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ABSTRACT 

Trust is a critical component to both human-automation and human-human 

interactions.  Interface manipulations, such as visual anthropomorphism and machine 

politeness, have been used to affect trust in automation.  However, these design strategies 

have been primarily used to facilitate initial trust formation but have not been examined 

means to actively repair trust that has been violated by a system failure.  Previous 

research has shown that trust in another party can be effectively repaired after a violation 

using various strategies, but there is little evidence substantiating such strategies in 

human-automation context.  The current study examined the effectiveness of trust repair 

strategies, derived from a human-human or human-organizational context, in human-

automation interaction.  During a taxi dispatching task, participants interacted with 

imperfect automation that either denied or apologized for committing competence- or 

integrity-based failures.  Participants performed two experimental blocks (one for each 

failure type), and, after each block, reported subjective trust in the automation.  

Consistent with interpersonal literature, our analysis revealed that automation apologies 

more successfully repaired trust following competence-based failures than integrity-based 

failures.  However, user trust in automation was not significantly different when the 

automation denied committing competence- or integrity-based failures.  These findings 

provide important insight into the unique ways in which humans interact with machines. 
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INTRODUCTION 

In a recent review of human-automation studies, Hoff and Bashir (2015) identified several factors 

that affect how trust is formed prior to and during a user’s interaction with automation (see 

Appendix A).  Prior to interaction with automation, a person’s trust is influenced by dispositional 

factors such as enduring individual differences in personality, cognitive styles, and pre-existing 

knowledge of the automation.  For example, extraverted individuals and those with a high 

propensity to trust technology experienced high trust in an automated decision aid before 

interacting with the system in an x-ray screening task (Merritt & Ilgen, 2008).  While 

dispositional factors play an important role in a user’s trust going into an interaction with 

automation, they cannot dynamically calibrate trust during that interaction.  Therefore, the current 

research focuses on the factors that can dynamically affect trust and are amenable to human 

factors interventions during human-automation interaction. 

Trust Factors: During Interaction 

Reliability is the most critical system performance factor determining user trust.  

During human-automation interactions, trust is formed when users experience reliable 

system performance (Merritt & Ilgen, 2008).  Users are less likely to trust unreliable 

systems and may disuse automation that is perceived to be untrustworthy (Lee & See, 

2004).  The distinct attributes of each system failure can have variable effects on trust 

(Hoff & Bashir, 2015).  Failures that severely impact task performance cause greater 

harm to trust than less severe failures (Muir & Moray, 1996).  Failures that occur early in 

an interaction may have a more damaging effect than those that occur later (Manzey, 

Reichenbach, & Onnasch, 2012).  Additionally, failures that occur on tasks perceived by 

users to be easy may result in greater trust harm (Madhavan, Wiegmann, & Lacson, 



2 
 

2006).  Some evidence has suggested that the type of failure (e.g., false alarms or misses) 

may also differentially affect trust.  In the military domain, misses have been empirically 

shown to impact trust more than false alarms (Davenport & Bustamante, 2010).  A 

possible explanation for the differential effects of failure types on trust is the 

consequences associated with each failure (Hoff & Bashir, 2015).  Trust in automation 

recovers slowly over time after exposure to error-free performance (Lee & Moray, 1994).  

Therefore, post-failure interventions should be utilized to help maintain high user trust or 

to prevent extreme trust declines.  Altering system performance parameters is ultimately 

an engineering problem (i.e., creating more reliable automation) and thus beyond the 

scope of human factors intervention.  However, altering the users’ perception of the 

system (i.e., trust) by modifying system design is one strategy that has been well-

researched in the human-automation context.  

Researchers have recently examined the effect of automation design features on 

user trust.  Humanizing the appearance of automation can significantly increase user 

perceptions of trust (Nass & Moon, 2000; Pak, Fink, Price, Bass, & Sturre, 2012, & Pak, 

McLaughlin, & Bass, 2014).  For example, autonomous cars that were given names, 

genders, and voices were found to be more highly trusted than cars that were not given 

those characteristics (Waytz, Heafner, & Epley, 2014).  In addition to engendering higher 

trust, humanlike aspects added to automation seem to also enhance trust calibration to 

reliability (de Visser, Krueger, McKnight, Scheid, Smith, Chalk, & Parasuraman, 2012).  

In their study, de Visser et al. varied the appearance of an automation agent (e.g., 

machine, agent, and human) and found that user trust in humanlike agents was more 
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accurately reflective of actual system performance.  Humanlike appearance interventions 

not only enhance trust calibration, they can buffer the harmful effects of system failures 

on trust (trust resilience; de Visser, Monfort, McKendrick, Smith, McKnight, Krueger & 

Parasuraman, 2016).  De Visser et al. (2016) found that participants, when given the 

opportunity to accept or ignore the advice of a machine, avatar, or human agent, were 

more likely to comply with more humanlike agents.  These findings suggest that visual 

anthropomorphism can affect perceptions of system reliability and therefore minimize the 

harmful effects of system failures on trust.   

While system appearance interventions have shown promise altering user 

perceptions of automation, one avenue of human factors intervention that is less well 

researched is communication style (e.g., Parasuraman & Miller, 2004).  In a study 

directly examining the effect of politeness on automation trust and reliance, Parasuraman 

and Miller (2004) found that participants exhibited less trust and reliance on interruptive 

(e.g., rude) automation than non-interruptive (e.g., polite) automation.  In this 

experiment, the effect of good etiquette was so strong that it overcame the negative effect 

of system reliability on task performance.  Additional research has similarly 

demonstrated that automation politeness can improve user perceptions of system 

reliability (Spain & Madhavan, 2009).  These findings suggest powerful effects of 

communication on user perceptions of system performance. Thus, system communication 

may prove to be an effective method to repair post-failure trust in human-automation 

interactions. 
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Strategies to Repair Trust 

There already exists a large body of research that has examined the effectiveness 

of communication as a trust repair strategy (e.g., Goffman, 1971; Shapiro, Sheppard, & 

Cheraskin, 1992; Lewicki & Bunker, 1996; Bottom, Gibson, Daniels, & Murnighan, 

2002; Schweitzer, Hershey, & Bradlow, 2006).  A notable study conducted by Kim, 

Ferrin, Cooper, and Dirks (2004), determined that apologies and denials can effectively 

repair trust following trust harm.  In their experiment, participants were shown videos of 

potential job candidates, who had been accused by their references of incorrectly filing a 

tax return.  The trust violation was framed to suggest either incompetence or lack of 

integrity of the candidate.  Following the accusation, the candidate responded with either 

an apology or denial, and participants were asked to rate the trustworthiness of the 

candidate.  Results showed that apologies better repaired trust for competence failures 

and denials better repaired trust for integrity failures. 

