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ABSTRACT 

Designing soft, active materials that change their shape and properties depending 

on external stimuli is a rapidly developing area of research. Using theoretical and 

computational modeling, we focus on the dynamics of gel filled with uniformly distributed 

ferromagnetic nanoparticles exposed to electromagnetic (EM) waves in the GHz frequency 

range. For the polymer matrix, we choose Poly(N-isopropylacrylamide) (PNIPAAm) gels, 

which have a lower critical solution temperature and shrinks upon heating. When these 

composites are irradiated with EM waves that have frequency close to that of the Ferro-

Magnetic Resonance (FMR) frequency, the heating rate increases dramatically. The 

magnetically induced heating inside the nanoparticles is transferred to the gel matrix. We 

show that the dissipated EM energy causes volume phase transitions in the gel, as a 

response to temperature change, leading to the large deformations of the sample for a range 

of system parameters. We propose a model that accounts for the dynamic coupling between 

the elastodynamics of polymer gels and FMR heating of magnetic nanoparticles. This 

coupling is non-linear: as the system is heated and the gel shrinks at the temperatures close 

to the volume phase transition temperature, the particles concentration increases, which in 

turn results in an increase of the heating rates as long as the concentration of nanoparticles 

does not exceed a critical value. We show that the system exhibits high selectivity to the 

frequency of the incident EM radiation and can result in a large mechanical feedback in 

response to the time-varying power signal. These results suggest a design of a new class of 

soft active gel-based materials remotely controlled by the low power EM signals within 

the GHz frequency range. 
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CHAPTER 1 

INTRODUCTION 

The gel-based stimuli-responsive composite materials have been actively studied 

in recent years. Because of their unique properties to change volume or chemical 

composition in response to external stimuli, such as pH, temperature, solvent composition, 

magnetic field, etc. [1], they are often called “smart” materials. The applications of these 

stimuli-responsive hydrogels are often limited because of their finite response properties. 

Recently, much work has been done to resolve this issue through the integration of 

nanomaterials (ceramic or metal nanoparticles, carbon nanotubes, etc.) into hydrogel 

matrix [2]. For example, adding gold nanoparticles to hydrogels enhances their electrical 

conductivity [2], while impregnation of graphene and graphene oxide in natural hydrogels 

is used to reinforce the strength of hydrogel composites [2]. The incorporation of magnetic 

nanoparticles into host polymer networks can offer straightforward methods to enhance the 

responsiveness of hydrogel composites to an electromagnetic (EM) signals [3-6]. These 

magnetically responsive composite hydrogels, which offer the advantage of remote control 

[7], could be used for development of a range of remotely controlled soft coatings, sensors, 

and actuators. Controlling dynamics of these materials by the low power electromagnetic 

(EM) wave within the GHz frequency range is of particular interest given an extensive 

usage of GHz bands in various communication protocols. For example, Bluetooth 

technologies operate at 2.4 GHz and 5GHz frequencies, while Metropolitan Area Network 

(MAN) protocols and radars operate within a wide range of GHz bands [8]. Developing 

soft active reconfigurable materials that would ultimately allow one to control mechanical 
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actuation, shape, or wetting properties through the usage of the existing communication 

protocols could be beneficial for a range of applications.  

In our research we focus on the design of soft gel-based magnetic composites that 

are magneto- and thermo-responsive. The goal is to identify conditions leading to large 

elastic deformations upon electromagnetic heating of these composites within the GHz 

frequencies range. The most important characteristics of these systems is that the magnetic 

heating is non-linearly coupled with the gel’s dynamics, resulting in a large-scale 

deformation of the temperature-responsive gel composite when interacting with an EM 

field.  

In this work we consider only stable chemically cross-linked hydrogels. Since 

Poly(N-isopropylacrylamide) (PNIPAAm) is a well-studied thermoresponsive hydrogel, 

we chose it as a polymer matrix. These hydrogels shrink upon heating at above their 

Volume Phase Transition Temperature (VPTT) [9]. We examined low concentrations of 

single-domain magnetic nanoparticles (NPs) (initial NPs concentration does not exceed 1% 

in the simulations below) that are assumed to be uniformly distributed inside the gel matrix. 

The nanoparticles (NPs) could either be covalently grafted into the polymer network or 

physically trapped within it [10]. To prevent the aggregation of the nanoparticles within 

the gel during the sample preparation, NPs could be coated to ensure compatibility with 

the gel matrix [11]. These nanoparticles effectively act as heat generators when they are 

exposed to an alternating current (AC) field. [12]. In our research we studied the heating 

efficiency for the two types of nanoparticles (cobalt and magnetite), with more focus on 

cobalt nanoparticles. 
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A number of prior studies demonstrated an efficiency of heating of hydrogels filled 

with superparamagnetic nanoparticles [13-17]. In these studies, a typical frequency of the 

AC EM signal is on the order of hundreds of kHz and the heating is due to the combination 

of  Neel (flipping of spins) and Brownian (viscous friction between rotating NPs and 

matrix) relaxation [18, 19]. The possible applications of these hydrogels filled with 

magnetic nanoparticles range from biomedical drug delivery (often for hyperthermia 

treatments) [20, 21]  to utilizing external EM signals for the remote control of hydrogel 

membrane porosity for the well-targeted molecular sieving [22]. Either PNIPAAm gels [5, 

23] or various copolymers, including PNIPAAm gels [24, 25], are used in the studies of 

nanoparticle-hydrogel composites.  

In our work we focused on the GHz band frequencies, where the mechanism of the 

gel heating is distinctly different [26, 27]. The previously estimated heating rates of non-

deformable composites, such as paraffin films filled with various magnetic nanoparticles 

at GHz frequencies [27], support the feasibility of using these frequencies to control the 

temperature of the system and, as a result, the volume phase transitions in thermo-

responsive hydrogels. With regard to the hydrogels filled with ferromagnetic nanoparticles 

investigated here, we separate the effects of magnetic heating caused by the interaction of 

the EM wave with ferromagnetic NPs from the dielectric heating of the hydrogel matrix 

(neglecting the last one). While water is well known to absorb microwaves (GHz 

frequencies band) [28] and would result in dielectric losses within the gel matrix, magnetic 

nanoparticles are shown to significantly enhance the localized selective microwave heating 

[29, 30]  and providing a  significantly greater contribution from the magnetic heating than 
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from the corresponding dielectric heating [29]. To account for the effect of external 

mechanical deformations, these films could be placed on a metal substrate in the respective 

experiments; for thin films with the thicknesses much smaller than the wavelength of the 

EM wave, the electric component of the EM wave will be reflected from the metal [31].  

 We have developed a model that couples heating of magnetic nanoparticles within 

the GHz frequency range [27] with the gel elastodynamics in three dimensions [32]. We 

then focus on mechanical response of these gel-nanoparticle composites to the applied EM 

waves. In the simulations below, we assume that the sample is thermally insolated. Finally, 

the thermal diffusion coefficient is a few orders of magnitudes greater than the collective 

diffusion coefficient of the polymer network [33]. Consequently, we assume that the 

temperature is uniform within the gel samples at any given moment in time for the sample 

sizes considered in this work. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1: Magnetism in Nanoparticles 

In chapter two we discuss the essence of magnetism and explain the derivation of 

formulas of the heating rate and introduce the description of properties of polymer gels 

based on literature. These concepts will be the basis of the computational experiments in 

this thesis. 

Nanomagnetism is an active and highly interesting topic in science. It has had an 

impact in all areas of life, from geology to magnetic recording to biomedical applications 

[34]. The nanoscience is dealing with the objects that are in the range from 1nm to 100 nm 

(same range as the sizes of many viruses and macromolecules) [34], thus magnetic 

nanoparticles are widely applied in nanomedicine, particularly in the field of cancer 

treatment. In our work we focus on how to exploit the benefits of heat induction by 

magnetic nanoparticles (exposed to EM signal) for the development of new composite 

materials. Therefore it is important to understand the fundamentals of magnetism in 

nanoparticles and the main parameters controlling the heating process in the composite. By 

choosing the right type of magnetic material one can achieve the desired heating effect.  

Materials possess different degrees of magnetism that can be classified as 

diamagnetic, paramagnetic, and ordered magnetic materials (ferrimagnetic, 

antiferromagnetic, and ferromagnetic). The vast majority of the materials are diamagnetic 

and have very weak magnetization that is opposite of the applied magnetic field [35]. 
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Paramagnetic materials have a higher degree of magnetization due to the presence of 

unpaired electrons. However, paramagnetic materials are magnetically disordered. 

Ferromagnetic materials (iron, nickel, and cobalt) have the most striking magnetic 

properties at room temperature [36]. Nevertheless, even they lose their magnetic properties 

at high temperatures, which is specific for each material.  

Magnetic properties of materials can be understood from classical and quantum 

mechanical points of view. The classical model is simpler, and based on it, magnetism 

arises due to the electron motion around its orbit (around a nucleus) and around its own 

axis (like the earth rotates around its axis). Matter is made out of atoms, which contain 

electrons revolving around a nucleus. The rotation of charged particles gives rise to an 

effective magnetic moment [37]. The orbital and spin motion of an unpaired electron 

comprises a total magnetic moment of a single atom. In solid material, magnetic moments 

of atoms can be grouped together and aligned, creating regions which are called magnetic 

domains. Each domain is a net magnetization of a particular region with a direction that is 

different from its neighbor. Magnetization (magnetic polarization) is a density of magnetic 

dipole moments that is induced in a magnetic material when it is exposed to an external 

magnetic field [37]. Classical physics gives a basic explanation of the mechanics of 

magnetism. However, as knowledge of this concept has increased and gone further into the 

mathematical description of magnetism, quantum mechanics has given more accurate  

explanations [36]. Nevertheless, we will use classical electromagnetic formulation. 



