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Abstract 
Assembly operations in the automotive industry represent a substantial proportion of overall 
manufacturing time and total manufacturing cost. With product complexity increasing year after year, 
humans continue to remain a cost-effective solution to the needs of flexible manufacturing. The human 
element is largely marginalized in Manufacturing 2.0 and necessitates a better understanding of the 
human’s impact on the future of manufacturing. The work herein illustrates a method through the use of 
the Industrial Internet of Things (IIoT) to capture ubiquitous data streams from human and automated 
machinery with the intention to make available the data necessary and elucidate the potential to deepen 
the understanding of the human impact on Industry 4.0 assembly systems. 
 
Keywords: Industry 4.0, IIoT, Quality 

1 Introduction 
1.1 Increasing complexity in automotive assembly  

Automotive manufacturing is comprised of many diverse and critical processes that have continually 
become more complex with each iteration due to increased demand for quality and product variety and 
decreasing product life cycles. Automotive production is significantly characterized by assembly 
processes, which greatly contribute to the quality and cost of the final product. The BMW 7 Series for 
example has a projected 1017 number of variants in one product line [1]. With this increasing complexity 
and variety in vehicle assembly comes new opportunities for assembly defects to occur however it also 
lays many avenues for constant improvement and rapid innovation. On average, assembly activities 
account for 40% of product cost, up to 50% of total manufacturing cost, and 50% of total manufacturing 
time [2–4]. Having such a large impact on the cost and time to manufacture, it is readily seen how 



 

 

important defect elimination is to the success of the final product. This emphasis on defect elimination 
is compounded in automotive assembly where single defects may result in thousands of dollars of loss 
through rework or scrapping of entire vehicles. 

 

1.2 Human workers in assembly 
In the automotive market, there are many alternatives for a customer to consider during a purchasing 

decision so quality is a key factor in the decision-making process. The popularity of online reviews and 
easily accessible defect data, such as the annual Consumer Reports car reliability survey in the U.S.A. 
which has over 500,000 respondents, has pushed automotive manufacturers to adopt new practices and 
continually increase their internal quality initiatives to reduce assembly defects [5]. Manufacturers must 
maintain high quality standards while also maintaining a flexible and adaptive processes [6]. In manual 
assembly where human workers are assembling the products, [7–9] found that up to 40% of total defects 
resulted from operator error and that these defects are not always obvious.   

In a 2015 survey on the automotive industry’s view on the current state of quality and strategic path 
forward by Deloitte/Automotive Industry Action Group (AIAG) some of the major long-term concerns 
from original equipment manufacturer (OEM) and Tier suppliers as having the most significant impact 
on future quality were a lack of skilled workers and a lack of incentive for workers to select a career in 
the automotive industry [10]. 

Automotive manufacturing is becoming increasingly complex and technological and organizational 
structures have improved but little attention has been paid to the development of the production staff 
who will always be needed in flexible manufacturing [11–14]. The assembly line worker is an integral 
part of automotive assembly and [15] has shown that as automotive manufacturing systems have become 
more complex, worker technical knowledge and worker understanding of their machines has fallen.  

As worker errors are not always obvious, they are difficult to control, and there is always a source 
for new issues such as quality inspection methods and guides that force a worker to alternate their 
attention between the assembly and the assembly instructions which can negatively impact assembly 
performance and result in expensive defects [8,16]. The lack of advancement in development of 
production staff is indicative of a need to develop a more effective feedback infrastructure between the 
human worker and future manufacturing systems as well as a deeper understanding of the underlying 
interaction between human and machine. Understanding this interaction will be vital to supporting a 
core aspect of Industry 4.0 to continually communicate between humans, machines, and products during 
production [17]. The Industrial Internet of Things (IIoT) incorporates leveraging big data, machine 
learning, sensor data, machine-to-machine communication, automation technologies, and human-to-
machine communication to create a connected manufacturing ecosystem. This unified environment will 
enable inefficiencies to be pinpointed, root cause investigation, and support business intelligence. The 
research presented herein is a first step towards connecting the human operator into Industry 4.0 and the 
Industrial Internet of Things.   

