
Clemson University
TigerPrints

All Dissertations Dissertations

5-2018

Computational Investigation of the Morphological
Design Dimensions of Historic Hexagonal-Based
Islamic Geometric Patterns
Mostafa Waleed Hashem Alani
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Urban, Community and Regional Planning Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Alani, Mostafa Waleed Hashem, "Computational Investigation of the Morphological Design Dimensions of Historic Hexagonal-Based
Islamic Geometric Patterns" (2018). All Dissertations. 2087.
https://tigerprints.clemson.edu/all_dissertations/2087

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/776?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2087?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

i

COMPUTATIONAL INVESTIGATION OF THE MORPHOLOGICAL DESIGN
DIMENSIONS OF HISTORIC HEXAGONAL-BASED ISLAMIC GEOMETRIC

PATTERNS

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Planning, Design, and the Built Environment

by
Mostafa Waleed Hashem Alani

May 2018

Accepted by:
Dr. M. Carlos Barrios Kleiss, Committee Chair

Dr. Akel I. Kahera
Dr. Cliff Ellis
Joseph Choma

ii

ABSTRACT

This dissertation examines the morphology of Islamic Geometric Patterns (IGP).

Using mixed methods, including the simulation of historical designs and content analysis,

this dissertation explores the question of how it is possible to mathematically describe the

IGP. The study argues that the compositional analysis of geometry is not solely sufficient

to investigate the design characteristics of the IGP, and the underlying mathematics and

computational nature of the IGP should be considered when investigating historical IGP.

The study presents a parametric description method that captures the reality of the

IGP in numeric form and utilizes the form to derive representational codes that include

the information necessary to construct a geometry. The representational codes are utilized

to further investigate the actual and virtual design space of the IGP, aiming at identifying

morphological similarities between historical designs.

This research challenges the long-standing paradigm that considers compositional

analysis to be the key to researching historical IGP. Adopting a mathematical description

shows that the historical focus on existing forms has left the relevant structural

similarities between historical IGPs understudied.

The research focused on the historical, hexagonal-based IGP and found that

hexagonal-based IGP designs correlate to each other beyond just the actualized

dimension and that deep, morphological connections exist in the virtual dimension. Using

historical evidence, this dissertation identifies these connections and presents a

categorization system that groups designs together based on their ‘morphogenetic’

characteristics.

iii

DEDICATION

To my parents, Samerah Alfaraj and Waleed Alani.

To my wife, Rousel; and to my son and daughters, Ibrahim, Sarah, and Rania.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to all of my committee members. I would

like to deeply thank my doctoral dissertation chairperson, Dr. Carlos Kleiss, for his

guidance at both the academic and personal levels as well as his understanding and

continued support. I am thankful I had the opportunity to work with him. I would also

like to thank Dr. Akel Kahera, who greatly inspired my work in the area of Islamic

architecture. In addition, I would like to thank Joseph Choma for his great support and

enthusiasm about my area of research, especially morphology. I would also like to thank

Dr. Cliff Ellis for his insights and valuable inputs regarding research design.

Furthermore, I would like to thank Dr. Mickey Lauria, the director of the PDBE program,

for the many opportunities provided and his support. I would also want to acknowledge

my friends at the PDBE program who have been with me through this incredible journey.

Finally, I would like to thank the Higher Committee of Education Development in

Iraq, the office of the Iraqi Prime Minister, and Aliraqia University for providing me this

wonderful opportunity and for funding my doctoral research.

v

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER

I. ISLAMIC ARCHITECTURE IN THE DIGITAL AGE 1

1.1 Introduction .. 1
1.2 Background .. 1
1.3 Theoretical Framework .. 3
1.4 Statement Of The Problem ... 5
1.5 Research Question ... 6
1.6 Significance Of The Research ... 7
1.7 Methods Overview ... 8

II. ISLAMIC GEOMETRIC PATTERNS ... 9

2.1 Introduction .. 9
2.2 Geometric Mode Of Islamic Patterns .. 9
2.3 Chronological And Geographical Development 13
2.4 Primary Sources: Historical Manuscript And Design Scrolls 16
2.5 Mathematics And Geometric Designs ... 19
2.6 Formal Approach To IGP .. 21
2.7 Mathematics-Based Approach To IGP .. 23
2.8 Summary .. 24

III. MORPHOLOGICAL DESIGN THINKING ... 26

3.1 Introduction .. 26
3.2 Digital Morphogenesis ... 26

vi

Table of Contents (Continued)

3.3 Morphology.. 27
3.4 Parametric Design .. 30
3.5 Mathematical Description Of Form ... 30
3.6 Summary .. 32

IV. MIXED METHOD APPROACH .. 33

4.1 Research Design ... 33
4.2 Phase One: Parametric Description ... 34
4.3 Phase Two: Content Analysis .. 36
4.4 Data Collection .. 36
4.5 Instrumentation .. 38

V. PARAMETRIC DESCRIPTION OF THE IGP MORPHOLOGY 41

5.1 Introduction .. 41
5.2 Analysis Of The IGP .. 41
5.3 The Morphological Description ... 45
5.4 The Simulation Program .. 54
5.5 Pilot Study: Manipulating The Parametric Description 55

VI. THE MORPHOLOGICAL CORRELATIONS ... 58

6.1 Introduction .. 58
6.2 The Morphological Groups .. 58
6.3 The Content Categories .. 60
6.4 The Search Algorithms .. 62
6.5 Sorting Algorithms .. 62
6.6 Matching Algorithms ... 72
 6.6.1 Identical Match ... 73
 6.6.2 Structural Equivalency .. 74
6.7 The Morphological Correlations .. 86
6.8 Chronologically Of The Morphological Groups 92

VII. TOWARD MORPHOLOGICAL UNDERSTANDING OF HEXAGONAL-
BASED ISLAMIC GEOMETRIC PATTERNS 98

7.1 Conclusion ... 98
7.1 Limitations ... 101
7.1 Future Research ... 102

Page

vii

Table of Contents (Continued)

APPENDICES ... 104

A: Collected Hexagonal-Based Islamic Geometric Patterns that explains the
pattern, single geometry, and the fundamental unit. 105

B: IGP Explorer (the Simulation Program) .. 122
C: Representational Code Analyzer (the Search Program) 134
D: Morphological Correlations Flowcharts .. 147

