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ABSTRACT  

Diseased heart valves are commonly replaced by mechanical, bioprosthetic, or 

allograft heart valves. These replacements provide major improvements in cardiac 

function and quality of life, but have significant limitations and eventually require surgical 

replacement within 15-20 years. These risks are particularly prominent in pediatric 

patients and young adults. The field of tissue engineering and regenerative medicine, 

which combines scaffolds and cells, holds great promise in developing living replacement 

heart valves that would self-repair and grow in size along with the growing children. 

The long-term goal of this project is to generate living, tissue-engineered heart 

valves from biological scaffolds and autologous stem cells – a goal that hinges on our 

ability to create tissue devices that withstand mechanical stresses immediately upon 

implantation without posing risks of immunological rejection. We hypothesized that 

these valves can be generated by optimal integration of three main factors: acellular heart 

valve root scaffolds, autologous stem cells, and construct preconditioning in a bioreactor. 

Furthermore, we hypothesized that the valves would not be generated without advanced 

bioreactor systems for the development, conditioning, and translation to clinical practice. 

To reach this goal, we developed integrated platform technologies for complete 

aortic valve root (AVR) decellularization, stem cell seeding, and dynamic conditioning 

before implantation. Unique features include universal “no touch” valve-mounting devices, 

decellularization in a purpose-designed pulsatile perfusion system, and techniques for in 

vitro re-vitalization with adipose tissue-derived stem cells (hADSCs) followed by 

progressive conditioning in our heart valve bioreactors. Acellular porcine AVRs seeded 
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with autologous (sheep) ADSCs were implanted in 10 sheep as right ventricle to 

pulmonary artery shunts with complete clamping of the pulmonary aorta. 

Results showed perfect decellularization of the entire porcine AVR and almost 

complete seeding with ADSCs. Bioreactor studies revealed stem cell pre-differentiation 

into cells resembling valvular interstitial cells as a response to dynamic stimulation. 

Animal studies with follow-ups to 12 months are ongoing. 

Novel customized devices and bioreactor systems are vital to the successful 

development of tissue engineered heart valve products, especially in preparation for 

clinical translation. Herein is described some of the basic equipment and expertise 

necessary for the successful development of tissue-engineered cardiovascular products. 
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CHAPTER 1: BACKGROUND INFORMATION 

1.1 Anatomy and Physiology 

1.1.1 Cardiac Anatomy and Physiology 

The heart has two double-chambered pumps pictured in Figure 1-1, which 

demonstrates the pressures and flow through the chambers. The right pump pushes blood 

through the lungs, where waste gases are exchanged for nutritional gasses while the left 

pump propels blood through the peripheral organs. Within each pump, blood first enters 

the superior chamber, the atrium, which moves the blood through an atrioventricular 

valve into the ventricle, the inferior chamber. When these ventricles contract, blood 

propels through the pulmonary (right side) valve or ventricular (left side) valve and 

through the rest of the body. Following contraction, the pulmonary and aortic valves 

close to prevent blood flow back 

through the heart.[1]  

The pumping heart is a 

dynamic feedback system that 

changes its physical and chemical 

outputs according to the body’s 

needs. Under average normal 

resting conditions, the heart beats 

about 70 times per minute (bpm), 

ejecting 70 mL (stroke volume) of 

its left ventricular volume of 120 

 
Figure 1-1: Blood flow through the heart 
Normotensive blood pressures are given in the green boxes for 
each chamber or area of the heart. However, these values can 
vary greatly and still be considered normal.[1,180] 
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mL (end-diastolic volume) each beat.[2,3] This results in a total of about 4.9 liters of 

blood flow per minute. The ventricles’ cyclic contractions create pressures that drive the 

blood through the circulatory system. Upon contraction, the pressure in the left ventricle 

increases to approximately 120 mmHg. Almost simultaneously, the aortic valve snaps 

shut and blood flows away from the heart along the pressure gradient. As the pressure in 

the aorta drops toward 80 mmHg, the left ventricle has begun its contraction to pump 

another bolus of blood and return the pressure to 120 mmHg. Figure 1-2 shows the left 

ventricular volumes and pressures as described above.[1]  

 
Figure 1-2: The cardiac cycle for the left heart 
By studying the pressure and volume correlations with time, we can understand the function and 
performace features of the heart that allow it to perform incredibly over a person’s lifetime.[1] 
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1.1.2 Valvular and Cellular Anatomy 

Aortic Valves, Cusps, and Extracellular Matrix 

The heart valves are excellent examples of durability, design, and adaptability not 

found in man-made materials. The physiological composition of a human aortic heart 

valve is optimized to withstand rigorous physical stresses and to respond to  small 

pressure changes during the diastolic and systolic stages of the cardiac cycle. It is 

constructed with very strong, yet very pliable fibrous tissue with three heterogeneous 

cusps attached to an annular ring  and wall 

of the aorta (Figure 1-3a).[4] With every 

beat of the heart, the aortic valve, which 

acts as a one-way check valve, is opened to 

progressively move blood through the 

pulmonary and systemic circulation of the 

body and closed to prevent retrograde flow 

during diastole.[1,5] The continuous 

performance at 850 milliseconds per cycle 

leads to a lifetime average of more than 

three billion cycles.[6,7] Further, the 

trans-valvular pressures across the aortic 

valve change from roughly zero to 120 

mmHg in the course of only 17-20 

milliseconds that is required for the valves 

to close. This leads to a 13% 

 
Figure 1-3: Aortic valve anatomy 
a) Aortic valve dissected for viewing.[181] b) cross 
section of a cusp, showing the three layers.[182] 
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circumferential and a 24% radial cusp stretch.[7] As a result, the heart valves are 

unequivocally the most mechanically stressed tissues in the body.[8] 

The cusps themselves have almost no blood vessels, but are thin enough to be 

nourished predominately by diffusion from blood.[1] They also have no active part in 

opening and closing, but act solely in a passive manner in response to flow and pressure 

differentials. When they open during systole, they press against the aortic root wall and 

when they snap close at the start of diastole, they perfectly align to create a seal that can 

prevent backflow even with the 100 mmHg transvalvular pressure difference.[1] The 

free edge of each cusp attaches to the portion of the aortic root surrounding one of the 

three aortic sinuses. The indentations of these sinuses change the fluid dynamics of the 

valve and likely cause the formation of vortices that aid valve closure.[9] Two of the 

sinuses lead to coronary arteries and are therefore named the left coronary, right coronary, 

and noncoronary sinuses. 

The aortic valve cusps are comprised of three distinct layers: the ventricularis, 

spongiosa, and fibrosa. These layers contain valvular endothelial cells (VECs), valvular 

interstitial cells (VICs), collagen, elastin, and glycosaminoglycans (GAGs) in a formation 

that provide the necessary biomechanical properties to withstand the 40 million rigorous 

cycles of loading each year. Figure 1-3b shows a view of the aortic valve and a cross-

sectional view of a cusp. Error! Reference source not found. displays each component’s 

locations and major functions. Collagen gives the valve strength to withstand the 

pressures when closed while maintaining coaptation. Elastin extends and recoils in every 

valve cycle as the cusp moves. GAGs absorb the shear forces between the ventricularis 

and fibrosa layers.[10] 
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Valvular Endothelial Cells 

Although VECs are very similar to other endothelial cells at their basic structural 

and functional levels, they are phenotypically distinct from endothelial cells in various 

locations in the circulatory system, even in locations in close proximity, such as the 

adjacent aortic wall. Their differences possibly allow VECs to interact with VICs to 

mediate disease and maintain valve tissue integrity. An example of differences between 

VECs and other endothelial cells is their alignment perpendicular to flow while most 

endothelial cells align parallel to flow and their transcriptional gene expression profiles 

differ under the same mechanical environment. Differences even go so far as to distinguish 

between transcriptional profiles of endothelial cells on the aortic side versus the 

ventricular side of cusps.[10,11] 

Table 1-1: Key cellular and extracellular matrix components of the aortic valve 
Although not isolated in regions, many components of the aortic valve have primary locations and 
functions.[10,183,184] 

Component Location Putative Function Comments 

Endothelial 
cells (VECs) 

Lining inflow and 
outflow valve 

surfaces 

Provide 
thromboresistance, 

mediation of 
inflammation 

Role in transducing shear and 
modulating VIC function; Functional 

differences from vascular wall EC 

Interstitial 
cells (VICs) 

Deep to surface, 
throughout all 

layers 

Synthesize and 
remodel matrix 

elements 

Currently considered the major 
modulator of long-term valve durability 

and a key mediator of disease 

Collagen 

All layers; 
Dense and 

circumferentially 
aligned in fibrosa 

layer. 

Provides strength and 
stiffness to maintain 

coaptation against the 
pressure gradient 

during diastole 

Likely the most important structural 
element; Crimp and alignment provide 

directional anisotropy of properties 
and accommodate cyclical cuspal shape 

changes 

Glycos-
amino-
glycans 
(GAGs) 

Concentrated in 
spongiosa layer 

Absorb shear and 
cushion shock 

between ventricularis 
and fibrosa during 

cyclical valve motion 

Distribution of forces aid in longevity of 
valve components 

Elastin 
Concentrated and 
radially aligned in 
ventricularis layer 

Maintains valve 
resilience and allows 
stretch in response to 

pressure changes 

Extend in diastole, recoil in systole 
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Valvular Interstitial Cells 

VICs are the most abundant type of cell in the heart valve. Under normal 

conditions, they synthesize extracellular matrix (ECM), and express matrix-degrading 

enzymes such as matrix metalloproteinases (MMPs) and MMP tissue inhibitors (TIMPs). 

These syntheses explain how VICs mediate the remodeling of the ECM structural 

components, thereby continuously repairing functional damage to collagen and other 

ECM components in the valve.[11] In all, five distinct phenotypes of VICs have been 

classified, providing a diverse and dynamic population of cells in the valve. They include 

embryonic progenitor endothelial/mesenchymal cells (eVICs), quiescent VICs (qVICs), 

activated VICs (aVICs), postdevelopmental/adult progenitor VICs (pVICs), and 

osteoblastic VICs (obVICs).[12] Error! Reference source not found. gives a brief 

overview of the characteristics of all five phenotypes of VICs. 

A vast majority of adult VICs in situ are qVICs, having characteristics of 

fibroblasts. qVICS phenotypically change into myofibroblast-like aVICs upon external 

Table 1-2: Characteristics of VIC phenotypes 
CD34 and CD133 are stem cell markers; S100 is an intracellular calcium-biniding protein.[11,12] 

Cell Type Location Function 

eVICs Embryonic cardiac 
cushions 

Give rise to resident qVICs, possibly through an activated 
stage; EMT can be detected by the loss of endothelial 

markers and gain of mesenchymal markers 

qVICs Heart valve leaflet Maintain physiological, normal valve structure and function 
and inhibit angiogenesis in the leaflets 

pVICs Bone marrow, circulation, 
and/or heart valve leaflet 

Enter valve or are resident in valve to provide aVICs to 
repair the heart valve, may express CD34, CD133, and/or 

S100 

aVICs Heart valve leaflet 

α-SMA containing VICs with activated cellular repair 
processes including proliferation, migration, and matrix 

remodeling; respond to valve injury caused by pathological 
conditions and abnormal hemodynamic/mechanical forces 

obVICs Heart valve leaflet 
Mediate calcification, chondrogenesis, and osteogenesis in 
the heart valve; secrete alkaline phosphatase, osteocalcin, 

osteopontin, bone sialoprotein 
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macroscopic stimuli such as alterations in the mechanical environment, certain chemical 

signals, or in response to injury. aVICs are characterized by an increase in stiffness, 

expression of alpha smooth muscle actin (α-SMA), and increased ECM biosynthesis.[13] 

This phenotypic change is healthy at a small scale for repair, but is widespread during 

development, after abrupt changes in the mechanical stress state of valves, and in disease 

states. 

In conditions that promote valve calcification, qVICs and possibly pVICs can 

differentiate into obVICs, which actively participate in the valve calcification process. 

There is currently no evidence that obVICs are a separate cell population from aVICs, 

but the osteoblastic differentiation and calcification promotion of VICs significantly 

differs from normal aVIC activity, thereby warranting its own category.[12] 

Summary of VIC Phenotype Markers 

eVICs are present in development. Similar processes are thought to be present in 

the initial stages of disease, but a distinct cell type is not anticipated in these mature 

sources.  

qVICs show two types of intercellular junctions: gap junctions and adhesion 

junctions, as seen by the expression of transmembrane gap junction proteins Connexin-

26 and -45. Cell-cell adhesion junctions are especially present between the long processes 

of adjacent cells as detected by small amounts of N-Cadherin and desmoglein.[12]  

pVICs are found as other cell types in the body such as endothelial progenitor cells 

(EPC) and dendritic cells (DC). EPCs can be identified by stem cell markers such as 
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CD133 and CD34, a high proliferative capacity, and the ability to form blood vessels. DCs 

are identified by an intracellular calcium binding protein, S100.[12] 

aVICs are most often characterized by expression of α-SMA, which is normally 

not found in qVICs. They also have the features of myofibroblasts: increased contraction, 

prominent stress fibers, and other contractile proteins. Activated VICs also increase the 

secretion of cytokines, such as TGF-β.[12] 

obVICs express markers that characterize osteoblasts in bone such as alkaline 

phosphatase, osteocalcin, and osteopontin. There is no clearly defined method of 

identifying a VIC in the osteoblastic state.[11] 

1.2 Aortic Valvular Disease 

1.2.1 Worldwide Prevalence 

Although most people’s heart valves will last their entire lifetime and cycle about 

3 billion times, about 2% of the American population will be affected by heart valve 

disease.[14] By 2011, it was estimated that roughly four million people in the United 

States were diagnosed annually with a heart valve disorder.[15] Worldwide, over 

300,000 heart valves are replaced every year.[15–17]  

However, this number is not representative of the actual number patients in need 

of valve replacements. Statistically, 80% of all cardiovascular disease occurs in developing 

countries,[18–20] but 85% of all open-heart procedures are performed in developed 

countries representing 11% of the world population.[21,22] In developing countries, 

economies cannot support the vast number of open heart surgeries or valve replacements 

that would actually help the population. Furthermore, in those developing countries, we 
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see that it is children and young adults[20,21] that are the demographic most affected, 

not the population over 65 as is seen in the United States.[23] 

While the majority of causes for heart valve diseases in industrialized nations is 

degenerative pathology, inhabitants of developing nations also often suffer from the 

persistent burden of rheumatic fever.[15,24] However, As the economies of these 

developing countries grow, so will healthcare. The cause of valve degeneration will  shift  

and cardiac surgery will become increasingly more accessible to potentially millions more 

who are in need of valve replacements.[21] 

1.2.2 Causes for Valve Disease 

In a normal heart valve, the cyclical stresses (which are often exacerbated in cases 

of genetically malformed valves) and other systemic conditions[20,25] damage the valve 

in the form of micro tears and calcific deposits that must be continuously repaired by the 

specialized valvular interstitial cells (VICs).[7,12,26–29] Mechanical cues play an 

important role in this delicate regulation.[30–33] When an imbalance occurs in this 

damage-repair cycle,[20,34,35] the valve can become diseased.[35–37]  

Valve disease most often occurs in the aortic valve and is commonly classified into 

two main types of abnormalities that disrupt blood flow: regurgitation and stenosis. In 

aortic stenosis, the left ventricle fails to empty adequately following contraction due to  

the aortic valve not opening properly This creates a reduction in the valvular orifice. In 

aortic regurgitation, blood flows backward into the left ventricle after contraction due to 

the aortic valve failing to close properly. This can be caused by stenosis as well as other 

factors.[1] 
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The most frequent cause for aortic regurgitation is stenosis, which occurs when 

the cusps thicken, stiffen, or fuse together, most often due to calcific nodule formation.[38] 

This is most often a result of many risk factors that increase with age, but can also be 

seen in younger patients, especially those with congenital defects such as improper valve 

size, malformed leaflets, or an irregularity in the way the leaflets are attached.[24,39,40] 

In fact, evidence of a high percentage of valve replacement surgery patients having 

congenital abnormalities[41] suggests that patients with a congenital valve defect are 

predisposed to valve disease.[14] Stenosis may also be caused by damage acquired after 

birth as described above such as calcific deposits, changes in the structure of the valve, or 

infections like infective endocarditis and rheumatic fever. 

While there are various causes for each of these problems, the final outcome is the 

same. Both stenosis and regurgitation lead to a reduction in the net stroke volume output 

of the heart, causing it to work harder to pump the same amount of blood through the 

body. Patients suffering from valvular heart disease will eventually need surgical 

intervention to repair or, more frequently, replace the damaged heart valve.[1] 

1.3 Valvular Interstitial Cell Contributions to Stenosis 

1.3.1 Curing Valve Stenosis 

The ability to stop progression, if not completely reverse calcification would be 

the optimal cure for stenotic valvular heart disease. This cure would help the roughly 

30% of patients[42] previously classified as untreatable because they were unable to 

undergo the necessary surgery due to their age, poor health, or immune compromised 

status. The option of a pharmaceutical approach instead of surgical treatment would 
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reduce the factors that often accompany surgery such as hospital recovery, infection, and 

anxiety of open heart surgery.  

This relatively new idea of medicinal treatment has developed in the last 10-15 

years as researchers have found evidence that valvular stenosis is not a passive deposition 

of calcium with degeneration, but is actually an active biological process involving 

endothelial dysfunction, lipid accumulation, inflammation, ostegenic processes, and 

multiple ubiquitous cellular pathways.[14,43,44] Some research in human aortic valves 

and in vivo animal models even suggest that degenerative valvular aortic stenosis is the 

result of active bone formation in the aortic valve that may be mediated by osteoblast-like 

differentiation processes.[45] 

As the evidence grows for an active process of calcification rather than a passive 

occurrence, novel areas are being investigated such as how to identify and classify the 

types of valvular interstitial cells (VICs), determining which exogenic factors contribute 

to calcium formation, and determining which endogenic pathways are involved in the 

pathology of this disease. 

1.3.2 Factors Contributing to VIC Phenotype Shifts and Calcification 

In normal valve function, the macroscopic mechanical stimuli like shear and solid 

stresses are translated into microscopic forces that impact VIC and VEC function. Sensing 

the local tissue microenvironment in response to the external factors, they transduce 

forces through cell-cell and cell-ECM interactions that mediate normal valve function 

and pathobiology. They also respond by transdifferentiating to perform phenotype-

specific duties of maintaining homeostasis, adapting to altered stress states, and repairing 
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ECM components.[10] This phenotypical shift in VICs is a normal occurrence under 

many circumstances. However, certain factors have been identified that excessively 

promote this effect and even cause the cells to start producing calcium, as in obVICs. The 

pathways of this transdifferentiation are shown in Figure 1-4, showing known and 

possible transitions. While there is not a complete knowledge base on every transition, 

some factors have been identified that contribute to certain changes in phenotype.[12] 

Embryonic Progenitor VICs (eVICs) 

eVICs are present during the developmental stages of life. Studies have shown 

that transforming growth factor beta (TGF-β), bone morphogenetic proteins (BMPs), 

Notch, and vascular endothelial growth factor (VEGF) have significant regulatory effects 

on eVICs becoming normal qVICs through the course of valve development. Correct 

levels of each are necessary to properly guide the differentiation.[12] 

Quiescent VICS (qVICs) 

Evidence shows that over several passages in cell culture, qVICs are activated and 

become aVICs, but these culturing conditions have not been deeply investigated in an 

isolated manner. Isolated 

factors that have been 

found to initiate this 

phenotypic shift in vitro 

include cyclic mechanical 

stretch and TGF-β  
Figure 1-4: Known and probable pathways of VIC transdifferentiation 
Hatched arrows depict possible transitions for which there is currently 
no solid evidence.[12] 
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treatment.[11] Moreover, these two factors are synergistic.[46] 

Post-developmental Progenitor VICs (pVICs) 

In response to injury, the number of VICs present increases quickly. This is now 

thought to be a result of pVICs from bone marrow-derived cells, circulating cells, and 

resident valvular progenitor cells being activated to become aVICs. It is not known 

whether pVICs go through the qVIC stage before becoming aVICs.[12] Two specific 

types of pVICs are the endothelial progenitor cell (EPC) and dendritic cell (DC). It is 

possible that these cells share a common circulating progenitor cell: the CD34+ 

hematopoietic stem cell. They have been shown to express mRNA for procollagen α1 and 

differentiate with morphological similarities to native VICs when engrafted into recipient 

heart valves.[47] Progenitor cells from the pulmonary valve have been isolated and 

shown to transition to VIC-like cells in response to TGF-β2. Interestingly, VEGF causes 

these same cells to become endothelium rather than mesenchymal VIC-like cells. 

Activated VICS (aVICs) 

aVICs are the master cells of valves. Under conditions of pathological injury or 

unusual hemodynamic or mechanical stress, qVICs become aVICs and take on the features 

of myofibroblasts. The characteristic marker for aVICs is α-SMA, which is normally not 

found in qVICs. In culture, many VICs may express α-SMA, while exhibiting a number 

of different morphologies. It is believed that under the exogenic factors of injury or 

unusual stress, VECs and macrophages/foam cells are activated, releasing chemokines 

and growth factors that stimulate qVIC activation.[12] The process surrounding aVIC 

activation and leading to valvular heart disease can be seen in Figure 1-5.  
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The normal adult heart valve is well adapted to its physiological environment, 

able to withstand the unique hemodynamic/mechanical stresses under standard 

conditions. Under conditions of pathological injury or abnormal 

hemodynamic/mechanical stresses, VICs become activated through activation of VECs 

and by inflammation and associated cytokine and chemokine signals. Macrophages will 

also be activated. aVICs increase matrix synthesis, up-regulate expression of matrix-

remodeling enzymes, migrate, proliferate and undergo apoptosis, and undergo osteoblast 

transformation. These processes are regulated by a variety of factors, several secreted by 

 
Figure 1-5: Pathways of clinical valve disease 
Pathological injury or abnormal hemodynamic/mechanical stresses can facilitate VICs activation through 
activation of VECs and by inflammation and associated cytokin and chemokine signals, which will also lead 
to macrophage activation. As a result, aVICS increase matrix synthesis, up-regulate expression of matrix-
remodeling enzymes, migrate, proliferate and undergo apoptosis, and undergo osteoblast transformation 
. under the regulation of a variety of factors including those secreted by the aVIC. Progressive clinical valve 
disease can then result from these cellular processes, angiogenesis, chronic inflammation, fibrosis, and 
calcification.[12] 
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the aVIC. If the aVICs continue to promote these cellular processes, angiogenesis, chronic 

inflammation, fibrosis, and calcification result, leading to progressive clinical valve 

disease.[12] 

Osteoblastic VICs (obVICs) 

Currently, there is no evidence that obVICs are a separate cell population from 

aVICs, but they can be classified as VICs that undergo osteoblastic differentiation and 

promote calcification as seen when VICs are cultured in osteogenic and chondrogenic 

culture medium. This classification is useful when considering the evidence of 

cartilaginous nodule and mature lamellar bone presence in explanted valves. Associated 

proteins such as osteopontin, bone sialoprotein, alkaline phosphatase, and BMP-2 and -4 

have also been found. 

Numerous factors have been identified that promote the active calcifying action of 

VICs: TFG-β, 25-hydroxycholesterol, and BMP-2 increased the rate of nodule formation 

when cultured in growth medium supplemented with organic phosphate; Oxidized 

cholesterol stimulates calcified nodule formation; BMPs and TGF-β caused osteoblastic 

differentiation of VICs; VIC calcification and ECM degradation is induced by MMPs and 

may be promoted by Tenascin and early growth response-1 (Egr-1); Oxidized lipids, 

tumor necrosis factor-α (TNF- α), and hyperglycemia may all mediate osteoblast 

differentiation and thus, valvular calcification through pathways activated by BMP2; and 

VECs may transduce external signals to VICs, regulating the aVIC or obVIC 

function.[12] 
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1.3.3 Pathology and Pathways 

Along with factors that affect the individual VIC phenotype and actions, there are 

many larger-scaled factors that contribute to VIC phenotype shifts and calcification. 

General risk factors include age, male gender, hypertension, diabetes mellitus, smoking, 

renal disease, hypercholesterolemia, hyperparathyroidism, and decreased bone mineral 

density.[45] Some literature suggests that the molecular mechanism resembles that of 

atherosclerosis[48] with hypercholesterolemia playing a role in this calcification,[45] 

but statin treatments have had mixed results. Therefore, the overall valvular tissue 

response to disease, which further exacerbates the problem, can be characterized by four 

major processes: 1) accumulation of VICs and inflammatory cells, 2) neovascularization 

or angiogenesis, 3) increased matrix production, and eventually 4) fibrosis and 

calcification.[12] Figure 1-6 shows some of the factors and mechanisms that will be 

discussed. 

Cells 

In response to injury, the number of VICs present increases quickly. This process 

is discussed above. Under normal conditions, when valve repair is complete, excess cells 

undergo apoptosis to restore the balance of cells in the valve. However, in α-actin-positive 

cells, mRNA and protein levels of the G1 and G2 cell cycle checkpoint genes 

p21WAF1/CIP1 and 14-3-3 sigma are down regulated several-fold, possibly giving rise 

to the observed increase in cellular density.[12,48] 
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Angiogenesis 

Normal valves are avascular, but a dramatic increase of angiogenesis in diseased 

conditions has been reported in a close association with valvular stenosis and 

inflammation. Endothelial cells in stenotic valves exhibit CEACAM1, a cell adhesion 

molecule involved in angiogenesis expressed in angiogenic but not quiescent endothelial 

cells. Angiogenic factors, VEGF and MMPs, have also been shown to play a role in valve 

pathology.[45] While the presence of these factors contribute to angiongenesis, down 

regulation of the angioinhibitory factor, chondromodulin-I (chm-I) has been seen to 

permit pathologic angiogenesis in coronary artery endothelial cells. The work partly 

described in Figure 1-6 is the basis for a newly proposed mechanism for the onset of aortic 

valve degeneration where angiogenesis is the main contributing factor.[48] 

ECM 

Certain proteins have been found in the matrix of cardiovascular calcifications that 

are not present in normal cardiovascular tissue. These include osteocalcin, osteopontin, 

osteonectin, TNF-α, BMPs, and many MMPs. Some components, such as the 

extracellular proteins tenascin C and cystatin C, alkaline phosphatase, Egr-1 (induces 

tenascin-C), are present in low levels in normal tissues, but have been found in higher 

levels in calcific valves.[45] 
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Figure 1-6: Degenerative mechanisms in the cardiac valve 
The putative degenerative mechanisms for superficial endothelial cells, valvular interstitial cells, and 
extracellular matrices are shown (A–E). The table is a summary of several factors, including the function, 
mechanism (corresponding to A–E above), and effect on degeneration of the cardiac valve.[48] 
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obVIC Differentiation 

Some work has been done to identify which genes are expressed in obVICs. 

Characteristic gene expression includes those encoding osteocalcin, Sox9, Cbfa-1, Runx2, 

Osterix, Msx2 oteopontin, and bone sialoprotein. Additional genes that have been studied 

are receptor activator of nuclear factor kB ligand (RANKL) and osteoprotegerin (OPG). 

RANKL promotes matrix calcification and induces the expression of osteoblast-

associated genes, transitioning VICs toward an osteogenic phenotype. OPG is present in 

normal valves, but without it, calcification occurs.[14,45] 

Many signals present for cardiac valvulogenesis during development are also 

reported to be present in valve degradation. These include Wnt, TGF-β1, BMP, and 

Notch. In general, the overexpression of these signals results in valve disease and 

calcification.[48] 

1.3.4 Current State 

New observations in human aortic valves support the hypothesis that 

degenerative valvular aortic stenosis is the result of active bone formation in the aortic 

valve, which may be mediated through a process of osteoblast-like differentiation in these 

tissues.[45] 

Some underlying mechanisms have been demonstrated including TGF-β1, 

tenascin-C, VEGF, angiogenesis, inflammation, and MMPs. However, a defining 

molecular target for heart valve disease has not been defined and significant gaps in this 

knowledge still exist. At this time, suppressing inflammation and preventing obVIC 

differentiation appear to be the best ways to prevent calcific progression in valves. 
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Progress needs to be made in the areas of VIC activation, valve stem cell contributions, 

initiation of an osteogenetic gene expression profile, aggravators and inhibitors of valve 

degeneration, what steps precede end-stage stenosis and calcification, and how valve 

calcification can be lessened or reversed. Measures to identify AoV disease earlier and 

treat AoV disease pharmacologically or with less invasive approaches would be a 

significant improvement over the current standard of care. These advances will only be 

possible with a better understanding of the molecular mechanisms underlying valve 

development and disease.[14,45,48] 

1.4 Current Treatments 

1.4.1 Pharmacological 

Once diagnosed with aortic stenosis, there is currently little one can do to reverse 

the damage done to their valve. In the early stages, drugs can be used to ease the pain and 

treat the symptoms, thereby attempting to stop progression of the disease. Examples 

include diuretics to decrease the heart’s workload, beta-blockers to control the heart rate 

and decrease blood pressure, and anticoagulants to decrease the risk of clots forming on 

the diseased heart valve.[38,49] Studies have investigated using statin treatment to treat 

stenotic aortic valves because many of the same processes are characteristic of 

atherosclerosis.[44,45,48] However, there have been mixed results with some showing 

that the use of a statin stopped progression of aortic stenosis[50] while others have 

shown no effect on stenotic progression.[51,52] 
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1.4.2 Replacement Heart Valves 

Ultimately, the only current treatment available for aortic valve stenosis is to 

repair[53,54] or replace the valve, leading to the second most common type of open heart 

surgery in the western world. Without this surgery to replace the valve, 50% of patients 

with aortic stenosis die within two or three years of diagnosis.[42] Repair may involve 

removing calcium deposits, reinforcing a valve that does not close properly, or 

mechanically altering a congenitally defected valve.[38]  

Most diseased valves cannot be repaired. Instead, they are replaced by mechanical 

heart valves (general practice for younger patients), bioprosthetic heart valves (general 

practice for older patients), or allograft heart valves (special cases when available). 

However, these treatments each have major drawbacks (see Figure 1-7). 

Thrombogenicity of the artificial surfaces and induced turbulent flow regimes necessitate 

lifelong antithrombotic therapy for patients with mechanical valves.[55,56] The reliance 

upon an expensive drug therapy 

and the necessity of close patient 

monitoring is undesirable and the 

main factor that has kept 

mechanical valve replacement out 

of developing countries. 

