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ABSTRACT 
 
 

The purpose of this dissertation is to explore the uncertainty of process 

means and variances in order to improve processes with stochastic characteristics 

due to the complex nature of the underlying probability distributions. First, the 

gap between the existing conceptual notion of defects per million opportunities 

(DPMO) as part of process improvement initiatives and its applications to real-

world engineering processes is explored. This is important because the current 

way of obtaining the DPMOs documented in the literature is problematic since it 

strictly assumes that there will be a shift in the process mean over time, while 

process variability remains unchanged. Accordingly, it does not account for 

shifting process standard deviation. This may not be the case in real-world 

practices. Several unique contributions to the Six Sigma body of knowledge are 

offered by expanding the existing DPMO and process fallout concepts, ultimately 

leading to process improvement. Second, convolutions of normal random 

variables are explored. Convolutions often arise in engineering problems, and the 

probability densities of the sums of these random variables are known in the 

literature. There are practical situations where specification limits on a process are 

imposed externally, and the product is typically scrapped if its performance does 

not fall in the specification range. The actual distribution after inspection is 

therefore truncated. Despite the practical importance of the role of truncated 

distributions, there has been little work on the theoretical foundation of 

convolutions associated with truncated random variables. This is paramount, since 
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convolutions are often used as an important standard in statistical tolerance 

analysis. The convolutions of the combinations of truncated normal and truncated 

skew normal random variables on double and triple truncations are developed. 

This allows for a more accurate assessment of the mean and variance for a given 

process. Furthermore, it may not always be possible to define the specification 

limits and tolerances precisely within the limits of a probability density function 

for a process due to a relatively inaccurate or unstable process. This situation will 

be addressed through stochastic constrained programming. 
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CHAPTER ONE 
 

INTRODUCTION 
 

The purpose of this dissertation is to explore the uncertainty of process means and 

variances in order to improve processes with stochastic characteristics due to the complex 

nature of the underlying probability distributions. This will be done by first exploring 

combined effect of shifted process mean and changing process variance to explore the 

consequences of process fallout when the normal distribution is used in a complex system. 

Here, process fallout is defined as the violation of the upper or lower specification limits 

that could result in a product being scrapped or reworked. Second, various combinations 

of truncated normal and truncated skew normal random variables will be used as a way to 

more accurately assess the mean, variance and underlying probability distribution of 

complex systems, such as a multistage production process. Third, stochastic programming 

techniques will be used to help optimize tolerances in systems where there is a great amount 

of uncertainty. 

1.1 Analyzing the combined effect of shifted process mean and changing process 
variance to explore the consequences of process fallout when the normal 
distribution is used in a production process.  

To the author’s knowledge the compounding effect of changing variability as the 

process mean shifts overtime on product or service defect rates has not been explored prior 

to this study. This is a critical issue since production processes do not all have centered 

process means and equal variances. Therefore, assumptions underlying process fallout may 

be grievously incorrect in many situations in which processes shift and change over long 

periods of time. 
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The long term shifted mean of a product or service production process is also an 

important assumption within the Six Sigma framework that has not been thoroughly 

evaluated. Although the literature mentioning the 1.5 sigma shift assumption within the Six 

Sigma framework is vast, very few comprehensive quantitative studies have been done 

validating this assumption which has caused much controversy. Furthermore, the 

compounding effect of changing variability as the process mean shifts overtime on product 

or service defect rates has not been explored at all. This is a critical issue since production 

processes do not all have centered process means and equal variances. Therefore 

assumptions underlying process fallout within the Six Sigma framework may be grievously 

incorrect in many situations. This study aims to rectify this knowledge gap by exploring 

process fallout under different variances and mean shifts. A mathematical framework will 

also be developed in order to provide insight into optimizing these processes under various 

mean and variance assumptions so that operating conditions will provide minimum process 

fallout.  

1.2 Using covolutions to assess uncertainty and predict outcomes in complex systems 
by examining the convolutions of truncated normal and truncated skew normal 
random variables    

 
Convolutions of normal random variables often arise in engineering problems, and the 

probability densities of the sums of these random variables are known in the literature. 

There are practical situations where specification limits on a process are imposed 

externally, and the product is typically scrapped if its performance does not fall in the 

specification range. As such, the actual distribution after inspection is truncated. Despite 

the practical importance of the role of truncated distributions, there has been little work on 
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the theoretical foundation of convolutions associated with truncated random variables. This 

is paramount, since convolutions are often used as an important standard in statistical 

tolerance analysis. In this paper, the convolutions of the combinations of truncated normal 

and truncated skew normal random variables on double and triple truncations are 

developed. The successful completion of this research task on convolution could help 

obtain a better understanding of integrated effects of statistical tolerance analysis in 

engineering design, leading to process and quality improvement. 

The analysis of convolutions on these distributions can also lead to minimizing waste 

in manufacturing processes. This is paramount in promoting sustainability and saving 

companies’ time, money and physical resources in the process. This can be particularly 

useful in many common manufacturing processes which involve casting, molding, 

forming, machining, joining or other additive manufacturing processes such as 

stereolithography, which produce products in multiple steps, one layer at a time. Accurate 

screening inspections may also contribute to a more efficient use of resources in the 

production process. Scraping and reuse of wasted raw materials as part of a production 

process can be analyzed more precisely through truncated normal distributions, and their 

associated convolutions. This section of the manuscript will also explore the mathematical 

foundations of various truncated normal distributions and the convolutions of these 

distributions in order to offer insights into noteworthy methods used to meticulously 

account for material use.   
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1.3 Developing a Two-Stage Stochastic Programming Model in Tolerance 
Optimization using a Guard Band Approach 

Parts cannot be manufactured to exact nominal dimensions due to variation in 

materials, machines and the people that control the manufacturing process. As a result, the 

specification limits and their associated tolerances can have a vast impact on the quality, 

performance and cost of the finished product. This has created a large research interest in 

obtaining optimal tolerances and specification limits in order to not only reduce 

manufacturing costs, but also to minimize the expected quality loss of a product. The 

expected quality loss of a product includes not only scrap and rework costs, but also 

incorporates costs as a part or product deviates from a nominal value. Furthermore, 

unnecessarily tight tolerances may result in a complicated and costly manufacturing 

process, while low tolerances mean a lower manufacturing cost, but weaker product 

performance.   

One of the key difficulties of any process is defining the specification limits and 

tolerances precisely within the limits of a probability density function. This may not always 

be possible, however, since the production process may not be sophisticated or accurate 

enough to manufacture a product within the specification limits. Under this situation, where 

the production process is not stable enough to be able to calculate the probability that the 

product falls outside of the specification limits exactly, one could guarantee that the 

product is within the specification limit or outside the specification limits with a certain 

probability. This would allow practitioners to have the maximum amount of control over 

setting specifications and tolerances of their product within their inherently unstable 
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process. This could be done by incorporating a technique known as chance constrained 

programming into tolerance optimization.   

Chance constrained or stochastic programming is an approach for modeling problems 

that have uncertain parameters. This is opposed to deterministic programming approaches 

that have known parameters and are usually tractable, however most deterministic 

approaches often do not accurately account for real world variables and parameters which 

are often uncertain at the time of making a decision. Subject pioneers Charnes and Cooper 

define chance constrained programming as the process of selecting certain random 

variables as functions of random variables in order to maximize a functional of random 

variables subject to constraints that must be maintained at prescribed levels of certainty 

represented by a probabilistic value (Charnes & Cooper, 1959). They illustrate this idea by 

comparing the deterministic and chance constrained forms of an inventory model involving 

oil tankage facilities supplied by a refinery, where expected profit is maximized subject to 

specified probability constraints where a certain minimum inventory must be maintained 

with a certain probability and inventory must not exceed a certain maximum with a certain 

specified probability. Other prominent examples of chance constrained programming 

include situations in which decisions are made repeatedly within a similar set of 

circumstances and the objective is to formulate a solution that will perform well on average, 

such as designing truck routes for package carriers, whose customers have random demand 

for packages. Chance constrained programming can also be applied to situations in which 

a one-time decision must be made such as the initial investments in a financial portfolio, 
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activity analysis and technology planning, capital budgeting, dietary planning, and material 

composition selection.  

The overarching goal in this section is to present ways of managing chance constrained 

programming problems by utilizing the Normal distribution in order to make constraints 

relatively manageable by improving tractability in difficult tolerance optimization 

problems. In particular, that practitioners can benefit from the results illustrated in this 

manuscript, which has a particular focus on tolerance optimization.  
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1.1 The Relationship of the Dissertation Components. The shaded boxes represent 

contributions to the literature 
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CHAPTER TWO 

THE EXPANDED DPMO INTERFACE FOR CAPTURING THE COMPOUNDING 
EFFECT OF PROCESS MEAN AND VARIABILITY AS A NEW PARADIGM FOR 

PROCESS EVALUATION AND IMPROVEMENT 
 

This chapter has been published in the International Journal of Six Sigma and 
Competitive Advantage and should be cited as:  
 
Krenek, R. and Cho, B.R. (2015) ‘The expanded DPMO interface for capturing the  

compounding effect of process mean and variability as a new paradigm for 
process evaluation and improvement’, Int. J. Six Sigma and Competitive 
Advantage, Vol. 9, Nos. 2/3/4, pp.174–207. 
 

2.1    Introduction 
 

In an industrial manufacturing environment, less product fallout typically leads to 

more efficient production with less work stoppage and greater profits with more 

conserved raw materials. A more accurate assessment of process fallout allows 

companies to better assess true process performance, thereby better allocating resources 

to improve the process and reduce costs simultaneously. Industrial examples are 

numerous. Consider a company that manufactures a metal connector that has to be 

reworked if it falls outside its upper or lower specification limit. Understanding process 

fallout and performance in this case will allow the company to better allocate resources 

to improve the manufacturing process as well as pinpoint the area of rework for the 

metal connector. This includes machining the metal connector if it falls outside the 

upper specification limit (USL) and remolding the connector if it falls outside the lower 

specification limit (LSL). In a service environment, time and money are saved. In 

endocrinology, suppose a patient’s insulin levels are out of control. Being able to better 
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assess insulin levels could be paramount to a better diabetes treatment and help prevent 

excessive medical costs, both financially and physically, to the patient. 

Current Six Sigma techniques do not account for a shifting process standard 

deviation over time. This standard deviation shift, coupled with the process mean shift 

has also not been explored. This article aims to rectify this knowledge gap by 

illuminating the mean and standard deviation shift issue and then show examples of 

how these shifts can be applied to several dependent quality characteristics at one time.  

 
2.2    Literature Review 
  
In process improvement initiatives, defects per million opportunities, or DPMO, 

serves as a conceptual cornerstone for measuring process performance. DPMO is 

implemented primarily in the manufacturing sector; however, it has also been 

successfully linked to other service industries, including healthcare. In healthcare, for 

example, (Taner, Kagan, Celik, Erbas, & Kagan, 2013) used DPMOs to measure the 

number of complications that occurred, while trying to improve a coronary stent 

insertion process. They also used DPMO to measure the number of repeat scans in 

evaluating the effectiveness of a diagnostic imaging department in a private hospital 

(Taner, Sezen, & Atwat, 2011). In the construction industry, (Gijo & Sarkar, 2012) 

used DPMO to measure the number of defects in wind farm roads in order to help 

improve the road quality for wind turbine installation. In a call center, DPMO were 

used to measure the number of unresolved queries after the first phone call (Laureani, 

Antony, & Douglas, 2010). DPMO have also been used to evaluate the effectiveness 

of government electronic services through website and computer system quality 
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(Alhyari, Alazab, Venkatraman, Alazab, & Alazab, 2012). Other application areas of 

the DPMO concept include  printed circuit board assembly (Santos et al., 1997; Tsai, 

2012), microbiology (Elder, 2008), aircraft design (Maleyeff and Krayenvenger, 2004; 

Gijo and Ashok, 2014), supply chain (Lanier, 2012), billing operation (Levlzow, 2013), 

healthcare operations (Carrign and Kujwa, 2006; Pocha, 2010), information technology 

(Chiao, 2006), material handling (Das, 2005), pharmaceuticals (Kamberi, 2011), and 

process control (Yang, 2009).  

The DPMO and process fallout concepts also play an important conceptual role in 

Six Sigma. The Six Sigma concept introduces an assumption that when a process 

reaches the six sigma quality level, the process mean is subject to disturbances that 

could cause it to shift by up to 1.5 standard deviations off target, resulting in 3.4 DPMO. 

This assumption accounts for a long-term variation in a production or service process 

mean. This assumption about the mean shift has been a source of controversy within 

the Six Sigma literature. (Stevenson, 2009) had conducted a comprehensive study 

assessing the validity of the 1.5 sigma shift. This was performed on an industrial 

company that makes off-highway vehicles. Some have argued that if the mean drifts, 

the process might be unstable and predictions can only be made when the process is 

stable, while others argue that the 3.4 DPMO assumption might not be reliable, since 

the mean could be shifted by more than 1.5 standard deviations (Montgomery & 

Woodall, 2008). Furthermore, little research work has been done on the 1.5 sigma shift 

assumption and this issue should become a major thrust for future research (Antony, 

2004). Bothe (2002) provided a statistically based reason for the 1.5 shift in the process 
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means by examining the sensitivity of control charts to detect changes of various 

magnitudes and developed the corresponding Cpk process capability index (PCI). Note 

that process capability indices are  defined as the ability of a process to produce outputs 

within specification limits. Cpk in particular depends inversely on the process standard 

deviation and becomes large as the standard deviation approaches zero; hence, the Cpk 

can be a poor measure of process centering. In order to address this issue, Cpm can be 

used as a better measure of process centering. Estimators and sampling properties 

associated with the Cpm are discussed in (Chan, Cheng, & Spiring, 1988). Along the 

same line, Cpm’s usefulness in process centering was explored in (Boyles, 1991) which 

discussed the fact that Cpk and Cpm are equivalent to Cp, when the mean value of the 

process is on target and decrease as the mean value moves away from the target. 

However, these values need increased sensitivity to account for departures of the 

process mean from the desired target value. Consequently, Cpkm, was introduced by 

(Pearn, Kotz, & Johnson, 1992). The majority of the industrial uses of process 

capability ratios are used for estimating and interpreting the point estimates of process 

capability indices. Also, the confidence intervals for process capability ratios and 

associated statistical hypothesis tests may be important methods to describe the 

processes. It is noted that since the standard deviation for a process is being estimated, 

only approximate confidence intervals can be used. (Zhang, Stenback, & Wardrop, 

1990), for example, developed a confidence interval for the Cpk index. Other authors 

that have developed approximate confidence intervals for capability indices include 

(Kushler & Hurley, 1992), (Bissell, 1990), and (Pearn et al., 1992). For non-normal 
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data, the Cpc index with its confidence interval developed by (Luceño, 1996) can be 

employed.  

The long-term shifted mean of a product or service production process is an 

important assumption within the Six Sigma framework that has not been thoroughly 

evaluated. Although the literature mentioning the 1.5 sigma shift assumption within the 

Six Sigma framework is vast, very few comprehensive quantitative studies have been 

done validating this assumption which has caused much controversy. Furthermore, the 

compounding effect of changing variability as the process mean shifts over time on 

product or service defect rates has not been explored for stable processes at all. This is 

a critical issue since production processes do not all have centered process means and 

constant variances. Therefore, assumptions underlying process fallout may be incorrect 

in many situations. The examination of mean and variability shifts also needs to be 

explored in the context of process capability analysis, since it is an important part of an 

overall process improvement program that can help reduce the variability in a 

manufacturing process.   Mean and variability shifts can also help to predict how well 

processes will hold the tolerances, and assist product developers in selecting or 

modifying processes. Exploring this notion will also help in establishing a sampling 

interval for process monitoring, specify performance requirements for new equipment, 

and help a company select between competing suppliers on a quality basis. In addition, 

this gives process designers’ insights into planning the sequence of production 

processes when there is an interactive effect on process tolerances. This paper aims to 

rectify this knowledge gap by exploring process fallout under different variances and 
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mean shifts with the consideration of single and dual quality characteristics. In addition, 

the process capability indices are also augmented with a standard deviation shift factor 

for improved accuracy.   

This paper is organized as follows. In the next section, a brief review of existing 

DPMO and PCI concepts is given. In Section 2.3, two proposed models for DPMO 

evaluations are provided by considering process variability shifts and joint process 

mean and variability shifts. Section 4 extends these concepts to dual quality 

characteristics and evaluates DPMO values, followed by numerical examples in 

Section 2.5. Conclusions and future study are discussed in Section 2.6.  

 
2.3    Review of Existing DPMO and PCIs 
 
Six Sigma programs define Six Sigma Quality of a product or service as having 

LSL and USL falling within 6 standard deviations of the mean but incorporate a 1.5 

sigma shift to calculate the DPMO (Montgomery, 2013). This assumption accounts for 

long term variation in a production or service process mean. This is needed because 

special or assignable causes can result in deterioration of process performance over 

time. The 1.5 sigma shift within the six sigma framework helps prevent 

underestimation of defect levels likely to be seen within real processes; however, not 

much research work has been done to explore the consequences of this assumption. 

The 1.5 sigma shift results in about 3.4 DPMO (Bothe, 2002).  The basic mathematical 

framework is presented as follows.  
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The cumulative normal distribution function is defined as

21
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µ
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−∞

= ∫ . The standard normal cumulative probabilities can be 

evaluated to any prescribed accuracy using the standard cumulative normal distribution 

function
21
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Φ = ∫ and the Lagrange remainder for the error bounds of the 

Taylor series polynomial, since the above integral has no closed-form expression. 

Standard examples of numerical integration include the trapezoid rule or Simpson’s 

rule. Using the definition of the standard normal cumulative distribution function, one 

can now formally define what is referred to as the DPMO for the left standard deviation 

shift size for the mean as ( ) ( ) 66 6
1 10

x x
P z

µ σ σ µ µ σ σ µ
σ σ

  − − − + − −
− < <     

which simplifies to ( ) ( )( )( ) 61 6 6 10x x− Φ − −Φ − −  where 𝑥𝑥 represents the shift size 

in standard deviation. Similarly, the DMPO for the right standard deviation shift size 

is given by ( ) ( ) 66 6
1 10

x x
P z

µ σ σ µ µ σ σ µ
σ σ

  − + − + + −
− < <     

or 

( ) ( )( )( ) 61 6 6 10x x− Φ + −Φ − + . From this mathematical framework the concept of 

defects per unit can also be defined. Defects per unit, or DPU, is the number of defects 

found in a sample divided by the number of units sampled. 

It should be noted that process shift and drift over time also affects the capability 

of a process. This is important since, the process capability indices measure how much 

variation due to common causes affects the process relative the specific process’s 
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specification limits. This allows for different processes to be compared with respect to 

how well an organization can control them, and these statistics are tracked over time. 

PCIs, such as Cp, are widely used in industry, but are unfortunately misused and 

misinterpreted quite frequently (Kotz & Lovelace, 1998). Various non-normal 

distributions have been investigated with regards to Cp and it was found that errors of 

several orders of magnitude were made when predicting process fallout by incorrectly 

making the normal distribution assumption. Even with using a t-distribution with as 

many as 30 degrees of freedom resulted in substantial errors (Somerville & 

Montgomery, 1996). Note that a t-distribution is approximately normal for 30 degrees 

of freedom, but the heavier tails of the t-distribution make a significant difference when 

determining process fallout. Therefore, it is important to check the normality 

assumption of the data.  If the data is non-normal, transformation techniques such as 

the Box-Cox transformation (Box & Cox, 1964) or the Johnson transformation 

(Hernandez & Johnson, 1980) should be used. 

PCIs are only useful if the process is in statistical control, so the value of computing 

PCIs from historical data may be greatly diminished or useless if the process is out of 

control. This is because process capability indices measure how much the variation 

from common causes affect the process relative to the process’s specification limits. 

Finally, what is observed in practice is actually only an estimate of true process 

capability. The estimate is subject to error in estimation, since it is dependent on sample 

statistics. Large errors in estimating PCIs from sample data can occur, so that the 

estimates obtained are not very accurate (English & Taylor, 1993). With respect to the 
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Six Sigma framework, a centered process with no shifting mean and a constant standard 

deviation has a sigma level of 3 if the process capability index is 1, and a sigma level 

of 6 if the process capability index is 2 (Montgomery, 2013). Common univariate 

process capability indices are given in Table 2.1. 

 
Table 2.1: Common process capability indices as defined in Montgomery (2013). 
 
Index Description 

6p
USL LSLC

σ
−

=  Estimates the process capability by assuming a centered 
mean 

, 3p lower
LSLC µ
σ

−
=  Estimates the process capability for a process that has a 

lower limit only. 

, 3p upper
USLC µ

σ
−

=  

 

Estimates the process capability for a process that has an 
upper limit only. 
 

( ), ,min ,pk p upper p lowerC C C=  Estimates the process capability for a process by taking 
into account that the process mean may not be centered 
between the specification limits. If this capability index is 
less than zero then the process mean falls outside of 
specification limits. 

2

1

p
pm

C
C

Tµ
σ

=
− +  

 

 
 
Estimates the process capability around a specified 
production target, T. This index assumes that the process 
mean is centered between the specification limits. 

2

1

pk
pkm

C
C

Tµ
σ

=
− +  

 
 

 
Estimates the process capability around a specified 
production target, T. This index accounts for an off-center 
process mean. 

 
Since the standard normal distribution is symmetric about its mean, the DPMO 

calculations for the left shifted and right shifted means will be the same. Sample DPMO 

and PCIs resulting from various sigma shifts are found in Table 2. Note that the Cpm 



17 
 

and Cpkm values assume that the process was originally on target and has shifted over 

time. Notice that the Cp capability index is extremely poor since it does not account for 

process “shift and drift”. Notice also that these DPMO are the same for both the left 

sigma shifts and the right sigma shifts since 

( ) ( )( )( ) 61 6 6 10x x− Φ − −Φ − − 6(1 ((1 ( 6 )) (1 (6 )))10x x= − −Φ − + − −Φ +  

( ) ( )( )( ) 61 6 6 10x x= − Φ + −Φ − + . 

If the process mean stays centered and only the process standard deviation changes, then 

the standard deviation resulting in 3.4 DPMO would be

( ) ( )6 6 4.5 7.5P z
σ σ
− ≤ ≤ = Φ −Φ − 

 
which results in  

( ) ( )1

6 1.291659
4.5 7.5 1

2

σ
−

= =
 Φ −Φ − +

Φ  
 

. 

 This is depicted graphically in Figure 1. 

 

2.4     Proposed Models for Single Quality Characteristics 
 

According to the notation defined earlier, the resultant DPMO from k1 and k2 can 

be defined from a standard normal random variable with mean µcurrent and standard 

deviation σcurrent/k2.  Mathematically, for a left shift of the normal distribution that is: 
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where 1 2k , k 0≥ , for the left shift above. This simplifies to 

( )( ) ( )( )( )( ) 6
1 2 1 21 6 6 10DPMO k k k k= − Φ − −Φ − − , where 
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Figure 2.1: Standard Normal Distribution vs. Normal Distribution with Standard Deviation 
of 1.292 and mean zero 
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Notice that  
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This means that the same DPMO values result from a left or a right k1 shifted mean. Two 

cases are studied. 