7 
 

The dimensions of nanoparticles strongly influence their magnetic behavior. 

Smaller nanoparticles can be considered as single-domain, and larger nanoparticles, above 

some critical diameter - as a multidomain [34]. Small ferromagnetic or ferrimagnetic 

nanoparticles, which are single domain, exhibit a phenomenon known as a 

superparamagnetism. The critical diameters vary for different types of nanoparticles. For 

instance, the approximate diameter of cobalt nanoparticles, which appear to have 

superparamagnetic behavior under the standard conditions, is below 10 nm, while for 

magnetite ( 3 4Fe O ) is below 30 nm [18]. However, above these values, nanoparticles would 

be just a single domain nanoparticles. When the particle size decreases, the domain walls 

in ferromagnetic NPs disappear, approaching critical radius, cr , and with further decrease 

a particle enters a superparamagnetic regime. To illustrate these transition points between 

superparamagnetic, single-domain, and multi-domain regions, Figure 2.1 was adapted 

from the reference [35].  

 

 

Figure 2.1 Transition of the magnetic regimes (superparamagnetic, single-domain, multi-

domain) as a function of nanoparticles size. 
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It is worth noting that all superparamagnetic nanoparticles are single-domain particles, but 

not always single-domain particles are superparamagnetic [38].  

Magnetic nanoparticles (MNPs) can be in the form of pure material like Co, Fe, Ni 

or they can be made out in the form of alloys. Their application will be defined based on 

their properties. For example, platinum-based MNPs show great stability in water [39] and 

are used as a contrast agent for MRI and X-ray computed tomography [40]. The most 

commonly used nanoparticles for biomedical application are iron oxide, in particular 

magnetite ( 3 4Fe O ) and maghemite ( 2 3Fe O  ) due to their chemical stability, 

biocompatibility, and relatively low fabrication cost [39]. Cobalt NPs have high values of 

saturation magnetization that could result in a high thermal energy dissipation.  

In order to analyze and predict the behavior of magnetic materials one must know 

their basic parameters: anisotropy constant and saturation magnetization. Magnetic 

anisotropy shows the change in internal energy of a material when the direction of 

magnetization is changed [41]. In our calculations we took into account two of the most 

common types of anisotropy: magnetocrystalline and shape anisotropies. 

 Magnetocrystaline anisotropy results from spin-orbit coupling, which is combined 

with the crystal lattice. It is related to the alignment of magnetization vectors along a 

specific, energetically favored crystallographic direction known as easy axes. The 

magnetocrystaline anisotropy is usually much greater in nanoparticles than that in 

analogous bulk solids [42]. 
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If one wants to magnetize a spherical sample, the magnetization will be 

distributed to the same extent in all directions. However, an ellipsoidal sample is easier 

to magnetize along the long axis than along a short one [43]. It can be explained based 

on the demagnetization field, which is stronger along the short axis, meaning that a 

greater field needs to be applied in this direction to create a responsive field inside the 

specimen. Hence, the shape by itself can be a source of magnetic anisotropy. When a 

specimen (in our case nanoparticles) of defined shape is magnetized by an external 

magnetic field, the magnetic poles appear on its ends and tend to oppose the direction of 

the applied field [37]. This field is called a demagnetization field. The shape anisotropy of 

the sample can be described quantitatively by the demagnetization tensor N  (derived 

from the demagnetization field), which depends on the shape.  

When choosing the type of nanoparticles for a specific application 

(superparamagnetic or ferromagnetic single-domain nanoparticles) several parameters 

should be taken into account: heating efficiency, colloidal stability, and tendency to 

oxidation. The size, shape, and composition of nanoparticles can be modified to tailor the 

magnetic properties to a specific application [44]. 

2.2: Hydrogels: Definitions and Applications 

Hydrogels are water-swollen polymeric cross-linked networks that maintain a 

distinct three-dimensional shape. The widely-used type of hydrogels are chemically cross-

linked (e.g., PNIPAAm), which means that polymer chains are covalently bonded. Unlike 

chemically cross-linked hydrogels, physically cross-linked gels typically have weaker 
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connections that are held together by hydrogen bonds, electrostatic forces, or chain 

entanglements [45]. Hydrogels are also categorized based on their polymer origin, natural 

or synthetic. PNIPAAm is a synthetic polymer made from acrylamide monomers. 

The thermoresponsive behavior of PNIPAAm originates from a delicate balance 

between the hydrophobic (isopropyl) and hydrophilic (amide) moieties that are 

interconnected with water molecules through hydrogen bonding. At high temperatures 

intermolecular hydrogen bonds break up (water molecules are expelled from the hydrogel 

matrix) and intramolecular interactions between amide and isopropyl groups become 

predominant; as a result, the polymer structure collapses [46]. Thus, PNIPAAm hydrogels 

undergo shrinking upon heating above the critical temperature, which is called Volume 

Phase Transition (VPT) temperature. For PNIPAAm hydrogel this temperature is around 

32-330C [9].  

As was mentioned in the introduction, combining these two materials 

(thermoresponsive hydrogels and magnetic nanoparticles), with the above described 

 

 

Figure 2.2 Chemical structure of poly (N-isopropylacrylamide) (PNIPAAm) 

 



11 
 

unique properties, opens up an opportunity for developing novel synthetic nanocomposite 

materials.  
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CHAPTER 3 

MODELING THE SYSTEM: M-gLSM 

We first developed a model that captures magnetic heating of the gel composite 

within the GHz frequency range coupled with the gel’s elastodynamics, which is modeled 

based on the gel Lattice Spring Model (gLSM) [32, 47, 48]. Originally, the gLSM [32, 47, 

48] was developed to simulate the dynamics of self-oscillating gels undergoing the 

Belousov-Zhabotinsky chemical reactions[49]. The Gel Lattice Spring Model combines 

governing reaction-diffusion equations for reagents (between the gel and fluid) and gel 

dynamics equations. A number of computational studies using gLSM have shown the 

reliability of this model; the simulation results are in good agreement with the 

corresponding experimental results [32, 50-53]. Thereby, this approach is an effective tool 

for simulating the dynamics of a variety of chemo-responsive gels. In this work the three-

dimensional gLSM framework was adapted to simulate the effects of interactions of the 

EM wave and a gel composite filled with magnetic nanoparticles; from this point we will 

refer to this framework as M-gLSM. The magnetic contribution of this model is based on 

the Ferromagnetic Resonance (FMR) theory, which involves the corresponding boundary 

value problem of electrodynamics [27]. The schematic of the FMR setup (Figure 3.1a) 

helps to visualize our computational experiments. 
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3.1 Governing Equations of the Gel Elastodynamics 

Within the gLSM [32, 47, 48], the total energy of chemo-responsive gels is taken 

as a sum of energy of the polymer-solvent interaction, FHU , and elastic energy associated 

with the gel deformation, elU . The first term is written in the following Flory-Huggins form 

[54]:  

                                 3 [(1 ) ln(1 ) ( , ) (1 )]FH FHU I T                                     (3.1) 

Here,   is the volume fraction of the polymer, 1-  is the volume fraction of solvent, and 

( , )FH T   is the Flory-Huggins polymer-solvent interaction parameter. Finally, 3
ˆdetI  B

 
 

in Equation (3.1) is an invariant of the left Cauchy-Green (Finger) strain tensor B̂  , that is 

related to the volume changes of the deformed gel  [55]. The elastic energy contribution to 

the total energy, elU
 
, describes the rubber elasticity of the cross-linked network [54, 56], 

and is proportional to the crosslink density, 0c : 

                                                  
1/20 0

1 3( 3 ln )
2

el

c
U I I


   ,                                             (3.2) 

where 0  is the volume of a monomeric unit and 1
ˆI tr B  [55]. The constitutive equation 

for the chemo-responsive gels reads [47]: 

                                                0 0

0

ˆ ˆˆ ( , )P T c


 


  I B  ,                                              (3.3) 
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where   is the dimensionless stress tensor measured in units of 1

0 kT  , Î is the unit 

tensor, 0  is the volume fraction of the polymer at preparation, and ( , )P T
  is the isotropic 

pressure defined as [9, 47] 

                       2 1

0 0 0( , ) ( ln(1 ) ( , ) ) (2 )P T T c               .                 (3.4) 

The parameter ( , )T   in the above equation is a function of both polymer volume fraction 

and temperature, T, and is found as [9] 

                                            0 1( , ) ( ) ( )T T       ,                                                      (3.5) 

where                                   0( ) [ ] /T h T s kT    ,                                                       (3.6) 

with h  and  s  being the respective changes in the enthalpy and entropy per monomeric 

unit of the gel. In the elastomagnetic composite, an absorption of the EM wave results in 

the heating of the sample, which in turn leads to the dependence of 0 ( )T  on the EM wave 

frequency and the respective changes in the equilibrium degree of swelling. This 

equilibrium degree of swelling as a function of T is found as [32] 

                                                  
1/3

0( ) ( / ( ))eq eqT T   ,                                                            (3.7) 

where an equilibrium volume fraction of the polymer, ( )eq T , for an unconstrained three- 

dimensional sample is found by requiring = 0 (eq. 3.3) in equilibrium [32]: 

                         1/3 2

0 0 0 1

0 0

[( ) ] ( ln(1 ) [ ( ) ] )
2

eq eq

eq eq eq eqc T
 

      
 

      

 

              (3.8) 
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The details of the three-dimensional formulation and implementation of the gLSM 

approach are provided in Reference [32].  

