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Cytoplasmic dynein binding, run 
length, and velocity are guided 
by long-range electrostatic 
interactions
Lin Li, Joshua Alper & Emil Alexov

Dyneins are important molecular motors involved in many essential biological processes, including 
cargo transport along microtubules, mitosis, and in cilia. Dynein motility involves the coupling of 
microtubule binding and unbinding to a change in the configuration of the linker domain induced by 
ATP hydrolysis, which occur some 25 nm apart. This leaves the accuracy of dynein stepping relatively 
inaccurate and susceptible to thermal noise. Using multi-scale modeling with a computational focusing 
technique, we demonstrate that the microtubule forms an electrostatic funnel that guides the dynein’s 
microtubule binding domain (MTBD) as it finally docks to the precise, keyed binding location on the 
microtubule. Furthermore, we demonstrate that electrostatic component of the MTBD’s binding free 
energy is linearly correlated with the velocity and run length of dynein, and we use this linearity to 
predict the effect of mutating each glutamic and aspartic acid located in MTBD domain to alanine. 
Lastly, we show that the binding of dynein to the microtubule is associated with conformational 
changes involving several helices, and we localize flexible hinge points within the stalk helices. Taken 
all together, we demonstrate that long range electrostatic interactions bring a level of precision to an 
otherwise noisy dynein stepping process.

Dynein1,2 is a family of microtubule associated motor proteins consisting of 1–3 heavy chains (>​500 kDa) and 
multiple associated light and intermediate chains3. There are two primary subfamilies of dyneins: axonemal 
dyneins produce the forces that make eukaryotic cilia and flagella beat4 and cytoplasmic dyneins produce various 
movements within cells, including vesicle and organelle transport5, mitotic spindle formation6 and oscillation7, 
chromosome segregation8, and intraflagellar transport9. Dysfunctions in dynein lead to multiple debilitating 
human diseases, including ciliopathies10, lissencephaly11,12 and other neurodegeneration disorders13–15, and they 
can be coopted by viruses during infection1.

Cytoplasmic dynein (hereafter, all references to dynein specifically refer to cytoplasmic dynein) contains a 
homodimer of heavy-chains. Dynein heavy-chains, in turn, consist of several structural domains16: a tail domain 
that is responsible for dimerization and binds cargo as well as light and intermediate chains17; a linker domain that 
reorients during dynein’s powerstroke18; six AAA+​ (ATPases Associated with diverse cellular Activities) domains 
that hydrolyze ATP to generate force and drive dynein’s motility19; an approximately 15 nm long (as measured 
from PDB ID 4RH7) coiled coil stalk comprised of coiled coil 1 (CC1) and coiled coil 2 (CC2) that emerges from 
AAA4 and terminates in the microtubule-binding domain (MTBD)20; the MTBD, also called the stalkhead21, that 
binds to microtubules in an ATP dependent manner5,7,20; a strut (or buttress) domain that emerges from AAA5 
and interacts with the stalk22,23; and a C-terminus that regulates motility24. All domains after the tail domain col-
lectively form a ~380 kDa minimal motor domain25–27.

Dynein moves processively along microtubules in a predominantly minus-end directed manner, as deter-
mined by the interaction between the MTBD and the microtubule7. Dynein moves by hydrolyzing ATP at the 
primary catalytic site in AAA1 and converting the released energy into a complex sequence of coordinated con-
formational changes16,28,29. This involves both the coupling of MTBD binding and unbinding to ATP hydroly-
sis and the binding of the MTBD to precise locations at the interface between α​-tubulin and β​-tubulin on the 
microtubule lattice. The coupling between MTBD binding and unbinding to ATP hydrolysis, which occur some 
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25 nm apart, is thought to be mediated by intramolecular signaling: a re-registration of the coiled coil stalk2 
transmits information about the hydrolysis state of the nucleotide bound to AAA1, probably through an AAA3 
ATP-dependent manner4, to the MTBD, and causes a switching of microtubule affinity2,5. The MTBD of dynein 
is in a high-affinity microtubule binding state in the α​ registry and a low-affinity microtubule binding state in 
the β+ registry2,5. Reflexively, re-registration of the stalk upon binding to the microtubule also has been shown to 
regulate the ATP hydrolysis rate at the AAA1 domain6. Binding of the MTBD to precise locations at the interface 
between α​-tubulin and β​-tubulin on the lattice, spaced approximately 8 nm longitudinally and 6 nm laterally, 
requires either extremely precise coordination of ATP hydrolysis and the induced conformational changes or 
some other mechanism to guide the MTBD binding to the correct binding location. The role of charge interac-
tions to these processes is not fully understood.