A recent review of trust repair literature has suggested a theoretical framework 

supporting the interaction between trust repair strategy and failure type in human-

automation interactions (Marinaccio, Kohn, Parasuraman, & de Visser, 2015); however, 

no research has empirically evaluated this relationship.  The effects of perceived system 

competence (e.g., reliability) are well understood in the automation domain, but no 

studies have examined integrity.  Evidence has been provided for the effect of system 

apologies on user perceptions, such as user self-appraisal of performance (Akgun, 

Cagiltay, & Zeyrek, 2010) and system impressions (Tzeng, 2004; Lee, Kiesler, Forlizzi, 

Srinivasa, & Rybski, 2010).  Although, we are aware of only two studies that have 
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directly addressed apology and trust repair in an automation context.  Robinette, Howard, 

and Wagner (2015) showed that timing is a significant factor for trust repair in human-

robot interaction.  They observed that promises and apologies made by a simulated robot 

navigation aid affected reliance only when implemented immediately before a user’s 

decision to rely on the system, after system failure.  Later, de Visser and colleagues 

(2016) determined that apologies can successfully raise trust across agents of varying 

degrees of visual anthropomorphism.  However, these authors neither examined the effect 

of denials nor the potentially influential effects of system reliability. 

Current Study 

The current study explored the efficacy of using communication strategies 

(apologies or denials) to repair human trust in automation.  Prior research found that 

apologies repair trust following competency-based trust violations and that denials repair 

trust follow integrity-based violations (e.g., Kim, Dirks, Cooper, & Ferrin, 2004).  Our 

work determined whether these findings extend to social interactions with machines.  We 

hypothesized that a) apologies better repair user trust for competence-based automation 

failures and b) denials better repair user trust for integrity-based automation failures. 

METHOD 

Participants 

Seventy-four undergraduate students ages 18 to 21 (M = 18.68, SD = .94) were 

recruited and given course credit for participation in this study.  Due to equipment failure, 

demographics were collected for only 37 participants.  
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Materials 

 Equipment.  Data were collected in a lab setting on computers with 3.2 GHz 

processors, 4GB RAM, Windows 7, and a 19-inch LCD monitor set at a resolution of 

1280x1024.  Participants sat approximately 18 inches away from the monitor and 

interacted with the system using a mouse. 

Task.  This study used a taxi dispatching task paradigm that is conceptually based 

on a task used in previous research (e.g., Rovira, McGarry, & Parasuraman, 2007; Pak, 

McLaughlin, Leidheiser, & Rovira, 2016).  In this simulation, participants play the role of 

a taxi driver for an app-based ride-share company.  Participants’ task was to select 

customers that maximize income and rating.  The automation provided calculations of the 

closest fares, estimated fare, and traffic information. The interface (see Figure 1) 

consisted of five primary areas: a city road map (upper left), an automated fare computer 

(upper middle), a fare history panel (upper right), a status message panel (lower right), 

and a communications panel (lower left).  The city map displays green potential customer 

units (C1 to C6), yellow taxi units (T1 to T6), red other driver units (D1 to D3), and one 

orange unit (U) to show the participant’s vehicle position.  Each trial lasted a maximum 

of 10 seconds, and participants were instructed to choose quickly. 
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Figure 1. Task interface during automation failure. 

To help participants select fares, automation sorted the customers in descending 

order by distance from the participant’s vehicle.  If a participant fails to select a fare, the 

system status panel turned yellow and informed the participant that they have been fined 

$5 for that trial.  When the automation failed, the status panel turned red and an error 

message was displayed.  If the trial was successful, the status panel turned green and 

displayed the fare and rating earned from that customer.  See Appendix B for examples of 

task interfaces. 

To increase the general level of workload and ensure that participants use the 

automation (Parasuraman & Manzey, 2010), participants also completed a secondary 

task.  Participants monitored the communications panel for the target call sign 

“MASON”.  The communications panel randomly displayed 1 of 14 different call signs 

every six seconds.  Participants were instructed to click the “Answer” button when the 
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target call sign appeared.  Following a successful answer, the communications panel 

turned green.  Participants were told to divide their attention equally between the primary 

and secondary task. 

Design 

The experiment used a 2 (failure type: competency, integrity) × 2 (repair strategy: 

apology, denial) mixed-factors design.  Failure type (competency and integrity) was 

presented within subjects and repair strategy was presented between subjects.  Previous 

research identified a reliability of 70% as the threshold at which participants perceive a 

system to be reliable (Wickens & Dixon, 2007).  Therefore, this study used automation 

reliability of 80% (i.e., 40 failures out of 200 trials per block, 80 failures total per 

participant).  To build participant trust in the system, failures were not presented before 

10th trial (Wickens & Xu, 2002).  Afterward, failures were randomly presented 

immediately following participants’ attempt to select a fare.  Failure type and repair 

strategy were operationalized using non-interruptive error messages that immediately 

proceeded system failures. 

Each error message was composed of situational context, failure type description, 

and a repair statement.  To maximize anthropomorphism of the automation, message 

content was segmented such that the automation agent (TED) responded to general 

situational information.  The source indicator “[System]:” was used for general 

situational information and “[TED]:” was used for automation agent failure descriptions 

and trust repair strategies. 
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Competency-based failure descriptions stated that automation failures resulted 

from system inability to accurately perform the task (e.g., “I miscalculated the route”).  

Integrity-based failure descriptions stated that automation failures resulted from system 

priorities that were misaligned with those of the participant. (e.g., “I routed a different 

driver to the fare”). 

