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Abstract 

After machining nickel-based superalloys, tensile surface residual stresses can cause end-product issues such as fatigue failure. 
Modeling the residual stress profile is currently tedious and inaccurate. This study introduces a new method of understanding the 
residual stress profile in terms of quantifiable key measures: peak tensile stress at the surface, magnitude and depth of peak 
compressive stress, and depth at which residual stress becomes near-zero. Experiments in turning IN-100 and milling GTD-111 
have been conducted and subsequent X-ray Diffraction measurements have been utilized to obtain residual stress profiles. Using a 
sinusoidal decay function fitted to measured residual stress profiles, these four key profile measures are extracted and then the 
effects of process parameters such as cutting speed, feed, cutting edge radius, and tool coating on these measures are investigated. 

© 2014 The Authors. Published by Elsevier B.V.  
Selection and peer-review under responsibility of The International Scientific Committee of the “2nd Conference on Surface 
Integrity” in the person of the Conference Chair Prof Dragos Axinte dragos.axinte@nottingham.ac.uk 
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1. Introduction 

Superalloys have recently found significant use in 
applications in the aerospace, automotive, energy, and 
biomedical industries [1]. Nickel-based superalloys are 
an important portion of these superalloys. Their superior 
properties improve even further with increasing material 
development. These properties are their high strength, as 
well as corrosion and creep resistance at elevated 
temperatures [2]. However, these properties make them 
very difficult to machine, because while machining these 
superalloys, high machining forces are observed and the 
cutting tool wears rapidly, decreasing productivity [3]. 
In addition, rapid work hardening behavior and poor 
thermal diffusivity cause reduced machining efficiency 
by enforcing the use of milder cutting conditions [4]. 
Consequently, when compromise from productivity and 
efficiency are not possible, the quality of the machined 
surface can deteriorate. Surface quality measures such as 
surface roughness and depth of machining affected zone 
can be used to improve their machinability, and many 

researchers have studied optimization of machining 
superalloys by analyzing these outputs [5-8]. However, 
the residual stress profile gives a more comprehensive 
understanding of the likelihood of fatigue failure due to 
crack initiation and propagation [9]. 

Fatigue failure is started with a crack initiated on the 
surface, which then propagates into the bulk of the 
material [10]. The affected section of the material is 
capable of withstanding a lower load, and when that load 
is exceeded, fatigue failure occurs. Thus, it is essential to 
understand and prevent the initiation of the crack. 

During machining processes, thermo-mechanical 
loads cause elasto-plastic stresses on the workpiece 
material [11]. Due to these plastic stresses, surface of the 
material exhibits “residual” stresses even after removal 
of the loads, which causes the fatigue failure of the 
product [10]. Hence, it is important to reduce residual 
stresses as much as possible, and result in favorable 
(compressive) residual stresses. 

For this purpose, many researchers worked on 
experimentally measuring residual stresses using 
different methods [6-17]. While hole drilling and other 
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destructive methods are also used in some applications, 
for processes (such as machining) where the residual 
stresses diminish rapidly below the surface, more precise 
methods such as X-ray diffraction (XRD) are used. In 
these studies, researchers aim to understand and analyze 
residual stress profiles, and the effects of different 
machining parameters. However, due to the high 
uncertainty of results in residual stress measurements 
and the big difference in the behaviors of different 
materials, these profiles can exhibit different 
characteristics that lead to a lack of consensus. In 
addition, measuring residual stresses using XRD is very 
costly and it becomes impractical and expensive to test 
for different conditions, and replicate tests to reduce 
variation. Therefore, while the experimental studies are 
very important in providing the baseline data, residual 
stress research cannot only rely on experimentation. 

There have been many modeling efforts regarding 
surface residual stresses as well as residual stress 
profiles. Analytically modeling residual stress is one 
way, where different assumptions (such as plain strain or 
plain stress conditions) are employed in calculating the 
residual stresses using physical equations. However, 
these models represent the ideal conditions of events and 
usually are not practically applicable [11,13,18-20]. 

Researchers have tried to analyze and predict residual 
stresses using Finite Element-based models [21-24]. 
These efforts usually provide a good understanding of 
the process and its results. However, they involve many 
assumptions; and even when experimentally validated, 
they can lack the capability of predicting other tests. 
Also, when their capabilities are improved by decreasing 
the element size or time step, the computation cost can 
be too high to account for their value. 

