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Abstract 
Assembly for automotive production represents a significant proportion of total manufacturing cost, 
manufacturing time, and overall product cost. Humans remain a cost effective solution to adapt to the 
requirements of increasing product complexity and variety present in today’s flexible manufacturing 
systems. The human element present in the manufacturing system necessitates a better understanding of 
the human role in manufacturing complexity. Presented herein is a framework for enumerating assembly 
variables correlated with the potential for quality defect, presented in the design, process, and human 
factors domain. A case study is offered that illustrates on a manual assembly process the effect that 
complexity variables have on assembly quality. 
 
Keywords: Manual Assembly, Complexity Model, Quality 

1 Introduction 
Automotive manufacturing industries comprise many diverse and critical processes that have 

continually become more complex due to decreasing product life cycles and increased demand for 
quality and product variety. Assembly, which is a significant portion of automotive manufacturing, is a 
crucial part of the automotive production process and greatly contributes to the cost and quality of the 
final product. Using the BMW 7 Series as an example, the projected number of variants of this single 
product line is 1017 (BMW Group, 2013). The increased complexity and variety of modern assembly 
lines and vehicles has created corollary complexity in manufacturing which could introduce additional 
assembly defects but has also driven better understanding and control of assembly quality. The intent of 
this work is to further that understanding for a class of manually-assembled interfaces.  

Assembly activities are very costly and time intensive, on average accounting for 40% of product 
cost and up to 50% of total manufacturing cost (Röhrdanz 1997; Bi et al. 2007). With such a large impact 
on the cost of a product it is clear how important reducing defects is to the success of an assembled 
product. This is especially true in automotive assembly where a single defect can result in the loss of 
thousands of dollars through delayed rework or recall.  



 

 

In the automotive market, brand quality is a key factor in a customers purchasing decision. During 
the purchasing decision, a customer will typically research the defect rates of vehicles, reported in 
databases such as J.D. Powers. Integrity of electrical connectors along with fit and finish of body panels 
and paint quality are some of their most emphasized defect categories. Such easily accessible defect data 
available to consumers has driven automotive manufacturers to continually increase their internal 
quality initiatives and adopt new practices in the mitigation of assembly defects. This is especially true 
in manual assembly where Su et al. (2010), Shibata (2002), and Vineyard (1999) found that up to 40% 
of total defects resulted from operator error and that these defects are not always obvious. 

Research in defining strategies for characterizing assembly complexity has shown a relationship with 
final product quality. Some key assembly complexity models have previously been applied to such 
markets as home audio and office copier production. 

1.1 Hinckley Model 
Hinckley (2003), who based his data on semiconductor products, found that defect per unit (DPU) 

was positively correlated with total assembly time and negatively correlated with the number of 
assembly operations. He defined an assembly complexity factor as:  

 
𝐶" = 𝑇𝐴𝑇 − 𝑡( × 𝑇𝑂𝑃 (1) 

  
Where,  
TAT = Total assembly time for the entire product  
𝑡( = Threshold assembly time  
TOP = Total number of assembly operations  

 
The threshold assembly time was included in order to calibrate the relationship between the total 

assembly time and the total number of assembly operations. The threshold assembly time was defined 
as the time required to perform the  simplest assembly operations. Hinckley showed that the complexity 
factor and defect rate showed a positive linear correlation on a log-log scale or: 

 
log 𝐷𝑃𝑈 = 𝑘 × log 𝐶" − log 𝐶 (2) 

𝐷𝑃𝑈 =
2𝐶"3

4

𝐶  (3) 

Where, C and k are constants  

1.2 Shibata Model 
Shibata (2002) studied the Hinckley model with the assembly of Sony’s compact disc players and 

found that the Hinckley model did not consider assembly design factors nor could it evaluate a specific 
workstation in a larger assembly line. He proposed that a prediction model centered on process and 
design based complexity at the workstation level could improve on the earlier work. Shibata also used 
Sony standard time, a well-known estimation of the standard processing time for electronics, to 
determine assembly time. Similar to the Hinckley model, the process based complexity factor (𝐶𝑓67) 
was defined as: 

 

𝐶𝑓67 =8𝑆𝑆𝑇7: − 𝑡( × 𝑁<7

=>?