Repair strategy (apology and denial) provided information about the system’s 

intentionality and responsibility for failures.  Apologies internally attributed error 

causality and acknowledged responsibility for the failure (e.g., “I am sorry!”).  Thus, 

apologies repair trust by implying remorse for the failure and suggesting that the failure is 

unlikely to occur again in the future.  Denials externally attributed causality and declare 

no responsibility for the failure (e.g., “It was not my fault!).  Thus, denials repair trust by 

suggesting that the system is not at fault and that there is no cause for trust in the system 

to be harmed by the failure.   

To minimize the likelihood that participants would ignore error messages, this 

study used 5 different messages for each of the 4 conditions (20 total messages).  Each 

message was constructed to have insignificantly different length, readability, and clarity.  

Example error messages for each experimental condition are shown in Table 1, and a full 

list of the error messages can be found in Appendix C. 
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Table 1 
Example system error message, grouped by repair strategy and failure type. 
Repair  Error Type  Example Message 

Apology  Competency*  [System]: There were traffic backups on route to 
customer. You lost the fare. [TED]: I am so sorry! I 
failed to access my traffic feed and did not detect the 
backup. 

Apology   Integrity  [System]: Customer requested a more experienced driver. 
You lost the fare. [TED]: My apologies! I routed taxi 
with a better rating to help the reputation of RideAway. 

Denial  Competency  [System]: There were traffic backups on route to 
customer. You lost the fare. [TED]: It was not my fault! I 
miscalculate the route because of an unpredictable 
vehicle collision. 

Denial  Integrity*  [System]: Customer requested the safest driver available. 
You lost the fare. [TED]: It was not my fault! RideAway 
required me to route a taxi with a safer driving record. 

* Hypothesized optimal repair-failure combination. 
  
Measures 

Individual differences.  In addition to age and gender demographics, complacency 

potential was collected in this study.  Complacency refers to an individual’s propensity to 

over-rely on unreliable automation and is associated with over-trust in such systems 

(Singh, Molloy, & Parasuraman, 1993).  Individual differences in complacency potential 

could confound effects of failure type and repair strategy on trust.  Thus, the 

Complacency Potential Rating Scale (CPRS; Singh, Molloy, & Parasuraman, 1993) was 

used to determine participants’ propensity for automation-induced complacency.  

Participants rated their agreement with 16 statements about general automation using a 5-

point Likert scale.  The score of each item was tallied to provide an overall CPRS score.  

A CPRS score of 16 corresponds to low complacency potential while a score of 80 

corresponds to high complacency potential. 
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History-based trust.  History-based trust was measured using a questionnaire 

adapted from Lee and Moray (1994; see Appendix D).  A single subjective question 

assessed trust perceptions by asking participants, “To what extent did you trust the 

automation in the scenario?”  Participants answered using a 0-100 visual analogue scale, 

where higher scores indicated higher perceived trust. 

Perceived competence and integrity.  A 6-item questionnaire adapted from Kim, 

Dirks, Cooper, and Ferrin (2004) assessed perceptions of automation competence and 

integrity such that half of the items assessed each construct.  Participants used a 7-point 

Likert scale (1 = strongly disagree, 7 = strongly agree) to rate their agreement with each 

statement.  An example item assessing perceived competence is “TED was very capable 

of performing its job” and an example for perceived integrity is “Sound principles guide 

the TED’s actions.”  Higher scores on the scale indicate stronger perceptions of the 

construct.  See Appendix E for the full questionnaire. 

Causal attributions.  Previous trust repair research (e.g., Kim et al., 2006) 

identified that locus of causality (internal or external) affects trust repair.  Therefore, we 

measured participants’ causal attributions using a questionnaire based on Weiner’s (1985) 

attribution theory.  Participants reported internal and external attributions by rating their 

agreement with three statements about causality on 7-point Likert scales (1 = strongly 

disagree, 7 = strongly agree).  Each of these questions apportioned blame to one of three 

specific sources:  the rater/participant, the automation (TED), or other factors (e.g., 

situational factors).  An example item was, “Rate the degree to which errors were caused 
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by TED.”  Higher scores on each question indicated stronger causal attributions to self, 

system, or other factors.   

A forth item provided further insight into participants’ causal perceptions by 

asking participants the extent to which they agreed with the statement, “The automation 

took responsibility for its actions.” Lower scores on this question indicated that 

participants perceived the automation was less responsible for failures, as should be 

observed following denials.  Higher scores on this question indicated that participants 

perceived that the automation was more responsible for failures, as should be observed 

following a strong apology.  See Appendix F for the full causal attribution questionnaire. 

Exploratory variables.  Perceived reliance, perceived automation usefulness, self-

confidence, task time, and workload are known predictors of automation use and trust 

(Lee & Moray, 1994).  Therefore, these variables were also examined in this study to 

indicate the presence of confounds.  For example, significant variances in task time could 

indicate differences in readability, clarity, or length among the error messages used in 

each condition. 

Subjective reliance, usefulness, and self-confidence were measured using the 

same format as subjective trust (e.g., 0-100 visual analogue scale, see Appendix D).  

Reliance was measured using the question “To what extent did you rely on (i.e., actually 

use) the automation aid in this scenario?”  Usefulness was measured using the question, 

“To what extent do you think the automation improved your performance in this scenario 

compared to performance without the automation?”  Self-confidence was measured by 

the question, “To what extent were you self-confident that you could successfully 
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perform without the automation aid in this scenario?”  Task time was assessed by 

recording mean trial time across conditions.  Last, workload was measured using the 

NASA-TLX (Hart & Staveland, 1988).  This item measures subjective workload using 6 

items, each assessing a different attribute of workload: perceived mental demand, 

perceived physical demand, perceived temporal demand, perceived effort, perceived 

performance, and perceived frustration.  An example item from the NASA-TLX is “How 

mentally demanding was the task?”  

Procedure 

Each participant experienced one of four conditions, 2 (failure type: competence-

based, integrity-based) × 2 (repair strategy: apology, denial).  Each condition was 

composed of two blocks of 200 trials (400 trials total), one block for competency failures 

and one block for integrity failures.  Block presentation order was counterbalanced using 

a partial Latin square. 

