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Abstract 
Simplified part positioning in manufacturing has been achieved using pushing or tapping actuation in place of 
more complex pick-and-place systems. However, positioning by impact introduces a new source of 
uncertainty: interfacial frictional effects of sliding, which can result in an uncontrollable and often poorly-
predictable actuation distance. The described work provides a friction-based dynamic model of the sliding 
distance after impact that is used to predict static friction characteristics. A prototype system is simulated and 
validation data used to improve the model. A control algorithm is also described, tested and validated over a 
range of actuated masses.  
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1 INTRODUCTION 
Motion control of frictional systems has been extensively 
studied due to inherent difficulties of completely modeling 
and compensating for nonlinear frictional effects.  Such 
effects include description of force in the transition region 
from static to nonzero velocity (stiction), hysteresis or 
directionality of friction forces, and time- and position- 
dependence of static friction effects.  Poor modeling of 
such effects in motion systems can lead to limit cycling 
behavior, whereby desired system state is continually 
overshot without convergence. 
A number of friction models and compensation schemes 
have been developed to describe these effects in the 
context of positioning.  It is important to understand that 
friction is a time-varying phenomenon, and can change 
dramatically within a system through wear or introduction 
of contaminants. It is therefore desirable not only to 
provide an accurate control model, but also to 
continuously quantify the parameter(s) of the friction 
model through a system identification scheme.  A result of 
this identification is the ability to track frictional state with 
time and derive process knowledge from this information. 
This work presents implementation of a real-time friction 
identification scheme for sliding in an impact-based 
positioning system, and an optimal state estimation 
scheme for tracking friction in time and material domains 
to provide additional process diagnostic knowledge.  
Subtle changes in friction can be detected and fed back to 
the machine controller to provide additional process 
knowledge.  Simulated case studies are presented. 

2 SMART MACHINING 
The concept of smart machining incorporates the need for 
system intelligence to improve reliability as applied to 
both output variance consistency and equipment health.  
Sensor information is used to model unobservable 
parameters, and subsequently detect changes to predict 
and improve cycle performance or long-term operational 
dependability.  This identification and tracking is 
envisioned to occur in real-time, rather than by post-
process discrete part evaluation as in traditional quality 
control methods. 

One instance of parameter modeling and identification is 
in friction model classification, where parameters cannot 
be directly measured, and are typically time-variant.  
Examples of sensing and derived friction identification 
appear in the literature [1], [2].  However, these typically 
require additional sensing capability or have not been 
directly applied to manufacturing systems.  In this work, 
we describe friction identification using single axis force 
and positioning sensing, and demonstrate it in a pertinent 
manufacturing application - positioning by sliding. 

3 IMPULSIVE ACTUATION 

3.1 Motivation 
The majority of precision positioning of workpieces in 
manufacturing is accomplished by robotic pick-and-place 
equipment, positioning stage tables, or by manual human 
actuation.  Each of these methods requires either high 
capital investment or high operating cost, resulting in a 
high specific positioning cost (cost per part positioned).  
An alternative method explored in the past 2 decades is 
positioning by sliding a workpiece using a single lateral 
force with position and force feedback.  This method 
results in less expensive positioning, and can achieve 
accuracy comparable to robotic methods if friction is well 
understood.  Positioning by sliding was dynamically 
evaluated by Peshkin [3], and constraints and stability 
quantified by Lynch et al. [4], [5]. 
An aspect of friction knowledge for the positioning system 
is accurate quantification of friction model parameters.  A 
number of friction models have been proposed in the 
literature and are comprehensively surveyed by both 
Olsson et. al. [6] and Åström [7].  Additionally, friction 
models departing from classical models have been 
proposed by Canudas de Wit [8] and most recently by 
Makkar [9].   
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In this work, we use a classical piecewise model of the 
form  
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where F(v) is the force required to maintain a constant 
velocity, Fe is the static actuation force and FS = µsmg is 
the static friction breakaway force.  F(v) is modeled as  

 C k N vF F k vμ= +  (2) 

where FC is the dynamic friction force, µk is the dynamic 
friction coefficient, FN is the normal force and kv is the 
proportionally constant of force resistant to velocity.  
Simultaneous identification of µk and kv through 
decrement analysis has previously been treated by Feeny 
and Liang [10].  In this work the objective is to simply 
predict the static friction parameter µs. 

3.2 Impulse Planning 
A one-dimensional model of the impulsive system with 
friction is shown in Figure 1, with friction simulated by (1). 

 
Figure 1 - Idealized Impulsive System Model 

The governing system equation is given by 
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and is solved using a modified Euler numeric scheme.  
Parameters of the prototype system are determined and 
validated through experimental testing. 

3.3 Derived Parameters 
Simulated position and force response plots of constant-
velocity actuation are shown in Figure 2 and Figure 3 
respectively. 
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Figure 2 - Simulated Position Response, m=18.9 kg, 

v=3000 mm/min 
 

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00

0 0.05 0.1 0.15 0.2

Time [s]

Fo
rc

e 
[N

]

Peak Force

 
Figure 3 - Simulated Force Response, m=18.9 kg, 

v=3000 mm/min 
For each plot, a characteristic dimension is defined, which 
is to be used in the subsequent friction predictor model.  
Free-sliding distance d is defined for position response as 
the distance the part travels from loss of contact with the 
actuator until coming to a stop under the influence of 
friction.  For force response, the peak force Fp is defined 
as the maximum force observed over the actuation. 

