, both Sites A and B were the only 

populations estimated to be stable or experiencing population growth (λ = 1.06 and 1.00 

respectively) (Fig. 2). Site D, E, & H all appear to be experiencing 6 – 10% annual 

decline (λ = 0.94, 0.90 & 0.93, respectively). Protection of eggs with predator excluder 

cages resulted in marginal increases in λ, but did not stabilize any of the declining 

populations. For sites experiencing dramatic nest predation (D & H), caged nest scenarios 

increased population growth rates by approximately 2%. The lab-incubated egg scenario 

more substantially improved λ for Sites A, B, D, & H, which exhibited 3 – 5% increases 

in population growth (Figure 2). The head-start scenario was the only potential 

management strategy modeled that stabilized or grew all populations except Site E 

(Figure 2). 

For the two sites (A and B) with  > 1, we estimated the parameters values that is 

estimated to lead to negative population growth (Table 4). Site A could absorb an ~ 8% 

decrease in adult survival, while nearly any decrease in adult survival at Site B was 

projected to lead to population decline. Population growth rates for all remaining sites 

were estimated to be <  (Table 5). For each of these sites, substantial increases (see 

Table 5) would be required in any one stage to yield population growth, and in some 

cases no amount of increase at a given stage resulted in  > 1 (assuming other parameters 
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were held constant). Site E would require particularly dramatic intervention, with a 10% 

increase in adult survival or a 90% increase in egg and hatchling survival needed to 

provide positive population growth. Site D was notable for its catastrophically low egg 

survival, thus egg and hatchling survival would have to increase >99% from this deflated 

rate (0.003 to 0.5) to stabilize the population.  

The sensitivity curves demonstrated the proportional effects of vital rate 

perturbations on λ and corroborated that a small change to adult survival results in the 

greatest change to λ (Fig. 1). These effects become more dramatic as a population 

experiences greater decline. At Site D for example, a 10% decline in adult survival 

reduces λ by approximately 10%, while a 10% decline in egg/hatchling survival reduces 

λ by approximately 1%.  However, with the exception of Site E, high survival of 

egg/hatchlings resulted in the greatest population growth rate under no improvement to 

adult or juvenile survival. For example, under a best-case scenario of 100% egg/hatchling 

survival, Site A experienced 22% annual growth compared to 18% and 11% annual 

growth under scenarios of 100% juvenile survival or 100% adult survival. For Site E, 

egg/hatchling survival had limited effect on population growth and population stability 

only occurred when juvenile or adult survival approached 100% (Fig. 1). 

Discussion 

Of the five NC bog turtle populations modeled, we found only two that are likely 

to exhibit stability or growth under current conditions. The three other populations were 

estimated to be in decline. Sites A and B appear to be growing or stable under current 
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rates and have robust abundance estimates, suggesting that they should be highly 

prioritized in a regional-scale conservation plan. As evidenced by capture data, 

recruitment has been continuous for at least a decade at Sites A and B, and this likely 

results from reduced nest predation, moderate incubation temperatures (Chapter 1) and 

high juvenile survival (Tutterow et al. 2017). Our results for Sites A and B demonstrate 

how population stability can be maintained even when adult survival is moderately 

deflated (Fig.1, Table 4). For both of these populations, survival estimates for the egg and 

juvenile life stage and transition probabilities are high, effectively compensating for low 

to moderate adult survival. Although both populations are estimated to be stable or 

growing, Site B appears to be in a more precarious state as demonstrated by the small 

vital rate adjustments required to produce a λ < 1 (Fig. 1, Table 4). Nearly any decreased 

survival at any stage is projected to lead to population decline. 

Long-term population viability is unlikely for the majority of the sites modeled 

here. Several studies that involved population modeling of turtle species has shown that 

small increases in adult mortality may destabilize populations (Crouse et al. 1987; 

Heppell et al. 1996; Heppell 1998; Enneson & Litzgus 2008). High elasticity values (0.70 

– 0.96) across all sites, but particularly at Sites D, E, and H clearly support the relative

importance of adult survival to population stability for bog turtles. Estimated population 

growth rates varied greatly among sites, with some estimates low enough to suggest 

dramatic management intervention will be necessary to stabilize populations. Sites D & 

H may stabilize via targeted efforts to increase recruitment (Fig. 1 and 2; Table 5). If 

these management actions were to occur, we would expect the populations to produce 
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sensitivity curves similar to Sites A and B (Fig. 1). Site E had such low underlying vital 

rates that it is likely to continue precipitous decline under the management scenarios 

presented here unless multiple increases in survival occur at other life-stages (Fig. 1; 

Table 5).  

