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Abstract

Non-local plate and shell models have attracted much interest in the area of grap-

hene and carbon nanotube simulations. This work explores further into this area and aims

to provide more accurate and reliable non-local modeling methods to graphene and carbon

nanotubes.

At first, a semi-analytical model for determining the equilibrium configuration of

single wall carbon nanotubes is presented. By taking advantage of the symmetry charac-

teristics, a carbon nanotube structure is represented by five independent variables. A line

search optimization procedure is employed to determine the equilibrium values of these

variables by minimizing the potential energy. With the equilibrium configuration obtai-

ned, the semi-analytical model enables a straightforward calculation of the radial breathing

mode frequency of carbon nanotubes. The radius and radial breathing mode frequency

results obtained from the semi-analytical approach are compared with those from molecu-

lar dynamics and ab initio calculations. The results demonstrate that the semi-analytical

approach offers an efficient and accurate way to determine those properties.

Next, we investigate several issues in the local and non-local plate models of sin-

gle layer graphene sheets. The issues include the ambiguity of the plate thickness in the

moment-curvature relation, the definition of clamped boundary condition at graphene ed-

ges, and the value of the non-local parameter. For error analysis, the results obtained from

a REBO potential based atomic lattice mechanics model are used as reference results. Er-
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rors of the plate models are analyzed and remedies are proposed within the framework of

the non-local plate model. Numerical results of static and modal analysis of graphene are

presented to demonstrate the effectiveness of the remedies.

In the last part of this work, a non-local finite element shell model is established for

single-walled carbon nanotubes. Based on the accurately relaxed radius, bond lengths and

angles obtained from the semi-analytical model, it is possible to calculate more accurate

elastic constants directly from the interatomic potentials. Then through the combination of

the classical first order shell theory, the non-local elasticity, and the potential-based elastic

properties, a more accurate shell representation of single wall carbon nanotubes is establis-

hed. The improvement in accuracy is demonstrated by comparing the spectral frequency

analysis and dispersion relation results with those obtained from lattice mechanics and mo-

lecular dynamics simulations, respectively.
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Chapter 1

Introduction

Graphene, carbon nanotubes (CNTs) and fullerene are a group of carbon allotropes

with two dimensional honeycomb-like structures as shown in Fig. (1.1). Graphene is a

single-layer of graphite in which carbon atoms are sp2 hybridized. Similarly, CNTs are also

made of one or several layers of sp2 carbon atoms, but in seamless cylindrical shapes [16]

which is often seen as results of graphene rolling. However, CNTs are manufactured much

earlier than graphene. In 1991, Iijima successfully synthesized carbon nanotubes using

arc-discharge evaporation method [34]. On the other hand, it was believed that mono-layer

atom membranes are thermally unstable and may not be produced as stand-alone structures.

Until 2004, Novoselov exfoliated mono-layer graphene from graphite for the first time [52]

and discovered its unusual ballistic in-plane electronic transport. Both graphene and carbon

nanotubes exhibit extraordinary thermal, electrical and mechanical properties and they have

been the focus of research interest for more than two decades.
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Figure 1.1: Illustration of graphene-like materials [26].

1.1 Experiments of mechanics of graphene and carbon na-

notubes

In many applications of graphene-like materials, it is important to know their corre-

sponding mechanical behaviors. The most straightforward method is through experiments.

Many experiments have been done on graphene [24, 65, 81] and CNTs [80, 21, 60]. Expe-

riments at nano-scale require special equipments, such as atomic force microscope (AFM)

and transmission electron microscopy (TEM). AFM has very high resolution and can use

its probe to apply measurable forces to samples. For example, Wong [91] and Yu [97, 96]

tested the behaviors of single and multi-wall carbon nanotubes under compression or axial

tensile loading through an AFM, as shown in Fig. (1.2). Also using AFM, Frank [23]

measured the bending rigidity of several (less than 5) layers of graphene in 2007. No more

than a year later, Lee and his colleagues measured the bending properties of suspended
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mono-layer graphene membranes, which is shown in Fig. (1.3) [40].

Figure 1.2: Tensile test of single wall carbon nanotubes with AFM [96]

Another tool that is widely used is TEM. In TEM, an electron beam passes through

a given sample after accelerated with an electric field. A recording media is placed after

the sample material which will show the electron density distribution. The structure of

the material can be obtained from this distribution. In 1996 Treacy et. al measured the

Young’s moduli of multi-walled CNTs with different sizes [80]. He used TEM to observe

free-stand CNTs shown in Fig. (1.4). From the image he found that the free tips of these

tubes were blur due to thermal vibrations. He calculated the averaged vibration energy

from the temperature of the system, and obtained Young’s moduli of CNTs with it. It was

the first time that the Young’s moduli of CNTs were found to be in the order of 1 TPa. More

recently, Huang and his team also observed graphene grains especially the grain boundaries

using TEM [30]. Their observation is shown in Fig. (1.5).

3



Figure 1.3: Images of suspended graphene memberanes. (A) Scanning electron micrograph
of large graphene flake spanning an array of circular holes 1 µm and 1.5 µm in diameter.
Area I shows a hole partially covered by graphene, area II is fully covered, and area III is
fractured from indentation. (B) Nonscontact mode AFM image of membrane, 1.5 µm in
diameter. The solid blue line is a height profile along the dashed line. The step height at the
edge of the membrane is about 2.5 nm. (C) Schematic of nano-indentation on suspended
graphene membrane. (D) Image of a fractured membrane [40].

1.2 Atomic level simulations on graphene and carbon na-

notubes

While being direct and intuitive, performing experimental measurements on nano-

materials is typically difficult and expensive, especially when extra constraints and conditi-

ons, such as specific initial strain/stress, irregular shapes, defects and chiralities, are requi-

red. As an alternative approach, numerical simulations are much more cost effective and

insightful. To obtain reliable results efficiently, it is crucial to develop proper computational

models. Based on spacial scale, computational models can be broadly categorized into first

principle calculations, atomistic/molecular simulations and continuum simulations. More

4



Figure 1.4: TEM image of free stand CNTs[80]

recently, to achieve the goal of accurately capturing the atomistic physics and yet retaining

the efficiency of continuum models, multiscale modeling and simulation techniques which

connect and integrate the atomistic and continuum theories have attracted considerable re-

search interest [77].

First principle (also known as ab initio) calculations evaluate forces and energies

by considering electronic structures with Schrödinger’s equation. An outstanding example

is the density function theory (DFT). DFT is an important tool for simulating graphene and

CNT growth [55], as it is accurate. For an instance, using DFT, Gao and his colleagues

investigated the chemical vapor deposition synthetics of graphene on metal substrates [25].

In mechanical area, the ab initio approach has been used to compute graphene and CNT’s

elastic properties such as Young’s modulus and strength [20, 50, 54]. In 2000, Van Lier

et al calculated the Young’s moduli and the Poisson’s ratio of graphene and CNTs with

5



Figure 1.5: Atomic-resolution ADF-STEM images of graphene crystals [30]

different chiralities [83]. In his work, graphene and CNTs were simulated at Hartree-Fock

6-31G level of energy through multiplicative integral approach (MIA). Graphene and CNTs

were subjected to single axis stretching, and the Young’s moduli and Poisson’s ratios are

obtained from the ratio of force/relative elongation and the relative radii change/relative

elongation. His work confirmed that the Young’s moduli of CNTs and graphene are around

1 TPa.

A simpler computational model in atomistic/molecular level is molecular dynamics

(MD) [75, 9, 84, 36, 57, 42]. MD simulations use potential functions instead of solving

Schrödinger’s equation to approximate the interactions among atoms. The movement of

atoms is predicted by simply applying the Newtom’s Second Law F = ma. There are many

popular potentials developed for solid materials, including Morse [51], Tersoff [78], 1st and

2nd generation Brenner (REBO) [10, 12], etc. Using MD simulations, Belyschko [9] has

6



calculated the fracture of CNTs using the modified Morse potential. During his simulation

different CNTs were stretched until cracked. The stress-strain relations were recorded, and

the crack evolution was also reported. And similar to it, a stretching test on graphene was

also performed in MD by Jiang et al [36]. They used 2nd generation Brenner potential, and

calculated the Young’s modulus of graphene. Li investigated the deformation and thermal

properties of hydrogen-doped graphene[41, 42]. Very recently, through MD simulations, Li

et al discovered heat flux induced coherent vibration of h-shaped graphene structure [44].

Figure 1.6: Illustration on the formulation progress and structures of several low energy
isomers on a Ni substrate [25]

1.3 Continuum modeling of graphene-like materials

On a higher level abstraction, continuum models treat graphene-like materials as

a continuum. Different types of continuum models have been proposed in the literature.

Some researchers considered graphene-like materials as structural trusses or frames [53,

7



Figure 1.7: Simulation results on CNTs and graphene [83]. The Young’s
moduli (Y) and Poisson’s ratio (ν) are given by the last tow columns

Figure 1.8: Stress-strain curves of CNT failure. (a) are from zigzag tube results compared
with experiments. (b) shows results from CNTs with different chiralities [9]

71, 48, 73], in which the honey-comb atomic structure is modeled as rods or beams and

each atom is considered as a joint. While the classical beam theories can be conveniently

used to model the interaction between the carbon atoms, the complexity of the system is

still at the same level with MD as the movement of every atom is calculated. Another

continuum level approach is to model the 2-D materials as thin plates or shells. Since each

plate or shell element can represent a large number of atoms, the detailed atomic structures

are homogenized into the material and structural properties of the plate and shell elements.
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This approach is computationally much more efficient than other methods.

1.3.1 The thickness of single-layer carbon atom lattice

Although shell and plate models are advantageous in terms of efficiency, there are

two major issues. First, the classical plate and shell models use plate thickness to define

the cross-sectional properties. Nevertheless, the thickness is not well defined for graphene

and single-walled carbon nanotube (SWCNT) as there is only a single layer of carbon

atoms. In many studies, the thickness of a single carbon atom layer was simply set as the

spacing between two layers of graphene in graphite, approximately 0.34 nm. But soon

it is found that this thickness cannot accomodate both in-plane stiffness and out-of-plane

bending stiffness. To avoid this problem, there are many studies using a fitted number

determined by matching the plate behavior with experimental data or previously verified

results. The fitted thickness is usually much smaller than 0.34 nm. For this reason, a wide

range of thickness values of graphene were reported in the literature [31].

To address this issue, the cross-sectional structural properties of graphene were

directly calculated by using atomistic description of the interaction of the atoms. This

way, explicit value of the thickness of graphene is not required. For example, Huang [31]

and Wu [92] have implemented atomic potential-based analytical expressions of stiffness

matrices for both flat and curved mono-layer graphene-like materials.

1.3.1.1 Geometry-dependent stiffness and the non-local elasticity

The second issue lies in the accuracy of the plate/shell theory based models when

describing the single layer atomic lattice. The error mainly comes from two aspects: con-

stitutive relations and geometries. It has been reported that graphene has unusual moment-

curvature relations compared to traditional shell models [31]. Moreover, the constitutive
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relations are typically structure dependent [82, 43, 14, 87, 86, 31]. It is also known that,

as the shell models ignore the detailed atomic structures of graphene, shell models are

inaccurate when the characteristic size of deformation is comparable to the spacing bet-

ween carbon atoms. Examples of such cases are vibration of graphene lattice with small

wave length, or considering deformations near the boundary. Peng [58] and Wu [92] have

discussed about the relation between the order of error and the size of deformation patterns.

To consider the effect of discrete atomic structures, several authors have extended

plate and shell models of graphene and CNT by including the non-local elasticity. In 1983,

Eringen [18] derived a simplified non-local elasticity theory of lattice wave problems. In

this theory the stress is not only related with the strain, but also with a scaled Laplacian

of strain with a scaling coefficient e0a. Recently the non-local model has been revisited

and applied to 2D nano-materials, such as graphene and CNTs. Lu [47] and Pradhan [64]

implemented non-local plate models for nano-plates. Wang [89] derived a non-local shell

model for CNTs in cylindrical coordinates, and Hu [29] further compared that with MD

simulation results. After that, Ansari [3] applied non-local Mindlin plate model on single-

layer graphene sheets (SLGS). Arash [5] developed a non-local finite element model for

SLGS based on Kirchhoff plate theory. Mohammadi [49] derived analytical solutions

for circular SLGS. Each of these studies shows improvement of the performance by using

non-local shell models for graphene and CNTs.

For the interatomic potential-based shell modeling, as mentioned above, there are

significant errors when the characteristic length of deformation is comparable to atomic

spacing [58, 92]. On the contrary, the non-local elasticity aims to address the issue of

lattice spacing. However, to the best knowledge of the author, so far all non-local shell

models of graphene and CNTs are still using traditional constitutive relations. Furthermore,

there is no general consensus on how to determine the scale coefficient e0a in the non-local

model. From the original theory, Eringen [18] defined a as the characteristic length of
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the lattice, and deduced e0 ≈ 0.39. But most of the recent non-local shell based models

employed quite different values [2, 17, 90]. Meanwhile, several further observations can

be made from the results shown in the literature: (1) for a given problem different e0as give

different results [49]; (2) the best fitting values of e0a are different for graphene and CNTs

with different sizes, chiralities, boundary conditions or shapes [3, 29, 6, 74], as shown in

Figs. 4 and 5; and (3) even for the same graphene sheet or CNT, different e0as should be

used for different vibrational modes [29, 6, 45].

Figure 1.9: Dispersion relation of torsional wave in (a) (10,10) and (b)
(15,15) SWCNT [29]

Figure 1.10: Fundamental frequencies of squared single layer graphene
sheet with different edge length. Here µ = e0a [3].
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1.4 Dissertation outline

In this dissertation, we aim to solve these problem by developing an interatomic

potential based non-local plate and shell models for graphene and CNT, respectively. The

proposed plate and shell models adopt the quasicontinuum multiscale modeling strategy

that solves the continuum equations with constitutive laws or material properties extracted

from the underlying atomistic description [77, 98]. We also investigated the performance

of the plate and shell models under different applications. This is achieved by following

steps:

1. In Chapter 2, we begin with a literature review on the current status of plate and

shell modeling of graphene and CNT. That includes a brief introduction to the clas-

sical plate and shell model, a review on researches about the constitutive relations of

graphene and CNT, and a review on the development of non-local elasticity and its

application on graphen and CNT. Finally, several research questions are listed, which

will be answered at the end of this dissertation.

2. In Chapter 3, a semi-analytical model for obtaining the equilibrium geometry of

SWCNT is developed. This model employs two bond lengths along with three bond

angles as independent variables, which enables analytical differentiation of inter-

atomic potential functions. Then the equilibrium geometry of CNTs is obtained by

using an energy minimization procedure, which is performed by conjugate gradient

optimization method. This model can also be applied to calculate RBM frequencies

for various CNTs.

3. In Chapter 4, a finite element formulation of potential-oriented non-local Kirchoff

plate model of SLGS is derived. For error estimation, an atomic lattice model of

SLGS based on the 2nd generation REBO potential is also implemented and used
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as reference for all calculations and results. We also propose a simple correction of

the boundary location and show that the error is largely reduced in all cases. Next,

we investigate the choice of e0a values in the modal analysis of SLGS. The modal

frequency spectrum of the first 50 modes are calculated using the local and non-local

plate model with a set of different e0as. The effect of non-local parameter is studied

and the effectiveness of the non-local model is discussed.

4. In Chapter 5, a finite element formulation of potential-oriented non-local shell model

of SWCNT is developed. With accurate geometry of SWCNT obtained from the met-

hod stated in Chapter 2, the in-plane stiffness matrix and the bending stiffness matrix

of SWCNTs are analytically calculated. Similar to Chapter 4, the natural frequen-

cies of different SWCNTs are calculated, and corresponding atomic lattice models

are used as reference. Effects of boundary corrections and non-local coefficients are

evaluated. Finally, the non-local shell model is used to simulate the wave propagation

in SWCNTs and results are compared with molecular dynamic simulations.
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Chapter 2

Background and Literature Review

This chapter provides a brief review and essential background knowledge about

non-local plate and shell models for graphene and CNTs. Section 2.1 introduces the lattice

geometry of graphene and CNT. Section 2.2 presents two basic plate and shell theories

that will be used in following chapters. Section 2.3 briefly reviews traditional local plate

and shell representation of graphene and CNTs. Section 2.4 reviews the development of

non-local elasticity and its applications on graphene and CNTs.

2.1 Geometry of graphene and carbon nanotubes

Single-layer graphene sheets and single-walled carbon nanotubes have very typical

2D geometries. In pristine SLGS and SWCNT there is only one atom layer in one dimen-

sion. And in the other two dimensions the carbon atoms form a honey-comb like lattice in

a flat plane (graphene) or a cylindrical surface (CNT). This lattice can be seen as a repe-

titive pattern of a two-carbon-atom unit cell. It is intuitive that a CNT can be treated as a

rolled piece of graphene. (See Fig. (1.1)) For pristine graphene there is only one type of lat-

tice. However, there can be infinite types of CNT lattice, because there are infinite rolling
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methods, which also endow CNTs with different properties, including elastic constants.

Contrary to the earlier belief that the elastic constants are insensitive to CNT’s ra-

dius and chirality, more recent results have shown otherwise [66]. Ab intio calculations in-

dicated that the CNT elastic properties are changing with different chiralities [70]. Results

from separate studies showed that the Young’s modulus varies with CNT’s radius, especi-

ally when it is small [43, 82, 14]. Wang [87] showed that the bending modulus of CNTs

depends on their radius and chirality. Huang et al [31] further demonstrated theoretically

the variation of elastic constants with radius and chirality. Therefore, obtaining accurate

tube radius, especially for small CNTs, is critical in the continuum models predicting the

mechanical behavior of CNTs.

The dynamic behavior of CNTs is also geometry dependent. A special vibrational

mode of CNTs, called the radial breathing mode (RBM), has attracted much attention in

recent years as it can serve as the ”fingerprint” of CNTs [27]. In Raman spectroscopy of

CNTs, there are four Raman bands that are strongly resonance enhanced. One of them is

the RBM in which all carbon atoms are vibrating along the radial direction [37]. It has

been shown that the RBM frequency is highly dependent on the tube radius [69], leading

to the idea that it can be used to identify the radius and chirality of a given CNT sample.

However, a CNT’s radius varies with its chirality and CNTs with different chiralities may

have similar radii. The effectiveness of the RBM frequency based CNT identification relies

on an accurate model describing the relations of the radius, chirality and RBM frequency

of CNTs.