:@A

 (4) 

  



 

 

Where,  
𝑆𝑆𝑇7:  = Time spent on job element j in workstation i  
𝑡( = Threshold assembly time  
𝑁<7 = Number of job elements in workstation i  

 
Shibata derived a similar correlation between the process based complexity factor and DPU (5) on a 

log-log scale:  
 

log 𝐷𝑃𝑈7 = 𝐾 × log 𝐶𝑓67 − log 𝐶 (5) 

𝐷𝑃𝑈7 =
(𝐶𝑓67)E

𝐶  (6) 

  
Where, C and K are constants  

 
Shibata than derived a design based complexity factor (7) and correlated it and DPU (8-9) on a log-

log scale: 
 

𝐶𝑓F7 =
𝐾F
𝐷7

 (7) 

log 𝐷𝑃𝑈7 = 𝑏 × log 𝐶𝑓F7 − log 𝑎 (8) 
𝐷𝑃𝑈7 = 𝑎 × (𝐶𝑓67)I (9) 

  
Where,  
𝐾F = Arbitrary coefficient for calibration with process based complexity  
𝐷7 = Ease of assembly of workstation i  
a and b are constants  

 
According to Mendenhall and Sincich (1995), adding independent variables to the regression 

function will help to improve the accuracy and stability. Using this, Shibata derived a bivariate 
prediction model by combining (5) and (8): 
 

log 𝐷𝑃𝑈7 = 𝑘A × log 𝐶𝑓67 + 𝑘K × log 𝐶𝑓F7 + 𝐶 (10) 
 

1.3 Su, Liu, and Whitney Model 
Su, Liu, and Whitney (2010) applied the Shibata model to copier assembly and found the Shibata 

model was not appropriate for larger electromechanical products. Su reported the R-squared value to be 
only 0.257 when using the Shibata model. Su et al. (2009) improved on the Shibata model for copiers 
partially by using Fuji Xerox Standard Time which was more suited to copier assembly than Sony 
Standard Time. Su’s method also utilized Ben-Arieh’s (1993) fuzzy expert system approach for 
analyzing difficulty of assembly combined with the analytic hierarchy process (AHP) and was able to 
achieve an R-squared value of 0.793 in the evaluation of three copier assembly products. 

1.4 Antani Model 
Antani (2014) built on the Hinckley, Shibata, and Su models by redefining manufacturing complexity 

as a measure of the impact of design, process, and human factor variability on assembly. It is the first 



 

 

model to include human factors with design and process variables as one comprehensive measure of 
manufacturing complexity (Antani 2014). The generalized complexity model for defect rate (DPMO, 
defects per million opportunities) was empirically defined by: 

 

𝐷𝑃𝑀𝑂 =	𝑘( + N𝐶O𝐶P𝐶QR ∙ T
𝑘A
𝑘K
𝑘U
V (11) 

  
Where,  
𝑘( = Empirical process constant  
𝐶O = Coefficient of design complexity  
𝐶P = Coefficient of process complexity  
𝐶Q = Coefficient of human factors complexity  
𝑘A,K,U = Empirical constants  
 

Antani further split the three sources of variability into subcomponents by categorizing the key input 
variables under each coefficient. The key input variables were derived through literature review in the 
areas of each source variability and observation in a manufacturing environment. The complexity factors 
were defined as: 

 
𝐶O = 	±𝛼A𝐷"O ± 𝛼K𝐷<O ± 𝛼U𝐷<Z ± 𝛼[𝐷\Z (12) 

  
Where,  
𝛼A…^ = Empirical constants  
𝐷"O = Feature design variable  
𝐷<O = Assembly design variable  
𝐷<Z = Component design variable  
𝐷\Z = Material design variable  

 
𝐶P = 	±𝛽A𝑃 " ± 𝛽K𝑃<a ± 𝛽U𝑃 ` ± 𝛽[𝑃 b ± 𝛽c𝑃d`  (13) 

  
Where,  
𝛽A…^ = Empirical constants  
𝑃 " = Tooling/Fixture design variable  
𝑃<a = Assembly sequence variable  
𝑃 `  = Number of tasks in takt variable  
𝑃 b  = Assembly takt utilization variable  
𝑃d`  = Assembly time variation variable  

  
𝐶Q = 	±𝛾A𝐻g" ± 𝛾K𝐻`h ± 𝛾U𝐻Zi ± 𝛾[𝐻jg (14) 

Where,  
𝛾A…^  = Empirical constants  
𝐷"O = Feature design variable  
𝐷<O = Assembly design variable  
𝐷<Z = Component design variable  
𝐷\Z = Material design variable  

 



 

 

Figure 1 outlines the input variables for the Assembly Design (𝐷<O) variable category of the design 
driven complexity factor (𝐶O) defined by Antani. 