Estimating reasonable survival probabilities for head-started turtles in comparison 

with their wild counterparts was critical to assessing the effect of these efforts on 

population growth rates. Several sources have recorded comparatively high survival for 

head-started turtles relative to hatchlings in the wild (Kuhns 2010; Michell & Michell 

2015). Head-started 9-month old turtles in Tennessee are similar in size to their 3-y old 

wild counterparts (M. Ogle, 2018, Pers. comm. 10 March), thus we also adjusted the 

estimate of transition probability to reflect the reduced time in the juvenile life stage. In 

addition, our use of transition probabilities from multistate capture-recapture analysis did 

not provide reasonable estimates for Sites D and H. We derived a method of adjusting the 

estimates (see Methods) that we deemed as preferable to other means for generating 

transition probabilities (Crouse et al. 1987; Caswell 1989). The approach taken by these 

authors would have resulted in dramatically more conservative transition probabilities, 

and as a result these early methods may have contributed to the historical perspective that 

head-start programs have limited conservation utility (Heppell et al. 1996).  

Turtles are slow to mature, long lived and iteroparous. These life history traits 

help to buffer populations against the characteristically vulnerable early stages of life 

(Enneson & Litzgus 2008). Natural predation on eggs is historically high and hatchling 
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survival is generally low for most turtle species (Congdon et al. 1983; Mitchell 1988; 

Frazer et al. 1990, 1991; Iverson 1991a; Paterson et al. 2012; Dragon 2015; Spencer et al. 

2017). Substantial longevity allows them to persist through harsh years and compensate 

with higher fecundity during favorable years (Litzgus 2006), effectively smoothing inter-

annual changes in population growth. This evolutionary strategy is generally considered 

dependent upon extremely high adult survival (Congdon & Gibbons 1990; Van Buskirk 

& Crowder 1994; Heppell et al. 1996). Shoemaker et al. (2013) concluded that stable NY 

bog turtle populations had annual adult survival estimates of ~96%. It was estimated that 

adult survivorship needs to be ≥ 96% for wood turtle (Glyptemys insculpta) populations 

to remain stable or grow (Jones et al. 2015). Enneson & Litzgus (2008) predicted 

population decline for a stable Ontario spotted turtle population if adult survival fell 

below 93%. The low adult survival and associated λ values estimated for some NC bog 

turtle populations suggests that these historical estimates may be representative 

benchmarks (Tutterow et al. 2017; Fig. 2). The populations modeled to be stable in this 

study also demonstrate that some level of lower adult survival can be tolerated when 

survival is inflated at other life-stages (Fig. 1).  

 Estimated λ values from this study for several populations suggest that both site-

specific and regional average egg survival may result in annual population declines when 

compounded by low juvenile/adult survival rates (Fig. 2). While acknowledging that 

these manipulations are a symptomatic treatment of a larger conservation problem 

(Spencer et al. 2017), management plans targeting increased recruitment may contribute 

substantially to some populations reaching stability in a given year. Of the recruitment 
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augmentation scenarios investigated, head-starting is the most effective management tool 

to stabilize these populations.  

The literature on the effects of head-start efforts on long-term population viability 

is mixed. The historical perspective on the utility of turtle head-start programs to stabilize 

populations has generally been critical (Mrosovsky 1983; Crouse et al. 1987; Woody 

1990; Frazer 1992; Crowder et al. 1994; Heppell et al. 1996). Frazer (1992) viewed head-

starting as a “halfway technology” that does not ameliorate the actual threats driving 

population decline and thus places more turtles into degraded environments in which 

their parents have failed to flourish. Several authors concluded that caging nests and 

head-starting were ineffective conservation tools as modeling demonstrated that 

population growth rates are far more sensitive to changes in pre-adult or adult 

survivorship than earlier life-stages (Crouse et al. 1987; Crowder et al. 1994; Heppell et 

al. 1996; Shoemaker 2011). Some critiques of the approach appear to be based on strict 

assumptions, such as Shoemaker (2011), where head-started bog turtles were assumed to 

have survival rates equal to their same-aged in situ cohort. This author concluded that a 

“10-year head-start program” for a NY bog turtle population would have negligible effect 

on 100-year extirpation risk. 