REFERENCES .. 164

Page

viii

LIST OF TABLES

Table Page

6.1 Variables considered in each content category .. 61

6.2 The number of designs identified in each morphological group 64

6.3 Unique (grouped) designs vs. ungrouped designs 73

ix

LIST OF FIGURES

Figure Page

2.1 Illustration of the Arabic calligraphy using Kufi style. 10

 2.2 Left: illustration of floral design from Bursa, Turkey. Right: Geometric
pattern from Granada, Spain. ... 10

 2.3 Construction of IGP from a repeated unit using a hexagonal structure 11

 2.4 Identical designs. Left: design from Alhambra palace Granada, Spain. Right:
design from Konya, Turkey. .. 13

4.1 The geographic, chronological, and dynastic distribution of the collected data.
.. 38

4.2 Conversation process from a digital photograph to CAD 40

 5.1 Examples of each of the five types of the symmetry wallpaper groups and the
process of identifying the FU. Top left explains the FU by itself. 43

 5.2 Percentage of each type of the five hexagonal wallpaper group symmetry
categories in the collected data. ... 44

 5.3 The illustrations on the left explain point categories. The illustrations on the
right show two examples with different point types. 45

 5.4 The top shows geometry from Ibn Tulun mosque, and the bottom shows
geometry from the Karraqan East Tower. Both geometries are shown in
terms of the whole pattern, the repeated unit, the fundamental unit, and the
representational code. .. 47

5.5 Single polyline scenario that closes on itself in a quadruple connection point.
.. 48

 5.6 Multiple polyline scenarios. The top shows a design with two polylines within
the FU, and the bottom shows a design with three polylines within the FU
.. 49

 5.7 The process of point actualization. The Cartesian coordinate system vs. the
polar coordinate system ... 51

x

List of Figures (Continued)

 5.8 The pattern on left can be generated using the representational codes on the
bottom right of each design .. 52

 5.9 The top diagram shows the identified behavior pattern and parametric aspects
of the IGP. The bottom is a historic example that demonstrates
actualization of the description model above ... 53

5.10 Explanation of the interface of the IGP explorer (the simulation program)
.. 55

5.11 Following the arrow, this figure explains selected transformations of Ibn
Tulun geometry through various topological states. 56

5.12 Across region morphological correlations among historical designs. The x-
axis represent time, and the y-axis represents the geographic location
arranged in an ordinal manner from west (bottom) to east (top). 57

 6.1 Examples of all SMG. The y-axis represents the MG (number of polylines).
The x-axis represents the total number of Q/TP within the FU. The
intersection of the two axis defines the SMG. The intersection is
represented by an example from the associated SMG. The frequency of
each SMG is shown in orange at the top right of each geometry 60

 6.2 Sorting of the A0 SMG. The bottom right shows the two possible sortation of
codes that fall within the A0 group .. 65

 6.3 Sorting of the A1 SMG. The representational code of the design in Alhambra
Palace. The starting code refers to code inputted by the researcher. Partial
reverse refers to the process of partially flipping the highlighted point
sequence (colored boxes). .. 66

 6.4 Sorting of the B0 SMG. The bottom left shows the flipping process for each
polyline, and the bottom right shows the possible description codes for B0
group. ... 68

 6.5 Sorting of the B1 SMG. Explanation of the possible paths for designs of B1
specific morphological group. ... 70

6.6 Sorting of the B2 SMG. The possible interpretation of the two polyline paths
.. 72

Page

xi

List of Figures (Continued)

 6.7 The code used for identifying identical designs, implemented using processing
programing language ... 73

 6.8 The top shows the earliest copied design, the middle the most frequently
copied design, and the bottom the most frequently copied design in B1
group. ... 75

 6.9 The code used for identifying structurally equivalent designs, implemented
using processing programing language .. 77

 6.10 The most frequent structures in LV1 structural equivalency 78

6.11 The internal boundaries of the FU and the control of the points that lay on
these boundaries. The dark black variable in the representational code
represents the considered variable in the comparison. 78

6.12 The code used for identifying structurally equivalent designs of level one for
ascertaining the flow in a more flexible manner. 79

6.13 The most frequent structure in LV1 structural equivalency when identifying
the flow based on points that lay on the internal boundaries of the FU
.. 80

6.14 Different polyline flows with similar segment counts (five segments each) and
similar specific morphological case (A0). ... 81

6.15 The code used for identifying structurally equivalent designs of level two,
implemented using processing programing language 82

6.16 The most frequent structures in LV2 structural equivalency 83

6.17 Example of LV3 structural equivalency. ... 84

6.18 The code used for identifying structurally equivalent designs of level three,
implemented using processing programing language 84

6.19 Example of LV4 structural equivalency. Simple design vs. complex designs in
terms of segment count and specific morphological case. All designs are
considered equal in terms of LV4 as they are composed from a single
polyline. ... 85

Page

xii

List of Figures (Continued)

6.20 The code used for identifying structurally equivalent designs of level four,
implemented using processing programing language 86

6.21 Line graph shows the frequency of identical and the four levels of structural
equivalency categories ... 87

6.22 Morphological groups that exist within each symmetry type. Each
morphological group is broken down by its specific morphological groups
on the x-axis, and the segment count on the y-axis. 88

6.23 Enlarged view of the specific morphological case B2 within the P6M
symmetry group ... 91

6.24 Enlarged view from the morphological group C within the P6M symmetry
group. Three polylines are indicated in different colors 93

6.25 Figure explains segment count chronologically within A MG for symmetry
Group P6M. Color indicates the SMG ... 94

6.26 Figure explains segment count chronologically within B MG for symmetry
Group P6M. Color indicates the SMG ... 95

6.27 Figure explains segment count chronologically within C MG for symmetry
Group P6M. Color indicates the SMG ... 96

7.1 Identical designs ... 100

7.2 Employing the morphological categorization across symmetries 102

 7.3 Left: digital model with ten hexagonal repeat units. Right: finished prototype
.. 103

Page

1

CHAPTER ONE

ISLAMIC ARCHITECTURE IN THE DIGITAL AGE

1.1 INTRODUCTION

The science and technology of the digital age is revolutionizing architecture

(Kolarevic 2004). Digitals, both computerized and computational, advance the research

and design practice of architecture by opening new opportunities to explore complex

formal compositions and have recently shifted focus from the traditional

“representational” nature of architecture toward design “formalism” (Oxman, Oxman

2014).

When it comes to the research and design of Islamic architecture, digitals are used

primarily as an alternative to conventional tools such as pen and paper. Consequently, the

discipline is overly dependent on approaches that focus on the formal representation of

historical models. However, limiting Islamic architecture to particular compositional

characteristics neglects the intellectual process responsible for producing designs.