Participants were tested in groups of up to six.  Each participant was randomly 

assigned a condition.  After participants provided informed consent, we collected age and 

gender demographics and provided verbal instructions for the tasks.  Participants were 

told that the automation in the task was highly reliable but imperfect.  After confirming 

that they understood the instructions, participants completed a practice block composed 

of 20 trials.  The automation in the practice block was 100% reliable to build trust in the 

system and minimize participant confusion while they familiarized themselves with the 

experimental tasks.  The participants next completed two experimental blocks.  Task time 

was recorded by the computer during each block.  After each block, participants 
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completed the questionnaires for perceived trust, competence, integrity, responsibility, 

causal attributions, reliance, self-confidence, and usefulness.  At the end of the study, 

participants completed the CPRS. 

RESULTS 

An a priori power analysis indicated a total of 64 participants would be required 

to detect a moderate effect size (ηp
2 = .25) with 90% power at an alpha of .05.  A total of 

74 participants were recruited for this study to account for data loss.  Six participants 

were removed due to computer malfunctions that occurred during their session.  Two 

participants were removed because they did not follow instructions (one used their cell 

phone during the task and the other began the task prior to receiving verbal instructions).  

One additional participant was removed because they were deemed an outlier due to a 

mean task time over 3 standard deviations from the sample mean.  Data from the 

remaining 65 participants were included in the analyses of trust and exploratory 

variables.  Descriptive statistics for participant characteristics by between-subjects 

condition are shown in Table 2.  Chi-squared analysis revealed no significant (p > .05) 

differences between repair strategy groups in gender or age.  Independent samples t-tests 

revealed no significant (p > .05) differences between repair strategy groups in age and 

complacency potential (measured with CPRS scores).   

  



15 
 

Table 2 
Participant characteristics by repair strategy (the between-subjects factor). 
  Apology  Denial 

  
Male  

(n = 8)  
Female  
(n = 10)  

Male  
(n = 6) 

 Female  
(n = 13) 

  M SD  M SD  M SD  M SD 
Age  19.00 1.07  18.30 .48  19.50 1.38  18.38 .65 
CPRS  57.63 7.11  56.40 4.97  60.83 5.27  57.85 7.55 
Note. Age and gender statistics represent data from 37 participants. Complacency 
potential scores range from 18 to 80 such that higher scores indicating higher 
complacency potential and represent data from 65 participants. 
 

All dependent variables were subjected to a 2 (failure type: competence, integrity) 

× 2 (repair strategy: apology, denial) mixed repeated-measures analyses of variance 

(ANOVA).  The Type I error rate for all tests was set at .05, and all pairwise comparisons 

used Bonferroni degrees of freedom corrections.  Measures of perceived competence, 

integrity, and causal attributions were considered manipulation checks and were 

measured for only the first 20 participants, producing underpowered statistical analysis of 

these variables (e.g., observed power of .35 < acceptable power of .8).  Therefore, our 

discussion will primarily focus on the observed effect sizes, which are independent of 

sample size, using Cohen’s (1988) conventions for eta-squared (.01, 06, .14 represent 

small, medium, and large effect sizes, respectively).  History-based trust was the key 

variable of interest in this study and was the only variable for which a priori hypotheses 

were created.  All other variables included in this analysis are considered in context of 

explaining trust effects.  Summary tables for all main and interaction effects of repair 

strategy and failure type are displayed in Appendix I.  In-text figures are only presented 

for significant results; however, figures for nonsignificant results are shown in Appendix 

J. 
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History-based Trust 

We predicted that 1) trust in apologetic automation would be greater following 

competency-based system failures than integrity-based system failures, and 2) trust in 

denying automation would be greater following integrity-based system failures than 

competency-based system failures.  A 2 (failure type: competence, integrity) × 2 (repair 

strategy: apology, denial) mixed repeated-measures ANOVA revealed a significant 2-

way interaction of failure type and repair strategy for history-based trust (F (1, 63) = 

10.80, p = .002, ηp
2 = .15).  The source of this interaction was a significant effect of 

apologies on trust such that participants had greater trust in automation that apologized 

for committing competency-based failures (M = 69.68, SD = 20.08) than that which 

apologized for committing integrity-based failures (M = 61.61, SD = 24.10; F (1, 63) = 

10.01, p = .002, ηp
2 = .15).  Trust in automation that denied committing competency-

based failures (M = 66.76, SD = 20.41) was not significantly different than automation 

that denied committing integrity-based failures (M = 71.18, SD = 19.19; 4, F (1, 63) = 

2.83, p > .05, ηp
2 = .04). In addition, there was no significant main effects on trust for 

repair strategy (F (1, 63) = .47, p > .05, ηp
2 = .007) or failure type (F (1, 63) = .93, p > 

.05, ηp
2 = .01; see Figure 2).  These results supported our predicted interaction of failure 

type and repair strategy for apologies but not denials.
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Figure 2.  Mean trust comparisons between failure types, organized by repair strategies.  

Significant differences (p < .05) are indicated by an asterisk.  Errors bars display +/- 1 

standard error. 

Perceived competence and integrity 

Perceived competence and integrity are critical perceptions contributing to trust.  

We expected that competency-based automation failures more negatively affected 

perceived competence than perceived integrity.  Similarly, we expected that integrity-

based failures more negatively affected perceived integrity than perceived competence.  
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Reliability analyses were conducted for the subscales measuring perceived competence 

(Cronbach’s α = .92) and perceived integrity (Cronbach’s α = .72).  Inter-item 

correlations were determined to be acceptably strong (Cronbach’s α > .7; Nunnally, 

1978) and composite mean scales were used in the following analysis.  Perceived 

competence and integrity were each subjected to a 2 (failure type: competence, integrity) 

× 2 (repair strategy: apology, denial) mixed repeated-measures ANOVA.  There were no 

significant main effects of failure type on perceptions of competence (F (3, 16) = 1.46, p 

> .05, ηp
2 = .22) or integrity (F (3, 16) = .038, p > .05, ηp

2 = .01).  However, the observed 

effect sizes suggested a large effect of failure type on perceived competence (ηp
2 = .22) 

but a small effect on integrity.  This finding was similar to previous research (e.g., Kim et 

al., 2004).  The effect of failure type on perceived integrity was small (ηp
2 = .01) and 

therefore provides no evidence that failure type affected participants’ perceptions of 

system integrity.  Also, there was a large difference in the strength of system failure type 

effects on perceived competence and integrity, indicating that both failure types affected 

perceived system competence substantively more than perceived system integrity. 