More recent studies on head-starting freshwater turtles have concluded that it may 

be a valuable tool to address recruitment problems, increase turtle numbers, and stave off 

extinction threats (Spinks et al. 2003; Mitrus 2005; Vander Haegen et al. 2009; Kuhns 

2010; Moore et al. 2013; Buhlmann et al. 2015; Green 2015; Masin et al. 2015; Michell 
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& Michell 2015; Penaloza et al. 2015; Spencer et al. 2017). The Turtle Survival Alliance 

has targeted head-started several freshwater turtles, including several within the highly 

imperiled Batagur genus; these efforts appear to be highly effective at staving off 

immediate extinction threats (Goldstein et al. 2017). Enneson and Litzgus (2008) 

conducted a stage based matrix analysis on a stable spotted turtle population in Ontario, 

Canada. These authors concluded that protection of eggs may be an efficient conservation 

strategy when egg or juvenile survivorship was dramatically low (below 0.29 and 0.69, 

respectively). Head starting programs have also have empirical or model support for 

Illinois Blanding’s turtle (Kuhns 2010) and eastern long-necked turtles (Spencer et al. 

2017). These authors suggest that head-starting could be an effective and cost-efficient 

primary management tool in a broad-scale, integrated plan. Importantly, these analyses 

suggest that when survival is not increased elsewhere, turtle populations will begin to 

decline immediately after head-start initiatives had ceased.  

Among the sites we modeled, a head-start scenario is likely to boost λ at all 

locations. Nevertheless, the increase to population growth at Site E is likely to be 

insufficient for long-term persistence, as this declining population has such a low 

abundance estimate (<10 adult turtles) that the probability of stochastic extinction in very 

high regardless of the annual λ value (Shoemaker et al. 2013).  If population persistence 

is the goal, we suggest careful consideration of all population augmentation tools 

available to avoid local extinction. Presuming the wetland scale drivers of decline have 

been amended, translocation of head-started individuals from highly abundant stable 
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populations into populations with dramatically low abundance may be an effective 

strategy to limit immediate extinction threats.   

Management Implications 

Only two of five well-studied NC bog turtle populations modeled appear to be 

stable or growing under current estimates. These populations likely represent the 

demographic spectrum of bog turtle population status. The declining populations share 

similar vital rate and abundance characteristics with many other bog turtle populations in 

the region.  

These models suggest that management plans targeting an endangered freshwater 

turtle will likely need to be tailored to site-specific dynamics. For some sites, increased 

recruitment (especially a head-start scenario) may substantially contribute to declining 

populations (Sites D & H) reaching stability (Fig. 1 & 2). For example, sensitivity curves 

for all sites except Site E suggest when other life-stages are held constant, large increases 

in survival at the egg and hatchling stage will result in the highest population growth 

rates (Fig. 1). If 33 and 50% of all available eggs and hatchlings survive until their 

second summer, we would expect population stability at Sites D and H (Table 5). 

Population growth will likely be dramatically higher when these efforts coincide with 

management to increase survival and site fidelity at other life stages (such as addressing 

hydrological issues and woody encroachment). Site E is not expected to stabilize via any 

in-site recruitment augmentation efforts alone (Table 5, Fig. 2). For sites with 

dramatically low abundance (such as Site E), the probability of extinction is extremely 
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high regardless of population growth trajectories. Deciding whether translocation (Cope 

& Waller 1995; Menges 2008; Schwartz et al. 2012; Dresser et al. 2017) is a viable tool 

for such populations is an open question since regional and local habitat issues may have 

created a population sink. Determining where such issues exist and whether or not they 

can be ameliorated is a critical next step. Our research highlights the need for managers 

to consider site-specific demography and vital rates in order to create effective 

management plans. As financial resources are limited, choosing conservation actions at 

one site may preclude action at others (Wilson & Law 2016). These analyses help 

managers make informed decisions as to where they might invest limited resources to 

maximize conservation outcomes in a region-scale management plan.   
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Table 1. Stable stage distributions (the right eigenvector) from stage-based population 

projections models for five North Carolina bog turtle populations utilizing the “High vs. 

Average” egg survival model.   

 

 

 

 

 

 

 

      

Site  Egg/Hatchling Juvenile Adult 

A 0.402 0.240 0.358 

B 0.424 0.279 0.297 

D 0.521 0.094 0.386 

E 0.517 0.106 0.377 

H 0.494 0.138 0.368 
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Table 2. Reproductive values (the left eigenvector) from stage-based population 

projections models for six North Carolina bog turtle populations utilizing the “High vs. 

Average” egg survival model. The reproductive value is the relative contribution to future 

population growth an individual in a particular class is expected to make; values for 

juveniles and adults should be interpreted relative to the contribution of eggs/hatchlings.  

