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ABSTRACT 
 For closed loop control of machining forces in the 
turning process, it is well established that identification of the 
mechanistic force model is necessary to ensure stable operation 
of the process. This work proposes a novel approach to update 
the mechanistic force model by incorporating uncertainty in the 
deterministic framework. Force coefficient values reported in 
literature are based on wide spectrum of machining conditions 
and so cause difficulty in predicting the machining force using 
the mechanistic force model. This variability stems from 
variation in material workpiece input quality variation. This 
work proposes to treat force coefficient and process variables 
(shear stress and friction angles) as random variables and use 
Bayesian Statistical techniques to infer true distribution of 
force coefficients via observing cutting force and feed force 
values and updating shear stress and friction angle joint 
probability distribution. A numerical analysis is performed for 
calculating force coefficients for Titanium alloy (Ti6-Al4V) 
Markov Chain Monte Carlo (MCMC) simulation is performed 
to sample from the posterior distribution of the force 
coefficient. A single update cycle shows high reduction in the 
variability of the force coefficient. Numerical simulations 
presented indicate that it is possible to implement Bayesian 
update scheme in a closed loop control of cutting force for 
online identification of force coefficients and shear stress and 
friction angle distributions with few required update cycles and 
efficiently rejects the disturbance caused by changing 
machining parameters. 
 

MACHINING FORCES MONITORING AND CONTROL: 
A REVIEW 

Machining process force monitoring is valuable for tool 
wear state, chatter detection and overall process health. Though 
accurate means of measuring force with piezoelectric based 
dynamometers exist, they cannot be deployed in industrial 
environment mostly because of the inhibitive cost. Strain gauge 
based force sensors are relatively inexpensive, but suffer from 
low bandwidth because of slower response. There have been 
attempts to estimate the feed force by measuring feed axis 
motor current [1][2][3][4]. However, this method requires 
sweeping regions that machine will be operating in and 
generating a reliable model that will produce satisfactory 
estimation.  
Machining force control problem has been investigated by 
variety of researchers over 4 decades by now. The pioneering 
work in this area is done by Ulsoy, Koren and Mesory [5][6][7] 
which discuss about Adaptive control, variable gain control, 
online estimation of the parameters. Some of the control 
structures are discussed in this work, mainly to give idea about 
the approaches already taken, and what can be done to improve 
them.  

Integrator based controller based Adaptive Control 
Constraint (ACC) system 
This approach was proposed first by [6], where the feed servo 
dynamics are represented by a second order dynamic system. 
The cutting force dynamic is represented as a first order 
dynamic system with the time constant solely dependent upon 
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the spindle speed. They make an important observation about 
the stability of the ACC system stating the stabilizing gain has 
dependence on the spindle speed and depth of cut (Figure 1).  

 
          FIGURE 1: ADAPTIVE CONSTRAINT CONTROL 

Variable gain Adaptive Control system: 
Building on their earlier work, [7], proposed a way to update 
the gain of the control system in a way that it will not lead it to 
instability. It was accomplished by in-process estimation of the 
stabilizing control gain; the controller input is given to both the 
plant and the estimated model of the plant. The output of the 
plant and the model are compared, and the gains are so adjusted 
that the error between plant output and model output is driven 
to zero. The idea is presented in Figure 2.  

 
             FIGURE 2: ACC WITH IN-PROCESS ESTIMATION 

Other control strategies: 
Apart from the control strategies mentioned earlier, there are 
other techniques reported which have been implemented. These 
include variable structure control [8][9] , intelligent sliding 
mode control [10] fuzzy logic control[11], robust control[12] 
and model predictive control [13]. Important point to note in all 
the work mentioned here is that the force is based on 
mechanistic model, the force coefficient is assumed to be 
known a priori and is constant. This coefficient is known to 
vary with tool wear, material flow stress and tool-chip friction 
conditions. Also, a first order force- feed dynamic model is 
chosen in all the references indicating that it is sufficient to 
describe the dynamics of the force.  
 
To summarize, most of the prior art in this area assumes a 
specific static or dynamic feed-force model and attempts to 
drive the variable error to zero. They produce excellent results, 
but lack to reveal any insight in the physical nature of 
machining. The aim of this work is to control the machining 
force during the machining process, at the same time, get 

information about the cutting force coefficients during various 
conditions, estimating the shear stress and tool-chip interface 
friction which remains unobserved during the machining 
process. To that end, the current draft of the paper discusses 
how variability in force coefficient can be included in the 
deterministic model. 
 