Finally, some researchers have modeled the residual 
stress profile using statistically fitted polynomial 
functions [9,25]. Yet the profile does not necessarily 
resemble a polynomial fit, particularly when only few 
terms are used. When many terms are used, the model 
becomes complex and not easily applicable to other 
processes, materials, or machining conditions. However, 
the profile can be better represented with a function that 
it resembles such as a sinusoidal decay function, which 
also has a fixed number of terms. Therefore, without 
increasing the complexity of the mathematical model, it 
is possible to represent any residual stress profile. 

This work aims to fill the void in empirically 
modeling residual stress profile using such a sinusoidal 
decay function, and obtaining the four key measures of a 
residual stress profile. These measures are identified as 
the peak residual stress at the surface (PTS), magnitude 
(PCS) and location (PCD) of the peak compressive 
residual stress, and the settling distance (SD), which is 
the distance where the residual stresses become near-
zero. Then, these measures can be easily optimized as 

required by modifying the machining parameters. PTS 
has been shown to be the main cause for crack initiation 
in fatigue failure, PCS and PCD are mainly related to 
dimensional accuracy of the end product, and SD 
indicates where the effects of the process diminish: the 
end of the machining affected zone. 

In order to accomplish this task, first milling and 
turning experiments are conducted on nickel-based 
superalloys GTD-111 and IN-100. Residual stresses are 
measured using XRD technique at different depth levels 
on the machined surface. A sinusoidal decay function is 
fit to these measurements, and the coefficients of this 
function are found for each profile. Particle Swarm 
Optimization (PSO) method is used to minimize the 
difference (error) between the measurements and the 
mathematical model, and therefore obtain the 
coefficients that fit the model. The four identified key 
measures (PTS, PCS, PCD, SD) are calculated, and then 
the effects of machining parameters on these key 
measures are determined. 

a1-2 acceleration constants 
f feed per revolution 
g global best position vector 
i & n particle and iteration numbers 
pi best position vector of particle i 
x depth below the surface 
xi

n position vector of particle i at iteration n 
vc cutting speed 
vi

n velocity vector of particle i at iteration n 
C coefficient of the sinusoidal decay function 
N & N′ total number of iterations & number of trials 
PCD depth of peak compressive residual stress 
PCS magnitude of peak compressive residual stress 
PTS magnitude of residual stress at the surface 
SD settling distance of residual stress profile 
δ′ random disturbance 
ζ damping coefficient 
ω0-ωd undamped and damped frequencies 
ϕ phase angle 

2. Experiments 

2.1. Milling GTD-111 

Milling experiments on GTD-111 were conducted in 
the Clemson University – International Center for 
Automotive Research (CU-ICAR). A rectangular block 
of GTD-111 with dimensions of 120 x 70 x 30 mm3 was 
prepared, and an indexable Sandvik tool (15.875 mm 
diameter) was used, with two multi-layer TiAlN coated 
tungsten carbide inserts of type “R390-11T308M-PM 
1030”. Coolant was flooded on the tool-workpiece 
contact zone throughout the duration of the test. Two 
factors (cutting speed and feed) were tested for this 
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material. Three levels of cutting speed (25, 50, and 100 
m/min) and two levels of feed (0.05 and 0.2 mm/rev) 
were employed. The rectangular block was set up in an 
OKUMA GENOS M460-VE 3-axis CNC vertical 
milling machine, and all other parameters were kept 
constant throughout the experiments for consistency, 
with a 9.5 mm width of cut (manufacturer limit of 60% 
tool engagement) and 0.5 mm depth of cut. 

2.2. Turning IN-100 

Face turning experiments on the nickel-based 
superalloy IN-100 (typically obtained via powder 
metallurgy route and used as disc superalloy for aircraft 
engines) were conducted in the Manufacturing & 
Automation Research Laboratory of Rutgers University 
to see the effects of cutting edge radius and addition of 
coating. A 113 mm diameter IN-100 disc was prepared, 
and a TPG432 insert type tool with a 0.8 mm nose radius 
and a 11° relief angle was used. Uncoated WC/Co tools 
with three different edge radii (Sharp, 10, and 25 μm) 
were used, and a layer of TiAlN coating was applied on 
a sharp tool to have a tool with approximately 10 μm 
edge radius. Cutting speed, feed, and depth of cut were 
fixed at 24 m/min, 0.05 mm/rev, and 1 mm respectively. 