1.3 Pedestrian Dead-Reckoning 
Pedestrian Dead-Reckoning (PDR) is a methodology utilizing sensors to detect steps, estimate stride 

length, and the direction of motion to estimate the movement of a person by starting at a known location 
and successively adding up position displacements [18,19].  PDR systems can also include ultrasound, 
radio, vision systems, and Global Positioning System (GPS) technologies, all of which are used to 
determine the movement of the subject throughout an environment. Indoor PDR presents a unique 
additional challenge in that accurate outdoor technologies such as GPS signals are not able to be reliably 
used indoors [20,21]. A common low cost sensor used in indoor applications such as for emergency 
responders and military personnel is a Micro-Electro-Mechanical (MEMS) Inertial Measurement Unit 
(IMU). IMUs contain an accelerometer, gyroscope, and magnetometer that is used to collect 



 

 

acceleration, rotational, and heading information from the subject. In the last decade, many 
methodologies have been proposed to estimate accurate indoor position and account for the inherent 
bias and drift in the measurement data but they typically detect and integrate step length and orientation 
to compute the relative position and orientation of a subject based around a designated absolute position 
with accuracies typically ranging from between 0.5-10% of the actual traveled distance [18–23]. 

1.4 Motivation/Objective 
With the advent of Industry 4.0, ubiquitous data streams from manufacturing assets are being 

characterized and used for providing information to local and Enterprise level control systems. Though 
this holds great promise for improving productivity, quality and cost in production, the essential element 
of human influence has been largely ignored. In a manufacturing line with significant manual value-
added content, this renewed focus on automated data streams, and the enabling of task automation can 
cause apathy or resentment in the human worker, as well as highlighting the fact that the human data 
and feedback mechanism is not being leveraged to the full potential. It is our intent with this work to 
explore the role of human data in production and quality characterization, and to quantify the marginal 
improvement possible through consideration of human signals in manufacturing. Considering human 
signals together with machine signals should generate additional, heretofore unexamined, information 
about process performance. This information can be utilized to better understand and control process 
output. 

2 Problem Definition 
2.1 Manufacturing Environment 

The manufacturing facility studied is a Tier 1 supplier for the automotive powertrain industry 
producing parts directly for OEMs. They employ a Chaku-Chaku method of production, Japanese for 
load-load, which refers to a one-piece-flow where the only action an operator performs is load each 
machine in sequence [24]. Each station is fully automated and does not require human supervision 
during processing. Chaku-Chaku methods work to significantly eliminate work in progress (WIP), 
practice defect free production, and have very high space and labor utilization. An example of a real-
world Chaku-Chaku production line can be seen in Figure 1 below. The grey arrow denotes the overall 
flow of material through the assembly line. A raw part starts at the beginning of both the blue and green 
arrows and they are then married or brought together to make up the final assembly after being 
processed.  
 

 
Figure 1. Chaku-Chaku assembly line, loops for individual workers denoted A-E 

The assembly line typically consists of five workers moving through circles of machines denoted 
with the letters A-E above. The machines that a worker has been assigned to run is based on the process 
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time and calculated to keep the line running smoothly and reduce idle time of both human and machine. 
With minimal idle time, even small disruptions can have significant effects throughout the process and 
with workers moving in circles, disruptions can propagate throughout the production line. Disruptions 
can consist of planned/unplanned maintenance, process failures, and machine failure. While disruptions 
to the production line can be simulated, a disruption’s effect on the human workers and in turn back on 
the production line as each worker operates multiple machines is largely unknown and not measured in 
real world environments. 

As each station is automated, the machine data consisting of start-stop times, light curtain triggers 
(signaling an employee was working within the machine), machine input and output, and machine up 
time were already being tracked by the facility. The machine data from each machine’s history shows 
the station turnover time as shown in Figure 2.  