MODEL DEVELOPMENT AND PROPOSED 
APPROACH 

As discussed in the review section, the most fundamental 
model proposed for the force control problem is the first order 
dynamics of force with feed as an input. In our paper, we shall 
be considering the same model since it describes the force 
dynamics up to a reasonable accuracy and it is easy to identify. 
The first order force dynamics model is given as follows. 

                                                        (1) 

In equation (1),  and  are the cutting force and first order 
time derivative of cutting force respectively. The only 
identification required in this model is the force coefficient.  
is the time constant for the first order system and is given by 

.  is depth of cut in this case. As discussed in the section 

before, most of the work done in this area deals with the 
assumption that the force coefficient  constant and 
identified a priori. Current work proposes update in value of 

once the cutting and feed force values have been obtained. 
Also, gain insight in the variation of shear stress, tool-chip 
interface friction and shear plane angle through the process.  
This is achieved with Bayesian estimation of force coefficients, 
the control loop is shown in Figure 3. 

 
FIGURE 3: CONTROL LOOP WITH BAYESIAN UPDATE OF 

FORCE COEFFICIENT 

It is noted [7], that the open loop gain of the system affects the 
stability of the closed loop system. In case of the force control 
in machining, this problem is addressed by estimating the open 
loop system gain [14], and performing variable gain tuning 
control. It is important to note that such approaches aim 
towards the control system performance (tracking) rather than 
model improvement. Bayesian update is proposed not only as a 
way to ensure system stability by updating the open loop gain, 
but also a way to estimate shear stress and friction angles- 
otherwise unobservable variables in the machining process. 
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Since the force coefficients are influenced by both shear stress 
and friction angle, update is only reliable with knowledge of 
both cutting force and feed force. This can be considered as one 
of the limitations of the method, since it can lead to more 
expensive instrumentation. Next few sections discuss the 
numerical recipe necessary to understand the nature of 
Bayesian update. 

BAYESIAN UPDATE: A BRIEF INTRODUCTION 

 
FIGURE 4: CENTRAL IDEA OF BAYESIAN UPDATE 

In the simplest sense, Bayesian view of probability indicates 
the state of knowledge or belief in a certain hypothesis. It 
originates from Thomas Bayes, for proving the Bayes theorem. 
In context of parameter identification, let , be the parameter 
of interest,  be initial state of knowledge,  be the data 
point, the Bayes’ theorem can be written as follows, 

            

           (2) 

In equation(2), is read as “probability distribution of 

value of parameter , given initial state of knowledge ” 

often referred to as a “prior”.  is read as 
“probability that the data point observed would relate to the 
parameter value”, called the “likelihood”. Likelihood often 
relates the data point to the parameter of interest via a model; it 
is a very important part of the solution as we shall observe in 
the later sections. And finally, is “probability 
distribution of value of parameter , given initial state of 
knowledge  and having observed the data point , called a 
“posterior”. The denominator is a normalization factor, since 
the probability distribution must sum to unity.  

 Figure 4 shows this process graphically. Few points 
are worth noting, the posterior distribution has much less 
spread as compared to prior. Also, the definitiveness of both 
prior and likelihood dictate the variance of the posterior. 
Furthermore, the prior can be uninformative (uniform 
distribution), thus showing complete ignorance about the value 

of the parameter, in that case, it is the likelihood that dominates 
the posterior behavior.  
  

NUMERICAL TOOLS: MONTE CARLO SIMULATIONS 
AND MARKOV CHAIN MONTE CARLO (MCMC) 
METHODS 

 
As discussed in the previous section, the calculation of 

probability distributions includes integrals of different 
distributions. In an applied Bayesian inference scheme, this 
may not be feasible to do because of unavailability of analytical 
expression for probability distribution or the integral itself is 
tedious to perform. Thus, Markov Chain Monte Carlo (MCMC) 
methods provide a means to perform these integrals 
numerically. This technique is widely used in biostatistics; 
image and video processing, voice recognition and machine 
learning fields. Major applied work in MCMC area is reported 
by [15]. MCMC is useful when one wants to generate samples 
from a distribution that is analytically intractable. This is 
achieved by strategically constructing Markov Chains whose 
stationary distribution converges to the desired distribution. To 
deploy this in practice, there are various algorithms which 
include Gibbs Sampling, Metropolis algorithm and Metropolis 
Hastings Algorithm.  