Additionally, pregnancy and 

surgical procedures may require 

temporary suspension of this 

antithrombotic treatment. A 

 
Figure 1-7: Complications with current valve replacements 
Mechanical valves have a very low risk of reoperation, but 
carry a high risk of a major bleeding event that increases with 
implant age. Bioprosthetic valves last a limited amount of 
time, so are the choice for older patients who will likely die of 
other causes before the valve implant fails.[62] 
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solution to the thrombogenicity of 

mechanical valves was the advent 

of bioprosthetic valves (BHVs) that 

are made from either porcine aortic 

valves or bovine pericardium that 

has been chemically fixed to cross-

link the tissue and mask the 

antigens present in the xenogeneic 

materials. These devices do not 

require the anticoagulation drug 

regimen, but are predicted to last 

only about 15-20 years due to calcific degeneration[57,58] and even less in younger 

patients.[11] Allograft or homograft valves are good choices for valve replacements, but 

they also suffer from degradation, chance of rejection, and general lack of availability.[59] 

With these severe limitations, the current treatments have high risk of 

complications (Figure 1-8Figure 1-7)  and are not ideal procedures.[60–64] Furthermore, 

they are sub-par solutions for young adults and children needing valve replacements 

because of infections or birth defects.[24,39,40] In this demographic, multiple revision 

surgeries will be necessary to accommodate the increased degradation rate seen in 

younger patients and lack of device growth along with a growing child,[14,39,40,65] 

which is still a very frequent need in less developed nations.[66,67] 

 
Figure 1-8: Patient survival after valve replacement 
Long term survival rate for patients receiving either type of 
replacement valve is less than 50% after 25 years. While 
mechanical valves can last well beyond that point, they often 
lead to other adverse events.[63] 
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1.4.3 Valve Replacement in Children 

The general drawbacks of current heart valve replacements are accentuated when 

considering that, in contrast to the United States, children and young adults in developing 

nations are the most affected demographic.[20,21,23]  

Current methods of non-replacement treatment for children include repair of the 

valve, reconstruction of the aortic valve with autologous pericardium, or the Ross 

procedure, whereby the patient’s pulmonary valve is moved to the aortic position and 

replaced with a pulmonary homograft.[39,40] This is usually a sufficient short-term 

solution; the pulmonary valve does not have the robustness of an aortic valve, and as such, 

will eventually need replacing with a more traditional option. In recent trials, 

decellularized xenograft valves have even been used in the pulmonary position, 

demonstrating a preliminary shift toward a tissue engineering approach. However, none 

of these solutions are ideal.  

Alternatively, the field of tissue engineering and regenerative medicine holds 

great promise[15,20,68] in developing replacement heart valves that would function just 

as native, healthy valves: not requiring antithrombotic or other pharmacological therapy, 

repairing themselves as micro-damages are incurred, and growing in size along with a 

growing child. As has been eloquently said,[40] “future advances with tissue-engineered 

heart valves […] may change the landscape for valve repair in the paediatric population.” 
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1.5 Heart Valve Tissue Engineering 

1.5.1 Long-Term Goal  

Tissue engineering approaches are being developed that seek to make curative 

solutions for patients in need of long-term treatment of disease and tissue degeneration.  

The constructs that are being researched and tested will not simply compensate for the 

damaged tissue, but rather create living tissue that can be implanted into a human that 

would function just as a native, healthy valve: not requiring antithrombotic or other 

pharmacological therapy, repairing itself as micro-damages are incurred, and growing in 

size along with a growing child.  

Ideally, a tissue engineered heart valve will resemble both the size and shape of 

the native valve, be durable and fully functioning with good hemodynamics, be non-

immunogenic, non-inflammatory, non-thrombogenic, and non-obstructive, respond to 

mechanical and biological cues appropriately, grow in size with the recipient, and adapt 

to changing conditions throughout the life of the recipient and valve. A valve such as this 

would dramatically change the way we treat heart valve disease in children and young 

adults all over the world.  

1.5.2 Valve materials & various approaches 

Multiple methods of creating the above valves are foreseeable and many are being 

thoroughly investigated and developed, such as decellularized animal valves,[69–73] 

polymers,[15,74,75] layered composites,[76–78] and 3D printing.[79,80] Among the 

most researched and advanced methods are those that utilize a decellularized xenographic 

aortic valve as a scaffold.[20,68,81] Combining those easily accessible scaffolds with the 
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patient’s own stem cells before conditioning in a bioreactor and implanting would provide 

a replacement that is fully functional from initial implantation while able to maintain 

matrix homeostasis and reduce valve thrombogenicity for the lifetime of the patient.  

Current progress of xenographic valve preparation has been widely successful in 

decellularizing pulmonary and aortic valve cusps.[82–87] However, when reported, 

investigators note that the aortic wall and sinus wall have not been completely 

decellularized[84] or they do not give definitive proof of complete decellularization.[88] 

1.6 Valve Seeding and Animal Implantations 

The key to achieving an implant capable of repairing itself in response to micro 

tears is the presence of cells to remodel the matrix as necessary.[35,37] In cases where 

the valve implant does not have the adequate mechanical properties to function properly 

upon implantation, in vitro cellular remodeling must prepare the valve scaffold prior to 

implanting.[89–91] Multiple groups have demonstrated cell seeding on the exterior 

surface of valve cusps and some have even achieved some interstitial seeding, though full 

revitalization has not been realized.[92–94] The surfaces of some valves have even been 

repopulated after implantation in animal models,[95,96] but the same is not guaranteed 

in the human system. Even if the valve can be initially covered with cells,[73,97,98] it is 

likely that these cells will need some sort of progressive conditioning to remain attached 

after implantation since application of sudden shear forces can detach cells. Overall, more 

progress is needed to achieve full and consistent external and internal recellularization of 

the cusps and to determine what methods are needed to allow the cells to remain, but 

autologous adult stem cells provide a promising source for this application.[99,100] 
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1.7 Heart Valve Bioreactors 

Another major obstacle to the creation of such tissue engineered heart valves seen 

in many experimental approaches of biodegradable polymer scaffolding[4] is inadequate 

mechanical properties to withstand in vivo forces after implantation.[69] Conversely, 

many stabilized tissues have more than adequate mechanical properties, but are unable to 

degrade appropriately to facilitate the formation of a natural valve or have chemical 

properties that do not facilitate cellular in-growth.[101] As a result, research is being 

focused on decellularized valves that will allow the recipient patient’s cells to infiltrate 

the extra-cellular matrix, repopulate the valve, and eventually replace the slowly 

degrading donor scaffold with newly fabricated extra-cellular matrix.[11,13,57,102,103]  

Bioreactors can be generally defined “as devices in which biological and/or 

biochemical processes develop under closely monitored and tightly controlled 

environmental and operating conditions” such as pH, temperature, pressure, nutrient 

supply, and waste removal.”[104] Bioreactors for heart valves can use these monitored 

and controlled conditions to help develop well-functioning valves.[105] Requirements 

for such bioreactors and examples of previous aortic valve bioreactors are discussed below. 

1.7.1 Bioreactor Requirements 

Freed[106] says that a bioreactor must be able to perform at least one of the 

following five functions: 

(1) Establish a uniform distribution of cells on a three-dimensional scaffold 

(2) Maintain the desired concentration of gases and nutrients in the culture 

medium 
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(3) Provide efficient mass transfer to the growing tissue 

(4) Expose developing tissue to physical stimuli 

(5) Provide information regarding the formation process of 3D tissues, which 

originate from the isolated cells. 

One of the most important controls of a bioreactor is to supply an adequate 

amount of oxygen to a 3D tissue construct. Other biochemical factors, such as carbon 

dioxide and wastes also require adequate transport. In conventional cell culture, this is 

most often done by creating a large liquid to sterile air interface to facilitate the diffusive 

transport of oxygen. In a bioreactor, where the volume of culture medium present is much 

larger than in standard cell culture, additional methods must be used. These methods 

range from a sterile filter open to the external environment in combination with flow of 

the culture medium[107] to coiling gas-permeable tubing inside a culture medium 

reservoir.[108] 

Physical stimuli such as tension, compression, shear stresses, pressure, 

temperature, and pulsatile flow of culture medium improve the structure and mechanical 

properties of engineered tissues.[109,110] These mechanical forces have an integral part 

in regulation of cell phenotype and growth and the repair or degradation of tissues.[109] 

Control of trans-valvular pressure, pulsatile forces, flow rate, frequency, stroke rate, and 

stroke volume are all important design parameters of bioreactor to ensure that the 

necessary physical stimuli are integrated into the design.[110]  
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1.7.2 Current Bioreactors 

Many bioreactor systems have been developed[94,107,111–118] to test and 

precondition valvular constructs prior to implantation. Although they vary in design, 

footprint, capabilities, and valve-holding mechanisms, they each share common attributes 

to be functional.  

Current heart valve bioreactors are designed to test a single valve in vitro at 

different levels of pulsatile flow under controlled conditions in a standard humidified 

incubator at 37°C and 5% CO2. Figure 1-9 shows the common main components of aortic 

valve bioreactors, which include the fundamental components of a driving force to move 

the fluid, a reservoir, a valve holder, a capacitance chamber, a resistive element following 

the capacitance chamber, and a method of gas exchange.[118]  

This schematic gives one representative layout of these components, but many 

bioreactors in use today have variations on placement, type, and extent of use of these 

components. Most bioreactors have control over parameters such as flow, pH, and stroke 

volume and can change those parameters as desired to create varying environments for 

the valves. One use of the controllable parameters is progressive adaptation, where 

increasing amounts of mechanical stimuli are applied to aid strengthening of the tissue 

construct and prevent immediate failure upon implantation.  

There are currently numerous individual laboratories across the country using 

heart valve bioreactors. Many reviews[8,104,106,109,110,119,120] contain extensive 

comparison and assessment of the variations between them. The bioreactors range in 

design, complexity, and function, performing at various levels and accuracy. Valve 

mounting methods and modes of assembly vary, often with little options or ability to 
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accommodate abnormal valve shapes.[8] While many bioreactors are very powerful and 

can achieve high pressurization, few are able to simultaneously subject valves to actual 

physiological conditions of flow and pressure.[108,113,121] Those that can are very 

cumbersome to set up and operate for the duration of an experiment, especially while 

maintaining sterile conditions. Furthermore, independent control of those physiological 

conditions is elusive.[122] Overall, much progress has been made in the area of heart 

valve bioreactors. However, there is still room for improvement. 

 
Figure 1-9: Schematic diagram of a model pulsatile flow bioreactor 
Pulsatile flow loops for heart valve bioreactors all contain these minimum components. However, the form 
and means of use they take may vary from system to system.[110] 
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CHAPTER 2: PROJECT RATIONALE 

2.1 Introduction to Project 

Most diseased heart valves cannot be repaired. Instead, they are replaced by 

mechanical, bioprosthetic, or allograft heart valves. These treatments each have major 

drawbacks and none are ideal for a growing child or young adult. The field of tissue 

engineering & regenerative medicine holds great promise in developing replacement 

heart valves that would function just as native, healthy valves: not requiring 

antithrombotic or other pharmacological therapy, repairing themselves as micro-

damages are incurred, and growing in size along with a growing child. We hypothesized 

that implantable tissue engineered heart valves can be generated by optimal integration 

of three main factors: acellular heart valve root scaffolds, autologous stem cells, and 

construct preconditioning in a bioreactor.  

In our preliminary studies we have developed a heart valve bioreactor and tested 

it with a variety of valves[117] under physiological pressures, but flow rates and shear 

stresses were suboptimal. We have successfully decellularized cusps by simple immersion, 

but not the aortic and sinus walls. We have experimented with interstitial and external 

stem cell seeding followed by dynamic preconditioning, but the surface cells were not well 

retained under flow. Planning for large animal studies has revealed multiple 

translational challenges.  

To address these shortcomings, we proposed to optimize the bioreactor 

performance through engineering design improvements, to achieve full decellularization 

of valve roots by novel, perfusion, pressure, and decellularization methods and devices, 
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and to mechanically precondition stem cell seeded roots under optimal adaptation 

conditions before implantation in large animals. Furthermore, we aimed to demonstrate 

that translational regenerative medicine is feasible with autologous stem cells for tissue 

engineering replacement therapy – a vital stage in the ability to remove barriers in 

commercializing tissue engineered products.[68,123–125] 

2.2 Specific Aims 

2.2.1 Aim 1: Heart Valve Bioreactor Optimization  

Goal 

To modify the heart valve bioreactor system to achieve physiological levels of flow, 

pressure, and shear stresses. 

Approach 

Alternative components (compliance chambers, reservoirs, restrictor valves, etc) 

were developed to allow for physiological levels of flow at pulmonic pressure conditions. 

Shear stresses were increased by adding dextran to the culture media. The controlling 

hardware and software was upgraded to allow simultaneous and independent operation 

of multiple bioreactors and accurate monitoring of the flow and pressure conditions.  

Novelty & Innovation 

Multiple heart valve bioreactors were simultaneously run under physiologic 

conditions with independent controls. 
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2.2.2 Aim 2: Aortic Heart Valve Root Scaffold Preparation 

Goal 

To decellularize all areas of the aortic valve roots (cusps, sinuses, ascending aorta, 

and muscular tissue near cusps). 

Approach 

Cusps were subjected to immersion conditions. The sinuses and ascending aortas 

were subjected to a transmural pressure gradient and cyclical mechanical stretching. 

Muscular areas were subjected to a pressure gradient and large flow through their tissues. 

This variety of techniques was simultaneously applied to the individual areas of the valve 

using a custom-built decellularization device. Histology and DNA analysis was used 

to evaluate the removal of cellular components. Mechanical tests were used to compare 

the valve scaffold with native tissue.  

Novelty & Innovation 

A novel device was designed, manufactured, and used to apply individualized 

conditions to multiple areas of the valve roots. We revealed, for the first time, fully 

acellular aortic valve root scaffolds. 
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2.2.3 Aim 3: Dynamic Conditioning of Cell-seeded Heart Valve Scaffolds 

Hypothesis 

Progressively pre-conditioning stem cell seeded acellular valve scaffolds in the 

improved bioreactor will allow internally seeded cells to migrate within the cusps and 

externally seeded cells to maintain confluent coverage. 

Approach 

Adipose-derived stem cells were manually injected directly and after pre-

inflation into multiple areas of each cusp. Valves were rotated in a cell suspension for 

external coverage. Valves were placed in the bioreactors and flow, pressure, and viscosity 

conditions slowly increased until physiologic levels were reached. Recellularization, cellular 

migration, and cell retention were evaluated using histological and surface microscopy 

techniques.  

Novelty & Innovation 

A novel rotational device was used for external cell seeding of all valve surfaces. 

For the first time, heart valves revitalized with cells adapted to physiologic conditions 

were prepared for implantation. 
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2.2.4 Aim 4: Translation to Pre-Clinical Large Animal Testing 

Goal 

To overcome hurdles encountered while translating tissue engineered heart 

valves into clinically relevant products. 

Approach 

Acellular valve scaffolds were prepared, seeded with autologous adipose-derived 

stem cells and pre-conditioned using the bioreactor. Valves were implanted in young 

adult sheep in a right ventricle to pulmonary artery shunt position. A valve mounting system 

was modified to allow for integrated exchanges between decellularization, sterilization, 

cell seeding, and valve conditioning steps before implantation with minimal handling of 

the valve itself. Methods of aims 2-3 were continuously adjusted as necessary and re-

verified to accommodate the clinical situation. 

Novelty & Innovation 

Stem cell seeded heart valves were implanted in an animal model. Products created 

in labs were effectively translated from bench to bedside, demonstrating translational 

feasibility with autologous stem cells. 
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PART 2: PLATFORM TECHNOLOGIES AND DEVICES 
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CHAPTER 3: A SELF-ADJUSTING, NO-TOUCH DEVICE FOR 

INTEGRATED PROCESSING AND HANDLING OF 

HEART VALVES 

3.1 Introduction to Need 

Advances in replacement heart valves available on the market have been relatively 

stagnant since the introduction of bioprosthetic heart valves in the 1970s. Although 

mechanical valves typically last a patient’s lifetime and bioprosthetic valves do very well 

for a limited time in patients who cannot be on anticoagulants, there is still a need for a 

tissue-engineered valve that can repair itself to last the lifetime of a young adult and grow 

along with a growing child.  

Whether for study or implantation, natural and synthetic heart valve tissue is 

generally subjected to multiple treatment regimes. For instance, xenograft valve tissue 

must be decellularized to remove the native cells prior to either testing or implantation 

and it is common for some of the tissues to become thinner and drastically reduce in 

strength during these processes. In addition, mechanical testing by use of a conditioning 

system can be carried out to examine and alter tissue strength or to ensure suitable 

strength prior to implant.  

Some researchers believe the key to a lasting tissue-engineered heart valve 

replacement lies not only in a mechanically durable scaffold that will function immediately 

upon implantation, but also requires the presence of cells. While some researchers are 

leaving recellularization until after implantation in large animals, others are revitalizing 
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natural or synthetic scaffolds with various cell types in vitro. These cells must not be 

removed through the normal handling of the valve tissue. 

When these products reach the market or even clinical trials, they will also 

undergo the scrutiny of physicians needing a product that will hold up to the conditions 

required for implantation. Whether 

transcatheter deployment or open-heart 

surgery is the route of implantation, 

clinicians often desire a “no-touch” 

product. These products are held by 

external objects up-to and sometimes 

during implantation. 

It has been common to secure valve 

tissue during the various treatment 

regimens by temporarily suturing or 

clipping the tissue to mounting rings 

(Figure 3-1). Unfortunately, physically 

attaching the tissue to the holding device 

can damage the tissue and cause 

mechanical weakening or physical change 

of the tissue. Moreover, securement 

systems generally do not provide a method 

for securing the tissue with a tight seal and 

fluid leakage around the tissue during the 

 
Figure 3-1: Valve holder requiring intense suturing 
Diagram (A) and picture (B) of an example valve 
holder requiring many sutures in standard locations 
to hold a heart valve during testing.[113] (C) A second 
example of a common valve tissue holder.[185] 
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treatment protocols can prevent effective conditioning and/or testing. For instance 

decellularization can lead to a loss of tissue volume, and presently known systems do not 

account for the physical changes of the tissue associated with a volume loss. Thus, with 

present systems, the tissue can become loose in/on the holder and/or leaks can form 

between the tissue and the holder as decellularization takes place. 

Regardless of the stage of the valve replacement technology, researchers and 

clinicians are in need of a device that can effectively grip a heart valve root through the 

entire process of valve preparation, testing, and implantation to prevent damage and 

facilitate easier product development and use. We have developed a device that provides 

for a totally no-touch procedure after initial mounting, secure retention during multiple 

treatment regimens, and self-adjustment to accommodate natural changes in tissue 

volumes. This device is of great benefit for natural or synthetic heart valve tissues alike. 

3.2 Device Materials and Resulting Benefits 

Initially, multiple valve bracing ring designs (Figure 3-2) were used for each of 

various valve preparation devices. Although the initial bracing rings share common sizes 

and some design features, they require constant user intervention when installing or 

transferring valves between devices. Furthermore, the purpose of certain devices required 

some bracing rings to have features that are incompatible with use in other devices. For 

instance, during recellularization, it is necessary to allow flow across the rings outside of 

the valve, but during bioreactor testing, this allows flow to bypass the lumen of the aortic 

root, thereby nullifying the purpose of the bioreactor. 
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3.2.1 Initial Bracing Rings 

Figure 3-2A shows the initial bracing rings with offset ridges to clasp the tissue. 

These are held in place by the initial bioreactor pieces with six bolts (Figure 3-3) and 

require delicate maneuvering to install in place. These are used after tissue 

decellularization and subsequent recellularization and require significant manipulation of 

the tissue to function, thereby risking the sloughing of cells from the tissue surfaces. 

Furthermore, the tissue is at risk of drying out during the valve mounting and assembly 

of the bioreactor that follows. With the development of a larger bioreactor for potential 

use with cow heart valves, larger bracing rings (Figure 3-2C) were created that allowed 

for valves up to 60 mm in outer diameter to be tested, but these pose the same problems 

as the smaller rings. 

 
Figure 3-2: Bracing rings for heart valves 
Multiple sizes, styles, and holding techniques are used for the various bracing rings. (A) and (B) were 
designed initially with various internal diamters and two external diameters for various bioreactors and 
testers. (C) was designed explicitly for the seeding chambers. (D) was designed to be used in the self-
adjusting device for aortic valves while (E) and (F) (courtesy of Chris deBorde) were designed for use in the 
self-adjusting device with mitral valves. 
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3.2.2 Bracing Rings for Cell Seeding 

When a device was developed to aid external cell seeding of heart valves[126] by 

a master’s student in the lab (see section 5.2.3), additional bracing rings were designed. 

These bracing rings contain holes around the outside of the center hole to allow a cell 

suspension to flow around the external surfaces of the valve roots and through the valves 

during rotation of the 

seeding chamber (Figure 

3-2C). After cell seeding, 

the bracing rings are 

replaced by new bracing 

rings not containing 

additional holes before 

placing the valve into the 

bioreactor as above. While 

the transfer of the valve 

from one set of rings to 

another is easier because of 

the indentations made in 

the tissue, it still requires 

handling of the valve that 

contributes to the removal 

of cells from the external 

tissue surfaces. 

 
Figure 3-3: Valve mounting procedure with initial bracing rings 
Details of mounting procedures for stented valves, mechanical valves 
and un-stented valves are shown. e) The basic valve holder, f) holder 
with one o-ring placed in the machined groove (arrow), g) bottom 
mounting ring placed on top of the o-ring (arrow). h) A stented valve 
was placed on top of the bottom mounting ring (arrow), i) a second 
mounting ring placed and o-ring over it and j) pushed slowly. k) Shows 
a mechanical valve (arrow) after mounting between the two rings. l) 
Porcine aortic valve root ready for mounting in bioreactor; m-o) valve 
mounted into a silicone root using 6-10 bottom sutures and 3-6 upper 
sutures (arrows). p) The valve was placed on the holder prepared as 
shown in (g); q) a second ring slid onto the root (arrow), r) a second o-
ring added on top and s) the entire mount inserted into the aortic 
chamber (arrow).[117] 
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3.2.3 Heart Valve Quick-Tester 

Even with these slight improvements, the process of tightly clamping a heart 

valve root between the bracing rings and mounting them in the bioreactor for testing is 

complicated, difficult, and time-consuming. While it was necessary for work with sterile 

valves, a faster and simpler method was desired for testing iterations of synthetic and 

alternative valve designs under non-sterile conditions. 

A novel tester was designed and built in cooperation with an undergraduate 

student for quick assembly and testing to assess integrity and function of valves. As 

shown in Figure 3-4, the primary components in the design are a ventricular chamber, 

bracing rings, an aortic chamber, and a cap. The tester is made from clear acrylic, allowing 

a clear view from all angles of the valve being tested. To manipulate the valve, the user 

operates two bellows so that when the ventricular bellow is squeezed (collapsed), fluid 

moves through the valve into the aortic chamber and the valve opens. The user then 

squeezes the aortic bellow to shut 

the valve and the fluid travels 

through the external tubing to 

return to the ventricular chamber. 

The aortic chamber is attached to 

the ventricular chamber via three 

adjustable draw latches that can 

quickly secure the two chambers 

while allowing for adjustments in 

height for different valve designs. 

 
Figure 3-4: Manual heart valve tester 
This tester can be very quickly assembled and is used for quick 
valve testing. Valves are placed between the bracing rings and 
the metal latched hold all other components together with a 
quick latch. The two rubber bellows are used to pump fluid 
through the valve to evaluate opening and closing. 
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Three screws are used to ensure the cap stays in the correct position and a seal is 

maintained. The tester utilizes the same set of bracing rings as previously described, 

which are placed between the two chambers and held in place by o-ring tension instead 

of bolts. Thus, this heart valve quick-tester results in faster and fewer steps to assemble 

than the bioreactor and thereby provides a faster alternative than previously possible 

when evaluating new valve designs. 

3.2.4 Self-Adjusting, No-Touch Valve-Mounting Device 

While the quick-tester decreased the time and work necessary to test iterations of 

non-sterile valves, there was still a need for a device that would clasp a valve for mounting 

without damaging it, adjust to maintain a constant holding force on the valve tissue, and 

allow for no-touch manipulation and transfer of the valve between devices. A valve-

holding device was designed (Figure 3-5) from the ground up that meets these desires. 

While the bracing rings operate 

under the same clamping principal 

as the above bracing rings, their 

clasping mechanism was 

redesigned to improve hold during 

assembly, eliminate slip during use, 

and provide a better seal around 

the tissue in all processes.  

The rings for this quick-

mount (Figure 3-2D) can be 

 
Figure 3-5: Self-adjusting, no-touch valve mountng device 
Photograph (A), isometric (B), and blow-out (C) views of the 
new device to quickly mount heart valves and provide no-
touch handling throught the preparation process. 
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created in multiple sizes and shapes to hold various heart valve sizes and even types, such 

as the mitral valve (Figure 3-2E&F). In the current configuration, an angled series of 

ledges match together with a precise gap between the two bracing rings to clasp the final 

thickness of the tissue that remains after decellularization. The series of ledges create a 

clasping force that adequately seals around the tissue base. Grooves on the lower bracing 

ring are engaged by co-radial bumps on the upper bracing ring. Those bumps help 

prevent the tissue from slipping during processing as well as during mounting of the 

valve in the mounting device. They puncture the surface of the tissue and prevent slippage 

even when the lower bracing ring is not engaged, as seen in Figure 3-7G, which 

demonstrates the stepwise assembly of an aortic valve into the mounting device. 

After clasping of the tissue, the bracing rings are held in place between two 

interacting threaded casing rings and a spring. The threaded casing rings can be adjusted 

to apply the desired initial amount of force on the clamped tissue. The spring allows that 

force to remain relatively constant during decellularization and the resulting dramatic 

thinning of the clamped tissue. The threaded casing rings contain holes around the 

outside of the center hole. The external ring of holes are used to engage with the 

tightening tools during assembly. The tightening tools have teeth with the appropriate 

heights to rotate the tissue and both bracing rings while not interfering with the 

tightening of the casing rings. In addition to facilitating the tightening of the casing rings, 

the holes can be aligned with one another. In this configuration, the holes allow a cell 

suspension to flow around the external surfaces of the valve roots and through the valves 

during rotation of the seeding chamber, just as with the bracing rings for cell seeding. If 

the external flow is not desired, an o-ring can be placed under the lower external casing 
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ring to prevent passage of fluid from the internal hole to the external series of holes. This 

is beneficial during decellularization to create a pressure differential between the inside 

and outside of the aortic root and during conditioning to cause the culturing medium to 

flow through the valve instead of around it. 

3.2.5 Distal Aortic Root Constrictor and Stabilizer 

When the pressure differential between the inside and outside of the aortic root is 

desired, a plug with a controlled outflow (Figure 3-6A) can be inserted into the distal 

portion of the aortic root and secured with cable ties. This outflow plug has a groove near 

its base in which the tissue and cable ties are seated to prevent tissue slippage. The 

outflow portion of the plug has a barbed fitting that is connected to tubing and can be 

constricted as desired by using external clamps. 

While culturing the aortic root in a bioreactor setting, this plug is replaced by a 

two-piece stand (Figure 3-6B) to keep the valve root from collapsing under the 

backpressure applied during the bioreactor functioning. The first part of the stand 

consists of a ring with holes or grooves 

that is placed around the exterior of the 

aorta. It is attached to the most distal 

portion of the aorta via suturing or an 

internal retaining ring spring. The second 

part of the stand is the supporting ring 

with feet that surround the aortic root, yet 

do not interfere with the coronary arteries. 

 
Figure 3-6: Distal aortic root constrictor and stand 
The aortic flow constrictor (A) has a groove around 
which the aorta and cable ties can be tightened to 
hold the aorta in place for internal pressurization of 
the aortic root. The support stand (B) attaches an 
upper ring to the distal aortic root and uses a support 
stand to prevent the root from collapsing inward 
from the back pressure in the bioreactor. 
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The ledge on the first part of the stand rests on the top of the second part and by turning 

the first part “upside down,” it can accommodate longer or shorter aortic roots without 

the need for a larger or an alternative piece. 

3.3 Method of Device Assembly and Mounting of Fresh Valves 

The method of mounting an aortic heart valve into the self-adjusting, no-touch 

valve-mounting device is described below. While the description uses the most up to date 

bracing rings, it should be noted that the small initial bracing rings, large initial bracing 

rings, and cell seeding rings could all be used in their place. The upper casing ring 

contains counterbore cutouts corresponding to each size. It should also be noted that in 

certain designs, the upper and lower bracing rings may be combined with the upper and 

lower casing rings. 

3.3.1 Tissue Cleaning and Preparation 

Fresh porcine aortic valve roots with ascending aorta up to the branching of the 

brachiocephalic artery were collected from adult pigs at the local abattoir (Snow Creek 

Meat Processing Center; Seneca, SC) and transported to the lab in ddH2O over ice. Aortic 

roots were further dissected to include 6-8 cm of intact aorta, 5-10 mm long coronaries, 

and about 3 cm of mitral valve leaflet and ventricular endocardium tissue with an intact 

mitral-myocardial junction. The valve roots were cleaned of fat and other extraneous 

tissues while maintaining a thin muscular shelf under the muscular cusp and a thin 

muscular layer all around the valve 360° with a thickness matching that of the mitral 

valve leaflet (about 1-3 mm). The coronaries were sutured shut and the valve roots were 

rinsed with ddH2O. 
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3.3.2 Valve Mounting 

The process of assembling the valve-mounting device can be seen in Figure 3-7. 

First, the tightening tool with short teeth is placed on the counter and the upper casing 

ring, spring, and upper bracing ring are placed, upside down, onto the tightening tool. 