The inquiry should go beyond existing examples and examine “the emergence

and evolution” of architectural forms. Such an approach provides new research

opportunities and reestablishes an “open-ended” search for the forms that make Islamic

architecture an active contributor to global architecture (Rabbat 2004).

1.2 BACKGROUND

Historically, Islamic art and architecture took advantage from the mathematics of

its age. The enormous diversity of complex forms that exist in Islamic art and

architecture are products of mathematical and geometrical advancements as discussed in

 2

available historic documentation. One such document is Risâla fimâ yahtâju al-sâni’u min

a’mâl al-handasa (On the Geometric Constructions Necessary for the Artisan), by Abu al-

Wafa' al-Būzjānī, (998). This manuscript shows that mathematicians collaborated with

artisans to explore new relationships and prefect designs. Moreover, in the Fi tadakhul al-

ashkal al-mutashabiha aw mutawafiqa (On interlocking similar or congruent figures)

manuscript, the author demonstrates awareness of several mathematical relationships

such as the Pythagorean theorem and binomials (Chorbachi 1989). Yet, when it comes to

the research and design of Islamic architecture, mathematics is mainly discussed in terms

of proportion with less focus on the contribution of mathematics in the design process.

European scholars conducted several surveys that examined architectural sites

where Islamic monuments reside in the nineteenth and early twentieth centuries. They

produced chronological and geographical classifications of building typologies and styles

that essentially focused on the formal compositions of Islamic architecture (Rabbat

2012). The discourse that followed these “Orientalism” studies mainly took two different

approaches. One emphasized regional differences, while the other attempted to reproduce

romantic architecture that reflects the past —nationalism and neo-Islamism. These

approaches, because they only show consideration to particular formal styles, are both

criticized of viewing Islamic architecture as a “stagnant” product that has ceased evolving

(Rabbat 2004). With some exception of attempts by Rifat al-Chaderchi and Kamal el-

Kafrawi, who –as Nasser Rebbat argues—that actively engaged the design practiced

through examining and understanding historic models, and produced designs that adopt

the architectural style of their age (Rabbat 2012).

 3

1.3 THEORETICAL FRAMEWORK

The study and research of historic Islamic architecture are influenced by both

positivism and relativism paradigms. European scholars from the nineteenth century took

a positivist approach when examining historic Islamic architecture for the IGP. Several

architectural monuments, especially in Spain, Egypt, the Holy Land, and Turkey, have

been measured, documented, and dated. Later, this information was compiled to produce

regional catalogs of selected works that introduced Islamic architecture to Europe with

some attempts to analyze the underlying grids of the IGP. For instance, Owen Jones, in

his book The Grammar of Ornament, published in 1856, presents the first systematic

formal approach for researching the IGP (Jones 1868). Prisse d’Avennes, in L’art arabe,

published in 1877, was the first to observe that the underlying grid of the IGP was based

on scientific knowledge shared between various Islamic cities through design scrolls

(d'Avennes 1877). Jules Bourgoin, who did not have access to the historical scrolls, had

classified the patterns into categories according to their inner grid (Bourgoin 1879). This

approach was used later by other European researchers in North Africa and Spain

(Necipoğlu, Al-Asad 1995).

On the other hand, other research argued that there is a spiritual meaning behind

the art of geometric patterns. However, tracing back this approach takes us no further

than the early part of the past century, during which Titus Burckhardt (Burckhardt 2009).

Hossein Nasr, and, later, Keith Critchlow (Critchlow, Hossein-Nasr 1976) interpreted the

geometric patterns and their hidden circles as a symbol of Islam referring to al-Tawhid,

—the monotheism. This approach has been criticized of being highly subjective and

 4

lacking the historical evidence to support its argument (Chorbachi 1989). None of the

discovered design manuscripts mention such an interest. The only argument that has the

historic evidence to support it is that the IGP are the products of scientific advancements

in mathematics and geometry.

Neither positivism nor relativism alone is well suited for this research. The

understanding of IGP should emerge from the actualized data and can be used to

“critically test and develop ideas about the existence and nature of the phenomena”

(Groat, Wang 2002). The ontological foundation of this research acknowledges the

existence of independent reality and views it as stratified. This means that reality is not

only what is observed but is the result of a deeper-level process. This process is

responsible for producing the multiplicities of observed reality (DeLanda 2002).

Therefore, to understand the reality, the design process must be investigated. This

ontological view of reality aligns with the writings of French philosopher Gilles Deleuze,

who pioneered a theory of how forms come into existence—morphogenesis. Deleuze

argued that the forms we observe in reality are an “actualized” state of an idea while the

generative process is capable of producing other possibilities, what Deleuze identifies as

“virtual” realities. This potential population of virtual design multiplicities precedes

actualized design singularity and is perceived as just as real as the actual.

Epistemologically, this research assumes that reality can be known using a wide

range of research tools that are both objective and subjective. Methodologically, the

research process involves both quantitative and qualitative methods to collect and analyze

 5

data from multiple resources. This provides a deeper understanding of the problem being

addressed.

1.4 STATEMENT OF THE PROBLEM

The dominant approach to studying IGP is representational in nature and focuses

on the formal characteristics of historic singularities, with less focus on the mathematics

and relations between design parts. Consequently, research on IGP does not incorporate

the computational mechanism that is responsible for producing the design multiplicities

in the investigation process. This representational approach is clearly evident in studies

aimed at establishing systems of categorization to group together designs that share

similar characteristics through the identification of an underlying grid system. The result

is classification of the IGP into several categories. The designs included in each category

range from designs that share the same repetition structures such as groups of square- or

hexagon-based designs (Bourgoin 2012, Broug 2013a, Jones 1868)to designs that share

the same system of proportions, such as in Issam El-said’s study (El-Said, El-Bouri &

Critchlow 1993a).

However, a few studies have moved beyond this traditional formal approach—

and its ‘Orientalist roots’—to emphasize the relationship between mathematics and

historic IGP. One such study is by Wasma al Chorbachi, where the author examined the

geometry in the On Interlocking manuscript and identified the formula used to generate

the design. By manipulating the formula, she was able to derive several new design

variations(Chorbachi 1989). Although this study examined a specific design, it provides

 6

an approach that is concerned with utilizing a scientific method rather than merely

focusing on the formal qualities.