Causal attributions 

We also examined the effect of trust repair strategy on causal attributions.  These 

dependent variables were individually subjected to a 2 (failure type: competence, 

integrity) × 2 (repair strategy: apology, denial) mixed repeated-measures ANOVA.  

Results indicated no significant main effects of repair strategy on causal attributions to 

the automation (F (1, 18) = .275, p > .05, ηp
2 = .02), causal attributions to self (F (1, 18) = 

.25, p > .05, ηp
2 = .01), or perceived responsibility (F (1, 18) = 4.10, p > .05, ηp

2 = .18).  
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Although not significantly different, mean attributions toward the automation and mean 

perceived responsibility trended in the predicted directions (e.g., apologetic automation 

was perceived as more responsible and more at fault for failures).  There was a significant 

main effect of trust repair strategy on external attributions such that participants attributed 

more fault to the situation when the automation denied committing failures (M = 5.40, SD 

= 1.22) than when it apologized for committing failures (M = 4.00, SD = 1.62; F (1, 18) = 

4.78, p = .042, ηp
2 = .21; see figure 3).  These findings indicate that apologies and denials 

were differentially perceived by participants consistent with previous literature (e.g., Kim 

et al., 2004). 
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Figure 3.  Mean situation attributions between failure types, organized by repair 

strategies.  Significant differences (p < .05) are indicated by an asterisk.  Errors bars 

display +/- 1 standard error. 

Exploratory Variables. 

Perceived usefulness, perceived reliance, self-confidence, task time, and 

subjective workload (measured by TLX) predict of automation use and were also 

measured and analyzed.  Each of these dependent variables was subjected to a 2 (failure 
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type: competence, integrity) × 2 (repair strategy: apology, denial) mixed repeated-

measures ANOVA.  No significant (p > .05) main effects or interactions of failure type 

and repair strategy were detected for perceived usefulness, perceived reliance, self-

confidence, and task time.  This suggests that apologies and denials did not differentially 

affect behavior or associated perceptions.  The 6 TLX subscales were analyzed 

separately, since each subscale measures a different component workload: mental, 

physical, temporal, effort, performance, and frustration.  There was a significant main 

effect of repair strategy on perceived physical workload (F (1, 42) = 6.60, p = .014, ηp
2 = 

.136), indicating that denials produced lower perceptions of physical demand than 

apologies (see figure 4).  We conclude that apologies and denials do not differentially 

affect perceptions, with the exception of perceived workload and trust, that are critical to 

reliance and use of automation.   
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Figure 4.  Mean perceived physical workload between failure types, organized by repair 

strategies.  Significant differences (p < .05) are indicated by an asterisk.  Errors bars 

display +/- 1 standard error. 

DISCUSSION 

The aim of the current study was to determine whether the effects of system 

apologies and denials on user trust depend on system failure type during human-

automation interactions. We hypothesized that a) apologies better repair trust harmed by 
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competence-based failures than trust harmed by integrity-based failures, and b) denials 

better repair trust harmed by integrity-based failures than trust harmed by competence-

based failures.   

Our results supported our first hypothesis and revealed that apologies repair 

competence-based failures but damage trust following integrity-based failures.  These 

data replicate interpersonal trust repair literature (Kim et al., 2004) in a human-

automation context.  We also support early human-automation trust repair research 

examining apologies in contexts containing only competence-based failures (de Visser et 

al., 2016; Robinette et al., 2015).  Importantly, we provide new insight into the extent to 

which system transparency is and perceptions of automation’s intent are critical to trust 

repair in human-automation interactions (Schaefer et al., 2017; de Visser et al., 2018).  

User trust in automation is repaired when the user’s values align with their perceptions of 

the machine’s intent.  For example, automation apologies for incompetence repair user 

trust by signaling remorse that the error occurred and indicates the intention of not 

repeating the error in the future.  However, automation apologies for violating user values 

fail to repair trust because they admit to intentionally committing errors and are perceived 

as likely to repeat in the future.  Therefore, strong, lasting, damaging effects of integrity-

based trust violations exist in both interpersonal interactions (Schweitzer, Hershey, & 

Bradlow, 2006; Reeder & Coovert, 1986) and human-automation interactions.   

Our second hypothesis was not supported, which suggests that the effects of 

denials on trust do not significantly depend on failure type.  Interestingly, this means that 

trust repair in human-automation interactions is similar, but not identical, to human-
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human interactions.  A possible explanation can be found by examining implicit biases 

that differentiate how people perceive automation and human performance.  Automation 

is viewed as a more credible information source than human partners in the same context 

(Lerch, Preitula, & Kulik, 1997; Petty and Cacioppo, 1986).  People are more likely to 

trust and comply with statements made by automation than statements made by other 

people (Mosier, Skitka, & Heers, 1996).  Because credibility enhances the effectiveness 

of denials (Shapiro et al., 1994), these data suggest that automation denials more 

effectively repair competence-based trust than human denials.  Furthermore, causal 

attributions rely on superficial situational cues when causal information is scarce or 

absent (Lewicki & Bunker, 1996).  Also, users experiencing conditions, such as high 

workload, that impair their ability to verify machine performance (Parasuraman & Riley, 

1997) are similarly likely to over-rely on superficial information to update trust. 

An interesting relationship exists between workload and trust repair; however, the 

extent to which this may impact automation use remains unclear.  Participants interacting 

with apologetic automation experienced significantly greater physical task demand than 

participants interacting with automation denials.  This finding supports speculation from 

emerging trust repair literature (de Visser et al., 2018) that workload and individual 

differences in cognition (e.g., working memory capacity) may have an important effect 

on trust repair.  At least one alternative trust repair strategy, perspective-taking, has been 

shown to be cognitively demanding (Roßnagel, 2000).  Together, these findings suggest 

that repairs that require greater inferences to be made about intentionality and mind of the 

trustee may be more demanding than less inferential repair strategies, such as denials.  
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Exploring the performance of repair strategies under varying levels of workload may 

prove an interesting and important area for future research. 