 
Figure 3-7: Assembly and mounting of an aortic root in the quick-mount device 
Components of valve mounting device including upper and lower casing rings, upper and lower bracing 
rings, spring, distal root constrictor, and distal root stabilizer ring and stand (A). To assemble, support 
“tower” (B) is placed on the counter and the upper casing ring (C) is placed on the support tower followed 
by the spring and upper bracing ring (D). A fresh aortic root (E) is cleaned and the root is mounted inside 
the support system (F), spread out and temporarily attached (G), and secured in place by the threaded 
outside casing ring using a second tightening tower tool (H). The valve root is then adapted with a fitting 
connector to the aorta (K). 
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The height of the tightening tool allows the valve root to rest on the upper bracing ring 

without touching the countertop below. A prepared valve root is then placed, upside down, 

through the center hole of the upper bracing ring and the mitral valve leaflet and thinned 

endocardium are spread around the surface of the upper bracing ring. The appropriate 

vertical location is achieved by ensuring that the base of each cusp is about 2 mm beyond 

the reach of the upper bracing ring. Any excess muscle or mitral valve that proceeds 

radially to cover the external holes can be trimmed and the tissue pressed into the bumps 

on the upper bracing ring, providing a temporary hold until the lower bracing ring is 

placed onto the assembly. Following the lower bracing ring, the lower casing ring is 

placed, the external holes are aligned, and a second tightening tool with long teeth is 

placed onto the assembly, all while maintaining an exertion of force onto the assembly to 

prevent slippage of the tissue. Following placement of all pieces, the tools can be picked 

up or kept on the counter and used to twist the casing rings and engage the threading. 

The threading should be tightened until the top of the upper casing ring is flush or below 

the top of the lower casing ring. In cases where the tissue is extremely thick or alternative 

bracing rings/devices are used, the upper casing ring can extend above the lower casing 

ring, but should always have at least two full threads engaged. After this initial tightening, 

the spring will provide a relatively constant force on the tissue during any subsequent 

decellularization and processing. 

3.3.3 Distal Aortic Root Stabilization 

In preparation for decellularization, the distal ascending aorta is trimmed flat and 

the outflow plug is inserted into the aorta and secured with cable ties. This plug has a 
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groove near its base and when cable ties are secured around the external diameter of the 

aorta, the tissue and cable ties are held in place within this groove (Figure 3-6A). This 

plug is used to create a pressure differential between the interior and exterior of the valve 

root during further processing. 

When the valve is fully decellularized and any subsequently desired sterilization 

and crosslinking is completed, the aorta can be cut just below the plug to remove any 

unwanted tissue that was clamped. Alternatively, the plug can remain in place to allow 

for more directed cell seeding to the interior of the heart valve during further processing. 

Prior to bioreactor conditioning of the valve root, the two-piece aortic stand 

(Figure 3-6B) is placed around the exterior of the aorta and secured to the tissue via 

suturing or an internal retaining ring. This stand does not interfere with the valve and 

will prevent the root from collapsing during the backpressure created from bioreactor 

functioning.  

3.4 Discussion of Integration into Valve Preparation Process 

With the self-adjusting mounting device, a researcher can mount a fresh valve and 

transfer the valve between processing stages all the way to implantation without 

removing the valve from the mounting device or even touching the valve directly. One 

benefit that is highly desired by clinicians is the “no-touch” aspect. In the operating room 

and when dealing with living tissue, direct handling of the tissue can be damaging. By 

using external tools and manipulating only the portions of the aortic root that are not 

vital, inherent tissue integrity is not altered. 

This device contains many pieces and performs multiple functions. However, 

during any given stage of processing, it is possible to remove or disable the aspects that 
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are either undesired or unneeded. At the same time, the valve is securely housed in one 

piece of equipment that can be transferred between processing devices. Furthermore, the 

features not currently in use do not interfere with the purpose or function of the 

immediate device. 

Use of this device has truly streamlined the development of tissue engineered 

heart valves, especially in the context of transferring the valves between systems having 

a distinct purpose and design. It is the key to fast transfers between systems and as well 

as appropriate care of the living tissue. Although currently fabricated in stainless steel 

and ABS-like material, it could easily be made of ceramics or other plastics to facilitate 

magnetic imaging techniques, cost-effectiveness, or other desired properties to further 

expand its uses in additional systems. 
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CHAPTER 4: A CYCLICAL PERFUSION DEVICE FOR 

DECELLULARIZING WHOLE AORTIC VALVE 

ROOTS 

4.1 Introduction to Need 

Multiple methods of creating tissue engineered heart valves are foreseeable and 

many are being thoroughly investigated and developed. Among the most researched and 

advanced methods are those that utilize a decellularized xenographic aortic valve as a 

scaffold.[20,68,81] Combining those easily accessible scaffolds with the patient’s own 

stem cells before conditioning in a bioreactor and implanting would provide a 

replacement that is fully functional from initial implantation while able to maintain matrix 

homeostasis and reduce valve thrombogenicity for the lifetime of the patient. 

While alternative ground up approaches have also been researched, a native 

scaffold gives the best mechanical properties and structural functionality to withstand the 

rigorous conditions of a replacement valve in the aortic position. Current progress of 

xenographic valve preparation has been widely successful in decellularizing pulmonary 

and aortic valve cusps.[82–87,117] Even attempts at decellularizing whole pulmonary 

artery roots has been adequately demonstrated.[82] Our own investigations with 

decellularizing aortic valve cusps has also been successful.[117] 

However, if an entire aortic root is to be used as a tissue engineered heart valve 

replacement, it is vital that the entire tissue be free of native cells to reduce or eliminate 

chances of immune rejection and subsequent failure. The most severe example, wherein 

all native porcine cells were not removed from implanted tissue, resulted in the death of 
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three children due to severe inflammation, degeneration, and structural failure.[127] The 

removal of all foreign cells from the cusps, sinuses, ascending aorta, and muscular regions 

of an aortic root must be clearly demonstrated. 

In some applications immersion decellularization techniques are frequently 

replaced with perfusion techniques for tissues that are difficult to decellularize.[86,128] 

When examining the properties of the aortic root tissues, it can be inferred that 

procedures that are more rigorous will be necessary to decellularize those portions than 

the procedures used to decellularize the cusps. However, the balance must be made to 

retain the structural integrity of the cusps while providing conditions harsh enough to 

decellularize the aortic wall. In this way, the entire aortic root would be prepared for 

recellularization with patient cells without the fear of an immune response caused by 

remnant xenogenic cells. 

During perfusion decellularization, tissue is generally subjected to multiple 

treatment regimens including various chemicals, detergents, enzymes, and pressure 

profiles. What is needed in the art of 

decellularizing whole aortic heart valve roots 

is a system and method for decellularizing 

tissue that can provide independent conditions 

of immersion, pressure, and stretch to the 

cusp, sinus, aorta, and muscular portions of the 

aortic root. These areas are mapped visually in 

Figure 4-1. 
 

Figure 4-1: Mapping of tissues in the aortic root 
Main anatomical coordinates of the aortic root 
are displayed. Each component has different 
physical characteristics and function.[105] 
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4.2 Materials and Methods 

Inadequate decellularization of entire aortic roots necessitated the creation of a 

perfusion decellularization system for aortic valve roots. Decellularized tissue samples 

from the cusp, sinus, aorta, and muscle were compared to fresh regions for DNA presence, 

matrix stability, and mechanical properties. 

4.2.1 Perfusion Device Components and Assembly 

Cleaned and prepared aortic valve roots were mounted in custom mounting rings 

as previously described (sections 3.3.1 and 3.3.2) and the distal portion stabilized with an 

outflow plug as previously described (section 3.3.3). If less than five valve roots were 

available for decellularization, acrylic cylinders having the outer dimensions of the lower 

casing rings were used as space holders. Figure 4-2D shows the assembled perfusion 

decellularization system. A brief overview of the process of assembly follows. All custom 

components were manufactured from stainless steel, acrylic, or polycarbonate materials 

by Clemson University Machining and Technical Services. Materials were chosen to 

provide strength in thin areas or transparency for visualization of aortas and cusps. 

Phase 1: Attaching Through-Wall Fittings 

Custom through-wall fittings (Figure 4-2A) were designed and manufactured that 

would protrude through the wall thickness while maintaining a seal, attaching to tubes, 

and not slip from their placement. Depending on need fittings either act as plugs or have 

barbed attachments on one or both ends. O-rings on either side of the fittings provide 

stabilization and a seal across the wall. A shoulder on one side of the fittings prevents the 

fitting from advancing through the wall in one direction while an external retaining ring 
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and groove prevents the fitting from reversing back through the wall. All fittings are 

pushed from the interior areas of the device through the wall and the retaining ring is 

attached on the portion of the fitting advancing on the outer portion of the wall. Fittings 

are attached to the lids for inflow and outflow and to appropriate areas in each other layer 

to provide the necessary circulation of fluid through the system 

 

 
Figure 4-2: Perfusion decellularization system for heart valves 
The flow diagram (C) illustrates the main system components comprising a valve (v), peristaltic pump, pulse 
dampener (d), valves (c) and pressure transducers (p). The working setup is shown in (D). Direction of flow, 
indicated by arrows is as follows: from the pump through the dampener (D) enters the bottom of the system 
and pushes fluid through the valves. Fluid then collects via a manifold (white arrows) into a single line which 
feeds the system again and bathes the valves from the outside. 
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Phase 2: Valve Clamping 

The next step of device assembly is to clamp the self-adjusting, no-touch valve 

holders in place between the three layers of the device that create a common solution 

chamber  (between layers 1 and 2) and do the holding of the valves in the holders (between 

layers 2 and 3). The valves are placed in the circular grooves of plate 3 before plate 2 is 

lowered around them and plate 1 above that. The three layers are bolted together to 

create a seal that forces fluid from the solution chamber into the inflow side of the valve 

lumens. 

Phase 3: Chamber Assembly 

After the valve holders are clamped between the three plates, the next layer is 

placed onto the root side of the plate assembly to create the main chamber. The outflow 

plugs of each valve root are connected to the through-wall fittings of the main chamber 

and the final layer, the outflow lid, is placed on top of the main chamber. Layers, 3, 4, and 

5 are then bolted together to create a sealed chamber around the valves.  

Phase 4: Flow Loop Assembly 

A five-port luer manifold with on/off valves is used to direct flow between the 

interior of the valves and the main chamber, where the solution bathes the tissues before 

exiting the system. This manifold and main chamber contain pressure transducers and a 

constriction valve between them to measure and control the pressure differential between 

the interior and exterior of the aortic roots. 500 mL bottles with glass-blown barbed 

attachments are used as reservoirs and pulse dampeners between the system and a 

peristaltic pump to create pressures and flow through the system. 
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Phase 5: Device Filling, Description of Flow, and Emptying 

Four liters of solution are used to fill the system. The pressures during filling 

should never exceed the running pressures of the desired protocol (described below) and 

after filling, any air bubbles are removed component by component in the direction of 

fluid travel. Once full, the system can be subjected to the desired protocol. Pressures are 

monitored with the transducers and a custom LabView program (Figure 4-3) the proper 

flow protocol is set in the menu of the peristaltic pump. Pressure and flow are controlled 

by adjusting the speed of the peristaltic pump and the constricting valve coming from the 

outflow of the manifold. 

4.2.2 Decellularization by Immersion 

Aortic roots were cleaned and 

prepared as previously described (section 

3.3.1), then decellularized in containers on 

an orbital shaker (immersion technique) at 

a ratio of 500 mL solution for 5 aortic 

roots. Decellularization steps consisted of 

hypotonic shock (ddH2O, 24 h, 4°C), 

loosening of extracellular matrix and 

initialization of cell removal (0.1 M NaOH, 

2 h, 22°C), decellularization solution (1% 

Sodium Dodecyl Sulfate, 1% Triton X-100, 

1% Na-Deoxycholate, and 0.2% EDTA 

 
Figure 4-3: Monitoring of decellularization system 
(A) The main decellularization system is comprised of 
5 layers which help direct flow through, then around 
the aortic roots. (B) The LabView software reads 
direct pressure inside and outside of the aortic roots, 
conditions it to achieve steady values, then gives a 
direct output of the differential of pressure. 
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acid in 50 mM TRIS, pH 7.5, 8 days with fresh solution every 2 days, 22°C), and removal 

of nucleic acid remnants (720 mU/mL deoxyribonuclease & 720 mU/mL ribonuclease in 

5mM Magnesium Chloride in 1xDPBS, 24 hours, 37°C). To reduce bio-burden, each 

extraction step was preceded by a 15-minute 70% ethanol treatment and appropriate 

rinsing. The roots were incubated in 70% ethanol (24 hours, 22°C) and sterilized[129] in 

0.1% peracetic acid (2 hours, 22°C). 

4.2.3 Decellularization by Perfusion 

Aortic roots were assembled into the perfusion system as described above for 

decellularization. Perfusion decellularization steps were performed with a cyclic 

transmural pressure gradient of about 52±2 mmHg and mechanical stretching for 3 

minutes on and 30 seconds off. Cyclical pressure steps were followed by rinsing with 

water, ethanol, or 1xDPBS as appropriate and consisted of hypotonic shock (ddH2O, 24 

hours, 22°C), loosening of the extracellular matrix and initialization of cell removal (0.1M 

NaOH, 2 hours, 22°C), detergent decellularization (1% sodium dodecyl sulfate, 1% Triton 

X-100, 1% sodium deoxycholate, and 0.2% EDTA in 50mM TRIS, pH 7.5, 16 days with 

fresh solution every 4 days, 22°C), enzymatic removal of nucleic acids (720 mU/mL 

deoxyribonuclease & 720 mU/mL ribonuclease in 5mM Magnesium Chloride in 1xDPBS, 

4 days with fresh solution every 2 days, 37°C), and initial sterilization (0.1% peracetic 

acid, 1 hour, 22°C). Immediately following, the distal root outflow constrictors were 

removed with sterile tools and the mounted valve roots were transferred to individual 

300 mL wide mouth glass containers with silicone membrane sealing lids on an orbital 

Page | 57  

 



shaker instead of the perfusion system for final sterilization (0.1% peracetic acid, 1 hour, 

22°C). 

Additionally, one group of aortic roots underwent the above protocol, but for 8 

days instead of 16 days in the detergent decellularization step. Another group underwent 

16 days of detergent decellularization, but was stopped immediately prior to enzymatic 

removal of nucleic acids. 

4.2.4 PGG Crosslinking Treatment 

High purity 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (penta-galloyl glucose, 

PGG) was a generous gift from N.V. Ajinomoto OmniChem S.A., Wetteren, Belgium 

(www.omnichem.be). Acellular valve scaffolds were rinsed in sterile PBS and then treated 

with sterile 0.15% PGG in 50 mM dibasic sodium phosphate buffer in saline containing 

20% isopropanol, pH 5.5. Treatment occurred at 22°C on an orbital shaker for 21±1 hours. 

At the onset of fixation, cusps were lightly stuffed with sterile cotton balls pre-soaked in 

PGG solution to preserve the valve conformation in ‘‘closed’’ position. After treatment, 

the cotton balls were removed and the scaffolds were rinsed then stored in sterile 1xDPBS 

solution at 4°C. 

4.2.5 RapidGlut Crosslinking Treatment 

Valves were treated with 0.7% Glutaraldehyde (Polysciences, Inc) at 22°C on an 

orbital shaker for 15 minutes. Valves were rinsed with sterile 1xDPBS for 15 minutes 

then incubated in two rounds of 1% Glycine (Fisher Scientific) solution for 15 minutes 
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each. After overnight rinsing in 1xDPBS, valve scaffolds were stored in sterile 1xDPBS 

solution at 4°C. 

4.2.6 DNA Analysis 

DNA was extracted from aorta, sinus, cusp and muscle tissue samples (n=4) and 

purified with the DNeasy Blood & Tissue Kit (Qiagen), then analyzed by Ethidium 

Bromide agarose gel electrophoresis. Samples were also quantified by reading absorbance 

at 260nm on a NanoDrop 2000c (Thermo Scientific). Quantities of DNA were normalized 

to dry tissue weight and expressed as ng/mg dry tissue.  

4.2.7 Histology and Immunohistochemistry 

For histology studies, samples collected from the aortic wall, sinus, cusp and 

muscle were fixed in 10% formalin, embedded in paraffin, sectioned at 5 µm (3 µm for the 

aorta), and stained with DAPI for nuclei, Hematoxylin & Eosin (H&E), and Movat’s 

Pentachrome.  

Immunohistochemistry (IHC) was performed to detect remaining components 

after decellularization. Biotinylated Griffonia simplicifolia (GS) lectin was used to detect 

Gala1–3Gal (a-Gal), the main porcine antigen responsible for acute rejection of 

xenotransplants. IHC for laminin, and type IV collagen was also performed. Tissue 

samples were rinsed with 1X PBS fixed at room temperature in 4% formaldehyde (BDH 

Chemicals). Following rinsing samples were blocked using 5% Bovine Serum Albumin 

(Rockland Immunochemicals, Gilbertsville, PA) with 0.05% Triton (BDH Chemicals) in 

1X PBS for 2 hours at room temperature. The blocking solution was removed and 250 
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μL primary CD-31/PECAM1 Antibody (VM64) (NBP1-42152; Novus Biologicals, 

Littleton, CO) in blocking solution (1:2 dilution) was added for 1.5 hours at room 

temperature. The primary antibody was removed before rinsing 4 times with 1X PBS. 

The secondary antibody, Alexa Fluor® 594 Donkey Anti-Mouse IgG (Invitrogen, Grand 

Island, NY) diluted in blocking solution (1:2 dilution) was added for 1 hour at room 

temperature in the dark followed by 4 rinses with 1X PBS. Finally, 500 μL DAPI stain 

(Sigma-Aldrich) was added to each slide for 5 minutes at room temperature in the dark 

before fluorescent imaging. Primary antibody was omitted for staining negative controls. 

4.2.8 Biaxial Mechanical Testing 

Samples were prepared from native (fresh) aortic valve leaflets and the PGG 

treated decellularized aortic valve leaflets (N = 6 for each group) using the methodology 

previously reported.[87,103] Square-shaped samples (~ 12 mm × 12 mm) were dissected 

from the belly region of the aortic valve leaflet, with one edge aligned with the leaflet 

circumferential direction and the other edge aligned with the leaflet radial direction. 

Thickness of each sample was measured in triplicate using digital calipers. Four dark 

markers were placed in the center region of the square sample (pasted on the ventricularis 

side of the leaflet). Samples were mounted onto the biaxial testing system via stainless 

steel hooks attached to 8 loops of 000 polyester suture of equal length (2 suture loops per 

sample edge). Membrane tensions (force/unit length) were applied to the circumferential 

direction and radial direction of the leaflet sample. A pre-load of 0.5 N/m was used during 

the biaxial mechanical testing. After 10 cycle preconditioning, the leaflet sample was 

loaded to an equbiaxial tension of 60 N/m. The leaflet extensibility was characterized by 
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the maximum stretch ratio along the circumferential direction (λcirc) and the maximum 

stretch ratio along the radial direction (λrad). Biaxial testing was carried out with the 

samples submerged in in PBS bath (pH 7.4) at 37˚C.  

4.2.9 Bending Mechanical Testing 

Bending tests were performed by following a previously reported protocol.[87] 

The bending tests were carried out in a bath chamber with PBS. Aortic valve samples, 

both native and PGG treated decellularized valve groups, were dissected out of the belly 

region of the valve leaflet (N = 5 each group). These samples were further trimmed to 

tissue strips (~8 mm long by ~4 mm wide) in both the circumferential and radial 

directions. Two hollow posts (~4mm) were attached to each end of the tissue strip for 

mounting purpose. One end of the tissue strips were attached to a post that was fixed on 

the inside wall of the bath chamber and the other end was mounted onto the bending bar. 

Each strip was mounted and subjected to simple bending testing with the ventricularis 

side up and the fibrosa side down. Five dark contrast markers used for tracking the leaflet 

strip curvature, i.e., marker 1 was pasted on the fixed post, marker 2 to 4 pasted along the 

edge of the tissue strip, and marker 5 pasted on the end of the bending bar (Figure 4-8D). 

The bending movement was tracked using a Firewire camera (DMK21AF04 model, The 

Imaging Source).   

Due to the previously reported variation in material stiffness between the native 

and PGG treated samples,[130] two different sizes of Titanium bending bars (grade 23, 

Small Parts Inc.), one with a diameter of 0.38 mm and the other with a diameter of 0.71 

mm, were used for testing the native leaflets and the PGG treated leaflets, respectively.  
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Both bending bars a length of 14 cm. The bending movement in the tissue strip was 

produced by moving the bath chamber toward the bending bar by a linear positioner 

controlled by a Velmex stepper motor (Velmex  Inc., Bloomfield, NY). The corresponding 

change in bending bar deflection was recorded by tracking marker pasted on the end of 

the bending bar, and the force was calculated by reference to the bending bar calibration 

curve. Both the Velmex motor and Firewire camera were controlled by a custom written 

Labview program (version 2000, National Instruments).  

In addition to circumferential and radial directions, each leaflet strip was tested 

by flexing the strip with the natural curvature (WC) and against the natural curvature 

(AC). The WC tests result in the ventricularis layer being in tension and the fibrosa layer 

being in compression, while the AC tests result in the ventricularis layer being in 

compression and the fibrosa layer being in tension. 

4.2.10 Statistical Analysis 

Results are represented as means ± standard deviation. Statistical analysis was 

performed with one way analysis of variances (ANOVA) and results were considered 

significantly different at p<0.05.  

4.3 Results 

4.3.1 Cyclical Perfusion Decellularization Device 

The novel device for decellularizing a whole aortic root can fully decellularize up 

to five aortic roots by circulating 4 liters of solutions through the system under a cyclical 

pressure regime that creates a transmural pressure gradient of about 52 mmHg. Utilizing 
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a peristaltic pump to create flow, the system (Figure 4-2D) incorporates a pulse dampener, 

reservoir, constrictor valve to build pressure, and a series of plates and chambers to 

appropriately direct flow through and around an aortic root. A simplified cross section of 

the fluid flow path is shown in Figure 4-2C. Fluid flows from the pump and through the 

dampener into the lower level of the chambers. It is directed into each of the valves 

mounted in the system where it can build pressure due to the downstream constriction 

created by the manifold and outflow constricting valve. From the manifold, it circulates 

back into the system to bathe the outside of the tissue in solution at a low pressure. From 

there, the fluid freely flows out of the chamber and into a reservoir for recirculation. 

Pressure is measured in lines communicating with the outside as well as the inside of the 

aortic roots by transducers controlled by custom LabView software, which displays inner, 

outer, and differential pressures (Figure 4-3B). 

4.3.2 DNA and Cellular Content  

Figure 4-1 and Figure 4-5 show a mapping of each portion of tissue in the aortic 

root. While it is clear that the aorta, muscle, and cusp are different tissues, it should also 

be noted that the sinus is a different tissue than the aorta, with a different structure and 

function. 

H&E and DAPI analysis for the 8-day immersion-decellularized valves revealed 

complete cellular removal from valve cusps (Figure 4-4A&B), which was confirmed with 

Nanodrop data (not shown). However, the sinus, aorta, and muscle were not completely 

decellularized using this immersion technique (Figure 4-4D).  
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While 8 days of perfusion 

treatment was sufficient to remove cells 

from the muscle and sinus as well as the 

cusp (Figure 4-5), a longer time was 

needed to decellularize the full thickness of 

the aorta. In unsuccessful attempts, cells 

remained in the central layers of the aorta, 

but were removed near the media and 

adventitia. Agarose gel imaging (Figure 

4-5A), Nanodrop (Figure 4-5B), H&E 

(Figure 4-7), and DAPI (Figure 4-5) show 

that 16 days of decellularization treatment 

was adequate to remove sufficient amounts of DNA from all aortic root areas. Notably, 

the use of DNase and RNase enzymes were vitally necessary to remove cellular content 

from the aorta after 16 days as well as from the sinus at the 8 day time point as seen in 

the agarose gel images (Figure 4-6). Nanodrop analysis (Figure 4-6) confirmed the drastic 

reduction in DNA content after the full 16 day perfusion decellularization protocol.  

4.3.3 Extracellular Matrix Components 

Examination of the H&E and Movat’s Pentachrome staining, as in Figure 4-7, 

revealed an intact matrix primarily comprised of collagen and elastin. As expected, 

glycosaminoglycans were not seen after any decellularization steps.  

 

 
Figure 4-4: Immersion decellularization is 
incomplete for all valve root areas 
Fresh (left) and immersion decellularized (right) H&E 
staining of the cusp (A&B) and H&E and DAPI staining 
of the aorta (C&D) with elastin autofluorescence. 
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Figure 4-5: Decellularization results of immersion and perfusion methods 
(A) Representative histology images of fresh aortic root sections stained for nuclei with DAPI (blue) before 
(Fresh) and after immersion decellularization (Decell). Arrow points to DAPI stained cell remnants after 
immersion decellularization. (B) Representative DAPI stained sections of aortic valve root areas after 8 and 
16 days of perfusion decellularization. Arrow points to DAPI stained cell remnants. (C) Macroscopic images 
showing a fresh intact aortic root (1) and a root cut open with one cusp removed to reveal the main 
anatomical coordinates (2). A fully decellularized aortic root is shown in top view (3) and cut open (4). 
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4.3.4 Cusp Mechanical Testing 

Biaxial 

The biaxial data obtained (Figure 4-8A) for both groups (native leaflets and PGG-

treated leaflets) showed that the PGG-treated leaflets preserved the anisotropy of aortic 

valve leaflet tissue, i.e., a 

stiffer circumferential 

direction and more 

extensible radial direction. 

Moreover, the current 

PGG-treatment protocol 

generated leaflet tissue 

with extensibility very 

close to the native leaflets. 

We found that λcirc and λrad of 

the native leaflets were 

1.0193 ± 0.0108 and 1.2110 

± 0.0504, respectively; and 

λcirc and λrad of the PGG-

treated leaflets were 1.0245 

± 0.01507 and 1.2191 ± 

0.0509, respectively. 

However, we noticed that 

the tension-stretch curve of 

 
Figure 4-6: DNA analysis by agarose gel electrophoresis and 
nanodrop UV spectrophotometery 
(A) Ethidium bromide agarose gel electrophoresis of genomic DNA 
extracted from fresh aortic root tissues (F) and tissues collected after 8 
days (D8) and 16 days (D16) of perfusion decellularization. Samples 
were also collected before the nuclease treatment step from the 16 
days groups (D16 -). S = DNA standards consisting of whole genomic 
DNA (*) and DNA ladder (#). (B) Nanodrop UV analysis of DNA extracted 
from fresh aortic root tissues and tissues collected after 16 days of 
perfusion decellularization (Decell). 

Page | 66  

 



the PGG-treated leaflets showed a much stiffer toe region in the radial direction when 

compared with the native leaflets.  

Bending 

The native aortic valve leaflets followed a similar trend as we observed in our 

previous study.[87]  The moment-curvature curves (Figure 4-8B) showed that AC 

bending was stiffer than the WC bending, and the circumferential direction bending is 

stiffer than radial direction. After PGG treatment, the aortic valve leaflets showed a large 

increase in overall bending stiffness. In PGG-treated leaflets, we still observed that AC 

bending is stiffer than WC bending, and circumferential is stiffer than radial. Moreover, 

the degree of nonlinearity increases after PGG treatment, exhibiting a very stiff response 

when the bending curvature is small, but the increasing trend of the moment-curvature 

curve greatly slowed down after the bending curvature passed ~0.04 mm-1.  

4.4 Discussion 

4.4.1 Perfusion Decellularization Device  

Although widely used because of its simplicity to operate, immersion 

decellularization techniques are inadequate for decellularizing whole aortic roots. We see 

their successful utilization for tissues that are thin or relatively more porous than the 

aorta, which contains hundreds of layers of elastin that are difficult for solutions to 

penetrate. When considering the function of the aorta, to contain the pressurized blood 

within, it becomes apparent that simple immersion will not be adequate for solutions to 

reach all layers of this remarkable structure. Even the pulmonary artery is thinner and 

more porous than the aorta, resulting it its relative ease to decellularize. 
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Figure 4-7: Histology of decellularized root tissues 
Representative images of H&E stained (A) and Movat’s pentachrome stained (B) sections showing fresh 
aortic root tissues before (Fresh) and after 8 and 16 days of perfusion decellularization. Arrows point to 
stained cell remnants. H&E stain shows nuclei in blue and cytoplasm and matrix in pink. Movat’s 
pentachrome stain reveals collagen (yellow), elastin (dark brown) and muscle cells (red). 
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A device and method of use was created for decellularizing the thick portions of 

the aortic root as well as the more fragile cusp portions. The cusps were subjected only 

to immersion conditions, the aorta and sinus were subjected to a cyclical transmural 

pressure gradient and resultant stretch, and the muscular regions were subjected to a 

transmural pressure gradient and increased perfusion. This combination of isolated 

conditions resulted in an aortic root that was overall, decellularized, yet maintained 

structural integrity in the most fragile and vital areas. 

4.4.2 Decellularized Aortic Root 

Upon initial evaluation of an immersion-decellularized aortic root, it was quickly 

apparent that the aorta regions of the root were not fully decellularized using our 

detergent and immersion method of decellularizing valve cusps. Further examination of 

the literature revealed a lack of evidence supporting full decellularization of the aortic 

roots. If an entire aortic root is to be used as a tissue engineered heart valve replacement, 

it is vital that the entire tissue be free of native cells to reduce or eliminate chances of 

immune rejection and subsequent failure.[127] The removal of all foreign cells from the 

cusps, sinuses, ascending aorta, and even muscular regions of an aortic root must be 

clearly and satisfactorily demonstrated and the aforementioned reports of decellularized 

aortic roots are inadequate in their descriptions. 

Our own experience indicates that cell removal must be evaluated by a variety of 

methods rather than one sole method of analysis. It can sometimes be difficult to classify 

an object as a cell or not in histological images. NanoDrop analysis is not as accurate at 

near-zero levels of dna, as evidenced by numerous negative readings, despite routine and 
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normal reads of our blanking solution. Perhaps the most identifying single analysis is the 

agarose gel. However, even that analysis is subject to human interpretation. Our 

demonstration of the necessity to utilize a perfusion system for decellularizing aortic 

roots reveals that many previously published methods should verify the cellular content 

of all areas of tissue to be used for implantation. Furthermore, the innermost portions of 

the aortic tissues should be verified to be free of cells and shown in publications. For the 

reasons stated above, multiple methods of analysis should be shown to demonstrate 

complete removal of cellular content. 