 
Figure 2. Breakdown of station turnover time 

The station turnover time consists of three major areas, machine time, idle time, and man time. 
Machine time is the measured automated processing time of the machine to complete the task for a given 
part. Idle time is the time between when the machine has completed the automated process and when a 
worker unloads the finished part and loads an unfinished part. Man time is the estimated time a worker 
is unloading and loading parts before moving to the next machine. Apart from the measured start/stop 
times of the automated machine time, the unknown idle time and the planned but non-measured man 
time leads to a significant period of time that is unaccounted for. The movement data is expected to 
provide a reference for where the human worker is during the idle time whether two machines away or 
in front of the machine waiting for the process to complete to provide the production staff a better 
understanding of how well balanced the line is and are unexpected bottlenecks appearing. 

While the planned idle time is at a minimum in a Chaku-Chaku assembly line, disruptions will affect 
the length of the idle time, potentially greatly increasing it and reducing the machine’s time efficiency, 
as well as affecting the man time as the workers stride or consistency of movement is interrupted. The 
proposed human data to be collected is to be used to better understand this variation in the idle time. For 
example, is the variation in individual workers pace through their loops creating a negative effect over 
time, did a process change require that the line need to be rebalanced to account for unforeseen effects 
of the change, is there a difference in idle time variation between workers with different skill levels, or 
is there a collision in the paths that workers are taking as they move through their assembly loops. The 
answers to the plethora of questions about human-machine interaction have previously been answered 
predominantly by expensive or time-consuming trained observers.  

2.2 Design requirements 
Due to the limitations of the manufacturing environment, ethical/privacy concerns, industrial review 

board of Clemson University, and review by human resources department of the manufacturing facility, 
a list of design requirements was drafted to ensure that workers and production at the facility would not 
be negatively affected by the introduction of the measurement system and a summary can be found 
below. 



 

 

A. The wearable portion shall provide movement data in addition to environmental data. Movement 
and location data shall be captured in the form of physical sensors such as accelerometers.  

B. Sensors worn by workers shall communicate only within a short range of maximum 50 feet from 
the center of the assembly line. Readings of wireless sensors once the employee is 50 feet 
beyond the line should not be possible and if occur should be erased.  

C. Future work may necessitate multiple lines being measured simultaneously within the same 
facility so a method of preventing cross-over lines is required.  

D. The communication protocol shall not cause interference with machines present on the line and 
should be robust to moderate levels of interference produced by the automated machinery.  

E. Sensors involving movement shall be read from at a rate of normally 10 hertz, not going below 
5 hertz in the presence of extreme interference. 

F. Sensors not involving movement shall be read from at one reading per minute to collect 
information about employee working conditions throughout the day. 

G. The sensor platform shall not impede the work or safety of the worker or any surrounding 
workers. 

H. The sensor platform developed or purchased shall encompass physical sensors and 
communication protocols that are battery powered. 

I. Battery powered devices shall be capable of lasting through at least one 8-hour shift 
J. A secondary location reading shall occur approximately every 1 to 5 seconds to verify the 

primary location data. 
K. A fixed method of determining a workers place in their assigned loop shall be introduced to 

further verify the primary location data; however, this method may not interfere with the safety 
or productivity of the assembly line.  

L. All data captured by the system shall be anonymous and not identifiable to any particular 
individual. 

3 Development 
3.1 System development and prototyping 

To develop the software, select the hardware, and verify that the final system would meet the design 
requirements without having to purchase, program all of the parts, and conduct physical testing, the 
software/hardware modeling Architecture Analysis and Design Language (AADL) was used. AADL is 
designed for modeling IoT and cyber physical systems (CPS) systems to enable software developers to 
reduce their time to market and produce an accurate characterization of the final system, as up to 70% 
of errors are introduced in the design/requirements phases of the software development life cycle [25]. 
AADL provides tools for modeling, analyzing, and verifying a software and hardware design prior to 
implementation and enables hardware decision making early on. 