However, the mathematical approach to classifying the patterns is primarily based

on symmetry. The first study that scientifically investigated IGP was conducted by Edith

Müller (Müller 1944, Necipoğlu, Al-Asad 1995). Müller analyzed the symmetry of the

patterns based on group theory. This research was followed by a publication by Sayed

Abas and Amer Salman (1995) who attempted to identify a method to categorize the

design of IGP. They acknowledged the important contribution of group theory in

studying the patterns and used scientific notation to identify individual geometric designs.

Mohamed Ould Djibril developed a computational method for identifying the symmetry

group of the patterns (Djibril, Thami 2008) However, these studies did not investigate

internal geometric designs. Rather, they focused on repetition and design propagation

using symmetry. Consequently, it remains unapparent how designs that share the same

symmetry may relate to or be differentiated morphologically from each other.

1.5 RESEARCH QUESTION

The research addresses the question of how to incorporate mathematics and

morphology to describe the actual and virtual design space of IGP and identify and graph

the relations among design parts? It then utilizes this description, in light of historical

evidence, to address the question of what morphological correlations exist among historic

design singularities?

 7

1.6 SIGNIFICANCE OF THE RESEARCH

“The precise definition of an ellipse introduces us to all ellipses in the world.”

D’Arcy Thompson (1917).

The research and design of Islamic art and architecture must “catch up” and take

advantage of the technological advancements of the digital age (Keshani 2012). This

requires the development of an “infrastructure” that incorporates the computational

mechanism that produces design multiplicities in the investigation process to explore

historical designs in a way that goes beyond archiving information—digitization—and

can be used as analytical instrument.

This study eliminates the traditional boundary that focuses on either chronological

and geographical development or mere geometrical analysis and seeks to provide a

computational lens to investigate the historical evidence of surviving historic IGP that

exploit innovative tools and the algorithmic nature of IGP. The goal is to provide an

alternative understanding of historical IGP based on mathematics and morphology to

complement conventional formal understanding that is aimed at establishing a new

platform for engaged research on and design of the patterns.

The significance of the identification of design formalism of IGP is that it enables

the construction of databases of representations of design singularities, which provide an

extensive source of information and connect knowledge on multiple levels. For instance,

a single geometry can be examined regarding its design morphology, geographic

location, and chronological order. These representations serve to investigate and analyze

the morphology of historical designs empirically for possible correlations. In other words,

 8

this research provides a non-linear reading of the history of IGP that complements

historians’ approaches.

Although the focus of this investigation is on IGP, the underlying goal is to

provide a method to actively engage the design of Islamic architecture, based on

mathematics and morphology, in order to construct a version of history that represents the

digital age through incorporating innovative computational tools into the design process.

Eventually, this will reduce the gap between the contemporary world’s practice of

architecture and Islamic architecture by allowing the latter to contribute to current design

practices.

1.7 METHODS OVERVIEW

This research utilizes mixed methods in two sequential phases. In phase one,

simulation modeling is employed to develop a parametric description that describes the

formalism of IGP. This description is used to construct the representational code of

historical designs. In the subsequent phase, content analysis is utilized to study and

compare the representational codes, searching them for possible correlations.

 9

CHAPTER TWO

ISLAMIC GEOMETRIC PATTERNS

2.1 INTRODUCTION

The goal of chapter two is to discuss the design characteristics of the IGP and

identify their chronological and geographical development through examining surviving

monuments and historical manuscripts. The chapter provides a discussion on the parallel

development in mathematics and its relationship to geometric patterns. Finally, the

chapter identifies and discusses related literature for both the formal and mathematical

approaches.

2.2 GEOMETRIC MODE OF ISLAMIC PATTERNS

Patterns are a common feature of Islamic architecture and exists in a variety of

shapes and types. In general, Islamic patterns have been classified into two main

categories: Arabic calligraphy and arabesque (Burckhardt 2009 p.52, Abas, Salman

1995). Calligraphy is the art of Arabic writing in which various types of Arabic

calligraphy that belong to different ethnic groups within the Islamic world are used for

architectural decoration (Burckhardt 2009). For instance, Kufi style, which consists of

simple rectangles and squares, is employed to create façade decoration (figure 2.1).

Arabesque, on the other hand, has two modes: “stylized plant forms” and

geometrical patterns (figure 2.2). The plant forms mainly consist of curvilinear elements

forming “vines” and other floral forms such as leaves that show rhythm with some degree

of symmetry (Abas, Salman 1995, Burckhardt 2009 p.62).

 10

Figure 2.1 illustration of the Arabic calligraphy using Kufi style (Burckhardt 2009 p.44)

Figure 2.2 Left: illustration of floral design from Bursa, Turkey. Right: Geometric

pattern from Granada, Spain(Burckhardt 2009 p.66, p.68)

Geometric patterns, however, are commonly constructed from several polygons or

other regular figures (Burckhardt 2009). They consist of a “repeated unit” and a

“repetitive structure” (El-Said, El-Bouri & Critchlow 1993a, Abas, Salman 1995). The

repeated unit is the minimal possible region that contains the basic geometrical

 11

composition, where the repetitive structure is a product of systematically reiterating the

repeated unit to fill the space. The shape of the repeated unit dictates the periodicity of

the structure. Thus, both periodic and quasi-periodic patterns exist due to the stacking

capabilities of the selected repeated unit.

Figure 2.3 Construction of IGP from a repeated unit using a hexagonal structure.

In general, IGP have four recognizable characteristics: symmetry, flow,

unboundedness, and interlacing (Abas, Salman 1995). Symmetry is a dominant

characteristic of IGP. In fact, 17 types of wallpaper symmetry have been identified in

Alhambra Palace alone (Abas, Salman 1995, Müller 1944, Grünbaum, Grünbaum &

Shepard 1986a, Pérez-Gómez 1987). Regarding hexagonal patterns, symmetries of type

P3, P3M1, P31M, P6, and P6M geometric designs have been identified on various

monuments (Abas, Salman 1995).

The flow characteristic of the IGP refers to the continuity of the geometric

elements. It causes the eye to follow the lines and observe a variety of compositions and

structures (Abas, Salman 1995). Within the flow, designers often utilize “visual anchors”,

 12

which are typically composed of star components (Broug 2013b). Unboundedness, on the

other hand, refers to the ability to recursively and infinitely extend a design by stacking

repeated units or expanding the structure in the case of quasi-periodic patterns (Al

Ajlouni 2012).