4.4.3 Mechanical Analysis 

The current protocol includes the step of leaflet decellularization followed by 

PGG treatment. It is well known that for most decellularization protocols, the aortic 

valve leaflets experience an increase in overall tissue extensibility due to the 

microstructural disruptions (e.g., disruption of collagen network and elastin fibers).[87] 

On the other hand, PGG treatment generates crosslinking at molecular level, which has 

a stiffening effects on collagenous tissues.[78,103,131] The treatment of PGG on the 

decellularized leaflets causes tissue crosslinking and stiffening, and hence the extensibility 

of the decellularized leaflets could be reduced accordingly. Interestingly, we found that 

the current protocol generated PGG-treated leaflets with an overall tissue extensibility 

comparable to the native leaflets. However, as we pointed out, the biaxial behavior of the 

PGG treated leaflets was not exactly the same as the native leaflets. The tension-stretch 

curves showed that the toe region of the radial direction is much stiffer than that of the 

native leaflets. The loss of a relatively flat toe region after PGG-treatment demonstrated 
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that the PGG-treated leaflet picked up mechanical load much quicker in the deformation 

initiation region.  

We found that the PGG treated aortic valve leaflets had a much stiffer bending 

moment-curvature relationship than the native aortic leaflets. This reflected the fact that 

the crosslinking took place at the molecular level after PGG treatment. Tissue bending 

stiffness seemed to be more sensitive to this molecular level crosslinking, and the order 

of change we observed is very high (Figure 4-8). Interestingly, the subtle variations of 

leaflet flexure, in terms of AC vs. WC bending and circumferential vs. radial bending, 

were all preserved after PGG treatment. This observation implied that the PGG 

treatment still preserved the ultrastructural level subtlety while in overall increasing the 

tissue bending stiffness. The increase of the degree of nonlinearity after PGG treatment 

is another interesting finding. As we notice, the stiffening effect was more in the range of 

small bending curvature, and this observation echoed with the biaxial testing, which 

showed the toe region of the radial direction curve turned into much stiffer after PGG 

treatment. All the biomechanical observations seemly hinted that the mechanical effect of 

PGG treatment on tissue behavior was more noticeable in the deformation initiation 

range. 
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Figure 4-8: Mechanical properties of decellularized cusps 
(A) Biaxial stress-strain analysis of fresh cusps and cusps which underwent decellularization and PGG 
stabilization, tested in both circumferential and radial directions. (B) Bending test results for fresh and PGG-
treated decellularized cusps tested with curvature and against curvature. 
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CHAPTER 5: TECHNIQUES AND DEVICES FOR CELL SEEDING 

OF HEART VALVES 

5.1 Introduction to Need 

Cell seeding plays an integral role in the production of a tissue-engineered implant. 

Regardless of the target tissue, the idea of adding cells to a scaffold is a fundamental part 

of tissue engineering. Literature demonstrated numerous methods of adding cells to a 

scaffold, but no method has been deemed to work far better than any other does. 

Optimization of this process is considered to be an important aspect in the paradigm of 

tissue engineering.[65] Overall, seeding techniques can be categorized into three areas: 

static, dynamic, and perfusion.[65,132] 

Static seeding methods (Figure 5-1A) usually involve manually pipetting a cellular 

suspension directly on the scaffold and re-pipetting the solution back onto the scaffold as 

necessary. After a specified amount of time of pipetting, the scaffolds are kept static to 

allow for strong attachment of cells. This is by far the simplest and most widely used 

method of seeding, but complex geometries of scaffolds often make uniform and 

repeatable results impossible.[133] Additionally, this method often results in low seeding 

efficiencies. 

Dynamic seeding methods (Figure 5-1B) utilize fluid motion to maintain cells in 

a state of constant suspension around a tissue so they can contact many portions of the 

tissue evenly as they move. An example of this type of seeding is a commonly used spinner 

flask whereby the scaffold is placed inside the flask and the stir bar agitates the liquid to 

maintain cellular suspension. Although this constant mixing will provide cell contact to 
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many areas of the tissue, it can also cause the cells to detach and even cause cell death if 

shear forces are too high.[132,134] Another approach to dynamic seeding involves 

creating random fluid motions by 

randomly rotating a sealed container with 

the scaffold housed within.[65,135,136] 

This random cell movement increases the 

probability of cells attaching to multiple 

surfaces, but can sometimes require a more 

difficult method of mounting the scaffold. 

However, these methods can combine 

gravitational force to cause cells to fall and 

attach to specific portions of tissue when 

rotations are paused for a limited amount 

of time. 

Perfusion seeding methods (Figure 

5-1C) rely on hydrostatic pressure, 

magnetism, or electrostatic forces to move 

cells onto or into scaffolds.[132,137–139] 

Hydrostatic pressure utilizes a pressure 

gradient to force seeding solutions into a 

scaffold by increasing internal pressures or 

pulling an external vacuum. Magnetic 

nanoparticles bound to cell surfaces can 

 
Figure 5-1: General methods of cell seeding 
Static (A), dynamic (B), and perfusion (C) methods of 
seeding cells on a scaffold.Static methods rely on re-
pipeting the cell suspension over the tissue. Dynamic 
methods use fluid movement to keep cells in 
suspension so they can contact and attach to many 
areas of the tissue. Perfusion methods use forces to 
drive cells deep into the tissue rather than relying on 
cellular migration alone.[65] 
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allow the cells to be manipulated through precise use of magnets to direct cells onto 

specific surfaces of a scaffold. Electrostatic force methods involve inducing a positive 

surface charge on a scaffold to attract the negatively charged cells onto the scaffold. These 

methods are usually utilized in flat or tubular structures and could be difficult to apply to 

the complex geometry of a heart valve root. Additionally, they often involve complex 

equipment that makes maintaining sterility difficult. 

The methods developed here serve to combine the advantages of multiple methods 

of seeding to achieve optimal results for heart valve and aortic root scaffolds. They utilize 

other devices created in the lab that eliminate some of the difficulties previously 

mentioned. They also seek to take into consideration the complex geometry of the 

scaffolds and do not rely on cellular migration, which has been shown to be extremely 

slow and not far enough into the tissue in our previous work. 

5.2 Materials & Methods 

Cell seeding methods were developed in close collaboration with other students 

and improved or modified as needed. Notably, internal cellular seeding protocols were 

initially developed by Jordan Maivelett and improved in collaboration with Allison 

Kennamer.[140] External seeding devices and protocols were developed by Richard 

Pascal[126] and underwent design improvements described herein. 

5.2.1 Valve Scaffold Preparation 

Fresh porcine aortic valve roots were collected, cleaned, and prepared as described 

in section 3.3.1. Aortic roots were decellularized by either the immersion (section 4.2.2)  

then mounted in the valve mounting rings as in section 3.3.1 or decellularized by 16-day 
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perfusion (section 4.2.3) techniques. Following decellularization, roots were crosslinked 

with PGG as in section 4.2.4 and neutralized for 18-24 hours in DMEM with 50% FBS 

and 1% Antibiotics/Antimycotics at 37°C. 

5.2.2 Stem Cell Culturing 

Human adipose-derived stem cells (hADSC; Invitrogen, Eugene, Oregon) were 

cultured on cell-culture flasks at initial densities of 5000 cells per cm2. Cell culturing 

media consisted of Complete MesenPRO RSTM Medium (Invitrogen, Eugene, Oregon) 

with 1% Antibiotic/Antimycotic (Mediatech, Manassas, VA), and 0.36 g/L of L-

Glutamine (Fisher Scientific). Passaging occurred at 75-85% confluence and, unless 

otherwise noted, hADSCs were not used beyond passage 6. 

5.2.3 Rotational Seeding Device Design, Components, and Assembly 

A LabView-controlled dynamic seeding device (Figure 5-2) was developed using 

SolidWorks software and engineering design techniques and manufactured out of acrylic 

and aluminum. The device was designed around the aortic root characteristics and with 

the intention of easily integrating into the overall valve preparation process. A 

combination of static and rotational seeding methods were deemed the best fit for this 

tissue and integration into the valve preparation process. 

Initial methods of holding the aortic root involved previously used bracing rings 

described in section 3.2.2. These bracing rings contain holes around the outside of the 

center hole to allow a cell suspension to flow around the external surfaces of the valve 

roots and through the valves during rotation of the seeding chamber. Further 
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developments led to the improved method of mounting the aortic roots described in 

section 3.2.4. Utilizing these self-adjusting, no-touch valve mounting devices allowed an 

easier transition between devices and improved the retention of structural integrity of the 

tissue since no further handling was necessary. The improved valve mounting devices 

contain the same holes to allow fluid movement around the valve and fit well into the rest 

of the seeding device (Figure 5-2C) and methods. 

 
Figure 5-2: External seeding device 
Six chambers (B) can be held in the frame connected to the shaker plate (A) for cell seeding with agitation 
and pause cycles. The valve quick mount fits inside the chamber and allows flow to pass around the valve 
(C). The chambers are assembled and set into the chamber holder plates according to specific protocols 
that maintain consistency and ability to track valves (D). During rotation, cells are resuspended and during 
pausing at each angle, cells are allowed to fall to a valve surface and attach (E). During chamber assembly 
and placement into the chamber holder plates, the thumbscrews, degree marks, and ports must be 
alighned with specific characteristics in relation to each other and the set line or axial chamber holder plate. 
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The chambers (Figure 5-2B&C) to hold the valves were designed to use as little 

seeding solution as possible and reduce violent flow patterns that could cause cell removal 

from the scaffold or cell death. Rounded edges that fit closely to the outline of the aortic 

root were designed with dimensions that would cause the fluid to flow smoothly through 

the slits in the mounting device as well as the valve itself. The lid of the chamber contains 

two ports (Figure 5-2D) to allow pressure equalization and media or gas exchange as 

necessary. During end-over-end rotation, needleless ports can be added to the luer ports, 

but during axial rotation, luer plugs must be used for three chambers to fit into one 

chamber holder plate. It utilizes an o-ring seal to maintain sterility and slides into the 

outer chamber, thereby clamping the mounting device and holding it in place. The 

pressure of the o-ring seal provides temporary closure until the seeding chamber is 

mounted to the chamber holders described below. The chamber and lid was manufactured 

from acrylic material to allow visualization of flow and sterilization via ethylene oxide-

gas treatment. 

After or during attachment of the lids, each set of three lids should be lined up in 

relation to the chamber body so that each degree mark (0, 120, and 240) is each 1) aligned 

with both luer ports and 2) between two bolts. For example, on the first chamber, the 0° 

mark should be in line with both luer ports and also between two bolts; on the second 

chamber, the 120° mark should be in line with both luer ports and also between two bolts; 

and on the third chamber, the 240° mark should be in line with both luer ports and also 

between two bolts. This can be achieved by rotating the lid in relation to the chamber 

body and will be important when using the axially rotating chamber holder plate. 
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Up to three seeding chambers are mounted into aluminum chamber-holder plates 

by hand-tightened bolts between the lid and threaded portions of the chamber holder. 

These holders are mounted onto a frame containing a stepper-motor controlled by custom 

LabView software that provides rotation of the holders. The upgraded frame can hold 

two chamber-holder plates, resulting in the processing of up to six heart valves at one 

time. The frame can be mounted onto an orbital shaker that provides and additional 

direction of motion to help maintain suspension of the cells and create random fluid 

movement within the chamber (Figure 5-2A). The entire assembly of chambers, holders, 

frames, motors, and orbital shaker can fit into a standard cell culture incubator or heating 

oven to provide physiological temperature during seeding. 

Two versions of chamber holder plates were designed that can be exchanged with 

by loosening set screws on either end of the plates. One chamber holder holds the seeding 

chambers so they rotate in an end-over-end fashion around the point directly in the center 

of each heart valve (Figure 5-2 – upper plate) while the second chamber holder holds the 

seeding chambers so they rotate around their natural axis (Figure 5-2A – lower plate). 

The end-over-end rotation and pauses at specific orientations will ensure that cells flow 

through the valve scaffold and contact multiple areas of the valve when they fall due to 

gravitational forces during the static phases. The axially rotating chamber holder will 

ensure cell contact with all interior surfaces of the valve root and may provide additional 

coverage over the alternative chamber holder. 

Several marking systems (Figure 5-2D) were used to ensure uniform conditions 

between valve root samples and track areas already seeded with cells when performing 

multiple seeding steps. Each seeding chamber and lid set was labeled with a unique 
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number from 1 to 6 to identify and track each valve. The seeding chambers were also 

marked between each bolt with the degree marks of 0, 120, and 240. With three bolts, 

three degree marks, and by ensuring the non-coronary sinus was aligned with the 0° mark, 

we could ensure all three cusps and sinuses were treated equally as long as we performed 

three repetitions with 1/3 rotation between each repetition. A simple dash mark was made 

on the end-over-end rotating chamber holder that would align with one of the three 

degree markings on the seeding chamber. When using the axially rotating chamber 

holder, the degree markings would be referenced to the location between the two bolts 

that hold the chamber to the chamber holder. 

The LabView software allows the chamber holders to be programed and rotated 

automatically. The hardware interfaces included the National Instruments cDAQ-9171 

chassis and cDAQ-9401 module. Controllable parameters include rotation direction, 

rotation time, rotation pause time, orbital shaking speed, orbital shaking time, orbital 

shaking pause time, and number of repetitions. By using a finely-controlled stepper motor 

and calculating rotations per minute by time rotated, the final resting degree of rotation 

can also be controlled.  

5.2.4 Changing Media and Gas Exchange in the Seeding Chambers 

The needleless ports attached to the lid of the seeding chambers can be used for 

changing media, adding cells, cycling the gas content, or any other access necessary. To 

change media, the seeding chamber is removed from the A-frame and transferred to the 

cell culture hood. The chamber is drained by vacuum through a needleless port with an 
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empty 50 mL syringe attached to 

the other port to allow sterile air 

into the system (Figure 5-3). 

Following removal of all liquid, 

media is added to the chamber 

through the 50 mL syringe until 

the media just covered the stainless 

steel mounting rings (about 120 

mL). The attached vacuum will pull 

the media from the syringe into the 

chamber, but is not necessary for the chamber to fill. If additional gas exchange is 

necessary, sterile filters can be attached to each needleless port and vacuum applied to 

one port. This will draw CO2 rich air into the seeding chamber. It should be noted that 

compressed CO2-rich air can be used, but only when chambers are securely latched to the 

holding plate. If the lid is not attached, the pressurized air will force the lid out of the 

system. 

5.2.5 Internal Cellular Seeding via Injection 

Valve scaffolds were prepared as above and seeded with cells as in Figure 5-4.[140] 

Following neutralization, the base and free edge of all cusps in the valve were inflated 

with sterile compressed air (15-20 psi) attached to a sterile 33G x 1.25 inch needle. A 

sterile pipet was used to stabilize the tissue and the needle was inserted into the middle 

layer of the cusp, causing the fibrosa and ventricularis layers of the cusps to delaminate. 

 
Figure 5-3: Media and gas exchange in seeding chambers 
(A) Media can be changed without opeing the lid by aspirating 
through needleless ports. (B) If necessary, CO2-rich gas can be 
cycled through the chambers via sterile filters and vacuum 
pressure.[140] 
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Immediately after mixing, 4 million hADSCs in 1 mL were loaded into a 1mL syringe 

and manually injected into the free edges of the cusps in multiple areas and in the base of 

the cusp through a 33G x 1.25 inch needle. Injection was repeated for each cusp for a total 

of 12 million cells into the interstitial cusp area of each valve.  

Valves were then placed into a seeding chamber with the non-coronary sinus 

aligning with the 0° mark on the chamber. The chamber was filled with enough cell 

culture media (DMEM with 10% FBS, 1% Antibiotic/Antimycotic) to cover the stainless 

steel mounting rings (about 120 mL). The chamber was closed as described above and 

 
Figure 5-4: Internal cell seeding of valve cusps 
(A) Internal cell seeding was performed after mounting into the valve quick mount to assist in stabilization. 
(B) The bulb of a sterile pipet was inserted into the valve root to (C) hold the cusp in place. Compressed air 
(15-20 psi) was (D) pushed through a filter to sterilized the air before (E) injecting the base and free edges 
of the cusps with air. (F) After air injection, cusp layers delaminated and usually maintained pocket of air 
after needle removal. (G) Cell culture media was drawn into a syringe prior to (H) attaching a needle to the 
syringe. (I) Cells were injected into the previously delaminated cusps at the base and free edge.[140] 

Page | 82  

 



placed into the end-over-end chamber holder on the A-frame with the 0° chamber mark 

aligning to the corresponding mark on the end-over-end chamber holder. 

After placing all the valves into the chamber holder, the shaker was set to speed 

20%. The LabView program was set with the rotator at 5.0 RPM with a rotating time of 

300 seconds and pause time of 300 seconds. Rotations alternated direction each time and 

the seeding chambers were rotated for 18-24 hours at 37°C at those conditions to improve 

cell attachment to the valve scaffolds. 

5.2.6 External Cell Seeding via Rotational Device 

One day prior to internal seeding (the same night as the neutralization step), the 

seeding chambers were assembled and filled with sterile 5% BSA in 1xDPBS to block 

attachment to the container and localize the future fibronectin/pronectin attachment to 

the valve. The next night, the freshly internally injected valve scaffolds were coated with 

4 µg/cm2 (approximately 4 µg/mL in this application) fibronectin (Sigma) or pronectin 

(Sigma) by adding the correct volume of fibronectin/pronectin to the culture media. 

Following interstitial cell seeding and coating with 4µg/cm2 fibronectin or pronectin, the 

exterior surfaces of the valves were seeded by one or a combination of the methods 

described below.  

External Seeding Method 1 

In the first method, 16-24 million hADSCs were seeded in one night using end-

over-end rotation of the valves. For this method, the seeding chamber was removed from 

the A-frame and drained as described in section 5.2.4. 16-24 million hADSCs (as 
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determined by the experiment trial) were resuspended in 35 mL cell culture medium and 

added to the seeding chamber through the syringe, followed by about 90 mL of additional 

cell culture media to fill the chamber. 

The chamber was placed into the end-over-end holder on the A-frame with the 0° 

chamber mark aligning to the corresponding mark on the end-over-end chamber holder 

(position B in Table 5-1) and the rotational regimen in Table 5-1 was followed overnight. 

External Seeding Method 2 

For the second method, 30 million hADSCs were seeded over the course of three 

nights using end-over-end rotation of the valves. For this method, the seeding chamber 

was removed from the A-frame and drained as described in section 5.2.4. 10 million 

hADSCs were resuspended in 35 mL cell culture medium and added to the seeding 

chamber through the syringe, followed by about 90 mL of additional cell culture media 

to fill the chamber. 

The chamber was placed into the end-over-end holder on the A-frame with the 0° 

chamber mark aligning to the corresponding mark on the end-over-end chamber holder 

Table 5-1: External seeding method 1 dynamic regimen 
In one trial, the root was positioned down for only 5 minutes. 

Position A  
(holder orientation) 

Position B  
(rotation in holder) 

Time 
(min) 

Shaker 
Speed 

Rotator 
Speed 
(RPM) 

Rotating 
Time 

(seconds) 

Pause 
Time 

(seconds) 
Rotating 0° on set mark 30 30% 5.00 30 0 
Root Up 0° on set mark 200 Off    
Rotating 120° on set mark 20 20% 0.75 60 0 
Root Up + 180 degrees 120° on set mark 90 or 5 Off    
Rotating 240° on set mark 20 20% 0.75 60 0 
Root Up + 30 degrees 240° on set mark 90 Off 0   
Rotating 240° on set mark 1000 Off 0.01 1800 7200 
Run the above until next seeding day. Can leave shaker off if needed.  
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(position B in Table 5-2). The chamber holder was positioned with the root up (position 

A in Table 5-2) and the rotational regimen in Table 5-2 was followed overnight. 

On the second day of seeding, the media was aspirated and another 10 million 

hADSCs were added to the chamber in 120 mL media through the needleless ports as 

described above. The seeding chamber was then placed back into the end-over-end holder 

on the A-frame with the 120° chamber mark aligning to the corresponding mark on the 

end-over-end chamber holder (position B). The chamber holder was positioned with the 

root up (position A) and the rotational regimen in Table 5-2 was followed overnight with 

the only change being position B was at 120° on the set mark. 

On the third day of seeding, the media was aspirated and another 10 million 

hADSCs were added to the chamber in 120 mL media through the needleless ports as 

described above. The seeding chamber was then placed back into the end-over-end holder 

on the A-frame with the 240° chamber mark aligning to the corresponding mark on the 

Table 5-2: External seeding method 2 dynamic regimen 

Position A  
(holder orientation) 

Position B 
(rotation in 

holder) 
Time 
(min) 

Shaker 
Speed 

Rotator 
Speed 

Rotating 
Time 

(seconds) 

Pause 
Time 

(seconds) Cycles 
Pre-Setting: Root Up 0° on set mark  00.13 Off 5.00 11 300 1 

Run for 12-15 seconds, then hit circular stop button during the first pause time. 

Rotating 0° on set mark 30.05 20% 

2.00 1805 5400 1 
Root Up + 30 degrees 0° on set mark 90.00 Off 
Rotating 0° on set mark 30.05 20% 
Root Up + 330 degrees 0° on set mark 90.00 Off 
Run the above for 1 cycle = 4 hours. Be sure to turn shaker off/on as appropriate. 
Second pre-Setting 0° on set mark  00.03 Off 5.00 1 5400 1 
Run for 2-5 seconds, then hit circular stop button during the first pause time. 
Rotating 0° on set mark 15.30 20% 

1.00 930 6300 100 
Root Up + 180 degrees 0° on set mark 105.00 Off 
Rotating 0° on set mark 15.30 20% 
Root Up 0° on set mark 105.00 Off 
Run the above until next seeding day. Can leave shaker off if needed. 
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end-over-end chamber holder (position B). The chamber holder was positioned with the 

root up (position A) and the rotational regimen in Table 5-2 was followed overnight with 

the only change being position B was at 240° on the set mark. 

External Seeding Method 3 

For the third method, 30 million hADSCs were seeded over the course of three 

nights using axial rotation of the valves. After removing the seeding chambers from the 

A-frame, the end-over-end chamber holder was replaced with the axial chamber holder 

on the A-frame. For this method, needleless ports were replaced with luer plugs before 

the first media aspiration to allow three chambers to fit into the axial chamber holder. 

The seeding chamber was drained as described in section 5.2.4.. 10 million hADSCs were 

resuspended in 35 mL cell culture medium and added to the seeding chamber through the 

syringe, followed by about 90 mL of additional cell culture media to fill the chamber.. 

Following the additional media, luer plug caps were place onto the luer fittings. 

The chamber was placed into the axial holder on the A-frame with the 0° chamber 

mark being set between the bolts holding the seeding chamber to the chamber holder 

(position B in Table 5-3). The chamber holder was positioned with the bolts up (position 

A in Table 5-3) and the rotational regimen in Table 5-3 was followed overnight. 

On the second day of seeding, the media was aspirated and another 10 million 

hADSCs were added to the chamber in 120 mL media through the luer ports as described 

above. The seeding chamber was then placed back into the axial holder on the A-frame 

with the 120° chamber being set between the bolts holding the seeding chamber to the 

chamber holder (position B). The chamber holder was positioned with the bolts up 
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(position A) and the rotational regimen in Table 5-3 was followed overnight with the only 

change being position B was at 120° between the bolts. 

On the third day of seeding, the media was aspirated and another 10 million 

hADSCs were added to the chamber in 120 mL media through the luer ports as described 

above. The seeding chamber was then placed back into the axial holder on the A-frame 

with the 240° chamber being set between the bolts holding the seeding chamber to the 

chamber holder (position B). The chamber holder was positioned with the bolts up 

(position A) and the rotational regimen in Table 5-3 was followed overnight with the only 

change being position B was at 240° between the bolts. 

5.2.7 Live/DEAD® Imaging 

Presence of live cells on tissue surfaces was analyzed using Live/DEAD® stain 

(Invitrogen, Eugene, Oregon) according to manufacturers’ directions, using 20 µL of 

EthD-1 and 5 µL of Calcein-AM in 10 mL of 1X PBS. The Live/DEAD® solution was 

Table 5-3: External seeding method 3 dynamic regimen 
Position A  

(holder 
orientation) 

Position B 
(rotation in 

holder) 
Time 
(min) 

Shaker 
Speed 

Rotator 
Speed 

Rotating 
Time 

(seconds) 

Pause 
Time 

(seconds) Cycles 
Pre-Setting:  
Bolts Up 0° between bolts       

Rotating 0° between bolts 30.15 20% 

2.00 1815 5400 1 
Bolts Down 0° between bolts 90.00 Off 
Rotating 0° between bolts 30.15 20% 
Bolts Up 0° between bolts 90.00 Off 
Run the above for 1 cycle = 4 hours. Be sure to turn shaker off/on as appropriate. 
Rotating 0° between bolts 15.30 20% 

1.00 930 6300 100 Bolts Down 0° between bolts 105.00 Off 
Rotating 0° between bolts 15.30 20% 
Bolts Up 0° between bolts 105.00 Off 
Run the above until next seeding day. Can leave shaker off if needed. 
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added to cover each sample and covered with foil at 37°C for 20 minutes before fluorescent 

imaging with an inverted microscope. 

5.2.8 SEM Analysis 

Scanning electron microscopy (SEM) was used to visualize the 3-D morphology 

of cells on the cusp surfaces. After rinsing in 1xDPBS, the cusps were fixed in Karnovsky’s 

fixative (2.5% glutaraldehyde, 2% formaldehyde in 0.1 M cacodylate buffer, pH 7.4) for at 

least 24 h. Samples were dehydrated in increasing ethanol concentrations until absolute 

alcohol was reached, then stored in 100% ethanol for up to 12 hours. Following immersion 

in hexamethyldisilazane (Polysciences, Inc., Warrington, PA) for 15 min, samples were 

left to air dry. Samples were then coated with platinum for 2 min (Hummer 6.2, Anatech 

LTD, Union City, CA) before imaging with a Hitachi S4800 or TM3000 Tabletop 

scanning electron microscope (Clemson University Electron Microscope Facility, 

Anderson, SC). 

5.2.9 Histology 

For histology studies, samples collected from the cusp were fixed in 10% formalin, 

embedded in paraffin, sectioned at 5 µm and stained with DAPI for nuclei and 

Hematoxylin & Eosin (H&E). 

5.3 Results and Discussion 

5.3.1 Injection Seeding 

Several trials of injecting cells into the cusps were used to determine the best sizes 

of needles and other tools to use during inflation and injection. Initial trials using carbon 

Page | 88  

 



particles were helpful in tracking 

where the injected media traveled, 

but did not travel in the same 

manner as the cell suspension. 

Figure 5-5B shows the route of 

needle injection into the central 

layer of the cusp where a bolus of 

localized carbon particles can be 

seen in black. 

Initial placement of cells by 

injection yielded similar boluses of 

cells in the free edges of the cusps 

(Figure 5-5D). The base of the cusp (Figure 5-5C) yielded the most complete air inflation. 

This allowed the injected cells to spread through the tissue more than in the free edges 

of the cusps. Overall, our method of injecting cells into the central layers of aortic cusps 

yields an initial distribution of cells that is concentrated in boluses in various locations of 

the cusp. We will rely on cell migration and dynamic forces to cause these cells to spread 

throughout the tissue during culture. 

Other trials using static seeding and relying on cellular migration to repopulate 

the scaffolds are clearly inadequate up to six weeks when using hADSCs (Figure 5-6). 

Briefly, hADSCs were seeded onto 1 cm2 scaffolds with dropwise methods in 12-well 

plates and kept in static conditions for 6 weeks with media changes every 2-3 days. We 

saw complete cell coverage by the 2-week time point with apparent proliferation beyond 

 
Figure 5-5: Mapping and repopulation after injection 
 (A) Carbon particles (black) were injected into the base and 
free edge of the cusps. (B) Area of carbon injection in the free 
edge of a cusp immediately after injection. Pre-inflation areas 
(C) and direct-inject areas (D) near the free edges are both 
repopulated with cells after injection. The air pockets created 
by inflation can be seen clearly in the base  as shown in the left 
image. The blue line indicates where the cusp was cut from the 
valve root.[140] 
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that, but extremely few cells penetrated the surface of the scaffolds. Although not ideal, 

the injection method of recellularizing the internal layers of the valve cusps holds promise. 

While other methods of achieving a uniform repopulation of the cusp layers are being 

developed, this method is substantially faster and more effective than current methods 

available. 

5.3.2 Rotational Seeding 

Following rotational seeding with method 1, valves were analyzed immediately 

for cellular attachment, spreading, and alignment in comparison to fresh valve cusps 

(Figure 5-7). Analysis using Live/DEAD® imaging and scanning electron microscopy for 

the cusps revealed substantial recellularization. Many surfaces appeared to have as many 

cells present as the native cusps. The exception to this is seen in Figure 5-7K, where fewer 

cells are covering the ventricularis side of the cusp. However, during this trial of cell 

seeding, the rotational regimen was varied and the valve rested in the “root down” 

position for 5 minutes instead of 90. Since this is the position in which the ventricularis 

would have been seeded, this is likely the cause for less coverage here. 
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Figure 5-6: hADSC migration into valve root scaffolds 
hADSCs seeded onto the surfaces (Live/DEAD images) of each type of scaffold proliferated, but did not 
penetrate the surface except in a few instances (C,G,H). The brightness/contrast settings in the DAPI images  
have been artificially increased to enable visualization. 
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Overall, initial cell repopulation was very successful with this method. However, 

the aortic wall and sinus are not as well covered as the cusp (data not shown). Data is not 

available for initial seeding using methods 2 and 3, but analysis of the surfaces after 

further conditioning suggests that these methods are equally or more effective at 

recellularizing the sinus and aorta portions of the valve root than method 1 (see Chapter 

8: for details). One drawback to these methods is the large number of cells to be used at 

one time. For example, a study recellularizing five heart valves by injection and a 

combination of methods 2 and 3 for full surface revitalization would use over 360 million 

cells. As demonstrated in Figure 5-7, fewer cells can achieve excellent results, but 

modifications to the rotational protocol and alternative chamber holders may be 

necessary to accomplish similar seeding densities on the sinus and aorta luminal surfaces. 

 
Figure 5-7: Initial cell coverage of valve cusps 
Fresh cusp surfaces (A-D) are compared with recellularized surfaces (E-L). External seeding method 1 was 
used for these valves. I-L show external seeding method 1 with very limited time resting in the root down 
position, resulting in fewer cells attached to the ventricularis surface.  
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5.3.3 Rotational Device 

Improvements to the previously developed seeding device allow for a semi-

automated process. Minimal user intervention is necessary, but observation during active 

phases of seeding is recommended to prevent unintended scenarios of rotation until the 

software and hardware can be further developed. By calculating the speed and time in 

relation to the physical parameters of the stepper motor, a stopping angle can be 

determined and set by the software and timing. Software and hardware is being developed 

that can control the speed of the shaker plate. 