3.2 Governing Equations for the Magnetic Heating 

The schematic of ferromagnetic resonance (FMR) setup is shown in Figure 3.1a. A 

gel layer filled with magnetic NPs is placed in a DC magnetic field (Hex), and an EM wave 

is applied along the direction of Hex. It is important to emphasize that the magnetic 

component of the EM wave, h0, is perpendicular to Hex (in blue in Figure 4.1a). When the 

applied microwave frequency coincides with the natural precession frequency of a spin 

system, the amplitude of the precession becomes larger, and the maximum absorption is 

observed. This phenomenon is known as resonance. FMR is a useful technique to examine 

magnetic properties of ferromagnetic materials, such as magnetic anisotropies and the 

Gilbert-damping coefficient [57]. The experimental setup includes the following: an EM 

wave excitation source, an electromagnet, and a detector (as shown in Figure 4.1a).The 

detection of resonance could be done in two ways: 1) one could either vary the strength of 

the external field, keeping an applied frequency of the AC field fixed, or 2) to fix the 

external field and scan over a range of frequencies. In our simulations, we keep Hex constant 

and vary the frequency of the AC field. 

In the absence of the magnetic field, the magnetic dipole moments of each 

nanoparticle are randomly oriented in the polymer matrix. By adding the external magnetic 

field, the net magnetic dipole moments (magnetization vectors M) are aligned along the z-

direction; the field inside the composite is disturbed and dissimilar to the .exH  
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 Assuming that the easy axes of the nanoparticles are oriented parallel to the DC magnetic 

field, then the magnetic field within the gel film can be found as [27] : 

,in ex  H H M            (3.9) 

where M  is a magnetization for the single nanoparticle. Only when all magnetization 

vectors are aligned in the same direction can maximum absorption of the EM wave be 

achieved. In the absence of the EM wave, the bias direct current (DC) field inside the 

magnetic NP, Hs, depends on [27]: i) internal field inH ; ii) the effective field caused by the 

magnetocrystalline anisotropy aH ; iii) the demagnetization field 𝐇d. 

Figure 3.1: (a) Schematic of the gel composite under the FMR heating. A gel layer filled 

with magnetic nanoparticles is subjected to a bias DC magnetic field, Hex, and an EM wave 

with the magnetic field h0 perpendicular to Hex is applied in z-direction. Nanoparticles are 

assumed to be uniformly distributed and trapped within the gel matrix; (b) Damped 

precession of a magnetic moment, M, toward the magnetic field for a single domain 

nanoparticle; m is the xy-projection of the magnetization vector M. 

a) b) 
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                                           s in a d= + +H H H H                                                          (3.10) 

For the case of uniaxial magnetocrystalline anisotropy, introduced in Chapter 2,

 a 1 0 s= 2K /μ MH z , where sM is a saturation magnetization of the material, 1K  is a 

constant of magnetocrystalline anisotropy,  is a permeability of a vacuum, and  is a 

unit vector along the vertical direction in Figure 3.1a. The demagnetization field, which is 

shape dependent, is d s= -M / 3H z , with the demagnetizing factor for the spherical 

nanoparticle being 1/ 3N   [57].The applied AC field destabilizes the orientation of the 

magnetization vector, resulting in the precession of this vector around the z-axis (Figure 

3.1b), which is described by the Landau-Lifshitz-Gilbert equation (LLG) [26, 31]: 

                                  0 ( )m

s

d d

dt dt




 
         

 

M M
M H h M

M
                               (3.11) 

In the above equation, 
 
is a gyromagnetic ratio,  is the phenomenological damping 

coefficient, and 
mh is the AC component of the magnetic field inside the NP (see Figure 

3.1b). The second term in this equation corresponds to the deceleration of this motion or, 

in other words, a damping effect. It involves energy loss from the motion of the 

magnetization field, which is converted to the heat energy in a ferromagnet [26]. The 

mechanism of transferring energy from one form to another is complex to describe in the 

field equations; that is why the damping parameter is introduced. It is determined 

experimentally for different materials. The damping constant may vary even for the same 

0 z
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material in different cases. The damping constant, , for cobalt material, lies between 

0.001 and 0.05 [58]. 

            From the LLG equation, two characteristic functions, ( )w and ( )g w , were derived 

[27]. These two functions are permeability tensors of a ferromagnetic material in the x-y 

plane and z-direction, respectively: 

                                                        
2 2

1
( ) 1

(1 )
m

i w
w w

i w w







 

 
  ,                                 (3.12) 

                                                         
2 2

( )
(1 )

mw w
g w

i w w


 
.                                               (3.13)

 

These expressions accounted for the derivation of the effective relative permeability of the 

medium [27]: 

                                                       
1

( , ) 1 3
2

eff

g
w

g


  



  
  

  
 ,                                (3.14) 

where w  is applied frequency normalized by the natural precession frequency 

0r exw  H , and 0 /m rw M w . 

The resonance frequency is a frequency at which a composite captures the highest 

fraction of energy of the incident signal. In general, resonance frequency depends on the 

size, shape, and the composition of the material [59]. In our system, the resonance 

frequency, wc, depends on (a) the magnitude of the external biased magnetic field, Hex, (b) 

magnetic properties of nanoparticles (magnetocrystalline anisotropy), and (c) the volume 

fraction of the nanoparticles within the composite. It can be calculated as [27] 
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1

0

0

2
( )c ex s

s

K
w M

M
 


  H .                                            (3.15) 

This means that the resonance frequency depends linearly on the volume fraction of 

nanoparticles, , which is no longer a constant value for the elastic matrix, undergoing 

deformations. As a resonance condition is fulfilled, the absorption of the EM wave 

significantly increases.  

The analysis of the interaction between the microwave and composite film is based 

on the theory of electromagnetic waves in nonconducting media. By convention, we chose 

the normal incidence of the microwave. The incident wave ( 1i( z-wt)

I 0= e
k

E E ) gives rise to 

the reflected ( 2

4

i(- z-wt)

R = e
k

E E ) and transmitted waves ( 3
1i( z-wt)

T = e
k

E E ), and some fraction 

of the incident power is absorbed. The wave that travels through the thickness of the film 

is subjected to specific boundary conditions. From electrodynamics we know four general 

 

Figure 3.2: Graphical representation of the reflection and transmission of an incident 

EM wave traveling through the thin film. The wave vectors  and  denote two media: 

air and composite sample. 
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boundary conditions for the case of two linear media: i) 1 1 2 2E E   , ii) 1 2B B  , iii) 

1 2E E , iv) 
1 2

1 2

1 1
B B

 
  [60]. In our formulas we used the magnetic field h  that is 

related to B  through / h B . We considered that the electric and magnetic components 

of the wave is perpendicular to the external field (see Figure 4.2). The electric and magnetic 

field vectors were projected at two boundaries: z=0 and z=d as shown in Figure 4.2. 

At the interfaces, the electric and magnetic components of the EM wave are parallel 

to the surface (boundary condition iii) and  iv)), and can be written as [27]:  

1

1

1

1

0 4 1 2

0 4 1 2

1 2 3

1 2 3

( 0),

( ).

i d

i d

i d

i d

E E E E e
z

h h h h e

E e E E
z d

h e h h









   


  

  


 

k

k

k

k

                                                                                  (3.16) 

Where 1k  is a wave vector in the composite and can be expressed by the wave vector in 

free space, 0 0ok w    : 

                                                           1 0 ( , )eff eff w  k k                                           (3.17) 

The amplitudes of magnetic and electric fields are related through 
1/2( / ) h E  ; this 

expression helped to simplify the system of Equations 3.16 and to solve it for E  . 

The transmission coefficient, T , is defined as a ratio of  an intensity transmitted to 

an intensity incident. The reflection coefficient, R , is the ratio of an intensity reflected to 

an intensity incident [60]. The intensity of the wave is the average of the Poynting vector 
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(energy per unit area, per unit time). The intensity of the incident, transmitted, and reflected 

wave are calculated as 

          1
22 2

0 0 3 3 4 4

0 0 0

1 1 1
, ,

2 2 2

ik dS E S E e S E
Z Z Z

      ,                                     (3.18) 

After 3E  and 4E  are expressed through 0E  , the simplified version of these coefficients are 

[27]: 

               
1

1

2

22 2

4 ( , )
( , )

( ( , ) 1) ( , ) ( ( , ) 1)

ik d

ik d

e Z w
T w

Z w e Z w Z w




  





 
  

   
                             (3.19)

 

              
1

1

2
22

22 2

( ( , ) 1)( 1)
( , )

( ( , ) 1) ( ( , ) 1)

ik d

ik d

Z w e
R w

Z w e Z w




 





  
  

   
,                                           (3.20) 

where 0Z  is the impedance of an EM wave in the vacuum and ( , )Z w   is a ratio between 

the wave impedances in the composite and vacuum: 

                                               ( , ) ( , ) /eff effZ w w     .                                                               (3.21) 

The impedance of an absorbing material, Z , can be modified by changing the type of 

polymer matrix [61], as well as type and  concentration of NPs. The electric permittivity (

eff ) and magnetic permeability (
eff ) are parameters that define the dielectric and 

magnetic properties of materials and are directly associated to their absorbing 

characteristics. The absorption coefficient ( , )w   is defined as the ratio of the energy 

absorbed by the composite of the thickness, d, to the energy supplied into the system: 



22 
 

                                                1 ( , ) ( , )T w R w     .                                                (3.22)
 

This expression is based on the law of energy conservation, and the coefficients T  and R  

are given by Equations 3.19-3.20. The energy that has been absorbed dissipates into heat. 

For convenience, this dissipated energy was measured as the incident power of the EM 

wave per unit area, 0P  (units W/m2).  