Many models have been developed to obtain the equilibrium structure of CNTs.

A popular approach is the simple rolling approach. There are two rolling methods in the

simple rolling approach, namely cylinder model and skeleton model (or ball-and-stick mo-

del) [38]. The cylinder model rolls a graphene sheet into a CNT like a piece of paper.

This method assumes that the carbon atoms and bonds are all on the cylindrical surface
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Figure 2.1: Geometry dependent Young’s modulus and Poisson’s ratio of
carbon notubes [14]

after rolling, which implies curved bonds in the CNT. To eliminate this artificial effect, the

skeleton model assumes that the bonds remain straight with fixed length during the rolling

process. However, in actual cases, due to the symmetry breaking in the rolling process,

both the angle and length of the bonds are adjusted to reach the minimum potential energy

of CNT. Therefore, the assumptions in the simple rolling models are not accurate [70, 38],

especially for CNTs with small radius. The interactions between atoms must be accoun-

ted for in the determination of a CNT’s equilibrium structure. In this regard, molecular

dynamics or first principle simulations have been employed to relax the structure of CNT.

The balanced atomic structure can be obtained by minimizing the potential energy of the
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Figure 2.2: RBM frequencies of carnbon nanotubes with different radius
and chiralities [62]. Results marked by stars are from Kürti’s first principle
simulations [38]

whole atom system. While these atomistic methods are more accurate than the simple rol-

ling approach, their computational cost is typically very high. To efficiently and accurately

obtain the equilibrium geometry of CNTs, Jiang et al [35] developed a lattice mechanics

model with 5 independent lengths representing the geometry of a CNT. However, since the

potential energy cannot be explicitly expressed in terms of these 5 length variables, their

method still largely relies on a numerical solution of the nonlinear system. For the RBM

frequency analysis, several models have been proposed to calculate the relation between

the RBM frequency and the tube radius [27]. Most of the resent results are based on the

tight-binding approximation [61, 62], zone folding force constant model [68, 100], ab ini-

tio calculations [37, 38, 39], and molecular structural mechanics models (i.e. stick-spiral

models) [93, 13, 15] which consider the energies from bond stretching, bond twisting and

bond angle variation separately.
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2.2 Classical plate and shell theories

In continuum mechanics, a body can be simplified with a degenerated model, if

there is one or more dimensions along which this body has significantly smaller scale than

along other dimensions. For instance, a body can be modeled as a beam if its geometry is

more like a segment or curve. Similarly, flat surfaces can be approximated by plate models,

and curved surfaces can be approximated by shell models.

In general, a graphene sheet at equilibrium state can be treated as thin plates, in

which bending is considered to be the only out-of-plane deformation. In the classical pure-

bending plate theory it is assumed that [67]:

1. Straight lines that are normal to the plate’s neutral surface (middle surface for homo-

geneous materials) remain straight after deformation;

2. These straight lines also remain normal to the neutral surface after deformation;

3. These straight lines also remain its original length after deformation.

This is called the Kirchhoff-Love assumption. The deformation field expressed in Cartesian

coordinates can be expressed as: [67]

u(x1, x2, x3, t) = u0(x1, x2, t)− x3
∂w0

∂x

v(x1, x2, x3, t) = v0(x1, x2, t)− x3
∂w0

∂y

w(x1, x2, x3, t) = w0(x1, x2, t)

(2.1)

where u,v,w represents the displacements of point (x1, x2, x3) in x1, x2 and x3 directions.

u0,v0,w0 and the corresponding values at the neutral surface.
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The equations of motion of a flat plate can be written as:

∂N11

∂x1

+
∂N12

∂x2

− I0
∂2u

∂t2
= 0

∂N12

∂x1

+
∂N22

∂x2

− I0
∂2v

∂t2
= 0

∂2M11

∂x1
2 +

∂2M22

∂x2
2 − 2

∂2M12

∂x1∂x2

= −q + ρh
∂2w

∂t2

(2.2)

where the resultant forces N and moments M can be obtained by:



N11

N22

N12

M11

M22

M12


=



∫ h/2

−h/2
σ11dx3∫ h/2

−h/2
σ22dx3∫ h/2

−h/2
σ12dx3∫ h/2

−h/2
σ11x3dx3∫ h/2

−h/2
σ22x3dx3∫ h/2

−h/2
σ12x3dx3



=

A3×3

D3×3





ε11

ε22

γ12

κ11

κ22

κ12



ε11

ε22

γ12

 =



∂

∂x1

∂

∂x2

∂

∂x2

∂

∂x1


u
v

 ,


κ11

κ22

κ12

 =



∂

∂x1

∂2w

∂x2
2

∂2w

∂x2
2

∂2w

∂x1∂x2



(2.3)

Matrix A and D are the in-plane stiffness matrix and bending stiffness matrix, respectively.
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For traditional isotropic homogeneous materials, they can be expressed as:

A =


A νA

νA A

1− ν
2

A

 D =


D νD

νD D

1− ν
2

D

 (2.4)

where

A =
Et

1− ν2
, D =

Et3

12(1− ν2)
(2.5)

For CNTs, we need to extend Eq. (2.2) into curved surfaces. In Cartesian coordinate sy-

stem, the general form of doubly-curved shell model’s equations of motion can be written

as [67]:

∂N11

∂x1

+
∂(N12 + C0M12)

∂x2

+
Q1

R1

− I0
∂2u

∂t2
− I1

∂2θx

∂t2
= 0

∂(N12 − C0M12)

∂x1

+
∂N22

∂x2

+
Q2

R2

− I0
∂2v

∂t2
− I1

∂2θy

∂t2
= 0

∂Q1

∂x1

+
∂Q2

∂x2

−
(
N11

R1

+
N22

R2

)
− q − I0

∂2w

∂t2
= 0

∂M11

∂x1

+
∂M12

∂x2

−Q1 − I1
∂2u

∂t2
− I2

∂2θx

∂t2
= 0

∂M12

∂x1

+
∂M22

∂x2

−Q2 − I1
∂2v

∂t2
− I2

∂2θy

∂t2
= 0

(2.6)

As shown in Fig. (2.3), Nαβ and Mαβ , α, β = 1 or 2 are resultant forces and moments; Qα

represents the out-of-plane resultant shear forces; Rα are curvatures of the shell; q is the

external pressure applied on the surface; and I0, I1 and I2 are the first, second and third

area moments of inertia, respectively. And the parameter C0 is defined as:

C0 =
1

R1

− 1

R2

(2.7)
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Figure 2.3: Demonstration of (a) the shell geometry, (b) resultant forces and (c) coordinate
systems [67].

Normally CNTs should also be treated as thin structures. However, pure-bending

models require C1 continuity in weak form, which can cause problems in finite element

shell simulations. To avoid this issue, the first-order shear deformation model is employed.

In this model, the second item of Kirchhoff’s hypothesis is removed. With other items still

valid, the new expression of the deformation field in Cartesian coordinates are as follows:

u(x1, x2, z, t) = u0(x1, x2, t)− x3θ1

v(x1, x2, z, t) = v0(x1, x2, t)− x3θ2

w(x1, x2, z, t) = w0(x1, x2, t)

(2.8)
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Here θ1, θ2 are two new rotational degrees of freedom. Therefore, the corresponding con-

stitutive relations and strain-displacement relations are



N11

N22

N12

Q1

Q2

M11

M22

M12



=


A3×3

C2×2

D3×3





ε11

ε22

γ12

γ13

γ23

κ11

κ22

κ12



ε11

ε22

γ12

 =



∂

∂x1

∂

∂x2

∂

∂x2

∂

∂x1


u
v

 ,

γ13

γ23

 =


∂

∂x1

−1

∂

∂x2

−1



w

θ1

θ2

 ,


κ11

κ22

κ12

 =



∂

∂x1

∂

∂x2

∂

∂x2

∂

∂x1


θ1

θ2



(2.9)

where C is the out-of-plane shear stiffness matrix. For isotropic homogeneous materials,

C is normally set to be:

C =

kG
kG

 (2.10)

G =
Et

1 + ν
is the in-plane shear modulus and k is called the shear correction factor. In

general, k is set to be 5
6
.
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2.3 Constitutive relations of graphene and carbon nano-

tubes

While the classical plate models use wall thickness to define the cross-sectional

properties (matrices A and D), the thickness is not well defined for a single layer of carbon

atoms. As mentioned in the previous chapter, many studies have measured the Young’s

modulus and Poisson’s ratio of graphene and CNTs through stretching test. However, the

thickness of graphene and CNTs was simply set as the spacing between two layers of

carbon atoms in graphite, approximately 0.34 nm. As a result, the Young’s modulus of

graphene and CNTs is determined to be around 1 TPa. Together with Eq. (2.4) and Eq.

(2.10), the stiffness matrices should be easily obtained. But this thickness was challenged

by Yakobson. In 1995, he calculated D and A with MD simulations. The CNT was treated

as a cylindrical deformed shell of graphene, and its strain energy is approximated by the

variation of CNT’s potential energy with respect to graphene. He found out that the D =

0.85 eV and A = 360 J/m. From the relation between A and D given in Eq. (2.4) and (2.10),

it leads to the Young’s modulus E = 5.5 TPa and the thickness h = 0.066 nm, which is only

about 1/5 of 0.34 nm [94]. This disagreement on the wall thickness is called ”Yakobson

Paradox”. Fig. (2.4) shows different thickness values that have been used in literature.

Pantano [56] also addressed this issue in his paper, and he tested the buckling of CNTs in

shell model with different wall thickness which is shown in Fig. (2.5).

To avoid this problem, some researchers have tried to directly calculate the cross-

sectional structural properties of graphene using atomistic description of the atoms. In 2006

Huang [31] derived potential-oriented expressions for stiffness matrices. He showed that

A and D matrices obtained from Eq. (2.4) cannot represent the constitutive relations of

graphene and SWCNT. He also explained why there are disagreements on the number of

wall thickness. The way to obtain the wall thickness which is based on the traditional rela-
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Figure 2.4: Different wall thickness used and the corresponding Young’s
modulus in literature[31]

tions among stiffness properties for homogeneous materials, just like what Yakobson did,

can result in different thicknesses under different loading cases, as shown in Fig. (2.6). So

thickness-free expressions of A and D are better descriptions of the mechanical properties

of graphene and CNTs.

Similar to Huang’s effort, Arroyo [7] and Wu [92] also derived potential-based stiff-

ness matrices for CNTs. Using exponential Cauchy-Born rule, Arroyo deduced expressions

of in-plane stiffness matrix and bending stiffness matrix as functions of the differentiation

of inter-atomic potential energy. Further more, Wu developed a finite deformation shell

theory in which he expressed the inter-atomic potential energy as a function of the Green’s

strain and curvature. This makes it possible that the stiffness matrices of CNT can be

directly obtained from the differentiation of inter-atomic potential energy.
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Figure 2.5: Buckling of 8 nm (13,0) carbon nanotube using shell model with
different configuration and wall thickness.[56]
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Figure 2.6: Wall thickness under different test methods[31]

2.4 Non-local elasticity and its applications on graphene

and carbon nanotubes

In the classical theory of elasticity, the stress at a given point is only affected by

the strain at the same point. But when the scale of interest goes down to atomic level, the

range of atomic cohesive forces cannot be ignored. To take this effect into consideration,

Eringen derived a theory that is called the non-local elasticity [19]. In this theory, the stress

at a given point is not only determined by the strain at the same point, but also affected by

the strain field around this point [19]. Mathematically, the stress tensor is expressed as an

integration of a function of the strain field: [19]

σ(x) =

∫
Ω

α(|x′ − x| , τ)C : ε(x′)dΩ(x′) (2.11)

where x, x′ are position vectors, σ and ε are stress and strain tensors, and C is the

4th-rank stiffness tensor defined in traditional theory of elasticity. The weight function

α(|x′ − x| , τ) is called the non-local modulus. The parameter τ in the non-local modulus

is given by τ = e0a/l where a and l are the internal and external characteristic lengths of

the lattice, and e0 is a scaling factor. The combined term e0a is also called the non-local

parameter. When α(|x′ − x| , τ) is chosen to be the Green’s function of a linear differential
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operator L , it has been shown that Eq. (2.11) can be rewritten as

Lσ = C : ε (2.12)

For example, if α has the form

α(|x| , τ) = (2πl2τ 2)−1K0(x · x/lτ) (2.13)

where K0 is the modified Bessel function of second kind with ν = 0. Then we have

L = 1− τ 2l2∇2 = 1− (e0a)2∇2 where ∇2 is the Laplacian operator. Substituting L in

Eq. (2.12), we have [18]

(
1− (e0a)2∇2

)
σ = C : ε (2.14)

Recently the non-local theory is revisited for continuum simulations of graphene

and CNTs. Lu has derived a non-local plate theory based on Eq. (2.14) [47]. In this model,

the resultant forces and moments are given by:

(
1− (e0a)2∇2

)
Nαβ = NL

αβ(
1− (e0a)2∇2

)
Mαβ = ML

αβ

α, β = 1, 2 (2.15)

Where NL
αβ and ML

αβ are local resultant forces and moments defined in Eq. (2.4). The
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non-local equations of motion can be expressed as: [47]

∂LN11

∂x1

+
∂LN12

∂x2

− I0L
∂2u

∂t2
= 0

∂LN12

∂x1

+
∂LN22

∂x2

− I0L
∂2v

∂t2
= 0

∂LQ1

∂x1

+
∂LQ2

∂x2

−L q − I0L
∂2w

∂t2
= 0

∂LM11

∂x1

+
∂LM12

∂x2

+ LQ1 = 0

∂LM12

∂x1

+
∂LM22

∂x2

+ LQ2 = 0

(2.16)

Lu also further derived the non-local governing equations in terms of displacements for

both classical Kirchhoff plate and the first-order shear deformation plate (Mindlin plate).

In 2010 Ansari [3] employed this non-local plate theory to vibrational simulations

of single-layered graphene sheets. In his paper, the governing equation of non-local Mind-

lin plate model was solved by generalized differential quadrature (GDQ) method. The

fundamental natural frequency of graphene with different boundary conditions was calcu-

lated and compared with MD results. With properly chosen non-local parameters, results

from the non-local plate model were shown to be very close to MD simulations. Arash

also published his work in 2012 using non-local Kirchhoff plate model of graphene [5].

He established a non-local finite element plate model and investigated the transverse wave

propagation problems of a graphene nano-ribbon. Results shown in Fig. (2.7) also indica-

ted that the non-local model is much more accurate than the local one. This improvement

is more obvious when the wave number becomes larger.

For CNTs, there are two different types of non-local models that have been pro-

posed [88]. The first type is the non-local beam model which is suitable for long narrow

tubes. In 2005 L Wang [84] published his study on the wave propagation in a SWCNT

with non-local beam models. He developed non-local Euler and Timoshenko beam mo-
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Figure 2.7: Wave proagation of a graphene nano-ribbon [5]

dels for CNT and derived corresponding analytical solutions for flexural wave propagation

problems. Shown in Fig. (2.8), results from non-local models on (5,5) and (10,10) CNTs

showed great improvement against local results. The dispersion curve obtained from the

non-local model fits much better to MD simulation results than the local ones. In 2007 Lu

further applied the non-local beam models on multi-walled carbon nanotubes [46]. The se-

cond approach is the non-local shell model. In 2004 Zhang and his colleague implemented

a non-local shell model for multi-walled CNT and discussed the effect of the non-local pa-

rameter [99]. Later Wang [89] has derived the wave propagation solution of this non-local

shell model for CNT. This model is applied by Hu [29] to single- and double-walled carbon

nanotubes. He derived analytical solutions for torsional wave propagations in CNTs and

he compared his results with MD simulations. Similar to the non-local plate models of

graphene and non-local beam models of CNT, his work indicated that the non-local shell

model matches better to the atomic results than its local counterpart. Some of his results

are shown in Fig. (2.9).
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Figure 2.8: The dispersion relation of armchair (5,5) carbon nanotube[84]

Figure 2.9: The dispersion relation of transverse waves in (15,15) armchair
and (20,0) zigzag carbon nanotubes[29]

In the non-local theory, the non-local parameter e0a defined in Eq. (2.11) has vital

importance since it represents the magnitude of the non-local effect. When e0a = 0 the

non-local elasticity regresses to the traditional local theory. However, so far there is no
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convincible method that can determine this parameter for graphene and CNTs. In Wang’s

beam model [84] he used 0.0355 nm, which is 1/
√

12 of the longitudinal distance between

two adjacent atom rings in CNT. This formula is theoritically derived by Askes and his

colleagues [8]. But this number is not supported by other researches. Currently the most

popular practice is by fitting the non-local results with atomic level simulations. Ansari [3]

used 1.41 nm and 1.43 nm for simply supported squared graphene sheet, and 0.87 nm and

0.71 nm for clamped squared graphene sheet. Arash [4] tried to evaluate the e0a for the non-

local shell model of SWCNT, and he obtained that it is around 1.6 nm to 2.0 nm based on

the chosen wall thickness and boundary conditions. In Hu’s wave propagation investigation

with non-local shell model [29], he fixed a = 0.142nm, which is the balanced carbon bond

length of graphite. And e0 was selected from 0.2 to 0.6, based on the type of the wave.

That is equivalent to e0a from 0.0284 nm to 0.0852 nm. It can be seen that the maximum

e0a used in literature is nearly 50 times of the smallest one.

2.5 Research questions

From the review given above, before the work introduced in this dissertation, there

are several questions remain unclear, which will be answered at the end of this dissertation:

1. Why are there so many non-local parameters used in literature? What factors can

affect this number?

2. So far, most non-local parameters are obtained by fitting with atomic simulations. If

these affecting factors are determined, is there a way to predict the non-local para-

meter without running atomic simulations?

3. It is shown that the non-local parameter can reduce the error of dynamic simulations

on graphene and CNT. But where are these errors from? A lot of non-local models
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employed constitutive relations of traditional continuum materials, which has already

been proven to be wrong. Is it a robust way that using the non-local model to fix

errors which may caused by improper constitutive relations?

This work aim to answer the above research questions by performing the following tasks:

1. Develop a method that can directly calculate the relaxed radius, bond length and an-

gles for any CNT. This is important since the elastic properties of CNTs are highly

dependent on these geometrical properties. The CNT geometry is represented by a

few parameters. And using engineering optimization method, their values at equili-

brium state are calculated.

2. Establish an accurate local plate model of graphene. To achieve that we apply

potential-oriented elastic constants, combined with the consideration of boundary

conditions. The accuracy of the local models is tested by static tests which is not

affected by the non-local parameter. Then the errors from the local model can be

evaluated.