Automation has become widely available and already uses trust repair in response 

to system failures.  The effects of system competence have been the focus of much 

research (Muir & Moray, 1996; Waytz, Heafner, & Epley, 2014); however, more work is 

needed to further understand how integrity failures affect user trust.  Modern automation 

should consider the impact that failure types have on user perceptions and, when trust 

repair is advantageous, take measures to preserve perceptions of system integrity.  

Although apologies have a history of success at repairing trust, they do expose the 

human-automation team to risk of confirming otherwise ambiguous perceived integrity-

based system failures.  Denials may prove to be a safer repair strategy to use under high 

workload conditions, when system integrity is in question, or when failure causes are not 

verifiable.  Although not yet empirically tested, sound theory discussed in this paper 

suggests that anthropomorphism may affect trust repair.  Anthropomorphism is an 

important consideration as automation continues to progress toward autonomy and 

display further degrees of humanness.  Trust repair in autonomous systems may prove to 

be more similar to human-automation interaction (de Visser et al., 2018) than the 

automation tested in the current study.  More work is needed to further delineate the 

boundaries of trust repair in human-automation interaction. 

Limitations and Future Directions 

Future work should address several limitations which affected the generalizability 

of our results.  First, trust is increasingly difficult to repair as failures become more 
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frequent (Lewicki & Bunker, 1996).  Therefore, system reliability is likely a key 

determinant of trust repair.  Denials may continue to effectively repair trust during lower 

levels of reliability by displacing blame for both types of failures, whereas apologies may 

lose effectiveness (or even be perceived as meaningless) due to repeated admittance of 

guilt and low perceived sincerity. 

A second limitation of this study is the single task domain (taxi dispatching).  

Trust in automation (Pak, Rovira, McLaughlin, 2017; Zand, 1972) and perceptions 

affecting trust (e.g., perceived competence and integrity; Schoorman, Mayer, & Davis, 

1995) are domain-specific.  Thus, it is unknown how our findings may generalize to other 

contexts.  Also, the app-based rideshare domain was chosen because it closely resembled 

a nascent technology familiar to undergraduate participants.  However, we did not 

explore how prior knowledge of the task or domain may have influenced trust repair. 

Further research should explore the effects of trust repair strategy content and 

length.  Substantive messages are more likely to repair trust than simple messages 

(Bottom et al., 2002).  For example, Kim and colleagues’ (2004) utilized detailed repairs, 

whereas our study used concise and simple error messages.  We opted for concise 

messages to increase generalizability of our findings, because lengthy messages are 

unlikely in most currently available applications and are potentially unsafe if used in such 

settings (e.g., in-vehicle GPS).  Our automation error messages were therefore short 

enough to be quickly read but long enough that they provided adequate information about 

the failure context and repair intervention. 
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Last, our study tested only two of many possible repair strategies as well as two of 

many possible failure types.  Additional research is needed to further explore the effects 

of apologies and denials as well as a wide variety of alternative repairs.  For example, 

future work may choose to examine simple acknowledgements as a quick, low-cost repair 

(e.g., “Something went wrong!”).  Further analysis of the effects of failures types are also 

needed, particularly for trust repair effects on perceived benevolence, the third dimension 

of trust (Mayer et al. 1995).  As automation becomes increasingly humanlike, it is 

possible that perceptions such as benevolence may play a greater role in how users trust 

systems. 

Conclusion 

Currently, automation design and performance interventions can manipulate the 

formation and resilience of trust.  However, little is known about repairing trust following 

system failures.  This study is among the first to explore trust repair effects in human-

automation interactions and has provided useful insights into the contours of trust repair 

in this domain.  Unlike visual anthropomorphism, which is sensitive to individual user 

differences and system reliability, system communication provides a more resistant 

design feature that could be implemented flexibly based on system reliability.  This 

allows a user’s perception of the automation to ebb and flow with automation 

performance, enabling people to adjust their usage of automation more appropriately in 

real-time.  
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Appendix A 

Hoff and Bashir’s (2015) model illustrating factors that affect automation trust. 
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Appendix B 

Example task interfaces 

Task interface immediately after a participant fails to select in the allotted 10 seconds. 

 
 
Task interface immediately following an automation failure. 
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Task interface immediately after successfully responding to the call sign “Mason” in the 
communications panel. 
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Appendix C 

Full list of automation error messages. 
 
Integrity failures with apologies 

• [System]: Customer requested a faster pickup time. You lost the fare. [TED]: I am 
so sorry! I routed a closer driver because the needs of RideAway customers come 
first. 

• [System]: Customer requested a more experienced driver. You lost the fare. 
[TED]: My apologies! I routed taxi with a better rating to help the reputation of 
RideAway. 

• [System]: Customer requested a more luxurious vehicle. You lost the fare. [TED]: 
I apologize! I routed a luxury taxi to keep the RideAway customer happy. 

• [System]: Customer requested the safest driver available. You lost the fare. 
[TED]: I am sorry! I routed a driver to help improve the overall reputation of 
RideAway. 

• [System]: Customer required more seats than you have. You lost the fare. [TED]: 
Sorry! I routed a higher occupancy taxi to keep the RideAway customer happy. 

 
 Integrity failures with denials 

• [System]: Customer requested a faster pickup time. You lost the fare. [TED]: It 
was not my fault! RideAway forced me to send a closer driver to the customer. 

• [System]: Customer requested a more experienced driver. You lost the fare. 
[TED]: It was out of my control! RideAway made me to route a taxi with a better 
rating. 

• [System]: Customer requested a luxury vehicle. You lost the fare. [TED]: I was 
not responsible! RideAway required me to route the most luxurious taxi available. 

• [System]: Customer requested the safest driver available. You lost the fare. 
[TED]: It was not my fault! RideAway required me to route a taxi with a safer 
driving record. 