2.3. Residual stress measurements 

Machining-induced residual stresses were measured 
using XRD on the rectangular blocks of GTD-111 and 
thin discs of IN-100 at 6 different depths: at the surface, 
and approximately 10, 25, 50, 80, and 125 μm deep 
below the surface. For the end-milled GTD-111 blocks, 
longitudinal residual stresses were measured, and for the 
face turned IN-100 disks, circumferential and radial 
residual stresses were measured [24,29]. Depth levels 
were selected in such a fashion that most (if not all) of 
the features of the residual stress profile could be 
captured. A ProtoXRD unit with Mn-Cu-Kα radiation 
(2.1Å wavelength) at 17 kV and 4 mA, and 1x2 mm 
beam spot size was used to acquire diffraction peaks at 
155° 2θ angles for the {311} Miller indices. Surface was 
electropolished after each layer of measurement to 
obtain results from each successive layer of machined 
workpiece, and therefore obtain residual stress profiles 
of each test along the depth of the material. Results 
showed that the standard error is low (5-10% of the 
value of the peak compressive stress). 

3. Modeling 

3.1. Sinusoidal decay function 

Although researchers have created mathematical 
models to fit functions to the residual stress profiles, 

these models have been limited to polynomial fits [9,25]. 
With polynomial fits, the advantage is the freedom in 
determination of the number of terms (thus the number 
of coefficients). The order of the polynomial can be set 
to any value up to one less than the number of data 
points, requiring a degree of subjectivity by the modeler. 

However, it is determined by researchers that the 
residual stress profile after machining conventionally 
follows a similar pattern: A tensile (or small 
compressive) peak at the surface, followed by a 
compressive peak, settling at a distance without 
becoming positive again, or very small positive values 
[1-3]. On one hand, it is possible to represent this 
behavior using polynomial fits, but many terms may be 
needed to model with good accuracy. On the other hand, 
it is possible to represent this behavior using a sinusoidal 
decay function, as it resembles the underdamped 
oscillation of an impulse-loaded spring-mass-damper 
system. Such a system can be represented using Eq. (1). 
With such a function, the number of terms in the 
equation is fixed, and the model never becomes more 
complex. Since the residual stress profile resembles the 
sinusoidal decay curve (and the fact that a third order 
polynomial may not be able to represent such behavior), 
this model could be applied to residual stress profiles of 
different materials, processes, or machining conditions. 
Only when a residual stress profile that does not follow a 
sinusoidal decay behavior is observed, this model will 
not be able to represent the data. This is usually the case 
with destructive methods of residual stress measurement 
such as hole drilling, which is not suitable for immediate 
sub-surface residual stress measurements. 

 (1) 

The surface stress is represented with both amplitude 
and phase angle, so there is no need to have any 
restrictions on either. Therefore, phase angle is ranged 
between ϕ=[–π, +π], and the amplitude is ranged 
between C=[0, 10000] MPa. Negative values are not 
included because phase angle covers the whole range of 
stress, and narrowing the search domain increases the 
search quality. The damped frequency is proportional to 
the inverse of the period of the wave, and since it was 
estimated that the function would settle around 200 μm, 
ωd is restricted to [0, 0.06] mm-1. At lower ωd, the period 
of the wave gets longer, representing deeper settling 
distances. At ωd values close to 0.06 mm-1, period of the 
wave (distance between two compressive peaks) can get 
as small as 100μm. The undamped frequency is related 
to the damped frequency and the damping coefficient 
through Eq. (2), so it is not searched separately. 

 (2) 

The damping coefficient (ς) is important in defining 
how quickly the wave will settle to a near-zero value. 
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Since the desired shape is underdamped, this coefficient 
is mathematically upper-limited at 1. On the other hand, 
if a wave is only slightly damped (e.g. ς<0.5), it would 
oscillate between positive and negative many times, and 
the residual stress profiles conventionally do not exhibit 
such behavior. Therefore, the damping coefficient is also 
lower-limited at 0.7. Although these limitations may be 
counter-productive against having a full-scale search, 
they allow higher resolution in the domain for the same 
computational cost. At the end of each search, if any 
parameter is found to be at its limits, the constraints are 
loosened to search for better solutions. However, it is 
observed that this loosening of the constraints did not 
provide any improvement in minimizing the error. 