3. Based on the accurate local plate model, the non-local elasticity is introduced. To

determine proper values of the non-local parameter, the effect of this parameter is

evaluated by comparing the natural frequencies obtained from local, non-local and

atomic models. And a size and shape study is also performed. Then the above

questions can be answered for the non-local plate model of graphene.

4. To further answer these questions on CNT, the non-local plate model is extended to

a curved shell model. With similar tests to the plate model, we should be able to find

corresponding answers to these questions for the non-local shell model of CNT.
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Chapter 3

Semi-analytical approach for calculating

the equilibrium structure and radial

breathing mode frequency of

single-walled carbon nanotubes

In this chapter, we present a semi-analytical model for obtaining the equilibrium

geometry and RBM frequencies of single-wall CNTs. The model employs 2 bond lengths

along with 3 bond angles as independent variables, which enables analytical differentiation

of interatomic potential functions. With the analytical expressions of the derivatives, the

equilibrium geometry of CNTs can be obtained by using an energy minimization procedure

which is performed by using the conjugate gradient optimization method. Having obtained

the equilibrium geometry of the CNTs, the RBM frequencies can be calculated analytically

for a given multi-body potential, which, to the authors’ best knowledge, has not been done

previously in the literature. While the model is general and applicable to different multi-

body potentials, its effectiveness is demonstrated by using the reactive empirical bond order
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(REBO) potential [11]. Content of this chapter is already published in Acta Mechanica

Sinica [28].

3.0.1 CNT Geometry and atomic bond-order potential

A sufficiently long single-wall CNT with open ends can be regarded as a pattern of

repeating 2-atom unit cells except for a small region close to the ends. Moreover, in each

unit cell, there is a so-called C2-axis rotational symmetry [38], as shown in Fig. 3.1. Due

to the C2-axis rotational symmetry, a unit cell can be defined by one atom with its three

nearest neighbors. It is often more convenient to represent the atom positions by using bond

lengths and angles. Therefore, as shown in Fig. 3.1, given the position of any atom with

the lengths (denoted as r) and angles (denoted as θ) of its three bonds, the entire structure

of a CNT can be determined.

Figure 3.1: Carbon nanotube: unit cell and C2-axis symmetry.

Interaction of the carbon atoms in a CNT can be described by bond-order potenti-

als. For CNTs, popular multi-body potentials include the Tersoff [78], Brenner [12] and

Stillinger-Weber [76] potentials, etc. In general, the total potential energy of a system of N

atoms can be written as W = 1
2

∑
a6=b Vab, a, b = 1, 2, ..., N , where Vab is the interatomic

potential between atoms a and b and is a function of bond length and bond angle. Due to

the symmetry of carbon atoms in a CNT, the potential energy of a unit cell can be expressed

34



as w0 = w0(r1, r2, r3, θ12, θ23, θ13), where ri and θij , i, j = 1, 2, 3, are the length of bond i

and angle between bonds i and j, respectively, as shown in Fig. 3.1.

3.1 Geometric Mapping

Although the skeleton model does not provide an accurate prediction of CNT radius,

it offers a starting point to represent different types of CNTs. The skeleton model assumes

that each C-C bond behaves as a rigid rod connecting two carbon atoms on the cylindrical

surface. The mapping between the a CNT and its corresponding flat graphene is illustrated

in Fig. 3.2. As shown in Fig. 3.2 (a), the bold dashed line represents the chiral vector

direction (i.e. the rolling direction) of the 2-D graphene. The bond angles, α1, α2 and α3,

are defined with respect to the chiral vector. The positions of the 3 nearest neighbors of the

center atom a are defined by the horizontal and vertical distances, l and h, from the center

atom. Figure 3.2 (b) shows the 3-D positions of the 4 atoms after they are rolled into a

CNT. The black circle represents the cross section. The positions of the 3 neighbor atoms

are also defined by the horizontal and vertical distances from the center atom. An example

of a chiral (or rolling) vector (4,1) for rolling into a (4,1) CNT is shown in Fig. 3.2 (c).

Since in the simple rolling step, the bond lengths rj and the distances hj = rj| sin(αj)|,

lj = rj|cos(αj)| remain the same, it is obvious that the 3 chord lengths in Fig. 3.2 (b)

are equal to l1, l2 and l3 respectively. In the simple rolling model, given the chiral vector

(M,N), the radius of a carbon nanotube can be determined by:

R =

√
3

2π
ac−c
√
M2 +N2 +MN (3.1)

where ac−c is the C-C bond length in a 2-D graphene sheet. Due to the asymmetric inter-

atomic interactions between the carbon atoms, the bond lengths and angles are no longer the
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same in a CNT. For this reason, further analysis is necessary to determine the equilibrium

bond lengths and angles.

(a) (b)

atom a atom a'

(c)

Figure 3.2: Geometric mapping of a CNT; (a) carbon atoms in 2-D graphene; (b) atoms
mapped onto a CNT; (c) rolling of a (4,1) CNT.

As shown in Fig. 3.2(b), the central angles of the chords in the cross-section circle

are

βj = 2 sin−1

(
lj

2R

)
, j = 1, 2, 3 (3.2)

In order to form a closed cylindrical surface, atom a and atom a′ in Fig. 3.2 (c) must be

the same atom. It is easy to show that two geometric conditions must be satisfied: (1) the

summation of the central angles of all corresponding chords (i.e. the βs) should be 2π and

(2) the distance between atom a′ and the chiral vector should be zero. Mathematically, the
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first condition leads to

(M +N)β1 −Mβ2 −Nβ3 = 2π (3.3)

where M and N represent the chirality of a (M,N) CNT. The second condition can be written

as

(M +N)h1 −Mh2 −Nh3 = 0 (3.4)

which gives

r3 =
1

Nsinα3

[(M +N) r1 sinα1 −Mr2 sinα2] (3.5)

The angle between bonds j and k, θjk, can then be calculated by (see Appendix A for

details):

cos θjk = cosαj cosαkTjTk +
rjrk
4R2

cos2 αj cos2 αk + sinαj sinαk, (3.6)

j, k = 1, 2, 3 j 6= k

where

Tj =

√
1−

r2
j

4R2
cos2 αj, j = 1, 2, 3 (3.7)

With the graphene-to-CNT mapping described above, the original potential energy function

of a CNT unit cell, w0(r1, r2, r3, θ12, θ23, θ13), can be rewritten in terms of 7 variables: w0 =

w(R, r1, r2, r3, α1, α2, α3). Then, the bond angles, θjk, can be replaced byR,α1, α2, α3 fol-

lowing Eq. (3.6). Furthermore, R is an implicit function of r1, r2, r3, α1, α2, α3, according
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to Eq. (3.3). Equation (3.5) shows that r3 can be expressed in terms r1, r2 and the angles.

Therefore, the potential energy can be expressed in terms of 5 independent variables as

w0 = W (r1, r2, α1, α2, α3) = W (x) (3.8)

where the variable vector x = {r1, r2, α1, α2, α3}.

3.2 Equilibrium structural configuration

To determine the actual radius of the CNT, it is necessary to calculate the equili-

brium configuration of the carbon atoms. An energy minimization procedure using a line

search method is adopted to determine the equilibrium configuration. Iteratively, a line se-

arch method determines a search direction and then perform single variable minimization to

obtain the minimum position along the search direction. In this work, in light of the gene-

ral form and typical behavior of C-C interatomic potentials, a first order conjugate gradient

method [22] is employed to determine the search direction, and the Powell method [63] is

used to carry out the single variable optimization along the search direction.

The conjugate gradient method starts with a steepest descend calculation. The ini-

tial bond lengths are set to be r0
1 = r0

2 = ac−c and the initial angles are given by

α0
1 =

π

6
− tan−1(

√
3N/(2M +N),

α0
2 = α0

1 +
2π

3
,

α0
3 = α0

1 +
4π

3
.

(3.9)

Therefore, the starting point of the optimization is x0 = {ac−c, ac−c, α0
1, α

0
2, α

0
3}. The
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gradient of the potential energy function can be obtained using

∂W

∂rj
=
∂w

∂rj
+
∂w

∂R

∂R

∂rj
+
∂w

∂r3

∂r3

∂rj
+
∂w

∂R

∂R

∂r3

∂r3

∂ri
, j = 1, 2,

∂W

∂αj
=
∂w

∂αj
+
∂w

∂R

∂R

∂αj
+
∂w

∂r3

∂r3

∂αj
+
∂w

∂R

∂R

∂r3

∂r3

∂αj
, j = 1, 2, 3.

(3.10)

where

∂w

∂R
=
∑
j 6=k

∂w0

∂ cos θjk

∂ cos θjk
∂R

,

∂w

∂rj
=
∂w0

∂rj
+

∂w0

∂ cos θjk

∂ cos θjk
∂rj

,

∂w

∂αj
=

∂w0

∂ cos θjk

∂ cos θjk
∂αj

.

(3.11)

The derivatives of cos θjk, j, k = 1, 2, 3, j 6= k can be obtained from Eq. (3.6)

∂ cos θjk
∂R

= cosαj cosαk

(
∂Tj
∂R

Tk + Tj
∂Tk
∂R

)
− rjrk

2R3
cos2 αj cos2 αk

∂ cos θjk
∂rj

= cosαj cosαk
∂Tj
∂rj

Tk +
rk

4R2
cos2 αj cos2 αk

∂ cos θjk
∂αj

= − sinαj cosαkTjTk + cosαj cosαk
∂Tj
∂αj

Tk −
rjrk
2R2

cosαj sinαj cos2 αk + cosαj sinαk

(3.12)

The derivatives of R and r3 can be obtained from Eq. (3.3) and (3.5) as

∂R

∂rj
=

RDj cosαj
rj(D1 +D2 +D3)

∂R

∂αj
=
−RDj tanαj
D1 +D2 +D3

j = 1, 2, 3 (3.13)
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∂r3

∂r1

=
1

N sinα3

(M +N) sinα1

∂r3

∂r2

= − 1

N sinα3

Msinα2

∂r3

∂α1

=
1

N sinα3

(M +N)r1 cosα1

∂r3

∂α2

= − 1

N sinα3

Mr2 cosα2,

∂r3

∂α3

= − cosα3

N sin2 α3

[(M +N)r1 sinα1 −Mr2 sinα2]

(3.14)

where

D1 =
(M +N)l1

1− (l1/2R)2
, D2 =

−Ml2
1− (l2/2R)2

, D3 =
−Nl3

1− (l3/2R)2
(3.15)

The general procedure of the energy minimization is described as follows. For a

given step k (k = 0, 1, 2, . . . , K − 1, where K is the number of variables), the objective is

to compute a new position vector xk+1 toward the minimum point of the potential function.

For k = 0, x0 is the initial position vector given by x0 = {ac−c, ac−c, α0
1, α

0
2, α

0
3}. Next,

a single variable objective function Ws(η) = W (x0 + ηC0), where C0 = −∇W (x0),

is minimized along the C0 direction. Assuming ηmin gives the minimum of Ws(η), the

position vector x is updated as x1 = x0 + ηminC0. For k > 0, Ck is obtained by using

the conjugation constraint which requires the new search direction be orthogonal to the

previous search directions:

Ck = gk + βkCk−1 (3.16)

where Ck−1 is the search direction in the previous step, gk is the negative gradient of the

40



potential function

gk = −∇W (xk) (3.17)

and

βk =
‖gk‖2

‖gk−1‖2
=
‖∇W (xk)‖2

‖∇W (xk−1)‖2
(3.18)

Once the search direction is computed, the next position vector is determined by minimi-

zing the potential energy function along the search direction, i.e.,

Ws(η) = W (xk + ηCk) (3.19)

Noted that k < K since there can only be as many as K vectors in an orthogonal set in a

K-dimension space. If the algorithm does not converge within K steps, the procedure is

started over again by taking xK as the new x0. The iterations continue until the convergence

criterion is met.

In this work, the Powell method [63] is employed to solve the single variable mi-

nimization problem and obtain ηmin. The Powell method approximates the actual function

by using a quadratic function. The quadratic function is determined by fitting the actual

function near its minimum. As most of the interatomic potential energy functions are

smooth near the equilibrium position, performance of the quadratic approximation is found

to be satisfactory. To determine the quadratic function, the potential function is sampled at

three different locations. The first two are given by η(0)
0 = 0 and η(0)

1 = η
(0)
0 + δη. A com-

mon choice of the step size is δη = 0.5. The third point is obtained based on the potential
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energy function values at the two ends as

 η
(0)
2 = η

(0)
0 + 2δη if Ws(η

(0)
0 ) > Ws(η

(0)
1 )

η
(0)
2 = η

(0)
1 , η

(0)
1 = η

(0)
0 , η

(0)
0 = η

(0)
0 − δη if Ws(η

(0)
0 ) < Ws(η

(0)
1 )

(3.20)

The value changes made in the second case is to retain the sequence of η(0)
0 < η

(0)
1 < η

(0)
2 .

Next, set η(0)
min to be the η(0)

i , i = 0, 1, or 2, whichever gives the smallest Ws. With the three

η points and their corresponding Ws values, one can construct a quadratic interpolation

function. At n-th iteration, the quadratic function is given by

f(η) = a0 + a1(η − η(n)
0 ) + a2(η − η(n)

0 )(η − η(n)
1 ) (3.21)

where

a0 = Ws(η
(n)
0 )

a1 =
Ws(η

(n)
1 )−Ws(η

(n)
0 )

η
(n)
1 − η

(n)
0

a2 =

[
Ws(η

(n)
2 )−Ws(η

(n)
0 )

η
(n)
2 − η

(n)
0

− Ws(η
(n)
1 )−Ws(η

(n)
0 )

η
(n)
1 − η

(n)
0

]
/
(
η

(n)
2 − η

(n)
1

) (3.22)

The location of the minimum of f(η) is obtained as

η(n)
new =


η

(n)
1 + η

(n)
0

2
− a1

2a2

if a1 ≤ 5a2

(
η

(n)
2 − η

(n)
0

)
η

(n)
1 + η

(n)
0

2
− sign(a1a2)

5
(
η

(n)
2 − η

(n)
0

)
2

if a1 > 5a2

(
η

(n)
2 − η

(n)
0

)(3.23)

Note that the second term on the right hand side of Eq. (3.23) is used to prevent η(n)
new from

falling too far from the current interval. Once η(n)
new is obtained, the convergence criteria are

checked. The minimum is found if both
∣∣∣Ws(η

(n)
new)−Ws(η

(n)
min)

∣∣∣ < εf and
∣∣∣η(n)
new − η(n)

min

∣∣∣ <
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εη, where εf and εη are the termination tolerances for Ws and η, respectively. If any of the

convergence criteria is not satisfied, a new iteration starts. If Ws(η
(n)
new) < Ws(η

(n)
min), η(n)

min

is updated to be η(n)
min = η

(n)
new and a new set of three η(n+1) points are determined. The new

set is selected from η
(n)
new and the old set, such that it consists of η(n)

min and two η values that

are closest to η(n)
min. With the new η point set, the procedure from Eq. (3.21) to Eq. (3.23)

is repeated to calculate η(n+1)
min . The iterations continue until the convergence criteria are

satisfied and the minimum of Ws(η) is found.

After ηmin is found, the new position vector is then determined as

xk+1 = xk + ηminCk (3.24)

The iterative procedure continues until the negative gradient ‖gk‖ < εg, where εg is the

global convergence tolerance. The CNT potential energy minimization procedure is sum-

marized in Algorithm 1.

3.3 Radial breathing mode frequency

As described in Section 1, the equilibrium configuration of a CNT is directly related

to its radial breathing mode (RBM) frequency. The latter can be measured experimentally

and used to identify the size and type of CNTs. Several phenomenological relations have

been proposed in the literature [69] . The simplest one is the inverse relation: ω = A/R,

where A is a fitting parameter. It was reported from different studies that the value of A

is in the range of 218-248 cm−1 [27]. Popov et al [62] proposed a more sophisticated

analytical model fitted to ab initio results to include the effect of chiral angle: ωRBM =

a2
Rn2

+ a3
Rn3

cos 3θ, where R is the tube radius, θ is the chiral angle, and a2, n2, a3, n3 are

all fitting parameters. While the phenomenological relations are simple, their effectiveness
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Algorithm 1 Algorithm for CNT potential energy minimization
1: Set the maximum global iterations Md and the global convergence tolerance εg;
2: Set the line search stop tolerance εf and εη;
3: Set the number of variables K = 5;
4: Calculate α0

1, α
0
2 and α0

3 by using Eq. (3.9);
5: Initialize x0 = [r0, r0, α

0
1, α

0
2, α

0
3];

6: for i = 1,2,. . . , Md do
7: for k = 0,1,2,. . . , K − 1 do
8: Calculate gk at x0 by using Eq. (3.17) along with Eqs. (3.10) to (3.15) and Eqs.

(14) to (16).
9: if k = 0 then

10: Ck = gk;
11: else
12: if ‖gk‖ < εg then stop;
13: Calculate Ck from Eqs. (3.16) to (3.18);
14: end if
15: Initialize n = 0, η(0) =

[
η

(0)
0 , η

(0)
1 , η

(0)
2

]
16: Set η(0)

min = η
(0)
i , i = 0, 1, or 2, whichever gives the smallest Ws;

17: Initialize η(0)
new by using Eqs. (3.22) and (3.23);

18: while
∣∣∣Ws(η

(n)
new)−Ws(η

(n)
min)

∣∣∣ > εf or
∣∣∣η(n)
new − η(n)

min

∣∣∣ > εη do

19: if Ws(η
(n)
new) < Ws(η

(n)
min) then η(n)

min = η
(n)
new;

20: Set η(n+1) from
{
η(n), η

(n)
new

}
such that η(n+1) consists of η(n)

min and two η points

closest to η(n)
min;

21: Sort η points in η(n+1) such that η(n+1)
0 < η

(n+1)
1 < η

(n+1)
2 ;

22: Calculate η(n+1)
new by using Eqs. (3.22) and (3.23);

23: n=n+1;
24: end while
25: Calculate new xk by Eq. (3.24);
26: end for
27: end for
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depends on the form of the expression and accuracy of fitting parameters.

In this work, having obtained the equilibrium structural configurations of CNTs as

described in Section 2, the RBM frequencies are further calculated using the multi-body

interatomic potential energy of the carbon atoms. The primary assumption is that, when a

CNT vibrates in RBM, all atoms move only in radial direction and remain on a cylindrical

surface as shown in Fig. 3.3. That is, the mode coupling effect is negligible [39, 38].