Mechanisms for how structural differences between the high-affinity and low-affinity MTBD conformations 
regulate the MTBD-microtubule affinity have recently been proposed based on structural models, molecular 
dynamics (MD) simulations, and biophysical characterizations of wild-type and mutant proteins. Both intramo-
lecular5 (within the MTBD itself) and intermolecular (between the MTBD and the microtubule)30,31 salt bridges 
were proposed to be critical to dynein-microtubule interaction. Specifically, K3298 on H1 of the mouse MTBD 
was suggested to form a salt bridge that dynamically alternated between E3289 on dynein’s CC1 and glutamic 
acids on β​-tubulin in the microtubule when the MTBD was in the high-affinity conformation5. Mutating E3289 
to a lysine, which was suggested to bias the interaction toward forming a salt bridge with the glutamic acids on 
β​-tubulin, decreased dynein’s speed and increased its run length5. Similarly, R3382 on H6 of the mouse MTBD 
was suggested to form a salt bridge that switched from E3387 on H6 of the MTBD to glutamic acids on α​-tubulin 
in the microtubule when the MTBD switched from the low-affinity to the high-affinity conformation5. Mutating 
E3378 to a lysine, which was suggested to bias the interaction toward forming a salt bridge with the glutamic 
acids on α​-tubulin, again, decreased dynein’s speed and increased its run length5. It was also suggested that yeast 
α​-tubulin’s R403A interacts with E3390 in H1 of the Dictyostelium MTBD and α​-tubulin’s E416A interacts with 
R3469 in H6 and K3472 in the H6-CC2 loop of the MTBD30. Mutating E415, D417, and E421 in α​-tubulin to 
alanine, a neutral residue, reduced dynein’s run length30. Finally, a series of 22 charged amino acids were mutated 
to alanine on the Dictyostelium MTBD32. Of the 22 substitutions made, only 6 showed no measurable effect, while 
one enhanced binding, 11 decreased binding, and 4 slowed nucleotide-stimulated release, further suggesting 
the possible importance of electrostatics on dynein-microtubule affinity32. Together, these studies make it clear 
that the mechanism of MTBD binding to the microtubule is critical to determining the biophysical properties of 
dynein. However, it remains unclear how charge interactions directly relate to these properties.

To further understand the role of electrostatics, one could employ atomistic computer modeling. However, 
the long timescale of stepping events (10s of ms) and the size of the dynein (about 30 nm) and microtubule  
(>​100 nm) system make it impossible to perform an all-atom molecular dynamic simulation. A commonly used 
strategy to analyze such large systems is to carry out simulations on a small part, or simplified version, of the full 
system. For example, a recent study showed how conformational changes in the neck linker of kinesin-1 leads 
to stepping on several tubulin dimers with coarse-grained simulations33, and another work used a kinesin and 
several tubulin dimers in Brownian motion dynamics simulations34. Other strategies that have been used are sim-
plified structure models, in which each residue was represented by two beads35, and a normal mode analysis with 
discrete molecular dynamics36 that were applied to the investigation of dynein’s stepping mechanism. Similarly, an 
interpolated elastic network model was used to investigate the mechanism of dynein’s conformational changes37 
in the motor domain. Together, these coarse-grained models suggest that minor conformational changes induced 
by the hydrolysis of ATP in AAA1 are amplified by the motor domain, resulting in dynein’s stepping. However, it 
remains unclear how these conformational changes can result is precise positioning of the MTBD on the micro-
tubule lattice.

Here we address these issues by quantifying the electrostatic component of binding free energy38 using a 
recently developed multi-scale simulation package (MSSP)39 from the DelPhi distribution40–45. We use the 
MSSP to overcome the challenges of studying a large system without sacrificing the accuracy of atomic models. 
Specifically, we quantify the driving force that precisely positions the MTBD domain on the microtubule and 
relate the binding affinity to the measured run lengths and velocities of cytoplasmic dynein. We use this relation 
to predict the effect of mutating each glutamic and aspartic acid within the MTBD domain to alanine on the 
above properties.