Finally, the interlacing characteristic is found when the rectilinear elements that

form patterns overlap (Burckhardt 2009). This characteristic emphasis the feature

referred to as uqda in Arabic, or girih in Persian, which means a knot resulting from the

interlacement of two lines (Necipoğlu, Al-Asad 1995). These knots can be emphasized or

deemphasized based on the type of embellishment chosen by the artisan(Broug 2013b).

Thus, in some cases the same geometric design embellished in terms of lines, as in

interlaced geometric patterns, or in terms of geometric composition.

It is also common for the same design to appear in different centuries, or appear in

different geographic regions. For instance, consider the design in the left of figure 2.2.

This design exists in Alhambra palace in Granada, Spain and a similar design found also

in Konya, Turkey. However, the question here is how frequent such replications are?

 13

Figure 2.4 Identical designs. Left: design from Alhambra palace Granada, Spain. Right:

design from Konya, Turkey(Broug 2013b p.115)

With the formal utilization of digitals, such similarities remain unapparent and

can only be identified through manual comparison of historical designs. Computational

utilization of digital tools, however, advances investigation and can detect such

similarities in a much more efficient manner.

2.3 CHRONOLOGICAL AND GEOGRAPHICAL DEVELOPMENT

Geometry was widely used in ancient Mesopotamia and Egypt for land

measurement, building construction, and astronomical calculations. The Greeks built

upon this knowledge with Euclid’s studied, further discovered, and documented the

geometries in a systematic manner. Later, the manuscripts were dispersed in the region

and were available to Islamic civilizations (Wilson 1988). Islamic art utilized this

knowledge and developed geometric patterns with sophisticated mathematics.

During his expedition in Iraq (1911-13), Ernst Herzfeld, an archeologist and

scholar of Islamic architecture, identified the earliest geometric ornamentations in the

surviving monuments of the city of Samara, dated to the 9th century; these include Dar

 14

al-Khilafa (Palace of the Caliph), constructed 836-42, and other houses in the city dated

to the 9th century (Necipoğlu, Al-Asad 1995). These designs are considered to be older

than the tiles of the Great Mosque of Kairouan in Tunisia, which is dated to the 856-731,

and the geometric plasterworks found in the arches of the inner court of the Ibn Tulun

Mosque in Egypt (879). Therefore, the consensus is that geometric patterns originated

and developed in Abbasid capitals of Baghdad and Samarra, taking advantage of the 9th -

century mathematical advancement in the city of Baghdad, and then spread in the region.

In fact, the tiles of the Great Mosque of Kairouan were designed and built in Baghdad

and shipped to Tunisia (Broug 2013b).

Later examples found in the Maqbara-i Isma'il Samani in Bukhara (914-43) and

the Jurjin Mosque in Isfahan were built from brick with no star composition. However,

Mazar-i 'Arab 'Ata in Tim, Uzbakistan (977-78) and another royal mausoleum and city

minaret in Uzgand (1012-13) show the earliest geometric star designs built from brick

(Necipoğlu, Al-Asad 1995).

The geometric designs then spread in the region, appearing in several cities during

the Seljuk Dynasty (1040-1157), such as the great mosque in Seljuk’s capital Isfahan

(1072-92). However, the prime surviving examples in Seljuk are the two tombs towers in

Kharraqan (1067-68 and 1093) (Stronach, Young 1966). Each of the towers has eight

facades covered with a variety of geometric brick designs. A transition from traditional

brick patterns to glass brick can be seen in the Gunbad-I surkh (1147-1148), Gunbad-I

1 The mosque itself was constructed in 670. However, the tiles were designed and constructed in the time of Emir Abu
Ibrahim Ahmed, who governed from 856-73 in the Qubla wall. The design was made in Baghdad and shipped to
Tunisia. The initial intent was for it to be used in the palace of Abu Ibrahim Ahmed. However, he changed his mind
and requested that these designs be placed in the Qubla wall of the Great Mosque of Kairouan (Eric p.37).	

 15

Qabud (1196-97), and Mu’mina Khatun (1186) towers of Maragha and Nakhehivan in

Iran, where color was introduced for the first time in geometric designs(Necipoğlu, Al-

Asad 1995).

The successors of the Seljuk Dynasty in the region, (i.e., Rum Seljuk (1081-

1307), Zangids (1127-1222), Ayyubids (1169-1260), and Mamluks (1250-1517) also

utilized geometric patterns in their designs. A Rum Seljuk example is the minbar of the

Ala’ al-Din Mosque in Konya Turkey (1155). A Zangid example is Nur al-Din Zangi

Mosque in Hama (1163-1164). Moreover, the majority of Mamluks monuments show

great variety in the use of geometric designs (Necipoğlu, Al-Asad 1995).

Scholars(Herzfeld 1942, Necipoğlu, Al-Asad 1995)have argued that Baghdad

remained the center of innovation even after losing its political importance during the

Seljuk Period. Thus, even in the mid-13th century, several sophisticated designs, such as

the geometric designs in Madrasa al-Mustansiriyya (1233) and Abbasid Palace (1255),

can be found. It was not until the Mongol invasion to Baghdad (1258) that the city’s

importance began to decline. Later, during the Mongol-Ilkhanid Period, decorative design

became more focused on floral designs. However, there are examples employing

geometric compositions in decoration, such as Khanqah-i Shaykh 'Abd al-Samad,

constructed between 1304 and 1325 (Broug 2008). Later, the existence of geometric

patterns in the eastern part of Islamic lands mainly remained apparent in the buildings of

the Timurid Dynasty (1370-1506 CE), where several monuments were decorated with

geometric designs (Necipoğlu, Al-Asad 1995).

 16

In the western Islamic world, several monuments from the Almoravid Dynasty

(1053-1150) utilize two-dimensional and three-dimensional geometric designs, such as

the Qarawiyyin Mosque (1135-1144) and the Marrakish Qubba (1066-1142). In

neighboring Spain, the Spanish Umayyad for a long time did not use geometric patterns

in their monuments. It was not until Almoravid unified North Africa and Spain that

geometric designs began to appear in Spain, reached their peak in Alhambra Palace

during the Nasrid Dynasty (1232-1492) (Necipoğlu, Al-Asad 1995).

Therefore, close examination shows that geometric patterns emerged in Iraq in the

9th century and then appeared in several Abbasid buildings in different regions by the

10th century. They then appeared in several Seljuk monuments in Iran and Iraq during

the 11th century. Several Seljuk successors used them as well. Later, geometric designs

mainly exist in Mamluks, Nasrid, and Timrud monuments.