• [System]: Customer required a high occupancy vehicle. You lost the fare. [TED]: 
I was not at fault! RideAway made me send a taxi with more seats than you have. 

 
Competency failures with apologies 

• [System]: There were traffic backups on route to customer. You lost the fare. 
[TED]: I am so sorry! I failed to access my traffic feed and did not detect the 
backup. 

• [System]: Road construction caused delays on route to customer. You lost the 
fare. [TED]: My apologies! I experienced a GPS failure and was unable to detect 
the detours. 

• [System]: Rush hour traffic increased estimated travel time. You lost the fare. 
[TED]: I apologize! I failed to predict the traffic and miscalculated your time of 
arrival. 
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• [System]: Weather conditions became severe on route to customer. You lost the 
fare. [TED]: I am sorry! I lost my internet connection and failed to detect the 
weather change. 

• [System]: Could not connect to RideAway server. You lost the fare. [TED]: 
Sorry! I experienced an internal error and could not route your taxi to the 
customer.  

 
Competency failures with denials 

• [System]: There were traffic backups on route to customer. You lost the fare. 
[TED]: It was not my fault! I miscalculate the route because of an unpredictable 
vehicle collision. 

• [System]: Highway construction caused delays on route to customer. You lost the 
fare. [TED]: It was out of my control! I miscalculated because the road 
construction was unplanned. 

• [System]: Rush hour traffic increased estimated travel time. You lost the fare. 
[TED]: I was not responsible! I inaccurately estimated the drive time because 
traffic is heavier than usual. 

• [System]: Weather conditions worsened on route. You lost the fare. [TED]: It was 
not my fault! I failed to detect the weather change because of a poor internet 
connection. 

• [System]: Could not connect to the customer. You lost the fare. [TED]: I was not 
at fault! I was unable to confirm the route due to an external server error. 
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Appendix D 

History-based trust questionnaire adapted from Lee and Moray (1994). 
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Appendix E 

NASA-TLX measure of workload (Hart & Staveland, 1988). 
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Appendix F 

Perceived competence and integrity questionnaire adapted from Kim, Dirks, Cooper, and 
Ferrin (2004).  All questions used a 7-point Likert scale (1 = strongly disagree, 7 = 

strongly agree).  The first group of questions assessed perceived competence and the 
second group of question assessed perceived integrity. 

 
 
Please rate the degree to which you disagree or agree with the following statements. 

1. TED is very capable of performing its job.   
2. TED has much information about the work that needs to be done.   
3. I feel very confident about TED’s abilities.   

 
Please rate the degree to which you disagree or agree with the following statements. 

1. I like TED’s values.   
2. Sound principles seem to guide TED’s actions.   
3. TED has a great deal of integrity. 
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Appendix G 

 
Causal Attributions Questionnaire 

 
Causal attributions were assessed on a 7-point Likert scale (1 = strongly disagree, 7 = 
strongly agree). 
 
Please rate the extent to which you disagree or agree with the following statements. 

1. The system errors were due to TED's action. 
a. Please explain your answer for the previous question in 140 characters or 

less. 
2. The system errors were due to my action. 

a. Please explain your answer for the previous question in 140 characters or 
less. 

3. The system errors were due to something other than TED or my actions. 
a. Please explain your answer for the previous question in 140 characters or 

less. 
4. The automation took responsibility for its actions. 

a. Please explain your answer for the previous question in 140 characters or 
less. 
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Appendix H 

 
Complacency Potential Rating Scale (CPRS).  Adapted from Singh, Molloy, & 

Parasuraman, 1993).  All questions used a 1-5 Likert scale (1 = Strong Disagree, 5 = 
Strongly Agree). 

 
Please read each statement carefully and select the one response that you feel most 
accurately describes your views and experiences. There are no right or wrong answers. 
Please answer honestly. 
  

1. Manually sorting through card catalogues is more reliable than computer-aided 
searches for finding items in a library. 

2. If I need to have a tumor in my body removed, I would choose to undergo 
computer-aided surgery using laser technology because computerized surgery is 
more reliable and safer than manual surgery. 

3. People save time by using automatic teller machines (ATMs) rather than a bank 
teller in making transactions. 

4. I do not trust automated devices such as ATMs and computerized airline 
reservation systems. 

5. People who work frequently with automated devices have lower job satisfaction 
because they feel less involved in their job than those who work manually. 

6. I feel safer depositing my money at an ATM than with a human teller. 
7. I have to tape an important TV program for a class assignment. To ensure that the 

correct program is recorded, I would use the automatic programming facility on 
my VCR rather than manual taping. 

8. People whose jobs require them to work with automated systems are lonelier than 
people who do not work with such devices. 

9. Automated systems used in modern aircraft, such as the automatic landing 
system, have made air journey safer. 

10. ATMs provide safeguard against the inappropriate use of an individual's bank 
account by dishonest people. 

11. Automated devices used in aviation and banking have made work easier for both 
employees and customers. 

12. I often use automated devices. 
13. People who work with automated devices have greater job satisfaction because 

they feel more involved than those who work manually. 
14. Automated devices in medicine save time and money in the diagnosis and 

treatment of disease. 
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15. Even though the automatic cruise control in my car is set at a speed below the 
speed limit, I worry when I pass a police radar speed-trap in case the automatic 
control is not working properly. 

16. Bank transactions have become safer with the introduction of computer 
technology for the transfer of funds. 

17. I would rather purchase an item using a computer than have to deal with a sales 
representative on the phone because my order is more likely to be correct using 
the computer. 

18. Work has become more difficult with the increase of automation in aviation and 
banking. 

19. I do not like to use ATMs because I feel that they are sometimes unreliable. 
20. I think that automated devices used in medicine, such as CAT-scans and 

ultrasound, provide very reliable medical diagnosis. 
 



40 
 

Appendix I 

Summary tables for descriptive and inferential statistics of main effects and interactions. 