Results
Dynein and the microtubule have electrostatically complementary binding interfaces.  We 
calculated the pKa of the tubulin-MTBD complex using the DelPhi-pKa webserver (see Methods)42,46 to inves-
tigate the electrostatic features of dynein and tubulin. We found that the tubulin dimer has a net charge of −​16 
at pH =​ 7, similar to what was previously reported47. We additionally found that the MTBD structure we used, 
which includes the segments of CC1 and CC2 within PDBID 3J1T and 3J1U, is neutral42,46.

We calculated the electrostatic potentials of the MTBD and tubulins separately and mapped them onto the 
surfaces of the tubulin-MTBD structure (Fig. 1 and Supplementary Movie 1). We found that the dynein binding 
interface on tubulin is strongly negatively charged (Fig. 1a,d). At first, it appears that this negative interface does 
not strongly influence dynein binding because the MTBD domain is net neutral. However, the charge distribution 
on the MTBD structure is not homogeneous (Fig. 1b,c), and we found that the binding interface of the MTBD 
exhibits a strong positive potential in both the high- and low-affinity conformations (Fig. 1e,f). Thus, electrostatic 
potential is complementary for both the high- and low-affinity conformations. The affinity difference between the 
high- and low-affinity conformations is likely to be due to the local interactions: several hydrogen bonds and salt 
bridges5 that make the high-affinity conformation to bind stronger to the microtubule.
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Binding free energy and forces guide dynein-microtubule recognition.  We calculated the electro-
static component of the MTBD-microtubule binding free energy with MSSP (see Methods) to address the role 
of the electrostatics in tubulin-MTBD recognition. We found that the binding pocket has an asymmetric shape 
(Fig. 2a). The asymmetrical nature of the pocket not only guides precise MTBD positioning, but also it likely 
orients the MTBD with respect to microtubule, which contributes to the minus-end directed nature of dynein 
motility39.

Figure 1.  Electrostatic potential mapped onto the MTBD and tubulin dimer. (a,d) show the side view and the 
top view of the electrostatic potential distribution on the surface of tubulin, respectively (filled space, red =​ negative, 
blue =​ positive). (b,c) show the side view of the electrostatic potential distribution on the microtubule binding 
interface of the low- and high-affinity MTBD structures, respectively. (e,f) show the bottom view of the electrostatic 
potential distribution on the microtubule binding interface of the low- and high-affinity MTBD structures, 
respectively. In (a,d) the MTBD (cyan ribbon structure) and in (b,c,e,f) the tubulins (α​-tubulin, orange ribbon 
structure and β​-tubulin, yellow ribbon structure) are shown for reference, although the potentials are calculated 
without them.

Figure 2.  Electrostatic binding energy map of the low-affinity MTBD structure and microtubule. (a) 2D 
representation of the binding energy map in the vicinity of a single tubulin dimer on the microtubule. The 
reported binding energy (color map) is the binding energy of the most favorable orientation at that particular 
location for the MTBD on the microtubule surface (see Methods). The magnitude of the binding energy is 
shown with blue indicating the most and red indicating the least favorable binding energy. (b) Detail of the 
entrance to the binding funnel in a 3D representation using the color map from a. and plotting the magnitude of 
the binding energy in the vertical axis.
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Achieving precision binding to the microtubule would be difficult for dynein if performed without a fine 
guidance mechanism. To probe whether such guidance exists, we plotted the electrostatic component of the bind-
ing free energy in 3D (Fig. 2b). We found a binding free energy funnel that guides the MTBD into the binding 
pocket on the microtubule, represented by the deep blue valley (Fig. 2b). The entrance to the binding funnel is 
approximately 30 Å wide, and the binding funnel is steep. Thus, once the ATP-stimulated conformational changes 
in dynein’s motor domain position the MTBD within the proximity of the binding pocket (±​15 Å offset and 20 Å 
above the microtubule surface), electrostatics will provide precision guidance as it docks into its final, favorable 
position and orientation within the binding pocket.

Note that we performed these calculations on the low-affinity MTBD conformation, which is thought to be the 
conformational state of the MTBD as it approaches the microtubule30.

To further elucidate the role of electrostatics in dynein-microtubule recognition, we investigated the elec-
trostatic field distribution (see Methods) between the MTBD and microtubule (Fig. 3a), separated by a distance 
of 20 Å. We calculating the total electrostatic force (see Methods) between the MTBD and α​- and β​-tubulin as a 
function of the distance between MTBD and microtubule (Fig. 3c). Note that the zero distance point corresponds 
to crystallographic position, and the distance represents a translation of the MTBD with respect to tubulins 
(Fig. 3b). We found that these are long-range forces, providing non-negligible guidance even at 20 Å distance.