 

2.4.1   Sigma shifts while mean remains unchanged 
 

Setting k1=0 (process mean is unchanged), the DPMO equation above simplifies to 

( ) ( )( )( ) ( ) ( )( )( )( ) ( )( )( )
( )( )

6 6 6
2 2 2 2 2

6
2

1 6 6 *10 1 6 1 6 10 1 2 6 1 10
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= − Φ

Finally, solving for k2 as a function of DPMO, one has ( )( ) 6
22 2* 6 *10DPMO k= − Φ

where ( )2 66 1
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DPMOkΦ = − or 

1
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.
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−  
Φ − 

 =  Table 2 shows some DPMO values 

for six sigma and higher quality processes. Here note that as K2 increases from 0.7742 to 
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1 and the shift variability decreases, the DPMO value also decreases from 3.39767 to 

0.00197.  

Table 2.2: Variability Shift and Process Fallout with no Mean Shift 

k2 
variability 
shift 

0.7742 0.790 0.806 0.822 0.8390 0.8553 0.8716 0.8878 

DPMO 3.3976 2.112 1.300 0.793 0.4791 0.2866 0.1698 0.0996 
k2 
variability 
shift 

0.9041 0.920 0.936 0.952 0.9688 0.98361 0.99528 1 

DPMO 0.0579 0.033 0.019 0.010 0.0061 0.0036 0.0023 0.001 
 

2.4.2  Mean and sigma shift at the same time 
 

As both mean and standard deviation shift over time, the contour plots resulting 

from various DPMOs are as follows for k2 and k1 shifts:  

Figure 2.2: Variability Shift vs. Mean Shift Process Fallout Contour Plot 

 

In terms of k1 and k2, using σshifted = ± σcurrent/k2, and the specification limits defined 

as (LSL, USL) = (µcurrent – 6σcurrent, µcurrent + 6σcurrent), the PCIs can be computed as 
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Now note that ,p lowerC  and ,p upperC were computed for left shifts where k1 > 0. If k1 < 0 in 

the above, that would correspond to a right shift so that ,p lowerC  and ,p upperC would switch 
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2.5     Proposed Models for Dual Quality Characteristics 
 

The univariate case can be extended to the bivariate normal distribution with mean 

and variance shifts. The bivariate normal distribution is defined as the multivariate 

normal distribution, ( )
( )

( ) ( )11
2

1
2 2

1

2

T

pf e
π

−− − Σ −
=

Σ

x μ x μ
x , where p = 2. In the bivariate case 

where the variances are shifted by 2 ixk factors, the variance-covariance matrix can be 

described by: 

( )

( )
1 1 2

1 2 2

2
1 21

2
2 2 2

2
1 2 2

2
2 2 2

,

,
x x x

x x x

Cov X X
k k k

Cov X X
k k k

σ

σ

 
 
 ∑ =  
 
 
 

 

Noting that the correlation coefficient ρ is defined as ( )1 2

1 2

,Cov X X
ρ

σ σ
=  for 1 2, 0σ σ > , 

one has ( )1 2 1 2,Cov X X ρσ σ= ; hence, the variance-covariance matrix can be rewritten as   

                                                       1 1 2

1 2 2

2
1 1 2

2
2 2 2

2
1 2 2

2
2 2 2

x x x

x x x

k k k

k k k

σ ρσ σ

ρσ σ σ

 
 
 ∑ =  
 
 
 

. 

The determinant of the variance-covariance matrix is given by ( )
1 2

2 2
21 2

2 2
2 2

1
x xk k
σ σ ρΣ = − , so 

that ( )
1 2

1
21 22

2 2

1
x xk k

σ σ ρΣ = − and 

1 1 2

1 2 2

2
2 2 2

2
1 1 21

2 2
2 2 2

2
1 2 2

1
1

x x x

x x x

k k k

k k k

ρ
σ σ σ

ρ ρ
σ σ σ

−

 
− 

 Σ =  −
 − 
 
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Plugging the above into multivariate normal distribution where p=2, and noting that 

[ ]1 2x x=x  and [ ]1 2µ µ=μ , one finally arrives at 

                                          
( ) ( )( )1 21 2

1 ,2 2 2
1 2 2

1 2

,
2 1

q x xx xk k
f x x e

πσ σ ρ

−
=

−                                      

(1)                               

( )
1 1 2 2

2 2

1 1 1 1 2 2 2 2
1 2 2 2 2 22

1 1 2 2

1, 2
1 x x x x

x x x xq x x k k k kµ µ µ µρ
ρ σ σ σ σ

              − − − − = − +                   −                

(2) 

 

for the bivariate normal distribution function. Here, process fallout in terms of DPMO can 

be described by the following two functions: 

1 1

2 2

1 1 1 6

1 2 1

6 6 ,
1 10

6 6
current current x current current current x current

current current x current current current x current

k x k
DPMO P

k x k

µ σ σ µ σ σ

µ σ σ µ σ σ

− + ≤ ≤ + +
= −

− + ≤ ≤ + +

  
      

 

( )

( )( )

2 2 1 2 1 1 1 12 1

2 2 1 2 1 1 1 12 1

1 21 2

6 6 6
1 2 1 26 6

1 ,2 2 2
12

1 2

1 , 10

1
2 1

current current x current current current x current

current current x current current current x current

k k

k k

q x xx x

DPMO f x x dx dx

k k
e dx

µ σ σ µ σ σ

µ σ σ µ σ σ

πσ σ ρ

+ + + +

− + − +

−

 = − 
 

= −
−

∫ ∫
2 2 1 2 1 1 1 12 1

2 2 1 2 1 1 1 12 1

6 6 6
26 6

10current current x current current current x current

current current x current current current x current

k k

k k
dx

µ σ σ µ σ σ

µ σ σ µ σ σ

+ + + +

− + − +

 
 
 
 

∫ ∫

for the various 1 ixk sigma shifts. Here note that 1 ixk ∈ , where 1 0
ixk < indicates a left sigma 

shift of the th
iµ  mean and  1 0

ixk >  indicates a right sigma shift of the th
iµ  mean. The 

process fallout DPMO level for two quality characteristics originally performing within 6 

standard deviations of the mean without shift is 0.00395 DPMO. With the 1.5 sigma shift 
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assumption from the Six Sigma framework, the fallout changes to 6.7953 DPMO. This is 

the same for any positive or negative combination of a 11.5
xi

k DPMO shift. Furthermore, it 

should be noted that these fallout numbers are different from the univariate case since the 

bivariate normal distribution is radially symmetric about the [ ] [ ]1 2 1 2x x µ µ=  axis. This 

means that a rectangular region can be defined by (LSL1, USL1) and (LSL2, USL2) for 

the two quality characteristics and yield different standard DPMO numbers than the 

univariate case. The contours outside the dashed rectangle represent the process fallout 

percentage. If two quality characteristics are independent of each other, this means that 

0ρ = . Thus, Eqs (1) and (2) simplify to 

( ) ( )( )1 21 2

1 ,2 2 2
1 2

1 2

,
2

q x xx xk k
f x x e

πσ σ
−

=                                             (3) 

( )
1 2

2 2

1 1 2 2
1 2 2 2

1 2

, x x
x xq x x k kµ µ
σ σ

       − − = +                 
                                   (4) 

If there is a shift in process variability while the process mean remains unchanged, this 

implies that
1 21 1 0x xk k= = , so that the process fallout can be described as: 

( )2 1 1

2 2 1 1

1 1 1 1 1 2 2 2 6

2 2

6

1 2 1 26 6

6 6 , 6
1 10

6

1 ,current current current

current current current current

current current current current current current

current current

x x
DPMO P

f x x dx dx
µ µ σ

µ σ µ σ

µ σ µ σ µ σ
µ σ
+ +

− −

 − ≤ ≤ + − ≤ 
= −   ≤ +  

= − ∫( )
( )( )

2

2 2 1 1 1 21 2

2 2 1 1
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16 6 ,2 2 62
1 226 6

1 2

10
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current
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q x xx xk k
e dx dx

σ

µ σ µ σ

µ σ µ σ πσ σ ρ

+ + −

− −

 
 = −
 − 

∫

∫ ∫

 

(5) 
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2.6     Numerical examples  
2.6.1   The single quality characteristic case 
 

Looking at the raw data for the various DPMO values below, it can be seen that the 

process capability indices can vary substantially, depending on the combination of 

mean and standard deviation shift sizes k1 and k2, while resulting in equivalent process 

fallout. This can be seen in Tables 2.3-2.8 where the Cpm and Cpkm values assume 

that the process was originally on target and shifted over time. 

 
Table 2.3: PCIs for 3.40 DPMO level incorporating joint mean and standard deviation 
shifts 
 
DPMO 3.39767 6 sigma level 
k1 k2 Cp Cpk Cpm Cpkm 
0.0000 0.7742 1.5484 1.5484 1.5484 1.5484 
0.1000 0.7765 1.5530 1.5271 1.5483 1.5225 
0.2000 0.7830 1.5660 1.5138 1.5471 1.4956 
0.3000 0.7929 1.5857 1.5064 1.5427 1.4655 
0.4000 0.8050 1.6101 1.5027 1.5326 1.4304 
0.5000 0.8188 1.6375 1.5011 1.5155 1.3892 
0.6000 0.8336 1.6671 1.5004 1.4910 1.3419 
0.7000 0.8491 1.6983 1.5001 1.4599 1.2895 
0.8000 0.8654 1.7308 1.5000 1.4231 1.2333 
0.9000 0.8824 1.7647 1.5000 1.3820 1.1747 
1.0000 0.9000 1.8000 1.5000 1.3379 1.1149 
1.1000 0.9184 1.8367 1.5000 1.2922 1.0553 
1.2000 0.9375 1.8750 1.5000 1.2457 0.9965 
1.3000 0.9574 1.9149 1.5000 1.1993 0.9395 
1.4000 0.9783 1.9565 1.5000 1.1538 0.8845 
1.5000 1.0000 2.0000 1.5000 1.1094 0.8321 
1.6000 1.0227 2.0455 1.5000 1.0666 0.7822 
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Table 2.4: PCIs for 233 DPMO level incorporating joint mean and standard deviation shifts 
DPMO 233 5 sigma level 
k1 k2 Cp Cpk Cpm Cpkm 
0.0000 0.6133 1.2266 1.2266 1.2266 1.2266 
0.1000 0.6145 1.2290 1.2085 1.2267 1.2062 
0.2000 0.6179 1.2358 1.1946 1.2265 1.1856 
0.3000 0.6234 1.2468 1.1844 1.2255 1.1643 
0.4000 0.6307 1.2614 1.1773 1.2231 1.1415 
0.5000 0.6397 1.2794 1.1728 1.2186 1.1170 
0.6000 0.6499 1.2998 1.1698 1.2110 1.0899 
0.7000 0.6613 1.3225 1.1682 1.2002 1.0601 
0.8000 0.6735 1.3469 1.1673 1.1858 1.0277 
0.9000 0.6863 1.3727 1.1668 1.1678 0.9927 
1.0000 0.6999 1.3999 1.1666 1.1468 0.9557 
1.1000 0.7141 1.4283 1.1664 1.1232 0.9173 
1.2000 0.7290 1.4580 1.1664 1.0974 0.8779 
1.3000 0.7445 1.4890 1.1664 1.0699 0.8381 
1.4000 0.7607 1.5213 1.1663 1.0414 0.7984 
1.5000 0.7776 1.5552 1.1664 1.0122 0.7592 
1.6000 0.7953 1.5905 1.1664 0.9828 0.7207 

 
Table 2.5: PCIs for 1.30 DPMO level incorporating joint mean and standard deviation 
shifts 
DPMO 1.30081 Better than 6 sigma level 
k1 k2 Cp Cpk Cpm Cpkm 
0.0000 0.8066 1.6132 1.6132 1.6132 1.6132 
0.1000 0.8092 1.6184 1.5914 1.6131 1.5862 
0.2000 0.8165 1.6329 1.5785 1.6116 1.5578 
0.3000 0.8272 1.6545 1.5718 1.6058 1.5255 
0.4000 0.8404 1.6807 1.5687 1.5931 1.4869 
0.5000 0.8549 1.7099 1.5674 1.5723 1.4412 
0.6000 0.8705 1.7410 1.5669 1.5432 1.3889 
0.7000 0.8868 1.7737 1.5668 1.5069 1.3311 
0.8000 0.9039 1.8077 1.5667 1.4649 1.2696 
0.9000 0.9216 1.8431 1.5667 1.4187 1.2059 
1.0000 0.9400 1.8800 1.5667 1.3698 1.1415 
1.1000 0.9592 1.9184 1.5667 1.3197 1.0777 
1.2000 0.9792 1.9583 1.5667 1.2692 1.0154 
1.3000 1.0000 2.0000 1.5667 1.2194 0.9552 
1.4000 1.0217 2.0435 1.5667 1.1708 0.8976 
1.5000 1.0445 2.0889 1.5667 1.1239 0.8429 
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1.6000 1.0682 2.1364 1.5667 1.0789 0.7912 
 
Table 2.6: PCIs for 0.479 DPMO level incorporating joint mean and standard deviation 
shifts 
DPMO 0.47918 Better than 6 sigma level 
k1 k2 Cp Cpk Cpm Cpkm 
0.0000 0.8391 1.6782 1.6782 1.6782 1.6782 
0.1000 0.8420 1.6839 1.6559 1.6780 1.6500 
0.2000 0.8500 1.7000 1.6433 1.6760 1.6201 
0.3000 0.8618 1.7235 1.6373 1.6686 1.5852 
0.4000 0.8758 1.7515 1.6348 1.6530 1.5428 
0.5000 0.8912 1.7823 1.6338 1.6280 1.4924 
0.6000 0.9075 1.8150 1.6335 1.5940 1.4346 
0.7000 0.9245 1.8491 1.6334 1.5523 1.3712 
0.8000 0.9423 1.8846 1.6333 1.5049 1.3042 
0.9000 0.9608 1.9216 1.6333 1.4535 1.2355 
1.0000 0.9800 1.9600 1.6333 1.3999 1.1665 
1.1000 1.0000 2.0000 1.6333 1.3453 1.0987 
1.2000 1.0208 2.0416 1.6333 1.2911 1.0329 
1.3000 1.0425 2.0851 1.6333 1.2380 0.9697 
1.4000 1.0652 2.1305 1.6334 1.1865 0.9097 
1.5000 1.0889 2.1778 1.6334 1.1371 0.8529 
1.6000 1.1137 2.2273 1.6334 1.0901 0.7994 

 
Table 2.7: PCIs for 0.0579 DPMO level incorporating joint mean and standard deviation 
shifts 
DPMO 0.05791 Better than 6 sigma level 
k1 k2 Cp Cpk Cpm Cpkm 
0.0000 0.9042 1.8084 1.8084 1.8084 1.8084 
0.1000 0.9078 1.8156 1.7853 1.8081 1.7780 
0.2000 0.9175 1.8349 1.7738 1.8048 1.7446 
0.3000 0.9311 1.8621 1.7690 1.7935 1.7038 
0.4000 0.9468 1.8936 1.7674 1.7709 1.6528 
0.5000 0.9637 1.9275 1.7668 1.7364 1.5917 
0.6000 0.9815 1.9630 1.7667 1.6915 1.5223 
0.7000 1.0000 2.0000 1.7667 1.6385 1.4473 
0.8000 1.0192 2.0384 1.7666 1.5798 1.3692 
0.9000 1.0392 2.0784 1.7666 1.5180 1.2903 
1.0000 1.0600 2.1200 1.7667 1.4548 1.2123 
1.1000 1.0816 2.1632 1.7666 1.3919 1.1367 
1.2000 1.1042 2.2083 1.7666 1.3303 1.0642 
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1.3000 1.1276 2.2553 1.7666 1.2709 0.9956 
1.4000 1.1522 2.3043 1.7666 1.2142 0.9309 
1.5000 1.1778 2.3555 1.7667 1.1603 0.8703 
1.6000 1.2045 2.4090 1.7666 1.1095 0.8137 

 
Table 2.8: PCIs for 0.00197 DPMO level incorporating joint mean and standard deviation 
shifts 
DPMO 0.00197 Better than 6 sigma level 
k1 k2 Cp Cpk Cpm Cpkm 
0.0000 1.0000 2.0000 2.0000 2.0000 2.0000 
0.1000 1.0048 2.0096 1.9761 1.9995 1.9662 
0.2000 1.0171 2.0342 1.9664 1.9934 1.9269 
0.3000 1.0333 2.0666 1.9633 1.9739 1.8752 
0.4000 1.0513 2.1026 1.9624 1.9382 1.8090 
0.5000 1.0703 2.1406 1.9622 1.8873 1.7300 
0.6000 1.0901 2.1802 1.9622 1.8246 1.6421 
0.7000 1.1107 2.2214 1.9622 1.7537 1.5491 
0.8000 1.1320 2.2640 1.9621 1.6781 1.4544 
0.9000 1.1542 2.3084 1.9621 1.6009 1.3608 
1.0000 1.1773 2.3546 1.9622 1.5243 1.2703 
1.1000 1.2013 2.4026 1.9621 1.4498 1.1840 
1.2000 1.2264 2.4528 1.9622 1.3785 1.1028 
1.3000 1.2524 2.5049 1.9622 1.3109 1.0269 
1.4000 1.2797 2.5594 1.9622 1.2474 0.9563 
1.5000 1.3081 2.6162 1.9622 1.1880 0.8910 
1.6000 1.3378 2.6756 1.9621 1.1325 0.8305 

 
 
2.6.2    The dual quality characteristic case 

 

DPMO values are obtained for various combinations of 
12xk and 

22xk  under different 

assumptions about the variances of the two quality characteristics. The results are 

shown in Table 2.9, where the DPMO values for 
1 22 2,x xk k   shifts and [ ] [ ]1 2, ,a bµ µ =

, [ ] [ ]1 2, ,c dσ σ =  where ,a b∈ , ,c d +∈ , and [ ]
1 21 1, 0, 0x xk k  =  . 
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Table 2.9: DPMOs resulting from variance shifts, with fixed means and uncorrelated 
variables obtained by using equations 3-5 
 

22xk  
12 0.5xk =  

12 0.7xk =  
12 0.9xk =  

12 1.1xk =  
12 1.3xk =  

12 1.5xk =  

0.5000 5392.3000 2726.4200 2699.8600 2699.8000 2699.8000 2699.8000 
0.7000 2726.4200 53.3823 26.7581 26.6915 26.6915 26.6915 
0.9000 2699.8600 26.7581 0.1333 0.0667 0.0666 0.0666 
1.1000 2699.8000 26.6915 0.0667 0.0001 0.0000 0.0000 
1.3000 2699.8000 26.6915 0.0666 0.0000 0.0000 0.0000 
1.5000 2699.8000 26.6915 0.0666 0.0000 0.0000 0.0000 

 
Notice that as the 2k  values increase, the DPMO decrease.  These values will 

always be the same for any starting mean vectors and standard deviation with no mean 

shifts since the bivariate random variables are standardized and uncorrelated. This 

matrix is also symmetric due to the symmetry of the multivariate normal random 

variable. DPMO plots incorporating various mean and standard deviation shifts, while 

setting 0ρ = , are depicted in Figures 2.3.1 – 2.3.6. 

 
2.6.2.1   Equal means, equal standard deviations: [ ] [ ]1 2, 0, 0µ µ = ,[ ] [ ]1 2, 1,1σ σ = : 
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Figure 2.3.1: (no mean shift) 
[ ]

1 21 1, 0, 0x xk k  =  , (no standard 

deviation shift) [ ]
1 22 2, 1,1x xk k  =   

DPMO= 0.0039464 (Baseline Contour Plot) 
 

Figure 2.3.2: (mean shift) 
[ ]

1 21 1, 1, 2x xk k  = −  ,          (no standard 

deviation shift) [ ]
1 22 2, 1,1x xk k  =   

DPMO=31.958 

Figure 2.3.3: (mean shift) 
[ ]

1 21 1, 2, 1x xk k  = −  , (no standard 

deviation shift) [ ]
1 22 2, 1,1x xk k  =   

DPMO=31.958 

 
Figure 2.3.4: (no mean shift) 

[ ]
1 21 1, 0, 0x xk k  =  , (standard deviation 

shift) [ ]
1 22 2, 0.693177, 1x xk k  =   

DPMO=31.958 

 
Figure 2.3.5: (mean shift) 

[ ]
1 21 1, 1.9, 1x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 1, 0.847507x xk k  =   

DPMO=31.958 

 
Figure 2.3.6: (mean shift) 

[ ]
1 21 1, 1.9, 1x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 0.975124, 1.1x xk k  =   

DPMO=31.958 
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Figure 3.1 represents a baseline for comparison for all contour plots in case 1. 

Figures 2.3.2-2.3.6 represent various mean shifts and standard deviation shifts resulting 

in a process fallout of 31.958 DPMO. Figures 2.3.2 and 2.3.3 result in the same process 

fallout due to the symmetry of the standard bivariate normal distribution about the 

origin. Figures 2.3.2- 2.3.6 illustrate the concept that an equal process fallout can result 

by either shifting the process mean over time, shifting the process standard deviation 

over time or both. Looking at Figures 2.3.3, 2.3.5 and 2.3.6 one can see that the standard 

deviation shifts are highly sensitive to even small changes in the shifted means.  

2.6.2.2    Unequal means, unequal standard deviations:[ ] [ ]1 2, 5, 1µ µ = ,

[ ] [ ]1 2, 0.5, 1σ σ =  
 

 
Figure 2.4.1: (no mean shift) 

[ ]
1 21 1, 0, 0x xk k  =  , (no standard 

deviation shift) [ ]
1 22 2, 1, 1x xk k  =   

DPMO= 0.0039464 (Baseline Contour Plot) 
 

 
Figure 2.4.2: (mean shift) 

[ ]
1 21 1, 2, 3x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 0.9, 0.8x xk k  =   

DPMO= 8355.3 
 
 

1e
-13

1e-13

1e-13

1e
-13

1e-12

1e
-1

2

1e-12

1e-12

1e-12

1e-12

1e-12

1e
-1

2

1e
-1

1

1e-11 1e-11

1e-11

1e
-1

1

1e-11

1e-11

1e-11

1e-11

1e-10

1e-10

1e-10

1e-10

1e-10

1e-10

1e-10

1e-10

1e
-09

1e-09
1e-09

1e-09

1e-09

1e-09

1e-09

1e
-0

9

1e-08
1e-08

1e-08

1e
-08

1e-08

1e-08

1e-08

1e
-07

1e-07

1e-07

1e
-0

7

1e-07
1e-07

1e
-0

7

1e-06 1e-06

1e-06

1e-06
1e-06

1e-06

1e
-05

1e-05

1e-05

1e-051e-05

1e
-0

5

0.0001 0.0001

0.
00

01

0.0001

0.0001

0.001

0.001

0.001

0.001

0.01

0.01

0.01

0.05

0.05

0.15

x1

x2

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

1e-13

1e
-1

3
1e-13

1e-13

1e-13

1e-12

1e
-1

2
1e-12

1e-12

1e-12

1e-11

1e
-1

1
1e-11

1e-11

1e-11

1e-10

1e
-1

0
1e-10

1e-10

1e-10
1e

-0
9

1e-09

1e-09

1e-09
1e

-0
8

1e-08

1e-08

1e-08

1e-07

1e-07

1e-07

1e-07

1e-06

1e
-06

1e-06

1e-06

1e
-0

5

1e-05

1e-05

1e
-0

5

1e-05

0.
00

01

0.0001

0.0001

0.
00

01

0.00010.001

0.001

0.001
0.