Based on this assumption, the relation between bond lengths, bond angles and tube radius

O

Figure 3.3: Radial breathing mode vibration of carbon nanotubes.

in RBM can be established as:

ri cosαi
R

=
li
R

=
l0i
R

=
r0
i cosα0

i

R0

ri sinαi = hi = h0
i = r0

i sinα0
i

i = 1, 2, 3 (3.25)
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where ri, αi, li and hi, i = 1, 2, 3, are defined in Section 3.1. The superscript 0 denotes the

equilibrium configuration. ri can be explicitly expressed as

ri =

√
(r0
i cosα0)2

R2

(R0)2
+ (r0

i sinα0)2 (3.26)

By using Eq. (3.26), Eq. (3.6) can be rewritten as

cos θjk =
R2

rjrk

(
rjcosαjrkcosαk

R2
TjTk +

r2
j r

2
k

4R4
cos2 αj cos2 αk

)
+

1

rjrk
rjrk sinαj sinαk

=
1

rjrk

[
R2
(
SjSkTjTk + S2

jS
2
k/4
)

+HjHk

] (3.27)

where Sq = rq cosαq/R = r0
q cosα0

q/R
0, Hq = rq sinαq = r0

q sinα0
q , and

Tq =

√
1−

r2
q

4R2
cos2 αq =

√
1−

C2
q

4
q = j or k (3.28)

Note that, S, H and T are all independent of R. Thus the 1st and 2nd order derivatives of

ri and cos θjk with respect to R are derived as follows:

∂r

∂R
=

1

r

(
r0 cosα0

R0

)2

R

∂2r

∂R2 =
1

r

(
r0 cosα0

R0

)2

− 1

r3

(
r0 cosα0

R0

)4

R2

∂ cos θjk
∂R

=
2RC1

rjrk
− R2C1 + C2

rjrk

(
1

rj

∂rj
∂R

+
1

rk

∂rk
∂R

)
=

2RC1

rjrk
− cos θjk

(
1

rj

∂rj
∂R

+
1

rk

∂rk
∂R

)
∂2 cos θjk

∂R2 =
2C1

rjrk
− 4RC1

rjrk

(
1

rj

∂rj
∂R

+
1

rk

∂rk
∂R

)
+ cos θjk

(
1

rj

∂rj
∂R

+
1

rk

∂rk
∂R

)2

+ cos θjk

[
1

r2
j

(
∂rj
∂R

)2

− 1

rj

∂2rj

∂R2 +
1

r2
k

(
∂rk
∂R

)2

− 1

rk

∂2rk

∂R2

]

(3.29)
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where C1 = SjSkTjTk + S2
jS

2
k/4 and C2 = HjHk both remain constant during the vibra-

tion. The 2nd order derivatives of the potential function can be obtained from the chain

rule as

∂2w0

∂R2 =
∑
i

∂w0

∂ri

∂2ri

∂R2 +
∑
i,j

∂2w0

∂ri∂rj

∂ri
∂R

∂rj
∂R

+ 2

j 6=k∑
i,j,k

∂2w0

∂ri∂ cos θjk

∂ri
∂R

∂ cos θjk
∂R

+

i 6=j∑
i,j

∂w0

∂ cos θij

∂2 cos θjk

∂R2 +

i 6=j;k 6=l∑
i,j,k,l

∂2w0

∂ cos θij∂ cos θkl

∂ cos θij
∂R

∂ cos θkl
∂R

(3.30)

where w0 is the potential energy per unit cell, and i, j, k, l =1,2 or 3. The RBM frequency

is given by:

fRBM =
ωRBM
2πc

=
1

2πc

√
k

m
(3.31)

where m is the mass of carbon atom, k =
∂2wo

∂R2 |R=R0 , and c is the speed of light.

3.4 Results and Discussion

To demonstrate the performance of the model, the semi-analytical approach is app-

lied to the reactive empirical bond order (REBO) potential [11] to calculate the equilibrium

configuration and RBM frequency of various CNTs. The REBO potential has been wi-

dely used in molecular dynamics (MD) and lattice dynamics (LD) simulations of CNTs.

It should be noted that, while the detailed formulation for the REBO potential is presen-

ted in Appendix B, the application of the method to other C-C interatomic potentials is

straightforward by using the approach and following the steps listed in Algorithm 1.
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3.4.1 Radius of CNTs

In this section, the radii of a set of CNTs with different chiralities are computed

by using the semi-analytical model. For the purpose of model validation, the computed

results are compared with those obtained from MD simulations. The MD simulations are

preformed using the LAMMPS package. The REBO potential with the parameters given

in Table 5 (Appendix B) is adopted in the semi-analytical calculation and MD simulations.

In the test cases, the CNT chiralities varies from (4,0) to (8,4). In MD simulations, the

length of the CNTs is set to be around 20 nm. It is verified that further increasing the

length does not change the results. The MD simulation box size is set to be 20 nm × 20

nm in the transverse (cross-sectional) directions and 40 nm in the longitudinal direction

with free boundary conditions applied. The total linear momentum and angular momentum

are fixed to be zero. With a time step of 0.2 fs, the system is initialized at 5 K and then

the temperature is reduced to 0.01 K under the NVT ensemble within 300 k time steps. A

drag value of 0.5 is applied to increase damping. The purpose of this drag value is to damp

unwanted pressure oscillation when applying a Nose/Hoover thermostat. The tube radius

is calculated as the average distance between carbon atoms and the tube axis. Bond angles,

bond lengths and the radii are averaged on atoms within 20% length at the tube center to

reduce influence of the free ends.

Bond length, bond angle and radius results of the CNTs obtained by using the semi-

analytical method and MD simulations are compared in Tables 3.1-3.3. It is clear that the

results obtained from the two methods match very well. The maximum difference is less

than 0.2%. Results show that the C-C bond lengths increase as the radius decreases, and

the difference between the bond lengths r1, r2 and r3 increases as well. For the smallest

(4,0) nanotube, the largest bond length is 1.451 Å, which is 2% larger than the bond length

in graphene, 1.420 Å. The variation of bond lengths is due to the change of bond angles.
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Rolling a graphene sheet into a tube makes the angles between bonds smaller than 2π/3,

which increases the potential energy. This excess energy is then partially relaxed by an

expansion of the atomic lattice structure, leading to elongation of the bonds. Therefore, the

smaller the radius, the smaller the angles, and the larger the expansion. This conclusion is

consistent with previous observations reported in the literature [70].

Table 4 further compares the radius results with those obtained from the simple

rolling model and two different ab initio calculations. It is shown that the semi-analytical

model with REBO potential gives nearly identical results to the MD simulations, but with

much less computational cost. The error of the simple rolling model is obvious. As shown

on Fig. 3.4, the relative difference between the relaxed radius and the simple rolling radius

R0 increases as the radius decreases. The results indicate that the simple rolling model is

inappropriate in determining the equilibrium configuration of CNTs, especially for nano-

tubes with small radius. For example, for the (4,0) nanotube, we obtain a radius that is 9%

greater than R0. Furthermore, it is shown that the chirality play an important role on the

results. The armchair CNTs show smaller relative errors than the zigzag CNTs. For other

chiral nanotubes, the radius error resides within the zone between the zigzag and armchair

CNTs. It is observed that the orientation of the unit cells determines how the bond angles

are affected by rolling, which results in different radius expansion for different chiralities.

It should be noted that there is a small difference between the semi-analytical model and

ab initio results. This is due to the difference between the REBO potential employed in the

semi-analytical model and the electron density functionals used in the ab initio calculations.

49



Table 3.1: Bond lengths, bond angles and radius of zigzag CNTs

Zigzag
Method

Bond lengths(Å) Bond Angles(degree)
Radius(Å)(N,0) r1 r2 r3 θi12 θi13 θi23

(4,0)
This work 1.451 1.439 1.451 115.970 112.316 115.975 1.705

MD 1.450 1.440 1.450 115.934 112.418 115.934 1.705

(5,0)
This work 1.438 1.432 1.438 117.398 115.209 117.400 2.065

MD 1.437 1.432 1.437 117.360 115.326 117.360 2.066

(6,0)
This work 1.432 1.428 1.432 118.228 116.650 118.231 2.437

MD 1.431 1.428 1.431 118.187 116.788 118.186 2.438

(7,0)
This work 1.429 1.426 1.429 118.735 117.486 118.739 2.815

MD 1.428 1.426 1.428 118.692 117.638 118.692 2.816

(8,0)
This work 1.427 1.424 1.427 119.062 118.026 119.066 3.196

MD 1.426 1.425 1.426 119.017 118.186 119.017 3.197

Table 3.2: Bond lengths, bond angles and radius of armchair CNTs

Armchair
Method

Bond lengths(Å) Bond Angles(degree)
Radius(Å)(N,N) r1 r2 r3 θi12 θi13 θi23

(3,3)
This work 1.437 1.432 1.432 116.314 116.315 118.421 2.104

MD 1.437 1.432 1.432 116.350 116.350 118.389 2.105

(4,4)
This work 1.430 1.427 1.427 117.852 117.852 119.247 2.762

MD 1.429 1.427 1.427 117.896 117.895 119.206 2.764

(5,5)
This work 1.426 1.424 1.424 118.572 118.573 119.618 3.429

MD 1.426 1.424 1.424 118.619 118.619 119.574 3.431

(6,6)
This work 1.425 1.423 1.423 118.975 118.975 119.799 4.099

MD 1.424 1.423 1.423 119.025 119.025 119.751 4.102

(7,7)
This work 1.424 1.422 1.422 119.226 119.228 119.891 4.772

MD 1.423 1.422 1.422 119.278 119.278 119.841 4.775

3.4.2 RBM frequency of CNTs

Having obtained the equilibrium structure of the CNTs, the RBM frequencies are

calculated as described in Section 3. Figure 3.5 shows the RBM frequencies of a variety of

CNTs calculated by using the semi-analytical, simple rolling, ab intio approaches as well as

a fitted analytical model [62]. For the sake of clarity, the calculated data points for narrow
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Table 3.3: Bond lengths, bond angles and radius of Chiral CNTs

Chirality
Method

Bond lengths(Å) Bond Angles(degree)
Radius(Å)(N,M) r1 r2 r3 θi12 θi13 θi23

(3,2)
This work 1.446 1.438 1.439 115.304 114.348 117.611 1.798

MD 1.445 1.437 1.439 115.345 114.391 117.585 1.799

(4,1)
This work 1.443 1.435 1.439 116.425 114.396 117.358 1.903

MD 1.443 1.435 1.439 116.446 114.461 117.346 1.906

(4,2)
This work 1.437 1.431 1.433 116.946 116.011 118.323 2.150

MD 1.436 1.431 1.433 116.973 116.082 118.297 2.153

(5,1)
This work 1.435 1.430 1.433 117.634 116.182 118.201 2.270

MD 1.434 1.429 1.433 117.626 116.271 118.197 2.274

(4,3)
This work 1.432 1.428 1.429 117.433 117.109 118.904 2.442

MD 1.432 1.428 1.429 117.462 117.171 118.870 2.444

(5,2)
This work 1.432 1.428 1.429 117.881 117.037 118.804 2.514

MD 1.431 1.428 1.429 117.887 117.132 118.781 2.517

(6,1)
This work 1.430 1.427 1.429 118.325 117.191 118.747 2.643

MD 1.430 1.427 1.429 118.326 117.288 118.721 2.646

Table 3.4: Comparison of radius results obtained from different methods

(N,M) Simple rolling R0 (Eq.(3.1)) This work MD ab initio 1 [38] ab initio 2 [70]
(4,0) 1.566 1.705 1.705 1.671
(3,2) 1.706 1.798 1.799 1.766
(3,3) 2.034 2.104 2.105 2.088
(6,1) 2.567 2.643 2.646 2.608
(4,4) 2.712 2.762 2.764 2.745 2.794
(5,5) 3.390 3.429 3.431 3.411 3.463

(10,0) 3.914 3.965 3.967 3.926 3.979
(8,4) 4.143 4.178 4.182 4.211

CNTs are enlarged and displayed on the right side of Fig. 3.5. The REBO potential with the

parameters given in Appendix B is used in the semi-analytical approach. As shown in Fig.

3.5, significant differences in the results are observed for narrow CNTs with radius smaller

than 2.6 Å. The difference between the semi-analytical and simple rolling approaches is

largely due to the inaccurate geometry properties (radius, bond lengths and angles) given
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Figure 3.4: Percentage difference between the simple rolling radius R0 and the radii calcu-
lated from the semi-analytical, MD and ab initio models.

by the simple rolling model. The error in these geometry properties is further enlarged

in the RBM frequency results due to the high sensitivity of the force constants (second

derivatives of the interatomic potential) to the tube geometry. Figure 3.5 (right) shows

that such error in the simple rolling model results is more than 20% for the (4,0) CNT.

The difference between the semi-analytical and ab initio results stems from the difference

in their physical description of the interatomic interactions (i.e., interatomic potentials vs

electron density functionals). It should be noted that the results from “ab initio 3” [39] are

based on tube geometries obtained from the simple rolling model. Finally, Fig. 3.5 shows

that the differences in the results from the different models become negligible for tubes

with radius larger than 4 Å.
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Figure 3.5: RBM frequencies of CNTs. The two ab initio results (ab initio 1 [38] and
3 [39]) are obtained from the literature.

3.5 Summary

In this chapter, a semi-analytical unconstrained energy optimization model with 5

independent variables for determining the equilibrium configuration of single wall CNTs is

presented. For demonstration purpose, the semi-analytical model is applied to the REBO

potential for the calculation of the radii of various CNTs. It is shown that, with a negligi-

ble computational cost, the semi-analytical model is able to reproduce the results obtained

from MD simulations and match well with the results obtained from ab initio calculations.

Furthermore, the semi-analytical approach is extended for the calculation of the RBM fre-

quencies of CNTs. From the radius and RBM frequency results, it is shown that the simple

rolling model is inappropriate in determining the equilibrium configuration of CNTs, es-

pecially for nanotubes with small radius. While the RBM frequency results obtained from

the semi-analytical approach match reasonably well the ab inito results, differences are ob-

served for CNTs with radius smaller than 2.6 Å. The discrepancy is due to the different

underlying physical models of the two approaches. As the semi-analytical approach is in-

dependent of the potential energy functions, more accurate results may be obtained with
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other improved potential energy functions.
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Chapter 4

The potential-based non-local and local

linear plate models of single layer

graphene structures

In this chapter, we investigate the performance of the local and non-local Kirchoff

plate for static and modal analysis of SLGS. For error estimate, an atomic lattice model

based the 2nd generation REBO potential is implemented and used for all calculations and

the results are used as reference results. To avoid plate thickness problem, we use the in-

teratomic potential to calculate the bending rigidity in the plate models. In our analysis, it

is found that the boundary location and boundary conditions are important for the accuracy

of the results. This is especially true for small SLGS. Based on extensive numerical expe-

riments, we propose a simple correction of the boundary location and show that the error

is largely reduced in all cases. Next, we investigate the choice of e0a values in the modal

analysis of SLGS. The modal frequency spectrum of the first 50 modes are calculated using

the local plate model and the non-local plate model with a set of different e0a. The effect

of e0a is studied and the effectiveness of the non-local model is discussed. Conclusions are
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given at the end.

4.1 Mechanics of Single Layer Graphene

In a relaxed perfect graphene lattice, each unit cell contains two carbon atoms, as

shown in Fig. 4.1. The unit cells are labeled by L and the two carbon atoms in a unit cell

are indexed by κ = 1, 2. Therefore, the notation of atom Lκ denotes the atom κ in unit cell

L.

Figure 4.1: Unit cell of graphene lattice. Black and gray circles indicate the atoms of two

Bravais lattices. t1 and t2 are basis vectors.