 

 
Figure 1: Antani (2014) assembly design variables 

Antani observed 46 mechanical fastening processes over a one year time span, to eliminate 
production outliers, and developed a regression-based predictive model to predict defects in a fully 
automated and semi-automated automotive assembly process. He validated the model using three case 
studies, two highlighting quality improvements and one automated process where the human factors 
coefficient played no role, and found the actual vs predicted defect rate in each case to be highly 
correlated, with an R-squared value for the developed model of 0.919. Antani demonstrated the potential 
of the model as a design and optimization tool to evaluate the design, process, and human factors on 
product quality prior to entering real-world assembly, and as a process improvement tool. 

2 Methodology 
The methodology used in this research adapts the methods developed by Antani (2014) for use with 

electromechanical connections in a large complex system. Antani’s model has previously been 
successfully validated against both fully-automated and semi-automated mechanical fastening 
processes. The research presented herein seeks to use a fully manual automotive electrical connector 
assembly process to further validate the predictive model methodology and introduces the concept of 
electrical signal continuity as a factor of quality. 

2.1 Complexity Input Variable Ideation 
Following the method described by Antani, the correlation between defect rate and complexity can 

be written as in equation (11). Due to variation in the design principles and manufacturing of mechanical 
fasteners and automotive electrical connectors, a new table of input variables was created. Due to the 
high variability and lack of substantial research into defining the relationship between complexity for 
fully manual assembly processes and defect rates, another goal of this initial study was to determine 
which key input variables had the most significant impact on the electrical connector regression model 
and reduce future data collection requirements as certain variables require a line stoppage to collect. 



 

 

The sources of the complexity variables presented in this work were derived from literature, input 
form technical staff, production workers, and performing process connections on training simulators. 
The complete list of input predictor variables can be found below.   

 
Class Variable 

Feature Design 

Engagement length 
Connector width 
Connector height 
Number of conductors 
Lever direction 
Locking feature 
Sealing mechanism type 
Pigtail length (female) 
Pigtail length (male) 
Pin Style 
Surrounding color 
Male color 
Female color 

Assembly Design 

Engagement force 
Number of fixed ends 
Harness breakout direction (Bend angle) 
Verification operation 
Connector orientation 
Visible vs. Blind 
Connector in confined space 

Table 1: Product electrical connector input variables 

 
Class Variable 

Tooling / Fixture Design Assistance tooling? 
Are gloves required? 

Assembly Sequence 

Sequential requirement 
Part install immediately followed by connect? 
Where is defect caught? 
Where is defect corrected? 

Takt information 

Number of connections per takt 
Total tasks in takt 
Tasks at 100% 
Utilization of takt 
Utilization variation of takt (options) High 
Utilization variation of takt (options) Low 
Number of extra option tasks in takt 
BVIS notification of connection 

Table 2: Process electrical connector input variable 

Class Variable 

Ergonomics Work height 
Sitting/standing 



 

 

Cognitive Load Finding connectors 
Verification mark/feedback 

Work Environment 
Stability of work base 
Presentation of vehicle 
Lighting 

Table 3: Human factors electrical connector input variables 

2.2 Data Collection 
The chosen process of human assembly of automotive electrical connectors was found to be the 

second-most common source of automotive assembly defects by Antani (2014) based on his historical 
analysis of assembly defects over a one-year analysis of automotive production data. Also knowing that 
consumers use J.D. Power’s easily accessible vehicle electrical connector defect data during their 
purchasing decision, the human assembly of automotive electrical connectors was chosen and carried 
out in an automotive assembly  plant in South Carolina, USA. 

Due to the complex and highly variable nature of human assembly (Townsend & Urbanic 2015), a 
strong emphasis was placed on the formation and subsequent collection of the input variables. Through 
literature and process investigation, 41 input variables were collected for 9 electrical connectors. The 
electrical connectors used in this study were highlighted due to their historic defect rate so that a 
representative sample of both high and low rates were represented and evaluated using a single tool. 
Defect data and input variable information was gathered for six months’ worth of vehicle production to 
limit the influence of production outliers on the results of the regression model.  

3 Results 
Minitab was employed to analyze the 41 input variables and defect rate which were recorded for 9 

electrical connectors. The statistical model was generated by using the input variables as predictor 
variables and defect rate as the response variable. 