Site Egg/Hatchling Juvenile Adult 

A 1 4.29 10.15 

B 1 4.28 12.87 

D 1 10.22 95.76 

E 1 9.61 77.52 

H 1 8.47 35.65 
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Table 3. Elasticities of vital rates for three North Carolina bog turtle populations show 

the proportional contribution of each stage class to overall population growth (λ) utilizing 

the “High vs. Average” egg survival model.  

Site Egg/Hatchling Juvenile Adult 

A 0.079 0.159 0.717 

B 0.078 0.219 0.703 

D 0.014 0.025 0.961 

E 0.017 0.033 0.950 

H 0.033 0.079 0.887 
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Table 4. Values of stage-specific annual survivorship resulting in a decreasing population 

growth rates (λ <1) when other survivorship values are held constant in a stage-based 

matrix model for two growing North Carolina bog turtle populations (Sites A & B, 

observed λ = 1.058 and 1.004). Fertility values were adjusted in accordance with adult 

survival. 

Observed 

Parameter 

Parameter 

value resulting 

in λ < 1 

% change 

resulting in 

λ <  1 

Site A 

Egg Survival  0.560 0.236 0.578 

Hatchling Survival 0.474 0.200 0.578 

Egg + Hatchling Survival (8 months) (𝑃12) 0.266 0.112 0.578 

Juvenile Survival + Persistence (𝑃22) 0.642 0.160 0.751 

Adult Survival (𝑃33) 0.935 0.860 0.081 

Site B 

Egg Survival  0.450 0.426 0.054 

Hatchling Survival 0.458 0.433 0.054 

Egg + Hatchling Survival (8 months) (𝑃12) 0.206 0.195 0.054 

Juvenile Survival + Persistence (𝑃22) 0.654 0.640 0.021 

Adult Survival (𝑃33) 0.902 0.895 0.008 
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Table 5. Values of stage-specific annual survivorship resulting in an increasing  

population (λ >1) when other survivorship values are held constant in a stage-based  

matrix model for three declining North Carolina bog turtle populations (Sites D, E, H,  

observed λ = .937, .903, .934). Fertility values were adjusted in accordance with adult  

survival. NA refers to no value possible. 

 

  
Observed 

Parameter 

Parameter value 

resulting in λ < 1 

% change 

resulting in 

λ <  1 

Site D        

Egg Survival  0.009 NA  NA 

Hatchling Survival 0.337 NA  NA 

Egg + Hatchling Survival (8 months) (𝑃12) 0.003 0.500 0.994 

Juvenile Survival + Persistence (𝑃22) 0.435 0.997 0.563 

Adult Survival (𝑃33)  0.937 0.999 0.062 

Site E       

Egg Survival  0.276 NA  NA 

Hatchling Survival 0.443 NA  NA 

Egg + Hatchling Survival (8 months) (𝑃12) 0.094 0.900 0.896 

Juvenile Survival + Persistence (𝑃22)  0.443 0.942 0.529 

Adult Survival (𝑃33) 0.057 0.999 0.102 

Site H       

Egg Survival  0.150 NA  NA 

Hatchling Survival 0.404 NA  NA 

Egg + Hatchling Survival (8 months) (𝑃12) 0.061 0.330 0.816 

Juvenile Survival + Persistence (𝑃22)   0.549 0.916 0.327 

Adult Survival (𝑃33)  0.913 0.983 0.075 
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Table 6. Annual apparent survival and transition estimates were derived from the dataset 

analyzed in Tutterow et al. 2017 and re-analyzed by size-class incorporating 2016 and 

2017 encounter data for sites A, B, D & H. Adult apparent survival were estimated using 

Cormack-Jolly-Seber models. Juvenile survival and transition probabilities were 

estimated using multistate capture–recapture analyses (Lebreton & Cefe 2002) as 

described under the methods section. 

