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Abstract 

Assembly represents a significant fraction of overall manufacturing time and total manufacturing cost in the automotive industry. With increasing 
product complexity and variety, humans remain a cost effective solution to meet the needs of flexible manufacturing systems. This element 
necessitates a better understanding of the human role in manufacturing complexity. Presented herein is a framework for enumerating assembly 
variables correlated with the potential for quality defects, presented in the design, process, and human factors domain. A case study is offered 
that illustrates a method to identify variables and their effect on assembly quality for a manual assembly process. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS). 
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1. Introduction 

Automotive manufacturing industries comprise many 
diverse and critical processes that have continually become 
more complex due to decreasing product life cycles and 
increased demand for quality and product variety. Assembly, 
which is a significant portion of automotive manufacturing, is 
a crucial part of the automotive production process and greatly 
contributes to the cost and quality of the final product. Using 
the BMW 7 Series as an example, the projected number of 
variants of this single product line is 1017 [1]. The increased 
complexity and variety of modern assembly lines and vehicles 
has created new avenues for the introduction of assembly 
defects but has also left many opportunities for constant 
improvement and rapid progress.  

Assembly activities are very costly and time intensive, on 
average accounting for 40% of product cost and up to 50% of 
total manufacturing cost [2, 3]. With such a large impact on the 
cost of a product it is easily seen how important reducing 
defects is to the success of an assembled product. This is 
especially true in automotive assembly where single defects can 
result in the loss of thousands of dollars through rework or the 

scrapping of entire vehicles and with frequently changing 
products, the potential for costly defects is rapidly increasing. 

In the automotive market, manufacturer quality is a key 
factor in a customer’s vehicle purchasing decision in part due 
to there being many alternatives for them to choose from. 
During the purchasing decision, a customer will typically 
research the defect rates of vehicles to aid in their decision. One 
source of defect data that is used is J.D. Powers, who measure 
the number of defects per 100 vehicles. Integrity of electrical 
connectors, fit and finish of body panels, and paint quality are 
some of their most emphasized defect categories. Having easily 
accessible defect data available to consumers has forced 
automotive manufacturers to increase their internal quality 
initiatives and adopt new practices in the mitigation of 
assembly defects. This is especially true in manual assembly 
where Vineyard [5], Shibata [6], and Su et al. [7] found that up 
to 40% of total defects resulted from operator error and that 
these defects are not always obvious. 

Research into defining strategies for characterizing 
assembly complexity has shown a strong relationship with final 
product quality. The following is a brief review of these models 
and results.  

http://www.sciencedirect.com/science/journal/22128271


2 Author name / Procedia CIRP 00 (2016) 000–000 

Nomenclature 
  
a Constant 
b Constant 
C Constant 
Cd Coefficient of design complexity 
Ch Coefficient of human factors complexity 
Cp Coefficient of process complexity 
Dac Component design variable 
Dad Assembly design variable 
Dfd Feature design variable 
Di Ease of assembly of workstation i 
Dmc Material design variable 
H0 Null hypothesis 
H1 Alternative hypothesis 

Hcl Cognitive load variable (probability of choosing 
correct part) 

Hef Ergonomics variable 
Htr Training/Experience variable 
Hwe Work environment variable 
K Constant 
k0 Empirical process constant 
k1,2,3 Empirical constants 

KD Arbitrary coefficient for calibration with process 
based complexity 

Nai Number of job elements in workstation i 
Pas Assembly sequence variable 
Pnt Number of tasks in takt variable 
Ptf Tooling/Fixture design variable 
Ptu Assembly takt utilization variable 
Pvt Assembly time variation variable 
SSTij Time spent on job element j in workstation i 
t0  Threshold assembly time 
TAT Total assembly time for the entire product 
TOP Total number of assembly operations 
α1…n Empirical constants 
β1…n Empirical constants 
γ1…n Empirical constants 
μs-  Average of the low (-) 
μs+  Average of the high (+) 

2. Literature Review 

2.1. The Hinckley Model 

Hinckley [8], who based his data on semiconductors for 
home audio products, found that defect per unit (DPU) was 
positively correlated with total assembly time and negatively 
correlated with the number of assembly operations. He defined 
an assembly complexity factor as: 