Table 3 
Descriptive and inferential statistics for the main effects of failure type. 
 Competence  Integrity      
Measures M SD  M SD n df F p ηp

2 
Trust 68.15 20.15  66.62 22.03 65 1, 63 .926 .340 .014 
Competence 4.77 1.48  4.80 1.24 20 1, 18 .028 .869 .002 
Integrity 4.33 1.28  4.28 .95 20 1, 18 1.04 .321 .055 
Causal 
Attributions 

      
   

 

    Auto. 4.65 1.18  3.85 1.69 20 1, 18 4.40 .050 .196 
    Self 3.40 1.76  3.35 1.69 20 1, 18 .02 .896 .001 
    Other    4.75 1.62  4.65 1.87 20 1, 18 .10 .755 .006 
    Resp. 3.75 1.77  4.00 1.69 20 1, 18 .76 .396 .040 
Task Time  3.96 1.37  3.69 1.14 65 1, 63 2.99 .089 .045 
Self-Conf. 51.23 22.81  53.23 24.63 65 1, 63 .64 .426 .010 
Usefulness 74.15 21.50  71.85 21.64 65 1, 63 1.40 .241 .022 
Reliance 74.15 24.62  76.31 22.26 65 1, 63 1.05 .310 .016 
Workload           
    Mental 59.78 22.71  57.05 22.26 44 1, 42 1.57 .217 .036 
    Physical 20.22 15.74  19.55 10.56 44 1, 42 .114 .738 .003 
    Temporal 72.00 19.02  69.32 21.72 44 1, 42 .56 .460 .013 
    Effort 52.00 22.42  45.91 19.80 44 1, 42 2.86 .098 .064 
    Perf. 75.56 14.70  76.59 14.78 44 1, 42 .235 .630 .006 
    Frustration 38.67 24.18  40.68 22.14 44 1, 42 .420 .521 .010 
Note. Task time displayed in seconds. 
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Table 4 
Descriptive and inferential statistics for the main effects of repair strategy. 
 Apology  Denial      
Measures M SD  M SD n df F p ηp

2 
Trust 65.65 22.37  68.97 19.79 65 1, 63 .47 .495 .007 
Competence 4.77 1.39  4.80 1.34 20 1, 18 .00 .955 .003 
Integrity 4.12 .97  4.50 1.24 20 1, 18 .82 .378 .043 
Causal 
Attributions 

      
   

 

    Auto. 4.50 1.57  4.00 1.41 20 1, 18 .87 .365 .046 
    Self 3.55 1.82  3.20 1.61 20 1, 18 .25 .620 .014 
    Other    4.00 1.84  5.40 1.31 20 1, 18 4.78* .042 .210 
    Resp. 4.55 1.64  3.20 1.54 20 1, 18 4.07 .059 .184 
Task Time  3.69 1.12  3.95 1.38 65 1, 63 .891 .349 .014 
Self-Conf. 53.87 23.63  50.74 23.77 65 1, 63 .34 .562 .005 
Usefulness 71.94 23.87  73.97 19.25 65 1, 63 .16 .688 .003 
Reliance 73.06 25.84  77.21 20.94 65 1, 63 .06 .804 .001 
Workload           
    Mental 60.48 20.71  56.60 23.89 44 1, 42 .31 .581 .007 
    Physical 24.05 14.15  16.17 11.53 44 1, 42 6.60* .014 .136 
    Temporal 75.00 17.70  66.81 21.88 44 1, 42 2.24 .142 .051 
    Effort 53.10 19.81  45.32 22.05 44 1, 42 2.22 .143 .050 
    Perf. 74.29 15.79  77.66 13.55 44 1, 42 .77 .385 .018 
    Frustration 42.86 23.19  36.81 22.85 44 1, 42 1.05 .312 .024 
Note. Task time displayed in seconds. 
* p < .05 
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Table 5 
Inferential statistics for the interaction effects of repair strategy and 
failure type. 
Measures n df F p ηp

2 
Trust 65 1, 63 10.80** .002 .146 
Competence 20 1, 18 3.36 .083 .157 
Integrity 20 1, 18 1.04 .321 .055 
Causal 
Attributions 

 
   

 

    Auto. 20 1, 18 .28 .607 .015 
    Self 20 1, 18 .02 .896 .001 
    Other    20 1, 18 4.90* .040 .214 
    Resp. 20 1, 18 .03 .864 .002 
Task Time  65 1, 63 .03 .858 .001 
Self-Conf. 65 1, 63 .00 .980 .000 
Usefulness 65 1, 63 .71 .404 .011 
Reliance 65 1, 63 .06 .804 .001 
Workload      
    Mental 44 1, 42 .85 .361 .020 
    Physical 44 1, 42 .28 .601 .007 
    Temporal 44 1, 42 .56 .460 .013 
    Effort 44 1, 42 .04 .845 .001 
    Perf. 44 1, 42 .24 .630 .006 
    Frustration 44 1, 42 .42 .521 .010 
Note. Task time displayed in seconds. 
* p < .05 
** p <.01 
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Appendix J 

Figures for all nonsignificant effects. 

Figure 5.  Mean perceived competence between failure types, organized by repair 

strategies. 
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Figure 6.  Mean perceived integrity between failure types, organized by repair strategies. 
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Figure 7.  Mean perceived causal attributions to self between failure types, organized by 

repair strategies. 
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Figure 8.  Mean perceived causal attributions to the automation (TED) between failure 

types, organized by repair strategies. 
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Figure 9.  Mean perceived responsibility between failure types, organized by repair 

strategies. 
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Figure 10.  Mean perceived usefulness of the automation between failure types, 

organized by repair strategies. 
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Figure 11.  Mean self-confidence to perform the task between failure types, organized by 

repair strategies. 

 

  



50 
 

Figure 12.  Mean perceived reliance on the automation between failure types, organized 

by repair strategies. 
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Figure 13.  Mean task time between failure types, organized by repair strategies. 
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Figure 14.  Mean perceived mental workload between failure types, organized by repair 

strategies. 
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Figure 15.  Mean perceived temporal workload between failure types, organized by 

repair strategies. 
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Figure 16.  Mean perceived effort between failure types, organized by repair strategies. 
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Figure 17.   Mean perceived performance between failure types, organized by repair 

strategies. 
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Figure 18.  Mean perceived frustration between failure types, organized by repair 

strategies. 
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