We estimated the work needed to detach the MTBD from the tubulin using the calculated forces as a func-
tion of the distance. We calculated the area below the force-distance curves (Fig. 3c), assuming a small angle 
between the force and displacement. Thus, by equating work and energy, the energy of separating the MTBD and 
α​-tubulin is 50 pN·nm (or 12 kT); and the energy of separating MTBD and beta tubulin is 55 pN·nm (or 13 kT). 
Therefore, the work needed to detach the MTBD from tubulin is estimated to be 25 kT, which agrees with the 
energy calculations (Fig. 4). Note that the assumption of a small angle between the force and the displacement of 
MTBD-tubulins causes an overestimate of the work, thus the actual energy could be less than 25 kT.

Dynein run length and velocity are linearly related to the electrostatic component of the bind-
ing energy.  We investigated the relationship between the electrostatic binding energy and the velocity and 
run length for the wild type and 4 mutants (E3289Q, E3289K, E3378Q, and E3378K) of the Mus musculus cyto-
plasmic dynein. The mutations are all of charged residues within the MTBD and they are remote from the binding 
interface5. We used an in silico mutant preparation to make the mutants (see Methods) and calculated the elec-
trostatic binding energy (see Methods) for 50 representative structures of the tubulin-MTBD dimer complexes 
obtained from MD simulations (see Methods). We compared the results of the electrostatic binding energy cal-
culations with experimentally measured biophysical quantities (velocity and run length) and performed a least 
squares linear regression on the data (Fig. 4, Table 1).

We found a strong linear relationship between the electrostatic binding energy and both velocity and run 
length (Fig. 4 and Table 1) for these MTBDs: the larger the effect of long-range electrostatic interactions between 
the MTBD and the microtubule on binding energy, the slower a dynein moves and the farther it walks before 
falling off the microtubule.

The electrostatic component of the binding affinity is linearly correlated with the run length and velocity over 
a −​15 to −​35 kT electrostatic binding energy range for the high-affinity conformation and over a −​5 to −​25 kT  
electrostatic binding energy range for the low-affinity conformation. We expect this linear relation to hold for 
other mutations that result in an electrostatic binding energy within this range. Therefore, we made in silico 

Figure 3.  Electrostatic forces between tubulin and the MTBD. (a) Electrostatic field lines around and between 
the MTBD and tubulin dimer calculated with the MTBD separated from tubulin by 20 Å. Proteins are shown as 
space filling, and the red color indicates negative polarity and the blue color indicates positive polarity. The white 
arrows, Fα and Fβ, indicate the total electrostatic forces between the MTBD and the α​- and β​-tubulin, respectively. 
(b) Diagram of the distance between the MTBD (blue) and tubulin (orange and yellow), which is varied from 
4 to 20 Å with respect to original crystallographic position of MTBD on microtubule. (c) The magnitude of the 
electrostatic forces between α​-tubulin and the MTBD (circles, red) and β​-tubulin and the MTBD (triangles, blue) 
as a function of the distance between the MTBD the tubulin.
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mutations to all the glutamic and aspartic acids within the MTBD domain remote from the binding interface and 
predicted their effect on run length and velocity (Fig. 4 and Table 2). We found that that calculated electrostatic 
component of the binding energy for all mutants was within the linear range for both the high- and low-affinity 
structures.

Dynamic salt bridges do not appear to regulate dynein-microtubule affinity.  We used the MD 
simulation trajectories to investigate the previously suggested potential dynamic salt bridges made between lysine 
and arginine residues and E3289 and E3378, respectively, within the MTBD5. Using the standard salt bridge 
threshold of 4 Å for the distance between oxygen and nitrogen atoms48, we found that neither K3298 and E3289 
nor K3298 and E420 on β​-tubulin form salt bridges (Supplementary Fig. s1). Changes in the conformational from 
the crystal structure, which occur during the MD simulation, result in both an elongation of CC1 and an increase 
in the distance between H1 in the MTBD and β​-tubulin, preventing these salt bridges (Supplementary Fig. s1). 