The temperature rise per unit time of the sample (heating rate) is equal to the ratio 

of the total energy absorbed by the sample per unit time ( 0P A  ) to the total heat 

capacity ( ,pc m m A d    ) of the sample [27]: 

                                                       0 ( , )
T

p

P w
K

c d

 


                                                       (3.23) 

where,  is the density of the composite, pc  is a specific heat capacity and  is the 

thickness of the sample in the direction perpendicular to the incident EM wave.  

The above framework introduces how to calculate an instantaneous heating rate if 

the volume fraction of nanoparticles, , and the thickness of the gel layer, d, are two known 

instantaneous values. When the EM irradiation is applied, the thickness d and the volume 

fraction of the nanoparticles, , vary with time as the sample is deformed due to heating. 

In our computational model, we have taken into account all these changes. Specifically, to 

capture the elastodynamics of composite within the M-gLSM framework, at each instant 

of time, we calculated (1) an instantaneous heating rate (Equation 3.23) with    from 

Equation 3.22 that depends on the gel thickness, d, and the volume fraction of the 

 d
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nanoparticles, , (2) an instantaneous temperature, T, of the sample based on this heating 

rate and temperature of the sample in the previous moment of time; and (3) a polymer-

solvent interaction parameter that depends on temperature and defines the degree of 

swelling of the gel as given above, Equation 3.7; Lastly, in step (4), we performed an 

integration of the elastodynamics equations (3D gLSM) using this calculated polymer-

solvent interaction parameter. As noted above, the nanoparticles are considered to be 

grafted to (or physically trapped within) the polymer matrix and they move together with 

the matrix. The volume fraction of nanoparticles, , is calculated as m  , where the 

parameter m  sets the initial fraction of nanoparticles grafted onto the polymer matrix. We 

thus used our M-gLSM framework to account for the effects of interactions of the 

electromagnetic wave and the gel composite filled with ferromagnetic nanoparticles and 

for the coupling between magnetic heating and mechanical response of the gel matrix. For 

simplicity here we considered only small cubic gel samples freely suspended within the 

solvent; these samples represent a fraction of the thin uniform gel layer. An initial 

temperature of the system sets the equilibrium degree of the gel swelling (in the absence 

of  an applied electromagnetic signal) and thereby sets the equilibrium dimensions of the 

sample [62]. 

 

3.3: The Relationship of Simulation Parameters to Experimental Values 

In the simulations below, we choose the reference parameters based on the 

following available experimental values. The reference parameters for the 
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nanoparticles are chosen for the single domain cobalt (Co) nanoparticles taking the 

saturation magnetization and the magnetocrystalline anisotropy as 𝑀𝑠 = 1.44 ×

106𝐴/𝑚 and 𝐾1 = 4.5 × 105𝐽/𝑚3, respectively[27]. Hence, we use the following 

reference values: 𝑤𝑚/2𝜋 = 𝛾𝜇0𝑀𝑠/2𝜋 (taking the gyromagnetic ratio as 2 ×

1011𝑟𝑎𝑑/𝑇𝑠 and the magnetic permeability of the vacuum as 𝜇0 ≈ 1.257 ×

10−6𝐻/𝑚 and 𝑤𝑟/2𝜋 = 𝑤𝑟
0/2𝜋 − 𝑤𝑚𝜓/2𝜋, where 𝑤𝑟

0/2𝜋 = 𝛾𝜇0/2𝜋(|𝑯𝑒𝑥 | +

(2𝐾1/𝜇0𝑀𝑠) − 𝑀𝑠/3)is independent on nanoparticles concentration). Taking 

μ0|𝑯𝑒𝑥 |=0.29T in the reference case, we set wr
0/2π=10GHz. Note, that in the absence 

of the external field (|𝑯𝑒𝑥| = 0), 𝑤𝑟
0/2𝜋 = 0.68 𝐺𝐻𝑧 (same as in Reference [27]). 

Below we also consider dynamics of composites filled with iron oxide 

nanoparticles (magnetite, or Fe3O4). For these composites, we set 𝑤𝑚/2𝜋 =

19.2 𝐺𝐻𝑧, 𝑀𝑠 = 4.8 × 105𝐴/𝑚 , and Ha=0 (see Reference [27]). In this case, we 

consider two values of the external field, μ0|𝑯𝑒𝑥 | = 0.3 𝑇 and μ0|𝑯𝑒𝑥 | = 0.5 𝑇, 

setting 𝑤𝑟
0/2𝜋 = 3.1𝐺𝐻𝑧 and 𝑤𝑟

0/2𝜋 = 9.6 𝐺𝐻𝑧 for these external fields, 

respectively.  

For the relative permittivity of a medium (PNIPAAm), we set  ε𝑒𝑓𝑓 = 70 

[63]. Notably, the variations in ε𝑒𝑓𝑓  remain small around the volume phase transition 

[63], so that these variations  could be neglected. The phenomenological damping 

coefficient α is measured experimentally and typically ranges[58] from 0.001 to 

0.05. Herein, following Reference [27], we set α=0.05. 
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For the properties of hydrogel matrix, we chose the volume fraction of 

polymer at preparation and the dimensionless crosslink density as  𝜑0 = 0.114 

and, 𝑐0𝑣0 = 7.2 × 10−14, respectively [9]. For the gel-solvent interaction parameter, 

we set χ1 = 0.518 and calculated χ0(𝑇) as specified above (Equation 3.6) using 

𝛿ℎ = −12.4 × 10−14 and 𝛿𝑠 = −4.7 × 10−16  for the variations in the enthalpy and 

entropy per monomeric unit of the network based on the respective experimental 

data for neutral PNIPAAm gels [9]. We then calculate an equilibrium degree of 

swelling at 𝑇𝑖𝑛𝑖 = 300𝐶 as 𝜆𝑖𝑛𝑖 = 1.079, and correspondingly, equilibrium polymer 

volume fraction, 𝜑𝑖𝑛𝑖 = 0.09. We set an initial volume fraction of nanoparticles as 

𝜓𝑖𝑛𝑖 = 𝜉𝑚𝜑𝑖𝑛𝑖  by choosing the 𝜉𝑚 = 0.1 in the reference case. Below, we also very 

(decrease) the initial volume fraction of the nanoparticles to probe the effects of their 

concentration on gels deformations driven by an application of an EM signal.  

Taking the dimensionless units of length in our simulations to be  𝐿0 = 7 ×

10−7𝑚, we can relate the initial dimensional thickness of the gel to the dimensional 

value of  𝑑0 = 𝑑𝑖𝑛𝑖𝐿0 ≈ 5.3microns, where 𝑑𝑖𝑛𝑖=(𝐿𝑧 − 1)𝜆𝑖𝑛𝑖  is the initial 

dimensionless thickness of the sample, with the sample size taken as 8×8×8. The 

characteristic time scale can be estimated as [64] 𝜏0 ≈ 𝑑0
2/𝐷, where 𝐷 is a collective 

diffusion coefficient for the polymer gel matrix. Choosing 𝐷 = 2 × 10−11 𝑚2/𝑠[64]  

and relating the dimensional characteristic relaxation time for this sample to the 

dimensionless relaxation time, which we calculate from the simulations as 𝜏 ≈ 4.0, 
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we estimate the characteristic time scale [65] as 𝑇0 =0.3s. The dimensionless 

angular frequency in the simulations below is scaled with 𝑊0 = 2𝜋 × 109𝐻𝑧.

Finally, to calculate the heating rate in Equation 3.23, we probe two values 

of the power density of the incident EM wave. For the majority of runs, we set 𝑃0 ≈

0.5 𝑘𝑊/𝑚2, which is twice lower than the value used in Reference [27] and lower 

than the power density of sunlight. This value, however, significantly exceeds power 

densities used in the wireless communication systems. In the separate simulation 

run, we also show that even using significantly lower power density, 𝑃0 ≈

10 𝑊/𝑚2, results in the same behaviour but correspondingly scaled with time. We 

have chosen this specific low value of the power density since this is the maximum 

power density for the millimeter-wave signals for frequencies between 6-100GHz 

required by the Federal Communication Commission (FCC)[66]. Finally, for 

simplicity, we use specific heat capacity of water, cp=4185.5J/(kg∙K); however, our 

additional simulations show that accounting for the contributions from both polymer 

and water to cp  as polymer volume fraction varies during phase transitions even 

further amplifies the heating rate. We take the density of the water-gel system as 

103kg/m3. 
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RESULTS AND DISCUSSION 

4.1 Dynamics of the Gel Composite Filled with Cobalt Nanoparticles 

 We now utilize the M-gLSM approach developed above to focus on the mechanical 

response of the gel composite under the influence of EM waves of different frequencies. 