The additional seeding chamber holding plate to provide an axis of rotation along 

the axis of the valve root was important in achieving full recellularization of all surfaces 

of the valve root. Furthermore, capabilities to seed up to six valves on the same system 

will improve future experiments by allowing for higher sample size. Overall, the 

rotational seeder works very well for creating an initially recellularized valve surface. 
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CHAPTER 6: A PLATFORM HEART VALVE BIOREACTOR 

6.1 Introduction and Background 

Bioreactors have many applications from the bioreactors used for microbial 

expansion to those intended to prepare a tissue for implantation. In the realm of tissue 

engineered heart valves, they have two main purposes: 1) to elucidate the mechanisms  

that influence interactions between cell types or cells and scaffolds and 2) to prepare a 

tissue engineered construct for implantation into a living animal.[118] However, even 

within the application of preparing or testing valve constructs, many various functions 

are performed by bioreactors. From seeding cells, to testing cell retention, to developing 

new extracellular matrix, bioreactors fulfill many purposes that are otherwise unavailable 

with conventional 2D or even some 3D methods. 

6.1.1 Previous Bioreactor Systems 

Many bioreactors focus on subjecting valves, cusps, or cells to stretch, flexure, 

flow, or a combination therof. Commercial systems such as Flexcell (Flexcell 

International, Hillsborough, NC) and other noncommercial systems[141,142] can 

subject cells or small pieces of tissue to various physiological levels of stretch. Flexure 

bioreactors have been created[143] to test the effects of bending on isolated segments of 

scaffolds with or without cells. Flow systems[144,145] have frequently been used in 

many applications to explore the effects of sheer stress on cellular function. Furthermore, 

many systems have been created[146–148] to combine the effects of various conditions 

for the purpose of studying independent vs synergistic effects of those conditions. 
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Despite the wide array of bioreactors present, relatively few are capable of 

preparing a tissue engineered construct for implantation. However, it is in this final area, 

that the most complicated of systems are necessary. They must be capable of subjecting 

the replacement to a gradually increasing set of physiological conditions until the final 

conditions that represent or exceed those seen in the body are reached. Furthermore, 

these types of bioreactor systems must keep the environment sterile and allow for other 

complications seen in the laboratory environment such as limited space, assembly 

techniques, and general lack of ready to use equipment for such purposes. 

The requirements for a heart valve bioreactor system have been discussed in 

previous sections. Although not the most sophisticated system in the literature, 

understanding the function of our previously published version will provide the 

foundational exposure necessary to see the further advances described herein. 

6.1.2 Previous Clemson Heart Valve Bioreactor 

The first edition Clemson heart valve bioreactor was developed to test and 

condition all types of tissue engineered, replacement, and native aortic and pulmonary 

heart valves under adjustable physical stimuli similar to those experienced in 

vivo.[117,149] It was designed with the following 10 important considerations:  

1) To allow mounting of various sizes and shapes of free-standing (“stentless”) 

and stented valve designs into the bioreactor. 

2) To ensure that the valve opens and closes cyclically due to measurable 

changes in trans-valvular pressure. 
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3) To maintain the desired concentration of gases and nutrients and waste 

removal in/from the culture medium. 

4) To expose cell-seeded tissue engineered scaffolds to physical stimuli 

similar to in vivo, including trans-valvular pressures, pulsatile forces, flow 

rate, frequency, stroke rate, stroke volume and sheer stresses on the valve 

surfaces. 

5) To allow full control over parameters and to allow for implementation of 

progressive adaptation protocols. 

6) To ensure maximum visibility and the ability to continuously and remotely 

monitor and record valve function. 

7) To use materials which are non-toxic, non-degradable, and easy to sterilize, 

8) To ensure reasonable durability, easy setup, and compact size to fit in 

standard cell culture incubators. 

8) To maintain the system at 37oC, 5% CO2, and 95% humidity in sterile 

conditions. 

9) To yield repeatable results while fulfilling all of the above conditions. 

The  valve bioreactor is based on a functional principle proposed by Hoerstrup et 

al[111] with numerous modifications. The pneumatic-driven conditioning system 

(Figure 6-1C) consists of a three-chambered heart valve bioreactor (1), an optional 

pressurized compliance tank (2), a res ervoir tank (3) with sterile filter (4) for gas 

exchange, one-way valves (5), resistance valves  (6), pressure transducers, a webcam (7), 

and a ventilator pump routinely used in clinics for intensive care and anesthesia (Siemens 

900E, Soma Technology, Bloomfield, CT). The entire system (except ventilator) can be 
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sterilized using conventional methods (ethylene oxide gas for the acrylic and high-density 

polyethylene components and autoclave for the silicone, PVDF,  and stainless steel 

components) and accommodates all clinically relevant sizes of stented or stentless 

biological, mechanical, or tissue engineered valve substitutes. The valve bioreactor is 

made of acrylic, composed of three compartments and measures 6 inches in diameter and 

8.5 inches in height and is completely transparent (Figure 6-1A). The three parts of the 

bioreactor are held together by stainless steel screws.  

The air chamber is connected to the external pump and is the only chamber not 

filled with culture medium. It is separated from the ventricular chamber by a clear silicone 

rubber membrane. During the inspiration phase of the ventilator (ventilator causing the 

patient to breath air in), air is pushed from the ventilator into the air chamber, the 

membrane bulges into the ventricular chamber, and the residing media is pushed through 

the heart valve into the aortic chamber, opening the valve. Once completed, the exhalation 

phase of the ventilator begins (ventilator relaxes pressure to allow the natural patient 

exhalation) and the ventilator releases pressure in the air chamber, allowing the 

hydrostatic pressure of the remaining fluid in the ventricular chamber to push down on 

the silicone membrane, creating vacuum pressure inside the ventricular chamber. The 

resultant pressure gradient between the ventricular chamber and the reservoir causes 

culture medium to flow from the reservoir tank, through the one-way valves, and into the 

ventricular chamber in preparation for the next cycle (Figure 6-1B). 
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Figure 6-1: First edition heart valve bioreactor and conditioning system 
a) CAD designs (left) and manufactured heart valve bioreactor (right) showing the four main components. 
A transparent silicone membrane diaphragm is mounted between the air chamber and the ventricular 
chamber. b) Air and media flow through the system during systole (left) and diastole (right). Color coding 
aids identification of the components and black arrows indicate direction of air and media flow. c) 
Schematic overview of the entire conditioning system: a three-chambered heart valve bioreactor (1), an 
optional pressurized compliance chamber (2), a reservoir tank (3) with sterile filter (4) for gas exchange, 
one-way valve (5), pressure-retaining valve (6), a webcam (7), and a ventilator pump (air pump). The entire 
setup fits within a standard cell culture incubator. d) Two identical bioreactor systems (Br 1 and Br 2) with 
endothelial cell-seeded, functioning valves inside an incubator; the bioreactors are in the front row while 
their corresponding reservoirs are in the back row. The webcams normally mounted onto the top viewing 
windows of the aortic chamber have been removed to reveal bioreactor details.[117] 
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During the pumping phase, the curvature of the ventricular chamber and angle of 

media inlets contributes to the circulation of culture medium throughout the chamber. 

Once through the valve, the medium enters the aortic chamber then flows through a 

compliance chamber and into the reservoir. Both the aortic and ventricular chambers have 

multiple ports for easy access of pressure transducers, as inlets and outlets for media 

change, or for other probes. 

Figure 6-1D shows two bioreactors set up in one standard size incubator. The 

clear, flat top of the aortic chamber facilitates the viewing of the functioning of the heart 

valve via the webcam. A permanent fluorescent lamp mounted inside the incubator 

provides lighting. Using websites such as www.livestream.com and others, continuous 

broadcast of the bioreactor and valve performance is possible over the internet, allowing 

the investigators remote viewing of valve performance from any computer and sharing of 

information with collaborators. 

6.1.3 System Limitations and the Need for Further Development 

The manufactured and tested first edition bioreactor system fulfills most of the 

original conditions, including mounting of various types of valves and excellent valve 

opening and closing characteristics. The system ensured good cell and valve viability 

under sterile conditions for extended periods of time and excellent reproducibility. It also 

allowed for implementation of progressive adaptation protocols, ensured perfect visibility 

and the ability to continuously and remotely monitor and record valve function. Many 

successful experiments have been conducted using that edition including cell seeding of 

valves and testing under flow conditions as highlighted in Figure 6-2. 
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Most heart valve 

bioreactors in the literature 

are designed for use with 

only the valve type 

investigated in that 

laboratory. Many facilitate 

testing of decellularized 

valves[84,115] or 

laboratory-manufactured 

polymer valves.[150] 

However, the Clemson 

heart valve bioreactor is 

able to test all clinically 

relevant sizes and 

variations of stented or 

stentless biological, 

mechanical, or tissue 

engineered valve 

substitutes with multiple 

mounting methods allowing for variations in tissue thickness, engineered material, valve 

diameter, amount of excess tissue, and presence or absence of aortic sinuses. Our 

bioreactor’s mounting design easily facilitates many different valves in a variety of non-

restrictive options. 

 
Figure 6-2: Cell analysis of endothelial cell-seeded valvular scaffolds 
after functioning in the first edition bioreactor 
Representative SEM images showing native cusp surfaces (a, b), at time 
zero (T=0d), i.e. immediately after seeding (c, d) and after 17 days 
(T=17d) in the conditioning system (e-h). 
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Incremental stroke volumes from 4.7 to 22.3 mL were achieved. For the lowest 

stroke volume, the valve was only slightly opening. Under no added pressurization, 

systolic and diastolic pressures had an average value of 40/15 mmHg, respectively. After 

pressurization, these values increased to a stable 80/70 mmHg. Higher pressures could 

be attained, but this halted circulatory flow and the pressures were not stable. The 

pressure limitations were the result of an inability of the system to circulate fluid 

effectively. A very high level of pressure could be reached if the pumping mechanism could 

match and overcome that pressure. By using an alternative pumping mechanism that 

would preserve energy by reducing air compression, modifications could be made to 

increase the flow to match and surpass even high physiological values. The stroke volume 

and pressure of our first edition bioreactor do not yet meet aortic physiological levels and 

as the tissue engineering technology improves and valves get closer to implantation 

stages, we will need to be able to reach those higher values. 

Our heart valve bioreactor system’s primary function is to prepare tissue 

engineered heart valves for animal implantation. Thus, representing the whole spectrum 

of physiological conditions as well as those leading to those conditions and sometimes 

exceeding them is necessary. Although the current system is capable of meeting some of 

those needs independently, improvements were necessary to reach the desired outputs 

and capabilities of the system. Thus, one goal of this research was to modify the heart 

valve bioreactor system to achieve simultaneous physiological levels of flow, pressure, 

and shear stresses while maintaining the independent adjustment of each.  
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6.2 Materials, Methods, and Description 

Incremental improvements have been made to the bioreactor system to reach the 

current capabilities. Each increment (Figure 6-4) added specific value that should not be 

veiled by the consummated design. 

6.2.1 Second Edition Heart Valve Bioreactor 

Aside from the technical capabilities, the largest pitfall of the first edition 

bioreactor was its susceptibility for contamination and cracking of the acrylic material 

around the threaded ports. Not only did this consume a tremendous amount of resources 

to repeat contaminated experiments, it was also very time consuming to assemble in a 

sterile hood. A method of connecting the multiple chambers that did not utilize threaded 

fittings was investigated. A quick connect fitting similar to those available from Colder 

Products Company (Figure 6-3A) was desired, with the only difference being that the 

male end plugged into a bulkhead (the side 

wall of the acrylic chamber) instead of 

another fitting. If the second fitting was 

used, the same problem of connecting that 

fitting to the acrylic chamber would occur. 

After exhausting all known 

distributors and suppliers as well as 

inquiring about custom fittings, a novel 

quick-connect fitting (Figure 6-3B) was 

developed and patented[151] that would 

 
Figure 6-3: Quick connect fittings 
Commercially available (A) quick-connect fittings did 
not resolve existing issues, so new fitings (B) were 
designed to plug into a tank like the bioreactor.[151] 
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maintain a sterile seal and be quick to install without utilizing Teflon tape, threading, or 

difficult to sterilize materials. This quick connect fitting is a male fitting with an actuating 

member that engages with a groove in the wall of the bioreactor to lock it in place. It 

utilizes a reliable o-ring seal to maintain sterility and allow for a quick-connection. 

Additionally, it can be manufactured out of materials that can be cleaned and sterilized 

multiple times or 3-D printed and autoclaved for single uses. 

Although the hospital ventilator was able to fulfill the role of pumping media, the 

controls of this ventilator 

did not provide adequate 

tuning of the conditions 

desired and are often 

difficult and expensive to 

acquire. A custom LabView 

program was written to 

control and monitor custom 

equipment (Figure 6-4B) 

for setting the stroke 

volume, stroke rate, duty 

cycle, trans-valvular 

pressures, and overall flow 

rate. Figure 6-5B 

demonstrates the second 

edition bioreactor’s 

 
Figure 6-4: Editions of the heart valve bioreactor 
The conditioning system (A) consists of a three-chambered heart valve 
bioreactor (1), an optional pressurized compliance tank (2), a reservoir 
tank (3) with sterile filter (4) for gas exchange, one-way valves (5), 
resistance valves (6), pressure transducers (7), a flow meter, a webcam 
(8), and an air supply. External LabView software and custom hardware 
(B) monitor and control the system. The bioreactor has come through 
three iterations (C) with the current design shown here (D). 
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attainable pulmonic and aortic 

levels of pressure at 75 beats per 

minute, which is adjustable for all 

relevant values. The new system 

for providing the pumping 

mechanism was powered by a 

standard air compressor instead of 

a hospital ventilator. Bioreactor 

pressures are easily adjusted by 

controlling input air pressure and 

can currently reach any desired level. Maximum stroke volume levels achieved under 

sterile conditions with the second edition bioreactor are roughly 30 mL (70 mL is normal 

average). 

An additional upgrade in this edition was utilizing custom glass-blown bottles as 

compliance chambers and reservoirs. By using standard media bottles with barbed 

attachments, we were able to replace multiple assembly steps. Together, the new bottles 

and fittings were able to drastically reduce system setup time and connection points and 

therefore reduce the opportunity for contamination of the system during initial setup. 

While the first edition took 4-6 hours to set up depending on user skill, the second edition 

took less than 2 hours. More improvements in the third edition bioreactor system would 

further reduce that time to about 30-45 minutes for an experienced user. 

User-friendliness was drastically improved with the second edition bioreactor. As 

a result, it was able to support more valve testing experiments than previously possible, 

 
Figure 6-5: Third edition ioreactor function and capabilities 
Mechanical and bioprosthetic (A) replacement valves in their 
open and closed positions. Screenshot of LabView program (B) 
showing pulmonic and aortic pressures. 
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but at sub-physiological flow rates. Shear stress on the tissue was also low because the 

viscosity of the fluid in the system was much lower than that of blood. As the main 

objective of developing a tissue engineered heart valve progressed, additional 

improvements were desired to reach full physiological conditions, decrease complexity of 

the system, and allow for seamless integration into the entire valve preparation process. 

6.2.2 Third Edition Heart Valve Bioreactor 

The next edition of the heart valve bioreactor had slight modifications to its main 

chambers. It eliminated unnecessary ports; added custom threaded nuts to reduce the 

number of bolts used and eliminate any threading in the acrylic components; and utilized 

a re-designed method of holding the heart valve tissue. This tissue holder (described in 

Chapter 3:) is installed around a fresh heart valve and is used to hold, transport, and seal 

the valve in the various treatments of decellularization, fixation, cell seeding, condition, 

and final preparations for implantation. It provides a no-touch approach to handling the 

valves and fully integrates the entire valve preparation process. Utilizing this valve holder 

significantly reduced the time to install a valve into the bioreactor, which not only 

decreased overall assembly time, but also increased cell viability because of the decreased 

amount of time the cell-seeded valves were outside of culturing media. 

3-D printing technology provided by Clemson University Machining and 

Technical Services (both Printer companies, places) was utilized to reduce the footprint 

and number of bioreactor components and subsequently, those connections. It allowed 

the quick connect fittings to be directly attached to custom-shaped reservoirs and 

compliance chambers. By printing the external modules of the bioreactor in a material 
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that could be autoclaved once, we were able to pre-assemble a majority of the components 

outside of the hood, saving time and decreasing the difficulty of assembling a majority of 

the system in a laminar flow hood.  

The new components and custom shapes also allowed for reduced overall footprint, 

lower media volumes used, and an alternative air filter for gas exchange. Very few filters 

were found that could provide the volume transfer over the low pressure drop provided 

by the bioreactor system. Although two options remained, the large flow filter was 

utilized. 

One of the requirements of this edition of the bioreactor was to reduce complexity 

by utilizing disposable or autoclavable components that could be pre-assembled. Recently 

developed turbine flowmeters (EquFlow, Netherlands) were acquired that could be 

autoclaved, but were also relatively inexpensive and could be discarded if necessary. They 

also acted as a partial constriction valve by their inherent functional properties. 

Alternative disposable pressure transducers were utilized that would connect directly to 

ports on the 3-D printed fittings. Normally utilized for invasive blood pressure 

monitoring, these transducers are very precise. 

Utilization of the new flowmeters and pressure transducers also required an 

upgrade to the hardware and software of our controls devices. A chassis system with 

interchangeable modules (National Instruments) that could support the new systems 

components was utilized. This chassis system allowed for numerous counters for the 

flowmeters and data conditioning required by the pressure transducers. This chassis 

system was also beneficial for use in controlling the other components and devices utilized 

in the valve preparation process. 
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6.2.3 Achieving Physiological Pressure, Flow, and Viscosity with the Third Edition 

Heart Valve Bioreactor (Fourth Edition Bioreactor) 

Although the changes made for the third edition bioreactor enable normal and 

pathological conditions of pressure, flow, and shear stress, further modifications were 

necessary to provide those conditions in a sterile environment and control them 

independently. To modify fluid viscosity, 2.5% dextran (Sigma Aldrich) was added to the 

media to thicken the media. 

As previously described, all normal and pathological levels of pressure can be 

achieved by adjusting the input air pressure pumping the system. By increasing the 

pressure, the flow will also increase. However, the physical components of the previous 

versions have limited the flow to about 30 mL per stroke (normal stroke volume is 70 mL 

per stroke) at physiological pressures and 75 beats per minute (bpm). As a result, larger 

flow paths and different compliance chambers were developed with the goal of achieving 

up to 100 mL per stroke at 75 bpm with physiological pulmonic and aortic pressures. 

After increasing all fluid lines to at least 0.9 inches in diameter, we determined 

that initial air volumes of 8 and 1.5 liters would be necessary for pulmonic and aortic 

conditions, respectively to provide adequate flow. This can be calculated from the 

compression ratio of air from 10 to 25 mmHg and 80 to 120 mmHg for pulmonic and 

aortic pressures, respectively. However, it is also dependent upon having enough time 

and low enough resistance to move the fluid by that amount under those relatively small 

pressure changes  

Since 10 liters is too large of a volume to fit multiple systems into one incubator, 

we investigated alternative methods of creating such a compliance chamber. The 
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approach of using a liquid head of pressure for pulmonic conditions was investigated. 

Since 30 mmHg is equivalent to roughly 40 cm H2O, we determined that a cylinder that 

extended at least 40 cm above the valve would be adequate to create pulmonic pressures. 

Additionally, this configuration would fit inside a standard sized incubator. The final 

approach was to attach a 3-D printed cylinder with specific variances in diameter to the 

fluid circulatory line of the system (Figure 6-6A) to create the appropriate pressure head 

on the valve. During diastole, as the fluid continued to flow out of the compliance chamber 

cylinder and into the reservoir, the fluid level would lower and the pressure would 

decrease. By changing the diameter of the cylinder and varying it along the length, we 

could adjust how fast the fluid dropped, which affected the stroke volume and the diastolic 

pressure. This rapid change in air volume in the system was only possible by allowing 

airflow into and out of the compliance chamber. To accommodate, an air filter was 

 
Figure 6-6: Fourth edition bioreactor CAD and photographs 
Pulmonary (A) and aortic (B) modules are shown. CAD renderings and photographs demonstrate the path 
from design to manufacturing 
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attached to this chamber as well as the reservoir that had a large enough surface area to 

accommodate the rapid change in air over the relatively low pressure changes. 

A two-liter custom glass-blown bottle (Figure 6-6B) was used as a compliance 

chamber for the aortic conditions. This size bottle allowed all ranges of stroke volumes, 

depending on how much air was initially in the system at 80 mmHg. By altering the 

amount of fluid in the bottle (and subsequently, how much air) we could control stroke 

volume of the system independently from pressures. Designs have been made to adjust 

the volume via an external source of fluid while maintaining system sterility. This would 

require the least amount of culture media inside the flow loop to reduce supplies. In 

addition, this bottle has a port through which an initial air pressure can be supplied to 

ensure low media usage. 

Incremental improvements in the bioreactor design have allowed us to control the 

compliance tank size, compliance tank shape, pumping air pressure, media viscosity, 

pumping rate, resistance, and duty cycle. Variations of certain combinations of these 

factors allow for the independent control flow, pressure, and shear stresses applied to the 

valves. Furthermore, each can be controlled while maintaining sterile testing conditions. 

While the current system meets all the research needs, further improvements are 

recommended to aid during assembly by novice users. These can be found in Error! 

Reference source not found.: Error! Reference source not found.. 

6.2.4 Validation of Function Testing 

St. Jude mechanical heart valves used for validation of functions. Viscosity 

adjustments were made in accordance with published results.[152] Performance testing 
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was performed on the benchtop to aid in fluid visualization, but closed systems as those 

seen in sterile experiments were maintained. A custom LabView program was used to 

control pumping and monitor flow and pressure during operation. This software utilized 

a National Instruments cDAQ-9178 chassis and appropriate modules. Bioreactor 

pumping utilized module 9472. 

Flow between the compliance chamber and reservoir was measured by an EquFlo 

turbine flowmeter. In this position, continuous flow occurred with cyclical increases in 

flow rate during systole. All fluid passes through this one constriction point, but it should 

be noted that if any regurgitation occurred, this volume of fluid would not be accounted 

for in the flow calculations. Flow is measured in a turbine by counting the pulses sensed 

from an infrared sensor placed in line with the turbine spokes. As the spokes pass, the 

sensor is blocked and a pulse is generated. A National Instruments cDAQ-9401 module 

was used to count pulses and calculations were made dependent upon each individual 

flowmeter’s pulse/liter rating. 

Pressure was measured by DTX Plus pressure transducers. A National 

Instruments cDAQ-9237 module was used to measure and condition the incoming signals. 

Transducers were located at the level of the valve or the baseline adjusted appropriately. 

Each transducer was zeroed to atmospheric pressure in the software before initial use. 

6.3 Results and Validation of Function 

Overall, the bioreactor system has come through four iterations of design. 

Alternative components (compliance chambers, reservoirs, restrictor valves, etc) were 

developed or acquired to allow for physiological levels of flow at pulmonic and aortic 

pressure conditions while maintaining sterility. The controlling hardware and software 
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was upgraded to allow simultaneous and independent operation of multiple bioreactors 

and accurate monitoring of the flow and pressure conditions. 

Shear stresses were increased by adding dextran to the culture media. Other 

researchers had determined that a concentration of 2.5% Dextran (2x106 MW) in DMEM 

with 10% FBS would result in a fluid viscosity to match that of blood. Their previous 

experimentation to measure fluid viscosity was deemed unnecessary to repeat. 

6.3.1 Pulmonary and Aortic Conditions 

Although stroke rate and duty cycle can be adjusted to all reasonable levels, 

testing was performed at 75 bpm with a systole time of 0.3 seconds and a diastole time of 

0.5 seconds. Dextran can be easily added to thicken the media to the appropriate viscosity. 

Full physiological conditions were met for pulmonic position testing. These included flow 

rates exceeding 75 mL per stroke, and pressures up to 35/20 including the normotensive 

pressure of 25/10 in that position. Figure 6-7 demonstrates a valve in the open and closed 

position being tested in the bioreactor at those pulmonic conditions. Full physiological 

conditions have been met for aortic position testing using non-sterile conditions only. 

The newest updates will allow those conditions to be met while maintaining sterility, but 

the final details to 

accommodate are not yet in 

place. However, using the 

aortic module on the 

benchtop, flow rates can 

reach nearly 100 mL per 

 
Figure 6-7: Valve in the functioning bioreactor at pulmonic 
conditions 
Valves open and close well at both pulmonic and aortic conditions of 
pressure and flow. 
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stroke and pressures can rise well beyond 300 mmHg. Normotensive pressures of 120/80 

mmHg and average flow rates of 70 mL per stoke are also reachable in this configuration. 

However, until final device details are in place, increased amounts of media are necessary 

to reach those conditions. 

6.4 Discussion of Further Potential Uses 

The most recent platform bioreactor system developed has numerous applications 

for tissue engineering, mechanical testing, and pharmacological development. The 

resulting small footprint, ease of assembly, modularity, and means of sterile media 

exchange have led to a truly platform system that can be utilized in many fields. While 

many systems described in the literature or that are commercially available can perform 

a single function well, this system performs multiple functions well with a simple change 

of module when necessary. For instance, it can: 

1) Provide a variety of physiological pulmonary and aortic conditions. 

2) Provide a flow loop condition for the mitral valve. 

3) Maintain a sterile environment or be used on the benchtop. 

4) Precondition a tissue engineered valve. 

5) Mechanically test the opening of a valve. 

6) Allow visualization and capture of cusp movement. 

7) Test the placement and perivalvular leakage of transcatheter-deployment. 

8) Assist in the training of transcather deployment of replacement valves. 

9) Create normal or pathological conditions for use in disease modeling. 

10) Independently control up to four systems inside one cell culture incubator. 
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In all, nearly 100 experiments have been performed with these systems and 

improvements have been made with each through the knowledge learned about the 

system. With the knowledge gained from these experiments, we see an expansive field of 

use for this and future editions of the Clemson heart valve bioreactor. 
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PART 3: RESEARCH AND CLINICAL APPLICATIONS 
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CHAPTER 7: BIOREACTOR VALIDATION CASE STUDIES 

7.1 Introduction to Multiple Uses of the Heart Valve Bioreactor 

Bioreactors have many applications from the bioreactors used for microbial 

expansion to those intended to prepare a tissue for implantation. In the realm of tissue 

engineered heart valves, they have two main purposes: 1) to elucidate the mechanisms  

that influence interactions between cell types or cells and scaffolds and 2) to prepare a 

tissue engineered construct for implantation into a living animal.[118] However, even 

within the application of preparing or testing valve constructs, many various functions 

are performed by bioreactors. From seeding cells, to testing cell retention, to developing 

new extracellular matrix, bioreactors fulfill many purposes that are otherwise unavailable 

with conventional 2D or even some 3D methods. 

Our heart valve bioreactor system’s primary function is to prepare tissue 

engineered heart valves for animal implantation. Thus, representing the whole spectrum 

of physiological conditions as well as those leading to those conditions and sometime 

exceeding them is necessary. However, at other times, our system has been utilized for 

other purposes. Projects from undergraduates, other subprojects, and even other main 

graduate student projects have, at various times, made use of the bioreactor systems 

herein described. Disclosed here are other applications of our platform bioreactor system 

that serve to demonstrate its versatility of uses including testing valve designs, creating 

a diseased condition to evaluate drug treatment regimens, and even differentiating stem 

cells into valvular interstitial cells[78]. It should be noted that with a simple switch of 
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modules, the aortic/pulmonic bioreactor has been adjusted to become a mitral valve 

bioreactor. As this is the focus of another student’s ongoing project, details are withheld. 

7.2 Gelatin-Coated Resorbable Polymer Mesh as a Novel Scaffold for 

Heart Valve Tissue Engineering 

7.2.1 Abstract 

A gelatin coated resorbable polymer scaffold was used to create tissue engineered 

heart valves (TEHV) in order to address the issues associated with the longevity of 

current artificial heart valves. It was hypothesized that the combination of specific 

elements is essential to development of a functional TEHV: biomimetic geometry, flexible 

and durable scaffolds, proper cell seeding, and mechanical stimulation. Testing of this 

hypothesis included iterations of aortic valve scaffold designs to mimic native heart valve 

architecture using stainless steel and bioabsorbable polymer meshes. The functionality of 

the valve was tested with a pulsatile flow bioreactor. Preliminary scaffolds were too rigid 

and displayed only a minimal effective orifice area (EOA) for blood flow through the valve. 

The bioabsorbable polymer mesh provided adequate structural support and greater 

flexibility for the gelatin heart valve when compared to the stainless steel mesh. A new 

suturing technique was then incorporated to increase the EOA. Initial studies 

demonstrated that the new suturing technique allowed for natural movement of the root 

and closure of the cusps. However, improvements are still needed to further increase the 

EOA during valve opening. Future research plans include modification of suturing 

techniques as well as the acquisition of more compliant polymer meshes. The gelatin-

coated scaffolds were also tested for cytotoxicity by seeding with cells. Preliminary 
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results displayed cell attachment, but ingrowth was limited. Long-term goals include 

endothelial cell seeding on the most effective polymer scaffold, which will then be cultured 

in a bioreactor where it will be subjected to mechanostimulation. 