 
𝐶𝐶𝑓𝑓 = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡0 × 𝑇𝑇𝑇𝑇𝑇𝑇 (1) 

 
The threshold assembly time was included in order to 

calibrate the relationship between the total assembly time and 
the total number of assembly operations. The threshold 

assembly time was defined as the time required to perform the 
simplest assembly operations. Hinckley showed that the 
complexity factor and defect rate showed a positive linear 
correlation on a log-log scale or: 

 
log𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑘𝑘 × log𝐶𝐶𝑓𝑓 − log𝐶𝐶 (2) 

𝐷𝐷𝐷𝐷𝐷𝐷 =
�𝐶𝐶𝑓𝑓�

𝑘𝑘

𝐶𝐶  (3) 

2.2. Shibata Model 

Shibata [6] studied the Hinckley model with the assembly 
of Sony’s compact disc players and found that the Hinckley 
model did not consider assembly design factors nor could it 
evaluate a specific workstation in an overall assembly line. He 
proposed that a prediction model centered on process and 
design based complexity at the workstation level could 
improve on the earlier work. Shibata also used Sony standard 
time, which is a well-known estimation of the standard 
processing time for electronics, to determine assembly time. 
Similar to the Hinckley model, the process based complexity 
factor (𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃) was defined as: 

 

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 = �𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑡𝑡0 × 𝑁𝑁𝑎𝑎𝑎𝑎

𝑁𝑁𝑎𝑎𝑎𝑎

𝑗𝑗=1

 (4) 

 
Shibata then described a similar correlation between the 

process based complexity factor and DPU (5) on a log-log 
scale: 

 
log𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝐾𝐾 × log𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 − log𝐶𝐶 (5) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =
(𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝐾𝐾

𝐶𝐶  (6) 

 
Shibata defined a design based complexity factor (7) and 

then correlated it and DPU (8-9) on a log-log scale: 
 

𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷 =
𝐾𝐾𝐷𝐷
𝐷𝐷𝑖𝑖

 (7) 

log𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑏𝑏 × log𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷 + log 𝑎𝑎 (8) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑎𝑎 × (𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝑏𝑏 (9) 

 
According to Mendenhall and Sincich [9], adding 

independent variables to the regression function will help to 
improve the accuracy and stability. Using this, Shibata derived 
a bivariate prediction model by combining (5) and (8): 

 
log𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑘𝑘1 × log𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 + 𝑘𝑘2 × log𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷 + 𝐶𝐶 (10) 
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2.3. Su, Liu, and Whitney Model 

Su, Liu, and Whitney [7] applied the Shibata model to copier 
assembly and found the Shibata model was not appropriate for 
larger electromechanical products. Su reported the R-squared 
value to be only 0.257 when using the Shibata model. Su [10] 
improved on the Shibata model for copiers partially by using 
Fuji Xerox Standard Time which was more suited to copier 
assembly than Sony Standard Time. Su’s method also utilized 
Ben-Arieh’s [11] fuzzy expert system approach for analyzing 
difficulty of assembly combined with the analytic hierarchy 
process (AHP) and was able to achieve a 0.793 in the 
evaluation of three copier assembly products.  

2.4. Antani Model 

Antani [4] built on the Hinckley, Shibata, and Su models by 
redefining manufacturing complexity as a measure of the 
impact of design, process, and human factors introduced 
variability. It is the first model to include human factors with 
design and process variables as one comprehensive measure of 
manufacturing complexity [4]. The generalized complexity 
model for DPMO (defects per million opportunities) was 
mathematically defined by: 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑘𝑘0 + �𝐶𝐶𝑑𝑑𝐶𝐶𝑝𝑝𝐶𝐶ℎ� ∙ �
𝑘𝑘1
𝑘𝑘2
𝑘𝑘3
� (11) 

 
Antani further split the three sources of variability into 

separate subcomponents by categorizing the key input 
variables for each coefficient. The key input variables were 
derived through literature review in the areas of each source 
variability. The complexity factors were defined as: 

 
𝐶𝐶𝑑𝑑 =  ±𝛼𝛼1𝐷𝐷𝑓𝑓𝑓𝑓 ± 𝛼𝛼2𝐷𝐷𝑎𝑎𝑎𝑎 ± 𝛼𝛼3𝐷𝐷𝑎𝑎𝑐𝑐 ± 𝛼𝛼4𝐷𝐷𝑚𝑚𝑚𝑚 (12) 