3.1 Analysis of Predictor Variables 
To better understand the relationship between the individual predictor variables and defect rate, fitted 

line plots were applied to determine their respective correlations or R-squared. The plots gave an 
indication whether a higher order fit would significantly benefit the final regression model fit. A lower 
order fit for each predictor variable was desired in order to eliminate the added complexity to the final 
regression model that higher order coefficients produce. The R-squared and R-squared (adj.) for each 
variable was calculated at a linear, quadratic, and cubic fit level. Figure 2 below represents the largest 
increase in fit from all variables analyzed. As seen in Figure 2(a), the linear fit has an R-squared of .847 
and increases from the cubic fit in Figure 2(b) to .899 which also accumulating two additional terms and 
a higher order to the final model. The analysis of the input variables is a very important step that provides 
a better understanding of the relationships that are occurring within the predictive model. Additional 
Analysis of Variance (ANOVA) would provide the p-values for each predictor variable and assist in 
determining the appropriateness of the rejecting the null hypotheses in a hypothesis test. A p-value less 
than the standard alpha of 0.05 would statistically corroborate that the variable has a significant effect 
on the response variable. Continued analysis of the variables through an ANOVA analysis is planned to 
provide a supplementary understanding of the input predictor variables as well as statistically aid in the 
pre-model and final selection of key impact variables to include in the regression model. 

 



 

 

 
Figure 2: (a) Linear fit DPMO vs connector width, (b) Cubic fit DPMO vs connector width 

3.2 Regression Model Building 
As demonstrated by Antani, Ordinary Least Squares (OLS) regression was conducted to model the 

relationship between the response variable defect rate (DPMO) and the input predictor variables. OLS 
estimates the equation by determining the minimum sum of the squared distances between the sample’s 
data points and the predicted values. Using the knowledge gained through the analysis of the input 
predictor variables, an initial model was built using OLS and can be found in Figure 3 below. The initial 
model achieved an R-squared of 0.576 when comparing predicted vs actual defect rate (DPMO) through 
the use of a linear fit line. A linear fit line was used to assess how well the predicted vs actual defect 
rates align since a 100 percent accurate predictive model should display an R-squared value of 1 as well 
as a fit line coefficient in the linear equation 𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐷𝑃𝑀𝑂) = 𝑎 × 𝑥(𝑎𝑐𝑡𝑢𝑎𝑙	𝐷𝑃𝑀𝑂) of 𝑎 = 1. 

 

(a) 

(b) 



 

 

 
Figure 3: Regression model iteration 1 

To improve the model, best subsets analysis was conducted to increase the R-squared value by 
cutting down on the number of variables used in the regression analysis. Best subsets analysis allows 
the projected predictability, precision, bias, and variability to be computed for each possible 
combination of variables possible in the model. This information will generate the best fitting regression 
model for the predictor and response variables provided.  

 

 
Figure 4: Regression model best subsets iteration 

Through best subsets analysis, the model was able to be cut down from 41 input variables used in 
the first iteration to 6 input variables in the best fitting best subsets regression model. The reduction of 



 

 

variables coincided with an increase in the R-squared value to 0.923 as seen in Figure 4. This was the 
model with the highest R-squared value found through the best subsets analysis. 

The reduction in input variables drastically reduced the data collection requirements for continued 
validation against additional manual electrical connector processes not currently included in the model. 
Additional connectors are needed for validation of the model to assess whether the model is capable of 
predicting more than the connectors used to build the model and has applicability to further automotive 
electrical connector assembly processes. 

The six variables included in the best subsets model were: 

• Engagement length 
• Connector width 
• Connector height 
• Work height 
• Female pigtail 
• Male pigtail 

3.3 Significant Factors in DPMO 
Significant factors were determined by evaluating the effect of each input variable on the response 

variable defect rate (DPMO). The impact or effect of each variable is the measured response on the 
defect rate when the level of each input variable is individually changed. To determine whether or not 
the effect is statistically significant is tested by calculating the p-values while testing the hypothesis that: 

 
𝐻(:𝜇aw − 𝜇ax = 0 (15) 

  

𝐻A:𝜇aw − 𝜇ax ≠ 0 (16) 
 
The impact of the variable is simply the difference between the averages of the high and low with a 

larger difference indicating a more significant impact. 
 