Our first simulation run began with setting the external field of the electromagnet to 

μ0|𝑯𝑒𝑥|=0.3T , and applying an AC signal with three different frequencies (Figure 4.1a)

for a fixed duration of time (103 dimensionless time units, which is approximately equal to 

5 minutes with the above scaling). These three dimensionless frequencies (w=26.7, w=27.4, 

w=32.0) have been chosen to show the distinct changes in the system. Initially all the 

samples are identical, with the volume fractions of nanoparticles set to 𝜓 = 9 × 10−3. The 

snapshot (I) in Figure 4.1b shows the sample at the initial state; the colors in this figure 

represent different volume fractions of the polymer, φ, with the green corresponding to the 

lowest and the violet to the highest value of φ, respectively. For the applied dimensionless 

frequency w=32.0 and the time interval t=103, we observe nearly linear increase in the 

temperature (green line in Figure 4.1a). This correlates with the approximately constant 

value of the absorption coefficient, η, at this frequency (Figure 4.2a, green line), a small 

decrease in the sample thickness (green line in Figure 4.2b) and insignificant increase in 

the volume fraction of the nanoparticles (green line in Figure 4.2c). In this case, the 

response of gel-nanoparticle composite resembles, to some extent, the behavior of non- 

 

CHAPTER 4 
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Figure 4.1: a) The FMR heating of the composite with the initial concentration of Co 

nanoparticles set at 𝜓𝑖𝑛𝑖 = 9 × 10−3 under normalized frequencies of an EM wave as

given in the legend; b) Gel composites at different moments in time as marked with the 

corresponding symbols (I-VI) in a). The color here and in the following figures represents 

the volume fraction of the polymer, with the green corresponding to the lowest and the 

violet corresponding to the highest value of φ, respectively. 

a) 

b)
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deformable composites [27] under FMR heating with the small deviations caused by the 

shrinking of the composite. For the two other frequencies (w=26.7, w=27.4) of the EM 

wave chosen in Figure 4.1a, we observed, in time, a sharp increase in the heating rate 

(remaining two curves in Figure 4.2), resulting in non-linear increase in temperature; an 

abrupt temperature change occurs at an earlier time for w = 27.4 (red curve) than for w = 

26.7 (black curve). The snapshots in Figure 4.1b (I-IV) correspond to different times along 

the red curve in Figure 4.1a and clearly show that an application of the EM wave at this 

frequency results in the fastest shrinking of the sample. The three different frequencies 

considered here exhibit distinctly different rates of heating and, correspondingly, distinctly 

different degrees of swelling by the end of the simulation runs (at t = 103), as can be seen 

Figure 4.2: a) Absorption coefficient η as a function of time for the three normalized 

frequencies as given in the legend. b) Evolution of the thickness, d, for the simulation runs 

in a). c) The time evolution of the volume fraction of nanoparticles, ψ, for the same 

simulation runs. d) Schematic representation of the FMR heating in the gel composite. 

a) b) 

c) d) 
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by comparing the morphologies of the samples corresponding to the final snapshots in these 

simulations for the red, black, and green curves (see snapshots shown in Figures 4.1b IV, 

V and VI). 

To understand the physical origin of the behavior observed in Figure 4.1a, we now 

plot the polymer volume fraction, φ, for the same simulation runs (see Figure 4.3). The red 

(w=27.4) and black curves (w=26.7) in Figure 4.3 show a distinct increase in   at 

approximately t~500 and t~850 respectively (blue points). These two effective points show 

the identical pattern for the absorption coefficient and temperature, with the corresponding 

frequencies observed in Figure 4.2a and Figure 4.1a. However, at w=32.0 an increase in 

 remains low and approximately linear within the considered simulation time frame 

(green line in Figure 4.1a). It is essential to remember here that the concentration of 





Figure 4.3: The time evolution of the volume fraction of the polymer, φ, for the same 

simulation runs as shown in Figure 4.1a and 4.2. 
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nanoparticles, 𝜓, is proportional to the polymer volume fraction, , and NPs move together 

with the matrix as a gel shrinks. As was described in Chapter 4, the coeficient of 

proportionality ξm=0.1 relates these two parameters as 𝜓 =ξmφ. 

 In Figure 4.4a we plotted the data from the same simulations as in Figures. 4.1a 

4.2 and 4.3 but now we have calculated a corresponding degree of swelling λ(T) for each 

instant in time for all three cases (see Equation 3.7). The initial state of the sample is in 

swollen form (λ =1.08, green cubic sample). As expected for w=32.0 there was no 

significant change in volume, and the transition curve stopped not far from the original 

state (bold green dot). At frequency w=27.4 the sample underwent the complete phase 

transition (more than 60% of water was released) during the time period t = 103, reaching 

the shrunken state (violet cube).  The black curve (w=26.7) reaches the bold black dot in 

the center, which corresponds to the VPT point in Figure 4.4b.  From this we can say that 

an applied frequency defines the point on this curve that is reached during the fixed time 

interval. This plot illustrates that all the curves eventually will overlap, following the same 

volume phase transition curve if the radiation is held for a sufficient amount of time (the 

blue arrow shows the direction of time). Taking the first derivative of the complete 

transition curve (red one), we defined that the volume phase transition temperature is at 

33.450C (see Figure 4.4b), corresponding to the reported values in literature for the 

PNIPAAm hydrogel [67]. 

 After analyzing the above described physical processes in the composite, we 

returned to the description of the heating process in Figure 4.1a. The red curve exhibits a 
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Figure 4.4 a) The degree of swelling of the gel-based composite, λ, as a function of 

its temperature at three different normalized frequencies as given in the legend. The 

blue arrow shows the direction of time, and the green, black, and red filled circles mark 

the points on the volume phase transition curve that are reached at a given applied 

frequency (w=32.0, w=26.7, w=27.4, respectively) after the signal was applied for a 

fixed duration of time (t=103); b) The first derivative of the volume phase transition 

curve as a function of T. The position of critical point (green dot) is at 33.450C.

a) 

b)
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steep increase in temperature upon shrinking close to the VPT due to an increase in the 

NP’s concentration (as the gel samples continue to shrink, the nanoparticles draw closer to 

one another).  However, this increase becomes less pronounced (the slope of the curve 

drops, marked by the dashed grey line) with an even further increase in concentration of 

NPs. In other words, we observe an amplification of the heating rate upon an increase in 

nanoparticles’ concentration but only until this concentration reaches some critical value. 

This behaviour is clearly seen in corresponding time evolution plots of the absorption 

coefficient, η, (see red and black curves in Figure 4.2a) and the normalized value of η/d 

(see inset in Figure 4.5a).  

To further investigate the amplification of the heating rate, we plotted η/d (red dots 

in Figure 4.5a) as a function of nanoparticles’ concentration, 𝜓 (the evolution of  𝜓  during 

the same run is shown in Figure 4.2c, red curve). We note that η/d is more relevant in the 

characterization of the system’s behaviour, since η/d has only a weak dependence on  the 

thickness d, which could be neglected in the analysis, while η does depend on d strongly 

(see Figure 4.2a). As a result, η/d defines the heating rate (see Equation 3.23 above). The 

red dots in Figure 4.5a represent simulation data and the continuous black curve 

corresponds to the analytical expressions calculated using the above Equation 3.23 in the 

limiting cases, where d and 𝜓 are chosen manually rather than taken from the simulations 

during the volume phase transitions.  

An increase in the absorption coefficient with an increase in nanoparticles’ 

concentration is anticipated, hence the drop observed in η/d at relatively high values of 𝜓 

in Figure 4.5a appears somewhat counterintuitive. To understand the origin of this 
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Figure 4.5 a) Absorption coefficient normalized by the thickness of the gel (η/d) as a 

function of volume fraction of nanoparticles, 𝜓, for w=27.4. The red dots represent 

simulation data, and the continuous black curve corresponds to the analytical 

calculations. The inset shows η/d from the same simulation run as a function of time; 

b) Surface plot of η/d as a function of the incident normalized frequency, w, and

volume fraction of nanoparticles, 𝜓. The cross-section of the surface plot taken at

w=27.4 (marked by the yellow arrows) represents the solid black curve in Figure

4.5(a).

a) 

b)
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behavior, we represented η/d as a 3D surface plot (Figure 4.5b), as a function of the 

frequency of the applied signal, w, and NPs’ concentration, 𝜓, using the Equation 3.23. 

The resonance frequency is higher for the low concentrations of nanoparticles and linearly 

decreases with an increase in 𝜓 (the peak shifts to the left at higher 𝜓 in the three-

dimensional surface plot in Figure 4.5b. If we follow the maximum peak values of η/d 

along the surface plot in Figure 4.5b by changing the frequency of an incident EM signal, 

w, to stay at the resonance frequency at any given concentration of  𝜓, the highest 

absorption are observed at the critical value of 𝜓. In other words, the height of the peak in 

Figure 4.5b increases with the increase in 𝜓 with the corresponding variation in w to stay 

at the resonance frequency for each value of  𝜓. If, on the other hand, we fix the value of 

w (w is a constant) and follow the yellow arrow in Figure 4.5b, we find that the height of 

the peak first increases then decreases identically to the behavior observed in our 

simulations. The continuous black curve in Figure 4.5a represents the cross-section of the 

surface plot in Figure 4.5b taken at w=27.4 (analytical calculations); an overlap between 

the simulation results (red dots ) and an analytical curve (continuous black curve) confirms 

the numerical accuracy of the integrating electrodynamic equations (given in the section 

3.2) using M-gLSM.  

In the next simulation runs, we characterized the sample temperature, T, and the 

effect of mechanical feedback through its thickness, d, by applying alternating 

electromagnetic fields at a range of frequencies for the given   duration of time t=103. The 

blue curves in Figures 4.6a and 4.6b represent the final temperature and thickness of the 

sample for these frequencies at t=103, while black and red curves  
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Figure 4.6: a) Temperature as a function of an applied frequency, w, for the duration 

of FMR heating t= (black curve), (red curve) and  (blue curve). The 

images in the inset show composites at the time instances as marked by the arrows. b) 

The thickness of the sample as a function of an applied frequency, , for the 

simulation runs in a). 

 

a) 

b) 
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correspond to sample’s temperature at earlier times as shown in the legend. Note that at the 

frequency w = 27.4 selected in one of the examples in Figure 4.1a, the highest temperature 

is reached during this time interval. The temperature of the sample decreases with either 

an increase or a decrease in frequency with respect to the critical frequency at a given time, 

with the negligibly small heating for the frequencies significantly higher or lower than this 

value.   