00
1

0.001
0.01

0.01

0.01

0.
01

0.05

0.0
5

0.05

0.15

0.15

x1

x2

3 4 5 6 7 8 9

-8

-6

-4

-2

0

2

4



32 
 

Figure 2.4.3: (mean shift) 
[ ]

1 21 1, 2, 3x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 0.9, 0.8x xk k  =   

DPMO= 8355.3 
 

 
Figure 2.4.4: (no mean shift) 

[ ]
1 21 1, 0, 0x xk k  =  , (standard deviation 

shift) [ ]
1 22 2, .4772935, .4772935x xk k  =   

DPMO= 8355.3 
 

 
Figure 2.4.5: (mean shift) 

[ ]
1 21 1, 3.363345, 3.363345x xk k  =  , (no 

standard deviation shift) 
[ ]

1 22 2, 1, 1x xk k  =   

DPMO= 8355.3 

 

 
Figure 4.1 shows a baseline for comparison for all contour plots in Figure 4. Figures 

2.4.2-2.4.5 represent various mean and standard deviation shifts resulting in a process 

fallout of 8355.3 DPMO. Figures 2.4.2 and 2.4.3 result in the same process fallout 
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because of the symmetry of the standard bivariate normal distribution about the origin. 

Figures 2.4.2- 2.4.5 show the concept that an equal process fallout can result by either 

shifting the process mean over time, shifting the process standard deviation overtime 

or both. The investigation of Figures 2.4.3 and 2.4.4 reveals that  the standard deviation 

shifts are highly sensitive to changes in the shifted means.  

If two quality characteristics are correlated with each other, this means that 

0 1ρ< < . Furthermore, since the original means are not shifting, this implies

1 21 1 0x xk k= = . The DPMO function can therefore be written as: 

( )( )
( )( )

2 2 1 1

2 2 1 1

1 1 1 21 2

2 2 1 1

6 6 6
1 2 1 26 6

16 ,2 2 2
1 226 6

1 2

1 , 10

1
2 1

current current current current

current current current current

current current

current curre current current

q x xx x

DPMO f x x dx dx

k k
e dx dx

µ σ µ σ

µ σ µ σ

µ σ

µ σ µ σ πσ σ ρ

+ +

− −

+ −

− −

= −

= −
−

∫ ∫

∫
2 26 610current current

nt

µ σ+ 
 
 
 

∫

                  (6) 

 
where 

( )
1 1 2 2

2 2

1 1 1 1 2 2 2 2
1 2 2 2 2 22

1 1 2 2

1, 2
1 x x x x

x x x xq x x k k k kµ µ µ µρ
ρ σ σ σ σ

              − − − − = − +                   −                
(7) 

Table 2.10 illustrates DPMO values for 
1 22 2x xk k   shifts: [ ] [ ]1 2 a bµ µ = , [ ] [ ]1 2 c dσ σ =  

where ,a b∈ , ,c d +∈ . 
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Table 2.10: DPMOs resulting from variance shifts, with fixed means and correlated 
variables 
 

1 22 2( , )x xk k  0.9ρ = −  0.5ρ = −  0ρ =  0.5ρ =  0.9ρ =  0.99999999ρ =  

(0.5,0.5)  4178.78 5235.81 5392.303 5235.813 4178.78 2700.2960 
(0.5,1)  2699.79 2699.79 2699.79 2699.79 2699.79 2699.7960 
(0.5,1.5)  2699.79 2699.79 2699.79 2699.79 2699.79 2699.7960 
(1 ,0.5)  2699.79 2699.79 2699.79 2699.79 2699.79 2699.7960 
(1 ,1)  0.0036 0.0039 0.0039 0.0039 0.0036 0.0020 
(1 ,1.5)  0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 
(1.5,0.5)  2699.79 2699.79 2699.79 2699.79 2699.79 2699.7960 
(1.5,1)  0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 
(1.5,1.5)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
 

A few key insights can be drawn as follows. As the 2k  values increase, the DPMO 

decrease.  These values will always be the same for any starting mean vectors and 

standard deviation with no mean shifts since the bivariate random variables are 

standardized. Process fallout in terms of DPMO only depends on ρ . As 1ρ → , the 

process fallout decreases dramatically. It should also be noted that as ρ  increases, the 

2k  values that result in the highest DPMO decrease the most dramatically. This is due 

to the scaling factor 2
1

1 ρ−
 in the exponent and 

2

1
1 ρ−

 in the integrand. Relatively 

speaking ρ  has a minimal impact on DPMO compared to [ ]1 2,µ µ  , [ ]1 2,σ σ  and 

their respective shifts. ρ  has a larger impact on DPMO only when 
1 22 2,x xk k    are 

small (e.g., 
1 22 20 , 0.5x xk k< ≤ ). DPMO plots incorporating various mean and standard 
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deviation shifts, while 0ρ ≠ are shown in figures 2.5.1.1 to 2.5.5.3. These examples 

will mirror Figure 4 and be referred to as Figure 5: 

 
2.6.2.3    Unequal means, unequal standard deviations: [ ] [ ]1 2, 5, 1µ µ = ,

[ ] [ ]1 2, 0.5, 1σ σ =  
 
Note that Figure 2.4.1.0 can be referred to with 0ρ =  as a baseline for DPMO comparison. 

 
Figure 2.5.1.1: (no mean shift) 

[ ]
1 21 1, 0, 0 ,x xk k  =   (no standard 

deviation shift) [ ]
1 22 2, 1, 1x xk k  =   

DPMO= 0.0039456, 0.5ρ =  
 

 
Figure 2.5.1.2: (no mean shift) 

[ ]
1 21 1, 0, 0 ,x xk k  =   (no standard 

deviation shift) [ ]
1 22 2, 1, 1x xk k  =   

DPMO= 0.0039456, 0.5ρ = −  
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Figure 2.5.1.3: (no mean shift) 
[ ]

1 21 1, 0, 0 ,x xk k  =   (no standard 

deviation shift) [ ]
1 22 2, 1, 1x xk k  =   

DPMO= 0.0036347, 0.9ρ =  
 

Figure 2.5.2.1: (mean shift) 
[ ]

1 21 1, 2, 3x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 0.9, 0.8x xk k  =   

DPMO=  8356.6, 0.5ρ =  
 

Figure 2.5.2.2: (mean shift) 
[ ]

1 21 1, 2, 3x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 0.9, 0.8x xk k  =   

DPMO=   8310.1, 0.5ρ = −  
 

Figure 2.5.2.3: (mean shift) 
[ ]

1 21 1, 2, 3x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 0.9, 0.8x xk k  =   

DPMO= 8356.6, 0.9ρ =  
 

Figure 2.5.3.1: (mean shift) 
[ ]

1 21 1, 2, 3x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 0.9, 0.8x xk k  =   

DPMO= 8356.6, 0.5ρ =  

Figure 2.5.3.2: (mean shift) 
[ ]

1 21 1, 2, 3x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 0.9, 0.8x xk k  =   

DPMO= 8310.1, 0.5ρ = −  
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Figure 2.5.3.3: (mean shift) 

[ ]
1 21 1, 2, 3x xk k  = −  , (standard deviation 

shift) [ ]
1 22 2, 0.9, 0.8x xk k  =   

DPMO= 8356.6, 0.9ρ =  
 
 

 

 

Figure 2.5.4.1: (no mean shift) 
[ ]

1 21 1, 0, 0 ,x xk k  =   (standard deviation 

shift) 
[ ]

1 22 2, 0.4772935, 0.4772935x xk k  =   

DPMO=  8073.7, 0.5ρ =  

Figure 2.5.4.2 (no mean shift) 
[ ]

1 21 1, 0, 0x xk k  =  , (standard deviation 

shift) 
[ ]

1 22 2, 0.4772935, 0.4772935x xk k  =   

DPMO= 8073.7, 0.5ρ = −  
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Figure 2.5.4.3: (no mean shift) 
[ ]

1 21 1, 0, 0 ,x xk k  =   (standard deviation 

shift) 
[ ]

1 22 2, 0.4772935, 0.4772935x xk k  =   

DPMO= 6406, 0.9ρ =  

 
Figure 2.5.5.1: (mean shift) 

[ ]
1 21 1, 3.363345, 3.363345x xk k  =  , (no 

standard deviation shift) 
[ ]

1 22 2, 1, 1x xk k  =   DPMO= 7984.3, 

0.5ρ =  
 

 
Figure 2.5.5.2: (mean shift) 

[ ]
1 21 1, 3.363345, 3.363345x xk k  =  , (no 

standard deviation shift) 
[ ]

1 22 2, 1, 1x xk k  =   DPMO= 8372.8, 

0.5ρ = −  

Figure 2.5.5.3: (mean shift) 
[ ]

1 21 1, 3.363345, 3.363345x xk k  =  , (no 

standard deviation shift) 
[ ]

1 22 2, 1, 1x xk k  =   DPMO= 6280.2, 

0.9ρ =  
 

Figure 4.1 represents a baseline for comparison for all contour plots in Figure 5. 

Figures 2.5.1.1-2.5.1.3 demonstrate that as ρ  increases, the process fallout decreases 
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for the bivariate normal distribution with no shifting. Since
1 22 2, 0.5x xk k > , the 

magnitude of the process fallout decrease is negligible as ρ  increases.  Figures 

2.5.2.1-2.5.2.3 show that at certain combinations of high 
1 22 2,x xk k  standard deviation 

shift values and 
1 21 1,x xk k mean shift values the impact of having high correlation 

coefficient values is negligible for a DPMO decrease. Moreover this example also 

demonstrates that the sign of ρ can make a larger impact on DPMO decrease than its 

magnitude. Figures 2.5.2.1-2.5.2.3 and 2.5.3.1-2.5.3.3 combine to illustrate the 

symmetry of the standard bivariate normal distribution about the origin, regardless of 

the value of ρ , as they result in the same DPMO. This is shown in the figures by the 

shifting of the dashed rectangle bounds. Figures 2.5.4.1-2.5.4.3 clearly show that ρ  

has a large impact on DPMO when the 
1 22 2,x xk k    (Standard deviation) shift values 

are small, especially with no shifted means. Again notice that 
1 22 20 , 0.5x xk k< ≤ . 

Looking at Figures 5.5.1-5.5.3, one can see that the sign and magnitude of ρ can have 

a large impact on DPMOs when relatively large mean shifts occur. This is because the 

mean shifts that occur are functions of the original standard deviations of the bivariate 

normal distribution. 

2.7     Conclusion and Further Study 
 

This study illustrates the importance of understanding how process variability shifts 

over time is just as important as mean shifts over time. This means that practitioners 

need to take special care in understanding the root causes of change in not only their 
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process means, but also the variability, if process fallout is to be minimized. In section 

4, process capability indices were developed analytically that show this shift. 

Numerical results displaying process capability indicies were shown in section 5. This 

paper has also demonstrated that the importance of understanding the interaction of 

correlation coefficients, shifting means and shifting variances on several quality 

characteristics is critical to minimizing process fallout. This can be seen analytically in 

section 5 and numerically in section 6. To the authors’ knowledge, the compounding 

effect of changing variability as the process mean shifts over time on product or service 

defect rates had not been explored prior to this study. This is a critical issue since 

production processes do not all have centered process means and constant variances. 

Therefore, assumptions underlying process fallout within the Six Sigma framework 

may be grievously incorrect in many situations in which relatively stable processes 

exhibit shifts and drifts over a long period of time. This study has examined that 

processes can have the same process fallout over time but have vastly different process 

capability indices as the mean and standard deviation of the process shift over time. 

This highlights the critical need for practitioners to consider calculating process fallout 

in terms of DPMO by considering both the mean and variability shifts of their 

processes. Otherwise, their incorrect assumptions about their processes will lead to 

costly errors in manufacturing and service defects. Evaluation of process fallout for 

dual quality characteristics demonstrated the importance of the effects of correlation of 

two different CTQs on process fallout.  
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One logical extension of this study would be to evaluate expected quality loss 

functions to illustrate the importance of preventing underestimation of defect levels. 

Expected quality loss models could be explored in order to underscore the importance 

of preventing underestimation of process fallout levels. It is important to note that in 

many industrial applications, the losses at two different specification limits are often 

not the same. In addition, most loss functions assume that a product will be reworked 

or scrapped if the product quality characteristic falls outside specification limits; 

however, it is a common practice in many industries to replace a defective item rather 

than spending resources to repair it. Therefore, one could compare quality loss 

functions of various processes in order to specify minimum expected quality loss 

conditions for processes where the product can be reworked and processes where the 

product cannot be reworked, as the mean and standard deviation of the process vary 

over time. Another possible extension of this work could apply to multivariate 

distributions. Multivariate distributions could be used to extend the concepts explored 

in this paper to multiple, simultaneous process variables of interest. This is important 

because most statistical process control methods track only a small number of process 

variables and examine them one at a time. These approaches may be inadequate for 

most modern process industries, since they ignore the realization that computers collect 

data continually on hundreds or thousands of process variables being updated 

continuously. Also, these variables are often not independent of each other, since 

usually only a limited number of underlying principles govern a process at any given 

time.  
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CHAPTER THREE 

DEVELOPMENT OF STATISTICAL CONVOLUTIONS OF TRUNCATED NORMAL 
AND TRUNCATED SKEW NORMAL DISTRIBUTIONS WITH APPLICATIONS 

 

This chapter has been published in the Journal of Statistical Theory and Practice and 
should be cited as:  
 
Krenek, R., Cha J., Cho, B.R. and J. L. Sharp (2017) ‘Development of statistical  

convolutions of truncated normal and truncated skew normal distributions with 
applications’, Journal of Statistical Theory and Practice, Vol. 11,No. 1, pp.1-25. 

 
Additionally, this was a joint work with Jinho Cha and can be found in Chapter Five of his  
dissertation: 
 
Cha, Jinho, "Re-Establishing the Theoretical Foundations of a Truncated Normal  

Distribution: Standardization Statistical Inference, and Convolution" (2015).All 
Dissertations. Paper 1793. 
http://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=2794&context=all_diss
ertations 

 
 

3.1. Introduction 
 

Several crucial contributions to the literature on convolutions are offered in this 

manuscript that have not been explored previously. Convolutions are analogous to the sum 

of random variables and are critical concepts in multistage production processes, statistical 

tolerance analysis, and gap analysis. More specifically, the focus of this paper is on the 

convolutions resulting from double and triple truncations associated with symmetric and 

asymmetric normal and skew normal distributions under three types of quality 

characteristics, which are the nominal-the-best type (N-type), smaller-the-better type (S-

type), and larger-the-better type (L-type). It is known that the distributions of S- and L-type 

quality characteristics are typically negatively and positively skewed, respectively, while 

the distribution of N-type quality characteristics are approximately symmetric around the 
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mean. In this paper, the normal distribution for N-type characteristics and the skew normal 

distribution for S- and L-type characteristics are chosen. One of the reasons for choosing 

the skew normal distribution as an underlying distribution of S- and L-type quality 

characteristics is that the skew normal distribution generalizes the normal distribution by 

allowing for non-zero skewness.  

The convolutions of the combinations of truncated normal and truncated skew normal 

random variables have not been fully explored in the literature. This is a critical issue 

because specification limits on a process are implemented externally in most 

manufacturing and service processes, which means that the product is typically reworked 

or scrapped if its performance does not fall in the specification limits. This means that the 

actual distribution after inspection becomes truncated. Figure 1 shows two twice truncated 

distributions for symmetric and asymmetric N-type characteristics in (a) and (b), a one-

sided left truncated distribution at the lower specification limit (x l) for an L-type 

characteristic in (c), and a one-sided right truncated distribution at the upper specification 

limit (xu) for an S-type characteristic in (d). These distributions have been well established 

in the literature (Barr and Sherrill (1999), Kim and Takayama (2003), Jawitz (2004), 

Khasawneh et al. (2005a, 2005b)  , Hong and Cho (2007), Shin and Cho (2009) , Makarov 

et al. (2009), Goethals and Cho (2011),Cha and Cho (2014), and Cha et al. (2014)). The 

shape of a truncated distribution ( )
TXf x  varies based on its specification limits. Notice that 

the truncated variance after truncation will no longer be the same as the original variance 

associated with the untruncated normal distribution ( ).Xf x  Similarly, unless symmetric 
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two-sided truncations are used, a truncated mean will not be the same as the original mean 

of an untruncated normal distribution. 

 
 
 

    
(a)   (b)   (c) (d) 
Figure 3.1. Different types of truncated distributions 
 

A potential application of a truncated distribution can be found in a multistage 

production process, as shown in Figure 3.2, where only conforming products are passed on 

to the next stage. Examples of multistage processes are numerous. Typical systems of 

telecommunication, banking, and healthcare consist of multistage processes. A product 

part or service transferring from one stage to the next stage in a multistage process may 

introduce extra variation that does not occur in a single-stage process. An added advantage 

of screening inspection in a multistage process is the ability of reducing the extra variation 

by screening nonconforming items in each stage. The convolutions of the sum of truncated 

random variables help to estimate the mean and variance in each stage of a production 

process.  

The convolutions of multiple truncations have practical importance in statistical 

tolerance design and gap analysis. In gap analysis, for example, tolerance stackups explain 

the engineering problem solving process of calculating the effects of the accumulated 

variation that is allowed by specified dimensions in part assembly. Usually, dimensions 
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and tolerances are specified on engineering schematics. A problem arises, however, when 

arithmetic tolerance stackups are employed, since they use the worst-case maximum or 

minimum values of dimensions and tolerances to calculate clearance or interference 

between two features or parts. This results in errors because a non-skew normal distribution 

and the centering of the distribution on the tolerance interval midpoint are assumed.  

By utilizing skew normal distributions and their convolutions, a much more accurate 

assessment of tolerance stackups can result in a lower product scrap rate, by accounting for 

asymmetric normal distributions, in addition to skewness. This would also allow for more 

accurate production forecasts, saving a company both time and money.  Unfortunately, the 

mathematical framework of the convolutions associated with double and triple truncations 

have not been well established in the literature. 

 
Stage 1  Stage 2  Stage 3    Stage m 

 

 

 

 

 
 

 
 

 
 
 

 
 
… 

 

 
Figure 3.2: Screening inspections in multistage production process 
 

In this paper, twenty-one cases of convolutions of truncated normal and truncated skew 

normal random variables are highlighted. The cases presented here represent a sample of 

all the possible types of convolutions of double truncations (i.e., the sum of all the possible 

combinations containing two truncated random variables with normal and skew normal 

probability distributions). Fifty-six cases of the convolutions of triple truncations (i.e., the 

sums of all the possible combinations containing three truncated random variables with 

normal and skew normal probability distributions) are then illustrated. Here the term 
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double truncation refers to a probability distribution that has been pruned in two unique 

manufacturing steps; similarly, the term triple truncation refers to a probability distribution 

that has been pruned in three unique manufacturing steps. Numerical examples illustrate 

the application of convolutions of truncated normal random variables and truncated skew 

normal random variables to highlight the improved accuracy of tolerance analysis and gap 

analysis techniques. 

3.2.  Literature Review 
 

Convolution is a mathematical way of combining two distributions to form a new 

distribution. In the middle of the 18th century, Euler (1748, 1750)  , introduced the earliest 

convolution theorem, ( ) ( ) ,
b

a
g x u f u du±∫ based on Taylor series and Beta functions. Note that 

f and g are two real or complex-valued functions of real variables u and x. In the truncated 

environment, Francis (1946) first used convolution to obtain a density function of a sum of 

the truncated random variables, ( ) ( ) ( ) ( ) ( ) ,
T T T TS Y X Y Xh s g y f x dx g s x f x dx

∞ ∞

−∞ −∞
= = −∫ ∫  where S = XT 

+YT with XT  and YT being truncated random variables. To be more specific, Francis (1946) 

and Aggarwal and Guttman (1960) examined the probability density functions of the sums 

of singly and doubly truncated normal random variables and developed their cumulative 

probability tables under the assumption that the random variables were independently and 

identically distributed. Lipow et al. (1964) then investigated the density functions of the 

sums of a standard normal random variable and a left truncated normal random variable. 

Francis (1946), Aggarwal and Guttman (1960), and Lipow et al. (1964) studied the 

potential computational complexity associated with convolutions. Furthermore, 

Kratuengarn (1973) compared the means and variances of the sums of left truncated normal 
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random variables numerically through the Laplace and Fourier transforms and evaluated 

the accuracy of those methods. Recently, Fletcher et al. (2010) examined an expression of 

the moments based on a truncated skew normal distribution. This method utilizes the 

double factorial and introduces the truncated skew-normal distribution as a truncation of a 

different type of skew normal distribution for multiple truncations all using moments of 

the truncated distributions.  Tsai and Kuo (2012) applied the Monte Carlo method to obtain 

the densities of the sums of truncated normal random variables with 1,000,000 samples. 

However, most studies focused on identically truncated normal distributions. In this 

research, however, both identical and non-identical truncated normal distributions are 

explored and then extended to include a truncated skew normal distribution.  

A skew normal distribution represents a parametric class of probability distributions, 

reflecting varying degrees of skewness, which includes the standard normal distribution as 

a special case. The skewness parameter makes it possible for probabilistic modeling of the 

data obtained from a skewed population. This fact makes these distributions useful in the 

study of the robustness and as priors in Bayesian analysis of data. Birnbaum (1949) first 

explored skew normal distributions while investigating educational testing using truncated 

normal random variables. Roberts (1966) was another early pioneer in skew normal 

distributions by studying correlation models of twins. The term, the skew normal 

distribution, was formally introduced by Azzalini (1985, 1986), who explored the 

distribution in depth. Gupta et al. (2004) defined a class of multivariate skew-normal 

models and studied its properties. Nadarajah and Kotz (2006) showed skewed distributions 

from different families of distributions, whereas Azzalini (2005)  discussed the skew 
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normal distribution and related multivariate families. Jamalizadeh, et al. (2008) and 

Kazemi et al. (2011) discussed generalizations of the skew normal distribution based on 

various families. Multivariate versions of the skew normal distribution have also been 

proposed by Azzalini and Valle (1996), Azzalini and Capitanio (1999), Arellano-Valle et 

al. (2002), Gupta and Chen (2004), and Vernic (2006). In many applications, the 

probability distribution function of some observed variables can be skewed and their values 

restricted to a fixed interval. This was demonstrated well in Fletcher et al. (2010).  

 As mentioned earlier, convolutions play an important role in statistical 

tolerance analysis. Most statistical tolerance analysis research, however, has focused 

on untruncated, non-skew normal distributions. (e.g.,  Gilson (1951), Mansoor (1963), 

Fortini (1967), Wade (1967), Evans (1975), Cox (1986), Greenwood and Chase (1987), 

Kirschling (1988), Bjorke (1989), Henzold (1995), and Nigam and Turner (1995) and 

Scholz (1995)). Many of these researchers in the 1980s and 1990s have chosen to focus 

on a beta distribution due to its ability to cover an actual range of distributions from 

normal to rectangular. In addition, it has a finite range and can cover asymmetrical 

cases. More recent research in the area has focused on applications to modern products 

such as computer hard drives by utilizing optimization models that minimize the 

tolerance deviations as discussed by Chattinnawat (2015). Structure and shape 

optimization models have also been explored by Das and Jones (2015) and Luo et al. 

(2014). 
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3.3.  Review of Truncated Normal and Truncated Skew Normal Distributions 
  

If a random variable Y is distributed with its location parameter μ, scale parameter 

σ, and shape parameter α then its probability density function is defined as 

              
2

21 1
2 22 1 1( )

2 2

y y t

Yf y e e dt
µ µασ σ

σ π π

−  −− − 
 

−∞
= ⋅ ⋅ ∫ , where -∞ < y <∞.                      

It is noted that the probability density function of Y becomes a normal distribution when 

the shape parameter α is zero. When the skew normal distribution of Y is truncated with 

the lower and upper truncation points, yl and yu, the probability density function of the 

truncated skew normal (TSN) distribution is then expressed as 

                                                   ( )( ) where .
( )

TS u

l

Y
Y l uy

Yy

f yf y y y y
f y dy

= < <
∫

                      

or                                                   

  [ , ]
( )( ) ( ),
( )

TS l uu

l

Y
Y y yy

Yy

f yf y I y
f y dy

=
∫

                                                 

where the indicator function [ , ] ( )
l uy yI y  is then defined as: 

  [ ]
[ , ]

1 if ,
( ) .