2.4 PRIMARY SOURCES: HISTORICAL MANUSCRIPT AND DESIGN

SCROLLS

Although the design process of IGP has historically been surrounded by secrecy

and is inherited by artisans from their masters (Necipoğlu 1992), there is some surviving

evidence on how the geometry is designed. Two historical manuscripts and three design

scrolls were retrieved and are available today (Necipoğlu, Al-Asad 1995) These are:

1. Risâla fimâ yahtâju al-sâni’u min a’mâl al-handasa (Book on the Geometric

Constructions Necessary for the Artisan) by Abu’l Wafa al-Buzjani’s from the

10th century. Referred to as On Geometric Constructions in the rest of this

dissertation.

 17

2. Fi tadakhul al-ashkal al-mutashabiha aw al-mutawafiqa (On Interlocking Similar

and Congruent Figures) by anonymous author from the 13th century. Referred to

as On Interlocking in the rest of this dissertation.

3. The Topkapi Scroll by anonymous author from the late 15th the early 16th

century.

4. The Tashkent Scrolls by anonymous author from the late 15th to the early 16th

century.

5. The Mirza Akbar Scrolls by Mirza Khan from the 19th century.

Al-Buzjani’s On Geometric Constructions manuscript demonstrated to artisans

the rules by which they can operate instruments to precisely construct different

geometrical compositions and addressed the difficulties that artisans may face. This

manuscript presents a step-by-step (algorithmic) procedure of constructing circles,

identifying points, and creating lines. Al-Buzjani began by explaining the instruments

used to design the geometry—gunya, mistar, and alburcar—and how to calibrate these

instruments. In the subsequent chapter, he discussed fundamental rules that each artisan

should master (e.g., how to divide lines and angles into equal parts and how to determine

the center of a circle). In the rest of the book, he explained how to construct different

geometrical figures. This text reveals the process of thinking employed in design that, in

its core, is based on mathematical proof. The text simplifies this for the artisan through

steps of geometric construction. As mentioned by Al-Buzjani himself, he deliberately

“excluded [from the book] the causes and proofs, to make it easier for the artisan to

understand” (al-Būzjānī 998).

 18

The On Interlocking manuscript, on the other hand is a collection of notes

compiled by the anonymous author. The manuscript reveals that the conversation

between mathematician and artisans continued centuries after Al-Buzjani as

mathematician Abu Bakr al-Khalil is cited on multiple occasions(Özdural 2000). This

manuscript shows the awareness and application of mathematical relations in geometric

designs such as the Pythagorean theorem and the 2nd degree binomial (Chorbachi 1989).

However, mathematicians chose to use the “cut and paste” method when teaching

artisans. The author takes an approach similar to Al-Buzjani’s by omitting theoretical

proof that may have been complicated and difficult for artisans to comprehend (Özdural

2000).

The primary evidence that exists from later periods consists mainly of design

scrolls. The Timurids Scroll, the so-called Topkapi Scroll, dates to the late 15th to the

early 16th century and contains 114 drawings. Unlike the previous two historic texts, this

scroll includes with no commentary that explains the steps of the design process. The

scroll acts as a guidebook that presents the modular design method, focusing on the grid

system and repeats united and utilizes symmetry to populate the design and fill spaces

with geometric patterns (Necipoğlu 1992 p.54, Necipoğlu, Al-Asad 1995).

A parallel scroll is the Tashkent Scroll, which is also dated to the late 15th to the

early 16th century. Like the Topkapi Scroll, the Tashkent Scroll shows finished models

with no explanatory text. This scroll also focuses on the concept of the repeated unit and

the grid system. With the Topkapi Scroll, these two historical documents bridge the gap

between two-dimensional and three-dimensional geometric design in Islamic architecture

 19

through the demonstrated muqarnas drawings. When compared to actual monuments, the

scroll reveals information on how two-dimensional drawings are treated in real three-

dimensional geometry (Necipoğlu 1992 p.50).

The last known evidence is the so-called Mirza Akbar Scrolls; these scrolls are a

collection of drawings designed by Persian state architect Mirza Khan and include plans,

muqarnas, and geometric and calligraphic decoration. They show that the scroll tradition

continued into the 19th century.

2.5 MATHEMATICS AND GEOMETRIC DESIGNS

In approximately 832, the al-Ma’mun Caliph established an academy of science

called Bayt al-hikma (the House of Wisdom). This institution took over the translation of

books from other civilizations in a wide range of subjects. Several books were translated

to Arabic from other languages, including Greek Euclidian writings on geometry, as

shown in the fihrist (index) of ibn al-Nadim of the translated books. Thus, Abbasid

gained knowledge on geometry as early as the 9th century (Al-Khalili 2011).

Scholars in Bayt al-hikma differentiated yet also connected theory and praxis. For

instance, the 9th-century philosopher Abū Naṣr Muḥammad ibn Muḥammad al-Fārābī

(Alpharabius) in his book Ihsa al-ulum (Survey of Science) divided mathematics into

fields of specialized topics in which each has al-nazari and al-amali (theoretical and

practical divisions) (Necipoğlu, Al-Asad 1995).

Original contributions in a variety of sciences began to appear after the end of the

translation period. Mathematics in particular flourished as new advancements were

achieved. For instance, a scholar in Bayt al-hikma, Muḥammad ibn Mūsā al-Khwārizmī,

 20

invented algebra by “synthesizing” Greek geometric knowledge and the Indian decimal

system. Al-Khwārizmī, in his book al-kitāb al-mukhtaṣar fī ḥisāb al-ğabr wa’l-muqābala

(The Compendious Book on Calculation by Completion and Balancing), presented a

unified process for problem solving, eventually delivering a new revolutionary “form of

mathematical thinking” (Al-Khalili 2010).

Al-Khwārizmī’s contributions to arithmetic and trigonometry are equally

important. For instance, his writings in arithmetic were widely read in Europe during

medieval times. In fact, “algorithm,” which is derived from his last name al-Khwārizmī,

was used to refer to the subject of arithmetic before gaining its modern meaning.

Moreover, he further contributed to trigonometry by producing spherical trigonometry, as

discussed in his book Zīj al-Sindhind. Al-Khwārizmī’s work influenced several

mathematicians such as Thābit ibn Qurra, Sinān ibn al-Fatḥ, and Abu’l Wafa al-Buzjani.

Al-Būzhjānī in particular, who was a famous mathematician and astronomer from

the 10th century and produced notable work on mathematics, is considered an important

link between the use of mathematics and the design of IGP. He participated in

conversions with craftsman, teaching them the correct, precise way of creating geometry.