 
𝐶𝐶𝑝𝑝 =  ±𝛽𝛽1𝑃𝑃𝑡𝑡𝑡𝑡 ± 𝛽𝛽2𝑃𝑃𝑎𝑎𝑎𝑎 ± 𝛽𝛽3𝑃𝑃𝑛𝑛𝑛𝑛 ± 𝛽𝛽4𝑃𝑃𝑡𝑡𝑡𝑡 ± 𝛽𝛽5𝑃𝑃𝑣𝑣𝑣𝑣  (13) 

  
𝐶𝐶ℎ =  ±𝛾𝛾1𝐻𝐻𝑒𝑒𝑒𝑒 ± 𝛾𝛾2𝐻𝐻𝑡𝑡𝑡𝑡 ± 𝛾𝛾3𝐻𝐻𝑐𝑐𝑐𝑐 ± 𝛾𝛾4𝐻𝐻𝑤𝑤𝑤𝑤 (14) 

 
As stated above, each subcomponent variable was broken 

down into specific measureable input variables. Figure 1 
outlines the input variables for the Assembly Design (𝐷𝐷𝑎𝑎𝑎𝑎) 
variable category of the design driven complexity factor(𝐶𝐶𝑑𝑑) 
used by Antani. 

Antani observed 46 mechanical fastening processes over a 
one year time span, and in turn developed a regression based 
model to predict defects in a fully automated and semi-
automated automotive assembly process. He validated the 
model using three case studies, two highlighting quality 
improvements and one automated process where the human 
factors coefficient played no role, and found the difference in 
actual vs predicted DPMO in each case to be statistically 
negligible and an R-squared value for the developed model of 
0.919. Antani demonstrated the potential of the model as a 
design and optimization tool to evaluate the design, process, 
and human factors. 

3. Methodology 

The methodology used in this research is based on the 
methods developed by Antani [4]. He validated the method 
against both fully-automated and semi-automated processes 
with favorable results as well as showing the potential for his 
model to be used in a much wider group of use cases. The 
research herein seeks to further validate the predictive model 
methodology against a fully manual assembly process. 

3.1. Collected Data 

The chosen process is the human assembly of automotive 
electrical connectors. Antani described electrical defects as 
second in line after mechanical fastening defects based on 
historical analysis of defects over one year of automotive 
production data. From this and knowledge of the readily 
available electrical connector defect data utilized by consumers 
during their vehicle purchasing decision, the human assembly 
of electrical connectors was chosen for this study. This study 
was conducted in an automotive assembly plant in South 
Carolina, USA. 

During the research, 41 input variables were collected for 9 
individual electrical connectors. The connectors were chosen 
based on their actual DPMO data to ensure that electrical 
connectors from high to low DPMO were represented and were 
evaluated on a single vehicle platform. Electrical connector 
defect and input variable information was gathered for 6 
months’ worth of vehicle production to limit the influence of 
production outliers on the results of the regression model. 

3.2. Electrical Connector Complexity Input Variables 

As in previous work, the relationship between complexity 
and defect rate was defined as in equation (11). Due to variation 
in the design principles and manufacturing of mechanical 
fasteners and automotive electrical connectors, a new table of 
input variables was created. The comprehensive tables of key 

Figure 1. Adapted from Antani [4] Assembly Design Variables 

Assembly 
Design (Dad) 

No. of Components 
Assembled 

Torque 

Tolerance Range 

Fastener Visibility 
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input variables for each coefficient can be found in the 
Appendix. Due to the high variability and lack of substantial 
research into defining the relationship between complexity for 
fully manual assembly processes and defect rates, another goal 
of this initial pilot study was to determine which key input 
variables had the most significant impact on the electrical 
connector regression model and reduce future data collection 
requirements as certain variables require a line stoppage to 
collect. 

4. Results 

A total of 41 input variables were recorded for 9 electrical 
connectors along with DPMO data and are shown in the 
Appendix. Minitab was utilized to conduct statistical analysis 
of the predictor variables and to setup the regression model 
using DPMO as the response variable.  