0 otherwisel u

l u
y y

y y y
I y

 ∈= 


                                                 

The truncated mean μTS and truncated variance σTS
2 of YTS are given by ( )u

TS
l

y

Yy
y f y dy⋅∫  and 

( )2
2 ( ) ( )u u

TS TS
l l

y y

Y Yy y
y f y dy y f y dy⋅ − ⋅∫ ∫ , respectively. 
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3.4. Development of the Convolutions of Truncated Normal and Truncated Skew 
Normal Random Variables on Double Truncations 

 
The order of truncated random variables does not affect the probability density 

function of the sum of those random variables when using the convolution operator. 

The examples presented assume that the truncated normal and truncated skew normal 

random variables are independent, but not necessarily identically distributed. By using 

truncated normal and skew normal distributions, various cases of the sums on double 

truncations can be developed. As shown in Figure 3, four types of a truncated normal 

distribution and six types of a truncated skew normal distribution are categorized. In 

the notation of the truncated normal distribution, ‘Sym’ and ‘Asym’ denote symmetric 

and asymmetric, respectively, and TN stands for ‘truncated normal.’ Similarly, for the 

truncated skew normal distribution, ‘+’ indicates a positive α value which means the 

untruncated original distribution is positively skewed. In contrast, ‘−’ means that α is 

negative and the untruncated original distribution is negatively skewed. All 

computations for the mean and variance of symmetric and asymmetric truncated 

normal distributions were computed in Maple and R software packages. In particular, 

standard computational methods were used in the software using error function 

approximations where appropriate.    
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Truncated normal distributions Truncated skew normal distributions 

          (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 
 Notation         

(a) ypeSym N tTN −
 
A symmetric doubly 
truncated    normal 
distribution 

(e) ypeN tTSN +
−

 
A doubly truncated 
positive skew normal 
distribution 

(b) ypeAsym N tTN −
 
An asymmetric doubly 
truncated normal 
distribution 

(f) ypeN tTSN −
−

 
A doubly truncated 
negative skew normal 
distribution  

(c) ypeL tTN −
 A left truncated normal        

distribution (g) ypeL tTSN +
−

 A left truncated positive 
skew normal distribution  

(d) ypeS tTN −
 A right truncated normal 

distribution (h) ypeL tTSN −
−

 A left truncated negative 
skew normal distribution 

   (i) ypeS tTSN +
−

 A right truncated positive 
skew normal distribution 

   (j) ypeS tTSN −
−

 A right truncated negative 
skew normal distribution 

Figure 3.3. Ten cases of truncated normal and truncated skew normal random variables 
 
3.4.1 The Convolutions of Truncated Normal , and Truncated Skew Normal Random 
Variables on the Double Truncations 
 

In order to develop the sums of two independent truncated normal random 

variables, the following two truncated normal random variables are considered: 
1TX  

and 
2
,TX where there associated probability density functions are 

2
1

1

2
1 1 11

1 1

1

1
2

1
[ , ]1

2

1

1 exp
2( ) ( )

1 exp
2

T l u

u

l

x

X x xh
x

x

f x I x

dh

µ
σ

µ
σ

σ π

σ π

 −
−   

 

 −
−   

 

=

∫

 and  

2
2

2

2
2 2 22

2 2

2

1
2

2
[ , ]1

2

2

1 exp
2( ) ( )

1 exp
2

T l u

u

l

y

X x xp
x

x

f y I y

dp

µ
σ

µ
σ

σ π

σ π

 −
−   

 

 −
−   

 

=

∫

, respectively.  
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Let 
1 22 T TZ X X= + . Based on the convolution operator, the probability 

density function of the sum of the above two truncated normal random variables is: 

2 2 1

2 2
2 1

2 1

2 2
2 2 1 12 1

2 12 1

2 1

1 1
2 2

2 1
[ , ] [ , ]1 1

2 2

2 1

( ) ( ) ( )

1 1exp exp
2 2 ( ) ( ) .
1 1exp exp

2 2

T T

u l l u

u u

l l

Z X X

z x x

z x z x x xp h
x x

x x

f z f z x f x dx

I x I x dx

dp dh

µ µ
σ σ

µ µ
σ σ

σ π σ π

σ π σ π

∞

−∞

   − − −
− −      

   

− −   − −
− −      

   

∞

−∞

= −

=

∫

∫ ∫
∫

 

Note that 
2 2[ , ] ( )

l ux xI z x−  can be expressed as 
2 2[ , ] ( )

u lz x z xI x− −  since z = x+ y. Ten cases of 

the sums of two truncated normal random variables are illustrated in Figure A.1 of the 

Appendix. The distributions, means and variances of the sums of truncated normal 

random variables are also shown in Table A.1 of the Appendix, where ( )2E Z  is equal 

to the sum of ( )1 1T TE X µ=  and ( )2 2
,T TE X µ=  and ( )2Var Z  is equal to the sum of 

( )1 1

2
T TVar X σ=  and ( )2 2

2 .T TVar X σ=  In Figure 4, μ1=μ2=8 and σ1=σ2=2. In addition, the 

lower and upper truncation points are considered according to different types of a 

truncation as shown in Appendix A, Table A.1.  

The convolutions of the sums of two independent truncated skew normal random 

variables, 
1TSY  and 

2TSY , are developed in the same way as the convolution of truncated 

normal random variables above:  

 

2
1 21
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1 11 21

11 1 1
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1 1
2 2

1
[ , ]1 1

2 2

1

2 1 1
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2 1 1
2 2
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y y
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Y y yh h
ty
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µ µ
ασ σ

µ µ
ασ σ

σ π π
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 and  
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, respectively.  

Letting 2Z  = 
1 2TS TSY Y+ , the probability density function of the sum of the two truncated skew 

normal random variables is obtained as: 
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This can be extended to the convolution of truncated normal and truncated skew normal 

random variables as well from the following expression: 
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 respectively.  

Equating 2Z = 
1 2

,T TSX Y+  
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Similarly, 
2 2[ , ] ( )

l uy yI z x−  can be written as 
2 2[ , ] ( )

u lz y z yI x− −  since z = x + y. 

Twenty-one cases of the sums of two truncated skew normal random variables are listed in 

Figure A.2 of the Appendix. It is assumed that the parameters, μ1 and μ2 are 8, and the 

parameters, σ1 and σ2 are 4. In addition, the shape parameter α discussed in Section 3, and 

the lower and upper truncation points are utilized in six different types of truncations as 

shown in Table A.2 of the Appendix. 

 
3.5. Development of the Convolutions of the Combinations of Truncated Normal and 
Truncated Skew Normal Random Variables on Triple Truncations 
 

In this section, the convolutions of the sums of independent truncated normal and 

truncated skew normal random variables on triple truncations are developed. First, the 

sums of three truncated normal random variables are discussed in Section 3.5.1. 

Second, the sums of three truncated skew normal random variables are then examined 

in Section 3.5.2. Finally, in Section 3.5.3, the sums of the combinations of truncated 

normal and truncated skew normal random variables on triple truncations are 

examined.  
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3.5.1 The Convolutions of Three Truncated Normal Random Variables  
 

The probability density function of 
3TX is defined as: 
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It is noted that 
3 3[ , ] ( )
l ux xI s z−  can be written as

3 3[ , ] ( )
u ls x s xI z− − . This derivation is shown in the 

Appendix. 

3.5.2 The Convolutions of Three Truncated Skew Normal Random Variables 
 

The probability density function of 
3TSY is defined as: 
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.  

By denoting 
3TSZ  = 

2 3TS TSZ Y+ where  
2TSZ = 

1 2
,TS TSY Y+  the probability density function of 

3TSZ  

is obtained as: 
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Since s = z + k,
3 3[ , ] ( )
l uy yI s z−  can be written as 

3 3[ , ] ( ).
u ls y s yI z− −  The details of this derivation are 

shown in the Appendix. 

3.5.3 The Convolutions of the Combinations of the Truncated Normal and Truncated 
Skew Normal Random Variables on Triple Truncations 
 

Figure 4 illustrates an example of the sum of truncated normal and truncated skew 

normal random variables on triple truncations. The mean and variance of 
1 2 3T T TX X X+ +  

are the sums of means and variances of 
1TX , 

2TX  and 
3TX  since 

1TX , 
2TX  and 

3TX  are 

independent of each other. 
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Figure 3.4. Illustration of a sum of truncated normal and truncated skew normal random 

variables on triple convolution  

In this section, we have two subsections. First, the sums of two truncated normal 

random variables and one truncated skew normal random variable are examined in 

Section 3.5.3.1. Second, the sums of one truncated normal random variable and two 

truncated skew normal random variables are investigated in Section 3.5.3.2.  

3.5.3.1 Sums of Two Truncated Normal Random Variables and One Truncated Skew 
Normal Random Variable 
 

Let 
1 22 T TZ X X= +  and 

33 2 TSZ Z Y= + . Therefore, the probability density function of 

3Z  is: 
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The details of this derivation are shown in the Appendix. 

3.5.3.2 Sums of One truncated Normal Random Variable and Two Truncated Skew 
Normal Random Variables 
 

When
1 22 TS TSZ Y Y= +  and then

1 2 3 33 2TS TS T TZ Y Y X Z X= + + = + . Therefore, the probability 

density function of 3Z  is expressed as 
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The details are relegated to the Appendix. 

3.6. Numerical Examples 
 

Results of the convolutions developed in this paper are applied to two key 

application areas: statistical tolerance analysis and gap analysis. In Section 6.1, an 

example of the sum of one truncated normal and two truncated skew normal random 

variables is provided (see Section 3.5.3.2).   
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3.6.1 Application to Statistical Tolerance Analysis  
 

In a typical assembly design, such as the one shown in Figure 3.5, the width of 

component 1 is a normal random variable X1 and the width of component 2 is a 

positively skew normal random variable Y2. Similarly, the width of component 3 is a 

negatively skewed normal random variable 3.Y  Suppose that the parameters, μ1, μ2 and 

μ3 of X2, Y2 and Y3 are 10, 8, and 16, and the parameters, σ1, σ2 and σ3 of X1, Y2 and 

X3 are 3, 4, and 4, respectively. In this example, the random variable X1 is doubly 

truncated at the lower and upper truncation points, 7 and 13, respectively. The random 

variable Y2 is left truncated at 7, and the random variable Y3 is right truncated at 17. 

Since Y2 and Y3 are negatively and positively skewed, the shape parameters of  Y2 and 

Y3 are 3 and -3, respectively.  

 

 
Figure 3.5. Assembly design of statistical tolerance design for three truncated 

components 
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Let 

1 22 .T TSZ X Y= +  Referring to equations in Section 3.4.3, the probability density 

function of the sum of the two truncated normal random variables 
1TX and 

2TSY  are 

expressed as 
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Furthermore, the mean and variance of Z2 are obtained as 21.18 and 7.63, respectively. 

Now let Z3 be 
1 2 3T TS TSX Y X+ + . Based on the equations in Section 3.5.3.2, the probability 

density function of Z3 is then obtained as 
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Finally, the mean and variance of 3Z  are obtained as 34.00 and 15.25, respectively. Figure 

6 shows the shapes of 
1 2 32, , , ,T TS STX Y Z Y  and 3Z .  
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1TX  
2TSY  

1 22 T TSZ X Y= +  
3TSX  

1 23 T TS TZ X Y X= + +  

ypeN tSym TN −
 

 
1 1

210.00, 2.62T Tµ σ= =  

ypeS tTN −
 

 
2 2

211.18, 6.32T Tµ σ= =  

 

 
2 2

221.18, 8.94Z Zµ σ= =  

 

 
3 3

212.82, 6.32T Tµ σ= =  

 

 
3 3

234.00, 15.25Z Zµ σ= =  

Figure 3.6. The statistical tolerance analysis example 
 

This numerical example offers an insight as to how convolutions can be used in 

practice to more accurately convey the distribution properties such as skewness, mean, 

and variance of an overall assembly design. Consistent with the various plots shown in 

Appendix, Figure 3.7 indicates that the convolutions of the combinations of truncated 

random variables tend toward normal distributions as a new random variable is added, 

thereby decreasing the skewness, since the resultant distributions become less skewed. 

This would allow practitioners to more accurately predict statistical tolerances and have 

more intricate understanding of the initial engineering design, ultimately leading to a 

better understanding of the costs involved with the manufacturing processes, allowing 

for more accurate production forecasts to be made. 

3.6.2 Application to Gap Analysis 
 

Define a gap as G = XA – XC1i – XC2j – XC3k for i = 1, 2, 3, j = 1, 2, and k = 1, 2, 3, 

where XA, XC1i, XC2j and XC3k are the dimensions of an assembly and a respective 

dimension of components. Assuming that the truncated mean of XA is 41, nine different 

distributions of assembly components are illustrated in Table 3.1, and the means and 

variances of G are also shown in Table 3.2.  
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Table 3.1. Gap analysis data set 1 

 Type α  µ  σ  LTP UTP 
Truncate
d  
mean 

Truncate
d 
variance 

11CX   typeNSym TN −
 0 15 2 13.5 16.5 15.0000 0.6953 

12CX  typeLTN −
 0 15 2 13.5 ∞ 15.7788 2.2254 

13CX  typeSTN −
 0 15 2 -∞ 16.5 14.2212 2.2254 

21CX  ypeL tTSN +
−

 5 10 1.5 10.2 ∞ 11.3533 0.7478 

22CX  ypeS tTSN +
−

 5 10 1.5 -∞ 12.0 10.8336 0.3514 

31CX   typeNSym TN −
 0 12 3 11.0 13.0 12.0000 0.3284 

32CX   typeLTN −
 0 12 3 11.0 ∞ 13.7955 3.9808 

33CX  typeSTN −
 0 12 3 -∞ 13.0 10.2045 3.9808 

AX  typeNSym TN −
 0 41 1 40.5 41.5 41.0000 0.0806 

 
 
Table 3.2.  Mean and variance of gap for data set 1 

 
1CX  2CX  3CX  AX  Gµ   2

Gσ  

1 11CX  21CX  31CX  AX  2.6467 1.8522 

2 11CX  21CX  32CX  AX  0.8512 5.5046 

3 11CX  21CX  33CX  AX  4.4422 5.5046 

4 11CX  22CX  31CX  AX  3.1664 1.4558 

5 11CX  22CX  32CX  AX  1.3709 5.1082 

6 11CX  22CX  33CX  AX  4.9618 5.1082 

7 12CX  21CX  31CX  AX  1.8679 3.3822 

8 12CX  21CX  32CX  AX  0.0725 7.0346 

9 12CX  21CX  33CX  AX  3.6634 7.0346 

10 12CX  22CX  31CX  AX  2.3876 2.9858 

11 12CX  22CX  32CX  AX  0.5921 6.6382 

12 12CX  22CX  33CX  AX  4.1831 6.6382 
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Note that dimensional interference occurs when the gap becomes negative (i.e., XA 

< XC1 + XC2 + XC3) which often results in assembled products being scrapped or 

reworked. The convolutions developed in this paper could be an effective tool to help 

predict the dimensional interference. Now assuming that the truncated mean of XA is 

39, nine different distributions of assembly components are illustrated in Table 3.3, and 

the means and variances of G are shown in Table 3.4. In this particular example, there 

are six cases where the mean of gap is negative, creating the extreme dimensional 

interference highlighting the importance of using truncated normal and skew normal 

distributions in gap analysis.   

Table 3.3.  Gap analysis data set 2 

 Type α  µ  σ  LTP UTP 
Truncate
d  
mean 

Truncate
d 
variance 

11CX   typeNSym TN −
 0 15 2 13.5 16.5 15.0000 0.6953 

12CX  typeLTN −
 0 15 2 13.5 ∞ 15.7788 2.2254 

13CX  typeSTN −
 0 15 2 -∞ 16.5 14.2212 2.2254 

21CX  ypeL tTSN +
−

 5 10 1.5 10.2 ∞ 11.3533 0.7478 

22CX  ypeS tTSN +
−

 5 10 1.5 -∞ 12.0 10.8336 0.3514 

31CX   typeNSym TN −
 0 12 3 11.0 13.0 12.0000 0.3284 

32CX   typeLTN −
 0 12 3 11.0 ∞ 13.7955 3.9808 

33CX  typeSTN −
 0 12 3 -∞ 13.0 10.2045 3.9808 

13 13CX  21CX  31CX  AX  3.4255 3.3822 

14 13CX  21CX  32CX  AX  1.6300 7.0346 

15 13CX  21CX  33CX  AX  5.2209 7.0346 

16 13CX  22CX  31CX  AX  3.9451 2.9858 

17 13CX  22CX  32CX  AX  2.1497 6.6382 

18 13CX  22CX  33CX  AX  5.7406 6.6382 
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AX  typeNSym TN −
 0 39 1 38.5 39.5 39.0000 0.0806 

 
Table 3.4.  Mean and variance of gap for data set 2 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.7. Conclusions 

This paper has presented the theoretical foundations of convolutions of truncated 

normal and skew normal distributions based on double and triple truncations. 

Convolutions of truncated normal and truncated skew normal random variables were 

highlighted. The cases presented in this paper illustrate the possible types of 

 
1CX  2CX  3CX  AX  Gµ   2

Gσ  

1 11CX  21CX  31CX  AX  0.6467 1.8522 

2 11CX  21CX  32CX  AX  -2.8512 5.5046 

3 11CX  21CX  33CX  AX  2.4422 5.5046 

4 11CX  22CX  31CX  AX  1.1664 1.4558 

5 11CX  22CX  32CX  AX  -1.3709 5.1082 

6 11CX  22CX  33CX  AX  2.9618 5.1082 

7 12CX  21CX  31CX  AX  -1.8679 3.3822 

8 12CX  21CX  32CX  AX  -2.0725 7.0346 

9 12CX  21CX  33CX  AX  1.6634 7.0346 

10 12CX  22CX  31CX  AX  0.3876 2.9858 

11 12CX  22CX  32CX  AX  -2.5921 6.6382 

12 12CX  22CX  33CX  AX  2.1831 6.6382 

13 13CX  21CX  31CX  AX  1.4255 3.3822 

14 13CX  21CX  32CX  AX  -1.6300 7.0346 

15 13CX  21CX  33CX  AX  3.2209 7.0346 

16 13CX  22CX  31CX  AX  1.9451 2.9858 

17 13CX  22CX  32CX  AX  0.1497 6.6382 

18 13CX  22CX  33CX  AX  3.7406 6.6382 
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convolutions of double truncations. This includes the sum of all the possible 

combinations containing two truncated random variables with normal and skew normal 

probability distributions. Numerical examples illustrate the application of convolutions 

of truncated normal random variables and truncated skew normal random variables to 

highlight the improved accuracy of tolerance analysis and gap analysis techniques. 

New findings have the potential to impact a wide range of many other engineering and 

science problems such as those found in statistical tolerance analysis, more specifically, 

tolerance stack analysis methods. By utilizing skew normal distributions in tolerance 

stack analysis methods this allows the tolerance interval to be covered more precisely, 

allowing for a more accurate understanding of the variation in the gap. Due to 

algorithmic and hardware constraints, the authors believe that it may not be possible to 

obtain closed-form convolutions on more than three truncated normal and truncated 

skew normal random variables at this time. This merits further investigation into 

algorithms involved in more than three sums of truncated normal random variables and 

would be a good topic for further research. New algorithmic procedures might allow 

the convolutions of more than three truncated normal random variables to be obtained 

with reasonable computational times. From a practical perspective, this would allow 

statistical tolerance models to be applied at every step of a manufacturing process that 

has hundreds or thousands of manufacturing steps, instead of at two or three 

manufacturing steps at a time. This could result in substantially increased savings for a 

company and an extremely accurate production forecast in terms of identifying the 

number of components that need to be scrapped or reworked. 
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CHAPTER FOUR 

ZIPPING AND RE-ZIPPING METHODS TO IMPROVE THE PRECISION AND 
ACCURACY OF MANUFACTURING PROCESSES 

 
This chapter has been published in the International Journal of Experimental Design and 
Process Optimisation and was a joint work with Jinho Cha. This work should be cited as:  
 
Krenek, R., Cha, J. and Cho, B.R. (2015) ‘Zipping and re-zipping methods to improve the  

precision and accuracy of manufacturing processes’, Int. J. Experimental Design 
and Process Optimisation, Vol. 4, Nos. 3/4, pp.256–289 
 

4.1. Introduction and Literature Review 
 

Understanding truncated random variables and their roles in screening inspection is 

paramount to the modern industry, as this type of inspection arises in many engineering 

applications. First, final products are often subjected to screening, and only conforming 

products are distributed to the customer, while the rejected products, which do not meet 

the specification requirements, are scrapped or reworked. This screening inspection of the 

products results in a truncated distribution which represents the conforming products 

delivered to the customer, as shown in Figure 4.1. This concept has been well advanced in 

the literature. See for example, Barr and Sherrill (1999), Kim and Takayama (2003), Jawitz 

(2004), Khasawneh et al. (2005a, 2005b),  Makarov et al. (2009), Cha and Cho (2014), 

Cha et al. (2014). Second, another potential application of screening inspection can be 

found in a multistage assembly production process, as shown in Figure 4.2, where only 

conforming items are passed on to the next stage. Examples of multistage processes are 

numerous. Typical systems of telecommunication, banking, and healthcare consist of 

multistage processes. It is noted that a product part or service transferring from one stage 

to the next stage in a multistage process may introduce extra variations that do not occur 
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in a generic single-stage process. An added advantage of screening inspection in a 

multistage process is the ability of reducing the extra variations by screening 

noncomforming items in each stage. This can lead to a greater understanding of production 

costs and a greater understanding of the scrap and reuse of wasted raw materials.  

 

    

 

Figure 4.1. Four different types of a truncated normal distribution 

 

 

Figure 4.2: Process steps in multi-iterative manufacturing process 

Lou (2015) notes that with increasingly competitive global markets, it is becoming 

more important than ever to be abreast on modern manufacturing techniques such as 

sustainable development and green manufacturing strategies. Unfortunately, complex 

modern multistage manufacturing processes are not easy to understand or explain in a 

straight foreword manner due to industrial globalization along with new technologies as 

paired with  a strong customer oriented paradigm as noted in Ngaile, Wang, & Gau (2015). 
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This means that it is more important than ever to exploit every possible advantage in order 

to better understand and improve manufacturing processes.     

It is important to note that a multistage assembly process sometimes requires the sum 

of truncated process distributions, also known as the convolution of process distributions. 

These convolutions of multiple truncations have practical importance in statistical 

tolerance design, gap analysis, and other quality engineering areas.  

Convolution is a mathematical way of combining two distributions to form a new 

distribution. In the middle of the 18th century, Euler (1748, 1750)  , introduced the earliest 

convolution theorem, ( ) ( ) ,
b

a
g x u f u du±∫ based on Taylor series and Beta functions. Note that 

f and g are two real or complex-valued functions of real variables u and x. In the truncated 

environment, Francis (1946) first used convolution to obtain a density function of a sum of 

the truncated random variables, ( ) ( ) ( ) ( ) ( ) ,
T T T TS Y X Y Xh s g y f x dx g s x f x dx

∞ ∞

−∞ −∞
= = −∫ ∫  where S = XT 

+YT with XT  and YT being truncated random variables. To be more specific, Francis (1946) 

and Aggarwal and Guttman (1960) examined the probability density functions of the sums 

of singly and doubly truncated normal random variables and developed their cumulative 

probability tables under the assumption that the random variables were independently and 

identically distributed. Lipow et al. (1964) then investigated the density functions of the 

sums of a standard normal random variable and a left truncated normal random variable. 