 
In this work, Metropolis Hastings algorithm is used to 

generate samples from posterior distribution. The specifics will 
be described in the next section, but in this section, the key 
points of algorithm are explained [16].As described earlier, 
Markov Chain needs to be generated whose stationary 
distribution is the target distribution we want to sample from 

.  At each iteration step , the next state is 

generated by sampling a candidate point from a proposal 
distribution  
In cases where the candidate generating distributions are 
symmetric, , yielding , 

                         
                           

(3) 

This is the algorithm that was proposed by [17]. In our work, 
we use the Random Walk Metropolis sampler, initially 
introduced by [18]. In the following pseudo-code, the algorithm 
is described, please refer to Figure 5. 

-40 -20 0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

q

 

 
Likelihood
Prior
Posterior

Initial Belief in parameter value

Belief after obtaining the data
Likelihood suggested 

by model and obtained data

w
K D

( ) ( ) ( )
( ) ( )

| |
,

| |
p D p K

p D K
p D p K d

w w
w

w w w
| =

ò
( )|p Kw
w K

( )| ,p D Kw

( )| ,p D Kw
w

K D

( )p ! k 1kX +

Y
( )| kq X!

( ) ( )| |k kq Y X q X Y=

( )min 1,
( )k

p Y
p X

a
ì ü

= í ý
î þ



 4  

 
FIGURE 5: PSEUDO-CODE FOR RANDOM WALK 

METROPOLIS ALGORITHM 

In the next section it will be described how MCMC methods 
can be used to sample from posterior distribution, which is 
almost intractable analytically.  

NUMERICAL ANALYSIS 
 
 

 
FIGURE 6: ALGORITHMIC VIEW OF APPROACH TAKEN IN 

THIS WORK 

Figure 6 depicts algorithmically one update cycle in “belief” of 
the value of force coefficients. The steps involved are 

• Establishment of priors 
• Data likelihood generation 
• Posterior distribution calculation & sampling 

Establishment of priors:  
The mechanistic force model given as follows 

                                                                   (4) 

Where is depth of cut and  is feed per revolution.  and 
represent uncertainty in measurement of the cutting force 

because of variation in force coefficients. 
The force coefficients are given as[19], 

                                      (5) 

Where is the shear stress during the cutting (assuming 
orthogonal machining model),  is the friction angle,  is the 
shear plane angle. Now the variability in force is directly 
proportional to variability in force coefficient since depth of cut 
and feed are machine parameters usually known and controlled. 
                                                        (6) 

Where indicates the probability distribution of force 

coefficient and  is joint probability distribution of 
shear stress, friction angle and shear plane angle. Shear plane 
angle is independent of shear stress and friction angle and 
usually known. Thus equation (6) can be reduced to, 

                                                         (7) 

Thus variability in force coefficient is directly proportional to 
variability in shear stress and friction angle. Therefore, for the 
estimation of the forces, it is necessary to observe the joint 
variability ( or joint probability distribution) of and .  
It is important to note here that for the accurate update of the 
force coefficient, it is necessary to have values of   ,   and

. However, the measureable quantities here are only  and 

(cutting and feed force). For the update of the shear plane 
angle, with the knowledge of the chip thickness, following 
relation can be used. 

                                                  (8) 

         With which the initial belief in the shear plane angle can 
be updated after every cut. In the scenario where the dynamic 
update of force coefficients has to be made, one needs to resort 
to the empirical relationships, one of the popular ones given as 
follows[20],  

                                                                (9) 

Based on some primary literature search [21] [22] [23], for 
alloy Ti6-Al4V, shear stress and friction angle joint distribution 
can be represented by, 
 

Initialize X0; set k=0;
set n=large number;
for k=1:n
{
Y=Xk+ normal random(0, Ʃ);
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Calculate 
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                         (10) 

This is a Bivariate Gaussian distribution with no cross variance. 
Figure 7 shows the 2-dimensional probability distribution of 
coefficients.  

 
FIGURE 7: PRIOR ESTABLISHMENT FOR COEFFICIENTS 

It is important to mention that the convergence to true force 
coefficient values depend upon the selection of prior 
distribution. That is, if the prior is chosen close to actual value 
of force coefficient, the convergence will be faster. Though this 
demonstration assumes a Gaussian prior centered around the 
literature reported values, the scheme is also valid for a uniform 
distribution (non-informative prior).  