Modern manufacturing environments are transitioning into high tech work areas where data from 
machines and computers is being generated and transmitted by the GB and TB per hour [26]. To keep 
the impact of the developed device low and to meet the above requirements, Bluetooth low energy was 
chosen as the communication medium between devices due to its short communication range in the 
presence of moderate interference (requirement A). The ability to assign and operate multiple devices 
to different receivers to avoid cross-talk (requirement B). As well as BLE’s compatibility with the list 
of acceptable communication protocols that do not interfere with the machinery present in the 
manufacturing facility (requirement C). Wi-Fi was also evaluated but as it has a well-known 
characteristic of utilizing a much larger magnitude of power, it was deemed a secondary option to reduce 
the impact that device to device communication would have on battery life. 



 

 

An example of how AADL was utilized in the design of the overall system was for the major design 
requirement battery life and wireless communication method which is typically a major power user in 
wearable devices as no processing was required on the sensor platform. Of the allowed wireless 
communication methods allowed by the facility, Bluetooth Low Energy had the historically lowest 
power utilization. It was proposed to test whether passive Bluetooth Low Energy communication may 
be sufficient for the data collection while greatly reducing the power consumption vs active 
communication which was assumed to have a higher power utilization. A visual comparison of active 
Bluetooth communication (Error! Reference source not found.) and passive Bluetooth 
communication (Error! Reference source not found.) are presented Error! Reference source not 
found..  

 
Figure 3. Active Bluetooth communication activity  Figure 4. Passive Bluetooth communication activity 

To keep power usage at a minimum, it was thought that the use of passive communication would 
provide the best method of allowing the device to operate for an entire 8-hour shift. However, as a 
typical manufacturing environment may have many machines from automated welders to robots starting 
and stopping continuously, the background interference level was considered to be an issue. It was 
unknown if the passive Bluetooth communication would be able to maintain a low latency connection 
in the presence of such interference which would negatively affect the transfer rate of data. Active BLE 
communication or IEEE 802.11n were also viable options as well but would require thorough and time 
consuming battery testing. Through the testing of a similar BLE 4.0 device within the labs at Clemson 
University International Center for Automotive Research which includes CNC mills and lathes, vehicle 
testing chambers, as well as myriad cell phones and laptops with high environmental Bluetooth and Wi-
Fi background interference, the parameters for the software simulation could be estimated.  

Through AADL simulation and testing, it was determined that passive communication, while 
providing a much longer battery life, would not provide proper data transfer rates due to achieving a 
maximum sample rate of 3 Hz. Active Bluetooth architecture provided an estimated sample rate of up 
to 10Hz. Requirements for the system were to sample at a rate of 10 Hz so the active Bluetooth 
communication was chosen. By using AADL during the initial phase of designing the proposed system, 
informed decisions such as these on hardware and system architecture were able to be made very early 
on. AADL also justified the investment in time for additional battery testing of the system. 

After the transmission method had been chosen, the selection of the system’s base stations began. 
While there were many alternatives on the market, the Raspberry Pi 3 was chosen to act as the receivers 
that were to be placed around the assembly line. This was due to its low cost (~$35USD) and that it 
contains a 1.2GHz quad-core ARMv8 CPU for simultaneous threading of collection, processing, and 
publishing of data, 802.11n wireless, Bluetooth/BLE 4.1, four USB 2.0 ports if peripherals were needed, 
and an Ethernet port. The Ethernet, Wi-Fi and BLE was expected to be needed to properly communicate 
with cloud storage and the sensing platform. Storage on the Raspberry Pi 3 receiver was kept to a 
minimum as all data was passed to and stored on a cloud server over Ethernet provided by the 
manufacturing facility. A series of five receivers were to be placed directly around the perimeter of the 
assembly line as seen in Figure 5. Each receiver was running a standard copy of Jessie Lite Raspbian 
distribution operating system customized only so that BLE and server communication was enabled. By 
limiting the customization of the code and libraries used, the project could be readily applied in many 



 

 

different areas and facilities with limited additional development time. All code for the system was 
written using Python 2.7 with the redis, netifaces, bluepy and pymssql libraries installed.  