4.1. Analysis of Variables 

Fitted line plots were utilized to analyze each input variable 
and show their respective relationship with DPMO. The plots 
were also used to determine whether higher order fits to the 
variable would significantly benefit the final regression model 
without adding unnecessary complexity. 

Through the analysis of each variable, it was found that 
increasing the order had little to no effect on the increase of R-
squared or R-squared (adj.) value significantly, the largest 
increase found being approximately 7%. Analysis of the input 
variables provides a better understanding of the relationships 
that are occurring within the predictive model. 

4.2. Regression Models 

As described by an Antani, Ordinary Least Squares (OLS) 
regression was conducted to model the relationship between 
DPMO (response variable) and the input variables. OLS 
estimates the equation by determining the minimum sum of the 
squared distances between the sample’s data points and the 
predicted values. 

After the initial analysis of input variables, an initial model 
found in Figure 2 was generated using OLS and Minitab. 

The initial model achieved an R-squared of 0.576 when 
comparing the actual vs predicted DPMO values. 

4.3. Best Subsets Analysis 

A best subsets analysis was performed to help cut down on 
the number of variables used in the regression analysis. The 
best subsets analysis allows the computation of the projected 
predictability of the model, as well as easily compare the 
precision, bias, and variability between the various the models 
by re-computing the model with varied input variables to 
determine the combination of input variables that create the 
best fitting regression model. Through the best subsets 
analysis, the model was able to be reduced from 41 variables 
used in the first iteration to 6 variables during the first best 
subsets iteration while also increasing the R2 to 0.923. The best 
subsets model with the highest R-squared value can be found 
in Figure 3 below. 

Furthermore, by reducing the number of variables included 
in the model, it can be seen that the R-squared value has also 
been dramatically increased.  

The six variables used in the best subsets model were: 

• Engagement length 
• Connector width 
• Connector height 
• Work height 
• Female pigtail 
• Male pigtail 

4.4. Significant Factors in DPMO 

Significant factors were determined by evaluating the effect 
of each input variable on the response variable, DPMO. The 
effect of each variable is the impact the factor has on the 
response when you change the level of the input variable. To 
determine whether or not the effect is statistically significant is 
tested by calculating the p-values while testing the hypothesis 
that: 

 
𝐻𝐻0:𝜇𝜇𝑠𝑠+ − 𝜇𝜇𝑠𝑠− = 0 (15) 

𝐻𝐻1:𝜇𝜇𝑠𝑠+ − 𝜇𝜇𝑠𝑠− ≠ 0 (16) 

 
Where H0 is the null hypothesis or the assumption that there 

is no relationship between two measure phenomena and H1 is Figure 2. First iteration of electrical regression model 
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Figure 3. Best subsets regression model – 6 variables 
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the alternative hypothesis or the assumption that the samples 
were influenced by a non-random cause. The null hypothesis in 
this research was that the variables did not have an impact on 
the DPMO and the alternative hypothesis was that they did 
have an impact. 

The impact of the variable is simply the difference between 
the averages of the high and low with a larger difference 
indicating a more significant impact.  

From the plot in Figure 4, it can be seen that the most 
significant impact for a variable in the best subsets model 
occurs from varying the connector width of the electrical 
connectors and that there appears to be a reduction in the 
response variable (DPMO) while increasing the width. 

The six variables used in the best subsets model ordered 
from most significant impact on top to least significant impact 
on the bottom are: 

 
• Connector width 
• Work height 
• Connector height 
• Engagement length 
• Male pigtail 
• Female pigtail 

4.5. Continuing Efforts 

A completed ANOVA analysis of the input variables will 
lead to supplementary understanding of the relationship 
between each variable and DPMO as well as aid in the final 
selection of key impact variables. Further correlation analysis 
of the input variables is ongoing alongside ANOVA to better 
understand the relationship between the pairs of input variables 
themselves. Complete residual analysis is also ongoing to 
ensure that the regression models provide precise, unbiased 
estimates of the relationship between complexity and DPMO 
based on the requirements of the Ordinary Least Squares 
regression model. 