In his book, On the Geometric Constructions, he aimed to facilitate the design of

geometry without using complicated mathematical proofs and reasoning -al-barahin wa

alillal (al-Būzjānī 998).

 21

It has been argued that another mathematician, Omar Khayyam (1048-1131 CE),

participated in such conversations with artisans(Özdural 1995)In an untitled treatise2

written after 1073, Khayyam explained the cubic equation in practice. Some of the

solutions that Khayyam presented were actually used and shown in the On Interlocking

manuscript (Özdural 1995). Moreover, the On Interlocking manuscript cites another

mathematician, Abu Bakr al-Khalil, as providing a mathematical solution to geometric

designs and participating in conversations with artisans.

Mathematics is exploited in a reverse manner (i.e. to convert geometry into

numbers) for the purpose of cost estimation, as shown in the Ghiyāth al-Dīn Jamshīd

Masʿūd al-Kāshī’s miftah al-hisab in which he demonstrates a method for estimating the

cost of building a muqarnas. Gülru Necipoğlu observed that “Arithmetic and geometry

were two independent but interchangeable modes of expression for the same

mathematical concept, one based on the language of numbers the other on the geometric

forms” (Necipoğlu, Al-Asad 1995). This holds true in the case of IGP, especially in the

early stages when mathematics played a significant role in the establishment and

development of the patterns. However, little information is available about the

relationship between math and IGP, and the recently discovered design scrolls show

dependence on modular-based catalogs.

2.6 FORMAL APPROACH TO IGP

The geometric mode of Islamic patterns received attention from European

scholars in the 19th century, mostly because of the “practical agenda” of the Industrial

2	Unlike Al-Būzhjānī’s manuscript, Khayyam’s treatise does not address the artisan in a direct manner. Alpay Özdural
explained that it is uncertain that this particular treatise was directed to artisans, but evidence infers this.	

 22

Revolution (Necipoğlu, Al-Asad 1995). Owen Jones, in his book The Grammar of

Ornament, which was published 1856, classified the patterns based on the development

of ethnic groups as Arab, Persian, Turkish, Indian, and Moresque. Jones’ practical agenda

led him to take a historical approach when dealing with IGP, similar to the one he uses

when dealing with designs from other cultures in the same book. Jones presented the first

systematic approach to research on IGP. Jones attempted to formulate a series of

propositions by surveying existing designs to create new designs (Jones 1868).

Priss d’Avennes, in L’art Arabe, published in 1877, recognized that the

underlying, complex structure of the patterns was based on scientific knowledge shared

between various Islamic cities through scrolls. D’Avennes produced catalogs that

presented Islamic architecture to Europe. Jules Brourgoin, who did not have access to the

historical scroll, classified the patterns into categories not based on the observed

appearance of designs but according to the inner grid system: “Hexagon, octagon,

dodecagon, star rosette combination of two types, square octagon combination, heptagon,

and pentagons.” Brourgoin also had a practical agenda with his work of opening the new

“infinite possibility” of design. In the 20th century, several studies examined North

African designs between 1911 and 1975, utilizing the same approach to formally

analyzing the underlying grid systems (Necipoğlu, Al-Asad 1995).

Later, a study by Issam El-Said examined the proportions of the IGP. With a

sample of 29 hexagon-based geometric patterns sampled from different regions in the

Islamic world, he focused on periodic patterns and identified three categories based on

the repeated unit shape and systems of proportion: square patterns based on the root of

 23

two, hexagonal patterns based on the root of three, and patterns based on double

hexagons (El-Said, El-Bouri & Critchlow 1993b). Like his predecessors, El-Said also

had a design agenda focused on proportions to identify “beautiful design”.

2.7 MATHEMATICS-BASED APPROACH TO IGP

The scientific study of IGP can be classified into two categories: studies that

focus on the symmetry of IGP and studies that focus on repeated units. Although these

approaches are not mutually exclusive, some studies focus on one aspect more than the

other.

In 1944, Edith Muller wrote a dissertation on the Moorish ornamentation in

Alhambra Palace, employing group theory and crystallography to systematically annotate

the patterns. She conducted symmetry analysis and discovered 11 types of symmetries

(Müller 1944, Necipoğlu, Al-Asad 1995). Also around the same time, studies on

symmetry were conducted by Soviet scholars, such as Gaganov and Baknaov, who had

partial access to the historical design method through the Tashkent Scroll. In their work,

they also focused on the underlying structure of symmetry groups (Necipoğlu, Al-Asad

1995). In 1986, Branko Grünbaum, Zdenka Grünbaum, and G.C. Shepard further

examined Alhambra Palace and discovered 13 types of symmetry groups (Grünbaum,

Grünbaum & Shepard 1986b). In 1987, R. Perez-Gomez and J. Montesinos found four

missing groups to complete the 17 wallpaper types group theory (Pérez-Gómez 1987).

Syed Jan Abas and Amer Shaker Salman, in their book “Symmetries of Islamic

Geometrical Patterns,” presented a comprehensive examination of symmetry groups in

IGP for geometries beyond Alhambra Palace (Abas, Salman 1995).

 24

Other studies focus on the repeated pattern and its geometric motif. In 1989,

Wasma Chorbachi presented a method for designing new IGP that is strongly tied to

historical creative design methodology. Chorbachi examined the On Interlocking

manuscript, identifying the design formula and manipulating to create new

designs(Chorbachi 1989). Haresh Lalvani presented a grid of fixed subdivision for the

“fundamental unit” then populating it with motifs to generate the pattern (Lalvani 1989).

The studies that follow are primarily focused on design exploration. Ahmad

Aljamali, Craig Kaplan, and Ali Izadi proposed different methods and developed

computer programs for design exploration. By defining parameters and manipulating the

values of those parameters, they derived new designs (Kaplan, Salesin 2004, Aljamali,

Banissi 2003, Izadi, Rezaei & Bastanfard 2010, Riether, Baerlecken 2012).

2.8 SUMMARY

IGP emerged from the intellectual center of the 9th and 10th centuries in the

Abased capitals of Baghdad and Samara. The designs employed the most innovative

mathematical knowledge of the time to produce a cultural heritage that spread throughout

the Islamic world for centuries. Abu’l Wafa al-Buzjani’ book On the Geometric

Constructions gives important clues about the methodology employed in deriving

geometry. The thought process Al-Buzjani employed is known today as “algorithmic

design thinking”, which identifies a step-by-step procedure of form generation to explore

variations and increases the accuracy of the final product. In other words, al-Buzjani took

advantage of advancements in mathematics –the language of his age— to create IGP.