 We underline the asymmetric nature of the bell-shaped curve in Figure 4.6a (blue 

curve), that can be inferred from Equation 3.15, which corresponds to the value of the 

resonance frequency, wc. As the system undergoes volume phase transition, an increase of 

the volume fraction of the nanoparticles (proportional to the volume fraction of the 

polymer) causes a decrease of the resonance frequency with time (see a surface plot in 

Figure 4.5b and Equation 3.15). Therefore, the resonance frequency, wc, is a variable and 

not a constant value, depending on the degree of swelling of the sample. Correspondingly, 

during early times, as long as shrinking is relatively insignificant (black curve in Figure 

4.6a), the bell-shaped curve is nearly symmetric.  The resonance frequency for this case 

(earlier times) is higher than that at later times. Notably, the sample’s temperature, 

measured at a given time, accounts for the contributions of the temperature increments 

during the entire heating process as the sample undergoes volume phase transition. 

Interestingly, our results show different feedback mechanisms in these composites. 

For a wide range of system parameters, positive feedback mechanism dominates: magnetic 

heating increases volume fraction of nanoparticles via gel shrinking, and this behavior, 

correspondingly, accelerates the rate of heat transfer in the gel-base composite. However, 
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a negative feedback mechanism also takes place: at some conditions, magnetic heating 

increases volume fraction of nanoparticles via gel shrinking beyond some peak value of 

 𝜓. The EM wave frequency in these cases is shifted significantly from the resonance 

frequency so that the further increase in 𝜓 leads to the decrease in the heating rate (Figure 

4.6).  

In the next series of simulations (Figure 4.7), we varied the initial volume fraction 

of nanoparticles from 4.5x10-3(red curve) to 6.3x10-3 (black curve) to 9x10-3 (blue curve, 

our reference case). The plot in Figure 4.7  shows that, as could be anticipated from 

Equation 3.15, the peak value in the sample’s temperature for the highest concentration of 

nanoparticles, 𝜓, (blue curve), is located at the lowest frequency (compared to that for the 

remaining values of  NPs concentrations). The asymmetry of the bell-shaped curves can 

Figure 4.7:  The temperature of the composite as a function of an applied frequency, 

w, for the dimensionless duration of FMR heating (t= ) at different initial volume 

fractions of nanoparticles:  𝜓𝑖𝑛𝑖 = 9 × 10−3  (blue curve), 6.3×10-3 (black curve), and

4.5×10-3 (red curve). The images in the inset show the composites at the frequency 

w=27.4.  
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again be understood from Equation 3.15 that allows us to determine the apparent critical 

frequency. Note the existence of a range of frequencies at which an application of a signal 

for this time interval shows distinctly different sample temperatures for different initial 

concentrations of nanoparticles (one such example is indicated by vertical red dashed line 

at 𝑤 = 27.4 in Figure 4.7). However, at certain values of applied w, the heating and, 

correspondingly, the mechanical response would be similar for the samples with different 

volume fractions of nanoparticles (see nearly overlapping regions on the blue and black 

curves, highlighted in grey dashed oval in Figure 4.7). The nonlinear effects discussed 

above are the cause of these closely matching responses for different samples. 

In the next series of simulations we examined the thermomechanical properties of 

the composite that has confined boundaries, comparing it with the reference (free) case. 

Under the same conditions, the magnetic heating, and, as a result, the rate of the heat 

transfer, is more pronounced for the free case (blue curve) than for the confined (black 

curve with green dots in Figure 4.8). This could be explained based on the fact that the 

movement of polymer chains are restrained and the volume fraction of NPs doesn’t change 

significantly. Consequently, the chain conformation is unable to make a large-scale elastic 

deformation. However, magnetic heating raises the temperature of the composite 

approximately to 370C. The insets represent the volume fraction of the composite at 

maximum absorption (resonance condition); confined composite is identical to the initial 

state of the reference sample (see Figure 4.1) and the response of this systems closely 

resemble the response of the non-elastic composite (paraffin film with magnetic 

nanoparticles). 
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Figure 4.8: Temperature as a function of applied frequency, w, of the confined 

composite (black curve with green dots) and the composite of the free boundaries (blue 

curve) under the same conditions: concentration of nanoparticles (𝜓 = 9 × 10−3), the 

strength of the applied signal (𝑃0 = 0.5 𝑘𝑊/𝑚2), and the dimensionless irradiation

time (t=103). 
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Figure 4.9: a) The FMR heating at the reduced power density, corresponding to P0
∗=9.988

W/m2. The rest of the simulation parameters are the same as in Figure 4.1a (red curve). b) 

Both curves (the red curve in Figure 4.1a and the curve in a) overlap if the time in a) is 

scaled by P0/P0
∗=51.81, where P0=517.50 W/m2 (the reference value of the power density

in our system). The inset shows the same scaling for these two values of P0 for the degree 

of swelling λ as a function of temperature. The red curves represent the simulation data of 

the reference case, and the blue dotted curves corresponds to the data in a) with the time 

scaled by P0/P0
∗.

a) 

b)
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In the last series of simulations for the composite filled with cobalt NPs we studied 

the FMR heating at the reduced power density, corresponding to P0
∗ ≈ 10 W/m2. The rest

of the parameters are the same as in the simulations run, shown in Figure 4.1a (the red 

curve). As shown in the Figure 4.9a, the system takes a relatively longer time to reach the 

exact heating effect (~440C) as at the power density P0 ≈ 0.5 kW/m2 (the reference value

in our system).  Figure 4.9b demonstrates that for the same two runs, both curves (blue 

curve in Figure 4.1a and the curve in 4.9a) overlap if the time in 4.9a is scaled by P0/P0
∗,

since the heating rate is proportional to the power density. The inset shows the same scaling 

for these two values of P0 for the degree of swelling λ as a function of temperature. Here, 

the red curves correspond to the simulation in Figure 4.1a, and the blue dotted curves 

represent the data in the Figure 4.9a with the time scaled by P0/P0
∗.

4.2: Dynamics of Gel Composite Filled with the Fe3O4 Nanoparticles 

As was described in Chapter 2, superparamagnetic nanoparticles Fe3O4 have gained 

extensive attention because of their relevance for many applications, such as a contrast 

agent in Magnetic Resonance Imaging (MRI), drug delivery, hypothermia treatment, and 

magnetic recording [68]. Because magnetite nanoparticles are found in living organisms, 

they are considered biocompatible and environmentally friendly. The well-studied example 

is magnetotatic bacteria that synthesizes nanosized magnetic granules (magnetosomes) 

[69], which function as tiny compasses that allow bacteria to migrate along earth field lines. 

Nanosized magnets have also been found in other living beings: some birds, insects and 

fish [70]. 
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In the above chapter we already demonstrated the sufficient heat generation by the 

cobalt nanoparticles that results in a significant deformation of the gel matrix. Then we 

compared the results of the FMR heating with the one for Fe3O4 nanoparticles at the same 

conditions. In Figure 4.10a, we focused on the response of the composite with the fixed 

initial concentration of nanoparticles (9x10-3) placed into the external fields of 

0 0.3Tex H (black curve) and 0 0.5Tex H (blue curve). The remaining modeling 

parameters are provided in section 3.3 above. As can be anticipated from Equation 3.15, 

the resonance frequency is shifted towards the right in a higher external field.  Again, 

similar to the simulations shown in Figure 4.6a, we kept the AC EM signal on for the same 

duration of time (103 dimensionless units, corresponding to 5 minutes with the scaling 

given in section 4.2). The heating rate in these iron oxide nanoparticles, however, is 

significantly lower [27] than in Co nanoparticles. Hence, our simulations show that this 

time interval is not sufficient to drive the sample through the volume phase transitions (the 

VPT of our PNIPAAm gel is at T=33.450C (see Figure 4.4b), and heating from Fe3O4

nanoparticles reached T=33.190C,). We also note the symmetry of the bell-shaped curves 

in Figure 4.10a: again, this is due to the relatively small degree of shrinking of the sample 

and, correspondingly, small increases in nanoparticles’ volume fractions. Upon an 

application of the EM signal during the double time interval (the red line in Figure 4.10b), 

the sample undergoes volume phase transitions and the asymmetry of the bell-shaped curve 

becomes apparent with the resonance frequency  
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Figure 4.10: a) The temperature of the PNIPAAm-Fe3O4 composite as a function of 

an applied frequency, w, for the dimensionless time of FMR heating (t=103) at a 

volume fractions of nanoparticles  𝜓𝑖𝑛𝑖 = 9 × 10−3  and at μ0|𝐇ex|=0.3T (black

curve) and μ0|𝐇ex|=0.5T (blue curve). b) The temperature as a function of an applied

frequency, , for the dimensionless time of heating t=103 (blue curve) and a t=2 x 

103 (red curve) at μ0|𝐇ex|=0.3T. The inset: the black circle on the black curve

represents the degree of swelling at the corresponding resonance frequency (w = 9.3) 

at the time t=103, and the red circle on the red curve corresponds to the degree of 

swelling at the resonance frequency (w = 9.16) at the time t=2×103. 

a) 

b)
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shifted to the left as in the previous scenario with Co nanoparticles. These results show that 

the observed behavior is robust and is observed for various types of nanoparticles. 

In conclusion, we observed a more pronounced heating effect (as a result of shrinking) of 

the composite filled with cobalt NPs than of the composite filled with Fe3O4 NPs; the 

significant difference between these two performances could be explained from the 

magnetic properties of the cobalt NPs (high saturation magnetization and anisotropy).  
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CHAPTER 5 

5.1 CONCLUSIONS 

The objective of this study was to investigate the influence of FMR heating on the 

magnetic gel composite via theoretical and computational modeling. For this, we 

performed the following steps: 1) we proposed a model that accounts for the dynamic 

coupling between the elastodynamics of polymer gel and an FMR heating of magnetic 

nanoparticles; 2) through simulations we probed the system’s behavior under the different 

conditions; 3) we evaluated and analyzed data. 