Francis (1946), Aggarwal and Guttman (1960), and Lipow et al. (1964) studied the 

potential computational complexity associated with convolutions. Furthermore, 

Kratuengarn (1973) compared the means and variances of the sums of left truncated normal 

random variables numerically through the Laplace and Fourier transforms and evaluated 
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the accuracy of those methods. Recently, Fletcher et al. (2010) examined an expression of 

the moments based on a truncated skew normal distribution. Tsai and Kuo (2012) applied 

the Monte Carlo method to obtain the densities of the sums of truncated normal random 

variables with 1,000,000 samples. However, most studies focused on identically truncated 

normal distributions.  

In this manuscript, the term double truncation refers to a random variable that has been 

pruned in two unique steps; similarly the term triple truncation refers to a random variable 

that has been pruned in three unique steps. The terms ‘zipping’ and ‘re-zipping’ refer to 

the truncation of a convolution performed on a distribution or multiple distributions. 

4.2. Truncation Assembly  

4.2.1  Double Truncation in a Two Stage Process 
 

When a normal random variable  is first truncated, we can obtain a truncated normal 

random variable  as shown in Figure 4.3. If an additional truncation occurs to enhance 

quality, another truncated normal random variable  is given. The domain of the 

truncated normal random variable is determined by the maximum (minimum) value 

of the lower (upper) truncation points of  and .  

 

 
Figure 4.3. Diagram of double truncation in two stage process  

X

1TX

2TX

2TX

1TX
2TX
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The probability density function of  1 is obtained as  

and the probability density function of  is expressed as 

.  

In the two-stage process, cases are classified into sixteen as shown in Figure 4.4. In each 

stage, a symmetric truncated normal distribution is produced when the distance between 

the lower truncation point and untruncated original mean is equal to the distance between 

the untruncated original mean and upper truncation point. 
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Figure 4.4.  Sixteen cases in two-stage process 

Now we examine the shape of the truncated normal distributions in each stage. First, we 

suppose that the mean  and variance  of  are 4 and 1, respectively. Second, the 

lower truncation points (LTPs) and upper truncation points (UTPs) in the sixteen cases are 

shown in Table 4.1.  

Table 4.1. The lower and upper truncation points in two-stage process 

Case 
# 

Stage 1 Stage 2 
Case 
# 

Stage 1 Stage 2 
Case 
# 

Stage 1 Stage 2 
Case 
# 

Stage 1 Stage 2 

(LTP, 
UTP) 

(LTP, 
UTP) 

(LTP, 
UTP) 

(LTP, 
UTP) 

(LTP, 
UTP) 

(LTP, 
UTP) 

(LTP, 
UTP) 

(LTP, 
UTP) 

1 (2.5, 
5.5) (3, 5) 2 (2.5, 

5.5) (3, 4.5) 3 (2.5, 
5.5) (3, ∞) 4 (2.5, 

5.5) (-∞, 5) 

5 (3, 6) (3.5, 
4.5) 6 (3, 6) (3.5, 

5.5) 7 (3, 6) (3.5, ∞) 8 (3, 6) (-∞, 5) 

9 (2.5, ∞) (3.5, 
4.5) 10 (2.5, ∞) (3.5, 

5.5) 11 (2.5, ∞) (3.7, ∞) 12 (2.5, ∞) (-∞, 5) 

13 (-∞, 
5.5) 

(3.5, 
4.5) 14 (-∞, 

5.5) (3, 4.5) 15 (-∞, 
5.5) (3.5, ∞) 16 (-∞, 

5.5) (-∞, 5) 
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Shown in Figure 4.5 are the shapes of truncated normal distributions, truncated means and 

truncated variances in the two-stage process. The values of the truncated means where 

truncated normal distributions are symmetric, are equal to the value of the untruncated 

original mean. The values of the truncated variance decreases in each case as a truncation 

occurs. In the plot of Stage 2 of Case 3, the value of the upper truncation point is finite as 

5.5 even though the upper truncation point in Stage 2 of Case 3 shown in Table 4.1 is 

infinite. This result shows that the domain of  is determined based on the maximum 

lower truncation point and minimum upper truncation point. In Cases 5, 9 and 13, the 

probability density functions of  are expressed as 

. Notice that the maximum lower truncation points of  are 3.5 and the minimum upper 

truncation points of  are 4.5. 

Ca
se 
# 

Stage 1 
 

Stage 2 
 

Ca
se 
# 

Stage 1 
 

Stage 2 
 

1 

  

2 

  

 

 

 

 

 

 

 

 

3 

  

4 

  

 

 

 

 

 

 

 

 

5   6   

2TX

2TX ( )2

2

1 4
2( ) 1.042exp

T

x

Xg x
− −

= ⋅ [3.5,5.5] ( )I x

2TX

2TX

1TX
2TX

1TX
2TX

typeSym NTN − ypeSym N tTN − ypeSym N tTN − ypeAsym N tTN −

1

1

2

4.00,

0.55
T

T

µ

σ

=

=
2

2

2

4.00

0.29
T

T

µ

σ

=

=
1

1

2

4.00,

0.55
T

T

µ

σ

=

=
2

2

2

3.79,

0.17
T

T

µ

σ

=

=

typeSym NTN − typeLTN − typeSym NTN − typeSTN −

1

1

2

4.00,

0.55
T

T

µ

σ

=

=
2

2

2

4.15

0.42
T

T

µ

σ

=

=
1

1

2

4.00,

0.55
T

T

µ

σ

=

=
2

2

2

3.85

0.42
T

T

µ

σ

=

=

ypeAsym N tTN − typeSym NTN − ypeAsym N tTN − ypeAsym N tTN −



73 
 

 

 

 

 

 

 

 

 

7 

  

8 

  

 

 

 

 

 

 

 

 

9 

  

10 

  

 

 

 

 

 

 

 

 

11 

  

12 

  

 

 

 

 

 

 

 

 

13 

  

14 

  

 

 

 

 

 

 

 

 

15 

  

16 

  

 

 

 

 

 

 

 

 

Figure 4.5. The properties of sixteen cases in two-stage process  
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4.2.2 Triple Truncation in a Three Stage Process 

Based on the results of Section 2.1, a stage is added by truncating the random variable 

for triple truncation. The probability density function of in Stage 3 is expressed 

as  . Figure 6 shows that diagram of the triple 

truncation in three-stage process.  

 

Figure 4.6. Diagram of triple truncation process  
 

Since there are also four types of a truncation in Stage 3, sixty four cases need to be 

considered as shown in Table 4.2. In each stage, a symmetric truncated normal distribution 

is produced when the distance between the lower truncation point and untruncated original 

mean is equal to the distance between the untruncated original mean and upper truncation 

point. 

 
Table 4.2.  Sixty four cases in three-stage process 
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13    14    
15    16    
17    18    
19    20    
21    22    
23    24    
25    26    
27    28    
29    30    
31    32    
33    34    
35    36    
37    38    
39    40    
41    42    
43    44    
45    46    
47    48    
49    50    
51    52    
53    54    
55    56    
57    58    
59    60    
61    62    
63    64    
 
Among the sixty four cases, we select sixteen cases in order to investigate how the shapes 

of truncated normal distributions, truncated means and truncated variances change as 

shown in Table 4.3. A• and B• indicate the lower and upper truncation points, respectively.  

Table 4.3. Lower and upper truncation points under sixteen cases among sixty four cases 
in three stage process 
Case 
# 

Stage 1 Stage 2 Stage 3 Case 
# 

Stage 1 Stage 2 Stage 3 Case 
# 

Stage 1 Stage 2 Stage 3 Case 
# 

Stage 1 Stage 2 Stage 3 
(A1,B1) (A2,B2) (A3,B3) (A1,B1) (A2,B2) (A3,B3) (A1,B1) (A2,B2) (A3,B3) (A1,B1) (A2,B2) (A3,B3) 

1 (2,6) (3,5) (3.5,4.5) 5 (2,6) (2.5,5) (3.5,4.5) 9 (2,6) (2.5,∞) (3.5,4.5) 13 (2,6) (-∞,5) (3.5,4.5) 

17 (1,5) (3.3,4.7) (3.5,4.5) 21 (1,5) (2,4.7) (3.5,4.5) 25 (1,5) (2,∞) (3.5,4.5) 29 (1,5) (-∞,5) (3.5,4.5) 

33 (2, ∞) (2.5,5.5) (3.5,4.5) 37 (2, ∞) (2.5,6) (3.5,4.5) 41 (2, ∞) (3,∞) (3.5,4.5) 45 (2, ∞) (-∞,5) (3.5,4.5) 
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49 (-∞,6) (2.3,5.7) (3.5,4.5) 53 (-∞,6) (2,5.5) (3.5,4.5) 57 (-∞,6) (2.3,∞) (3.5,4.5) 61 (-∞,6) (-∞,5) (3.5,4.5) 

 
In the three-stage process, the shapes of truncated normal distributions, truncated means 

and truncated variances are illustrated in Figure 4.7. The probability density functions of 

are expressed as  since the lower and upper 

truncation points are 3.5 and 5.5, respectively. 
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Figure 4.7. The properties of sixteen cases in three-stage process 
 

4.3. Formal Definition of Convolution  

As previously discussed, convolution is a mathematical way combining two 

distributions. Given the following general form 

( ) ( ) ( ) ( ) ( ) ,
b

a
h z g y f x g z x f x dx= ∗ = − ⋅∫   

the functions f(x) and g(y) are said to be convoluted into h(z) with 𝑥𝑥 having a domain 

restricted to be between a and b. the convolution concept was first used to obtain a density 

function of the sums of truncated random variables: 

( ) ( ) ( ) ( ) ( )
T T T TZ Y X Y Xh z g y f x dx g z x f x dx

∞ ∞

−∞ −∞
= = −∫ ∫   

Note that Z = XT + YT  where XT  and YT  are truncated random variables. If a random 

variable X is normally distributed with mean µ and variance σ2, its probability density 

function is defined as 
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                      .                                (1) 

When the distribution of X is truncated with the lower and upper truncation points, xl and 

xu, the probability density function of the truncated normal distribution can then be 

expressed as follows 

                                 ( )( ) where .
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T u
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f xf x x x x
f x dx

= < <
∫

                       (2) 
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The shapes of a truncated distribution vary based on its truncation point(s), and mean 

and variance of the untruncated original distribution. It is noticed that a truncated variance 

after implementing a single truncation will be no longer the same as the original variance 

associated with the untruncated normal distribution fX(x). Similarly, unless symmetric 
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truncations are used, a truncated mean is not the same as the original mean of an 

untruncated normal distribution. Finally, properties of S- and L- types of quality 

characteristics can be described from the above notation. Specifically, eliminating the 

lower specification limit, while retaining a finite upper specification limit for xu results in 

an S-type quality characteristic. Eliminating the upper specification limit xu, while 

retaining a finite lower specification limit for x l results in an L-type quality characteristic. 

 Figure 4.8 illustrates the plots of the distribution of the sum of two truncated normal 

random variables from an assembly process. Plots (a) and (b) show the distributions of two 

independently, identically distributed symmetric two times truncated normal random 

variables, respectively. The distribution of the sum of the truncated normal random 

variables which is obtained by convolution is shown in plot (c). Note that its probability 

density function hZ(z) is different from the density of a traditional normal distribution. 

 

 

 

 

 

 

 

(a)  (b)  (c) 
Figure 4.8. Plots of the sum of two truncated normal random variables from an assembly 

process 
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4.4. Numerical Examples 

4.4.1 Zipping Under the Sum of Two Truncated Normal Random Variables 

Zipping from circular and rectangular types can be considered as shown in Figure 9.  

Circular Type  Rectangular Type 
 

 

 
 

 

Figure 4.9. Two types of truncation of the sum of two truncated normal random variables 
 

In this section, numerical examples of zipping based on the sums of convolutions of 

two truncated normal distributions are illuminated. The probability density function of the 

sum of two truncated normal random variables, 
1TX  and 

2TX is first obtained. The random 

variable 2Z  is then truncated.  Parameters of two truncated normal random variables are 

shown in Table 4.4. For numerical examples, assume that the means, 1µ  and 2µ , are 12 

and 7, and the standard deviations, 1σ  and 2σ  are 1.2 and 0.8, respectively. The lower and 

upper truncation points of 
1TX  and 

2TX  are also assumed as shown in Table 4.  
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Table 4.4.  Parameters of two truncated normal random variables 
 µ  σ  LTP UTP 

1TX   12 1.2 10 14 

2TX  7 0.8 -∞ 10 
 
By letting 2Z  be 

1 2
,T TX X+  the probability density function of the sum of the above two 

truncated normal random variables is expressed as 

2 2 1
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Mean and standard deviation (variance) of 2Z  are also obtained as 18.9997 and 1.2455 

(1.5512), respectively. Next, the distribution of 2Z  with the lower and upper truncation 

points, 17 and 21, is zipped. The probability of density function of  2T
Z  is then obtained as  
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The mean, variance and distribution, of 2Z  and 2T
Z  are shown in Figure 4.10. 
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1TX  
2TX  

1 22 T TZ X X= +  2T
Z  

ATNN 

 
1 1

212.00, 0.91T Tµ σ= =  

TNS 

 
2 2

27.00, 0.64T Tµ σ= =  

 

 
2 2

219.00, 1.55Z Zµ σ= =  

 

 
2 2

218.42, 1.16
T TZ Zµ σ= =  

Figure 4.10.  Zipping based on the sum of two truncated normal random variables 
 

When considering sums of truncated normal random variables which are independent 

and identically distributed, the mean of the sum of the truncated normal random variables 

is equal to the sum of the means of each individual truncated normal random variable. 

Similarly, the variance of the sum of the truncated normal random variables is equal to the 

sum of the variances of each individual truncated normal random variable. The variance of 

2T
Z  is always smaller than the variance of 2 ,Z  and the truncation points cause the mean 

of 2T
Z to be larger than the mean of 2Z .   
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4.4.2 Re-zipping Under the Sum of Three Truncated Normal Random Variables 

Re-zipping from rectangular type can be considered as shown in Figure 4.11.  

 
Figure 4.11. Re-zipping based on the sum of three truncated normal random variables 

 

In this section, we assume that 
1
,TX

2
,TX  and 

3TX are independent and identically 

distributed. For numerical examples, consider the means, 1,µ  2 ,µ  and 3µ  are 10, and the 

standard deviations, 1,σ 2 ,σ  and 3σ  are 2. The lower and upper truncation points of 
1TX  

and 
2TX  are also assumed as −∞  and 14, respectively. By referring Section 5.1, the 

probability density function of 2Z  is obtained as 
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and then the probability density function of 2T
Z  
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with the lower and upper truncation points, −∞  and 24,  Based on the above probability 

density functions, the means, variances and distributions as shown in Figure 4.12. By 

letting 
33 2 ,

T TZ Z X= +  the probability density function of 3Z  is given by  
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Mean and standard deviation (variance) of 3Z  are obtained as 29.3835 and 3.0751 

(9.4564), respectively. Then, the distribution of 3Z  is re-zipped with the lower and upper 

truncation points, −∞  and 34. The probability of density function of  3T
Z  is then expressed 

as  

3
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The mean, variance and distribution of 3T
Z  are also shown in Figure 4.12.  
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1TX  
2TX  

1 22 T TZ X X= +  2T
Z  

ATNN 

 
1 1

29.89, 3.55T Tµ σ= =  

TNS 

 
2 2

29.89, 3.55T Tµ σ= =  

 

 
2 2

219.78, 7.09Z Zµ σ= =  

 

 
2 2

219.49, 5.91
T TZ Zµ σ= =  

 
3TX  

33 2T TZ Z X= +  3T
Z  

 
 
 

TNL 

 
3 3

29.89, 3.55T Tµ σ= =  

 

 
3 3

229.38, 9.46Z Zµ σ= =  

 

 
3 3

229.03, 7.91
T TZ Zµ σ= =  

Figure 4.12.  Re-zipping based on the sum of three truncated normal random variables 
 

Note that the mean and variance of 2Z  is equal to the sum of the means and variances of 

the truncated normal random variables, 
1TX  and 

2
,TX  respectively, while the mean and 

variance of  3Z  is equal to the sum of the means and variances of the truncated normal 

random variables, 2T
Z  and 

3
,TX  respectively. Furthermore, the variance of 3T

Z  is always 

smaller than the variance of 3,Z  and the truncation points cause the mean of 3T
Z to be 

smaller than the mean of 3.Z  
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4.5. Conclusion and Future Study 
 

The mathematical foundations of various truncated normal distributions and the 

convolutions of these distributions were explored in order to offer insight into methods 

used to meticulously account for material use. Furthermore, understanding the mean and 

standard deviations of production processes using a truncated normal distribution could 

lead to an enhanced understanding of a modern production process that could help identify 

key bottlenecks and resource usage on the manufacturing floor.  

Areas for future study include examining expected quality loss functions as a result of 

the process output in order to establish key relationships among interdependent process 

steps. This could lead to a multivariate approach for zipping and truncations. This leads to 

another related topic on computational efficiency. Key issues to be addressed include 

finding efficient algorithms for multivariate convolutions in assembly processes that have 

dependent variables. These algorithms must be explored thoroughly enough to see if they 

can converge in at least polynomial time.   

 

 

 

 

 

 

 

 



CHAPTER FIVE

DEVELOPING A TWO-STAGE STOCHASTIC PROGRAMMING MODEL IN
TOLERANCE OPTIMIZATION USING A GUARD BAND APPROACH

5.1 Introduction

Uncertainty is difficult to account for and can arise in several different ways in a

manufacturing setting. If one plans to sell a final product, the price not only depends

on the quality of the final product, but also a competing firm’s planned product selling

price. In this situation uncertainty can arise from a lack of knowledge. Uncertainty

can also arise from the complexity of the process as demand also depends on economic

factors, customer preferences, and ultimately a company’s and competitor’s actions.

Inputs in a production process may also be uncertain due to difficulty to measure

a certain quantity. All processes that we try to model also have inherent statistical

randomness in them as well. This type of uncertainty is called irreducible uncertainty.

One may be able to reduce the effect of the random variation on the model for the

situation, or reduce the model’s sensitivity to variation, but it will always be there. In

other situations one deals with reducible uncertainties. These reducible uncertainties

can be dealt with by collecting more accurate data or using more accurate measuring

tools. The purpose of this paper is to propose a model that accounts for irreducible

uncertainties, while reducing uncertainties that are able to be reduced through a

better manufacturing process.

Parts cannot be manufactured to exact nominal dimensions due to variation in

materials, machines and the people that control the manufacturing process. As a
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result, the specification limits and their associated tolerances can have a vast impact

on the quality, performance and cost of the finished product. This has created a large

research interest in obtaining optimal tolerances and specification limits in order to

not only reduce manufacturing costs, but also to minimize the expected quality loss of

a product. The expected quality loss of a product includes not only scrap and rework

costs, but also incorporates costs as a part or product deviates from a nominal value.

Furthermore, unnecessarily tight tolerances may result in a complicated and costly

manufacturing process, while low tolerances mean a lower manufacturing cost, but

weaker product performance.

One of the key difficulties of any process is defining the specification limits and

tolerances precisely in a given production process. This may not always be possible,

however, since the production process may not be sophisticated or accurate enough

to manufacture a product within the specification limits. Consider the situation

where the probability that a product’s specifications fall outside the tolerance limits

cannot be calculated because the production process is not stable. In this situation,

one could guarantee that the product is within the specification limit or outside the

specification limits within a certain threshold value. This would allow practitioners

to have the maximum amount of control over setting specifications and tolerances

of their product, within their inherently unstable process. This could be done by

integrating stochastic chance-constrained and tolerance optimization models.

Finding optimal tolerances has previously been looked at through a deterministic

lens however, for complex processes this may not always be possible and one may

need to account for ambiguous production criteria. Chance-constrained stochastic

programming is an approach for modeling problems that have uncertain parameters.

This is opposed to deterministic programming approaches that have known parame-

ters and are usually tractable; however, most deterministic approaches often do not
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accurately account for real world variables and parameters which are often uncer-

tain at the time of making a decision. Subject pioneers Charnes and Cooper define

chance-constrained programming as the process of selecting certain random variables

as functions of random variables in order to maximize a functional of random vari-

ables subject to constraints that must be maintained at prescribed levels of certainty

represented by a probabilistic value (Charnes and Cooper, 1959). They illustrate this

idea by comparing the deterministic and chance-constrained forms of an inventory

model involving oil tankage facilities supplied by a refinery, where expected profit is

maximized subject to specified probability constraints where a certain minimum in-

ventory must be maintained with a certain probability and inventory must not exceed

a certain maximum with a certain specified probability. Other prominent examples

of chance-constrained programming include situations in which decisions are made

repeatedly within a similar set of circumstances and the objective is to formulate a

solution that will perform well on average, such as designing truck routes for package

carriers, whose customers have random demand for packages. Chance-constrained

programming can also be applied to situations in which a one-time decision must

be made such as the initial investments in a financial portfolio with varying interest

rates (Li, 1995), activity analysis and technology planning with production horizon

uncertainties (Thore, 1987), capital budgeting (Huang, 2007), dietary planning with

stochastic costs over multiple time periods, and material composition selection with

stochastic costs dictated by market terms.
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5.2 Previous Works

5.2.1 Tolerance Optimization

Initially, only manufacturing cost was considered in objective functions when min-

imizing the cost for setting tolerances, while ignoring expected quality loss. A large

amount of research has been carried out on optimal tolerance allocation using cost-

vs-tolerance functions. Several of these functions have been proposed including linear

tolerance functions, various reciprocal of tolerance functions, exponential functions,

and others. A wide array of solution techniques have been employed with these

functions including the Lagrange multiplier method, linear programming, nonlinear

programming, the branch and bound method, and combinatorial techniques (Chase

et al., 1990). Polynomial time solution algorithms and corresponding hybrids mod-

els were introduced by Dong et al. to solve the models listed above (Dong et al.,

1994).(Singh et al., 2004) Introduced a genetic algorithm and compared its perfor-

mance to exact algorithms which conduct an exhaustive search of the solution space.

More recently, quality loss functions have received the attention of researchers. These

researchers combine quality loss functions and manufacturing costs. They use particle

swarm and genetic algorithms to solve these models (Sivakumar et al., 2011; Geetha

et al., 2013). Cheng and Maghsoodloo considered the effects of shifting components’

means and variances on quality loss. It was found that by shifting a component’s

variance the optimal allowance, tolerance costs and quality loss of each component

will be affected (Chang and Maghsoodloo, 1995). Wu et al. considered asymmetric

quality loss functions (Wu et al., 1998). Other numerical methods used to minimize

expected quality loss include neural learning algorithms (Chen, 2001), continuous

ants colony algorithms (Prabhaharan et al., 2005), game theoretic (Lu et al., 2012),

and fuzzy quality loss approaches (Cao et al., 2009).
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Despite numerical methods being widely used, the Karush-Kuhn-Tucker condi-

tions and Lagrange multiplier methods are usually the first choice in solving a tol-

erance optimization problem since it can yield a closed-form solution (Singh et al.,

2009). If closed-form solutions can be found, then optimal tolerances can be calcu-

lated fast and accurately.