  Engage. length Conn. width Conn. height Female Pigtail Male Pigtail Work Height 

Conn. 1 -1 -1 -1 1 -1 1 
Conn. 2 1 -1 -1 1 -1 1 
Conn. 3 -1 -1 -1 1 -1 -1 
Conn. 4 -1 -1 -1 -1 1 -1 
Conn. 5 -1 -1 -1 -1 1 1 
Conn. 6 1 -1 1 -1 1 -1 
Conn. 7 -1 1 -1 1 -1 -1 
Conn. 8 -1 1 -1 -1 1 -1 
Conn. 9 1 1 1 -1 1 -1 
       

Avg(+) 479 78 371 590 557 854 
Avg(-) 618 818 629 557 590 430 

Impact Effect -139 -740 -259 33 -33 424 
Table 4: Best subsets input variables impact factors 

From the table above, the impact of each variable in the best subsets regression model can be plotted 
to better illustrate the response resulting from the change in a particular variable. 



 

 

 

 
Figure 5: Impact effects of variables on defect rate 

From Figure 5, it can be seen that the most significant impact for a variable in the best subsets model 
occurs from varying the connector width of the electrical connectors and that there appears to be a 
reduction in the response variable or defect rate (DPMO) while increasing the width. The impact 
variables from most significant to least significant: 

• Connector width 
• Work height 
• Connector height 
• Engagement length 
• Male pigtail 
• Female pigtail 

3.4 Application in Automotive Assembly 
A pilot study was proposed to test the results of the best subsets regression model and to further 

conclude the validity of the generated model. Of the six variables used in the final model, the highest 
impact variable that did not necessitate a very significant design or fixturing change to test were the 
variables relating to pigtail lengths. This limitation was imposed to not disrupt the current scheduled 
production. It was proposed to complete a trial of a lengthened connector to compare predicted vs actual 
defect rate of the adjusted electrical connector. A connector with a high defect, short lead time, and ease 
of change without disrupting scheduled production was desired and the most likely connector was the 
front door map pocket ambient lighting connector that is located inside the front left door panel. The 
connector can be seen in Figure 6 below.  

During the analysis for the trial of the door wiring harness change, it was found that when the door 
harness was plugged into the main door harness, the connector cable going from the branch point to the 
electrical connector in question had the potential to have a large amount of force applied creating the 
possibility for the connector to be pulled out creating an electrical connector defect. In Figure 6(b), the 
lengthened pigtail highlighted allows for the majority of potential defect creating force to be placed on 
the clips holding the wiring harness rather than the electrical connector. An extended trial is currently 



 

 

being conducted to determine the changes effect on the DPMO of the door harness connector during 
production as an evaluation of the final regression model. 

 

 
Figure 6: (a) Front door wiring harness prior to improvement; (b) Front door wiring harness post change, 

length change circled 

4 Conclusion 
Continuously changing and more complex products are increasing the focus towards quality in the 

automotive industry. This is especially true as vehicle assembly comprises such a large portion of the 
total cost and manufacturing time in the automotive industry making defect prediction and elimination 
more imperative.  

The design, process, and human factors complexity model for the prediction of defect rates was 
applied to a fully manual automotive assembly process. Each of the 41 variables was analyzed to better 
understand its correlation with defect rate and recognize the relationships that are occurring within the 
model. A general regression model was created by applying all of the collected variables to an OLS 
regression model that resulted in an R-squared value of 0.576. The regression model was then simplified 
through best subsets regression modeling resulting in the use of only 6 variables in the final model, 
greatly reducing the data collection requirements of the model which were time consuming as well as 
greatly increasing the R-squared to 0.923. The significant impactors were then examined and ranked 
from most to least significant impact on DPMO to foster a more thorough understanding of the defect 
prediction model and its variables.  

The model was validated by predicting and demonstrating an application on an automotive assembly 
production line by applying the prediction model to door wiring harnesses. A potential for defects was 
found and eliminated that matched the proposed significant impact variables for automotive electrical 
connectors and the change is being trialed for production release. 

The methodology used in this research has previously been validated by Antani for fully-automated 
and semi-automated automotive assembly. With the current research, the model was validated against a 
fully-manual automotive assembly process of electrical connectors and shows aptitude as a robust and 

(a) (b) 

Elec. Conn. 

Branch 

Clip 

Clip 



 

 

comprehensive measure and correlation of manufacturing complexity and product quality for the 
automotive industry. 
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