In our work we focused on thermo-responsive hydrogel filled with uniformly 

dispersed magnetic nanoparticles that are covalently bonded or trapped within the polymer 

matrix. To model this system, we used an already-existing gLSM framework that captures 

gel elastodynamics [32]. We expanded it to account for the FMR heating [27] of the gel 

composite; we now refer to this model as M-gLSM model. During the application of the 

EM irradiation, the size of the sample and the volume fraction of the nanoparticles vary 

with time as the sample shrinks due to the heating; correspondingly, the heating rate as 

well as magnetic permeability changes dynamically, which is accounted for in our model.  

Our results demonstrate that the heating rate is highly selective to the frequency of 

the incident EM signal and is nonlinearly coupled with the gel’s elastodynamics. We 

observed a large-scale deformation of these gel composites in response to the relatively 

small variation of an applied EM signal within the GHz frequencies range.   The resonance 

frequency, wc, in our system depends on the type and concentrations of nanoparticles and 
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is a variable and not a constant value. This can clearly be seen in our results, when at the 

early stages of the FMR heating, the sample’s temperature as a function of an incident 

frequency is a nearly symmetric bell-shaped curve with the maximum at a resonance 

frequency. At later times, however, as the shrinking of the sample becomes more 

pronounced, the resonance frequency shifts towards the lower values, so that the bell-

shaped curve with the maximum at a resonance frequency becomes asymmetric. 

Two distinct feedback mechanisms (positive and negative) are observed in these 

composites. For a set of parameters, positive feedback mechanism dominates: magnetic 

heating increases volume fraction of nanoparticles via gel shrinking, correspondingly 

increasing the heating rate. However, a negative feedback mechanism is also observed 

when magnetic heating increases the volume fraction of nanoparticles via gel shrinking 

beyond a critical value of volume fraction of nanoparticles (peak in Figure 5.5b), lowering 

the resonance frequency to achieve the maximum heating rate. Furthermore, one can tailor 

the system’s response by varying either initial volume fraction of nanoparticles, a 

magnitude of the external bias field, or a frequency of the applied signal. We showed that 

varying initial volume fraction of nanoparticles results in distinctly different magnitude of 

the mechanical response of the composite. 

In this study we considered two types of magnetic nanoparticles uniformly 

embedded into the polymer matrix: cobalt and iron oxide (magnetite) nanoparticles. 

Magnetite nanoparticles have a number of advantages because they are inexpensive, 

biocompatible, and have a good colloidal stability [38]; these nanoparticles are widely used 
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in different applications from MRI imaging to magnetic recording [68]. Cobalt NPs have 

high magnetization and hence generate heat efficiently [27]. 

We have shown that the main features of the system’s mechanical response (high 

selectivity to the frequency of the applied signal and a shift towards lower values of 

resonance frequencies as the gel undergoes VPT) remain qualitatively the same for both 

types of nanoparticles, while the actual magnitude of the observed heating effect depend 

strongly on the chemical nature of the nanoparticles. Another method to tailor the 

composite’s response is by varying a chemical nature of nanoparticles or by using a mixture 

of magnetic nanoparticles. Furthermore, while in our studies we chose PNIPAAm gels as 

a reference system, we expect that similar mechanical response will be observed for a range 

of thermoresponsive hydrogels [71] loaded with magnetic nanoparticles, for example for 

Poloxamer hydrogels. Poloxamer (commercial name Pluronics) is a tri-block copolymer, 

having a lower critical solution temperature (LCST) that depends on molecular weight and 

the ratio between these copolymers [3]. One of the main advantages of this hydrogel is the 

possibility to achieve any transition point (even the same as PNIPAAm) by varying the 

concentration of poloxamer and other excipients. 

In summary, our results show that the interactions of an electromagnetic wave with 

the magnetic gel composites drive the volume phase transitions and result in large-scale 

mechanical responses of the samples for a range of applied frequencies and over a range 

of timescales. This response depends on the initial concentration of nanoparticles and their 

chemical nature and can be regulated dynamically by changing the intensity of the incident 

radiation, the irradiation time, or an external bias field. We demonstrated that these 
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composites exhibit high selectivity to the frequency of the incident EM signal. Our results 

suggest a new approach to encourage the design of active gel-based composites that could 

be used in a range of soft actuators remotely controlled by the low power EM signals within 

the GHz frequency range.  
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5.2: FUTURE WORK 

In the above studies, we focused our attention on the small cubic samples; 

this geometry represents an ideal reference case for the studies of coupling between 

mechanical feedback and selective FMR heating in these composites. The developed 

M-gLSM framework readily allows one to account for the magnetic heating and

non-uniform deformations of the spatially extended samples, and this is one of the 

objective of the future studies. In addition, the following corrections and improvements 

can be made to our magneto-elastic model to be able to capture wider range of system 

parameters: 

 Introduce and estimate the required cooling of the system, so that these hydrogels could

exhibit reversible thermo-responsive behavior.

 Investigate how different types and sizes of nanoparticles will affect the surface

topology of the hydrogel.

 Account for the contributions from the dielectric losses for spatially extended samples,

so it would be possible to capture the EM heating for a range of composites beyond the

conditions considered in the above simulations.

Therefore, taking into account the above concepts could yield results that might 

lead to an even better understanding of the control of the heating rate in similar hydrogel-

based systems. 



51 

REFERENCES 

1. Chen, J.K. and C.J. Chang, Fabrications and Applications of Stimulus-Responsive Polymer
Films and Patterns on Surfaces: A Review. Materials (Basel), 2014. 7(2): p. 805-875.

2. Memic, A., et al., Hydrogels 2.0: improved properties with nanomaterial composites for
biomedical applications. Biomed Mater, 2015. 11(1): p. 014104.

3. Jalili, N.A., M. Muscarello, and A.K. Gaharwar, Nanoengineered thermoresponsive
magnetic hydrogels for biomedical applications. Bioengineering & Translational
Medicine, 2016. 1(3): p. 297-305.

4. Meenach, S.A., et al., Biocompatibility analysis of magnetic hydrogel nanocomposites
based on poly(N-isopropylacrylamide) and iron oxide. J Biomed Mater Res A, 2009.
91(3): p. 903-9.

5. Satarkar, N.S. and J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled
pulsatile drug release. J Control Release, 2008. 130(3): p. 246-51.

6. Sun, Y., et al., Highly magnetic sensitivity of polymer nanocomposite hydrogels based on
magnetic nanoparticles. Composites Science and Technology, 2017. 141: p. 40-47.

7. Philippova, O., et al., Magnetic polymer beads: Recent trends and developments in
synthetic design and applications. European Polymer Journal, 2011. 47(4): p. 542-559.

8. Palak P. Parikh, S.M., IEEE, Mitalkumar. G. Kanabar, , Opportunities and Challenges of
Wireless Communication Technologies for Smart Grid Applications 2010.

9. Hirotsu, S., Softening of bulk modulus and negative Poisson’s ratio near the volume
phase transition of polymer gels. The Journal of Chemical Physics, 1991. 94(5): p. 3949-
3957.

10. Weeber, R., et al., Polymer architecture of magnetic gels: a review. J Phys Condens
Matter, 2018. 30(6): p. 063002.

11. Silva, V.A.J., et al., Synthesis and characterization of Fe3O4 nanoparticles coated with
fucan polysaccharides. Journal of Magnetism and Magnetic Materials, 2013. 343: p. 138-
143.

12. Kita, E., et al., Ferromagnetic nanoparticles for magnetic hyperthermia and
thermoablation therapy. Journal of Physics D: Applied Physics, 2010. 43(47).

13. Campbell, S., D. Maitland, and T. Hoare, Enhanced Pulsatile Drug Release from Injectable
Magnetic Hydrogels with Embedded Thermosensitive Microgels. ACS Macro Letters,
2015. 4(3): p. 312-316.

14. Campbell, S.B., M. Patenaude, and T. Hoare, Injectable superparamagnets: highly elastic
and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle
(SPION) composite hydrogels. Biomacromolecules, 2013. 14(3): p. 644-53.

15. Reyes-Ortega, F., et al., Magnetic Nanoparticles Coated with a Thermosensitive Polymer
with Hyperthermia Properties. Polymers, 2017. 10(1).

16. Seki, A., et al., Study of the heating characteristics and mechanisms of magnetic
nanoparticles over a wide range of frequencies and amplitudes of an alternating
magnetic field. Journal of Physics: Conference Series, 2014. 521.

17. Tong, S., et al., Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles. ACS Nano,
2017. 11(7): p. 6808-6816.



52 

18. Kolhatkar, A.G., et al., Tuning the magnetic properties of nanoparticles. Int J Mol Sci, 
2013. 14(8): p. 15977-6009.

19. Pearce, J., et al., Magnetic Heating of Nanoparticles: The Importance of Particle 
Clustering to Achieve Therapeutic Temperatures. J Nanotechnol Eng Med, 2013. 4(1): p. 
110071-1100714.

20. Häring, M., et al., Magnetic Gel Composites for Hyperthermia Cancer Therapy. Gels, 
2015. 1(2): p. 135-161.

21. Zhang, Z.Q. and S.C. Song, Thermosensitive/superparamagnetic iron oxide nanoparticle-
loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials, 2016. 
106: p. 13-23.