Under the harmonic approximation, the total potential energy W of a pristine grap-

hene sheet close to its equilibrium configuration can be written as

W = W0 + 1
2

∑
L,κ,α
L′,κ′,β

φαβ(Lκ, L′κ′)uα(Lκ)uβ(L′κ′), α, β = 1, 2, 3 (4.1)

where W0 is the equilibrium potential energy, α and β denote the axial directions in the

Cartesian coordinate system, uα(Lκ) is the displacement of atom Lκ along direction α

from its equilibrium position, and φαβ(Lκ, L′κ′) is a force constant between atoms Lκ and
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L′κ′, which is defined as

φαβ(Lκ, L′κ′) =
∂2W

∂uα(Lκ)∂uβ(L′κ′)

∣∣∣∣
uα(Lκ)=uβ(L′κ′)=0

, α, β = 1, 2, 3 (4.2)

From Eqs. (4.1,4.2), the force acting on atom Lκ along direction α can be expressed as

fα(Lκ) = − ∂W

∂uα(Lκ)
= −

∑
L′,κ′,β

φαβ(Lκ, L′κ′)uβ(L′κ′) (4.3)

For any pair of atoms Lκ and L′κ′, φαβ(Lκ, L′κ′) forms a 3-by-3 matrix. For a graphene

lattice of N atoms, Eq. (4.3) can be assembled and written in matrix form as

f3N×1 = Φ3N×3Nu3N×1 (4.4)

where Φ is the force constant matrix, f is the force vector and u is the atom displacement

vector. For the graphene lattice, Eq. (4.4) is the linear equation of equilibrium based on the

harmonic approximation. The corresponding equation of motion can be written as

Mü + Φu = f (4.5)

where M = mcI3N×3N , mc is the mass of carbon atom and I is an identity matrix. In this

work, we employ a modified REBO potential for graphene. The modified REBO potential

is given by [11]

W =
1

2

∑
i,j,i6=j

Vij =
1

2

∑
i,j,i6=j

[
VR(rij)− b̄ijVA(rij)

]
(4.6)
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where

VR(r) =

(
1 +

Q

r

)
Ae−αrfc(r)

VA(r) =
3∑

n=1

Bne
−βnrfc(r)

bij =

[
1 +

k 6=j∑
k

G(cos θijk)fc(rik)

]− 1
2

b̄ij =
1

2
(bij + bji)

(4.7)

and

fc(r) =



1 r < R1,

1
2

{
1 + cos

[
π(r−R1)
R2−R1

]}
R1 ≤ r ≤ R2,

0 r > R2,

G =



0.27186− 0.48922 cos θ − 0.43286 cos2 θ − 0.56140 cos3 θ

+ 1.2711 cos4 θ − 0.037931 cos5 θ θ < 109.47◦,

0.69669 + 5.5444 cos θ + 23.432 cos2 θ + 55.948 cos3 θ

+ 69.876 cos4 θ + 35.312 cos5 θ 109.47◦ ≤ θ ≤ 120◦,

0.00260− 1.0980 cos θ − 4.3460 cos2 θ

− 6.8300 cos3 θ − 4.9280 cos4 θ − 1.3424 cos5 θ θ > 120◦,

(4.8)

Note that, in the REBO potential, for simplicity, instead of lattice atom notationLκ, L′κ′, ...,

single labels i, j, k... are used as atom indices. Vij and rij are the bond energy and distance

between atoms i and j, respectively. θijk is the angle between the bond of atoms i and j

and the bond of atoms i and k. Differentiating the bond energy with respect to the atomic
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displacements, we have

∂Vij
∂umα

=
dVR
drij

∂rij
∂umα

− b̄ij
dVA
drij

∂rij
∂umα

− VA
k 6=j∑
k

(
∂b̄ij
∂rik

∂rik
∂umα

− ∂b̄ij
∂ cosijk

∂ cosijk
∂umα

)
∂2Vij

∂umα∂unβ
=
dVR
drij

∂2rij
∂umα∂unβ

+
d2VR
dr2

ij

∂rij
∂umα

∂rij
∂unβ

− b̄ij
dVA
drij

∂2rij
∂umα∂unβ

− b̄ij
d2VA
dr2

ij

∂rij
∂umα

∂rij
∂unβ

− dVA
drij

∂rij
∂umα

k 6=j∑
k

(
∂b̄ij
∂rik

∂rik
∂unβ

− ∂b̄ij
∂ cosijk

∂ cosijk
∂unβ

)

−
k 6=j∑
k

(
∂b̄ij
∂rik

∂rik
∂umα

− ∂b̄ij
∂ cosijk

∂ cosijk
∂umα

)
dVA
drij

∂rij
∂unβ

− VA
k 6=j∑
k

(
∂b̄ij
∂rik

∂2rik
∂umα∂unβ

− ∂b̄ij
∂ cosijk

∂2 cosijk
∂umα∂unβ

)

− VA
k,k′ 6=j∑
k,k′

(
∂2b̄ij

∂rik∂rik′

∂rik
∂umα

∂rik′

∂unβ
− ∂2b̄ij
∂rik∂ cosijk′

∂rik
∂umα

∂ cosijk′

∂unβ

− ∂2b̄ij
∂rik∂ cosijk′

∂ cosijk′

∂umα

∂rik
∂unβ

− ∂2b̄ij
∂ cosijk ∂ cosijk′

∂ cosijk
∂umα

∂ cosijk′

∂unβ

)

(4.9)

Here the subscripts m and n are atom indices, α and β are the axial directions as defined in

Eq. (4.1). The force constants can be obtained from:

φαβ(m,n) =
∂2W

∂umα∂unβ
=

1

2

∑
i,j

∂2Vij
∂umα∂unβ

(4.10)

For the REBO potential without dihedral angle terms, each atom only interacts with its 1st

and 2nd neighbors. For any atom i, φαβ(i, j) is zero if atom j is beyond the 2nd neighbors

of atom i. Since there are only 2 Bravais lattices in a perfect SLGS, force constants for the

two types of atoms in a unit cell represent the force constants of all atoms in the lattice.

Considering the out-of-plane deformation, it can be shown form Eq. (4.10) that φα3(i, j) =

φ3α(i, j) = 0, α = 1, 2, which means the in-plane deformation is independent from the

out-of-plane deformation. In addition, φ33(i, j) = φ1 = −473.63 eV/nm2 for {j |j ∈ first
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neighbors of i } and φ33(i, j) = φ2 = 78.938 eV/nm2 for {j |j ∈ second neighbors of i

}. This is true for both types of atom i. It can then be shown that φ33(i, i) = −3φ1 −

6φ2 = 947.262 eV/nm2. This characteristics of the interactomic potential is also discussed

in Ref. [95]. The details of the calculation of the force constants are presented in the

Appendix.

4.2 Local and Non-local Plate Models for SLGS

4.2.1 Kirchhoff-Love (local) plate model for SLGS

The well-known Kirchhoff-Love model for isotropic homogeneous plates is sum-

marized here for the sake of completeness. Consider a thin plate lies in the xy-plane and

is subjected to out-of-plane displacement w only. That is, the deformation of the plate is

pure bending. From the Kirchhoff-Love plate theory, the equilibrium equation of bending

moments is [79]:

∂2Mx

∂x2 +
∂2My

∂y2 − 2
∂2Mxy

∂x∂y
= −q + ρh

∂2w

∂t2
(4.11)

where Mx, My and Mxy are bending moments, q is the intensity of distributed transverse

shear loading, and h is the plate thickness. For pure bending, the moment-curvature relati-

ons can be expressed as [79]:

Mx = −D(
∂2w

∂x2 + ν
∂2w

∂y2 ) = D(κxx + νκyy)

My = −D(
∂2w

∂y2 + ν
∂2w

∂x2 ) = D(κyy + νκxx)

Mxy = −(1− ν)

2
D
∂2w

∂x∂y
=

(1− ν)

2
Dκxy

(4.12)
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where D is the bending rigidity, κxx and κyy are the curvatures in the x- and y-directions,

respectively, and κxy is the twist. For isotropic thin plates, the bending rigidity can be

written as

D =
Eh3

12(1− ν2)
(4.13)

where E is Young’s modulus and ν is Poisson’s ratio. Substituting Eq. (4.12) into Eq.

(4.11), we obtain the governing equation for plate bending as

−D
(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ q − ρh∂

2w

∂t2
= 0 (4.14)

It is shown in Eq. (4.14) that, for a given material, the bending rigidity D must

be determined in order to solve the plate bending equation. Following the conventional

definition, Eq. (4.13), Young’s modulus, Poisson’s ratio and plate thickness are required.

However, unlike traditional continuous materials, graphene is a single layer atom lattice

structure with no intuitive thickness. In addition, the out-of-plane bending moments of

graphene come from the interatomic forces arise from position variation of the atoms, not

the integral of stresses along the plate thickness in the classical plate theory. For this rea-

son, we adopt the moment-curvature relations proposed by Belytschko [7] and Huang [31]

which were derived based on the assumption that the mechanical behavior of graphene

lattice is governed by a multibody interatomic potential. The relations are given by [31]

Mx +My =

√
3

2

(
∂Vij

∂ cos θijk

)
0

(κxx + κyy)

Mx −My = 0, Mxy = 0

(4.15)

where Vij = V (rij,
∑

k (cos θijk)) is the potential energy of the atomic bond connecting

atoms i and j as shown in Eq. (4.6). Here atoms i and j can be any pair of neighboring

61



atoms and atom k can be any neighboring atoms of atom j other than atom i. The subscript

0 denotes the equilibrium state. Substituting Eq. (4.15) into Eq. (4.11) and then comparing

to Eq. (4.14), we obtain the bending rigidity of SLGS as

D =

√
3

4

(
∂Vij

∂ cos θijk

)
0

(4.16)

4.2.1.1 Non-local plate model for SLGS

Eringen first proposed the non-local elasticity theory to solve lattice surface wave

problems [18]. As stated in Chapter 2, the mathematical expression of non-local stress-

strain relation is given by [18]

σ(x) =

∫
Ω

α(|x′ − x| , τ)C : ε(x′)dΩ(x′) (4.17)

When α(|x′ − x| , τ) is chosen to be the Green’s function of a linear operator L , it can be

shown that Eq. (4.17) can be rewritten as

Lσ = C : ε (4.18)

In this work, we pick α to be

α(|x| , τ) = (2πl2τ 2)−1K0(x · x/lτ) (4.19)

where K0 is the zeroth order modified Bessel function. Then we have L = 1− τ 2l2∇2 =

1 − (e0a)2∇2 where ∇2 is the Laplacian operator. Substituting L into Eq. (4.18), we

have [18]

(
1− (e0a)2∇2

)
σ = C : ε (4.20)
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By using Eq. (4.20), we can obtain the non-local moment-curvature relations as

(
1− (e0a)2∇2

)
Mx = D(κxx + νκyy)(

1− (e0a)2∇2
)
My = D(κyy + νκxx)(

1− (e0a)2∇2
)
Mxy =

(1− ν)

2
Dκxy

(4.21)

Replacing Eq. (4.12) with Eq. (4.21), the governing equation of non-local pure bending

plate model is obtained as [5]

−D
(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ (1− (e0a)2∇2)(q − ρh∂

2w

∂t2
) = 0 (4.22)

Note that, if q = 0 or q is a function such that ∇2q = 0, the only difference between the

original (local) and non-local plate equations, Eq. (4.22) and Eq. (4.14), respectively, is

the non-local correction of the inertia term ρh∂
2w
∂t2

, which implies that there is no non-local

correction in predicting the static behavior in this case. In addition, when e0a = 0, Eq.

(4.22) reduces to Eq. (4.14), the local model is recovered. It also worth noting that, in

comparison to Arash’s equation [5], the h2 inertia terms are removed and the h term is

kept for SLGS. This is natural, since ρh is still important in graphene as the averaged mass

density per unit area. However, there is no rotational inertia along graphene’s thickness due

to its single atom layer structure.

4.2.1.2 Finite element formulation

By using the Galerkin weighted residual method, finite element formulation of the

non-local Kirchoff plate model can be obtained straightforwardly [5]. The weak form of
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Eq. (4.22) is obtained as

∫
Ω

[
−D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ (1− (e0a)2∇2)(q − ρh∂

2w

∂t2
)

]
δwdΩ = 0 (4.23)

Note that, the non-local finite element model reduces to the local one when e0a = 0. As

the Kirchhoff plate model requires C1 continuity of the displacement w and its variation

δw across the elements, a 4-node Bogner-Fox-Schmidt quadrilateral element is employed.

Each node of the element has 4 degrees of freedom: w, ∂w
∂x

, ∂w
∂y

, and ∂2w
∂x∂y

. The Hermit-type

shape functions of the master element are given by:

w : Na(ξ, η) = 1/16(ξ + ξa)
2(ξξa − 2)(η + ηa)

2(ηηa − 2) a = 1, 2, 3, 4

∂w

∂ξ
: N̂a(ξ, η) = −1/16ξa(ξ + ξa)

2(ξξa − 1)(η + ηa)
2(ηηa − 2) a = 1, 2, 3, 4

∂w

∂η
: Ña(ξ, η) = −1/16ηa(ξ + ξa)

2(ξξa − 2)(η + ηa)
2(ηηa − 1) a = 1, 2, 3, 4

∂2w

∂ξ∂η
: Na(ξ, η) = 1/16ξaηa(ξ + ξa)

2(ξξa − 1)(η + ηa)
2(ηηa − 1) a = 1, 2, 3, 4

(4.24)

where ξa, ηa are coordinates of node a in the master element. The element stiffness and

mass matrices can be written as

Ke =

∫
Ωe

BeTDBedΩe (4.25)

Me =

∫
Ωe

(
NeTρhNe + (e0a)2Ne

x
T I0N

e
x

)
dΩe (4.26)
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whereNe =

[
N N̂ Ñ N

]
is a 1×16 shape function vector with N =

[
N1 N2 N3 N4

]
,

N̂ =

[
N̂1 N̂2 N̂3 N̂4

]
and so on, and

Ne
x =


∂Ne

∂x

∂Ne

∂y

 , Be =



∂2Ne

∂x2

∂2Ne

∂x∂y

∂2Ne

∂y2


, (4.27)

D =


D 0 0

0 2D 0

0 0 D

 , I0 =

ρh 0

0 ρh

 (4.28)

4.2.1.3 Boundary and boundary condition corrections for SLGS

In addition to the constitutive relations, the definition of graphene plate’s geometry

has a significant effect on the accuracy of the numerical results. Many numerical calculati-

ons in the literature use integers to define graphene sizes, e.g., ”a 10 nm by 10 nm graphene

sheet”. Given the lattice nature of graphene, however, this integer size usually serves as a

cut-off limit in atomic models (referred to as ”cut-off size”), which means only the atoms

residing within this limit are free to move. Due to the discrete atomic spacing, an integer

value such as 10 nm is not sufficiently accurate to be applied in plate models of graphene.

For example, a 10.2 nm× 10.2 nm square cuts out the same group of atoms as a 10 nm×10

nm square does. Yet, a 10.2 nm × 10.2 nm plate is appreciably more flexible than a 10

nm×10 nm one. This effect becomes more significant when the graphene sheet becomes

smaller. In order to be consistent with the atomic lattice model, we define the ”real” geome-

try of a graphene plate using ”boundary atoms”. For a clamped edge, an atom is defined as
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a boundary atom when itself is fixed, but at least one of its first neighboring atoms is mova-

ble. For a free edge, an atom is defined as a boundary atom when it has at most two bonds.

Based on this definition of the boundary atoms, the geometry of a graphene plate can be

obtained by using the following procedure: (1) identify the movable atoms by using the

cut-off size; (2) identify the boundary atoms by using their definition as described above;

and (3) make a least-squares fit to the boundary atoms by scaling and shifting the cut-off

geometry. We refer to the graphene’s geometric dimension obtained using such procedure

as ”standard size”, as shown in Fig. 4.2.

Figure 4.2: Illustration of cut-off size, standard size and boundary atoms.

Another factor that affects the performance of the plate models is the clamped boun-

dary condition. It is an approximation to the actual case in which the boundary atoms and

their exterior neighbors are all fixed. In the classical plate model, clamped boundary con-

dition means no rotation of the plate’s cross section (dw/dn = 0, where n is the boundary

normal vector). However, graphene has no obvious thickness and there is no cross section

in the lattice. In fact, it is found that dw/dn = 0 is too strong a boundary constraint for
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graphene with fixed boundary atoms and their exterior neighbors. Figure 4.3 (a) and (b)

show the boundary conditions of a continuous plate and a single-layer graphene lattice,

both subjected to bending deformation. The red circles in Fig. 4.3 (b) represent fixed atoms

and black ones are free atoms. It is clear that, in the bending graphene lattice, there is a

finite angle between the bond attached to a fixed boundary atom and the horizontal axis,

while dw/dn = 0 of the continuous plate implies zero angle of rotation of the plate at the

fixed boundary. Comparing the deflection obtained from atomic lattice mechanics calcula-

tion (black dashed line) and that calculated from the plate model described in Section 3.1

(blue solid line), the over-constraining boundary condition dw/dn = 0 leads to an obvious

discrepancy in the results, as shown in Fig. 4.3 (c). This effect tends to be more severe

when the size of graphene becomes smaller. To address this inconsistency of the clamped

boundary condition in the lattice and plates models, we suggest a simple yet effective ze-

roth order correction: increase the plate dimensions along the directions perpendicular to

the clamped boundaries by a constant value, Lm. While more results demonstrating the

effectiveness of Lm will be discussed in the results section, an example is shown in Fig. 4.3

(c) and (d). The red solid lines in both figures are the deflection curves of the plate with the

dimension correction. It is shown that the zeroth order correction provides a compensation

for the nonzero slope of the graphene lattice at the clamped boundary and the accuracy of

the result is improved significantly.
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Figure 4.3: (a) and (b): deformation of a continuous plate and a single-layer graphene lattice

near their clamped boundaries; (c): deflection of the graphene lattice and plates with standard and

modified sizes; (d): enlarged boundary region of (c).

4.2.2 Results and Discussion

4.2.2.1 Static deformation

In this section, suspended SLGS subjected to a point load at center are investigated

to test the proposed boundary corrections. Square and circular SLGS of different sizes

are tested. All boundaries of the SLGS are clamped and a range of Lm are used in the

calculations. By using the interatomic potential parameters given in Appendix A, D is
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calculated to be 0.6896 eV. Figure (4.4) shows the relative error of center deflections of

the SLGS with boundary corrections compared with the results obtained from the atomic

lattice model. Results shown in Fig. (4.4) indicate that the using standard size instead of

the integer cut-off size in the plate model reduces the error by about 50%. The introduction

of size correction Lm further reduces the error significantly. Tables 4.1 and 4.2 show the

corrected (standard) sizes and corresponding best Lms for given integer cut-off sizes of

square and circular SLGS. Note that the standard sizes are the sizes of the best fitting

rectangles or circles to the fixed boundary atoms, as shown in Fig. 4.2. As shown in the

tables, the best fitting Lm is clearly a function of the type and size of the SLGS. However,

since the boundary condition induced error diminishes when the size of SLGS becomes

larger, in this work, a zeroth order correction (i.e. a constant Lm) is considered sufficient.

As shown in the later sections, from the static and modal analysis results of SLGS with

different shapes and sizes, the value of Lm = 0.03 nm gives the best overall performance.

Figure (4.4) shows that, with the standard size and Lm = 0.03 nm corrections, the largest

error is less than 5% for square SLGS with edge length of 3 nm and above. Note that, since

there is no distributed load, the non-local correction is only on the inertia term and it has

no effect on the static analysis.

Table 4.1: Corrected size and the best fitting Lm of square SLGS (armchair in x-direction
and zigzag in y-direction)

Cut-off size (nm) 3 5 10 15 20
Standard size x 3.1958 5.1133 10.1556 15.1269 20.0271

(nm) y 3.1982 5.1663 10.0866 15.0069 20.1732
Best fitting Lm (nm) 0.0710 0.0677 0.0559 0.0631 0.0623
Cut-off size (nm) 25 30 35
Standard size x 25.1405 30.1828 35.1541

(nm) y 25.0935 30.0138 35.1801
Best fitting Lm (nm) 0.0619 0.0531 0.0616
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Figure 4.4: Relative error of the SLGS’ center deflection in comparison with the results obtained
from the atomic lattice model: (a) square SLGS and (b) circular SLGS. y-axis is the relative error
of center deflection and x-axis is the size of SLGS.

Table 4.2: Corrected size and the best fitting Lm of circular SLGS.

Cut-off radius (nm) 3 5 10 15 20
Standard radius (nm) 3.0700 5.0593 10.0625 15.0567 20.0641
Best fitting Lm (nm) 0.0510 0.0595 0.0464 0.0455 0.0440

4.2.2.2 Modal frequencies of SLGS

To investigate the performance of the non-local plate model of SLGS, modal fre-

quency analysis is used as the benchmark problem in this section. The modal frequency

spectrum is a fundamental property of SLGS directly related to their dynamic behavior. In

this calculation, the lowest 50 modal frequencies are calculated for SLGS with different

sizes or shapes. Once again, the atomic lattice model results are used as the reference re-

sults. Size corrections is employed in both local and non-local models. Relative errors are

calculated for results obtained from the local and non-local plate models.