7.2.2 Introduction  

The human heart performs approximately forty million cycles a year – an 

estimated three billion cycles for the lifespan of the average human.[11] However, 

increased applied working loads as a result of patient-dependent factors such as stress, 

high blood pressure, and stenosis can lead to degeneration and premature failure of the 

native valve.[153] Malfunction of heart valves can also be caused by non-patient-

dependent factors such as congenital deformation, inadequate leaflet strength, 

calcification of leaflets causing stenosis, or inflammation of the valve.[11] The 

aformentioned pathologies can 

cause inadequate blood flow 

through the valve when the leaflets 

do not fully open, as well as 

regurgitation when the leaflets do 

not properly seal the pathway upon 

closure[154,155] as shown in 

Figure 7-1. In modern times, an 

increasing lifespan has 

proportionally increased the 

occurrence of degradation in heart 

 
Figure 7-1: Normal vs stenotic valves 
Comparison in orifice area of aortic valve with normal function 
and stenotic aortic valve. 
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valves. This failure has led to an increased demand for heart valve replacement 

surgeries.[156] The aortic and mitral valves are more commonly replaced than the 

tricuspid and pulmonary, with more than 100,000 patients requiring replacement of a 

diseased or dysfunctional valve every year in the United States.[157] 

There are currently two categories of replacement heart valves: mechanical heart 

valves constructed from pyrolitic carbon and bioprosthetic heart valves composed of 

biological tissue.[59] These heart valves ensure an improved quality of life, but are 

hindered by a decrease in their viability over time. Mechanical heart valves are more 

durable, but patients who receive them are administered anticoagulants as long as they 

have the implant. Bioprosthetic valves are made from animal tissues and materials that 

are compatible with the body and therefore do not require the administration of 

anticoagulants post implantation. However, the valves are more likely to degenerate 

leading to patients requiring revision surgeries.[158] To overcome these issues, 

researchers have sought to create an entirely tissue-engineered valve capable of 

integration into the body and remodeling to become living tissue. As a deviation from the 

ideology of mere disease mitigation, tissue-engineered heart valves promise to be the 

ultimate fix, serving as a living replacement for a diseased component of the human 

anatomy.[53] Although several groups have demonstrated the feasibility of this new 

technology using animal studies, there are a number of unmet design problems.[102,159] 

Therefore, it is pertinent for a new aortic valve design to be fabricated. 

The focus of the present study was to create living, tissue engineered heart valves 

which can surpass the longevity of current artificial heart valves and optimize structural 

integrity. It was hypothesized that the combination of specific elements are essential in 

Page | 118  

 



development of a functional tissue engineered heart valve: biomimetic geometry, flexible 

and durable scaffolds, proper cell seeding, and mechanical stimulation. In this study, 

gelatin-coated polymer mesh sutured to mimic porcine valve geometry was used as a 

flexible scaffold and mechanically stimulated in a pulsatile flow bioreactor. Effective 

orifice area and movement of the root and cusps without cells seeded were assessed. 

Fibroblasts were seeded onto the valve materials and were assesed for reaction and 

ingrowth into the materials. This paper describes the design process in an effort to report 

both successful and unsuccessful methodologies to assist future tissue engineering heart 

valve researchers. The final version of the valve, presented herein, is a result of an 

iterative design process, whereby many fabrication techniques were tested to develop the 

best method for mimicking the functionality of a native heart valve while also providing 

optimal durability and biocompatibility. 

7.2.3 Methods and Materials 

Valve Design Process 

The valve was designed by selecting materials, patterns, and techniques based on 

effectiveness and ease of assembly. In general, the desired cusp and wall shapes were cut 

from a mesh, assembled in the form of a tri-leaflet valve, coated with gelatin, and tested 

to assess valve functionality compared to native valves. The first generation design began 

with the use of a stainless steel mesh (Small Parts, Inc., Miramar, Florida, USA) that was 

cut using the contiguous scalloped leaflet template (Figure 7-2a) and sutured (Ethicon, 

Inc., Somerville, New Jersey, USA) to the valve wall (Figure 7-2b). The sutured mesh was 

then fit onto the silicon mold and coated using a gelatin injection technique (described 
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below). Initial testing in a heart valve bioreactor showed very little cusp movement and 

an opening in the center of the valve where the cusp edges were not large enough to touch 

each other upon closing.  

The second generation valve was constructed using a high-density biodegradable 

polymer mesh sutured together to create the valve scaffold. We used the contiguous 

peaked leaflet template (Figure 7-2c) to allow the cusps to touch in the center, and 

finalized it with the gelatin injection technique. This valve was tested in the heart valve 

bioreactor (see description below) and showed adequate closure. However, cusp 

movement was not ideal due to an accumulation of gelatin at the base of each leaflet. For 

this reason, a gelatin submersion technique (see description below) was developed and 

replaced the injection technique to provide a thinner layer of gelatin that would better 

facilitate cusp movement.  

This new gelatin submersion technique was used in combination with a more 

pliable mesh of the same material that had a lower density (AM6-A) and a new design: 

the individual peaked leaflet template (Figure 7-2d) . This new leaflet template was 

designed to create more freely flowing movement of the valve with the use of individual 

leaflets. After testing, these selections were seen to provide optimal valve function and 

served as the third generation valve. 

To further improve function and ease of assembly, a number of different meshes 

and attachment methods were tested. These included a 19 courses per inch (cpi) low 

tension reverse locknit, a 28 cpi low tension reverse locknit, and a 40 cpi low tension 

tricot (generously donated by Poly-Med, Inc., Anderson, SC). Mesh materials and 

architecture were analyzed for valve functionality as well as cellular compatibility. In 
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addition, the suturing method of assembly was compared with a cauterizing method and 

a combined suturing/cauterizing method.  

Gelation Injection Technique 

For non-sterile studies, Knox 

gelatin (Kraft Foods, Tarrytown, New 

York, USA) was dissolved in boiling water 

on a hot plate at a concentration of 0.1 

g/mL and 2% antibiotic-antimycotic 

solution (Mediatech, Inc., Manassas, 

Virginia, USA) was added after cooling. 

Once the mixture thickened, it was 

injected into a silicone mold containing the 

mesh framework and wrapped in plastic 

piping to prevent gelatin from seeping out. 

The mold was then stored at 4°C in a 

refrigerator for 24 hours to allow thermal 

gelation to occur.  

Gelation Submersion Technique 

Gelatin was prepared in the same 

method as the gelation injection technique. 

Using tweezers to hold the feet of the valve 

wall, the valve was submerged in the 

 
Figure 7-2: Leaflet templates 
(2a, b) Contiguous scalloped leaflet design. (2c) Valve 
root design as used with original continuous 
scalloped leaflet design. (2d) Individual peaked leaflet 
design with valve root and valve wall. 
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gelatin (Figure 7-3). After each submersion, a 

paintbrush was used to evenly distribute gelatin 

on the valve and avoid undesirable gelatin 

accumulation at the base of the leaflets. 

Submersion and painting was repeated four times 

and the valve was allowed to set for three minutes. 

After setting, the valve was submerged and 

painted three more times to allow for sufficient 

coverage. The valve was stored in a humidifier box 

at 4°C for 24 hours in an inverted position to 

encourage the leaflets to remain in the closed 

position post thermal gelation.  

Bioreactor Studies 

To effectively reproduce and measure the effects of the human body on the 

proposed tissue-engineered heart valve, a pulsatile flow bioreactor designed for heart 

valves[117] was used. The entire assembly has been tested thoroughly and has 

performed consistently in more than 30 experiments with various valve designs.[78] It 

allowed for testing the opening and closing of leaflets in order to qualitatively assess 

similarities to native leaflet movement.  

The bioreactor was designed to allow for mounting valves of various sizes and 

shapes, as well as allow proper exposure to mechanical stimuli for preconditioning of 

valves. To mount a valve in this bioreactor, the valve base must be clamped between two 

 
Figure 7-3: Gelatin submersion technique 
Photograph of gelatin submersion technique 
employed for a polymer mesh scaffold. 
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o-rings. For these experiments, the valve design consists of a valve wall with attachment 

feet (Figure 7-4) that allow for easy installation into this bioreactor. 

Manual Heart Valve Tester 

This novel tester is intended for quick assembly and testing of valves to assess 

integrity and function. By requiring fewer steps during its assembly than the bioreactor 

(described above), it provides a faster alternative when evaluating new valve designs. As 

shown in Figure 7-5, the primary components in the design are: a ventricular chamber, 

bracing rings, an aortic chamber, and a cap. The aortic chamber is attached to the 

ventricular chamber via three adjustable draw latches that can quickly secure the two 

chambers while allowing for adjustments in height for different valve designs. For 

convenience, the tester was designed to utilize the same set of bracing rings as used in 

the bioreactor described by Sierad, et al., which are placed between the two chambers. 

Three screws are used to ensure the cap stays in the correct position and a seal is 

maintained. To manipulate the valve, the user operates two bellows so that when the 

 
Figure 7-4: Dipped mesh scaffold 
Apical view (left) and basal view (right) of valve scaffold after dipping showing feet in basal view. 
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ventricular bellow is squeezed (collapsed), fluid moves through the valve into the aortic 

chamber and the valve opens. The user then collapses the aortic bellow to shut the valve 

and the fluid travels through the external tubing to return to the ventricular chamber. 

The components of the tester in contact with fluid are made entirely from clear acrylic 

and are easy to sterilize. This allows the valve being tested to be clearly viewed from all 

angles.  

Analysis of Effective Orifice Area 

One important measure of valve functionality is the effective orifice area (EOA). 

EOA is the area between the leaflets when a valve is in the open position. EOA relates to 

 
Figure 7-5: Manual heart valve tester 
This tester can be very quickly assembled and is used for quick valve testing. Valves are placed between the 
bracing rings and the metal latched hold all other components together with a quick latch. The two rubber 
bellows are used to pump fluid through the valve to evaluate opening and closing. 
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the amount of work it takes for the heart to push blood through the valve. The larger the 

orifice, the more blood can go through with one pump of the heart and the less work 

required when compared to a smaller opening.  

Effective orifice area was calculated using ImageJ software (National Institutes of 

Health) for valves consisting of high-density bioabsorbable polymer mesh sutured using 

the contiguous scalloped leaflet template (second generation valves) and the thin mesh 

sutured using the individual peaked leaflet template (third generation valves). The EOA 

for an aortic porcine valve was calculated as a control comparison. Images were taken of 

the valves during testing in the pulsatile flow bioreactor. From a series of images taken, 

images of the valve when open were collected and analyzed using ImageJ. The images 

were made binary and inverted so that the valve opening was black. A freehand selection 

drawing was made around the opening and the ‘analyze particles’ command was used to 

calculate the amount of black space in the freehand selection. The particle size was set to 

50-infinity pixels2 and the circularity was 0-1.00. The area reading was recorded. The 

oval selection command was used to evaluate the maximum effective orifice area possible 

if the leaflets were fully open (the inner diameter of the valve). This evaluation was 

performed using the ‘measure’ 

command. The effective orifice area 

was divided by the total area 

possible and multiplied by 100. In 

this study, EOA is represented as a 

percentage of the total possible 

opening of the valve. 

 
Figure 7-6: Mesh valve study design 
12- well plate used for cell study showing rows for Live/Dead 
Assay, H&E staining, and the control. 
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Cell Study 

To test cytotoxicity and cell integration of the low-density bioabsorbable polymer 

mesh coated with gelatin (used in the third generation valves), a 3-week cell study was 

performed. 12 samples of the mesh were cut into 1 cm2 pieces, sterilized with ethylene 

oxide, and coated with gelatin using the gelatin submersion technique. Once coated, the 

samples were placed in a 12-well plate, one sample per well (Figure 7-6). After thermal 

gelation, the gelatin coated mesh samples were crosslinked using 0.075% glutaraldehyde 

in 0.1 M Hepes buffered saline at pH 7.4 for 24 hours. The glutaraldehyde was then 

removed and replaced with a 1:1 ratio of Fetal Bovine Serum (FBS) to Dulbecco’s 

Modified Eagle’s Medium (DMEM) for 24 hours for neutralization of glutaraldehyde 

residues. After the allotted time, the FBS/DMEM was removed and the mesh was coated 

in glycine for 2 hours. 3T3 fibroblasts were seeded at a seeding density of 100,000 

cells/well in DMEM/10%FBS media. After 3, 7, 14, and 21 days, samples were examined 

using the Live/Dead assay (Invitrogen) and Hematoxylin and Eosin staining. Samples 

without cells served as a control. 

7.2.4 Results  

Effective Orifice Area 

Figure 7-7 shows one of the initial valves mounted in the bioreactor. Looking 

closely, you can see spaces between the cusps, showing the inability of the initial valves 

to completely coapt. For the low-density bioabsorbable polymer mesh valve made using 

the individual peaked leaflet template (third generation valve), the average percent 

opening was 16.6% for the images from the first day and 15.7% for the second day. A 
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student’s T test determined 

that there was no 

significant difference in 

EOA between the first and 

second day. This shows 

consistency in the valve 

over the course of the time 

spent in the bioreactor. The 

average percent opening for 

the high-density 

bioabsorbable polymer 

mesh valve made using the contiguous scalloped leaflet template (second generation valve) 

was 6.6%. The average percent opening for the decellularized porcine valve was 15.4%. 

There was no significant difference in average percent opening between the low-density 

bioabsorbable polymer mesh valve (third generation valve) and the porcine valve. These 

results reveal that the EOA of the low-density bioabsorbable polymer mesh valve (third 

generation valve) is comparable to that of the porcine valve and there is a significant 

difference between the high-density bioabsorbable polymer mesh valve (second 

generation valve) and the porcine valve showing a large increase in valve functionality in 

the transition to a thinner mesh and a different scaffold shape.  

 

 

 
Figure 7-7: Bioreactor testing of mesh valves 
Apical view of the second and third generation valves in the bioreactor, 
showing the inability of the initial valves to fully close and open. 
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Cell Study 

The results of the 

LIVE/DEAD Viability 

study are shown in Figure 

7-8. The images are 

overlays of the green and 

red fluorescent images 

created using ImageJ 

software. The results of 

Day 3 and Day 7 showed 

only a few dead cells and a 

large amount of live cells surrounding the low-density bioabsorbable polymer mesh. Day 

14 and Day 21 had an increased amount of dead cells, but still showed an abundance of 

live cells surrounding and incorporating within the mesh fibers.  

The results of the hematoxylin and eosin stains are shown in Figure 7-9. The 

controls and samples were stained and observed under bright field microscopy. The 

results of cellular integration with the mesh were inconclusive, but the images depict the 

gelatin in purple integrating throughout the circular polymer mesh fibers. 

7.2.5 Discussion 

Analysis of Valve Efficacy 

The first iteration of the valve, constructed with a stainless steel scaffold, was 

tested in a pulsatile flow bioreactor for 3 days. This valve exhibited a small effective orifice 

 
Figure 7-8: Cell coverage on the scaffold 
Live/Dead Images at (clockwise from top left) 3 Days, 7 Days, 14 Days, 
and 21 Days. 
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area. Bioreactor testing showed that motion was hindered by an accumulation of gelatin 

at the base of each leaflet. Further, complete coaptation was not evident and the leaflets 

did not display biomimetic motion. These problems can be attributed to the choice of 

material and the template used to make the valve. Understanding that this valve exhibited 

poor compliance to flow lead to the development of a new valve design that more 

accurately mimics the native valve. 

In the second iteration, the high-density bioabsorbable polymer scaffold used a 

contiguous peaked architecture that attempted to better represent native leaflets. This 

valve, however, showed poor movement due to an accumulation of gelatin at the base of 

each leaflet, preventing proper motion in vitro. It was determined that the gelatin 

injection technique applied more gelatin than desirable for effective leaflet motion.  

In comparison with the stainless steel scaffold, the second iteration using the high-

density bioabsorbable polymer scaffold appeared to allow sufficient motion, but valve 

architecture was still a hindrance to valve movement and coaptation. It was determined 

that a contiguous design was preventing valve responsiveness to flow and leading to 

fabrication of a stenotic valve. With these results in mind, alternatives for gelatin coating, 

as well as polymer mesh density and leaflet architecture were considered. A gelatin 

submersion technique, as 

well as a single peaked 

leaflet design and use of 

more porous polymers were 

developed for the third 

iteration of the valve. 

 
Figure 7-9: Gelatin integration around scaffold 
Hematoxylin & Eosin sample showing gelatin integration at 100x (left) 
and 200x (right). 
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In the third iteration valve using low-density bioabsorbable polymer scaffold, each 

leaflet was constructed with a mesh of different courses per inch (cpi), allowing for 

monitoring of individual leaflet motion. Bioreactor analysis suggested that improvements 

were made by switching from the stainless steel to a polymer mesh, but more 

improvements are necessary to reach a fully functional tissue-engineered heart valve.   

The third valve, a low-density bioabsorbable polymer scaffold, addressed the 

issues discussed above and the tests were more successful. The results of testing in the 

bioreactor showed an increase in the EOA of the valve during opening. The low-density 

bioabsorbable polymer scaffold leaflets presented mechanical properties similar to native 

heart valve leaflets, as a result of their compliance to flow. Tight closure of the leaflets 

was observed with little or no backflow.  

7.2.6 Conclusions 

Our data suggests that by using the individual peaked leaflet design, the geometry 

and movement of our valve more closely mimicked that of a native human aortic valve. 

Combining a low-density, bioabsorbable mesh with a gelatin submersion technique 

allowed for an increased EOA as well as more natural and flexible physiological motion 

of the scaffold. Further advancements should include modification of suturing techniques 

and improved gelation techniques to produce a more compliant scaffold while maintaining 

structure integrity, thus increasing EOA.  

Growth of fibroblast cells on the gelatin and mesh scaffold demonstrated that the 

chosen materials could foster the growth of tissue. The growth of new tissue in parallel 

with scaffold degradation will allow for preservation of the original valve architecture 

Page | 130  

 



and ensure normal blood flow. Future work includes the growth of endothelial cells, the 

native blood contacting surface, on the low-density bioabsorbable polymer scaffold and 

exposing this construct to mechanical stimulation in the bioreactor. Mechanostimulation 

is known to promote the growth of cells, and would lead to an improved design. 
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7.3 Toward an Endothelial-Cell Covered Mechanical Valve; Surface Re-

Engineering and Bioreactor Testing of Mechanical Heart Valves 

7.3.1 Abstract 

Mechanical valve replacements for diseased heart valves have excellent long-term 

durability, but necessitate a lifetime anticoagulation regimen. We aimed to create a more 

hemocompatible device by modifying the leaflet surfaces to promote adherence and 

retention of endothelial cells under physiological shear forces. 

St. Jude Medical mechanical valves were autoclaved, plasma treated, coated with 

a collagen/fibronectin solution, and seeded with porcine aortic endothelial cells. The next 

day, the valves were placed in a custom-made bioreactor where pressures were gradually 

increased until pulmonary or aortic pressures were reached.  Conditioning continued for 

7 days. Cellular retention, viability, and morphology were investigated using 

Live/DEAD® staining, immunofluorescence for CD-31, and scanning electron 

microscopy. 

Results demonstrated successful adhesion of the collagen/fibronectin substrate to 

the pyrolytic carbon surface. Complete endothelial coverage of the leaflet surface in the 

static control group indicates that our surface modification approach created a suitable 

environment for the cells to attach, proliferate, and remain viable. Moreover, after 7 days 

of dynamic conditioning at pulmonary pressures, a significant portion of the endothelial 

cells remained adherent to valve surfaces, improved cell coverage over static controls, 

remained viable, increased cell-cell interactions, and maintained expression of CD31. 

Similar results were seen at aortic pressures but with increased cell removal due to higher 
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shear stresses. Further work is needed to improve cell retention in areas of high shear 

stress, but surface modification and endothelial cell coating may ultimately aid in limiting 

coagulation and reduce the need for anticoagulation medication in patients receiving 

mechanical heart valve implants. 

7.3.2 Introduction 

The overall prevalence of heart valve disease, adjusted to the US 2000 population, 

was 2.5%[160] with about 99,000 heart valve operations yearly.[157] Most of these 

procedures were directed at repairing or replacing the mitral or aortic valve with either 

a bioprosthetic or mechanical valve. Whereas the bioprosthetic valves function well with 

usually no medication needed, many fail within 15 years of implantation.[56] The 

mechanical valves have several positive attributes to their structure including strength, 

durability, and ease of operation. However, they initiate thrombosis within the blood 

stream because of the foreign surface as well as high shear forces.[161–163] To prevent 

this process, the patient must be medicated with anticoagulants and blood-thinning 

medication for their remaining lifespan. Even with the prescription of anticoagulants, the 

patient is still at high risk for blood clots, which can cause stroke, myocardial infarction, 

or pulmonary embolism.[164,165] Thrombosis can also cause the heart valve to 

malfunction, requiring the patient to reenter surgery for repairs. Even if the anticoagulant 

regimen successfully prevents clotting, there is still the increased risk of hemorrhages 

associated with blood thinning medication.[166]  

Endothelialization of blood-contacting surfaces with autologous cells to reduce 

the implants thrombogenicity is a common procedure in the literature. For example, 
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vascular grafts have been seeded with endothelial cells to improve hemocompatibility, 

showing successful attachment of cells to vascular prostheses where the surface had been 

modified using ePTFE and a collagen matrix.[167–169] Studies have also been 

conducted to analyze the morphology of endothelial cells attached to vascular 

prosthesis[114,170] as well as heart valves.[15,93,171] 

Previous work has been performed with the idea of modifying a mechanical valve 

surface to reduce or eliminate the amount of anticoagulants patients would need to 

take.[169] In that experiment, researchers modified mechanical valves by seeding a 

confluent layer of cells on the surfaces. The valves were then implanted into the mitral 

position in pigs for one hour. Although cells initially attached to these leaflets, no cells 

remained attached after explantation, possibly due to the shear forces of the blood on the 

cells and their lack of initial attachment to the surfaces. A drastic improvement in cellular 

retention under physiological shear forces is needed for this method of valve 

improvements to be successful. 

The long-term goal of the present study is to prevent thrombosis in patients with 

mechanical heart valves by improving previous methods[169] of reducing the amount of 

coagulation-causing factors and more specifically by generating endothelial cell-covered 

mechanical valves. For this study, we hypothesized that surface modification will enhance 

initial endothelial cell coverage and further retention under dynamic flow conditions.  To 

test this hypothesis, mechanical heart valves were treated with plasma for surface 

activation, coated with a type I collagen/fibronectin matrix, seeded with endothelial cells 

and maintained in static cell culture. Endothelial cell-seeded mechanical valves were then 

subjected to flow and simulated pulmonary and aortic pressure conditions using our 
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custom-made heart valve bioreactor. Viability tests, scanning electron microscopy and 

immunofluorescence of dynamically challenged cell seeded valves showed that surface-

bound endothelial cells remained attached to the modified valves, proliferated and 

maintained their endothelial phenotype.  

7.3.3 Materials and Methods 

Overall, we first modified the surfaces of isolated leaflets from St. Jude Masters 

Series mechanical heart valve via plasma treatment and matrix attachment. The modified 

surfaces were analyzed with Coomassie Blue staining and scanning electron microscopy 

to confirm matrix attachment and uniformity. Initial cell viability studies were performed 

with fibroblasts. Endothelial cells were then used to further investigate the most effective 

surface modification combination for this application. Cellular analyses were performed 

by Live/DEAD® staining.  

After obtaining the desired surface modification method and confirming its 

cellular compatibility, we cultured and attached porcine aortic endothelial cells on the 

outflow surface of intact St. Jude Master Series mechanical heart valves. These cell-seeded 

valves were then dynamically tested under pulmonic and aortic pressures for seven days 

using a previously described heart valve bioreactor.[117] Valves kept under static 

conditions overnight and for 7 days were used as controls. We analyzed the cells via 

Live/DEAD® imaging, scanning electron microscopy, and immunofluorescence for 

morphology, coverage, and expression of the endothelial cell marker, CD-31 (PECAM), 

respectively. 

Surface Modification 
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Sterilization, Surface Modification, & Matrix Attachment 

Whole valves or individual leaflets removed from St. Jude Medical (St. Paul, MN) 

Masters Series (AJ25) mechanical heart valves ( 1A) were sterilized via steam autoclaving. 

After allowing the valves/leaflets to completely cool and dry, they were plasma treated 

for 5 minutes using a Expanded Plasma Cleaner (PDC-001) from Harrick Plasma (Ithica, 

NY) at 50 mTorr to modify the valve surfaces and promote protein attachment.[172] 

Immediately after plasma treatment, the valves were placed in a sterile 6-well plate and 

immersed in a collagen solution. The collagen solution was prepared by mixing (on ice) 

4 parts 3.1 mg/mL PurCol type I collagen solution (Advanced Biomatrix, San Diego, CA), 

4 parts ddH2O, 1 part 10X phosphate buffered saline (PBS) (Mediatech, Manassas, VA) 

and 1 part 0.1M NaOH (Fisher Scientific). After matrix deposition was confirmed, 100 uL 

of 1 mg/mL fibronectin (Sigma-Aldrich) were added to 7.5 mL of each collagen batch to 

complete the collagen/fibronectin solution. The whole valves or individual leaflets were 

then placed in a cell culture incubator (37oC, 5% CO2) overnight.  

Quantification of Protein Adhesion   

Individual leaflets (n=6) were autoclaved and distributed evenly into the following 

treatment groups: Group 1 – with plasma, with collagen; Group 2 – no plasma, with 

collagen; Group 3 – with plasma, no collagen. Leaflets were modified as above and rinsed 

three times with 1X PBS. Following rinsing, 200 µL of Coomassie Blue stain solution (1% 

Coomassie Blue R-250 in 10% methanol, 80% ddH2O, 10% acetic acid) was placed on the 

leaflets for five minutes at room temperature. Leaflets were then rinsed with ddH2O and 

three times with Coomassie Blue wash solution (38% methanol, 60% ddH2O, 2% acetic 

acid) before adding 250 µL eluent solution (50% ethanol, 50% 50mM NaOH). After 30 
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minutes, 200 µL of the eluent solution was transferred to a 96 well plate and absorbance 

was measured in a Biotek plate reader at 620 nm with a reference of 450 nm. Eluent 

solution was used as a blank.  

SEM Analysis of Modified Surface 

Scanning electron microscopy (SEM) was used to visualize the level of 

homogeneity of the collagen solution on the leaflet surface. After sterilization, two leaflets 

were plasma treated, coated with collagen solution as described above, and allowed to dry. 

One additional leaflet was used as a control with no further modification after sterilization. 

For SEM analysis, the leaflets were fixed in Karnovsky’s fixative (2.5% glutaraldehyde, 

2% formaldehyde in 0.1 M cacodylate buffer, pH 7.4) for at least 24 h. Samples were 

dehydrated in increasing ethanol concentrations until absolute alcohol was reached, then 

stored in 100% ethanol for up to 12 hours. Following immersion in hexamethyldisilazane 

(Polysciences, Inc., Warrington, PA) for 15 min, samples were left to air dry. Samples 

were then coated with platinum for 2 min (Hummer 6.2, Anatech LTD, Union City, CA) 

before imaging with a Hitachi S4800 or TM3000 Tabletop scanning electron microscope 

(Clemson University Electron Microscope Facility, Anderson, SC).  

Cellular Attachment 

Initial Cell Viability Static Test using 3T3 Fibroblasts 

Three leaflets were sterilized and plasma treated before applying the collagen 

solution as described above. 3T3 fibroblasts (Cell Applications Inc, San Diego, CA) were 

expanded in DMEM (Mediatech, Manassas, VA) with 10% FBS (Atlanta Biologicals, 

Lawrenceville, GA) and 1% Antibiotic-Antimycotic (Ab/Am) Solution (Mediatech, 
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Manassas, VA) and 80,000 cells were seeded onto each leaflet for 20 minutes before 

adding additional media to each well to minimally cover the leaflet. Media was changed 

ever 3-4 days for 21 days before analyzing with Live/DEAD® stain for viability as 

described below.  

Endothelial Cell Culturing 

Porcine aortic endothelial cells (pAEC; Cell Applications Inc, San Diego, CA) were 

cultured on cell-culture flasks coated with 50 µL/cm2 fibronectin solution (1 mg/mL; 

Sigma-Aldrich) in a 20 µg FN/mL dilution. Cell culturing media consisted of MCDB-131 

(Mediatech, Manassas, VA) with 10% FBS (Atlanta Biologicals, Lawrenceville, GA), 1% 

Antibiotic/Antimycotic (Mediatech, Manassas, VA), and 0.36 g/L of L-Glutamine 

(Fisher Scientific) and passaging occurred at 80-90% confluence.  

Live/DEAD® Imaging 

Presence of live cells on valves and leaflets was analyzed using Live/DEAD® stain 

(Invitrogen, Eugene, Oregon) according to manufacturers’ directions, using 20 µL of 

EthD-1 and 5 µL of Calcein-AM in 10 mL of 1X PBS. The Live/DEAD® solution was 

added to cover each sample and covered with foil at room temperature for 30 minutes 

before fluorescent imaging with an inverted microscope.  

Dynamic Bioreactor Conditioning 

Mechanical Valve Seeding 

The aortic surfaces of sterilized, plasma-treated, and matrix-coated valves were 

aseptically seeded with porcine aortic endothelial cells (1,250,000 per leaflet) in 500 µL 

Page | 138  

 



media in a 6-well plate. If any suspension flowed through, it was re-pipetted over the 

valve. This process was repeated for 20 minutes. Valves and leaflets were submerged in 

culture media (about 10 mL for valves and about 3 mL for individual leaflets) before 

placing them in an incubator for overnight attachment. The next day, the valves were 

processed according to dynamic and static conditions below. Media was prepared using 

MCDB-131 with 10% FBS, 2% Ab/Am, 0.36 g/L L-Glutamine, and 0.2% Gentamycin 

(50mg/mL, Sigma-Aldrich).  

Dynamic Conditioning 

The previously described Clemson Heart Valve Bioreactor[117] was used to 

simulate the dynamic conditions placed on the valve. The entire assembly has been tested 

thoroughly and has performed consistently in more than 35 experiments with various 

reported[78] and unreported valve designs. The bioreactor was designed to allow for 

mounting valves of various sizes and shapes, as well as allow proper exposure to 

mechanical stimuli for preconditioning of valves.  

Three valves tested under dynamic conditions were split between high (aortic 

pressures of 120/80 mmHg, one valve) and low (pulmonary pressures of 40/25 mmHg, 

two valves) pressure conditions. The valves were inserted into the bioreactor where 1.2 

L of media was circulated through the system at 60 beats per minute, and roughly 20 mL 

(1200 mL/minute) or roughly 10 mL (600 mL/minute) stroke volume for high and low 

pressures, respectively. Both low and high pressure valves began at a pressure of 7 mmHg. 

For progressive conditioning, systolic pressure was increased to 20 mmHg after 3.5 hours, 

to 30 mmHg after 6.5 hours, and to 40/25 mmHg after 15.75 hours. The valve at low 

pressure condition was left at this pressure until 7 days passed. The valve at high pressure 
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continued to undergo pressure increases to 64/43 mmHg after 19.83 hours, 85/60 mmHg 

after 24.72 hours, 100/75 mmHg after 27.12 hours, and 120/80 mmHg after 47.17 hours, 

where it remained until seven days had passed. Media was changed after three days in all 

bioreactor studies. On the seventh day, all the valves were removed and prepped for 

Live/DEAD® imaging (one low pressure valve) or immunofluorescence (one low pressure 

valve and the high pressure valve). After Live/DEAD® imaging, valves were fixed for 

SEM as indicated below. 