Adult Survival (size based >80mm CL) 

Site Phi LCI UCI SE Model Year Range 

A 0.935 0.903 0.957 0.014 Phi(.)p(t) 1996-2017 

B 0.902 0.868 0.928 0.015 Phi(.)p(t) 1996-2017 

D 0.937 0.908 0.958 0.013 Phi(.)p(t) 2003-2017 

E 0.887 0.846 0.918 0.018 Phi(.)p(t) 1992-2015 

H 0.913 0.852 0.951 0.024 Phi(.)p(t) 1992-2017 

Juvenile Survival (size based <80mm CL) 

A 0.815 0.721 0.882 0.041 Phi(.)p(t)ψ(.) 1996-2017 

B 0.773 0.678 0.847 0.043 Phi(.)p(t)ψ(.) 1996-2017 

D 0.493 0.257 0.732 0.132 Phi(.)p(t)ψ(.) 2003-2017 

E 0.501 0.238 0.764 0.149 Phi(.)p(t)ψ(.) 1992-2015 

H 0.646 NA NA NA NA NA 

Juvenile Transition Probability (size based <80mm CL) 

A 0.212 0.143 0.302 0.041 Phi(.)p(t)ψ(.) 1996-2017 

B 0.155 0.093 0.247 0.039 Phi(.)p(t)ψ(.) 1996-2017 

D 0.112 NA NA NA NA NA 

E 0.113 NA NA NA NA NA 

H 0.148 NA NA NA NA NA 
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Figure 1.  Sensitivity curves demonstrate incremental (from 0-5%) perturbations to each 

vital rate (egg/hatchling, juvenile, adult) and the effects to λ in stage-based matrix models 

for five North Carolina bog turtle populations. Solid symbols represent site-specific 

observed survivorship values. The vital rate estimates at other life-stages are held 

constant at these observed values when perturbations are made.   

Figure 2. The effect of potential management scenarios targeting bog turtle recruitment 

(unprotected nests at site-specific and average egg survivorship, nests protected with 

predator excluder cages, lab-incubated eggs, and lab-incubated eggs combined with head-

started turtles) on λ for five bog turtle sites in North Carolina. Management scenarios 

assume that 40% of available nests at Sites B, D, E, and H and 70% of nest at Site A are 

recovered for management purposes. 
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Figure 1. 
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Figure 2. 
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Appendix 1. Vital rates used in the stage-based matrix population models for five well-

studied bog turtle populations in North Carolina. Non-underlined values are site-specific 

estimates while underlined values originated from other studies. The bold values are 

estimates derived from other sites (see text for details). 

Site A Site B Site D Site E Site H Source 

Site-

specific 

Egg 

Survival 

0.56 0.45 0.009 0.276 0.15 Chapter 1 

Regional 

Avg. Egg 

Survival 

0.276 0.276 0.276 0.276 0.276 Chapter 1 

High vs. 

Average 

Egg 

Survival 

0.516 0.516 0.276 0.276 0.276 Chapter 1 

Caged Egg 

Survival 
0.4 0.4 0.4 0.4 0.4 

Macey 

2017, 

Zappalorti 

et al. 2017 

Artificially 

Incubated 

Egg 

Survival 

0.81 0.81 0.81 0.81 0.81 

Macey 

2017, 

Zappalorti 

et al. 2017 

Hatchling 

Survival 
0.33 0.31 0.20 0.20 0.26 

Derived 

from Juv. 

Survival,  

Tutterow et 

al. (2017) 

Site-

specific 

Egg + 

Hatchling 

Survival (8 

Months) 

(P21) 

0.266 0.206 0.003 0.094 0.061 

Chapter 1, 

Tutterow et 

al. (2017) 



71 

 

Regional 

Avg. Egg + 

hatchling 

Survival  

(8 Months) 

(P12) 

0.131 0.126 0.093 0.094 0.112 

Chapter 1, 

Tutterow et 

al. (2017) 

Caged Egg 

+ Hatchling 

Survival   

(8 Months) 

(P12) 

0.272 0.247 0.122 0.124 0.147 

Macey 

2017, 

Zappalorti 

et al. (2017) 

Art. 

Incubated 

Egg + 

Hatchling 

Survival (8 

months) 

(P12) 

0.301 0.331 0.219 0.221 0.263 

Macey 

2017, 

Zappalorti 

et al. (2017) 

Juvenile 

Survival  
0.815 0.773 0.490 0.500 0.645 

Updated 

from 

Tutterow et 

al. (2017) 

Juvenile 

Survival + 

Persistence 

(P22) 

0.642 0.654 0.435 0.443 0.549  

Juvenile 

Transition  
0.212 0.155 0.112 0.114 0.148  

Juvenile 

Transition 

(conditional 

on survival) 

(P23) 

0.1725 0.1200 0.055 0.057 0.095  

Adult 

Survival 

(P33) 

0.935 0.902 0.937 0.887 0.913 

Updated 

from 

Tutterow et 

al. (2017) 

Fertility 

(F3) 
1.18 1.45 1.28 1.24 1.28 

Knoerr et 

al. (in prep),  

Tutterow et 

al. (2017) 
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