We first test the behavior of the non-local plate model on square SLGS using dif-

ferent values of Lm and e0a. Figure 4.5 shows the corresponding relative error of the first

50 modal frequencies of 5 nm × 5 nm (cut-off size) square SLGS. The results from the
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classical local model, which are indicated by the black circles in Figure 4.5 (a), give a

relative error of 4.3% for the first modal frequency, and then the error increases linearly

as the mode number increases. Since higher frequency modes have smaller wave lengths,

this result confirms Wu [92] and Peng [58]’s findings: the classic plate/shell model beco-

mes inaccurate when the characteristic length of deformation pattern is small enough to be

comparable to the atomic spacing. To reduce this error, as discussed above, two correction

methods are available. The first is the size correction for error induced by the approximated

boundary position and condition, as described in Sections 3.4 and 4.1. The second is the

non-local correction of the stress tensor as described in Section 3.2. However, it is not clear

what the right combination of the two corrections is for consistently reducing the error for

all cases. Here, to understand the effect of Lm and e0a on the accuracy of the plate model

results, Lm and e0a are varied independently and the relative error of the calculated modal

frequencies are obtained and plotted in Figure 4.5. The results shown in Figure 4.5 reveal

the relationship between the relative error of the results and the two correction parameters,

Lm and e0a. Based on the relationship, the optimal values of Lm and e0a can be obtained.

Figure 4.5 (a) shows the relative error variation as a function of mode number as well as

the boundary correction factor Lm, while the non-local parameter e0a is held to be zero.

It is shown that, the error has an approximately linear relation with the mode number and

changing Lm cuts down the y-intercept of the linear function. However, varying Lm does

not change the slope of the linear error functions of the mode number. In comparison,

Fig. 4.5 (b) shows effect of the non-local parameter. Note that, there is no boundary cor-

rection (Lm = 0) for all the results shown in Fig. 4.5 (b). The results show that, when e0a

increases, the slope of the linear error function of mode number reduces while the error of

the first several modes is barely changed. That is, varying e0a reduces the slope but not the

y-intercept of the linear error function. At this point, it is clear that Lm and e0a control the

y-intercept and the slope of the linear error function, respectively. For a given SLGS, there
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should be a combination of Lm and e0a such that both the y-intercept and slope are close

to zero. For example, for the 5 nm × 5 nm (cut-off size) SLGS, the best fitting values are

Lm = 0.0546nm and e0a ≈ 0.05nm.

Figure 4.5: First 50 modal frequencies of 5 nm × 5 nm square SLGS with different values
of (a) boundary correction factor Lm and (b) non-local parameter e0a.

To test the conclusion obtained above, the modal frequency problem is solved for

SLGS of various shapes and sizes. Figures 4.6, 4.7 and 4.8 show the results of square

SLGS with different edge lengths, rectangular SLGS with different aspect ratios and sizes,

and circular SLGS with different radii, respectively. Results obtained from the local plate

model (e0a=0) with standard size (Lm = 0) are also shown in the figures for comparison.

The numerical results indicate that, similar to the static deformation cases, the best fitting

Lm is a function of the type and size of the SLGS. As a trade-off between simplisity and

accuracy, we set Lm = 0.03 nm as a zeroth order approximation. The results shown in

Figs. 4.5-4.8 indicate that, however, the best fitting non-local parameter e0a is largely in-

dependent from shape and size of the SLGS. With e0a = 0.05nm, the slope of error is

nearly zero for all cases. It is imporant to point out that, while this result is against most

recent studies on graphene’s non-local plate models, it is consistent with Eringen’s original
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work, in which e0 ≈ 0.39 was obtained [18]. If we consider a = 0.142 nm which is the

carbon bond length in graphene, the result of this work e0a = 0.05nm gives e0 = 0.352.

Indeed, the non-local plate model is only meaningful if a consistent non-local parameter

can be used for plates of different shapes and sizes. Our results show that, with e0a = 0.05

nm and Lm = 0.03 nm, the relative errors are greatly reduced for all sizes, shapes and

mode numbers. The remaining error is the result of the constant Lm which is a zeroth order

approximation. It is worth noting that the results of the rectangular SLGS exhibit more

variance due to their different sizes in different directions.

Figure 4.6: Relative error of the first 50 modal frequencies of square SLGS of various
sizes: (a) local model with standard size (e0a = 0 and Lm = 0); (b) non-local model with
e0a = 0.05 nm and Lm = 0.03 nm.

4.3 Summary

There are three major issues in the existing continuum plate models of SLGS. First,

the conventional moment-curvature relation requires a structural property - plate thickness,

which is not well defined due to the single layer lattice structure of SLGS. Therefore, the

plate thickness becomes a fitting parameter in these plate models. Depending on the appli-
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Figure 4.7: Relative difference of the first 50 modal frequencies of rectangular SLGS: (a)
local model with standard size (e0a = 0 and Lm = 0); (b) non-local model with e0a = 0.05
nm and Lm = 0.03 nm.

Figure 4.8: Relative difference of the first 50 modal frequencies of circular SLGS: (a) local
model with standard size (e0a = 0 and Lm = 0); (b) non-local model with e0a = 0.05 nm
and Lm = 0.03 nm.

cation, different values of plate thickness were used to fit experimental results or atomistic

calculations. The second issue is the inconsistency in the definition of the boundary and

boundary conditions between the continuum plate models and atomic lattice models. The

third issue is that the classical continuum plate theory becomes inapplicable when the cha-
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racteristic length of deformation pattern reduces to a level that is comparable to the atomic

spacing.

In this work we show that, within the framework of a non-local plate model, these

issues can be addressed to ensure the accuracy and consistency of the model. First, the

plate thickness problem can be overcome by calculating the bending rigidity in the moment-

curvature relation directly from the interatomic potential of graphene. In addition, the effect

of boundary and boundary condition inconsistency on the static and dynamic behavior of

SLGS can be alleviated by extending SLGS’s dimensions at the clamped boundaries by a

small amount Lm. It is demonstrated in the numerical results that Lm controls the constant

component of the error and the non-local parameter e0a controls the error proportionality

with respect to the wavelength of deformation. Contrary to the case dependent non-local

parameter values used in the literature, we show that, when the sources of error in the classi-

cal plate model are properly identified, the optimal non-local parameter e0a is independent

of size, shape and vibration pattern of the SLGS. Finally, by using potential-based bending

rigidity, we found that a combination of Lm = 0.03 nm and e0a = 0.05 nm gives accurate

results for static and dynamic behavior of SLGS with different shapes and sizes.
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Chapter 5

Potential-based non-local shell model of

carbon nanotubes

As discussed in Chapter 2, many studies have been done on the shell modeling

of carbon nanotubes. The rediscovery of non-local elasticity offered a capability to consi-

der the atomic spacing in continuum models. However, from the author’s best knowledge,

most current non-local shell theories proposed for CNT are still based on continumm con-

stitution relations, which has already been proved to be inappropriate [7, 31, 92]. In this

chapter, a potential-oriented non-local Mindlin-Reissner shell theory for CNT is develo-

ped. The in-plane stiffness matrix and bending stiffness matrix are calculated based on

Wu’s derivation [92]. Penalty method is applied to suppress the shear deformation. To test

the performance of this model, the spectral frequencies and wave propagation dispersion

relations are calculated and compared with atomistic models.
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5.1 Finite element formulation of non-local Mindlin-Reissner

shell theory for single-walled carbon nanotubes

Currently the most successful plate or shell models of graphene and CNT are using

pure-bending Kirchhoff-Love assumptions. However, pure-bending models require C1

continuity, which is very difficult to satisfy in finite element analysis on 3D curved sur-

faces. For this reason, the Mindlin-Reissner theory based finite element models are far

more popular in literature. For traditional continuum materials, this works well in most si-

tuations except for shear locking problems when the shell or plate is thin [32]. For graphene

and CNT, however, there is no meaningful thickness and shear modulus, which causes trou-

bles in determining the out-of-plane shear stiffness matrix defined in Eq. (2.10). To avoid

requiring higher order continuity as well as to retain the pure-bending assumption, the

Mindlin-Reissner hypothesis is still employed while a penalty method is used to suppress

the out-of-plane shear deformation.

5.1.1 Governing equatiosn of thin shallow doubly-curved shell

The equation of motion of doubly-curved shell model is already shown in Eq. (5.1).

For the sake of clearness, we rewrite it here:

∂N11

∂x1

+
∂(N12 + C0M12)

∂x2

+
Q1

R1

− I0
∂2u

∂t2
− I1

∂2θx

∂t2
= 0

∂(N12 − C0M12)

∂x1

+
∂N22

∂x2

+
Q2

R2

− I0
∂2v

∂t2
− I1

∂2θy

∂t2
= 0

∂Q1

∂x1

+
∂Q2

∂x2

−
(
N11

R1

+
N22

R2

)
− q − I0

∂2w

∂t2
= 0

∂M11

∂x1

+
∂M12

∂x2

−Q1 − I1
∂2u

∂t2
− I2

∂2θx

∂t2
= 0

∂M12

∂x1

+
∂M22

∂x2

−Q2 − I1
∂2v

∂t2
− I2

∂2θy

∂t2
= 0

(5.1)
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where

C0 =
1

R1

− 1

R2

(5.2)

Eq. (5.1) can be simplified. Like any 2-D carbon nano-materials, CNT has no meaningful

thickness due to its one atom layer structure. Therefore, I1 ∝ ρh2 and I2 ∝ ρh3 are

considered to be 0 where h is the thickness, and I0 = ρh equals to the averaged mass

density per unit area of carbon atoms. Also for cylindrical surface shown in Fig. (5.1), R1

is the radius of the cylinder and R2 = ∞. If the radius is much greater than the element

size, 1
R1

term can also be ignored. Moreover, similar to graphene, CNT has very small

stiffness against twisting curvature, which means C0M12 is negligible compared to N12.

Thus, Eq. (5.1) can be simplified as:

Figure 5.1: Demonstration of the cylindrical shell geometry and kinematics [85].
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∂N11

∂x1

+
∂N12

∂x2

− I0
∂2u

∂t2
= 0

∂N12

∂x1

+
∂N22

∂x2

− I0
∂2v

∂t2
= 0

∂Q1

∂x1

+
∂Q2

∂x2

− q − I0
∂2w

∂t2
= 0

∂M11

∂x1

+
∂M12

∂x2

−Q1 = 0

∂M12

∂x1

+
∂M22

∂x2

−Q2 = 0

(5.3)

which is the same as the equation of motion of a flat plate [85].

5.1.2 Non-local elasticity and non-local shell theory

The non-local elasticity theory was introduced in Chapter 2. Here it is described

briefly for the sake of completeness. In the non-local theory, the mathematical expression

of the stress-strain relation is given by [19]

σ(x) =

∫
Ω

α(|x′ − x| , τ)C : ε(x′)dΩ(x′) (5.4)

When α(|x′ − x| , τ) is chosen to be the Green’s function of a linear operator L , Eq. (5.4)

can be rewritten in the differential form:

Lσ = C : ε (5.5)
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In this work, L is chosen to be 1− (e0a)2. Together with the resultant forces and moments

defined in Eq. (2.9), we can easily obtain the non-local constitutive relations of shell [3, 6]:

L



N11

N22

N12

Q1

Q2

M11

M22

M12



=


A3×3

C2×2

D3×3





ε11

ε22

γ12

γ13

γ23

κ11

κ22

κ12



(5.6)

(5.7)

where the in-plane strain-displacement relations are:


ε11

ε22

γ12

 =



∂

∂x1

∂

∂x2

∂

∂x2

∂

∂x1


u
v

 ,

γ13

γ23

 =


∂

∂x1

−1

∂

∂x2

−1



w

θ1

θ2

 (5.8)

and the curvatures can be expressed as:


κ11

κ22

κ12

 =



∂

∂x1

∂

∂x2

∂

∂x2

∂

∂x1


θ1

θ2

 (5.9)
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Matrix A, C and D are in-plane stiffness, out-of-plane shear stiffness and bending stiffness

matrix, respectively. u, v, w, θ1, θ2 are displacements in local x1, x2, x3 directions and

rotations of x1 x3 and x2 x3 cross-sections. Note that the x3 axis is perpendicular to the

tangent of the shell surface at point (x1, x2, x3).

If we apply L on both sides of Eq. (5.3), we can obtain the non-local equation of

motion:

∂LN11

∂x1

+
∂LN12

∂x2

− I0L
∂2u

∂t2
= 0

∂LN12

∂x1

+
∂LN22

∂x2

− I0L
∂2v

∂t2
= 0

∂LQ1

∂x1

+
∂LQ2

∂x2

−L q − I0L
∂2w

∂t2
= 0

∂LM11

∂x1

+
∂LM12

∂x2

+ LQ1 = 0

∂LM12

∂x1

+
∂LM22

∂x2

+ LQ2 = 0

(5.10)

The corresponding weak form is:

∫
Ω

[(
∂δu

∂x1

LN11 +
∂δu

∂x2

LN12 − δuI0L
∂2u

∂t2

)
+

(
∂δv

∂x1

LN12 +
∂δv

∂x2

LN22 − δvI0L
∂2v

∂t2

)
+

(
∂δw

∂x1

LQ1 +
∂δw

∂x2

LQ2 − δwL q − δwI0L
∂2w

∂t2

)
+

(
∂δθ1

∂x1

LM11 +
∂δθ1

∂x2

LM12 − δθ1LQ1

)
+

(
∂δθ2

∂x1

LM12 +
∂δθ2

∂x2

LM22 − δθ2LQ2

)]
dΩ

−
∫

Γ

(δuP1 + δvP2 + δwQn + δθ1T1 + δθ2T2) dΓ = 0

(5.11)
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where the boundary forces and moments are defined as:

P1 = LN11n1 + LN12n2; P2 = LN12n1 + LN22n2;

T1 = LM11n1 + LM12n2; T2 = LM12n1 + LM22n2;

Qn = LQ1n1 + LQ2n2

(5.12)

n1 and n2 are components of the vector normal to the boundary.

5.1.3 Penalty method and the formulation of element matrices

The pure-bending conditions are equivalent to two constraints on the out-of-plane

shear deformations, γ13 and γ23, written as follows:

γ13 =
∂w

∂x1

− θ1 = 0; γ23 =
∂w

∂x2

− θ2 = 0; (5.13)

Using Lagrange multiplier method, these constrains can be added to the weak form:

∫
Ω

{[
∂δu

∂x1

LN11 +

(
∂δu

∂x2

+
∂δv

∂x1

)
LN12 +

∂δv

∂x2

LN22

]
+

[
∂δθ1

∂x1

LM11 +

(
∂δθ1

∂x2

+
∂δθ2

∂x1

)
LM12 +

∂δθ2

∂x2

LM22

]
− δwL q − I0

(
δuL

∂2u

∂t2
+ δvL

∂2v

∂t2
+ δwL

∂2w

∂t2

)
+

[
φ1δ

(
∂w

∂x1

− θ1

)2

+ φ2δ

(
∂w

∂x2

− θ2

)2
]}

dΩ

−
∫

Γ

(δuP1 + δvP2 + δwQn + δθ1T1 + δθ2T2) dΓ = 0

(5.14)

where φ1, φ2 are Lagrange multipliers. It’s obvious that φ1, φ2 are equivalent with the out-

of-plane shear modulus in traditional shell or plate models. To apply constraints, we assign

them with relatively large numbers, which are called penalty parameters [67].
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Substitute the constitutive relations in Eq. (5.6) into Eq. (5.14), we can obtain the

weak form governing equation in terms of displacements:

∫
Ω


b1

δu
δv



T

·A ·

b1

u
v


+

b1

δθ1

δθ2



T

·D ·

b1

θ1

θ2




+

b2


δw

δθ1

θ2



T

·

φ1

φ2

 ·
b2


δw

δθ1

θ2




−δwL q − I0

(
δuL

∂2u

∂t2
+ δvL

∂2v

∂t2
+ δwL

∂2w

∂t2

)}
dΩ

−
∫

Γ

(δuP1 + δvP2 + δwQn + δθ1T1 + δθ2T2) dΓ = 0

(5.15)

where

b1 =



∂

∂x1

∂

∂x2

∂

∂x2

∂

∂x1


, b2 =


∂

∂x1

−1

∂

∂x2

−1

 (5.16)

Note that except for the boundary terms, the non-local operator only affects the inertia for-

ces. We can do integration by parts on the inertia terms to reduce its continuity requirement.

The inertia term in x1 direction can be rewritten as:

δuL
∂2u

∂t2
= δu

∂2u

∂t2
− (e0a)2δu∇2∂

2u

∂t2

= δu
∂2u

∂t2
− (e0a)2

[
∇ ·
(
δu∇∂

2u

∂t2

)
−∇δu · ∇∂

2u

∂t2

] (5.17)
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Thus, the corresponding integration form is equal to:

∫
Ω

I0δuL
∂2u

∂t2
dΩ =

∫
Ω

I0

(
δu
∂2u

∂t2
+ (e0a)2∇δu · ∇∂

2u

∂t2

)
dΩ

−
∫

Γ

I0(e0a)2δu

(
∂

∂x1

∂2u

∂t2
n1 +

∂

∂x2

∂2u

∂t2
n2

)
dΓ

(5.18)

Similarly, the same process can be done on L
∂2u

∂t2
and L

∂2u

∂t2
terms. The element stiffness

and mass matrix can be written as:

Ke
5n×5n =

Ke
d2n×2n

Ke
s3n×3n

+

03n×3n

Ke
r2n×2n



Me
5n×5n =



Me
bn×n

Me
bn×n

Me
bn×n

0n×n

0n×n



(5.19)

where

Ke
d =

∫
Ωe

Bd
T ·A ·Bd dΩe

Ke
s = φ1

∫
Ωe

Bs
T ·Bs dΩe

Ke
r =

∫
Ωe

Bd
T ·D ·Bd dΩe

Me
b = I0

∫
Ωe

(
Nd

T ·Nd + (e0a)2Nx
T ·Nx

)
dΩe

(5.20)
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and

Bd =



∂Nd

∂x1

∂Nd

∂x2

∂Nd

∂x2

∂Nd

∂x1


, Bs =


∂Nd

∂x1

−Nd

∂Nd

∂x2

−Nd

 , Nx =


∂Nd

∂x1

∂Nd

∂x2

 (5.21)

The vector Nd is the 1× n shape functions vector, and n is the number of element nodes.