Static Controls 

One valve and leaflet were processed after an overnight incubation under static 

conditions. After overnight cell attachment, the valve was prepped for Live/DEAD® 

imaging and SEM and the leaflet was prepped for immunofluorescence imaging. Another 

valve and leaflet were placed in a 6-well plate with 10 mL and 3 mL of media, respectively. 

The media was changed every 24 hours for seven days. The valve was then prepped for 

Live/DEAD® imaging and SEM and the leaflet was prepped for immunofluorescence 

imaging.  

Immunofluorescence 

Valves or leaflets for immunofluorescence imaging were rinsed with 10 mL of 

warm 1X PBS 2 to 3 times and fixed for 30 minutes at room temperature in 4% 

formaldehyde (BDH Chemicals). Following rinsing with 1X PBS, the bottom of the valves 

was sealed with parafilm and placed into a custom made, pre-formed, silicone mold 

(CopyFlex Liquid Silicone, Culinart, Inc.) to minimize volume needed for staining (Figure 

7-10B). Samples were then blocked using 5% Bovine Serum Albumin (Rockland 
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Immunochemicals, 

Gilbertsville, PA) with 

0.05% Triton (BDH 

Chemicals) in 1X PBS for 2 

hours at room temperature. 

The blocking solution was 

removed and 1000 µL (250 

µL for leaflets) primary CD-

31/PECAM1 Antibody 

(VM64) (NBP1-42152; 

Novus Biologicals, 

Littleton, CO) in blocking 

solution (1:2 dilution) was added for 1.5 hours at room temperature. The primary 

antibody was removed before rinsing 4 times with 1X PBS. The secondary antibody, 

Alexa Fluor® 594 Donkey Anti-Mouse IgG (Invitrogen, Grand Island, NY) diluted in 

blocking solution (1:2 dilution) was added for 1 hour at room temperature in the dark 

followed by 4 rinses with 1X PBS. Finally, 500 µL DAPI stain (Sigma-Aldrich) was added 

to each leaflet for 5 minutes at room temperature in the dark before fluorescent imaging. 

Primary antibody was omitted for staining negative controls.   

7.3.4 Results 

Surface Modification 

 
Figure 7-10: Mechanical heart valves and testing methods 
A) Masters Series mechanical heart valves provided by St. Jude Medical 
showing the Dacron sewing rings, the inflow side (upper left), the 
outflow side (upper right), and isolated leaflets (bottom). B) Silicone 
mold used to minimize volume needed for staining during 
immunofluorescence. Liquid silicone was poured into the wells and 
covered with plastic wrap before pressing a closed valve into the 
silicone. After curing, the valve and plastic wrap was removed to create 
custom formed wells for mechanical heart valves and leaflets. C) 
Absorbance readings of Coomassie Blue staining for proteins on 
surface-modified mechanical heart valves. ECM = extracellular matrix. 
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The combination of autoclave 

sterilization, plasma treatment, and 

submersion in the collagen/fibronectin 

solution proved to be an effective method 

to attach a cell-friendly matrix to the inert 

surface of a mechanical heart valve. 

Coomassie Blue elution analysis showed 

that collagen indeed attached to the 

surface while confirming the necessity to 

use the combination of both plasma treatment and matrix submersion rather than either 

one alone (Figure 7-10C). Plasma alone and ECM coating alone resulted in negligible 

readings, whereas the combination of the two gave an expected reading for the presence 

of proteins, demonstrating that significant levels of collagen had strongly bonded to the 

pyrolytic carbon surface and were not rinsed away during the coomassie blue procedure. 

SEM analysis (Figure 7-11) provided further visual evidence that a collagen-based matrix 

formed on the leaflet surfaces in a fairly homogeneous distribution after plasma treatment 

and submersion in the collagen solution whereas unmodified leaflets were still smooth. 

Cellular Attachment 

Initial cell attachment and viability tests using fibroblasts cultured on the leaflets 

for three weeks demonstrated that the matrix-coated leaflet was well accepted by the cells 

and did not appear to detach from the leaflet surface. Cells had proliferated to become 

nearly 100% confluent in most areas (Figure 7-12). Under these static culture conditions, 

 
Figure 7-11: SEM of leaflet surfaces 
Scanning electron microscope images of untreated 
(A, B) and ECM-treated (C, D) leaflets at low (A, B) and 
high (C, D) magnifications. 
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over 99% of the cells remained viable, demonstrating excellent cellular compatibility of 

the re-engineered mechanical valve surfaces.  

Dynamic Bioreactor Conditioning 

In order to evaluate the ability of the re-engineered, endothelial cell seeded 

mechanical valve surfaces to withstand dynamic conditions, we subjected valves to 

conditioning in a valve bioreactor, with valves and leaflets incubated in static conditions 

serving as controls. The bioreactor setup seen in Figure 7-13 served to supply and 

simulate physiologic pressures and shear stresses on the mechanical heart valves, causing 

them to fully open and close (Figure 7-13). 

Static Controls 

The valve processed after overnight attachment provides a control from which to 

gauge cellular changes after seven days on the surface of the valve in the flow and non-

flow conditions. Live/DEAD® (Figure 7-14A-C), SEM (Figure 7-15A-C), and 

immunofluorescence (Figure 7-16A, B) 

imaging of the valve under static 

conditions revealed the successful 

attachment of endothelial cells onto the re-

engineered surfaces. The Live/DEAD® 

stain showed the majority of the cells 

fluorescing green rather than red, showing 

excellent initial cell viability. Endothelial 

cell attachment was successful on all areas 

 
Figure 7-12: Fibroblast coverage of leaflets 
Live/DEAD® staining (live=green, dead=red) of 
fibroblasts seeded on the surface of a mechanical 
heart valve leaflet after 21 days in static culture 
conditions. A) shows cells on the rounded edge of the 
leaflet, B) in a central region and C) on the straight 
edge. 
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of the valves, with cells 

appearing as spindle to 

triangular shaped and 

exhibiting no uniformity in 

cellular alignment. A nearly 

confluent layer of cells was 

present on the static valves 

after overnight incubation. 

However, small void spots 

were still present, which 

apparently left room for cell 

proliferation to provide 

almost complete coverage of the valve, which was seen after seven days (Figure 7-14D-

F, Figure 7-15D-F, and Figure 7-16B). Most of the cells retained their spindle shape and 

exhibited tendency to align in swirl patterns, but noticeable distinctions are seen between 

cellular alignment and morphology between time points, especially in the higher 

magnifications. These results indicate that the extracellular m atrix created through our 

resurfacing protocol is a suitable environment for the cells to proliferate and survive. The 

positive CD-31 staining (Figure 7-16A, B) demonstrates the ability of our matrix to 

facilitate a monolayer coverage of anti-thrombotic endothelial cells, which is a key 

component to our objective of reducing thrombogenicity of mechanical heart valves. 

 

 
Figure 7-13: Bioreactor system and valve opening 
A) Overview of the bioreactor system used for testing endothelial cell-
seeded mechanical valves under dynamic pulmonary and aortic 
pressures. The pneumatically driven, pressure controlled valve 
bioreactor 18 is housed inside the cell culture incubator and controlled 
remotely by LabView via a custom made electronics box utilizing the NI-
6008 controller connected to a desktop computer. B,C) An endothelial 
cell-seeded mechanical valve in open (B) and closed (C) positions during 
dynamic testing. 
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Dynamic Testing 

The imaging of the dynamic seven day valves under pulmonic pressures revealed 

three distinct zones of cell coverage (Figure 7-14G-I). The first region is the edge of the 

valves, where most cells were no longer present after seven days of dynamic conditioning. 

This region composed roughly only 10% of the total leaflet area. Moving inward from the 

edges, region two is described as the area of slightly less dense cell coverage than the 

central regions (region three). In these slightly less dense regions, the cells apparently 

 
Figure 7-14: Cell coverage of leaflets after testing by Live/Dead 
Live/DEAD® staining (live=green, dead=red) of aortic endothelial cells on the surface of modified 
mechanical heart valves in static overnight group (A, B, C), static seven day group (D, E, F) and dynamic 
pulmonary seven day group (G, H, I). The upper row (A, D, G) shows the middle of the valve where the two 
leaflets join together. The middle row (B, E, H) shows the hinge or edge of the valve where the leaflet inserts 
into the outer ring. White lines in G and H show the edges of the leaflet. H shows the central region (right) 
as well as the edge region of the leaflet (left). 
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exhibit a larger surface area with a more rectangular morphology than the spindle shape 

seen in the central regions. In this third region (about 85% of the leaflet area), the spindle 

shaped cells do not exhibit a complete uniformity of alignment, but long bands of 10-30 

cells in width are conforming to a single alignment in swirling patterns across the leaflet.  

Compared to the static valves, the pulmonic pressure valves had more complete 

cell coverage of the pyrolytic carbon. The small gaps that existed after static conditions 

were not present in the dynamic valves. This could be seen in the Live/DEAD® images 

in Figure 7-14F and Figure 7-15I, but was more clearly noticed in the SEM images in 

 
Figure 7-15: Cell coverage of leaflets after testing by SEM 
Scanning electron microscopy images of aortic endothelial cells on the surface of modified mechanical heart 
valves in static overnight group (A, B, C), static seven day group (D, E, F), and dynamic pulmonary seven day 
group (G, H, I). Note that under dynamic pulmonary conditions endothelial cells are forming a flat sheet 
with numerous cell-cell junctions that makes it difficult to distinguish the individual cellular boundaries (I). 
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Figure 7-15F and Figure 7-16I where the cells formed more complete junctions almost 

appearing as a cell “sheet” with fewer spaces in the dynamic conditions than in the static 

conditions. The SEM images in Figure 7-15 also revealed that in both static and dynamic 

conditions, the cells appear to be quite flattened on the pyrolytic carbon surface. 

Bioreactor conditioning under pulmonic pressures apparently resulted in stronger, 

more consistent CD-31 expression than under static conditions (Figure 7-16B, D). Under 

aortic pressures, cells remained attached to the valve and continued to express CD-31 

(Figure 7-16, F).  

Conditioning under aortic pressure conditions had similar results to that of 

pulmonary conditions, but fewer cells apparently remained attached to the mechanical 

valve surfaces. Lower cell retention was expected for the dynamic valve under high 

 
Figure 7-16: Cell coverage of leaflets after testing by immunofluorescence 
Immunofluorescence images for CD-31 marker (red) and dapi stain for nuclei (blue) of aortic endothelial 
cells on the surface of modified mechanical heart valves in static overnight group (A), static seven day group 
(B), dynamic pulmonary pressures seven day group (C, D), and dynamic aortic pressures seven day group 
(E, F). Inserts in A, and B are immunofluorescence negative controls. 
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pressure because of the greater shear force and stress. Overall, we noted good cell viability, 

retention, and CD-31 expression (Figure 7-16E, F) for the cells under aortic conditions.  

7.3.5 Discussion 

Surface Modification & Cellular Attachment 

The objective of the present study is to modify the surface to allow for complete 

endothelial cell coverage of the pyrolytic carbon mechanical heart valve leaflets and 

enhanced retention under shear forces. A collagen/fibronectin matrix was used for leaflet 

re-engineering because of their biocompatibility and documented facilitation of cell 

attachment[167] as well as cellular integrin’s ability to strongly bind to the RGD 

sequences found on the fibronectin strand.[173,174] These features allow strong initial 

attachment of cells and subsequent extracellular matrix formation.  

We successfully attached our collagen/fibronectin matrix to the autoclaved leaflet 

surfaces after modifying the pyrolytic carbon surface through plasma treatment, which 

proved to be necessary for the matrix to attach. Plasma treatment uses free radical 

chemistry to clean, micro-etch, crosslink, and surface activate the material. This 

treatment can result in a 2 to 10 fold increase in protein adhesion.[172] From our initial 

data, it is apparent that the collagen matrix completely and evenly bonded to the surface 

of the pyrolytic carbon through functional groups. Whereas Bengtsson and associates 

have previously demonstrated complete endothelial cell coverage on pyrolytic carbon 

through manual seeding with no surface modification,[169] our studies show that not 

only do both fibroblasts and endothelial cells attach to the collagen/fibronectin coated 

valves, but that the matrix actually promotes a more complete cell coverage of the valve 
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over non-altered valves at these seeding densities (data not shown). Although not the aim 

of this particular study, we speculate that fibroblast pre-seeding, as a preamble to 

endothelial cell seeding, might further improve the stability of the ECM bound to the 

pyrolytic carbon surface.   

Successful seeding of endothelial cells on to the modified mechanical valve was 

demonstrated by the results of immunofluorescent and SEM imaging. Images of the 

overnight time point under static conditions suggest that the seeding method used was 

sufficient in creating an even layer of cells on the entire leaflet. After seven days of growth 

in static conditions, a nearly confluent endothelial monolayer was achieved on the 

mechanical valve, but small gaps still appeared between cells, possibly signifying a lack 

of cell-cell interactions that was present in the dynamic conditions. A more spindle shaped 

than triangular shape was also seen after seven days in static conditions. This shape 

reduces cell area, and since cell coverage appeared to be similar or greater after seven 

days, suggesting that cell spreading, rearrangement, and ultimately proliferation is 

taking place. Thus, imaging of the static valves supports the hypothesis that the 

collagen/fibronectin matrix bound to plasma-activated pyrolytic carbon surfaces is not 

cytotoxic.  

Bioreactor Conditioning 

Subjecting the cells to mechanical conditions in the heart valve bioreactor was 

necessary to demonstrate the ability of the matrix modified leaflet to retain cells under 

native conditions before further animal testing. It was also important to test their ability 

to maintain their phenotype in dynamic conditions to ensure a non-thrombogenic surface. 

The heart valve bioreactor previously developed by our lab,[117] which creates nutrient 
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transfer and pressures similar to that of the heart, was utilized to simulate dynamic 

conditions. Valves conditioned using the bioreactor showed a difference in cell coverage, 

cell morphology and alignment, cell-cell interactions, and CD-31 expression compared to 

valves in static conditioning.  

The valve under pulmonic pressures of 40/25 mmHg exhibited better cell 

coverage in the central 90% of the leaflet compared to valves under static conditions 

overnight, as the cells closed the gaps between cells that were present in the static valves. 

The outer 10% of leaflet area, especially around the hinges, contained very few cells 

possibly due to the shear forces on the cells.[175–177] A further increase of shear forces 

on the cells under aortic pressures of 120/80 was correlated to a decrease in final cell 

coverage. The large numbers of cells present on the surfaces after 7 days of exposure to 

aortic pressures indicate that our approach could yield non-thrombogenic mechanical 

valves. However, since mechanical heart valves are already known to cause hemolysis due 

to high shear forces around the leaflet edges and hinges, these areas vacant of cell 

coverage pose an obstacle to reducing hemolysis. Ideally, full coverage of the leaflets is 

desired, especially around the areas with higher shear stress to mitigate the risk of 

hemolysis and the resulting cascade of health issues. 

Cell morphology, orientation, and alignment under dynamic conditions was 

similar to that in static conditions after seven days, but the attached cells appeared longer, 

more flattened, and had a larger surface area under the dynamic conditions. The complete 

coverage in dynamic conditions also leads us to believe that the cells are proliferating, as 

in the static conditions.  
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SEM imaging suggested that the cells are not only flattening out, but also 

interacting with one another more under dynamic conditions than static conditions. This 

might be promising for the creation of a continuous monolayer of cells to reduce 

thrombogenic effects of the foreign surface. The expression of the endothelial cell marker, 

CD-31, under both static and dynamic conditions demonstrates that the cells appear to 

retain their endothelial phenotype and therefore their anti-thrombotic function while 

attached to the surface of the mechanical heart valve. Clinically, this means that an 

autologous endothelial-cell coated mechanical heart valve would create a non-

thrombogenic surface, thus possibly limiting coagulation occurring in patients receiving 

mechanical heart valve implants.  

Challenges in Heart Valve Recellularization 

Providing a confluent endothelial cell surface on any blood-contacting surface is 

a common objective among regenerative medicine cardiovascular implants. Achieving 

such is not simple. We have faced many obstacles and questions in the search for a method 

to do this with a mechanical heart valve. Bonding a matrix to the pyrolytic carbon for 

improved cell attachment may be one breakthrough in this challenging task. However, 

this study has several limitations and opens avenues for further studies with every 

question we face. 

First, what treatment to the valve surface would facilitate a more complete cell 

coverage and stronger bond for the cells upon subjection to shear stresses, especially on 

the inflow side where larger forces are seen than on the outflow side of the valve? 

Alternative matrix components or concentrations could yield results that are more 

favorable.  
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Second, what progressive mechanical conditioning regime would allow more cells 

to remain attached? Further studies should examine incubating the cell-seeded valves 

under static conditions for several days before subjecting the valves to dynamic conditions 

and/or slowing the rate of increase in progressive adaptation to reach physiologic 

pressures. Our studies progressed to aortic conditions over two days whereas recent 

experiments indicate that progression lasting up to three weeks may be necessary.  

Third, if cells can be retained to reach physiological conditions, how would they 

phenotypically and morphologically respond to appropriate conditions of shear and valve 

opening/closing speeds? Studying cellular response with appropriate flow rates and after 

adding a thickening agent such as dextran to the media may help answer these questions.  

Finally, will the layer of endothelial cells on a mechanical valve leaflets 

functionally reduce thrombogenicity of mechanical heart valves? It is well documented 

that high shear forces around the valve – not contact with the pyrolytic carbon surface – 

is responsible for hemolysis leading to clotting. Functional thrombogenicity in in vitro 

testing with whole blood or purified platelets, as well as in vivo large animal implantation 

as valve substitutes are required for validation of this mechanical heart valve re-surfacing 

and re-engineering approach.     

7.3.6 Conclusions  

Surface modification of mechanical heart valves via plasma treatment facilitates 

attachment of a cell-friendly surface layer of matrix proteins, which supports endothelial 

cell attachment, spreading, and proliferation in static conditions. In short-term dynamic 

conditioning under physiologic pressures, the new endothelial monolayer maintains 
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viability, cell-cell interactions, and endothelial phenotype. Although the cell retention in 

these studies is promising, improvements are greatly needed when subjecting the cells to 

physiologic shear stress, especially in areas around the edges and hinges of the leaflets. 

This is intensified when considering that the preservation of the endothelial coating on 

the leaflet in areas subjected to high shear forces will determine the success of reducing 

thrombogenic effects caused by mechanical heart valves. Work is needed to develop a 

progressive pre-conditioning regime that maintains cell attachment before steady 

subjection to pulmonic or aortic pressures and flow. Additionally, further in vitro and in 

vivo testing is necessary to demonstrate the decreased thrombogenicity of endothelium-

covered mechanical heart valves. Success of such advances could ultimately aid in 

reducing the need for anticoagulation medication in patients receiving mechanical heart 

valve implants. 
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7.4 Discussion of Bioreactor Applications 

The bioreactor systems developed have numerous applications for tissue 

engineering, mechanical testing, and pharmacological development. In all, dozens of 

experiments have been performed with these systems and improvements have been made 

with each through the knowledge learned about the system. The resulting small footprint, 

ease of assembly, modularity, and means of sterile media exchange have led to a truly 

platform system that can be utilized in many fields.  

Beyond tissue engineering and testing heart valves, the platform bioreactor 

system has great potential for developing in vitro models for comparing drugs and 

screening potential treatments for diseases. Animal models do not fully reproduce human 

pathology and are difficult to combine multiple risk factors seen in dialysis-sustained 

ESRD, besides their restrictive cost considerations. A testing platform to would assist in 

the development of such a pharmacological treatment for aortic valve disease. 

While many systems described in the literature or that are commercially available 

can perform a single function well, this system has been shown to perform multiple 

functions well with a simple change of module when necessary. It can provide a variety 

of normal and pathologic physiological conditions including those for aortic and mitral 

valves while maintaining a sterile environment to precondition a tissue-engineered valve. 

These conditions can also be made to mimic diseased states for evaluating drug treatment 

regimens. It can be used on the benchtop to test the opening of a valve, TAVR valve 
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placement, and perivalvular leakage. It can assist in the training of transcatheter 

deployment of replacement valves and allows visualization and video capture of cusp 

movement regardless of location. Furthermore, it is compact enough to fit four 

independently controlled systems inside a standard cell culture incubator. The described 

experiments have demonstrated the utility of this system and are but a sampling of its 

capabilities. 
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CHAPTER 8: TISSUE ENGINEERED HEART VALVE 

CONDITIONING 

8.1 Introduction 

The key to achieving an implant capable of repairing itself in response to micro 

tears is the presence of cells to remodel the matrix as necessary.[35,37] In cases where 

the valve implant does not have the adequate mechanical properties to function properly 

upon implantation, in vitro cellular remodeling must prepare the valve scaffold prior to 

implanting.[89–91] Multiple groups have demonstrated cell seeding on the exterior 

surface of valve cusps and some have even achieved some interstitial seeding, though full 

revitalization has not been realized.[92–94] The surfaces of some valves have even been 

repopulated after implantation in animal models,[95,96] but the same is not guaranteed 

in the human system. Even if the valve can be initially covered with cells,[73,97,98] it is 

likely that these cells will need some sort of progressive conditioning to remain attached 

after implantation since application of sudden shear forces can detach cells. Overall, more 

progress is needed to achieve full and consistent external and internal recellularization of 

the cusps and to determine what methods are needed to allow the cells to remain, but 

autologous adult stem cells provide a promising source for this application.[99,100] 

8.2 Materials and Methods 

8.2.1 Study Overview 

Fresh porcine aortic valve roots were collected, cleaned, and prepared as described 

in section 3.3.1. Aortic roots were decellularized by 16-day perfusion as in section 4.2.3 
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or in the case of one valve, by 8-day immersion as in section 4.2.2. All valves were then 

crosslinked with PGG as in section 4.2.4. Prior to seeding, valves were neutralized for 

18-24 hours in DMEM with 50% FBS and 1% Antibiotics/Antimycotics at 37°C. Stem 

cells were cultured as in 5.2.2. Many cell-seeded valves were tested for this compilation 

study, but due to device failures, data for only 13 valves will be reported. Additionally, 

valves evaluated for initial cell placement (internal and external) have been reported in 

Chapter 5: and details will not be repeated here. 

One valve was externally seeded with 16 million cells by method 1 of section 5.2.6 

before being placed in the bioreactor for progressive conditioning and testing. Results 

from this trial indicated that additional preconditioning was necessary. Following the 

first experiment, 10 more valves were internally seeded with 4 million cells at passage 6 

per cusp as in section 5.2.5. Six of those valves were also externally seeded with 30 million 

cells at passage 6 by method 2 of section 5.2.6. Furthermore, three of the latter group 

were seeded as above and successively seeded with an additional 30 million cells at 

passage 7 by method 3 of section 5.2.6. A summary of the cell-seeded valves can be seen 

in Table 8-1. 

Initially seeded valves were described in Chapter 5:. Internally and externally 

seeded valves were investigated for each group, but are often contained in the same valve, 

leading to a seemingly high total sample size. Final test groups can be seen in Table 8-2 

and include: 

1) Static controls (ST): Valves kept in the incubator with media changes every 

two days, daily, or 2 hours as necessary. 
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2) Rotationally conditioned (RC): Valves conditioned by the seeding chamber 

frame described in section 5.2.3. 

3) Rotationally and bioreactor conditioned (RCBR): Valves rotationally 

conditioned then bioreactor conditioned with the third (section 6.2.2) or fourth 

(section 6.2.3) edition bioreactor. 

4) Bioreactor conditioned (BR): Valves conditioned in the third (section 6.2.2) 

edition bioreactor immediately after cell seeding.  

After appropriate conditioning, valves were analyzed for cellular attachment, 

spreading, retention, alignment, and viability using the Live/DEAD® assay, scanning 

electron microscopy (SEM), histology, or immunohistochemistry as appropriate for each 

group. 

8.2.2 Static Controls 

For the static valves, sterile filters were attached to the needleless ports in the lid 

of the chambers and the seeding chambers remained in the cell culture incubator for 13-

15 days. Media was changed every two days, daily, or12 hours as necessary based on pH 

colorimetric indicators in the media. 

Table 8-1: Summary of cell-seeded valves 
Number 
of Valves Internal Seeding Primary External Seeding Secondary External Seeding 

1 0 Method 1: 16e6 cells, p5 0 
6 4e6 cells/cusp, p6 0 0 
3 4e6 cells/cusp, p5/p6 Method 2: 30e6 cells, p5/p6 0 
2 4e6 cells/cusp, p5/p6 Method 2: 30e6 cells, p6 Method 3: 26e6 cells, p7 
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8.2.3 Pulmonic Bioreactor Conditioning and Testing without Rotational Conditioning 

After external seeding, distal aortic root stabilizers (section 3.2.5) were added to 

each valve root for support during bioreactor conditioning and testing. The valves were 

transferred to the pre-assembled third edition bioreactor, where pressure was increased 

every 12 hours until final pulmonic parameters were reached, as seen in Figure 8-1. 

Upon reaching final pressures of 40/25 mmHg and flow of roughly 30 mL per 

stroke at 75 beats per minute (bpm), valves were tested for an additional 13 days before 

analysis for a total of 17 days in the bioreactor. Media was changed every 3.5 days (twice 

per week) throughout conditioning and testing. 

8.2.4 Rotational Conditioning 

After the desired internal and external seeding, valves were conditioned further 

in the rotating chambers. The end-over-end rotating chamber holding plate was attached 

to the frame and needleless ports were attached to each seeding chamber. The chambers 

were placed into the chamber holder plate. Rotating and orbital conditions progressively 

increased every 12 hours until a shaker speed of 40% and rotational speed of 4 rpms were 

achieved for short-term conditioning. Long-term conditioning followed the schedule seen 

in Table 8-3 with media changes occurring during every adjustment (roughly every 12 

Table 8-2: Test groups for valve seeding experiments 

Group Number Internal 
Seeded Vavles Days Number External 

Seeded Valves Days 

Initially Seeded 2 0 2 0 
Static (ST) 1 13 1 13 

Rotationally Conditioned (RC) 
1 13 1 13 
3 23-25 1 25 

Rotationally and Biroeactor 
Conditioned (RCBR) 

1 8 1 8 
1 29 1 29 

Bioreactor Conditioned (BR) 2 23 1 17 
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hours) after day 3. Position 

A (holder orientation) from 

previous rotation angles 

was not monitored from 

this point on. After 13-15 

(short term) or 23-25 (long 

term) days of rotational 

conditioning, valves were 

analyzed or transferred to the bioreactors for adaptive conditioning and testing. 

Media was changed every two days, daily, or every 12 hours as necessary based 

on pH colorimetric indicators in the media. For these changes, the chambers were 

removed from the frame and drained by vacuum through a needleless port with an empty 

50 mL syringe attached to the other port to allow sterile air into the system. Following 

draining, about 130 mL of cell culture media was added to each chamber (until the media 

just covered the stainless steel mounting rings). The syringes were removed and the 

chambers placed back into the chamber holders with the 0° mark aligning with the set 

mark on the holding plate and rotated. 

 
Figure 8-1: Bioreactor preconditioning without rotation conditioning 
This trial reached pressures of 40/25 within 4 days. 
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8.2.5 Pulmonic Bioreactor Conditioning and Testing with Rotational Conditioning 

Table 8-3: Conditioning regimen 
Position B 

(rotation in 
holder) 

Time 
Set Day # 

Shaker 
Speed 

Rotator 
Speed 

Rotating 
Time 

(seconds) 
Pause Time 
(seconds) Cycles 

0° on set mark 16:00 1 10% 2 1800 540 1000 
0° on set mark 05:20 1 20% 3 1800 540 1000 
0° on set mark 13:40 2 25% 4 1800 360 1000 
0° on set mark 22:15 2 25% 5 1800 360 1000 
0° on set mark 10:05 3 25% 6 1800 180 1000 
0° on set mark 23:15 3 25% 7 1800 180 1000 
0° on set mark 14:00 4 25% 8 1800 0 1000 
0° on set mark 20:32 4 25% 9 1800 0 1000 
0° on set mark 11:35 5 25% 10 1800 0 1000 
0° on set mark 21:45 5 25% 11 1800 0 1000 
0° on set mark 11:25 6 25% 12 1800 0 1000 
0° on set mark 23:45 6 25% 13 1800 0 1000 
0° on set mark 13:00 7 25% 14 1800 0 1000 
0° on set mark 22:45 7 25% 15 1800 0 1000 
0° on set mark 11:00 8 25% 16 1800 0 1000 
0° on set mark 22:00 8 25% 17 1800 0 1000 
0° on set mark 13:30 9 25% 18 1800 0 1000 
0° on set mark 04:30 9 25% 19 1800 0 1000 
0° on set mark 20:30 10 25% 20 1800 0 1000 
0° on set mark 11:45 10 25% 20 1800 0 1000 
0° on set mark 20:00 11 25% 20 1800 0 1000 
0° on set mark 16:30 11 25% 20 1800 0 1000 
0° on set mark 13:00 12 25% 20 1800 0 1000 
0° on set mark 21:00 12 25% 20 1800 0 1000 
0° on set mark Missed 13 25% 20 1800 0 1000 
0° on set mark 18:45 13 25% 20 1800 0 1000 
0° on set mark 12:00 14 25% 20 1800 0 1000 
0° on set mark 22:30 14 25% 20 1800 0 1000 
0° on set mark 14:00 15 25% 20 1800 0 1000 
0° on set mark 22:00 15 25% 20 1800 0 1000 
0° on set mark 12:00 16 25% 20 1800 0 1000 
0° on set mark 23:30 16 25% 20 1800 0 1000 
0° on set mark 20:00** 17 25% 20 1800 0 1000 
0° on set mark 12:45 17 25% 20 1800 0 1000 
0° on set mark 02:00 18 25% 20 1800 0 1000 
0° on set mark 20:00 18 25% 20 1800 0 1000 
0° on set mark 10:50 19 25% 20 1800 0 1000 
0° on set mark 23:00 19 25% 20 1800 0 1000 
0° on set mark 17:30 20 25% 20 1800 0 1000 
0° on set mark 09:00 20 25% 20 1800 0 1000 
0° on set mark 20:00 21 25% 20 1800 0 1000 
0° on set mark 14:00 21 25% 20 1800 0 1000 
0° on set mark 22:45 22 25% 20 1800 0 1000 
0° on set mark 17:30 22 25% 20 1800 0 1000 
0° on set mark 10:30 23 25% 20 1800 0 1000 
0° on set mark 23:45 23 25% 20 1800 0 1000 
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After 5 or 25 days of the above rotational conditioning, distal aortic root 

stabilizers (section 3.2.5) were added to each valve root for support during bioreactor 

conditioning and testing. The valves were transferred to pre-assembled third (for 5 day 

conditioned valves: “short pre-conditioned”) or fourth (for 24 day conditioned valves: 

“long pre-conditioned”) edition bioreactors (see section 6.2.3 for details of this system). 