 

 
Figure 5. Placement of receivers along assembly line 

 
The Bosch XDK prototyping platform was chosen for the mobile sensor as it was an off the shelf 

device which allowed acceleration of the system design process and included the sensors needed to meet 
the specifications required. The Bosch XDK consists of a BMA280 accelerometer, BMG160 gyroscope, 
BMM150 magnetometer, BMI160 IMU, BME280 humidity/pressure/temperature sensor, AKU340 
acoustic noise sensor, and MAX44009 digital light sensor all capable of sampling at up to 1000Hz. Also 
included are built-in wireless 802.11 b/g/n, Bluetooth low energy (BLE) 4.0, 32-bit ARM cortex M3 
microcontroller, and 560 mAh Li-Ion rechargeable battery (Requirement D). By selecting the pre-built 
mobile system, the mobile device was able to be rapidly prototyped and deployed. 

For programming the sensor units, version 1.6.0 of the Bosch provided development environment 
was used. Each sensor unit was assigned a unique ID that identified it to the receivers around the 
assembly line to which the sensor unit was to be used. Each lines receivers would not know or connect 
to the IDs of sensor units from other assembly lines thus preventing cross-talk between the lines. Each 
receiver would establish a connection to one or more sensor units from their line and after the BLE 
pairing process completed, a signal would be sent to each sensor unit alerting it to start the sampling 
process. The accelerometer, gyroscope, magnetometer, and IMU were sampled at 10 hertz and were 
used to collect movement data. The environmental and light intensity sensors were sampled at 1 hertz 
and were sampled to collect environmental data throughout the shift as an additional source of signals 
that could potentially impact human performance. All samples were immediately sent to the receivers 
after being sampled. Due to the amount of uncompressed data generated by the system, approximately 
1 megabyte every minute per sensor unit, the data was stored for approximately 1 minute before being 
transferred to a Microsoft SQL Server 2012 database server provided by the facility.  

Trilateration of the devices was used as a secondary position verification method and to correct for 
inherent drift in the movement sensors. Trilateration determines absolute or relative coordinates by 
measurement the distances between a tracked point and three radial distances. 

 



 

 

 
Figure 6. Bluetooth trilateration 

In geometry, it is known that if a points lies on the perimeter of three circles with known centers and 
radii then there is sufficient information to determine the position of the point relative to the center 
positions. Through geometric derivation, the relative coordinates can be determined with: 

 

𝑥 =
𝑅$% + 𝑅%% + 𝑅'%

2𝑑  
 

𝑦 =
𝑅$% − 𝑅'% + 𝑖% + 𝑗%

2𝑗 −
𝑖
𝑗 𝑥

 

𝑧 = ±0𝑅$% + 𝑅%% + 𝑅'% 

 
where, x and y are the relative coordinates of the tracked point assuming z=0 for the relative plane; 

d is the x-coordinate of point 2 relative to point 1; i & j are the x & y coordinates respectively of point 
3 relative to point 1. The x and y coordinate output will provide relative coordinates in an arbitrary plane 
by assuming the centers of points 1, 2, and 3 all have centers at plane z=0 and point 1 is at the origin 
(0,0). When using more than 3 points of reference, the mobile devices are not always guaranteed to be 
using the origin point so a transformation is required to determine the tracked object position in the 
overall coordinate system. 

 

�̂�3 =
𝑃2 − 𝑃1
‖𝑃2 − 𝑃1‖ 

 

�̂�7 =
𝑃3 − 𝑃1 − 𝑖	�̂�3
‖𝑃3 − 𝑃1 − 𝑖	�̂�3‖

 

 
�̂�: = �̂�3 × �̂�7 

 
𝑖 = �̂�3 ⋅ (𝑃3 − 𝑃1) 

 

 
𝑑 = 	‖𝑃2 − 𝑃1‖ 

 
𝑗 = 	 �̂�7 ⋅ (𝑃3 − 𝑃1)

𝑝$,% = 𝑃1 + 𝑥	�̂�3 + 𝑦	�̂�7 ± 𝑧	�̂�: 
 
where, �̂�3, �̂�7, �̂�: are the unit vectors in the x, y, and z direction respectively; P1, P2, P3 are vectors 

from the origin to the center of the circle; i & j are the signed magnitudes of the x & y component from 
P1 to P3; and 𝑝$,% is the unit vector as expressed in the overall reference plane.  