4.6. Applications in Automotive Assembly 

Using the results of the regression model and a better 
understanding of the significance of each variable’s impact, a 

small pilot study was proposed to further conclude the validity 
of the generated model. Of the six variables used in the best 
subsets regression model above, the impactor that did not 
necessitate a very significant design change of the electrical 
connectors or fixturing was the variables relating to pigtail 
lengths. This limitation was put in place to prevent disruptions 
to scheduled production. It was proposed to complete a trial of 
a lengthened connector to compare actual vs predicted DPMO 
of the adjusted electrical connector. A connector with a high 
defect was chosen and the most likely connector was the front 
door map pocket ambient lightning connector that is located 
inside the left front door panel. The connector can be seen 
below in Figure 5(a). 

This particular connector was chosen due to its higher defect 
rate and ease of access to changes without disrupting 
production to run the trial.  

During the analysis for the trial it was found that when the 
door harness was plugged into the main harness, the connector 
cable going from the branch point to the electrical connector in 
question had a large amount of force able to be applied creating 
the possibility for the connector to be pulled out.  In figure 5(b), 
the lengthened pigtail can be seen allowing more slack to be 
placed on the branch point of the harness as the clips now 
appropriately take the majority of the force when the electrical 
harness is being wired. 

An extended trial is currently being conducted to determine 
the actual effect to the DPMO of the door harness during 
production as an evaluation of the best subsets model.  

5. Conclusion 

Increasing customer demand for greater product quality and 
variety is increasing the focus towards quality in the 
automotive industry as vehicles become more complex. This is 
especially true as vehicle assembly comprises such a large 
portion of the total cost and manufacturing time in the 
automotive industry making defect prediction and elimination 
more imperative.  

The design, process, and human factors complexity model 
for the prediction of defect rates based on the Antani model was 
applied to a fully manual automotive assembly process. Each 
of the 41 variables was analyzed to better understand its 
correlation with defect rate and recognize the relationships that 

Figure 4. Impact effect of variables on DPMO 

Figure 5. Impact effect of variables on DPMO 
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are occurring within the model. A general regression model 
was created by applying all of the collected variables to an OLS 
regression model that resulted in an R-squared value of 0.576. 
The regression model was then simplified through best subsets 
regression modeling resulting in the use of only 6 variables in 
the final model, greatly reducing the data collection 
requirements of the model which were time consuming as well 
as greatly increasing the R-squared to 0.923. The significant 
impactors were then examined and ranked from most to least 
significant impact on DPMO to foster a more thorough 
understanding of the defect prediction model and its variables.  

The model was validated by predicting and demonstrating 
an application on an automotive assembly production line by 
applying the prediction model to door wiring harnesses. A 
potential for defects was found and eliminated that matched the 
proposed significant impact variables for automotive electrical 
connectors and the change is being trialed for production 
release. 

The methodology used in this research has previously been 
validated by Antani for fully-automated and semi-automated 
automotive assembly. With the current research, the model was 
validated against a fully-manual automotive assembly process 
of electrical connectors and shows aptitude as a robust and 
comprehensive measure and correlation of manufacturing 
complexity and product quality for the automotive industry. 

6. Appendix 

Table 1. Product Design Variables 

Class Variable 
Feature Design Engagement length 
 Connector width 
 Connector height 
 Number of conductors 
 Lever direction 
 Locking feature 
 Sealing mechanism type 
 Pigtail length (female) 
 Pigtail length (male) 
 Pin Style 
 Surrounding color 
 Male color 
  Female color 
Assembly Design Engagement force 
 Number of fixed ends 
 Harness breakout direction (Bend angle) 
 Verification operation 
 Connector orientation 
 Visible vs. Blind 
  Connector in confined space 

 

Table 2. Process Design Variables 

Class Variable 
Tooling / Fixture Design Assistance tooling? 
  Are gloves required? 
Assembly Sequence Sequential requirement 
 Part install immediately followed by connect? 
 Where is defect caught? 
  Where is defect corrected? 
Takt information Number of connections per takt 
 Total tasks in takt 
 Tasks at 100% 
 Utilization of takt 

 Utilization variation of takt (options) High 
 Utilization variation of takt (options) Low 
 Number of extra option tasks in takt 
  BVIS notification of connection 

 

Table 3. Human Design Variables 

Class Variable 
Ergonomics Work height 
  Sitting/standing 
Cognitive Load Finding connectors 
  Verification mark/feedback 
Work Environment Stability of work base 
 Presentation of vehicle 
  Lighting 
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