It is important to note that the performance of a product and its quality charac-

teristics depend greatly on the variation of component parts produced. In order to

reduce the effect of variation on component parts and reduce errors, several techniques

are often used in tolerance optimization to reduce errors. One of these techniques

is selective assembly, which involves matching of low-precision components to help

achieve an overall final assembly of high precision, while at the same time being cost

effective. Here, components of mating pairs are measured and grouped into several

different bins or classes as they are created. The final product is then assembled by

selecting components in certain bins to meet the required specifications as precisely as

possible. This approach is often less expensive than designing tolerances with tighter

specifications. Techniques for improving quality have been widely investigated in

the literature. See for example (Mease et al., 2004; Pugh, 1992, 1986). One indus-

try that is greatly affected by dimensional part variation is the automotive industry,

since there are several quality issues that arise from similar variations in the assembly

process (Ceglarek and Shi, 1995).

Another important technique to reduce errors in complex assemblies includes

adaptive manufacturing. Adaptive manufacturing involves manipulation of manu-

facturing parameters in order to build suitable components for assembly. Business

enterprises often have to deal with the manufacturing of assemblies with quality

requirements close to technological limits. These enterprises include advanced pro-

duction systems, such as semiconductor manufacturing, automotive manufacturing,
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and aerospace manufacturing. In the context of selective assembly and in particular,

additive manufacturing, new measurement technologies and advanced information

technology systems, such as cyber-physical systems, give the ability to use quality

control data generated in real time, in order to control the production process adap-

tively (Lanza et al., 2015).

5.2.2 Chance-Constrained Optimization

Charnes and Cooper established deterministic equivalents of chance constraints by

relaxing the form of the stochastic programming constraints and incorporating three

different classes of objective functions which include finding the maximum expected

value, the minimum variance and the maximum probability of various objective func-

tions and established these to be convex (Charnes and Cooper, 1963). Miller and

Wagner introduced joint chance constraints by modeling multivariate events. One

model that was studied was when the right-hand side constants of the linear con-

straints were random. Another model included when the coefficients of the variables

were described by a multinomial distribution. They showed that under certain restric-

tions both models can be viewed as a deterministic nonlinear programming problem.

They also explored whether these models can be considered concave or convex under

various conditions (Miller and Wagner, 1965).

The main difficulty of working with the chance-constrained programming models

comes from the need for the optimal decisions to be made before the observation of

certain random parameters takes place; therefore, it is difficult to make any decision,

since this could result in violating constraints caused by random effects. Sometimes,

however, these constraint violations can be compensated for in further stages of de-

cision making in which a penalty is assigned to constraint violations, as long as the

costs for not satisfying the constraints are known. This leads to what is known as
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multistage stochastic programming (Birge and Louveaux, 1997). Several applications,

however, do not lend themselves to having any constraint violations. For example,

there are situations where the safety levels of water that must be maintained in a wa-

ter tower in case of emergency. In this case it would be better to guarantee feasibility

of constraints as a high probability, since there is always the case where an unexpected

extreme event can occur. Another issue with chance-constrained programming stems

from the fact that the probability distribution underlying the already probabilistic

problem is not known with absolute certainty (Erdogan, 2006).

More recent research has yielded results on the convex approximations of chance

constraints. This work is needed as chance-constrained programs are not necessar-

ily convex. Nemirovski and Shapiro (Nemirovski and Shapiro, 2006), for example,

created a tractable method of solving these particular chance-constrained models by

constructing a general class of convex conservative approximations of the correspond-

ing chance constrained problem.

5.3 Problem Statement

A guard band is defined as the amount by which minimum product tolerance

specifications are increased to ensure that, even with measurement uncertainty, the

product will be within the tolerances within a specified level of confidence. In the case

of tolerance optimization, an added guard band serves two distinct purposes. The first

is to ensure a high quality product by accounting for uncertainty in the manufacturing

process and the second is to differentiate between the quality of finished products

through product binning, such as in semiconductor device fabrication.

Care must be taken when applying guard banding to tolerance optimization as

a quality loss of a product may occur both symmetrically and asymmetrically. The

target value of the critical-to-quality (CTQ) characteristic must also be taken into
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consideration when determining optimal tolerances. As the CTQ value deviates from

the target, the loss in product performance may either be symmetric or asymmetric

depending on the nature of the CTQ under study.

Tolerance optimization refers to setting specification limits or tolerances in a man-

ufacturing process in order to minimize the total cost of the process. Initially, only the

manufacturing cost was considered in objective functions when minimizing the cost

for setting tolerances, while ignoring expected quality loss. In the proposed two-stage

model, the goal is to minimize the total expected quality loss when the production

process is not well defined or stable enough to be able to obtain the exact probability

that the product falls outside of specification limits. In both situations the proba-

bility cannot be estimated precisely. By utilizing stochastic programming, one can

guarantee that the product is within specification limits with a certain probability.

By further incorporating a guard band approach, a safeguard can be incorporated

into the model further reducing the possibility for error. In the model we assume

that error-free inspection of the products occur.

We propose a two-stage optimization model. The random variables include the

dimension of the product produced due to manufacturing process, as well as, un-

certainty as well as uncertain market conditions. The first stage decision variables

are the selling prices that depend on the quality of the product produced. Then, in

the second stage, the recourse variables are specification limits, as well as, the inner

guard bands that are used to differentiate between higher and lower quality products.

This allows the practitioner to maximize profits when taking into account both an

uncertain manufacturing process as well as uncertain market conditions.

The overarching goal of this paper is to optimize a system’s performance by using

models which account for uncertainties in problem parameters. The specific model

developed achieves tolerance optimization via the use of chance-constrained program-
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ming. In this paper we assume that the distribution of the production process is either

normal, or truncated normal since they are often used in the literature to model tol-

erance optimization problems. The normal distribution and the truncated normal

distribution also help make constraints relatively manageable. This helps improve

tractability in these difficult types of tolerance optimization problems. We expect

that, the models proposed in this research can benefit manufacturers utilizing com-

plex processes by allowing practitioners to modify the algorithms and techniques

illustrated in this paper.

Schematically, the model is summarized in Figure 5.1 below:

Figure 5.1: Proposed Stochastic Model Stages

5.4 Development of the Two-Stage Stochastic Programming Model

In this section a chance-constrained non-linear programming model is developed

in order to analyze the effect of guard banding and tolerance optimization in order

to maximize the profitability of a company with an imprecise manufacturing pro-

95



cess subject to uncertain market demand. The model is presented in the next two

subsections.

5.4.1 Abbreviations and Notation

Sets

� K = {A,B,C} is the set of products

� S is the set of scenarios generated

Parameters

� α is the maximum allowable violation of the lower specification limit

� β is the maximum allowable violation of the upper specification limit

� γ is the maximum allowable violation of the upper guard band

� δ is the maximum allowable violation of the lower guard band

� ∆ is the maximum process precision

� q is the unit production cost

� l is the cost of quality loss when the product specification is greater than the

UGB

� e is the cost of quality loss when the product specification is less than the LGB

� f is the cost of quality loss when the product specification is greater than the

USL

� k is the cost of quality loss when the product specification is less than the LSL
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� τ is the target value

� κi is the mean demand for product i

� ηi is the price elasticity for product i

� ηij is the price elasticity for product i to changes in the price of product j

Random problem parameters

� ξ̃i is a characteristic of product i from stage 1 that follows N(µ1, σ1)

� ψ̃i s a characteristic of product i from stage 2 that follows N(µ2, σ2)

� Di(xi, ζ̃i) is demand for product i, which is a function of market conditions ζ̃i

and price xi

� Ξ = {ζ, ξ, ψ} is the set of random market conditions, quality of product pro-

duced in stage 1, and quality of product produced in stage 2, respectively

� K = {A,B,C} is the set of products

Decision Variables

� xi is price of product i ∈ K

� yi is the process specific guard band, y1 = LGB, y2 = UGB

� zi is the process specific specification limits, z1 = LSL, z2 = USL
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5.4.2 Initial Model Formulation

min
k∑
i=1

Li(y) +
k∑
i=1

Li(z)− E[h(x, ξ, ψ)] (1a)

Subject to,

xi ≥ qi ∀i ∈ K (1b)

y2 ≤ z2 −∆ (1c)

z1 ≤ y1 −∆ (1d)

τ ≤ y2 −∆ (1e)

y1, y2, z1, z2 ≥ 0 (1f)

where the recourse function h(x, ξ, ψ) for a given value of the first-stage decisions

x and realization ζ of random variables ζ̃ is given by:

h(x, ξ, ψ) = min
y,z

[π(x, ξ, ψ)] (2a)

Subject to

Di

(
xi, ζ̃

)
= κi(ξ̃)− ηixi +

|K|∑
j=1,i 6=j

ηijxj ∀i ∈ K (2b)

P (ξi ≤ z1) ≤ α ∀i ∈ K (2c)

P (ξi ≥ z2) ≤ β ∀i ∈ K (2d)

P (ψi ≤ y1) ≤ δ ∀i ∈ K (2e)

P (ψi ≥ y2) ≤ γ ∀i ∈ K (2f)

(2g)

where, π (x, ξ) =
|K|∑
i=1

Di(xi, ξ̃)(xi − qi).
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5.4.3 The First Stage of the Stochastic Programming Model

In modeling the first stage of the tolerance optimization model, the random vari-

ables include the dimension of the product produced, with two of the decision variables

being the selling prices with the objective being to minimize the expected quality loss.

In terms of finding a selling price based upon uncertain market demand, assume

that the product produced is separated into three groups or bins according to the

truncated distribution ψ in order to be sold on the market. The three classification

bins defined by A = (LSL,LGB), B = (LGB,UGB), and C = (UGB,USL) each

represent a separate level of quality of the product produced that can be sent to

market. In the first stage the objective is to maximize profit based upon market

demand by setting appropriate selling prices. We must then decide how many prod-

ucts with specifications A, B and C to produce during the production process based

on the truncated normal distribution ψ and separate demands for A, B, and C. For

example, it is possible to meet demand for products with specification B and reduce

the amount of products with specifications A and C. If we decide to produce more

product to meet the demand for products with specifications A and C, we would

then be left with a surplus of product with specification B. The question is how to

minimize quality loss in the second stage based on both the uncertainties in demand

for the product, which is based on the uncertain production process by setting the

guard band values appropriately.

Assume that the demand for products with specifications A, B, and C are depen-

dent on one another based on the selling prices. Then one can maximize the profit

per unit based on the selling prices. The expected profit part of the objective function

can be written as:

99



π (x, ξ) =
|K|∑
i=1

Di(xi, ξ̃)(xi − qi). (3)

in the final formulation.

5.4.4 The Second Stage of the Stochastic Programming Model

In the second stage of the model, the specification limits and guard bands must be

introduced as recourse variables after the uncertain market demand as well as initial

manufacturing process uncertainties are realized in order to separate the product into

high quality or low quality versions to sell to consumers. A practical application of this

is used in the semiconductor industry. Semiconductor manufacturing is an example

of an imprecise process, with product yields as low as 30 percent. In this industry

defects in manufacturing are not necessarily fatal, so that it may be possible to salvage

part of a failed batch of integrated circuits by modifying performance characteristics.

As an example, if one lowered the clock frequency of a CPU, and disabled critical

parts that are defective, the part can be sold at a lower price, thereby fulfilling needs

of lower end market segments. This practice is common on products such as CPUs,

GPUs and RAM. A specific example of this occurs in using selective voltage binning

in order to maximize the yield of high quality semiconductor products (Lichensteiger

and Bickford, 2013). By using a guard banding type approach, we can separate a

product into high quality levels and low quality levels to be sold at different prices

based on market demand. The guard bands will be determined in the second stage

after the specification limits are set.

For example, assume that ξ ∼ N (µ, σ2), where µ and σ are estimated process
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parameters from the production process and the distribution has a lower truncation

point at zero, since the dimension of a part cannot be less than zero. In this case,

f(ξ) = 1√
2πσ2

e−
(ξ−µ)2

2σ2 ,where −∞ < ξ < ∞ so that the probability density function

of the truncated normal distribution at zero, fT (ξ) , can be described as fT (ξ) =

f(ξ)
∞∫
0

f(ξ)dξ
, where 0 < ξ <∞. Here, note that the truncated mean µT =

∞∫
0

ξfT (ξ) dξ and

the truncated variance σ2
T =

∞∫
0

ξ2fT (ξ) dξ −
(∞∫

0

ξfT (ξ) dξ

)2

. Suppose a sample of

n observations of ξi are taken, then in trying to minimize the expected quality loss,

one can use sample average approximation to convert the above part of the objective

function into:

E (L(z, ξi)) =

∫ ∞
0

fT (ξ)L(z, ξ)dξ =
1

n

n∑
i=1

L(z, ξi) (4)

Assume a piece-wise linear symmetric loss function, where the loss incurred at the

target value is zero and the loss incurred at the upper and lower specification limits

is $c. In this case,

L(z, ξi) =


c(ξi−τ)
(z2−τ) , where τ < ξi

c(ξi−τ)
(z1−τ) , where i < τ


(5)

Call the case where τ < ξi case 1 and where ξi < τ case 2. This symmetric loss

function looks like:

[
1

a

∑
∀ξi>τ

c (ξi − τ)

(USL− τ)
+

1

b

∑
∀ξi<τ

c (ξi − τ)

(LSL− τ)

]
(6)

where a is the number of case 1 scenarios and b is the number of case 2 scenarios
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so that a + b = n. Note that in P (ξi ≥ z2) ≤ β, β is the maximum allowable

probability of violating the upper specification limit and in P (ξi ≤ z1) ≤ α where

α is the maximum allowable probability of violating the lower specification limit.

These constraints can be estimated once a sample of n observations of are taken

as z2 ≥ (1− β)th percentile of the n observations and z1 ≤ αth percentile of the n

observations. Finally, in the specific case of the symmetric loss function, the constraint

τ − z1 = z2 − τ must be introduced to enforce symmetry.

Assume a piecewise linear asymmetric loss function, where the loss incurred at the

target value is zero and the loss incurred at the upper and lower specification limits

is $d and $e, respectively. Then the deterministic equivalent of the asymmetric loss

function becomes:

[
1

a

∑
∀ξi>τ

d (ξi − τ)

(z2 − τ)
+

1

b

∑
∀ξi<τ

e (ξi − τ)

(z1 − τ)

]
(7)

Similarly, in the second stage, one solves for the guard bands after the upper and

lower specification limits are determined and market demand has been realized. As-

sume that the product here can be separated into high and low quality versions based

on where the guard bands are set. Assume that the upper and lower specification

limits are set and second sample of m data points need to be taken from the modified

production process, where ψ ∼ N (µ, σ2), and is truncated at the specification limits.

In this case, one can follow similar steps as outlined with ξ to minimize the expected

quality loss, using sample average approximation to convert part of the objective

function into

E (L(y, ψi)) =

∫ USL

LSL

fT (ψ)L(y, ψ)dψ =
1

m

m∑
i=1

L(y, ψi)

(8)
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Assume a new piecewise linear symmetric loss function, where the loss incurred

at the target value is zero and the loss incurred at the upper and lower guard bands

is $f in the new production process. In this case

L(y, ψi) =


f(ψi−τ)
(y2−τ) , where τ < ψi

f(ψi−τ)
(y1−τ) , where ψi < τ


(9)

Let the instance where τ < ψi be case 3 and where ψi < τ case 4. Under symmetric

conditions, the loss function is expressed as

[
1

g

∑
∀ψi>τ

f (ψi − τ)

(y2 − τ)
+

1

h

∑
∀ψi<τ

f (ψi − τ)

(y1 − τ)

]
(10)

where g is the number of case 3 scenarios and h is the number of case 4 scenarios so

that g+h = m. Note that in P (ψi ≥ y2) ≤ γ, γ is the maximum allowable probability

of violating the upper guard band and in P (ψi ≤ y1) ≤ δ, δ is the maximum allowable

probability of violating the lower guard band. These constraints can be estimated

once a sample of m observations of ψ are taken as y2 ≥ (1− γ)th percentile of the

m observations and y1 ≤ δth percentile of the m observations. Finally, in the specific

case of the symmetric loss function, the constraint τ−y1 = y2−τ must be introduced

to enforce the symmetry of the quality loss functions. Putting this altogether one has

for the discrete approximation of the loss function between the guard bands of the

second stage of symmetric stochastic programming model:
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[
1

g

∑
∀ψi>τ

f (ψi − τ)

(y2 − τ)
+

1

h

∑
∀ψi<τ

f (ψi − τ)

(y1 − τ)

]
(11)

The asymmetric guard band loss function:

[
1

g

∑
∀ψi>τ

i (ψi − τ)

(y2 − τ)
+

1

h

∑
∀ψi<τ

j (ψi − τ)

(y1 − τ)

]
(12)

5.4.5 Final Model Formulation

min
k∑
i=1

Li(y) +
k∑
i=1

Li(z)− E[h(x, ξ, ψ)] (13a)

subject to

xi ≥ qi ∀i ∈ K (13b)

y2 ≤ z2 −∆ (13c)

z1 ≤ y1 −∆ (13d)

τ ≤ y2 −∆ (13e)

Li (y) =

[
S∑

s=1,ψis<τ

l (ψis − τ)

(y1 − τ)
+

S∑
s=1ψis>τ

e (ψis − τ)

(y2 − τ)

]
∀i ∈ K (13f)

Li (z) =

[
S∑

s=1,ψi<τ

l (ψis − τ)

(z1 − τ)
+

S∑
s=1,ψis>τ

e (ψis − τ)

(z2 − τ)

]
∀i ∈ K (13g)

y1, y2, z1, z2 ≥ 0 (13h)

(13i)
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where, the recourse function h(x, ξ, ψ) for a given value of the first-stage decisions

x and realization ζ of random variables ζ̃ is given by:

h(x, ξ, ψ) = min
y,z

[π(x, ξ, ψ)] (14a)

subject to

Di

(
xi, ζ̃

)
= κi(ξ̃)− ηixi +

|K|∑
j=1,i 6=j

ηijxj ∀i ∈ K (14b)

z1 − ξis ≤M ∗ νs ∀s ∈ S (14c)

|S|∑
s=1

νs ≤ α|S| (14d)

ξis − z2 ≤M ∗ ws ∀s ∈ S (14e)

|S|∑
s=1

ws ≤ β|S| (14f)

y1 − ψis ≤M ∗ vs ∀s ∈ S (14g)

|S|∑
s=1

vs ≤ δ|S| (14h)

ψis − y2 ≤M ∗ us ∀s ∈ S (14i)

|S|∑
s=1

us ≤ γ|S| (14j)

νs ∈ {0, 1} ∀s ∈ S (14k)

ws ∈ {0, 1} ∀s ∈ S (14l)

vs ∈ {0, 1} ∀s ∈ S (14m)

us ∈ {0, 1} ∀s ∈ S (14n)

(14o)

where, π (x, ξ) =
|S|∑
s=1

Di(xi, ξis)(xi − qi)
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5.5 Solving the Two-Stage Stochastic Programming Model

5.5.1 Solving the Model

Solving the model first involves initializing appropriate constants for the model

including setting appropriate maximum probabilities for constraint and guard-band

violations within the stochastic model, as well as establishing an upper bound on

the maximum possible precision of the manufacturing process. Creating realistic loss

functions with appropriate quality loss coefficients at the specification limits and the

guard-bands is also important and depends on the specific manufacturing process

being modeled. The cost of running the manufacturing process to produce a product

must also be considered. Generating a reasonable number of scenarios to run is also

important.

The next step in solving the model involves generating truncated normal random

variables for all the scenarios in order to reasonably simulate the outcomes of the

production process and allow for a reasonable degree of accuracy in generating process

outputs. Establishing deterministic equivalents of the stochastic model is also key to

solving the model.

The final step in solving the model involves using interior point optimization

methods that exploit first and second derivative information of the established deter-

ministic equivalents, via numerical methods. This was done by using the commercial

solver IPOPT (Interior Point OPTimizer), which is a software package for nonlinear

optimization developed by Andreas Wächer for his PhD thesis in Chemical Engineer-

ing at Carnegie Mellon University (Wächer, 2002) . This is part of the COIN-OR

(Computational Infrastructure for Operations Research) open source initiative which

was initialized through the JuMP (Julia for Mathematical Optimization) modeling

language.
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The basic solution approach is outlined in Figure 5.2 below:

Figure 5.2: Solving the Proposed Two-Stage Stochastic Programming Model

5.6 Two-Stage Stochastic Programming Model Results

5.6.1 Scenario Generation

The number of optimal scenarios to run was determined by running 30 different

seed values in order to account for different strings of random numbers. Ten to three

hundred scenarios, which increased by increments of ten, of each of the 30 seed values

for 900 total runs, were performed under the following initial conditions given in table

1 below.

It was determined that, under these conditions, by running a one-way ANOVA

that the number of scenarios had no statistically significant effect at the alpha = 0.05

level on the objective function (P -value ≈ .924), the final upper specification limit

value (P -value ≈ 1), or the upper guard band value (P -value ≈ 1). By contrast it

was determined that the number of scenarios ran had a statistically significant effect

on the values of the lower specification limit (P -value≈0), the lower guard band

(P -value ≈ 0), pa (P -value = 0.005), pb (P -value = 0.005), and pc (P -value=0.005).

Furthermore, Tukey’s multiple comparison test was run on the statistically significant

values in order to determine to within ten scenarios the optimal number of scenarios to

run so that the optimization model could be used under a fixed number of scenarios.

The results of Tukey’s test showed that as long as at least 30 scenarios were run,

model solutions would not be affected by the random numbers generated, so it is
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Constants
Constant Value
α 0.1
β 0.1
γ 0.1
δ 0.1
∆ 0.05
q 100
µ1 25
σ1 2
µ2 25
σ2 2
l (UGB quality loss cost) 3
e(LGB quality loss cost) 1
f (USL quality loss cost) 5
k (LSL quality loss cost) 2
τ 25

Table 5.1: Table of constants used when determining the optimal number of scenarios

particularly robust.

Upon further analysis, once the scenarios were set at 30, under the same initial

conditions in Table 1, individual constants were varied over the different values shown

in Table 2, while holding all the other values fixed as shown in Table 1. None of these

values were determined to be statistically significant, with the exception of the cost

of production, q. A boxplot, ANOVA table, and the results of Tukey’s test for five

different production costs: $50, $100, $200, $300, $325 are given in Tables 2 and 3

along with Figure 5. It should be noted that these costs values were chosen so that

positive profits would result using the demand functions in (7) and that the selling

prices were higher than the production costs, q. In particular, the following fixed

demand functions based on market conditions were chosen:
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DA(pA, pB, pC , ζi) =

10000− 5(4pA + pB + pC), ζi = good

5000− 2(4pA + pB + pC), ζi = bad

 (15)

DB(pA, pB, pC , ζi) =

10000− 5(pA + 2pB + pC), ζi = good

5000− 2(pA + 2pB + pC), ζi = bad

 (16)

DC(pA, pB, pC , ζi) =

10000− 5(pA + pB + 4pC), ζi = good

5000− 2(pA + pB + 4pC), ζi = bad

 (17)

Note that product b is of a higher quality than products a and c. This is reflected

in the differences between equations (13), (14) and (15). For these demand functions,

the probabilities of good and bad market conditions are P (ζi = good) = 0.3 and

P (ζi = bad) = 0.7.