Data Likelihood for the Force 
 

 
FIGURE 8: DATA LIKELIHOOD FOR FORCES 

Update in force coefficient is made whenever a new data point 
is made available. Since shear stress and friction angle 
contribute to cutting and feed forces, both cutting and feed 
forces help update the force coefficient value. This is done by 
using equation(5). The method deployed here is called discrete 
grid method [19]. First, the shear stress and friction angle 
values are divided in a finite grid, and then with the measured 
force value, probability of all possible values of shear stress and 
friction angles are calculated that will produce that force. To 
introduce uncertainty, the measured value of torque is assumed 

to have some measurement noise (2-5%). This way, we get the 
likelihood function which solves the inverse problem of “given 
the data point and my model, what is the probability that 
estimated coefficients (parameters) produce the observed data”. 
And that selected value of shear stress and angle will give the 
measured value of force using a deterministic model in the 
presence of uncertainty. The data likelihood is shown in Figure 
8. The calculation of the posterior follows from point to point 
multiplication of the prior density with the data likelihood.  

 
FIGURE 9: POSTERIOR DISTRIBUTION OF COEFFICIENTS 

Sampling from posterior: MCMC scheme 
Once the data likelihood is established, the posterior 
distribution of the shear stress and friction angle is generated by 
point by point multiplication of the prior distribution and the 
likelihood function (Figure 9). Since at this point, we do not 
have the analytical expression that represents posterior 
distribution; we use MCMC methods discussed in earlier 
sections to generate samples that represent the posterior 
distribution.  

 
FIGURE 10: MARKOV CHAIN MONTE CARLO SIMULATIONS 

TO GENERATE SAMPLES FROM POSTERIOR 
DISTRIBUTION OF COEFFICIENTS 

While using the Random Walk Metropolis algorithm, it is 
important to have the increment size generating a new sample 
(the  in Figure 5) smaller than the distribution one is 
sampling from. If this is not the case, then the convergence will 
not be observed [24]. Also, [25] discuss about the selection of 
the random walk increment matrix and acceptance ratio. In the 
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presented work, first the values for the coefficients that produce 
some minimal probability were calculated. Then the  matrix 
was multiplied with a gain factor that produced the acceptance 
ratio between 40-50%. Additionally, there is some “burn-in” 
time required for the candidate samples to get converge. This 
evolution is shown in Figure 10. In the, Figure 11 the samples 
produced from the MCMC scheme are compared with the 
posterior distribution, indicating that MCMC scheme does 
produce the samples that represent posterior distribution.  

 
FIGURE 11: MCMC SAMPLES COMPARED WITH 

POSTERIOR 

The mean of the posterior distribution indicates the updated 
shear stress and friction angle values. These values are then 
used in equation (5) to generate updated force coefficient 
values.  

 
FIGURE 12: FORCE COEFFICIENT UPDATE - REDUCED 
VARIABILITY 

As shown in Figure 12, reconstruction for the force coefficient 
distribution reveals much reduced variability before and after 
the update. The prior distribution is indicated with blue solid 
line and posterior distribution is indicated with red dotted line. 
This validates the numerical scheme accuracy and stability. 
 It is worth mentioning how this method is novel from 
the other non-model based (purely feedback based) methods. 
Though the force coefficient values are known to be constants, 
they often vary for different speed and feed regimes. If a 
deterministic mechanistic model is chosen, it is quite possible 
that the prediction of forces might be accurate in a particular 

regime, but not across the entire range. This method provides a 
means not only for a prediction of forces from mechanistic 
point of view, but also provides understanding in distribution of 
friction values, shear stress and shear plane angles, and how it 
varies across different cutting load and speed regimes. From the 
control theory point of view, it provides an automatic tuning 
feature. In the continuing work, authors are investigating 
treatment of outliers and in process identification of shear plane 
angles.  

NUMERICAL SIMULATION: CLOSED LOOP 
IDENTIFICATION OF FORCE COEFFICIENT 

To evaluate functionality of the Bayesian update approach 
proposed in this work, numerical simulation of cutting force 
control was performed in MATLAB Simulink® package. Since 
Bayesian update scheme requires variety of calculations not 
included in standard Simulink blocks, Embedded Matlab 
Function was written to execute the Bayesian update part. 
Following modifications were made to the control loop for the 
simulation purposes: 

• The force setpoint is converted to feedrate set-
point using machining parameters ( spindle RPM 
and depth of cut) and initial belief of force 
coefficient. 