As a definite verification of position, a physical sensor was placed on the line. A pressure pad was 
placed at the start of each loop within the assembly line and connected to the receivers. The pressure 
pad had a 25lb activation pressure so that it was sensitive enough that only part of a foot would trigger 
it and was thermo-sealed to prevent oil and debris from interfering with operation. 

3.2 Final system characteristics 
A brief summary of how each design requirement was fulfilled is provided below. 

R1 R2 

R3 

Tracked	
Object 



 

 

A. Provide movement and environmental data: The XDK encompassed all necessary sensors.  
B. Sensors communicate only within a short range: BLE employed will only communicate over 

approx. 32 meters, all data from past this range is erased by the receivers. 
C. Prevention of cross-talk: Receivers only allow BLE pairing of designated sensor devices. 
D. Cause no wireless interference with line equipment: Verified by plant personnel to not interfere. 
E. Movement sampled at 10Hz: Optimized to allow 10Hz sample rates for movement sensors. 
F. Environment sensors sampled every minute: Allows only one sample per minute collection rate. 
G. Not impede safety or work: Verified by safety personnel to not impede the safety of worker.   
H. Battery powered: The mobile system is battery powered 
I. Battery should last one 8-hour shift: The battery used was tested to last more than 8 hours. 
J. Verify location reading: BLE trilateration was utilized to verify the device location. 
K. Fixed location reading: A fixed pressure pad provides an exact location for further verification. 
L. Anonymous data: Devices are selected randomly before each shift by worker and data is not 

time stamped when provided to manufacturing facility. 

4 Results 
4.1 Machine data measurement 

Two months of machine data was analyzed to determine the typical system parameters for the 
assembly line. Python 2.7.8 and R 3.1.3 were used for parsing the data and analysis. Takt time, 
unload/load time, part production vs planned production, material flow, and checks for formation of 
unintentional material buffers are examples of the extracted system parameters. The machine part output 
of two dependent stations, was as expected very similar in hourly production. Most gaps could be 
attributed to a variety of factors, including scheduled meetings, shift-changes, lunch breaks, or holidays.  

It was found from the data that an easy to visualize method for determining timing on the production 
line was to check the synchronization of the marriage station where the two parts of the final assembly 
are merged together as seen in Figure 1. The synchronization was visualized by plotting the time that 
part A and part B arrived at the marriage station. A the slope of the line between the two time points as 
seen in Figure 7 below was used to determine how well synchronized the parts arrival was with a vertical 
slope indicating perfectly in sync production as both parts arrived at the same time, or a negative/positive 
slope indicating that one part reached the marriage station before the other and the order of arrival. 

 

 
Figure 7. Marriage station synchronization per minute of production slopes (1) and (3) signify out of sync, 

slope (2) signifies in sync production 

Synchronization of the marriage assembly was an indication of the material flow half-way through 
the assembly line. While the synchronization plot was a good metric for material flow, it did not help in 



 

 

explaining why parts had arrived at different times or when there was a greater than normal variation in 
the idle times. Through the machine data, the unload and load timestamps of a machine are known but 
variation in idle and man time are unaccounted for and a major target of the human-machine data. 

4.2 Human Generated Signals 
New sources of human signals in manufacturing enables additional insight into what is happening 

on the assembly line while the parts are in-transit between machines as well as while parts are awaiting 
inspection and transfer to other machines by human workers, how disruptions such as machine 
breakdowns and process failures affect the consistency of movement or stride of the human workers and 
the change in material flow as a gap is filled or created. The accelerometer, gyroscope, and 
magnetometer data collected during this work was converted into a position trajectory of the human 
wearing it. This was done using the widely used technique Zero Velocity Update (ZUPT) and is more 
thoroughly described in [19,21,27]. The basic process of ZUPT involves transforming captured data 
from the sensor frame into the global frame, estimating the integral of the data to obtain linear velocities, 
zeroing the linear velocity from drift at every step event (characterized by limited movement of foot 
sensor), obtaining the position increment at each step by integration estimation of the corrected 
velocities, and finally determining the Cartesian coordinate estimate of the sensor.  