3.2. Particle swarm optimization 

In order to find the coefficients of the best sinusoidal 
decay function that fits the experiments, the difference 
between the model and the measurements (to be 
minimized) is found in all experimental points. For 
polynomial fits, particularly for lower order functions, 
calculation of the objective function is straightforward. 
However, for a sinusoidal decay function, an easy direct 
computation of the coefficients is not available. 
Therefore, some type of a search algorithm is needed. 

For this reason, Particle Swarm Optimization (PSO) 
is selected to obtain such coefficients that minimize the 
objective function. PSO is an evolutionary method 
similar to genetic algorithms, which is widely used for 
machining process optimization [26-29]. In this method, 
a set of particles is initialized at random combinations of 
decision variables; in this case, the four identified 
coefficients of Eq. (1). Then, the objective function is 
calculated for each particle, and the best solution is 
identified. Then, each particle is assigned a velocity (Eq. 
3), which determines their position in the next iteration 
(Eq. 4). The factors affecting the velocity vector of a 
particle (vi

n+1) in Eq. (3) are the two predetermined 
acceleration constants (a1 and a2), best position vector of 
the particle (pi), best position vector of any particle (g), 
position vector of the particle at the current iteration 
(xi

n), and a random disturbance (δ′) in [-1,1] to ensure 
the particle is not stuck at local minima and possible 
improvements are not missed. The position of particle i 
is determined by adding its updated velocity multiplied 
by a factor K to its current position (Eq. 4). At the initial 
iterations, K is big so that particles move around more 
freely and investigate the whole domain. As the 
iterations progress, K is lowered (inversely proportional 
to n), allowing the particles to “fine tune” their position. 
The particle and global best vectors pull the particles 
toward them to ensure they investigate the right regions. 

 

 (3) (1) 

 (4) 

At each iteration and for every particle, the bounds 
are checked. So, if the velocity of a particle exceeds a 
predetermined value, it is set to be that limiting value. 
The limitation on the velocity ensures that the particles 
do not make any erratic movements. Also, if the position 
of a particle gets out of bounds, then it is set to the 
bounding value. This way, all particles are maintained 
within the domain. After checking the bounds, the 
objective function is calculated, and personal and global 
best positions are updated. Iterations go on until a 
predetermined number of iterations (N) are finished, and 
it was determined that N=50 iterations are satisfactory 
for this algorithm to settle to a value. A total of 10000 
particles are used to ensure that every region within the 
field is covered. Also, the whole search is repeated 
N′=30 times so that an average value for the best 
solutions can be reached. This averaging ensures that if 
there is a search that results in an unexpected result, that 
search is isolated and the remaining results indicate such 
a behavior. In the end, if the best of the N′=30 results is 
not within one standard deviation of the average of the 
30 results, the whole algorithm is repeated. However, it 
is important to note that such a repetition was never 
needed for the results presented in this work. 

4. Results 

Applying the mathematical model to the machining 
experiments, Eq. (1) coefficients and four key identifiers 
of the residual stress profile (PTS, PCS, PCD, SD) are 
calculated. In addition, R2 values were calculated (Eq. 5) 
to display the goodness of the fit. In this equation, σfit is 
the residual stress fitted by the model at a measurement 
point, σexp is the experimental findings, and is the 
average of the experiments. The higher the R2 value, the 
better the model fits the experimental results. 

 (5) 

Table 1 shows the results of the model for end-milled 
GTD-111. The first six lines are the experimental 
findings used to develop the model, whereas the last line 
is used for confirming the results. It was observed that 
the R2 values changed between 67 to 93%, meaning that 
the model fits the experimental findings well for most of 
the data points. Figure 1 shows the worst and the best 
fits for this material. It was observed from both the 
experiments and the model that the residual stress at the 
surface was compressive for all the cases, which is why 
the phase angle ϕ was above 90o for all cases. The 
damping coefficient was either very close to 1 indicating 
very small oscillation (if any), or very close to the lower 

xi
n+1 = xi

n +Kvi
n+1
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limit (0.7) indicating more oscillations, without any 
observable patterns. The location of the peak 
compressive stress was very similar for the tests, varying 
from 28μm to 47μm below the surface, except for the 
second test, which showed a non-decreasing trend 
throughout the profile. The only pattern recognizable for 
the machining parameters was that with increasing feed, 
peak compressive stress became less compressive, and 
the settling distance increased slightly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After finding the parameter effects, a middle point in 

feed with high cutting speed condition (last row in Table 
1) was tested to validate the results (Figure 2). With 
sinusoidal decay function parameters predicted from 
obtained coefficients of other experiments, the predicted 
residual stress profile had R2=91%, a significantly high 
prediction accuracy. This validation showed that it is 
possible to predict the residual stress profile within 
experimental ranges with good accuracy using a 
sinusoidal decay function fit. 