Figure 4.  The relationship between electrostatic binding energy and velocity and run length for both high-
and low-affinity configurations. In each panel, the mean calculated electrostatic binding energy is plotted as 
a function of the mean velocity and run length of the respective mutant (five red circles; n =​ 50 representative 
structures; error bars represent the standard error of mean; blue dash line is the least square regression linear 
fit to the five red circles). Eight additional charged residues were mutated in silico to Ala (Methods), and their 
corresponding binding energies were calculated and plotted to predict the mean velocity and run length of the 
respective mutant (black triangles; error bars represent the standard error of mean).

Slope Intercept Correlation coefficient (R)

High-affinity, velocity 0.36 kT s/nm −​52 kT 0.91

High-affinity, run length −​1.2 kT/μ​m −​16 kT −​0.87

Low-affinity, velocity 0.35 kT s/nm −​43 kT 0.90

Low-affinity, run length −​1.2 kT/μ​m −​8.3 kT −​0.88

Table 1.   Linear regression results (electrostatic binding energy = slope (velocity OR run length) + intercept).
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Additionally, we found no salt bridge between the K3382 and E3378 because K3382 is always attracted by a group 
of three negatively charged residues (E414, E417, and E420) on α​-tubulin; in most structures, K3382 formed salt 
bridges with either E417 or E420 on α​-tubulin (Supplementary Fig. s1).

The hinge-bending of stalk helices.  Recent work on a Dictyostelium discoideum cytoplasmic dynein 
found that the coiled coil stalk helices undergo hinge-like bending as dynein walks along microtubule, and it 
suggested that the hinge occurs at two highly-conserved proline residues (P3371 and P3496) within the stalk 
helices21. Here we investigate whether this suggestion holds for Mus musculus cytoplasmic dynein, which also has 
two proline residues (P3286 and P3409 on CC1 and CC2, respectively) near the MTBD. Using HingeDetector, a 
novel VMD49 software tool that we designed for this purpose (see Methods), we analyzed the conformations of 
25,000 structures taken from our MD simulations. We found that the largest standard deviation in the segment 
angle was associated with residues E3278 and R3411 on coiled coil stalk helix CC1 and CC2, respectively (Fig. 5). 
The R3411 is only 2 residues away from P3409, and therefore the hinge may be partially attributed to P3409 as 
was previously suggested21. However, the other hinge point, at E3278, is not associated with any neighboring pro-
line. These results suggest that the hinge in CC1 was induced by the hinge in CC2 via inter-helical interactions. 
That E3278 and R3411 are the hinge points holds for both the high- and low-affinity structures, but the hinge is 
more flexible in the high-affinity structure (Fig. 5). This suggests that the hinge, which was clearly observed in 
the microtubule bound state21, is activated by the changes associated with the switch from the low-affinity to the 
high-affinity conformation of the coiled coil stalk.

Mutations

Electrostatic 
binding energy 
(high-affinity) 

(kT)

Electrostatic 
binding energy 
(low-affinity) 

(kT)

Velocity predicted 
from high-affinity 

calculations 
(nm/s)

Velocity predicted 
from low-affinity 

calculations 
(nm/s)

Run length 
predicted from 

high-affinity 
calculations (μ​m)

Run length 
predicted from 

low-affinity 
calculations (μ​m)

Velocity averaged 
from high-and 

low-affinity 
calculations 

(nm/s)

Run length 
averaged from 

high-and 
low-affinity 
calculations 

(nm/s)

D3332A −​23 −​15 78 80 6.4 5.6 79 6.0

D3359A −​20 −​13 86 86 3.8 3.9 86 3.9

E3320A −​24 −​15 77 81 6.7 5.6 79 6.1

E3328A −​22 −​14 82 82 5.2 5.1 82 5.1

E3343A −​23 −​16 79 76 6.1 6.8 78 6.4

E3356A −​21 −​13 85 85 4.3 4.3 85 4.3

E3363A −​21 −​13 86 85 4.0 4.1 86 4.0

E3402A −​17 −​9.1 97 97 0.60 0.70 97 0.65

Table 2.   Predicted velocities and run lengths for investigated mutations.