22. Lin, X., R. Huang, and M. Ulbricht, Novel magneto-responsive membrane for remote 
control switchable molecular sieving. J. Mater. Chem. B, 2016. 4(5): p. 867-879.

23. Ang, K.L., S. Venkatraman, and R.V. Ramanujan, Magnetic PNIPA hydrogels for 
hyperthermia applications in cancer therapy. Materials Science and Engineering: C, 
2007. 27(3): p. 347-351.

24. Jaiswal, M.K., et al., Thermal behavior of magnetically modalized poly(N-
isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf B Biointerfaces, 2010. 
81(1): p. 185-94.

25. R. Herna´ndez, † J. Sacrista´n,† L. Ası´n,‡,§ T. E. Torres,‡,§ M. R. Ibarra,‡,§ G. F. Goya,‡,§ 
and and C. Mijangos†, Magnetic Hydrogels Derived from Polysaccharides with Improved 

Specific Power Absorption: Potential Devices for Remotely Triggered Drug Delivery. 
Journal of Physical Chemistry, 2010. 114: p. 12002–12007.

26. Gilbert, T.L., Classics in Magnetics A Phenomenological Theory of Damping in 
Ferromagnetic Materials. IEEE Transactions on Magnetics, 2004. 40(6): p. 3443-3449.

27. Gu, Y. and K.G. Kornev, Magnonics: Selective heat production in nanocomposites with 
different magnetic nanoparticles. Journal of Applied Physics, 2016. 119(9): p. 095106.

28. Arbe, A., et al., Dielectric Susceptibility of Liquid Water: Microscopic Insights from 
Coherent and Incoherent Neutron Scattering. Phys Rev Lett, 2016. 117(18): p. 185501.

29. Pearce, J.A., et al., FEM numerical model study of heating in magnetic nanoparticles. 
Proc SPIE Int Soc Opt Eng, 2011. 7901.

30. John A. Pearce, J.R.C., Stanislav Y. Emelianov, Ferrimagnetic Nanoparticles enhance 
microwave heating for tumor. IEEE, 2010.

31. Landau, L.D. and E.M. Lifshitz, Electrodynamics of continuous media. 2nd ed. 1984, 
Oxford, New York,: Pergamon Press. 417 p.

32. Kuksenok, O., V.V. Yashin, and A.C. Balazs, Three-dimensional model for 
chemoresponsive polymer gels undergoing the Belousov-Zhabotinsky reaction. Phys Rev 
E Stat Nonlin Soft Matter Phys, 2008. 78(4 Pt 1): p. 041406.

33. Suzuki, A. and T. Tanaka, Phase-Transition in Polymer Gels Induced by Visible-Light. 
Nature, 1990. 346(6282): p. 345-347.

34. Guimaraes, A.P., Principles of Nanomagnetism. Springer Heidelberg Dordrecht London 
New York, 2009.

35. Fermon, C. and M.V. Voorde, Nanomagnetism. Applications and perspectives. Wiley-
VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany, 2017. 



53 

36. Feynmam, R., The Feynman Lectures on Physics Vol II,Ch.34: The Magnetism of Matter.
2006.

37. Coey, J.M.D., Magnetizm and magnetic materials. (Cambridge University
Press,Cambridge), 2010.

38. Obaidat, I.M., B. Issa, and Y. Haik, Magnetic Properties of Magnetic Nanoparticles for
Efficient Hyperthermia. Nanomaterials (Basel), 2015. 5(1): p. 63-89.

39. Akbarzadeh, A., M. Samiei, and S. Davaran, Magnetic nanoparticles: preparation,
physical properties, and applications in biomedicine. Nanoscale Res Lett, 2012. 7(1): p.
144.

40. Kudr, J., et al., Magnetic Nanoparticles: From Design and Synthesis to Real World
Applications. Nanomaterials (Basel), 2017. 7(9).

41. William D. Callister, J., Materials Science and Engineering. An Introduction. Book. 2007.
42. Figueroa, A.I., Magnetic nanoparticles. A Study by Synchrotron Radiation and RF

Transverse Susceptibility. Springer, 2014.
43. B.D.Cullity and C.D.Graham, Introduction to Magnetic Materials, 2nd ed,. ( IEEE/Wiley,

Hoboken, NJ, 2009).
44. Palihawadana-Arachchige, M., et al., Gd-Doped Superparamagnetic Magnetite

Nanoparticles for Potential Cancer Theranostics, in Nanostructured Materials -
Fabrication to Applications. 2017.

45. Effect of Chemical Crosslinking on Properties of Polymer Microbeads: A Review. Canadian
Chemical Transactions, 2016: p. 473-485.

46. Ajay Vidyasagar, Jaroslaw Majewski, and R. Toomey, Temperature Induced Volume-
Phase Transitions in Surface-Tethered Poly(N-isopropylacrylamide) Networks.
Macromolecules, 2008(41): p. 919-924.

47. Yashin, V.V. and A.C. Balazs, Theoretical and computational modeling of self-oscillating
polymer gels. J Chem Phys, 2007. 126(12): p. 124707.

48. Yashin, V.V., O. Kuksenok, and A.C. Balazs, Modeling autonomously oscillating chemo-
responsive gels. Progress in Polymer Science, 2010. 35(1-2): p. 155-173.

49. Yoshida, R., Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel
smart materials. Adv Mater, 2010. 22(31): p. 3463-83.

50. Chen, I.C., et al., Shape- and size-dependent patterns in self-oscillating polymer gels. Soft
Matter, 2011. 7(7).

51. Kuksenok, O., et al., Exploiting gradients in cross-link density to control the bending and
self-propelled motion of active gels. Journal of Materials Chemistry, 2011. 21(23).

52. Ryo Yoshida, et al., In-Phase Synchronization of Chemical and Mechanical Oscillations in
Self-Oscillating Gels. Journal of Physical Chemistry A, 2000(104): p. 7549-7555.

53. Yuan, P., et al., UV patternable thin film chemistry for shape and functionally versatile
self-oscillating gels. Soft Matter, 2013. 9(4): p. 1231-1243.

54. Hill, T.L., An Introduction to Statistical Thermodynamics. 1960, Reading, MA: Addison-
Weley.

55. Atkin, R.J. and N. Fox, An Introduction to the Theory of Elasticity. 1980, New York:
Longman.

56. Onuki, A., Theory of Phase-Transition in Polymer Gels. Advances in Polymer Science,
1993. 109: p. 63-121.



54 
 

57. Chikazumi, S.O. and C.D. Graham, Physics of Ferromagnetism. (Oxford University Press, 
Oxford; New York), 2009. 2nd ed. 

58. Thirion, C., W. Wernsdorfer, and D. Mailly, Switching of magnetization by nonlinear 
resonance studied in single nanoparticles. Nat Mater, 2003. 2(8): p. 524-7. 

59. Petryayeva, E. and U.J. Krull, Localized surface plasmon resonance: nanostructures, 
bioassays and biosensing--a review. Anal Chim Acta, 2011. 706(1): p. 8-24. 

60. Griffiths, D.J., Introduction to Electrodynamics. 2013(Fourth eddition). 
61. Luiza de Castro Folgueras*, M.A.A., Mirabel Cerqueira Rezende, Dielectric Properties of 

Microwave Absorbing Sheets Produced with Silicone and Polyaniline. Materials Research, 
2010: p. 197-201. 

62. Kuksenok, O., V.V. Yashin, and A.C. Balazs, Three-dimensional model for 
chemoresponsive polymer gels undergoing the Belousov-Zhabotinsky reaction. Physical 
Review E, 2008. 78(4): p. 041406.1-041406.16. 

63. Su, W.J., et al., Dielectric relaxations of poly(N-isopropylacrylamide) microgels near the 
volume phase transition temperature: impact of cross-linking density distribution on the 
volume phase transition. Soft Matter, 2014. 10(43): p. 8711-8723. 

64. Hirose, H. and M. Shibayama, Kinetics of volume phase transition in poly(N-
isopropylacrylamide-co-acrylic acid) gels. Macromolecules, 1998. 31(16): p. 5336-5342. 

65. He, X.M., et al., Synthetic homeostatic materials with chemo-mechano-chemical self-
regulation. Nature, 2012. 487(7406): p. 214-218. 

66. Wu, T., T.S. Rappaport, and C.M. Collins, The Human Body and Millimeter-Wave Wireless 
Communication Systems: Interactions and Implications. IEEE International Conference 
on Communications (ICC), 2015. 

67. Kim, D., et al., Programmable Volume Phase Transition of Hydrogels Achieved by Large 
Thermal Hysteresis for Static-Motion Bilayer Actuators. Chemistry of Materials, 2016. 
28(23): p. 8807-8814. 

68. Nemala, H., et al., Investigation of magnetic properties of Fe3O4 nanoparticles using 
temperature dependent magnetic hyperthermia in ferrofluids. Journal of Applied 
Physics, 2014. 116(3): p. 034309. 

69. Lang, C., D. Schuler, and D. Faivre, Synthesis of magnetite nanoparticles for bio- and 
nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. 
Macromol Biosci, 2007. 7(2): p. 144-51. 

70. Guimaraes, A.P., Nanoscience and technology. Principles of nanomagnetism. Springer 
Heidelberg Dordrecht London New York, 2009. 

71. Jassal, M., A.K. Agrawal, and N.S. Save, Thermoresponsive Smart Textile. Indian Journal 
of Fibre Textile research, 2006. 31: p. 52-65. 

 


	Clemson University
	TigerPrints
	8-2018

	Modeling Dynamics of Gel-Based Composites Under Ferromagnetic Resonance Heating
	Oksana Savchak
	Recommended Citation


	tmp.1537543592.pdf.YUerZ