Table 2 and Table 3 show the results of the model for 
face turned IN-100, in circumferential and radial 
directions respectively. Circumferential stresses showed 
R2 values greater than 95% for all tests, whereas radial 
stresses showed R2 values higher than 86%. Therefore, 
the model fit better to the experimental data for face 
turned IN-100 than end milled GTD-111. It is observed 
from the results that with increasing edge radius, surface 

residual stresses became more tensile in both 
circumferential and radial directions, and the settling 
distance increased for the radial residual stress. Also, 
with the addition of the TiAlN coating, peak 
compressive stresses became smaller (less compressive), 
and the settling and peak compressive stress locations 
got closer to the surface. 

Table 1. Coefficients and results of the model for milling GTD-111 

vc f C ς ωd ϕ R2 PTS PCS PCD SD 
m/min mm   m-1 ° % MPa MPa μm μm 

25 0.05 1444 0.71 16.6 101 91 -273 -570 36 184 
25 0.2 241 0.98 2.3 178 67 -241 -241 0 244 
50 0.05 5250 0.95 7.3 94 86 -388 -784 33 134 
50 0.2 1604 0.72 9.2 109 79 -520 -705 47 313 
100 0.05 1671 0.71 16.2 106 93 -470 -724 32 189 
100 0.2 2294 0.94 9.6 95 75 -194 -382 28 115 
100 0.1 1879 0.78 14 103 91 -423 -672 32 172 

Table 2. Coefficients and results of the model for turning IN-100 
(circumferential direction) 

vc Edge C ς ωd ϕ R2 PTS PCS PCD SD 
m/min    m-1 ° % MPa MPa μm μm 

24 Sharp 3420 0.89 11.5 82 95 478 -462 53 132 
24 10μm 2539 0.71 12.8 71 97 807 -605 87 238 
24 25μm 4792 0.94 6.5 80 98 851 -376 81 166 
24 TiAlN 3349 0.92 60 -76 99 800 -20 55 58 

Table 3. Coefficients and results of the model for turning IN-100 
(radial direction) 

vc Edge C ς ωd ϕ R2 PTS PCS PCD SD 
m/min    m-1 ° % MPa MPa μm μm 

24 Sharp 4848 0.97 6.5 89 86 66 -439 41 120 
24 10μm 1503 0.71 11.2 80 94 266 -413 87 274 
24 25μm 7833 0.89 1.3 88 89 279 -1326 273 652 
24 TiAlN 722 0.72 30.5 63 89 330 -148 42 100 

5. Conclusions 

This work targeted to propose a new method of 
modeling the residual stress profile after machining 
processes using a sinusoidal decay function, which may 
provide a better representation of the profile and hence 
lead to better predictions. 
 Empirical model was built to fit a sinusoidal decay 

function to the residual stress measurements along the 
depth of the profile. 

 Particle Swarm Optimization method was used to 
optimize the fit of the function by minimizing the 
error between the experimental data and the model 
profile. It was found that good model fit with mostly 
R2=80-90% representation of the experimental data is 
possible using such a function. 

 Using the optimized model, findings were confirmed 
by validating with an extra experiment, and a 
significantly good prediction was achieved 
(R2=91%). 

Figure 1: Worse (Test 2 at vc=25 m/min and f=0.2 mm with 
R2=67%) and best (Test 5 with R2=93%) fit residual stress profiles 

After finding the parameter effects, a middle point i

Figure 2: Validation of the model for GTD-111 at vc=100 m/min 
and f=0.1 mm/rev 
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 Optimized model was used to obtain the four key 

residual stress measures that are the PTS, PCS, PCD, 
and SD for all the experiments. These can be directly 
determined for any set of experimental data from the 
fit function. 

 Using these four key measures, effects of machining 
parameters such as the cutting speed, feed, cutting 
edge radius, and use of tool coating were 
investigated. 

 It was found that the model fit the face turning 
experiments of IN-100 better than the end milling 
experiments of GTD-111. 

 The findings of this study can be utilized to further 
improve the efforts of residual stress modeling with 
increased prediction accuracy. 
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