4 FRICTION PREDICTION 

4.1 Approach 

The peak force and free-sliding distance are dynamically 
modeled across a range of friction parameters and 
velocities as shown in Figure 4. 
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Figure 4 - Friction-Based Curve Families by (a) Peak 
Force and (b) Free-Sliding Distance 



These models are inverted and fit through a least-squares 
technique to a static friction coefficient first-order predictor 
function in actuation velocity v and peak force Fp 
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and a second-order predictor in actuation velocity v and 
free-sliding distance d 
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The models are combined through a gradient-weighted 
estimator of the form 
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which gives higher weight to the predictor with greater 
model sensitivity to changes in the friction parameter. 

4.2 Results 
Friction identification results are determined for a range of 
actuation velocities of an 18.9-kg turned steel part sliding 
on carbide.  The gradient-weighted combined estimator 
(6) is found to give an average error of 3.6% at velocities 
above 3000 mm/min.  

5 REAL-TIME SYSTEM IDENTIFICATION 
Given the result of the described friction estimation 
scheme, it is next undertaken to implement it in a real-
time actuation system, and to track frictional behavior of 
the system in time and material domains. 

5.1 Implementation 
The described method is implemented on the prototype 
system shown in Figure 5. 

 
Figure 5 - Friction Measurement Test Setup  

The system hardware consists of a linear actuator with 
precision positional and force feedback.  The force is 
sampled using a filed-programmable gate array (FPGA), 
which allows high achievable sampling rate (up to 1 MHz), 
and subsequently more data for modeling.  Data 
acquisition for force is implemented on the FPGA board, 
and used to identify the static friction parameter in real 
time by the foregoing scheme. 

6 FRICTIONAL DIAGNOSTICS 
Real-time identification of sliding friction is important for 
maintaining the accuracy of sliding control systems in 
positioning.  However, it also enables a new domain of 
process characterization – frictional diagnostics.  The 
frictional state of a sliding system can be tracked and 

estimated in different domains to identify gradual or 
event-based changes in state. 
Two main sources of change in frictional systems are 
degradation with time and influence of material transport 
across system boundaries.  Abrasive or contamination-
based wear can be considered a time-dependent 
phenomenon, while transport effects are strictly material-
based.  These effects can be separated and tracked in 
multiple domains to identify sources of change. 
These effects are simulated with Gaussian-distributed 
noise to represent uncertainty in the friction estimation 
scheme.  The true friction of the process is estimated 
using a variance-based optimal estimator. 

6.1 Optimal Estimation of Frictional State 
Friction prediction using a simplified estimator is 
inherently subject to variability which must be accounted 
for in estimating the true frictional state of the machine.  
One estimation technique that is shown to be optimal for 
systems with Gaussian-distributed disturbance is the 
Kalman filter [11].  This technique accounts for both true 
process fluctuation and inherent error in measurement. 

6.2 Friction Identification with Time 
Tracking and estimating friction in the time domain allows 
identification of long-term effects on machine surfaces.  
Phenomena that are essentially independent of material 
effects, such as contamination, wear or machine element 
degradation can be identified and potentially 
compensated for over long term operation in order to 
remove cycle variability induced by variation in friction 
over time.   
A simulation of friction identification data and the optimally 
estimated state using Kalman filtration for a system 
undergoing continuous wear is shown in Figure 6. 

 
Figure 6 - Simulation of System Degradation Effect on 

Friction Model Parameter 
The system can be seen to change over time by the 
optimal estimator.  Such a change can be continually 
compensated in a positioning system through motion 
controller modifications.  Alternatively, the wear state can 
be monitored and an alarm actuated above a threshold 
limit. 

6.3 Friction Identification with Material Batch 
With additional data on material changes (batch or 
material type), material-specific frictional effects can be 
separated and identified.  In Figure 7, simulation shows a 
detectable system state change with a coincident material 
batch change. 



 
Figure 7 - Simulation of Friction Estimation Process Shift 

with Material Change 
Such state shift can be automatically detected and 
compensated to provide identical system output for 
varying material batches. 

6.4 Friction Identification over Machine Cycle 
In addition to long-term frictional variation, the friction 
during a single machine cycle can be identified quasi-
continuously using high rate sampling and real-time 
estimation.  This allows for establishing a frictional 
signature of machine operation over the course of a 
single cycle as simulated in Figure 8.   

 
Figure 8 - Simulation of Friction Signature Showing 

Deviant Cycle 
Variation in the signature signal enables detection of 
individual part differences, which can then be fed back to 
the operation in real time as an additional control variable.  
Direct control of friction adds a new dimension of process 
intelligence obtained with existing sensor technology. 

7 SUMMARY 
This paper reviews a friction identification scheme based 
on maximum force encountered and sliding distance of a 
part positioned by impulsive actuation.  The method is 
implemented on a real-time control system 
The described estimation scheme can be applied to 
friction identification in time, material, and cycle domains 
to identify and compensate for friction-based cycle 
variations as well as long-term frictional changes in the 
manufacturing process.  The derived process knowledge 
inferred from friction estimation can be used as both a 
control feedback and diagnostic tool for reducing 
variability, improving operation efficiency and enhancing 
intelligence in manufacturing systems. 
The results of this work are directly implementable in part 
positioning for machining, and it is anticipated that the 

techniques described can be later extended to polar 
positioning devices such as simple arms subject to friction 
in the rotating joint. 
The described system incorporates an FPGA for force 
and position sampling due to the high sample rate 
achievable.  It is anticipated in the future that the optimal 
estimation filtering and motion control routines will also be 
migrated to the FPGA for reduced loop time and 
implementation of more sophisticated motion controllers. 
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