Figure 5.  HingeDetector identified E3278 and R3411 as the hinge points in the coiled coil stalk in mouse 
cytoplasmic dynein. The deviation of angle is the standard deviation of the segment-angles as calculated for all 
structures in the 5 ns of simulations calculated. The first 10 and last 10 residues of the structure cannot be taken 
into account, because the segment length was selected to be 10 residues long.
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Discussion
In this work, we further clarified the role of electrostatics in dynein-microtubule recognition. The first key finding 
is the existence of an electrostatic funnel that guides the MTBD to the final binding spot on the microtubule. This 
provides insight into the accuracy of the conformational changes triggered by ATP hydrolysis and the walking 
process of dynein along microtubule (Fig. 6). The coiled-coil stalk (shown in green in Fig. 6) amplifies the confor-
mational changes of the linker (shown in purple in Fig. 6) and moves the MTBD toward its next binding site as 
dynein steps7. Dynein is not an accurate stepper. It randomly takes off-axis and non-alternating steps50,51, which 
is likely due to errors both in the motion of the linker domain and due to thermal fluctuations that are amplified 
by the long coiled coil stalk. Our calculations show that electrostatic interactions provide precise guidance to the 
MTBD in the final stages of a step as it docks to the biding site once it is in the proximity of the binding pocket. 
Additionally, the asymmetry in the shape of the binding pocket on the microtubule and in the charge distribution 
on the MTBD help to orient the dynein to the microtubule, effectively keying its binding orientation and con-
tributing to its directional bias. This electrostatic field mechanism makes the stepping process robust and enables 
dynein to overcome its otherwise inaccurate tendencies. (Supplementary Movie 2 and Fig. 6).

The second key finding is that the magnitude of the electrostatic component of the binding energy is linearly 
correlated with dynein’s run length and velocity. We showed how stronger binding energies, which lead to a more 
stable complex, result in a lower velocity and longer run length of dynein. This is reasonable from physical intu-
ition: it is difficult to walk quickly on a sticky road because the sticky surface slows down the steps, but it is also 
more difficult to fall off it. We used this correlation to predict the effect of glutamic and aspartic acid mutations 
to alanine on the run length and velocity of cytoplasmic dyneins. It should be pointed out that in the limits of 
very strong binding (dynein firmly attached to microtubule) and very weak binding (dynein almost not bound to 
microtubule) this is not expected to hold.

In the process of making these two key discoveries, we were able to shed additional light on a couple pre-
vious observations. First, we note that there are significant differences between salt bridge observations of our 
work and a previous study5. These are likely to be due to differences between the constraints applied to the MD 
simulations in the studies5. In our simulation, the entire MTBD structure, except 4 bonds we introduced on the 
coiled coil stalk (see Methods), is set free without any constraints. In the previous study5, additional constraints 
were applied by their cryo-EM density maps. Our constraints both let the MTBD sample more conformations 
and make it less compact. These effects allowed us to explore additional conformational space in the context of 
the tubulin-MTBD complex, and we found that this additional flexibility precluded some previously hypothe-
sized dynamic salt bridges. Additionally, it suggests that the observed effects of the mutations on dynein motility 
are primarily governed by differences in long-range electrostatic interactions. Second, we developed a new tool, 
the HingeDetector, which we used to identify the hinge bending point on the stalk helices. We showed that the 
hinge bending points are not necessarily associated with prolines, as it was suggested in case of Dictyostelium’s 
tubulin-MTBD complex21, but are the result of the presence of neighboring proline and inter-helical interactions.

Taken all together, we demonstrate that long range electrostatic interactions bring a level of precision to an 
otherwise noisy dynein stepping process. While it is likely that certain salt-bridges at the interface between the 
microtubule and the MTBD may regulate affinity once docked, when the residues are close enough to form these 
bridges, there is a considerable contribution made by long-range electrostatic interactions getting the MTBD 
close enough in the first place to make these bonds. And these effects are sufficient to explain much of variability 
in velocity and run length when mutations are made to charged AAs in the MTBD.

Methods
Structure preparation.  Tubulin-MTBD complex structures.  The tubulin-MTBD complex structures used 
in the MD simulations and for placing the MTBD onto a large-scale model of microtubule were Bos taurus tubu-
lin and Mus musculus cytoplasmic dynein. The specific MTBD structures used were a low-affinity conformation 
(PDB ID 3J1U) and a high-affinity conformation (3J1T)5 (Fig. 7a). The high- and low-affinity MTBD structures 
are quite similar, with the largest difference observed at the tubulin-MTBD binding interface.