5.1.4 Coordinate systems and matrix assembly

In shell elements the element matrices and force vector are evaluated at each Gauss

point, under the local coordinate system. So the element matrices and vector should be

transferred into global coordinate system in order to assemble into the global matrices and

global vector. The position at any point in a shell elements can be expressed in global

coordinates:

x =
∑
k

Nk(ξ, η)x(k), i = 1, 2, 3 (5.22)

k is the element node index, and x(k) = [x
(k)
1 , x

(k)
2 , x

(k)
3 ] represents the global Cartesian

coordinates of node k in this element. ξ and η are coordinates of the mapping of this point

in the master element. The base vectors of the local coordinate system at this point can be

defined as: [32]

el1 =

√
2

2
(eα − eβ)

el2 =

√
2

2
(eα + eβ)

el3 =
eξ × eη
|eξ × eη|

with

eα =
(eξ + eη)

|eξ + eη|

eβ =
el3 × eα∣∣el3 × eα

∣∣ and

eξ =
x,ξ
|x,ξ|

eη =
x,η
|x,η|

(5.23)
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where

x,ξ =
∂x

∂ξ
=
∑
k

∂Nk(ξ, η)

∂ξ
x(k)

x,η =
∂x

∂η
=
∑
k

∂Nk(ξ, η)

∂η
x(k)

(5.24)

The displacements can be transferred from global coordinates into local coordinates by:


ul

vl

wl

 = Q ·


ug

vg

wg

 ,


θl1

θl2

θl3

 = Q ·


θg1

θg2

θg3

 , Q =

[
el1 el2 el3

]
(5.25)

From the previous section, the equation of motion for each element can be written

as:

Ke · de + Me · d̈e = Fe (5.26)

de and Fe are element displacement and force vectors. Note that there are only 5

degrees of freedom (DOF) appeared in the weak form (u, v, w, θ1, θ2). However, after

coordinate transfer there will be 6 DOF. So we add one more rotational DOF, θ3, which

represents the rotation around el3 axis. It is also called the drilling degree of freedom [32].

It worth to mention that there is neither stiffness nor inertia associated with this DOF, which

can cause singular problems at some flat node. There are several methods to add the drilling

stiffness and mass inertia [1, 33], but it is unnecessary in this work since we currently only

deal with cylindrical geometries.

As a general finite element approach, integration in Eq. (5.20) is done by Gaussian

quadrature. Selective reduced integration method is applied to reduce the shear locking and
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membrane locking. That is, Ke
r and Me

b are calculated using the number of Gauss points

that fits the order of shape functions, while Ke
d and Ke

s are using one less Gauss points in

each direction. In this work, 8-node quadrilateral serendipity element is selected. Meshes

are generated by ANSYS Mehcanical APDL (ANSYS Academic Research Mechanical,

Release 16.0). The number of Gauss points is set to be 3× 3 for DOF with regular integra-

tion and 2×2 for DOF with reduced integration. The out-of-plane shear penalty parameters

φ1, φ2 are set to be 10 times of the in-plane shear stiffness (A33) of CNTs.

5.2 Potential based constitutive relations of CNT

As stated in the introduction chapter, it is hard to define CNT’s material proper-

ties, such as the Young’s modulus, the Poisson’s ratio and the plate thickness, as those of

traditional continuum materials. To solve this issue, Wu [92] has derived a inter-atomic

potential based method in which A and D are directly calculated based on CNT’s radius

and chirality.

From the knowledge of differential geometry, a point P on a curved surface can be

given by a vector function with two parameters (coordinates) P(ξ1, ξ2), which can define

the curved surface. The first fundamental form, which represents the arc length on the

curved surface, is given by:

Aαβ =
∂P

∂ξα
· ∂P

∂ξβ
(5.27)

And the second fundamental term that represents the curvature at point P is:

Bαβ = N · ∂2P

∂ξα∂ξβ
(5.28)

where N is the unit vector that is normal to the surface at point P, which can be obtained
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from:

N =
∂P

∂ξα
× ∂P

∂ξβ

/∣∣∣∣ ∂P

∂ξα
× ∂P

∂ξβ

∣∣∣∣ (5.29)

Let Pi(ξ
i
1, ξ

i
2), Pj(ξ

j
1, ξ

j
2) and Pk(ξ

k
1 , ξ

k
2 ) represent the positions of three different

carbon atoms. Then the distance rij between atoms i, j and the angle θijk between vectors

i-j and i-k can be approximated by [92]

r2
ij = ∆Pij ·∆Pij = (Aαβ + 2Eαβ) ∆ξ̄ijα ∆ξ̄ijβ −

1

12

[
(Bαβ +Kαβ) ∆ξ̄ijα ∆ξ̄ijβ

]2

cos θijk =
∆Pij ·∆Pik

rijrik
,

∆Pij ·∆Pik = (Aαβ + 2Eαβ) ∆ξ̄ijα ∆ξ̄ikβ +
1

12
(Bαβ +Kαβ) (Bγλ +Kγλ)

∆ξ̄ijα ∆ξ̄ikλ
(
3∆ξ̄ijβ ∆ξ̄ikγ − 2∆ξ̄ijβ ∆ξ̄ijγ − 2∆ξ̄ikβ ∆ξ̄ikγ

)
(5.30)

where the same Greek subscript implies summation. ∆Pij = Pj − Pi means the vector

from atom i to atom j. ∆ξ̄ijα = ∆ξijα + ηα with ∆ξijα = ξjα − ξiα is the coordinate difference

between atoms i and j, and ηα represents the shift vector η between two sub-lattice in CNT.

Here Aαβ and Bαβ are evaluated at point Pi. Eαβ and Kαβ are components of the Green’s

strain tensor E and the curvature tensor K, respectively.

If we equalize the strain energy density with atomic potential energy density, then

the strain energy can be expressed as a function of strain/curvature tensors of CNT. In

this work, we employed the 2nd generation REBO potential to simulate the interactions

between carbon atoms [11]. The potential energy between atoms i and j can be written as

a function of bond lengths and angles: Vij(rij, θijk, k 6= i, j). The strain energy density W
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at atom i equals to:

W (E,K,η) =
1

2

∑j
j 6=i Vij(rij, θijk, k 6= i, j)

S0

(5.31)

where S0 =
∫ ∫ √

A11A22 − A2
12 dξ1dξ2 is the average area per atom. Shift vector η can

be obtained from an implicit non-linear function:

∂W

∂η
= 0 (5.32)

Thus, the strain energy W is expressed as a function of E and K: W (E,K,η(E,K)) =

W̃ (E,K). Under small strain condition, E and K are equal to ε and κ defined in Eq. (2.3).

The stiffness matrix A and D can be obtained by:

A =



∂2W̃

∂E11
2

∂2W̃

∂E11∂E22

1

2

(
∂2W̃

∂E11∂E12

+
∂2W̃

∂E11∂E21

)

∂2W̃

∂E22
2

1

2

(
∂2W̃

∂E22∂E12

+
∂2W̃

∂E22∂E21

)

1

4

(
∂2W̃

∂E12
2 + 2

∂2W̃

∂E12∂E21

+
∂2W̃

∂E21
2

)


Symm

D =



∂2W̃

∂K11
2

∂2W̃

∂K11∂K22

1

2

(
∂2W̃

∂K11∂K12

+
∂2W̃

∂K11∂K21

)

∂2W̃

∂K22
2

1

2

(
∂2W̃

∂K22∂K12

+
∂2W̃

∂K22∂K21

)

1

4

(
∂2W̃

∂K12
2 + 2

∂2W̃

∂K12∂K21

+
∂2W̃

∂K21
2

)


Symm

(5.33)
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where [92]

∂2W̃

∂Eαβ∂Eγλ
=

∂2W

∂Eαβ∂Eγλ
− ∂2W

∂Eαβ∂ην
·
(
∂2W

∂η∂η

)−1

νµ

· ∂2W

∂ηµ∂Eγλ

∂2W̃

∂Kαβ∂Kγλ

=
∂2W

∂Kαβ∂Kγλ

− ∂2W

∂Kαβ∂ην
·
(
∂2W

∂η∂η

)−1

νµ

· ∂2W

∂ηµ∂Kγλ

(5.34)

α, β, γ, λ, ν, µ = 1, 2

For detailed potential function and its derivatives, please see Appendices C and D.

It is worth to mention that the elastic constants calculated from Eq. (5.33) are

approximations. The expressions of rij and cos θijk in Eq. (5.30) neglect higher order

terms of ∆ξ. Wu deduced a brief error analysis and the error of this method is on the

order of (a/R)3 and a/L, where a is the atomic spacing of CNT, R and L are tube radius

and length. For (5,5) armchair CNT, R = 0.35nm and the error is on the order of 6.4% if

L > 2.19nm. It seems reasonable for such a narrow tube. However, this only represents the

order of the magnitude. The actual error can be several times of this number, which is not

acceptable. Therefore, in this work we only deal with relative large CNTs withR > 0.5nm

and L > 9nm.

5.3 Results and Discussions

The 2nd generation REBO (Brenner) potential is used for all elastic constants deri-

vations, lattice static force constants calculations, and molecular dynamic simulations. The

elastic constants are directly obtained from Eq. (5.33), with equilibrium geometry obtained

from the optimization method implemented in Chapter 3. Since the atomic spacing in CNT

is similar to graphene, the non-local parameter is selected to be e0a = 0.05nm as well. The

performance of this non-local shell model is tested by modal spectral analysis and wave
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propagation of CNTs. The natural frequencies are calculated by computing the eigenvalues

of the finite element stiffness matrix with respect to the mass matrix. Lattice static models

are used as frequency references, with the force constant matrix obtained from Eq. (4.1) to

Eq. (4.4) in Chapter 4. And molecular dynamics simulations are also presented to compare

with the dynamics wave propagation simulations in the shell model.

5.3.1 Natural frequencies of carbon nanotubes

The natural frequencies are calculated for two armchair nanotubes (10,10), (15,15)

and two zigzag nanotubes (15,0), (25,0) with clamped boundary conditions. Each CNT is

tested with two different lengths. As we already discussed about the size of graphene in

Chapter 4, the accurate length of CNT is defined as the distance between boundary atoms

at both ends. And to relax the clamped boundary condition, a boundary correction factor

Lm = 0.03nm is applied. All relative differences are compared with lattice statics results.

Results show that the modified non-local model can reduce the frequency error

significantly. It’s effect varies with the vibration pattern, but on average the error is reduced

by around one percent. It’s easy to see that the boundary correction is more effective on

short tubes. Note that there are several modes that are almost not effected by the boundary

correction. These modes are vibrations primarily move along either the longitudinal axis

or the radial direction, which involves little out-of-plane movements. This is in agreement

with our analysis in Chapter 4 on why clamped boundary conditions are over constrained.

Modes with less out-of-plane bending deformation are less affected by the over-constrained

boundary.

It’s also been observed that the non-local parameter has more influence on modes

with more ”fluctuations”, which means the modes with smaller characteristic length. This

is in consent with our observation in Chapter 4 on graphene. The remaining error may

91



Figure 5.2: The relative difference of the first 50 natural frequencies of
(10,10) carbon nanotubes, compared with lattice mechanics results. The
tube lengths are (a) 9.84 nm and (b) 19.93 nm for the original local model
and (a) 9.9 nm and (b) 19.99 nm for modified local and non-local models.

Figure 5.3: The relative difference of the first 50 natural frequencies of
(15,15) carbon nanotubes, compared with lattice mechanics results. The
tube lengths are (a) 9.84 nm and (b) 19.93 nm for the original local model
and (a) 9.9 nm and (b) 19.99 nm for modified local and non-local models.
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Figure 5.4: The relative difference of the first 50 natural frequencies of
(15,0) carbon nanotubes, compared with lattice mechanics results. The tube
lengths are (a) 9.86 nm and (b) 19.86 nm for the original local model and
(a) 9.92 nm and (b) 19.92 nm for modified local and non-local models.

Figure 5.5: The relative difference of the first 50 natural frequencies of
(25,0) carbon nanotubes, compared with lattice mechanics results. The tube
lengths are (a) 9.86 nm and (b) 19.86 nm for the original local model and
(a) 9.92 nm and (b) 19.92 nm for modified local and non-local models.
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come from the stiffness matrix which is mentioned in Section 5.2.

5.3.2 Wave propagation in carbon nanotubes

To investigate the wave propagation problems, we test CNTs with 20 nm in length,

which is subjected to sinusoidal excitation at one end while the other end is free. Two

different excitation modes, namely flexural and longitudinal, are both investigated. As

shown in Fig. (5.6), the wave travel time between two different cross-sections at x = x1

and x = x2 along the tube axis is calculated by [29]:

Figure 5.6: Vibrations of different cross-sections in a (15,15) armchair CNT
under T = 500 fs longitudinal excitation. Result is from MD simulation. (a)
shows the excitation wave, (b) and (c) are the corresponding responses at
x1 = 2.46nm and x2 = 4.92nm

∆t =
(t21 − t11) + (t22 − t12) + (t23 − t13) + · · ·+ (t2n − t1n)

n
(5.35)
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Thus, the group velocity and wave number can be obtained as [29]:

c =
x2 − x1

∆t
, k =

2π

T

1

c
(5.36)

In the shell model, the Newmark method is employed for dynamic analysis. In the New-

mark scheme, at each time step i the new displacement for next time step is given by

ui+1 = ui + ∆tu̇i +
1

2
∆t2üβ

u̇i+1 = u̇i + ∆tüγ

(5.37)

where ui is the displacement vector at time step i, u̇i is the velocity vector at time step i,

and ∆t is the time step size. The acceleration terms üβ and üγ are given by:

üβ = (1− 2β)üi + 2βüi+1 , 0 ≤ 2β ≤ 1

üγ = (1− γ)üi + γüi+1 , 0 ≤ γ ≤ 1

(5.38)

where üi is the acceleration vector at time step i. In this work we used γ = 0.5 and β =

0.25. The time step size is chosen differently for different period of sinusoidal excitation,

but it is no greater than 1/50 of the corresponding period.

In MD simulations, Nose-Hoover style time integration is used. The initial atoms

position is given by the bond length and angles obtained from Chapter 3, and the initial

velocity is set randomly at the temperature 40K following the normal distribution. Before

running the wave propagation test the whole system is relaxed and cooled down to T = 1K

by 150000 time steps with 0.2 fs step size. Then the temperature is controled to 1K, and

atoms at one end are forced to move in a sinusoidal way with 0.01 nm magnitude. The

simulation is proceeded by the open-source MD software LAMMPS [59].

It can be seen that the phase velocities from the non-local model are close to their lo-
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Figure 5.7: The dispersion relations of (a) flexural wave (b) longitudinal
wave for (25,0) zigzag carbon nanotube.

Figure 5.8: The dispersion relations of (a) flexural wave (b) longitudinal
wave for (15,15) armchair carbon nanotube.

cal counter-parts. Most of the disagreements appear at the large wave number region, which

indicates that the non-local effect makes more obvious difference on waves with smaller

wave lengths. And by compare with MD simulation results, for (25,0) zigzag tube the non-

local model has a better performance. The local model tends to over-estimate the phase
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velocities, which can be compensated by the non-local effect. But the armchair (15,15)

CNT shows no significant improvement. Most results from both longitudinal and flexural

waves are close with each other. For flexural wave with large wave numbers, it seems that

the local model’s results are better. However, both models are still very close with MD

simulations, and the small difference can be attribute to the computational errors. We also

compare our longitudinal results with analytical solutions given by Wang [85]. Overall,

the non-local model shows some advantage on wave propagation problems in (25,0) zigzag

tube, but it requires further verification.

5.4 Summary

In this chapter, a potential-oriented non-local finite element shell model is establis-

hed specially for CNTs. Based on the same methodology as the previous chapter, the elastic

constants of CNT are directly calculated from the inter-atomic potential. Again the natu-

ral frequencies of various CNTs are calculated by both local and non-local models. The

effects of the boundary correction and the non-local elasticity are also discussed. Moreo-

ver, the wave propagation dispersion relations of are simulated. With the same non-local

parameter we used for graphene in Chapter 4, results show that the non-local shell model

has a better dynamic performance than the local one under some circumstances, but further

investigation is required.
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Chapter 6

Conclusions

Through the efforts of the author, non-local plate and shell solutions for CNT and

graphene are established. Firstly, a semi-analytical optimization model for calculations

about the equilibrium configuration of SWCNT is derived. It is shown that this model can

reproduce the results from corresponding atomic simulations and the computational cost in

negligible. Furthermore, the semi-analytical approach is extended for the calculation of the

RBM frequencies of CNTs. Secondly, the non-local plate model of single-layer graphene

sheet is developed. The effect of boundary and boundary condition inconsistency on the

static and dynamic behavior of SLGS can be alleviated by extending SLGS’s dimensions

at the clamped boundaries by a small amount Lm. It is also demonstrated that Lm controls

the constant component of the error and the non-local parameter e0a controls the error pro-

portionality with respect to the wavelength of deformation. Contrary to the case dependent

non-local parameter values used in the literature, the optimal non-local parameter e0a is

independent of size, shape and vibration pattern of the SLGS. Finally, by using potential-

based bending rigidity, we found that a combination of Lm = 0.03 nm and e0a = 0.05 nm

gives accurate results for static and dynamic behavior of SLGS. And in the end, a non-local

shell model is built for continuum simulations of SWCNT.
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6.1 Answers to the research questions

1. Why are there so many non-local parameters employed in literature? What factors

can affect this number?

The reason is because in most of these studies, their local models are not accurate.

The non-local parameter should only be affected by the characteristic length of the

lattice. However, a lot of other factors can contribute to the error of the continuum

model. Because these factors are case-dependent, people can obtain completely dif-

ferent non-local parameters when they try to fit their results.

2. So far, most non-local parameters are obtained by fitting with atomic simulations. If

these affecting factors are determined, is there a way to predict the non-local para-

meter without running atomic simulations?

There is no need to predict the non-local parameter. For the same lattice, there should

be only one non-local parameter. From our simulation results, this number should be

around 0.05 nm for graphene and CNT.

3. It is shown that the non-local parameter can reduce the error of dynamic simulations

on graphene and CNT. But where are these errors from? A lot of non-local models

employed constitutive relations of traditional continuum materials, which has already

been proven to be wrong. Is it a robust way that using the non-local model to fix

errors which may caused by improper constitutive relations?