These results indicate that the production cost along with the mean and variance

of the production process are the key components in determining the expected profit

of the company given fixed demand functions for products a, b, and c. It can also be

seen that the variance in profit decreases as production costs increase. This is due to

the lower quality products a and c needing to be sold at a price at least equal to the

production costs in order not to incur a loss when the products are sold. This then

forces the higher quality product b to be sold at a lower cost in order to have a non-

negative demand for products a and c under good market conditions. This means that

the high production costs result in market conditions limiting the supplier’s selling

option. A boxplot of production cost vs. selling price illustrating this concept can

be seen below. Given a fixed product demand equation, companies with different

production processes will be looked at in the next section.
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Figure 5.3: Boxplot of Production Costs

Analysis of Variance for Production Costs
Source Degrees of

Freedom
Adjusted

Sums
of Squares

Adjusted
Mean

Squares

F P -Value

q(cost) 4 5.81*1013 1.45*1013 14964.62 0.000
Error 145 1.41*1011 9.71*108

Total 149 5.83*1013

Table 5.2: Results of the ANOVA for the Production Costs q
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Tukey Simultaneous Tests for Difference of Means
Difference

of
Levels

Difference
of

Means

Standard
Error

of
Difference

95 Percent
Confidence

Interval

T P -Value

100-50 -389417 8046 (-411663, -367170) -48.10 0.000
200-50 -1001250 8046 (-1023496, -979004) -124.44 0.000
300-50 -1417510 8046 (-1439757, -1395264) -176.17 0.000
325-50 -1667511 8046 (-1689758, -1645265) -207.24 0.000
200-100 -611833 8046 (-634080, -589587) -76.04 0.000
300-100 -1028094 8046 (-1050340, -1005847) -127.77 0.000
325-100 -1278094 8046 (-1300341, -1255848) -158.84 0.000
300-200 -416260 8046 (-438507, -394014) -51.73 0.000
325-200 -666261 8046 (-688508, -644015) -82.80 0.000
325-300 -250001 8046 (-272247, -227754) -31.07 0.000

Table 5.3: Results of Tukey’s Test for the Production Costs q

Figure 5.4: Boxplots Comparing Selling Prices to Production Costs
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5.6.2 Scenario Analysis for Five Different Suppliers

When analyzing different processes from suppliers in a complex manufacturing

setting, which often requires an extremely high degree of production planning, but

is also imprecise, such as in semiconductor manufacturing, achieving low yields of

high quality products is typical. In these types of situations, it is possible to salvage

failed batches of integrated circuits by modifying performance characteristics of the

product. In this way, parts manufactured may be binned into groups of high and low

quality parts to be sold on the market. Consider an example where special CPUs are

to be manufactured as close as possible to a 25nm lithography. Note that lithography

here refers to the average space between the processor’s logic gates (transistors). It is

generally advantageous to produce processors with the smallest lithography possible,

since more transistors can be placed on a CPU. As of 2017, 10 nm lithography is

the manufacturing standard that most new commercial CPUs follow. Since manu-

facturers may all have different characteristics of their production processes, it would

be advantageous to consider five different suppliers with the following characteristics

given in table 4 below. Assume that the market demand for the products are given

in equations (13)-(15) in the previous section, as well as the general loss functions

defined in Section 3, with costs that vary according to Table 4.

It can be seen in the ANOVA table and the Tukey test below that all the suppliers

were significantly different from each other. In particular, it should be noted that the

suppliers with the same production costs, which were suppliers 1 and 4 as well as

suppliers 2 and 5 had profits that were somewhat similar to each other. For example,

supplier 5 posted higher profits than supplier 2 because supplier 5 had a mean that

was less than the target value (the same as the mean for supplier 2 was greater than

the target value), but there was a lower cost for violating the the lower guard band
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than the upper guard band. This was not the case for supplier 2, which had the

same cost of $150 for violating the guard bands. Looking at suppliers 1 and 4, the

opposite seemed to be true. This is due to the tighter overall chance constraints

placed on suppliers 1 and 4 in conjunction with the lower guard band costs being

higher. Overall, as shown in the previous section, the production cost q, has the most

significant impact on the overall profitability of the supplier.

Production Constants
Constant Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5

α 0.05 0.1 0.05 0.05 0.1
β 0.05 0.1 0.05 0.05 0.1
γ 0.3 0.4 0.1 0.3 0.4
δ 0.3 0.4 0.1 0.3 0.4
∆ 0.05 0.05 0.05 0.05 0.05
q 250 230 325 250 230
µ1 24.5 26 25 25.5 24
σ1 .5 2 .25 .5 2
µ2 24.5 26 25 25.5 24
σ2 .5 2 .25 .5 2
l 200 150 250 190 165
e 200 150 250 210 135
f 250 230 325 250 230
k 250 230 325 250 230
τ 25 25 25 25 25

Table 5.4: Characteristics of Five Different Suppliers
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Figure 5.5: Boxplot of Supplier Profits

Analysis of Variance for Suppliers
Source Degrees of

Freedom
Adjusted

Sums
of Squares

Adjusted
Mean

Squares

F -Value P -Value

Supplier Number 4 5.68*1012 1.42*1012 112605.5 0.000
Error 145 1.83*109 1.26*107

Total 149 5.69*1012

Table 5.5: Results of the ANOVA for the Suppliers
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Tukey Simultaneous Tests for Difference of Means
Difference

of
Levels

Difference
of

Means

Standard
Error

of
Difference

95 Percent
Confidence

Interval

T -Value P -Value

2-1 66062 917 (63526, 68598) 72.03 0.000
3-1 -445006 917 (-447541, -442470) -485.20 0.000
4-1 -3810 917 (-6346, -1274) -4.15 0.001
5-1 76294 917 (73758, 78830) 83.18 0.000
3-2 -511068 917 (-513604, -508532) -557.23 0.000
4-2 -69872 917 (-72408, -67337) -76.18 0.000
5-2 10232 917 (7696, 12768) 11.16 0.000
4-3 441195 917 (438660, 443731) 481.04 0.000
5-3 521300 917 (518764, 523836) 568.38 0.000
5-4 80104 917 (77569, 82640) 87.34 0.000

Table 5.6: Results of Tukey’s test for the Suppliers

5.7 Conclusions and Future Work

A novel tolerance optimization model was presented that used stochastic pro-

gramming to address issues involving uncertainty in both the manufacturing process

as well as uncertain market demand. This was demonstrated through the utilization

of the normal distribution and the truncated normal distribution through sensitiv-

ity analysis as well scenario analysis for five different suppliers. It was found that

the suppliers with the lowest production costs had the highest profits. Furthermore,

among suppliers with similar costs, that had off-target process means had higher

profitability if their costs for violating the specification limits and guard bands were

lower in the direction of the process mean shift. It is hoped practitioners in complex

manufacturing industries that regularly utilize complex processes on a regular basis

can benefit from and modify their production processes using the insights provided

in this paper. By specifically utilizing the algorithms and techniques illustrated in
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this paper based upon both the market demand for their product in their particular

industry as well as their own manufacturing processes it is hoped that practitioners

can simultaneously improve both quality and profitability.

This work into tolerance optimization can be expanded upon by considering differ-

ent stochastic elements resulting from the manufacturing process as well as consider-

ing different demand functions for the product. For example, considering the Weibull

distribution in a tolerance optimization scheme would be beneficial, since Weibull

distributions can be used to accurately account for failure rates of a product. In this

sense, a time-to-failure component could be added as a third stage to the optimiza-

tion, incorporating a post-manufacturing quality component. Another option could

be to incorporate a multivariate process, such as the multivariate normal distribution

to account for multiple critical-to-quality characteristics that may be correlated with

each other. It would also be interesting to apply this model to uncertain processes in

the service sector.
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CHAPTER SIX 

CONCLUSION AND FUTURE STUDIES 

In accounting for uncertainty, the importance of understanding how process 

variability shifts over time is just as important as mean shifts over time. This result 

demonstrates the importance to practitioners that special care must be taken in 

understanding the root causes of change in not only their process means, but also the 

variability, if process fallout is to be minimized. It should be noted that processes can 

have the same process fallout over time but have vastly different process capability 

indices as the mean and standard deviation of the process shift over time. This further 

shows the critical need for practitioners to consider calculating process fallout in terms 

of DPMO by considering both the mean and variability shifts of their processes. 

Otherwise, their incorrect assumptions about their processes will lead to costly errors 

in manufacturing and service defects.  

Further development of the theoretical foundations of convolutions of truncated 

normal and skew normal distributions based on double and triple truncations was 

needed in chapters 3 and 4 in order to enhance the understanding of production outputs. 

Numerical examples illustrated the application of convolutions of truncated normal 

random variables and truncated skew normal random variables to showcase the 

improved accuracy of tolerance analysis and gap analysis techniques. The findings 

have the potential to impact a wide range of many other engineering and science 

problems such as those found in statistical tolerance analysis, more specifically, 

tolerance stack analysis methods. From a practical perspective, this would allow 
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statistical tolerance models to be applied at every step of a manufacturing process that 

has hundreds or thousands of manufacturing steps, instead of at two or three 

manufacturing steps at a time. This could result in substantially increased savings for a 

company and an extremely accurate production forecast in terms of identifying high 

quality components and the number of components that need to be scrapped or 

reworked. 

Finally, a novel tolerance optimization model was developed that used stochastic 

programming to address issues involving uncertainty in both the manufacturing process 

and market demand. The methods created provide a framework to practitioners in 

complex manufacturing industries. By specifically utilizing the algorithms and 

techniques illustrated in chapter 5, it is hoped that practitioners can simultaneously 

improve both quality and profitability.  

Future studies into accounting for uncertainties in process optimization initiatives 

can be undertaken by considering different stochastic elements resulting from the 

manufacturing process as well as considering different demand functions for the 

product. For example, considering the Weibull distribution in a process optimization 

scheme would be beneficial, since Weibull distributions can be used to accurately 

account for failure rates of a product. In this sense, a time-to-failure component could 

be incorporated into a post-manufacturing quality component. Another option could be 

to model a production process using a multivariate distribution, such as the multivariate 

normal distribution to account for multiple critical-to-quality characteristics that may 
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be correlated with each other. The models developed here could also be used to enrich 

the understanding of processes within the service sector. 
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Appendix A 

Sample Convolution and Skewness Calculations 

 

Figure A.1. Ten cases of sums of two truncated normal random variables 
 

 
Table A.1.  LTP and UTP of distributions used in Figure A.1.  

Type LTP UTP Type LTP UTP 
typeSym NTN −

 6.5 9.5 typeAsym NTN −
 7.5 10 

typeLTN −
 7 ∞ typeSTN −

 -∞ 9 
 
 
 
 

Ca
  1TX  

2TX  
1 22 T TZ X X= +  Ca

  1TX  
2TX  

1 22 T TZ X X= +  

1 

typeNSym TN −
 

typeNSym TN −
  

2 

typeNAsym TN −
 

typeNAsym TN −
  

 
1 1

28.00, 0.70T Tµ σ= =   
2 2

28.00, 0.70T Tµ σ= =   
2 2

216.00, 1.40Z Zµ σ= =  
 

1 1

28.66, 0.49T Tµ σ= =   
2 2

28.66, 0.49T Tµ σ= =   
2 2

217.32, 0.98Z Zµ σ= =  

3 

typeLTN −
 

typeLTN −
  

4 

typeSTN −
 

typeSTN −
  

 
1 1

29.02, 1.94T Tµ σ= =   
2 2

29.02, 1.94T Tµ σ= =   
2 2

218.04, 3.88Z Zµ σ= =   
1 1

26.98, 1.94T Tµ σ= =   
2 2

26.98, 1.94T Tµ σ= =  
 

2 2

213.96, 3.88Z Zµ σ= =  

5 

typeNSym TN −
 

typeNAsym TN −
  

6 

typeNSym TN −
 

typeLTN −
  

 
1 1

28.00, 0.70T Tµ σ= =   
2 2

28.66, 0.49T Tµ σ= =   
2 2

216.66, 1.19Z Zµ σ= =   
1 1

28.00, 0.70T Tµ σ= =   
2 2

29.02, 1.94T Tµ σ= =   
2 2

217.02, 2.64Z Zµ σ= =  

7 

typeNSym TN −
 

typeSTN −
  

8 

typeNAsym TN −
 

typeLTN −
  

 
1 1

28.00, 0.70T Tµ σ= =   
2 2

26.98, 1.94T Tµ σ= =   
2 2

214.98, 2.64Z Zµ σ= =  
 

1 1

28.66, 0.49T Tµ σ= =   
2 2

29.02, 1.94T Tµ σ= =   
2 2

217.68, 2.43Z Zµ σ= =  

9 

typeNAsym TN −

 
typeSTN −

  

10 

typeLTN −
 

typeSTN −
  

 
1 1

28.00, 0.70T Tµ σ= =   
2 2

26.98, 1.94T Tµ σ= =   
2 2

214.98, 2.64Z Zµ σ= =  
 

1 1

29.02, 1.94T Tµ σ= =   
2 2

26.98, 1.94T Tµ σ= =   
2 2

216.00, 3.88Z Zµ σ= =  



122 
 

 
Table B.1.  Skewness of distributions used in Figure A.1.  

 
 

Case  
1TX  

2TX  
1 22 T TZ X X= +  Case  

1TX  
2TX  

1 22 T TZ X X= +  

1 
typNSym TN −

 
typeNSym TN −

  
2 

NAsym TN −
 

typeNAsym TN −
  

0.060 0.060 0.060 0.064 0.064 0.064 

3 
typeLTN −

 
typeLTN −

  
4 

typeSTN −
 

typeSTN −
  

0.431 
 

0.431 
 

0.431 
 

-0.372 
 

-0.372 
 

-0.372 
 

5 
typeNSym TN −

 
typeNAsym TN −

  
6 

typeNSym TN −
 

typeLTN −
  

0.060 
 

0.064 
 

0.207 
 

0.060 
 

0.431 
 

0.262 
 

7 
typeNSym TN −

 
typeSTN −

  
8 

typeNAsym TN −
 

typeLTN −
  

0.060 
 

-0.372 
 

-0.110 
 

0.064 
 

0.431 
 

0.182 
 

9 
typeNAsym TN −

 
typeSTN −

  
10 

typeLTN −
 

typeSTN −
  

0.064 
 

-0.372 
 

-0.373 
 

0.431 
 

-0.372 
 

-0.021 
 

Cas
e  1TX  

2TX  
1 22 T TZ X X= +  Ca

se  1TX  
2TX  

1 22 T TZ X X= +  

1 

typeNTSN +
−

 
typeNTSN +

−
  

2 

typeNTSN −
−

 
typeNTSN −

−
  

 
1 1

210.69, 3.79T Tµ σ= =   
2 2

210.69, 3.79T Tµ σ= =   
2 2

221.38, 7.58Z Zµ σ= =   
1 1

25.31, 3.79T Tµ σ= =   
2 2

25.31, 3.79T Tµ σ= =   
2 2

210.62, 7.58Z Zµ σ= =  

3 

typeLTSN +
−

 
typeLTSN +

−
  

4 

typeLTSN −
−

 
typeLTSN −

−
  

 
1 1

211.18, 6.32T Tµ σ= =   
2 2

211.18, 6.32T Tµ σ= =   
2 2

222.36, 12.64Z Zµ σ= =   
1 1

25.46, 4.29T Tµ σ= =   
2 2

25.46, 4.29T Tµ σ= =   
2 2

210.92, 8.58Z Zµ σ= =  

5 

typeSTSN +
−

 
typeSTSN +

−
  

6 

typeSTSN −
−

 
typeSTSN −

−
  

 
1 1

210.54, 4.29T Tµ σ= =   
2 2

210.54, 4.29T Tµ σ= =   
2 2

221.08, 8.58Z Zµ σ= =   
1 1

24.82, 6.32T Tµ σ= =   
2 2

24.82, 6.32T Tµ σ= =   
2 2

29.64, 12.63Z Zµ σ= =  

7 typeNTSN +
−

 
typeNTSN −

−

 
 8 typeNTSN +

−
 

ypeL tTSN +
−
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1 1

210.69, 3.79T Tµ σ= =   
2 2

25.31, 3.79T Tµ σ= =   
2 2

216.00, 7.58Z Zµ σ= =  
 

1 1

210.69, 3.79T Tµ σ= =   
2 2

211.18, 6.32T Tµ σ= =   
2 2

221.87, 10.11Z Zµ σ= =  

9 

typeNTSN +
−

 
typeLTSN −

−
  

10 

typeNTSN +
−

 
typeSTSN +

−
  

 
1 1

210.69, 3.79T Tµ σ= =   
2 2

25.46, 4.29T Tµ σ= =   
2 2

216.15, 8.08Z Zµ σ= =   
1 1

210.69, 3.79T Tµ σ= =  
 

2 2

210.54, 4.29T Tµ σ= =   
2 2

221.23, 8.08Z Zµ σ= =  

11 

typeNTSN +
−

 
ypeS tTSN −

−
  

12 

typeNTSN −
−

 
typeLTSN +

−
  

 
1 1

210.69, 3.79T Tµ σ= =   
2 2

24.82, 6.32T Tµ σ= =   
2 2

215.51, 10.11Z Zµ σ= =  
 

1 1

25.31, 3.79T Tµ σ= =   
2 2

211.18, 6.32T Tµ σ= =   
2 2

216.49, 10.11Z Zµ σ= =  

13 

typeNTSN −
−

 
typeLTSN −

−
  

14 

typeNTSN −
−

 
typeSTSN +

−
  

 
1 1

25.31, 3.79T Tµ σ= =   
2 2

25.46, 4.29T Tµ σ= =   
2 2

210.77, 8.08Z Zµ σ= =   
1 1

25.31, 3.79T Tµ σ= =   
2 2

210.54, 4.29T Tµ σ= =  
 

 
2 2

215.85, 8.08Z Zµ σ= =  

15 

typeNTSN −
−

 
typeSTSN −

−
  

16 

typeLTSN +
−

 
typeLTSN −

−
  

 
1 1

25.31, 3.79T Tµ σ= =  
 

 
2 2

24.82, 6.32T Tµ σ= =   
2 2

210.13, 10.11Z Zµ σ= =   
1 1

211.18, 6.32T Tµ σ= =   
2 2

25.46, 4.29T Tµ σ= =   
2 2

216.64, 10.61Z Zµ σ= =  

17 

typeLTSN +
−

 
typeSTSN +

−
  

18 

typeLTSN +
−

 
typeSTSN −

−
  

 
1 1

211.18, 6.32T Tµ σ= =   
2 2

210.54, 4.29T Tµ σ= =   
2 2

221.72, 10.61Z Zµ σ= =   
1 1

211.18, 6.32T Tµ σ= =   
2 2

24.82, 6.32T Tµ σ= =   
2 2

216.00, 12.64Z Zµ σ= =  

19 

typeLTSN −
−

 
typeSTSN +

−
  

20 

typeLTSN −
−

 
typeSTSN −

−
  

 
1 1

25.46, 4.29T Tµ σ= =   
2 2

210.54, 4.29T Tµ σ= =   
2 2

216.00, 8.58Z Zµ σ= =   
1 1

25.46, 4.29T Tµ σ= =   
2 2

24.82, 6.32T Tµ σ= =   
2 2

210.28, 10.61Z Zµ σ= =  

21 typeSTSN +
−

 
typeSTSN −

−
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Figure A.2. Twenty-one Different cases of the sums of Truncated Skew Normal Random 
Variables 

 
 

Table A.2. Shape parameter α and lower and upper truncation points of 
distributions used in Figure A.2 

Type α   LTP UTP Type α  LTP UTP 
ypeN tTSN +

−  3 7 15 ypeN tTSN −
−

 -3 1 9 
ypeL tTSN +

−
 3 7 ∞  ypeL tTSN −

−
 -3 1 ∞  

ypeS tTSN +
−

 3 -∞  15 ypeS tTSN −
−

 -3 -∞  9 
 

Table B.2. Skewness of distributions used in Figure A.2 

 
 
 

 
1 1

210.54, 4.29T Tµ σ= =   
2 2

24.82, 6.32T Tµ σ= =   
2 2

215.36, 10.61Z Zµ σ= =  

 
   

Cas
  1TX  

2TX  
1 22 T TZ X X= +  Cas

  1TX  
2TX  

1 22 T TZ X X= +  
1 typeNTSN +

−
 

typeNTSN +
−

  2 typeNTSN −
−

 
typeNTSN −

−
  

0.322 
 

0.322 
 

0.322 
 

-0.317 
 

-0.317 
 

-0.317 
 3 typeLTSN +

−
 

typeLTSN +
−

  4 typeLTSN −
−

 
typeLTSN −

−
  

0.840 
 

0.840 
 

0.840 
 

-0.102 
 

-0.102 
 

-0.102 
 5 typeSTSN +

−
 

typeSTSN +
−

  6 typeSTSN −
−

 
typeSTSN −

−
  

0.449 
 

0.449 
 

0.449 
 

-0.723 
 

-0.723 
 

-0.723 
 7 typeNTSN +

−
 

typeNTSN −
−

 
 8 typeNTSN +

−
 

ypeL tTSN +
−

  
0.322 

 
-0.317 

 
0.006 

 
0.322 

 
0.840 

 
0.211 

 9 typeNTSN +
−

 
typeLTSN −

−
  10 typeNTSN +

−
 

typeSTSN +
−

  
0.322 

 
-0.102 

 
0.313 

 
0.322 

 
0.449 

 
0.389 

 11 typeNTSN +
−

 
ypeS tTSN −

−
  12 typeNTSN −

−
 

typeLTSN +
−

  
0.322 

 
-0.723 

 
-0.122 

 
-0.317 

 
0.840 

 
0.347 

 13 typeNTSN −
−

 
typeLTSN −

−
  14 typeNTSN −

−
 

typeSTSN +
−

  
-0.317 

 
-0.102 

 
-0.154 

 
-0.317 

 
0.449 

 
 

0.299 
 15 typeNTSN −

−
 

typeSTSN −
−

  16 typeLTSN +
−

 
typeLTSN −

−
  

-0.317 
 
 

-0.723 
 

-0.327 
 

0.840 
 

-0.102 
 

0.613 
 17 typeLTSN +

−
 

typeSTSN +
−

  18 typeLTSN +
−

 
typeSTSN −

−
  

0.840 
 

0.449 
 

0.749 
 

0.840 
 

-0.723 
 

0.096 
 19 typeLTSN −

−
 

typeSTSN +
−

  20 typeLTSN −
−

 
typeSTSN −

−
  

-0.102 
 

0.449 
 

0.408 
 

-0.102 
 

-0.723 
 

-0.411 
 21 typeSTSN +

−
 

typeSTSN −
−

      
0.449 

 
-0.723 

 
-0.300 
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The Expanded Derivation of the Convolutions of Three Truncated Normal Random 
Variables  
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The Expanded Derivation of the Convolutions of Three Truncated Skew Normal 
Random Variables 
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The Expanded Derivation of Sums of Two Truncated Normal Random Variables 
and One Truncated Skew Normal Random Variable 

 
Let 

1 22 T TZ X X= +  and 
33 2 TSZ Z Y= + . Therefore, the probability density function  

of 3Z  is: 
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The Expanded Derivation of Sums of One truncated Normal Random Variable and 
Two Truncated Skew Normal Random Variables 
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Appendix B 