The short pre-conditioned valve was increased to 25/15 mmHg at 75 bpm and a 

stroke volume of 35 mL over the course of eight days (Figure 8-2). Increases in pressure 

occurred every 12 hours. At each increase, systolic pressure was increased by 0.5 mmHg 

each time for the first five days and 4 mmHg each time for the final 3 days. Media was 

changed every 3.5 days (twice per week) throughout conditioning. Upon reaching final 

pressures of 25/15 mmHg and flow of 35 mL per stroke, valves were analyzed by 

Live/DEAD, histology, and immunohistochemistry. 

8.2.6 Live/DEAD® Imaging 

Presence of live cells on tissue surfaces was analyzed using Live/DEAD® stain 

(Invitrogen, Eugene, 

Oregon) according to 

manufacturers’ directions, 

using 20 µL of EthD-1 and 

5 µL of Calcein-AM in 10 

mL of 1X PBS. The 

Live/DEAD® solution was 

added to cover each sample 

 
Figure 8-2: Bioreactor preconditioning without rotation conditioning 
This trial reached pressures of 25/15 within 7 days after rotation 
conditioning for 5 days. 
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and covered with foil at 37°C for 20 minutes before fluorescent imaging with an inverted 

microscope. 

8.2.7 Histology and Immunohistochemistry 

For histology studies, samples collected from the aortic wall, sinus, cusp and 

muscle were fixed in 10% formalin, embedded in paraffin, sectioned at 5 µm (3 µm for the 

aorta), and stained with DAPI for nuclei, Hematoxylin & Eosin (H&E), and Movat’s 

Pentachrome.  

Immunohistochemistry (IHC) was performed to detect remaining components 

after decellularization. Biotinylated Griffonia simplicifolia (GS) lectin was used to detect 

Gala1–3Gal (a-Gal), the main porcine antigen responsible for acute rejection of 

xenotransplants. IHC for laminin, and type IV collagen was also performed. Tissue 

samples were rinsed with 1X PBS fixed at room temperature in 4% formaldehyde (BDH 

Chemicals). Following rinsing samples were blocked using 5% Bovine Serum Albumin 

(Rockland Immunochemicals, Gilbertsville, PA) with 0.05% Triton (BDH Chemicals) in 

1X PBS for 2 hours at room temperature. The blocking solution was removed and 250 

µL primary CD-31/PECAM1 Antibody (VM64) (NBP1-42152; Novus Biologicals, 

Littleton, CO) in blocking solution (1:2 dilution) was added for 1.5 hours at room 

temperature. The primary antibody was removed before rinsing 4 times with 1X PBS. 

The secondary antibody, Alexa Fluor® 594 Donkey Anti-Mouse IgG (Invitrogen, Grand 

Island, NY) diluted in blocking solution (1:2 dilution) was added for 1 hour at room 

temperature in the dark followed by 4 rinses with 1X PBS. Finally, 500 µL DAPI stain 
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(Sigma-Aldrich) was added to each slide for 5 minutes at room temperature in the dark 

before fluorescent imaging. Primary antibody was omitted for staining negative controls. 

8.3 Results and Discussion 

8.3.1 External Cell Response 

As shown previously and repeated in Figure 8-3, initial cellular attachment to the 

cusp surfaces was very successful with method 1. However, the surfaces of the sinus and 

aortic wall required additional seeding. Utilizing methods 2 and 3 have resulted in 

excellent initial cell coverage of those areas as well. 

Cell-seeded valves were placed directly into the bioreactor for 17 days. As a result 

some cells remained attached to the valve and were further spread and aligned than static 

controls and initial time points. However, many of the cells had been removed from the 

scaffolds, presumably because of the applied shear stresses. We believed that a gentler 

pre-conditioning regimen, including more time in the rotating seeding chambers, would 

increase cellular retention. Studies were performed to evaluate the effect of increasing the 

cell quantity, rotational conditioning time, and the time it took for the bioreactor to reach 

full pulmonic conditions. A summary of this data can be seen in Figure 8-3. 

Valves conditioned in the rotating conditioner for 13 days are subjected to lower 

shear stresses than those in the bioreactor and thus, they retained full cell coverage on 

both sides of the cusp with similar, but less noted spread and alignment compared to 

bioreactor valves. This indicates that a substantial layer of cells was growing on the 

surface of the cusps prior to bioreactor conditioning. 
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Figure 8-3: External and Internal cell seeding and retention 
Live/DEAD® and H&E imaging of fresh valve cusps (A-C) in comparison to valves initially seeded (D-
E), static for 13 days (G-I), bioreactor conditioned for 13 days (J-L), rotating conditioned for 13 (M-
N, R), 15 (O), and 24 (S) days, and rotating conditioned for 5 days then bioreactor conditioned for 
8 days (P-Q). (R) is internally and externally seeded. 
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Valves were placed in rotational conditioning regimens for 5 and 25 days prior to 

being placed into the bioreactor. Once in the bioreactor conditions were slowly increased 

until 25/15 mmHg at 75 bpm was reached. The first set of valves achieved 35 mL per 

stroke and was cultured in the bioreactor for a total of 8 days. The second set of valves 

achieved 70 mL per stroke and 2.5% dextran and was cultured in the bioreactor for a total 

of 29 days. Surface imaging indicated that the 5-day rotational pre-conditioning was 

inadequate. Similar or fewer cells remained on the valve surfaces for this experiment than 

the previous bioreactor experiment having no rotational conditioning. The second set of 

valves took that into consideration and had an extensive rotational conditioning step 

before being placed into the bioreactor. 

Unfortunately, during the rotational conditioning, it is likely that many of the 

cells died due to a pH imbalance. As the conditioning progressed, the pH in the media 

inside the seeding chambers was dropping, as indicated by the phenol red indicator 

turning orange faster and faster). At one point, an extended period elapsed between media 

changes (indicated by ** in Table 8-3). After this time point, the media did not change to 

orange nearly as fast. Initial evaluations of the valves indicated that most of the cells had 

been removed from the scaffold surfaces. Despite this, one valve was placed in the 

bioreactor in case external cells remained on that valve or the internally seeded cells were 

still viable. 

Overall, additional rotational conditioning is necessary for cell retention once the 

valves are placed in the bioreactors. However, improved devices, methods of gas exchange, 

and protocols must be investigated to reduce the chances of the seeded cells dying during 

this phase.  
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8.3.2 Internal Cell Response 

Internal seeding of hADSCs into porcine aortic valve cusps yielded promising 

results. Initial cell placement was concentrated in boluses at the injection sites with 

improved initial distribution near the base of the cusps. Static and short-term rotational 

conditioning yielded little to no cellular migration. However, after 24 days in rotational 

conditioning and bioreactor conditioning, cells were beginning to migrate into the 

surrounding tissue layers (see especially Figure 8-3O). Although slow and not ideal, this 

method of repopulating the internal areas of the aortic cusps has yielded promising results. 

Immunohistochemistry (Figure 8-4) of the injected cells immediately after 

injection and after 24 days in the rotating conditioner or bioreactor conditioner 

 
Figure 8-4: Immunohistochemistry of conditioned internal cells 
Slides stained for Vimentin, alphs-SMA, and P4HA3 immediately after injection and after 24 days in the 
bioreactor or rotating conditioner.[140] 
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demonstrated some changes in marker expression. Notably, alpha-smooth muscle actin 

had a higher expression after bioreactor conditioning than rotating conditioning. The 

expression of this marker indicates a myofibroblast-like phenotype typical of cells that 

are remodeling their matrix. 

Further IHC analysis suggests that the cells undergoing rotational conditioning 

resemble q-VICs. There is strong expression of vimentin and little to no true staining for 

α-SMA and prolyl-4-hydroxylase. These reports are promising, as the goal of achieving 

a quiescent-VIC phenotype is ideal prior to further mechanical conditioning. 
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CHAPTER 9: ANIMAL IMPLANTS OF TISSUE ENGINEERED 

HEART VALVES 

9.1 Introduction 

Laboratory research is often disconnected from clinical practice. One day, we may 

be able to develop a functional tissue engineered valve, but if the technology cannot be 

utilized in a clinical setting, it may be necessary to revise the technology from a 

fundamental level. If we can adapt our laboratory practices to consider clinical 

requirements during the research and development stage, translation into clinical practice 

will be more easily realized. Initial animal trials must be performed to reveal hurdles we 

will need to overcome in our process of translating tissue engineered heart valves into 

clinically relevant products. We will then be able to adapt our laboratory practices to 

consider clinical requirements during the research and development stage. 

Our initial investigations into animal implantation revealed a necessity for many 

of the specific features of the devices described in previous chapters. For example, it was 

vital to have a user-friendly valve mounting system that will be used to house the valve 

from initial cleaning to just before implantation with minimal to no handling of the valve 

itself. This chapter will describe the experiments made possible by the technologies and 

research previously described. Herein, we aim to generate implantable tissue engineered 

heart valves by optimal integration of three main factors: acellular heart valve root 

scaffolds, autologous stem cells, and construct preconditioning in a bioreactor. As the 

study continues, additional translational challenges will inevitably necessitate further 
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alterations to our laboratory protocols for valve preparation as we translate the 

laboratory research into a clinical setting 

By implanting these tissue engineered heart valves, we will be implanting the first 

stem cell seeded heart valve in an animal model to eliminate the risk of immune response 

due to remaining cells. These studies will also help to demonstrate that translational 

regenerative medicine is feasible with autologous stem cells for tissue engineering 

replacement therapy – a vital stage in the ability to remove barriers in commercializing 

tissue engineered products.[68,123–125] 

9.2 Materials and Methods 

The research team in Targu Mures, Romania has prepared acellular porcine valve 

scaffolds using the devices and methods developed in chapters 3 and 4. They will isolate 

adipose derived stem cells from sheep, multiply them in culture, and use them to 

repopulate the acellular scaffolds as in chapter 5. They will then precondition the cell-

seeded scaffolds using rotational conditioning methods developed in chapter 8. After 

preconditioning, the surgical team will implant the autologous cell-seeded tissue-

engineered valves in a right ventricle to pulmonary artery shunt in the young adult sheep 

from which the cells were originally taken. Future studies will analyze these valves at 6- 

and 12-month time points at the macroscopic and microscopic level for calcification, 

necrosis, structural damage, cell infiltration, and cell retention. 

9.2.1 Primary Stem Cell Isolation and Culture 

Sheep adipose-derived stem cells (sADSCs) were isolated (Figure 9-1) from well-

vascularized, soft subcutaneous fat samples in the rear subscapular region under sterile 
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conditions and anesthesia from 

individual animals. Established 

collagenase digestion 

protocols[178] were used to 

isolate the stem c ells, which 

involved cutting the tissue 

fragments into small pieces and 

digesting with 20 mL/50 mL tube 

collagenase type I (Sigma) 

1mg/mL 1% BSA, PBS at 37°C, 1 

hour with agitation in the water 

bath. Tissue digest was filtered through 100 µm sieves into new 50 mL tubes and 

centrifuged at 1000 rpm for 5 minutes before aspirating the supernatant. The cell pellet 

was resuspended in 155 mM NH4Cl with 0.1 mM EDTA in PBS and incubated 5-10 

minutes at room temperature to lyse red blood cells. After another centrifugation at 1000 

rpm for 10 minutes, the supernatant was aspirated and the pellet was resuspended in 

DMEM with 10% FBS and 2% Antiobiotics/Antimycotics and plated. Media was changed 

every 3-4 days and passaged with trypsin at 70% confluence 

9.2.2 Scaffold Preparation 

Fresh porcine aortic valve roots were collected, cleaned, and prepared as described 

in section 3.3.1 with the restriction that the donor pigs weigh between 45-50 kg. Aortic 

roots were decellularized by 16-day perfusion (section 4.2.3) techniques, crosslinked with 

 
Figure 9-1: Stem cell isolation from sheep 
After cleaning and antiseptic treatment (A), fat tissue is 
collected from subcutaneous, highly vascularized subscapular 
regions (B), and transported to the lab for immediate stem cell 
isolation (C) before the wound is closed and treated with local 
antiseptic (D). 
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PGG as in section 4.2.4 (later trials also utilized RapidGlut as in section 4.2.5), and 

neutralized for 18-24 hours in DMEM with 50% FBS and 1% Antibiotics/Antimycotics 

at 37°C. 

9.2.3 Stem Cell Seeding 

Stem cells were isolated from sheep and cultured as described above. Each primary 

source of cells was tracked and a single source of cells was used to seed valve scaffolds 

internally with 4-6 million cells per cusp as in section 5.2.5. The remaining cells from the 

culturing were is suspension, but the valve position was not controlled during rotation 

and pausing.  

9.2.4 Valve Conditioning and Preparation for Implantation 

After seeding, the valves were conditioned further in the rotating chambers by 

simple rotation in the incubator. Media was changed every two days until implantation. 

Each valve was tracked for final implantation into the same sheep from which the cells 

came for an autologous tissue engineered implant. 

Before implantation, conduits of decellularized bovine pericardium were attached 

to the proximal and distal segments of the valve root by a continuous suture (Figure 9-2A 

& B). This created a pipeline for the valve that will be intercalated between implant 

locations for routing of the host circulation. 

9.2.5 Surgical Procedure: Right Ventricle to Pulmonary Artery Conduit Implant 

Juvenile male sheep (5-6 months, 35-40 kg) are chosen for these studies because 

of several benefits including growing in size, similar anatomy and hemodynamic 
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parameters to young adults, and 

prior testing of heart vavle 

bioprostheses degeneration and 

calcification.[179] Animals were 

obtained from the local Animal 

Research Station and the sheep 

were housed under optimal 

conditions and monitored pre and 

post-operatory for general health, 

food intake, behavior, and blood 

tests.  

Animal implantation 

protocols were approved by the 

Institutional Review Board of the 

University of Medicine and 

Pharmacy of Târgu Mureş. The shunting procedure (Figure 9-2C&D) involves attaching 

pericardial tubes to each side of the valve (Figure 9-2A&B) then attaching those tubes to 

their respective portions of the right ventricle or pulmonary artery. Animals were set 

under general anesthesia with controlled ventilation and continuous monitoring of ECG, 

arterial pressure, pulse-ox, and temperature.  Surgical procedure generally followed the 

steps here: 

1. Access via left thoracotomy at the level of the 4th intercostal space. 

2. Incision of the parietal pleura and pericardium.  

 
Figure 9-2: Tissue engineered valve preparation, 
implantation, and follow up 
Pericardium tubes are attached to the valve (A&B) before 
implanting the conduit between the right ventricle and 
pulmonary artery (C-D). Postoperative housing is indoors  (F) 
before longer term outdoor housing. (F) Echocardiogram and 
other methods are used for follow up. 
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3. Lateral clamping of the right ventricle followed by a 3 cm long 

ventriculotomy.  

4. The proximal end of the valved conduit was anastomosed to the ventricle 

at this level using a continuous suture (Surjet with Prolene 5.0), 

strengthened by Teflon pledgets where needed.  

5. The pulmonary trunk was then clamped and the distal end of the valved 

conduit was sutured to the pulmonary trunk with same suturing method. 

6. After declamping, the pulmonary trunk was ligated shut at 1-2 cm above 

the level of the pulmonary valve.  

7. After hemostasis and checking sutures and conduit for leaks, the 

pericardium and pleura were left open to prevent tamponade.  

8. Finally, cavities were drained and the thoracic cavity was closed with 

Dexon 2.0. Closing  was in layers and isolated sutures at the tegument. 

9.2.6 Postoperative Care 

Following surgery, the sheep are temporarily placed in indoor monitoring 

facilities (Figure 9-2E) before being released to their outdoor living spaces until explant 

and analysis. Animals are cared for by standard techniques concerning monitoring, 

supervision, pain killer medication, X-ray monitoring of the chest, laboratory tests and 

food, with the consultation of a veterinarian, surgeon, anesthesiologist and cardiologist. 

Animals will be monitored post-op for respiration (frequency, thoracic X-ray, blood 

gases), cardiac frequency, hydration status, pH equilibrium, nutrition, hematology 

(hemoglobin, hematocrit and electrolytes). Sheep will be sacrificed at 6 months (n=6) and 
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12 months (n=6). At explanation, valves will be analyzed for morphology and function. 

Those future studies will analyze these valves at the macroscopic and microscopic level 

for calcification, necrosis, structural damage, cell infiltration, and cell retention. 

9.3 Results and Discussion 

9.3.1 Scaffold Preparation 

Aortic valves were harvested from pigs of various ages and weights to assess the 

anatomical details of the aortic valve (size, diameter, and position) that best corresponds 

to implantation in sheep hearts in the pulmonary position. The optimum weight was 

identified at 45-50 kg to obtain an aortic valve corresponding to the size of the sheep 

pulmonary tract. Additional modifications to the research protocol were necessary to 

accommodate the surgical setting. One such change has been the method of valve cleaning 

and mounting during decellularization to allow pericardial tubes to attach to the valve. 

The resultant conduit is necessary for the current placement of the valves and gives 

relevant information about the ability to suture the resulting valve root scaffold. 

9.3.2 Preliminary Sheep Results 

Progress has been made toward testing a revitalized valve root in an ovine right 

ventricle to pulmonary artery shunt model. Three surgeries have been performed with 

glutaraldehyde treated valves to increase familiarity with the surgical procedure before a 

tissue-engineered valve is utilized. The first resulted in animal death due to anesthesia 

difficulties. The animals survived both the second and third procedures and operating 

time decreased for each case. 
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In all, at least 25 surgeries have been performed and they are still ongoing. More 

recent trials utilizing tissue-engineered valves have had varied success. Surgical 

procedures are still being adjusted to meet the needs of the sheep. Initial trials with valves 

crosslinked only with PGG indicated that the valves were deteriorating more rapidly than 

expected. This has also led to the modification of our research protocols as seen in the 

addition of RapidGlut crosslinking treatment to later valve trials. 

Overall, the implantation of tissue-engineered valve implants seeded with 

autologous stem cells is one of the first such trials being performed in large animals. As 

the teams become more familiar with the procedures and modifications are made to 

improve outcomes, the advancement of a clinically relevant product will take great strides. 

The knowledge gained by these studies will contribute important information for a 

commercial valve replacement product. 
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PART 4: CONCLUSIONS AND REFLECTIONS 
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CHAPTER 10: DISCUSSION, CONCLUSIONS, AND FUTURE 

WORK 

10.1 Conclusions of Research and Recommendations 

The advance of heart valve replacements is moving in the direction of tissue-

engineered devices. This research has shown how core devices are a vital part to 

developing and commercializing valve replacements. This research has also served to 

progress the field of tissue-engineered heart valves forward by means of the novel devices 

as well as scientific findings. 

10.1.1 Valve Holding Device 

A tool to handle a scaffold for a tissue-engineered product is integral to the many 

components and processes used for developing those products. Without appropriate 

handling, the scaffold could be damaged or even unable to transition between the various 

treatments involved in developing these products. The valve holder developed through 

this research provides an excellent hold on the tissue during assembly and use, provides 

a reliable seal around the tissue in all processes, and is easy to use with many versatile 

applications. 

Recommendations 

• The distal root stabilizer currently utilizes sutures to hold the root up during 

bioreactor functioning. This method is very versatile, but can also be time consuming, 

even with the relatively few sutures needed. A means of quickly attaching the distal 

aortic root to the stand and stabilizer would prevent the valve and cells from drying 
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out during valve preparation and would also greatly decrease the time necessary to 

prepare a valve for bioreactor functioning. Initial designs and prototypes have utilized 

an internal retaining spring that can be applied with plier tools. Concave grooves in 

the upper ring or stand itself would help seat the retaining spring and prevent 

dislocation during valve functioning. 

• Nonmetal materials should be sourced for the potential use of the valve in an MRI 

device or for disposability. However, care should be taken to ensure chemical 

compatibility with all decellularization, crosslinking, and culturing solutions. An inert 

ceramic or plastic that would provide adequate strength would serve well.  

10.1.2 Perfusion Decellularization Method and Device 

Immersion decellularization techniques are inadequate for whole-root 

decellularization. The thick, elastin-rich areas require a more robust method of 

decellularization. The perfusion system designed for this research is the first of its kind 

for heart valve roots. Its capabilities to treat individual components of the valve root with 

independent conditions allows it to be rigorous enough to decellularize the aortic root 

while gentle enough not to destroy the cusps. Any scaffold to be implanted must be free 

of all animal cells and the valve root is no exception. Each area of cusp, sinus, aorta, and 

muscle must be free of native cells. However, we are currently unaware of the effects of 

this process on the mechanical durability of the valve root components. 

Recommendations 

• The current device uses nearly 4 liters of fluid for each media change. While an 

adequate fluid-to-tissue ratio is necessary, this system is excessive and potentially 
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wasteful. A main chamber that reduces the area around the valves should be built. 

This chamber would essentially be contoured to the shape of the valve roots while 

allowing adequate circulation. Alternatively, individual chambers or a reduced 

number of valves could be processed with the above in mind. 

• Future versions of the system should be manufactured with slight variances to the 

layers and materials to ease assembly and reduce components. For instance, the 

central holding plate (layer 3) can be combined with the main chamber portion (layer 

4) and the material should be a rigid plastic such as Delrin. Additionally, by thickening 

the other layer that holds the valves (layer 2), a dampening section can be dug out of 

that layer along one side. That dampening section would be full of air while not 

increasing the volume of solution used to eliminate the dampening bottle. 

• Individual chambers could also allow the valves to be crosslinked inside the system 

without the need for packing the cusps with cotton balls. By reversing the flow, a 

slight pressure gradient can be created to crosslink the valves in the naturally position. 

• Upgrades to the software should include connecting the peristaltic pump to the 

computer so it can be monitored and controlled via a feedback loop by the software. 

The pump includes that capability and software, but LabView programming and 

potentially another piece of hardware will be necessary to provide the interface. 

• Mechanical evaluation should be performed on the valve roots. Compliance data can 

be obtained through the clear wall of the system by inserting a ruler into the main 

chamber of the decellularization system and diameters measured at varying pressures 

using the existing setup. Biaxial or uniaxial testing should be performed on the aortic 
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root to determine if excessive damage is being done to the elastic properties and 

strength of the native tissue. 

• The decellularization protocol may also be optimized. A shorter time for various steps 

of the process could reduce the overall time required to achieve full decellularization. 

10.1.3 Cell Seeding by Injection and Rotational Seeding and Conditioning Device 

Cell seeding by injection is much more effective than relying on cellular migration, 

but it is not the optimal means of revitalizing a tissue because of its damaging and 

inconsistent aspects. It is also technically difficult and reproducibility is user-dependent. 

The rotational seeding device works well, but requires routine user input and observance. 

The optimal methods of achieving a confluent layer of cells on all surfaces of the valve 

root are also deficient. Current methods achieve the goals, but may be using too many 

cells and supplies. 

Recommendations 

• A new method of recellularizing the internal portions of valve cusps is necessary. This 

method should provide more uniform coverage and result in less tissue damage. Other 

methods currently being investigated in the lab are promising. Details are 

purposefully omitted to maintain confidentiality. 

• External seeding could be optimized by clamping the distal aorta with existing 

equipment and sealing the inflow with o-rings as done in other places. This would 

localize the cell seeding solution within the valve lumen to allow a much higher 

concentration of cells to attach to the valve, resulting in higher seeding densities with 

fewer cells used. Care should be taken to ensure that the devices fit inside the chamber 
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and that the external surfaces of the root maintain moisture, although concern for the 

second point is minimal given the small air volume in the system. 

• Seeding protocols should also be optimized. A combination of method 2 and 3 should 

be compared with method 3 alone to determine the most efficient means of fully 

recellularizing all of the aortic root surfaces. Reducing the number of cells or 

repetitions could also yield results that are just as effective. 

• Improvements to the frame and software should allow monitoring of rotation angles 

to enable pausing at specified angles. Automated control of the speed of the shaker 

plate should also be incorporated into the controls of the system. The seeding method 

and regimen should be entered into LabView in “spreadsheet style” instead of “on/off” 

style. These upgrades will allow complete customization of rotational scenarios. Bob 

Teague is currently working on automated control of the shaker plate and Charlie 

McDonald is currently working on spreadsheet style of entering data into LabView. 

• Gas exchange inside the seeding chambers needs immense improvement. Securing the 

lids and flowing appropriately mixed gases through the ports and sterile filters by 

pressure or vacuum would improve this, but must be compatible with the rotation of 

the system. Preliminary designs have been discussed that involve routing a 

pressure/vacuum line through the axle of the chamber holder and incorporating a gas 

line inside the holding plate that would protrude next to each chamber position. 

Hydrophobic sterile filters could be attached to the system to allow gas movement 

and timing could be aligned appropriately with the placement of the gasses near the 

ports if necessary. 
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10.1.4 Fourth Edition Heart Valve Bioreactor Device 

The fourth edition of the bioreactor is a sophisticated system that provides 

capabilities not seen in most other systems in the research or commercially available. In 

addition, its small footprint, relatively simple assembly, and ability to fine-tune make it a 

valuable component to the laboratory’s research. The current edition is nearing 

completion to provide pulmonic or aortic conditions of flow, pressure, and viscosity, but 

additional improvements and modifications are necessary to reach those conditions or 

improve ease of use. 

Recommendations 

• The first objective should be to finalize the size and shape of the bottle used as an 

aortic compliance chamber. The means of providing an internal balloon membrane 

should also be finalized. A component of this chamber will include an input pressure 

regulator and filter to control the internal air pressure of the chamber without 

opening it to non-sterile air or using excessive amounts of fluid. 

• The quick-connect latches of the quick-connect bioreactor fittings should be adjusted 

to function with the 3-D printed materials. Although the o-rings provide a reliable 

seal, there is potential risk that the fittings could slide out of the main bioreactor 

chamber without the latches in place. External design services of the inventors can be 

sourced for this task. 

• Additional tools should be developed to assist in the assembly of the bioreactor. These 

include a membrane cutting and placement tool, a camera holder, a pressure 

transducer holder, and any required supports for the modules. 
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• As with all future devices made of a clear plastic, future versions of the chambers 

should be machined out of polysulfone rather than acrylic. This material is semi-

transparent and can be sterilized by autoclave. 

• A manifold system should be developed inside the incubator that allows the small 

through-wall port of the incubator to provide enough real-estate to service four or 

more bioreactors within the same incubator. 

• A more aseptic method of adding media to the bioreactor should be developed. 

Current methods work well, but have risks of contamination. If media could be 

delivered by attaching bagged media to the bioreactor through one of the needleless 

ports and applying a small vacuum force to the main chambers, the media could be 

added very quickly without drying out the valve sample. 

• Studies should be performed to evaluate the cytotoxicity of all printed or other 

materials on cells. While no effects have been seen, validation of the appropriate choice 

of material should be performed. 

• Additional modules should be developed to provide capabilities to test mitral valves 

and transcatheter implantations. The validation an in vitro system for creating 

diseased states and testing drug treatments is still a possible use for the bioreactor 

systems that should not be abandoned. 

• Living aortic valves should be collected from the slaughterhouse and mounted into 

the bioreactor. The bioreactor should be run for at least four weeks to demonstrate 

its capabilities to provide a healthy, native environment to heart valves. This scientific 
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evidence will be the bedrock to support claims that this bioreactor system can 

adequately prepare a tissue-engineered valve for implantation. 

• Additional case studies should be performed to widen the applicable uses of the heart 

valve bioreactor. From providing physiologically relevant flow to enabling another 

technology, the bioreactor system is truly a platform system that can be applied in 

many areas. 

10.1.5 Tissue-Engineered Heart Valve Conditioning and Animal Implants 

Progressive adaptation regimens to allow seeded cells to remain attached to 

scaffold surfaces are vital to a valve’s self-modulation of the repair of the cusps. Included 

studies have shown that this progressive adaptation is necessary for cell retention and a 

select few trials have been performed to develop the appropriate protocol. Factors of other 

systems (gas exchange in the seeding chambers, etc) have prevented further study herein.  

Autologous stem cell-seeded scaffold being implanted into large animals is new in 

this field. Many hurdles have been faced in translating this research project into clinical 

applications, but the animal studies have revealed very important aspects of our research 

that must continuously be adapted to fit the need. 

Recommendations 

• Trials should be performed to determine the necessary pre-conditioning regimens for 

adequate cell retention after reaching pulmonary and aortic conditions. A period of 

gentle conditioning followed by more rigorous conditioning in the seeding 

chambers/rotating frame before transferring the valves to the bioreactor has shown 

great promise, but needs to be optimized and validated. 
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• Cell staining (such as for focal adhesion kinases, FAK) to observe the cell-cell 

interactions as well as the cell-matrix interactions should be performed to evaluate 

cellular attachment to the scaffolds. 

• Overall, fewer cells should be used to revitalize the scaffold. Current methods employ 

more cells than reasonably collected from a patient without in vitro culturing.  

• One ongoing question is if externally seeded cells are necessary for these implants. 

After pre-conditioning regimens are developed to retain cells at physiological 

conditions, trials should be performed using externally seeded valves. 

10.2 Final Discussion of Progress 

The field of heart valve devices has come far since the advent of mechanical valves 

in the middle of last century. There have been improved hinge designs, alternative 

bioprosthetic materials, minimally invasive implantation procedures, and even animal 

trials with decellularized or tissue-engineered valve replacements. As our understanding 

of this complex and astounding structure increases, we will continue to develop better 

replacement products that perform closer and closer to the way the valve was designed 

to work in a healthy person. There is much work to be done, but we stand on a hill of 

giants gone already deeply entrenched and dedicated to its progress. We look forward to 

where our future innovations, learning, worldwide need, and even funding will lead us. 

There is no doubt that a robust tissue-engineering replacement heart valve will soon be 

available to improve lives all around the world. 
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