• PI controller achieves desired feedrate by 
generating control signal and receiving feedback 
from servo position.  

• The output feedrate is converted back in to force 
value using machining parameters and actual 
value of force coefficient. This is the part which 
gets replaced by plant in experimental 
implementation. Gaussian noise is added to 
induce uncertainty in force value. This is the value 
of force coefficient we want to estimate. 

• Input to Bayesian update scheme are machining 
parameters, initial beliefs on shear stress, friction 
and cutting force. 

• Output of Bayesian update scheme are cutting 
force coefficients and updated distributions of 
shear stress and friction angles. These 
distributions are used as initial beliefs in next 
time-step. 

• Variance estimation by MCMC scheme is omitted 
because of limit of memory allocation in 
computational equipment used (when used in 
closed loop simulation). 

It is important to observe the response of the controller in light 
of step changes in depth of cut. In the simulation presented, 
initial depth of cut was 1.5 mm and then stepped up to 2 mm at 
time 2 seconds. Here, simulation was performed for Al6061-T6 
alloy cutting force control. The Bayesian scheme starts after 
spindle has completed one full revolution.  

S
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FIGURE 13: CUTTING FORCE VALUE (SET POINT 75 N) 
CHANGE IN DEPTH OF CUT AT 2 SEC. 

 
FIGURE 14: ONLINE FORCE COEFFICIENT IDENTIFICATION 

 
FIGURE 15: ONLINE SHEAR STRESS IDENTIFICATION 

 
Figure 13 shows the cutting force value when closed loop 
control is deployed. The force set point is 75 N and at 2 
seconds, depth of cut changes from 1.5 mm to 2.5 mm. After 

some transience, the force value settles to the desired set point. 
Now, our interest is also in identification of force coefficients 
and shear stress values. Figure 14 shows the estimated force 
coefficient value. It can be observed that the estimated value of 
force coefficient is very close to the actual value (1500 MPa), 
the minor oscillations in this value is because of Gaussian noise 
in force. Also note that force coefficient value is not much 
affected by change in depth of cut. Figure 15 shows the 
identified shear stress values, as it can be observed, only few 
updates are needed to identify the shear stress values and it 
shows very small variations for the rest of the duration of cut. 

EXPERIMENTAL VALIDATION 
This section describes the experimental set up to validate the 
numerical scheme. The tests will be taken on Okuma Lb4000 
EX CNC lathe. The lathe is instrumented with a commercially 
available current transducer based power monitoring unit along 
with custom made strain gage based force sensor. The 
schematic of the experimental set up is shown in Figure 16. 

 
FIGURE 16: EXPERIMENTAL SET UP OF CUTTING FORCE 

CONTROL IN TURNING 

 
The output from the current transducer is an analog signal (0-

10V) which represents the power measured in HP. This signal is 
acquired with NI –CompactRIO (cRIO-9023) control 
prototyping module for signal processing and data storage. In 
the same set up, there are additional sensors measuring cutting 
and feed force and temperatures near cutting edge. 
 Since the goal of this work is the control the cutting 

force in real time, it is important to be able to change the 
machining parameters that enable one to achieve this target. 
Since it is not possible to access the internal signal of the feed 
servo signal, authors plan to do this via attaching a DC servo 
motor to the feed override knob. This way, though discrete, but 
an external means is available to control the feed input and 
thereby controlling the force. A separate publication (under 
preparation) will discuss the deployment and results of the 
experimental study.  
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CONCLUSION AND CONTINUING WORK: 
 In this work, a novel way of incorporating uncertainty 
in the mechanistic force machining model was introduced. 
Depending upon the machining regime, the shear stress, friction 
angle and shear angle influence the cutting forces. It is 
important to update the mechanistic force model since it affects 
the open loop gain. Here, based on the cutting process feedback 
(cutting and thrust force), the belief in shear stress and friction 
angles were updated, ultimately reducing variability in the force 
coefficient. This was also deployed in closed loop numerical 
simulations.  

As the next step, authors wish to integrate the 
Bayesian update scheme in a closed loop control. The 
framework will be similar to one that involves model learning 
using Recursive Least Square (RLS) methods of parameter 
estimation in case of linear Gaussian dynamic models for 
cutting force control or power control in turning or milling 
process. Later on, more complex and non-linear mechanistic 
force models will be incorporated. 
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