Supporting Matlab code for Chapter 2 

The following base MATLAB code was used to generate contour plots for a 
Bivariate Normal Distribution and calculate DPMOs by changing various values: 
 
format shortG 
%corr. coeff. 
rho=0.9; 
%starting standard deviations 
sigma1=.5; 
sigma2=1; 
%starting means 
mu1=5; 
mu2=1; 
%mean shifts 
k11=3.363345; 
k12=3.363345; 
%standard deviation shifts 
k21=1; 
k22=1; 
%Limits 
lowerx=mu1-6*sigma1+k11*sigma1; 
lowery=mu2-6*sigma2+k12*sigma2; 
upperx=mu1+6*sigma1+k11*sigma1; 
uppery=mu2+6*sigma2+k12*sigma2; 
XL=[lowerx lowery]; 
XU=[upperx uppery]; 
a=(sigma1/k21).^2; 
b=(rho*sigma1*sigma2)/(k21*k22); 
c=(sigma2/k22).^2;         
MU = [mu1 mu2]; 
SIGMA = [a b;b c]; 
x1 = lowerx-sigma1:.2: upperx+sigma1; x2 = lowery-sigma2:.2: 
uppery+sigma2; 
[X1,X2] = meshgrid(x1,x2); 
F = mvnpdf([X1(:) X2(:)],MU,SIGMA); 
F = reshape(F,length(x2),length(x1)); 
%contour(X1,X2,F,); 
Y=mvncdf(XL,XU,MU,SIGMA); 
DPMO=(1-Y)*10.^6 
%contour(x1,x2,F,[.0001 .001 .01 .05:.2:.95 .99 .999 .9999]); 
contour(x1,x2,F,[.0000000000001 .000000000001 .00000000001 .0000000001 
.000000001 .00000001 .0000001 .000001 .00001 .0001 .001 .01 .05:.1:.95 
.99 .999 .9999 .99999 .999999 .9999999 .99999999 .999999999 .9999999999 
.99999999999 .999999999999 .9999999999999]); 
[C h]=contour(x1,x2,F,[.0000000000001 .000000000001 .00000000001 
.0000000001 .000000001 .00000001 .0000001 .000001 .00001 .0001 .001 .01 
.05:.1:.95 .99 .999 .9999 .99999 .999999 .9999999 .99999999 .999999999 
.9999999999 .99999999999 .999999999999 .9999999999999]); 
clabel(C,h) 
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xlabel('x1'); ylabel('x2'); 
line([lowerx upperx upperx lowerx lowerx],[lowery lowery uppery uppery 
lowery],'linestyle','--','color','k'); 
 
The following base MATLAB code was used to calculate a matrix DPMOs output to 
an excel spreadsheet by changing various values for the mean shifts, standard 
deviation shifts and correlation coefficients for a Bivariate Normal Distribution: 
 
format shortG 
rho=-0.5; 
sigma1=1; 
sigma2=1; 
mu1=0; 
mu2=0; 
row=1; 
column=1; 
DPMOmatrix=zeros(3); 
for k21=0.5:0.5:1.5 
    for k22=0.5:0.5:1.5 
        k11=0; 
        k12=0; 
        XL=[mu1-6*sigma1+k11*sigma1 mu2-6*sigma2+k12*sigma2]; 
        XU=[mu1+6*sigma1+k11*sigma1 mu2+6*sigma2+k12*sigma2]; 
        MU = [mu1 mu2]; 
        a=(sigma1/k21).^2; 
        b=(rho*sigma1*sigma2)/(k21*k22); 
        c=(sigma2/k22).^2; 
        SIGMA = [a b;b c]; 
        Y = mvncdf(XL,XU,MU,SIGMA); 
        DPMO=(1-Y)*10.^6; 
        % disp(DPMO);      
    DPMOmatrix([row,column])=DPMO; 
    row=row+1; 
    column=column+1; 
    end 
end 
DPMOmatrix 
%filename = 'Problem4A.xlsx'; 
%xlswrite(filename,DPMOmatrix,1,'B2:D4') 
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Appendix C 

Supporting Julia code for Chapter 5 

The two-stage stochastic optimization model was solved and output to an excel file 
using the following two Julia files in conjunction with each other: 
 
Model-CentralLoop.jl 

function createandsolvemodel_CT(sd, Nr_SC,  ksi, psi, L1, L2, L3, L4, a, b, c, d, 
pi_USL, pi_LSL, pi_UGB, pi_LGB,target1) 
 
m_rand = Array{Float64}(Nr_SC) 
c_rnd = Array{Float64}(Nr_SC) 
 
#   all_quad_lazy = 0 
 
   #m = Model(solver=CplexSolver(CPX_PARAM_MIPEMPHASIS=1, 
CPX_PARAM_VARSEL=4, CPX_PARAM_PRELINEAR=0, 
CPX_PARAM_REDUCE=1)) 
   #m = Model(solver=CplexSolver(CPX_PARAM_BARDISPLAY=1, 
CPX_PARAM_MIPSEARCH=1, CPX_PARAM_PRELINEAR=0, 
CPX_PARAM_REDUCE=1)) 
   #m = Model(solver=CplexSolver(CPX_PARAM_PREIND=0, 
CPX_PARAM_EPGAP=0.00, CPX_PARAM_SCRIND=0)) #Switch off CPLEX 
presolver 
   #m = Model(solver=CplexSolver(CPX_PARAM_EPGAP=0.00, 
CPX_PARAM_SCRIND=0)) #Switch off CPLEX presolver 
   #m = Model(solver=GurobiSolver(MIPGap=0.01)) 
   #m = Model(solver=CouenneNLSolver()) 
   m = Model(solver=IpoptSolver(print_level=0)) 
 
 
   # Continuous Variables 
   @variable(m, USL >=0) 
   @variable(m, LSL >=0) 
   @variable(m, UGB >=0) 
   @variable(m, LGB >=0) 
   @variable(m, PA >=0) 
   @variable(m, PB >=0) 
   @variable(m, PC >=0) 
   @variable(m, Vs[1:Nr_SC] >=0) 
   @variable(m, Ws[1:Nr_SC] >=0) 
   @variable(m, Us[1:Nr_SC] >=0) 
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   @variable(m, Js[1:Nr_SC] >=0) 
   @variable(m, Ls[1:Nr_SC] >=0) 
   @variable(m, Gs[1:Nr_SC] >=0) 
   @variable(m, Ks[1:Nr_SC] >=0) 
   @variable(m, Fs[1:Nr_SC] >=0) 
################################################################# 
srand(sd) 
for i in 1:Nr_SC 
 if rand() <= 0.3 
  m_rand[i] = 10000 
  c_rnd[i] = 5 
 else 
  m_rand[i] = 5000 
  c_rnd[i] = 2 
 end 
end 
################################################################ 
   # Objective 
   @NLobjective(m, Max, sum{(1/Nr_SC)*((m_rand[i] - c_rnd[i]*(4*PA+PB+PC))*(PA-
q) + (m_rand[i] - c_rnd[i]*(PA+2*PB+PC))*(PB-q) + (m_rand[i] - 
c_rnd[i]*(PA+PB+4*PC))*(PC-q)), i=1:Nr_SC} 
  -((1/a)*(L1/(UGB - target1)) + (1/b)*(L2/(LGB - target1)) +(1/c)*(L3/(USL - target1)) 
+(1/d)*(L4/(LSL - target1))) 
  -(pi_USL*sum{Ws[s], s=1:Nr_SC}  + pi_LSL*sum{Us[s], s=1:Nr_SC} + 
pi_UGB*sum{Gs[s], s=1:Nr_SC} + pi_LGB*sum{Fs[s], s=1:Nr_SC})) # ask about 
comment in simulationmodel.jl, seems this is subtracted twice when should be added 
back 
 
# -((1/a)*L1/(UGB - target1) + (1/b)*L2/(LGB - target1) +(1/c)*L3/(USL - target1) 
+(1/d)*L4/(LSL - target1)) 
# -((1/a)*L1 + (1/b)*L2 +(1/c)*L3 +(1/d)*L4) 
   # Constraints 
   @NLconstraint(m, c1[s=1:Nr_SC], USL + Vs[s] - Ws[s] ==  ksi[s]) 
   @NLconstraint(m, c2[s=1:Nr_SC], LSL + Us[s] - Js[s] ==  ksi[s]) 
   @NLconstraint(m, c3[s=1:Nr_SC], UGB + Ls[s] - Gs[s] ==  psi[s]) 
   @NLconstraint(m, c4[s=1:Nr_SC], LGB + Ks[s] - Fs[s] ==  psi[s]) 
   @NLconstraint(m, c5, UGB - (USL-prec) <= 0) 
   @NLconstraint(m, c6, LSL - (LGB-prec) <= 0) 
   @NLconstraint(m, c7, LSL - USL <= 0) 
   @NLconstraint(m, c8, LGB - UGB <= 0) 
   @NLconstraint(m, c9, q - (PA-err) <= 0) #marginal profit per unit must be strictly 
positive 
   @NLconstraint(m, c10, q - (PB-err) <= 0) 
   @NLconstraint(m, c11, q - (PC-err) <= 0) 
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   @NLconstraint(m, c12, target1 - (UGB-prec) <= 0) 
 @NLconstraint(m, c14, LGB - (target1-prec)<= 0) 
 @NLconstraint(m, c16, 5*(4*PA+PB+PC)<= 10000-err)#demand must be 
greater than zero case 1 
 @NLconstraint(m, c17, 5*(PA+2*PB+PC)<= 10000-err) 
 @NLconstraint(m, c18, 5*(PA+PB+4*PC)<= 10000-err) 
 @NLconstraint(m, c19, 2*(4*PA+PB+PC)<= 5000-err)#demand must be greater 
than  zero case 2 
 @NLconstraint(m, c20, 2*(PA+2*PB+PC)<= 5000-err) 
 @NLconstraint(m, c21, 2*(PA+PB+4*PC)<= 5000-err) 
 
 
   tic() 
   status = solve(m) 
 
   if (status == :Optimal) 
  println("Status 1:", status) 
  Obj = getobjectivevalue(m) 
  USL_opt = getvalue(USL) 
  LSL_opt = getvalue(LSL) 
  UGB_opt = getvalue(UGB) 
  LGB_opt = getvalue(LGB) 
  PA_opt = getvalue(PA) 
  PB_opt = getvalue(PB) 
  PC_opt = getvalue(PC) 
  Vs_opt = getvalue(Vs) 
  Ws_opt= getvalue(Ws) 
  Us_opt = getvalue(Us) 
  Js_opt = getvalue(Js) 
  Ls_opt= getvalue(Ls) 
  Gs_opt= getvalue(Gs) 
  Ks_opt= getvalue(Ks) 
  Fs_opt= getvalue(Fs) 
  T_cpu = toq() 
    elseif (status == :UserLimit) 
        println("Status 2:", status) 
  Obj = getobjectivevalue(m) 
  USL_opt = getvalue(USL) 
  LSL_opt = getvalue(LSL) 
  UGB_opt = getvalue(UGB) 
  LGB_opt = getvalue(LGB) 
  PA_opt = getvalue(PA) 
  PB_opt = getvalue(PB) 
  PC_opt = getvalue(PC) 



134 
 

  Vs_opt = getvalue(Vs) 
  Ws_opt= getvalue(Ws) 
  Us_opt = getvalue(Us) 
  Js_opt = getvalue(Js) 
  Ls_opt= getvalue(Ls) 
  Gs_opt= getvalue(Gs) 
  Ks_opt= getvalue(Ks) 
  Fs_opt= getvalue(Fs) 
  T_cpu = toq() 
 else 
  println("Status 3:", status) 
  Obj = 0 
  Obj = getobjectivevalue(m) 
  USL_opt = 0 
  LSL_opt = 0 
  UGB_opt = 0 
  LGB_opt = 0 
  PA_opt = 0 
  PB_opt = 0 
  PC_opt = 0 
  Vs_opt = 0 
  Ws_opt= 0 
  Us_opt = 0 
  Js_opt = 0 
  Ls_opt= 0 
  Gs_opt= 0 
  Ks_opt= 0 
  Fs_opt= 0 
  T_cpu = toq() 
   end 
 
  #print(m) 
  #writeLP(m,"Model.lp") 
  # println("*******************************************") 
   #println("Objective value: ", Obj) 
   #println("***Run time = : ",T_cpu) 
   #println("*******************************************") 
 
   return Obj, USL_opt, LSL_opt, UGB_opt, LGB_opt, PA_opt, PB_opt, PC_opt, 
Vs_opt,Ws_opt,Us_opt,Js_opt,Ls_opt,Gs_opt,Ks_opt,Fs_opt 
 
end 
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SimulationModelLoop.jl 

# ---------------------------------------- 
# Tolerance Optimization PROBLEM 
# ---------------------------------------- 
using JuMP,  MathProgBase, CPLEX,  Gurobi, MAT, GLPKMathProgInterface, JLD, 
Distributions, MathProgBase, AmplNLWriter,Ipopt, Gurobi, CPLEX, MAT, Graphs, 
JLD,  GLPKMathProgInterface 
#CoinOptServices 
include("Model-CentralLoop.jl") 
 
 
##############CONSTANTS####################### 
Scenarios = 30 
SeedMax = 30 
beta = 0.1 #upper spec limit max vio chance 
alpha = 0.1 #lower spec limit max vio chance 
gamma = 0.4 #upper GB max vio chance 
delta = 0.4 #lower GB max vio chance 
eps = 0.001 
err= 0.0001 
prec= 0.05 # max precision 
q = 230 # production cost 
M = 0 #fixed counter 
N = 0 #fixed counter 
K = 0 #fixed counter 
L = 0 #fixed counter 
mu1=24 
sd1=2 #alpha beta gamma delta are production dependent, change standard deviation 
together with alpha beta delta gamma. 
mu2=24 
sd2=2 
l = 165 #upper guard band cost psi 
e = 135 #lower guard band cost psi 
f = 230 #upper spec limit ksi 
k = 230 #lower spec limit ksi 3,10,30,60,90 (orig 2) 
target1 = 25 
Last_Obj = 0 
Last_USL = 0 
Last_LSL = 0 
Last_UGB = 0 
Last_LGB = 0 
Last_PA = 0 
Last_PB = 0 
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Last_PC = 0 
##############DECALRATIONS#################### 
 
 ksi = Array{Float64}(Scenarios) 
 psi = Array{Float64}(Scenarios) 
 t_ksi = Array{Float64}(Scenarios) 
 t_psi = Array{Float64}(Scenarios) 
 
######Generating truncated normal random variables################### 
for seed in 1:SeedMax 
 srand(seed) 
 psi = rand(Normal(mu1,sd1), Scenarios) 
 t_psi =psi 
  #Truncated(psi,lb,ub)-----check this 
 srand(seed) 
 ksi = rand(Normal(mu2,sd2), Scenarios) 
 
 
 a = 0 
 L1 = 0 
 b = 0 
 L2 = 0 
 for i in 1:Scenarios 
 @printf(" seed=%d \t tpsi[%d]=%1.2f \n",seed,i, t_psi[i]) 
 if t_psi[i] > target1 
  a = a +1 
  L1 = L1 + l*(t_psi[i] - target1) 
 else 
  b = b +1 
  L2 = L2 + e*(t_psi[i] - target1) 
 end 
 end 
 
 
 
 for i in 1:Scenarios 
 if t_ksi[i] < 0 
  t_ksi[i] = 0 
 else 
  t_ksi[i] = ksi[i] 
 end 
 end 
 
 c = 0 
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 L3 = 0 
 d = 0 
 L4 = 0 
 for i in 1:Scenarios 
 if t_ksi[i] > target1 
  c = c +1 
  L3 = L3 + f*(t_ksi[i] - target1) 
 else 
  d = d +1 
  L4 = L4 + k*(t_ksi[i] - target1) 
 end 
 end 
 
##########Running the model####################### 
pi1 = 1000000000 
pi2 = 1000000000 
pi3 = 1000000000 
pi4 = 1000000000 
 
Max_pi1 = 1000000 
Max_pi2 = 1000000 
Max_pi3 = 1000000 
Max_pi4 = 1000000 
 
Min_pi1 = 0 
Min_pi2 = 0 
Min_pi3 = 0 
Min_pi4 = 0 
 
 while (abs(pi1 - (Min_pi1 + Max_pi1)/2) >= eps || abs(pi2 - (Min_pi2 + 
Max_pi2)/2) >= eps) 
  @printf("absolute value calculation: %1.2f %1.2f %1.2f \n",abs(pi1 - 
(Min_pi1 + Max_pi1)/2), abs(pi2 - (Min_pi2 + Max_pi2)/2), delta) 
  @printf("pi1 = %1.2f \n",pi1) 
  @printf("pi2 = %1.2f \n",pi2) 
  pi1 = (Min_pi1 + Max_pi1)/2 
  pi2 = (Min_pi2 + Max_pi2)/2 
  pi3 = (Min_pi3 + Max_pi3)/2 
  pi4 = (Min_pi4 + Max_pi4)/2 
 
  Obj, USL, LSL, UGB, LGB, PA, PB, PC, Vs, Ws, Us, Js, Ls, Gs, Ks, Fs  
= createandsolvemodel_CT(seed, Scenarios, t_psi, t_ksi, L1, L2, L3, L4, a, b, c, d, pi1, 
pi2,pi3,pi4, target1) 
  for i in 1:Scenarios 
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   if t_psi[i] > USL 
    t_psi[i] = USL 
   elseif t_psi[i] < LSL 
    t_psi[i] = LSL 
   end 
 
  end 
 
  M = 0 
  N = 0 
  K = 0 
  L = 0 
 
  for s in 1:Scenarios 
   if Ws[s] > 0 
    M = M + 1 
   end 
   if Us[s] > 0 
    N = N + 1 
   end 
   if Gs[s] > 0 
    K = K + 1 
   end 
   if Ks[s] > 0 
    L = L + 1 
   end 
  end 
  @printf("[%d %d] beta*sc = %1.2f eps= %1.2f\n",M,N, beta*Scenarios, 
eps) 
  if (M >= beta*Scenarios + eps) 
   Min_pi1 =(Min_pi1 + Max_pi1)/2 
   #@printf("Min_pia updated to = %1.2f \n", Min_pia) 
  elseif (M <= beta*Scenarios - eps) 
   Max_pi1 =(Min_pi1 + Max_pi1)/2 
   #@printf("Max_pia updated to = %1.2f \n", Max_pia) 
  end 
  if (N >= alpha*Scenarios + eps) 
   Min_pi2 =(Min_pi2 + Max_pi2)/2 
   #@printf("Min_pit updated to = %1.2f \n", Min_pit) 
  elseif (N <= alpha*Scenarios - eps) 
   Max_pi2 =(Min_pi2 + Max_pi2)/2 
   #@printf("Max_pit updated to = %1.2f \n", Max_pit) 
  end 
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  if (K >= gamma*Scenarios + eps) 
   Min_pi3 =(Min_pi3 + Max_pi3)/2 
   #@printf("Min_pia updated to = %1.2f \n", Min_pia) 
  elseif (M <= gamma*Scenarios - eps) 
   Max_pi1 =(Min_pi3 + Max_pi3)/2 
   #@printf("Max_pia updated to = %1.2f \n", Max_pia) 
  end 
  if (L >= delta*Scenarios + eps) 
   Min_pi4 =(Min_pi4 + Max_pi4)/2 
   #@printf("Min_pit updated to = %1.2f \n", Min_pit) 
  elseif (L <= delta*Scenarios - eps) 
   Max_pi4 =(Min_pi4 + Max_pi4)/2 
   #@printf("Max_pit updated to = %1.2f \n", Max_pit) 
  end 
 
 ###############Printing################################## 
 
 for i in 1:Scenarios 
 Obj = Obj + pi1*Ws[i] + pi2*Us[i] + pi3*Gs[i] + pi4*Fs[i] # should this be 
adding these values instead of subtracting? 
 end 
 
 EdemandA= .3*(10000-5(4*PA+PB+PC))+.7*(5000-2(4*PA+PB+PC)) 
 EdemandB= .3*(10000-5(PA+2*PB+PC))+.7*(5000-2(PA+2*PB+PC)) 
 EdemandC= .3*(10000-5(PA+PB+4*PC))+.7*(5000-2(PA+PB+4*PC)) 
 
  @printf("Obj value = %1.2f \n", Obj) 
  @printf("USL value = %1.2f \n", USL) 
  @printf("LSL value = %1.2f \n", LSL) 
  @printf("UGB value = %1.2f \n", UGB) 
  @printf("LGB value = %1.2f \n", LGB) 
  @printf("PA value = %1.2f \n", PA) 
  @printf("PB value = %1.2f \n", PB) 
  @printf("PC value = %1.2f \n", PC) 
 @printf("EdemandA value = %1.2f \n", EdemandA) 
 @printf("EdemandB value = %1.2f \n", EdemandB) 
 @printf("EdemandC value = %1.2f \n", EdemandC) 
 
 outputfilename1 = "ToleranceOptSol.xls" 
 outputfile1 = open(outputfilename1, "a") 
#labeling columns and rows 
 #@printf(outputfile1, "Scenarios \n",) 
 # rounding solutions printline 
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# @printf(outputfile1,"%f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t \n", Scenarios, 
seed, round(Obj,0), round(USL,2), round(LSL,2), round(UGB,2), round(LGB,2), 
round(PA,2), round(PB,2), round(PC,2)) 
#@printf(outputfile1,"%f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t \n", Scenarios, 
seed, Obj, USL, LSL, UGB, LGB, PA, PB, PC ) 
Last_Obj = Obj 
Last_USL = USL 
Last_LSL = LSL 
Last_UGB = UGB 
Last_LGB = LGB 
Last_PA = PA 
Last_PB = PB 
Last_PC = PC 
 end 
 outputfilename1 = "FiveSuppliers.xls" 
 outputfile1 = open(outputfilename1, "a") 
 @printf(outputfile1,"%f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t 
%f\t %f\t %f\t %f\t %f\t %f\t %f\t \n",beta, alpha, gamma, delta, prec, q, l, e, f, k, 
Scenarios, seed, Last_Obj, Last_USL, Last_LSL, Last_UGB, Last_LGB, Last_PA, 
Last_PB, Last_PC ) 
 close(outputfile1) 
end 
 
Boxplots for the results of the output of the solution to the model were generated 
with the following MATLAB code: 
 
format ShortG; 
sheet = 1; 
CostRange= 'A2:A151'; 
ObjRange = 'B2:B151'; 
filename='Cost Sensitivity Plots.xlsx'; 
costdata = xlsread(filename); 
Cost = xlsread(filename,sheet,CostRange); 
ObjectiveValue=xlsread(filename,sheet,ObjRange); 
figure 
boxplot(ObjectiveValue,Cost,'Notch','on') 
box on; 
grid on; 
title('Profit vs. Production Cost') 
xlabel('Production Cost') 
ylabel('Profit') 
 
Boxplots with sublplots were generated with the following MATLAB code: 
 
%basic data extraction 
format ShortG; 
sheet = 1; 
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CostRange= 'A2:A151'; 
PaRange = 'B2:B151'; 
PbRange = 'C2:C151'; 
PcRange = 'D2:D151'; 
filename='CostvsPricePlots.xlsx'; 
costdata = xlsread(filename); 
Cost = xlsread(filename,sheet,CostRange); 
Pa=xlsread(filename,sheet,PaRange); 
Pb=xlsread(filename,sheet,PbRange); 
Pc=xlsread(filename,sheet,PcRange); 
%data input formating for boxplot2 function 
a=transpose(Pa); 
b=transpose(Pb); 
c=transpose(Pc); 
d=Pa(2:31); 
e=Pb(2:31); 
g=Pc(2:31); 
h=Pa(32:61); 
%i=Pb(32:61); 
j=Pc(32:61); 
x = [50 100 200 300 325]; 
y = randn(5, 3, 100); 
figure 
box on; 
grid on; 
subplot(1,3,1) 
boxplot(Pa,Cost, 'notch', 'on') 
title('Subplot 1:Pa') 
ylabel('Selling Price') 
subplot(1,3,2) 
boxplot(Pb,Cost, 'notch', 'on') 
title('Subplot 2:Pb') 
xlabel('Production Cost') 
subplot(1,3,3) 
boxplot(Pc,Cost, 'notch', 'on') 
title('Subplot 3:Pc') 
suptitle('Selling Price vs. Production Cost') 
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