Basically there are three major sources of errors. The first one is the constitutive

relations. But with potential-oriented elastic constants, this error can be significantly

reduced. The second type is improper boundary conditions. For the clamped boun-

dary condition, a small boundary correction factor can greatly reduce the error. The

last one is from the discrete atom lattice which can be improved by the non-local
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model. Different types of errors require different strategies to deal with.

6.2 Future work

Future researches can focus on analytical solutions of both potential-oriented non-

local plate and shell models of graphene and CNT. The finite element models still contain

some errors, and with analytical solutions the non-local parameter can be accurately cali-

brated. Also the boundary conditions of graphene and CNT need more researches. The

boundary correction factor is a simple but not accurate method to reduce the current er-

ror. And this factor is dependent on size and shape, which is not ideal. A well-defined

boundary should be size and shape independent, which can also mimic the deformation of

atomic lattice near the boundary.

To the application point of view, this shell model can be applied to any 2D carbon

allotropes. The major methodology of this dissertation is not limited to flat and cylindrical

surfaces. Examples are like carbon nano-cone, carbon nano-scrolls, rebar graphene (shown

in Fig. (6.1)) [72], graphene-CNT hybrid materials, etc. Those structure can all benefit

from our continuum shell model.

Figure 6.1: Structure of rebar graphene [72]
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Appendix A Bond angle calculation

Figure 2: Bond angle calculation

A Cartesian coordinate system with the origin at the center of the circular cross-

section is defined as shown in Fig. 2. Since the points A, Bj , Bk are all on the same

cylindrical surface,
−→
OA,

−−→
OBj and

−−→
OBk can be expressed as:

−→
OA = {R, 0, 0}
−−→
OBj = {R cos βj, R sin βj, hj}
−−→
OBk = {R cos βk, R sin βk, hk}

j 6= k

j, k = 1, 2, 3
(1)

Therefore,

−−→
ABj = {R(cos βj − 1), R sin βj, hj}
−−→
ABk = {R(cos βk − 1), R sin βk, hk}

(2)
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We obtain

cos 6 BjABk =

−−→
ABj ·

−−→
ABk

|
−−→
ABj||

−−→
ABk|

=
R2(cos βj − 1)(cos βk − 1) +R2 sin βj sin βk + hjhk

rjrk

(3)

Recalling Eq. (3.2), we have

1− cos βj = 2sin2(
βj
2

) = 2
l2j

4R2

sin βj = 2sin(
βj
2

) cos(
βj
2

) = 2
lj

2R

√
1−

l2j
4R2

(4)

Substituting Eq. (4) with hj = rj| sin(αj)| and lj = rj| cos(αj)| into Eq. (3), we have

cos 6 BjABk =
1

rjrk

4R2
l2j

4R2

l2k
4R2

+ 4R2

 lj
2R

√
1−

l2j
4R2

( lk
2R

√
1− l2k

4R2

)
+ hjhk


=
rjrk
4R2

cos2 αj cos2 αk + cosαj cosαk

√
1−

r2
j cos2 αj

4R2

√
1− r2

k cos2 αk
4R2

+ sinαj sinαk

(5)
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Appendix B Geometry differentiation in 2D carbon lat-

tice with respect to atom coordinates

Denote xmα, α = 1, 2, 3 to represent the coordinate of atomm in x, y or z direction.

Then the distance between atoms i and j, rij , and the angle between bond i − j and bond

i− k can be expressed as:

rij =

[
3∑

α=1

(xjα − xiα)2

] 1
2

cosijk =
1

rijrik

[
3∑

α=1

(xjα − xiα)(xkα − xiα)

] (6)

And it’s obvious that ∂
∂xmα

= ∂
∂umα

, then we have

∂rij
∂uiα

= − 1

rij
(xjα − xiα)

∂rij
∂ujα

=
1

rij
(xjα − xiα)

∂ cosijk
∂ujα

=
xkα − xiα
rijrik

− cosijk
rij

∂rij
∂ujα

∂ cosijk
∂uiα

= −(xjα − xiα) + (xkα − xiα)

rijrik
− cosijk

(
1

rij

∂rij
∂uiα

+
1

rik

∂rik
∂uiα

)
(7)

∂ cosijk
∂ukα

can be obtained from
∂ cosijk
∂ujα

by exchanging j and k. Then the 2nd order

derivatives of rij is as follows:

∂2rij
∂umα∂unβ

= (−1)δmn
[
δαβ

1

rij
− (xjα − xiα)2

r3
ij

]
(8)

Where m and n can be either i or j. δ represents the Kronecker delta. And the correspon-

104



ding derivatives of cosijk are:

∂2 cosijk
∂uiα∂uiβ

= − cosijk

[
∂2rij

∂uiα∂uiβ

1

rij
− ∂rij
∂uiα

∂rij
∂uiβ

1

r2
ij

+
∂2rik

∂uiα∂uiβ

1

rik
− ∂rik
∂uiα

∂rik
∂uiβ

1

r2
ik

]
+

2δαβ
rijrik

+
xjα + xkα − 2xiα

rijrik
Ajk,β −

∂ cosijk
∂uiβ

Ajk,α

∂2 cosijk
∂uiα∂ujβ

=
xjα + xkα − 2xiα

r2
ijrik

∂rij
∂ujβ

− cosijk
rij

[
∂2rij

∂uiα∂ujβ
− 1

rij

∂rij
∂uiα

∂rij
∂ujβ

]
− ∂ cosijk

∂ujβ
Ajk,α −

δαβ
rijrik

∂2 cosijk
∂ujα∂ujβ

= −xkα − xiα
r2
ijrik

∂rij
∂ujβ

− 1

rij

∂rij
∂ujα

∂ cosijk
∂ujβ

− cosijk
rij

(
∂2rij

∂ujα∂ujβ
− 1

rij

∂rij
∂ujα

∂rij
∂ujβ

)
∂2 cosijk
∂ujα∂ukβ

= −xkα − xiα
rijr2

ik

∂rik
∂ukβ

− 1

rij

∂rij
∂ujα

∂ cosijk
∂ukβ

− 1

rijrik

(9)

Where

Ajk,α =
1

rij

∂rij
∂uiα

+
1

rik

∂rik
∂uiα

(10)
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Appendix C Second generation Brenner (REBO) poten-

tial and differentiations

The expression of 2nd generation Brenner potential [11] is:

W =
1

2

∑
i,j,i6=j

Vij =
1

2

∑
i,j,i6=j

[
VR(rij)− b̄ijVA(rij)

]
(11)

where

VR(r) =

(
1 +

Q

r

)
Ae−αrfc(r)

VA(r) =
3∑

n=1

Bne
−βnrfc(r)

bij =

[
1 +

k 6=j∑
k

G(cos θijk)fc(rik)

]− 1
2

b̄ij =
1

2
(bij + bji)

(12)
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and

fc(r) =



1 r < R1,

1
2

{
1 + cos

[
π(r−R1)
R2−R1

]}
R1 ≤ r ≤ R2,

0 r > R2,

G =



0.27186− 0.48922 cos θ − 0.43286 cos2 θ − 0.56140 cos3 θ

+ 1.2711 cos4 θ − 0.037931 cos5 θ θ < 109.47◦,

0.69669 + 5.5444 cos θ + 23.432 cos2 θ + 55.948 cos3 θ

+ 69.876 cos4 θ + 35.312 cos5 θ 109.47◦ ≤ θ ≤ 120◦,

0.00260− 1.0980 cos θ − 4.3460 cos2 θ

− 6.8300 cos3 θ − 4.9280 cos4 θ − 1.3424 cos5 θ θ > 120◦,

(13)

Table 1: Parameters for VR and VA

A 10953.5 eV α 4.74654 Å−1 Q 0.313460 Å
B1 12388.8 eV β1 4.72045 Å−1 R(1) 1.7 Å
B2 17.5675 eV β2 1.43321 Å−1 R(2) 2.0 Å
B3 30.7149 eV β3 1.38269 Å−1

Parameters are listed in table 1. The derivatives of VR, VA,bij and fc(r) in Eq. (4.9)
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are:

dVR
dr

= Ae−αr
{(

1 +
Q

r

)
dfc
dr

(r)−
[
α

(
1 +

Q

r

)
+
Q

r2

]
fc(r)

}
dVA
dr

=
3∑

n=1

Bne
−βnr

(
dfc
dr

(r)− βnfc(r)
)

∂bij
∂rik

= −1

2

[
1 +

∑
l 6=k

G(cos θijl)fc(ril)

]− 3
2

G(cos θijk)
dfc
dr

(rik)

= −1

2
b3
ijG(cos θijk)

dfc
dr

(rik)

∂bij
∂ cos θijk

= −1

2
b3
ij

dG

d cos θ
(cos θikj)fc(rik)

(14)

Where

dfc
dr

=



0 r < R(1),

− π

2(R(2) −R(1))
sin

[
π(r −R(1))

R(2) −R(1)

]
R(1) ≤ r ≤ R(2),

0 r > R(2),

(15)

and

dG(cos θ)

d cos θ
=



0.48922− 0.86572 cos θ − 1.68420 cos2 θ

+ 5.0844 cos3 θ − 0.189655 cos4 θ θ < 109.47◦,

5.5444 + 46.864 cos θ + 167.844 cos2 θ

+ 279.504 cos3 θ + 176.560 cos4 θ 109.47◦ ≤ θ ≤ 120◦,

− 1.0980− 8.6920 cos θ − 20.4900 cos2 θ

− 19.7120 cos3 θ − 6.7120 cos4 θ θ > 120◦,

(16)
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And the 2nd order derivatives are:

d2VR
dr2

= Ae−αr
{

2Q

r2

[(
1

r
+ α

)
fc(r)−

dfc
dr

(r)

]
+

(
1 +

Q

r

)(
α2fc(r)− 2α

dfc
dr

(r) +
d2fc
dr2

(r)

)}
d2VA
dr2

=
3∑

n=1

Bne
−βnr

(
d2fc
dr2

(r)− 2βn
dfc
dr

(r) + β2
nfc(r)

)
∂2bij

∂rim∂rin
=

3

4
G(cos θijm)G(cos θijn)

dfc
dr

(rim)
dfc
dr

(rin)b5
ij

− δmn
2
G(cos θijm)

d2fc
dr2

(rim)b3
ij

∂2bij
∂rim∂ cos θijn

=
3

4
G(cos θijm)

dG

d cos θ
(cos θijn)

dfc
dr

(rim)fc(rin)b5
ij

− δmn
2

dfc
dr

(rim)
dG

d cos θ
(cos θijm)b3

ij

∂2bij
∂ cos θijm∂ cos θijn

=
3

4

dG

d cos θ
(cos θijm)

dG

d cos θ
(cos θijn)fc(rim)fc(rin)b5

ij

− δmn
2

d2G

d cos θ2
(cos θijm)fc(rim)b3

ij

(17)

Where

d2fc
dr2

=



0 r < R(1),

− π2

2(R(2) −R(1))2
cos

[
π(r −R(1))

R(2) −R(1)

]
R(1) ≤ r ≤ R(2),

0 r > R(2),

(18)

and

d2G(cos θ)

d cos2 θ
=


− 0.86572− 3.36840 cos θ + 15.2532 cos2 θ − .758620 cos3 θ θ < 109.47◦,

46.864 + 335.688 cos θ + 838.512 cos2 θ + 706.240 cos3 θ 109.47◦ ≤ θ ≤ 120◦,

− 8.6920− 40.9800 cos θ − 59.1360 cos2 θ − 26.8480 cos3 θ θ > 120◦,

(19)
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Appendix D Differentiation of rij and cos θijk with respect

to strains and curvatures

From Eq. (5.30), we can deduce the derivatives of rij and cos θijk. We define some

terms to make our formulas less redundant.

Vectors:

vα = (∆ξijγ Bγλ∆ξ
ij
λ )2∆ξijγ Bγλ

Ce
α =

1

rij

∂rij
∂ηα

+
1

rik

∂rik
∂ηα

Cd
α =

1

rijrik
Aαβ

(
∆ξijβ + ∆ξikβ

)
+

1

12

{
BαβT̃βγBγλ

(
∆ξijλ + ∆ξikλ

)
+∆ξijβ

[
Bβα

(
∆ξikγ − 2∆ξijγ

)
Bγλ +Bβγ

(
∆ξijγ − 2∆ξikγ

)
Bαλ

]
∆ξikλ

}
(20)

Tensors:

T jkαβ = ∆ξijα ∆ξikβ

T̃αβ = 3T jkαβ − 2T jjαβ − 2T kkαβ , j 6= k

CE
αβ =

1

rij

∂rij
∂Eαβ

+
1

rik

∂rik
∂Eαβ

CK
αβ =

1

rij

∂rij
∂Kαβ

+
1

rik

∂rik
∂Kαβ

(21)

Note that all the following derivatives are evaluated at the equilibrium position

(Eαβ = 0, Kαβ = 0 and ηα = 0).
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First order derivatives:

∂rij
∂Eαβ

=
T jjαβ
rij

∂rij
∂Kαβ

= − 1

12

1

rij
T jjγλBγλTαβ

∂rij
∂ηα

=
1

rij

(
Aαβ∆ξijβ −

1

6
T jjγλBγλBαβ∆ξijβ

)
∂ cos θijk
∂Eαβ

= −CE
αβ cos θijk +

2T jkαβ
rijrik

∂ cos θijk
∂Kαβ

= −CK
αβ cos θijk −

1

12

1

rijrik

(
∆ξijα T̃βγBγλ∆ξ

ik
λ + ∆ξijγ BγλT̃λα∆ξikβ

)
∂ cos θijk
∂ηα

= −Ce
α cos θijk + Cd

α

(22)

Second order derivatives of rij:

∂2rij
∂Eαβ∂Eγλ

= −
T jjαβT

jj
γλ

r3
ij

∂2rij
∂Kαβ∂Kγλ

= −
[

1

144

1

r3
ij

(
BνµT

jj
νµ

)2
+

1

12

1

rij

]
T jjαβT

jj
γλ

∂2rij
∂ηα∂ηβ

=
1

rij

[
∂rij
∂ηα

∂rij
∂ηβ

+ Aαβ −
1

6

(
2∆ξijγ BγαBβλ∆ξ

ij
λ +BγλT

jj
γλBαβ

)]
∂2rij

∂Eαβ∂ηγ
=

1

rij

(
− ∂r

∂Eαβ

∂r

∂ηγ
+ δαγ∆ξ

ij
β + δβγ∆ξ

ij
α

)
∂2rij

∂Kαβ∂ηγ
=

1

rij

[
− ∂r

∂Kαβ

∂r

∂ηγ
− 1

6
T jjαβBγλ∆ξ

ij
λ +

1

2
T jjλνBλν

(
δαγ∆ξ

ij
β + δβγ∆ξ

ij
α

)]
∂2rij

∂Eαβ∂Kγλ

=
1

12

1

r3
ij

T jjνµBνµT
jj
αβT

jj
γλ

(23)
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Second order derivatives of cosijk:

∂2 cos θijk
∂Eαβ∂Eγλ

= rijrik
∂2[1/(rijrik)]

∂Eαβ∂Eγλ
cos θijk − CE

αβ

∂ cos θijk
∂Eγλ

− 2

rijrik
T jkαβC

E
γλ

∂2 cos θijk
∂Kαβ∂Kγλ

= rijrik
∂2[1/(rijrik)]

∂Kαβ∂Kγλ

cos θijk − CK
αβ

∂ cos θijk
∂Kγλ

+
1

12

1

rijrik
·[

−
(

∆ξijα T̃βνBνµ∆ξikµ + ∆ξijν BνµT̃µα∆ξikβ

)
CK
γλ + ∆ξijα T̃βγ∆ξ

ik
λ + ∆ξijγ T̃λα∆ξikβ

]
∂2 cos θijk
∂ηα∂ηβ

= rijrik
∂2[1/(rijrik)]

∂ηα∂ηβ
cos θijk −

∂ cos θijk
∂ηα

Ce
β − Ce

αC
d
β

+
1

rijrik

{
2Aαβ +

1

12

[
2BαγT̃βγBγβ + 2Bαβ

(
∆ξikγ − 2∆ξijγ

)
Bγλ∆ξ

ik
λ

+Bαγ

(
∆ξijγ − 2∆ξikγ

)
Bβλ

(
∆ξijλ + ∆ξikλ

)
+ 2∆ξijγ Bγλ

(
∆ξijλ − 2∆ξikλ

)
Bαβ

+
(
∆ξijγ + ∆ξikγ

)
Bγα

(
∆ξikλ − 2∆ξijλ

)
Bλβ

]}
∂2 cos θijk
∂Eαβ∂ηγ

= rijrik
∂2[1/(rijrik)]

∂Eαβ∂ηγ
cos θijk −

∂ cos θijk
∂Eαβ

Ce
γ − CE

αβC
d
γ

+
2

rijrik

(
δαγ∆ξ

ik
β + ∆ξijα δβγ

)
∂2 cos θijk
∂Kαβ∂ηγ

= rijrik
∂2[1/(rijrik)]

∂Kαβ∂ηγ
cos θijk −

∂ cos θijk
∂Kαβ

Ce
γ − CK

αβC
d
γ

+
1

12

1

rijrik

[
δαγT̃γλBλν∆ξ

ik
ν + ∆ξijλ BλνT̃ναδβγ +BγλT̃λα∆ξikβ + ∆ξijα T̃βλBλγ

+ ∆ξijα δβγ
(
∆ξikλ − 2∆ξijλ

)
Bλµ∆ξikµ + ∆ξijα

(
∆ξijβ − 2∆ξikβ

)
Bγλ∆ξ

ik
λ

+∆ξikβ Bαλ∆ξ
ij
λ

(
∆ξikγ − 2∆ξijγ

)
+ ∆ξikβ δαγ∆ξ

ij
λ Bλµ

(
∆ξijµ − 2∆ξikµ

)]
∂2 cos θijk
∂Eαβ∂Kγλ

= rijrik
∂2[1/(rijrik)]

∂Eαβ∂Kγλ

cos θijk − CE
αβ

∂ cos θijk
∂Kγλ

− 2

rijrik
T jkαβC

K
γλ

(24)

where

rijrik
∂2[1/(rijrik)]

∂a∂b
= − 1

rij

∂2rij
∂a∂b

+
1

r2
ij

∂rij
∂a

∂rij
∂b
− 1

rik

∂2rik
∂a∂b

+
1

r2
ik

∂rik
∂a

∂rik
∂b

(25)

a, b can be Eαβ , Kαβ or ηα.
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