Figure 6.  Illustration of the interplay between ATP-hydrolysis induced conformational changes and role of 
electrostatic forces in dynein’s stepping. For simplicity, this figure only shows two states of a dynein monomer 
during the stepping process. In the stepping process, electrostatic forces play important role in the final 
alignment of the MTBD binding as it docks to the correct binding position.
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Microtubule structure.  A large piece of microtubule structure was generated and used in the MSSP to calculate 
the long-range electrostatic potential, field, and binding energy of the MTBD-microtubule complex. Rotation 
and translation matrices (PDB ID 3J2U)52 were used to model a 16-dimer long segment of a microtubule (total 
length =​ 1280 Å and diameter =​ 300 Å; Fig. 7b,c). The tubulin-MTBD complex structures (above) were aligned 
to the microtubule structure to determine the binding position of each MTBD configuration on a microtubule 
(Fig. 7c). The tubulin structure used for this alignment was taken from a higher resolution crystal structure (PDB 
ID 1JFF)53.

Electrostatic potential, binding energy, and field line calculations.  The 3D distribution of the elec-
trostatic potential was modeled with DelPhi40–45,54, which calculates the electrostatic potential by solving the 
Poisson-Boltzmann equation (PBE). The parameters used in the calculations were: the scale, which was set at a 
resolution of 2 grid/Å; the perfil (percentage of the protein that occupies the grid box), which was set at 70; the 
reference dielectric constants, which were set at 2 for the protein and 80 for the water. The boundary condition 
used was the “dipole boundary condition” and the force field parameters were taken from CHARMM55. The 
salt concentration was set at zero to avoid any possible ambiguity due to the explicit ion binding effect, which is 
expected to occur in such highly charged systems56. The calculated electrostatic potential was used to generate 
electrostatic field lines (using VMD49) and to calculate the electrostatic component of the binding energy of 
the MTBD to the tubulin. Note that when we present the charge complementarity between the MTBD and the 
microtubule (Figs 3, 5 and 6), we only consider the tubulin-MTBD complex so that the rest of the microtubule 

Figure 7.  Structures and sampling strategy used in MSSP computations. (a) Structure of the tubulin-MTBD 
complex, consisting of an α​-tubulin (orange), a β​-tubulin (yellow), and either a low-affinity MTBD (blue) or 
a high-affinity MTBD (pink). (b) Cross-sectional view of the microtubule structure. (c) The side view of the 
microtubule structure with MTBDs on the top. (d) Multiple MTBD positions (various colors) with respect 
to the microtubule. For clarity, only a fraction of the generated positions is shown. The blue arrows indicate 
that the MTBD position was varied within a ±​ 20 Å window along the microtubule, up to 20 Å above the 
microtubule surface, and within a ±​ 12 degree window around to the microtubule.
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would not obscure the key details. However, the binding energy profile (Fig. 2) was calculated using the entire 
microtubule and MTBD.

Based on the electrostatic potential obtained by solving the PBE, the corresponding electrostatic energies 
(Coulombic and reaction field energies) were calculated as previously described57). The electrostatic component 
of binding energy was calculated as in equation (1):

∆ = − −G G G G (1)complex tubulin MTBD

where Δ​G is the electrostatic component of binding energy of the tubulin-MTBD complex; Gcomplex is the electro-
static energy of the complex; Gtubulin is the electrostatic energy of the tubulin structure; and GMTBD is the electro-
static energy of MTBD structure.

Binding energy profile generation by MSSP.  A multi-scale simulation package (MSSP) was used to 
generate the binding energy profile of the MTBD-microtubule complex, as was previously described and used 
to model kinesin binding to a microtubule39,45. Briefly, three steps were taken to generate the binding energy 
profile in the MSSP: 1) the sampling module used cylindrical sampling to generate an ensemble of MTBD posi-
tions around a piece of the microtubule (Fig. 7d) with steps of 0.5 Å in the longitudinal and normal directions, 
and steps of 0.5 degrees around the microtubule. In addition, the MTBD was to sample possible orientations as 
9 rotamers were generated to model the possible orientations of the MTBD at each position by searching in the 
Euler space39. The generated orientations do not explore the full Euler space because the MTBD’s binding inter-
face is constrained to face the microtubule and the coiled-coil stalk is constrained to point to the water phase by 
the rest of the dynein structure. In total, 80 ×​48 ×​40 ×​ 9 =​ 1,382,400 MTBD positions were generated by the sam-
pling module. 2) The energy module calculated the binding energy for each pre-generated position of the MTBD. 
Since the MSSP utilized a rigid body protocol, i.e. the MTBD and microtubule structures were unchanged, there 
was no need to calculate mechanical energy. Thus, the binding energy in MSSP was composed of the electrostatic 
and van der Waals energies only. The electrostatic energy was calculated with a computational focusing method, 
which significantly saves on calculation time while taking into account the entire microtubule39,42. 3) The energy 
module collected the binding energies for all the sampled positions of the MTBD and converted the binding ener-
gies from a 4-dimensional array into a 2-dimensional binding energy profile map to reduce the complexity and 
allow for visualization. For each MTBD position along and around the microtubule, the binding energy that was 
recorded and visualized corresponded to the normal position and angular orientation with the lowest binding 
energy because this represents the highest probability normal position and angular orientation.