 

 
Figure 8. (a) Raw Accelerometer x axis first 10 seconds, (b) Computed position of sensor while walking a 

straight 10m path 

5 Conclusions and Future Work 
The raw accelerometer output and computed sensor position can be found above in Figure 8. Each 

footfall in (a) is evident but also seen is a large amount of noise and a bias is obvious in the first two 
seconds with no movement. One reason ZUPT is used in estimating the position of IMU’s in PDR 
systems is its attenuation of sensor bias and drift inherent in MEMS sensors. As can be seen in Figure 8 
(b), the computed position of the sensor as walked ten meters along a straight line demonstrated a best 
case error in final position of approximately -62 cm in the X direction and -48 cm in the Y direction. 
Error across all testing resulted in an average error of 7.4% of total movement distance. Based on 
previous work using ZUPT, the expected error was expected in the 1-2% range due to the limited 
distance and time that the measurement was completed [19,21,22]. A difference in error as seen here 
could result in an increase in expected error of approximately 300 meters along each axis without 



 

 

correction, assuming that a worker will walk 5 km in a typical 8 hour shift. Further work in correcting 
the output is necessary to his additional error. This will be done through implementation of a Kalman 
error estimation filter, the addition of a stride length estimation to the ZUPT algorithm as in [19] and 
using the pressure pads installed at the start of each loop to re-zero and remove built up error. 

Future work for human-machine interaction includes exploring the prediction of disruptions and 
providing efficient mitigation strategies that allow for optimal production and to support business 
analytics efforts. Once the above improvements have been completed the human data will be integrated 
with the machine data, to establish patterns leading up to events such as machine down time or the 
unintentional buildup of parts. By using real/semi real-time machine data collected alongside the human 
data, patterns such as spending an increasing amount of time in front of a particular machine leading to 
subsequent unplanned maintenance events could be used to characterize that pattern as a potential 
indicative behavior leading to the non-value added event or used to preemptively predict these events 
before or as they occur and reduce the negative effects while aiding in reestablishing line performance. 
To directly assist the human worker, a deeper understanding of the human could be used to guide 
workers along an efficient path to recover from a disruption that may deviate them from their routine. 

The human-machine interaction knowledge will provide benefits as the assembly line is adapted and 
machines and workers are added or removed. Production planning will be able to quantify the impact 
changes have on production and inform line staff in how their actions influence production performance. 
The human-machine interaction will also support future efforts to transition manufacturing facilities into 
Industry 4.0 where complete digital factories with simulated production help to account for 
discrepancies in the expected and actual production.  

The systems utilized in this study are readily applied to other facilities due to the open requirements 
imposed. The pattern analysis methods to be used in future work are applicable but require modification 
to customize for changes based on product, process, and facility traits. The system developed in this 
work was predominantly off the shelf components and is quickly scalable depending on the needs of the 
facility. The facility in this research has already begun plans to expand the measurement system to 
additional areas to foster better understanding of the human workers and processes. 

Presented in this research was a first step towards bringing the human worker online in Industry 4.0 
manufacturing and investing in the understanding of assembly’s most flexible system, the human 
worker. Data from a human on an assembly line can be streamed to and characterized by local and 
Enterprise control systems and could be used to make more informed decisions and quantify the effect 
on and from the human. Previously, one has been able to model the entire machine system in fine detail 
but the human element has remained largely unknown. Exploration of human data in manufacturing will 
leverage the full potential of the connected workplace of Industry 4.0. The human element proposed 
allows the flow of workers to be visualized and to better understand the human-machine interaction 
while also providing a reliance on human intelligence and ultimately reengaging the worker in the 
production system. This is facilitated by characterizing and merging data streams from manufacturing 
systems and wearable technology to quantify previously unexamined information about process 
performance and to better control process output. 
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