Molecular dynamics simulations.  Molecular dynamic (MD) simulations were performed on the high-and 
low-affinity tubulin-MTBD conformations, not the microtubule model because of its large size, using NAMD58. 
The tubulin-MTBD complex represents a small fraction of entire dynein-microtubule complex. Therefore, neither 
the MTBD nor the tubulin are independent of the rest of the dynein or microtubule structures. To account for 
this, the tubulin residues that are not at the tubulin-MTBD interface (those residues >​10 Å from any atoms on 
MTBD, Supplementary Fig. s2) were constrained using a harmonic constraint energy function with a scaling fac-
tor of 1.0. Additionally, four bonds with spring constants of 100 kcal/mol/Å2, which is the approximate strength 
of a C-C bond, were added to the coiled-coil stalk of dynein to mimic the stabilization imparted by the missing 
part of the full dynein structure (Supplementary Fig. s2). These extra bonds were added to the Cα atoms of residue 
pairs of Q3265-N3424, I3269-A3421, Q3273-L3419, and V3276-L3414. All other residues were unconstrained in 
the MD simulations. The MD simulations were carried out for 5 nanoseconds, and the structures at the end of the 
5 nanosecond simulations were used as high-and low-affinity reference structures. For computations that require 
multiple representative structures, another 5 nanoseconds of simulation were carried out, and snap-shots were 
selected every 0.1 nanoseconds.

In silico mutant preparation.  Mutations within the high- and low-affinity reference structures and cor-
responding snapshots, obtained above, were generated using profix59. No attempt was made to relax the mutant 
structures to emphasize the role of electrostatics and minimize the effect of structural changes on the binding 
energy calculations. This was done because all mutation sites are away from the binding interface, suggesting that 
the major differences in the calculated binding energies between mutants and wild type are expected to be elec-
trostatic. The electrostatic component of the binding energy for each mutant structure was calculated by DelPhi, 
and the results were averaged over 50 snapshots.

Hinge bending localization.  A hinge detection tool, HingeDetector, was developed and presented here to 
identify the hinge residues in a MD simulation trajectory. For each structure in the trajectory, HingeDetector cal-
culates the angle, called the segment angle, between two vectors: vector one is defined by the line between the Cα 
atom of residue i and the Cα atom of residue i-10, and vector two is defined the line between the Cα atom of resi-
due i and the Cα atom of residue i +​ 10 (Fig. 8). Note that multiple window lengths were explored, but the 10 resi-
due window optimized the detection of global changes involving large structural segments. Then, HingeDetector 
calculates the standard deviation of the segment angle for position i based on provided snapshots and moves to 
the next position, i +​ 1. The greater the standard deviation, the more flexible are the structural segments asso-
ciated with position i, therefore the residue with the highest deviation in segment angle is identified as a hinge 
point. This HingeDetector tool is designed as a tool in VMD49, and it is available on our website60. Alternatively, 
one can use the recently developed multiscale method to detect hinge points61.
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Electrostatic force calculations and evaluation of the work needed to detach MTBD from tubulin.  
Delphi was used to calculate the total electrostatic force between the MTBD and the tubulins using the FRC mod-
ule62. The MTBD was provided as an FRC file, and the charges of all MTBD atoms were turned off. Then, DelPhi 
calculated the electric field generated by tubulins at the positions of each atom in the MTBD. The electric field 
acting on each MTBD atom was multiplied by the corresponding charge of that atom, which resulted in the force 
on each MTBD atom. The total force on the MTBD was calculated by summing the forces on all of the MTBD 
atoms. This process was repeated for normal displacements of the MTBD up to 20 Å from the bound position in 
2 Å increments. The forces were numerically integrated over the increasing distance between the MTBD and the 
tubulins to calculate the work needed to detach the MTBD from tubulin.
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