 25

Looking closely at the literature from the 19th and 20th century onward, one can

clearly see two approaches: formal and scientific. The formal approach is more about

practical geometry and conventional design tools. The scientific approach, on the other

hand, utilizes mathematics and symmetry and focuses more on the generation of design

from scratch with less interest in utilizing the methods for research historical IGP.

 26

CHAPTER THREE

MORPHOLOGICAL DESIGN THINKING

3.1 INTRODUCTION

This chapter discusses the theory of morphogenesis and its relation to

architecture. The goal is to expand on the underpinning theoretical framework of this

dissertation and to elaborate on the appropriateness of the selected methodology. The

chapter also provides foundational definitions and discusses the line of research that

utilizes mathematics to describe forms.

3.2 DIGITAL MORPHOGENESIS

The writings of French philosopher Gilles Deleuze (Deleuze 1994, Deleuze,

Guattari 1988, Deleuze 1993) from the second half of the 20th century had an impact on

the use of digitals in architectural design. In his book, Difference and Repetition, Deleuze

developed a theory of how forms come into existence—morphogenesis—and aimed to

identify ways of novel creation. Deleuze argued that the forms we observe in reality are

an “actualized” status of an idea and that the generative process is capable of producing

other possibilities of what Deleuze identifies as “virtual” realities3. To Deleuze, an

actualized form carries morphogenetic possibilities that have not yet been actualized. He

further argued that this potential population of virtual design multiplicities precedes the

singularity of actualized design and, therefore, the virtual is just as real as the actual.

Deleuze argued that the actualization of a form happens through the process of

“‘differenciation”. The result features “extensive”’ qualities that give objects their

3Virtual reality is often used to describe “substitute reality”, not to be confused with this concept; virtual reality here
refers the space of possible ideas that can be actualized (Lynn, Kelly 1999).	

 27

distinct properties such as height or length. On the other hand, the process of

“differentiation” determines the virtual space of a design concept and includes

“intensive” qualities. Intensive qualities refer to internal properties that cannot be

changed unless the structure of the object is changed. Both “differentiation” and

“differenciation” are processes by which an idea “incarnates” itself into the physical

world.

Later, Deleuze’s work made its way to architectural philosophy through the

writings of Greg Lynn. Folding in Architecture by Greg Lynn (1993), which is based on

Deleuze’s Le pli, is considered one of the first attempts to theorize digital architecture.

Lynn proposed the manipulation of formal representations using digital tools,

fundamentally challenging the dominant representational logic of traditional architecture

(Oxman, Oxman 2014).

Lynn’s writings laid the foundations for the emergence of more specific theories

centered on procedural processes and mathematical form generation that turn the focus

from the “curvilinearity” and “blobby” forms of folding toward digital design thinking.

These theories emphasize “formalism,” or the “mechanisms” that govern the structure of

relations within an architectural form rather than formal compositional aspects (Oxman,

Oxman 2014, Kolarevic 2004). In other words, it is a shift from form “making” toward

form “finding” (Kolarevic 2004).

3.3 MORPHOLOGY

Morphology is defined as “the scientific study of the forms” and emphasizes

continuity and form mutation. The word was originally derived from the ancient Greek

 28

morphē and means form. However, morphology encapsulates the notion of animation4.

According to the Oxford English Dictionary, morph as a verb means “change smoothly

from one image to another by small gradual steps” (Stevenson 2010,P. 1151)

The interest in continuity in architecture was born as a response to

deconstructionism (Oxman, Oxman 2014). In Folding in Architecture, Greg Lynn called

for a reconsideration of the architectural form, replacing the “fragmented” with “fluidity”

and at the same time taking advantage of advancements in computing technology of the

nineties of the past century. In fact, Lynn’s writings laid the foundations for a series of

publications concerned with theorizing the use of digitals in architecture.

Morphology is a term widely used in biology and refers to studying the form of

living organisms and making connections between their structures. Morphology, and

other relevant biological terms such as “genotype” and “phenotype”, were brought to

architecture for the purpose of design exploration of different form configurations

(Hillier, Hanson 1989, Steadman 1983). Two influential works by Albrecht Dürer (

1528) and D’Arcy Thompson (1917) show the significance of morphological thinking.

Dürer morphed an image of the human face through manipulating a hypothetical grid that

he established, producing a series of faces with the aim of understanding how different

forms related to each other. In On Growth and Form, D’Arcy Thompson compared the

shapes of different species. In one example, he deformed the shapes of mammals’ skulls

to transform one into the other. Thompson argued that there is something essential in all

4 According to Greg Lynn, the difference between animation and motion is that motion emphasizes “movement and
action” while animation is more about “evolution of a form.” (Lynn, Kelly 1999)	

 29

related forms that is not changed by the deformation, which he called “topological

similitude” (Thompson 1917)

Topology is another term that is associated with morphology and is important in

understating how new forms may relate to each other. Topology is more about structural

relations and less about formal distinction. For instance, rectangles and squares are

topologically equivalent, but both differ from triangles. Changing the length and width of

the rectangle does not change its topology; however, adding or deleting a segment results

in a topological transformation (Kolarevic 2004). Therefore, even if an actualized status

of a particular form differs from that of another form, they may still have the same

structural relations between their design components that cannot be identified though

metric measurements.

In digital design, topological thinking is employed to produce design

multiplicities that allow the exploration of a family of solutions by performing sequential

transformations that produce a large number of shape variations, Digital tools allows

initiating the process of geometric metamorphosis, which adds time to the process; thus,

it becomes possible to express the “keyshape” of the geometry, or the state of the

geometry at a particular point in time (Kolarevic 2004) This provides a convenient way to

explore design variations.

Morphology and its related concept of topology are fundamental concepts in the

digital design process; it helps not only in exploring design multiplicities and form

optimization but also in understanding forms’ origin, evolution, and devolution, which

are important concepts in both the research and design of forms.

 30

3.4 PARAMETRIC DESIGN

Scholars (Oxman, Oxman 2014, Terzidis 2006, Woodbury 2010) have called for

distinguishing digital architecture from digital design. While digital architecture aims to

use the powers of computerization for building complex forms, it is still an “emulation”

of conventional design tools—paper and pencil (Woodbury 2010). Digital design

systems, on the other hand, shift the use of digital technologies from mere drafting tools

to design thinking tools.

Parametric design is an approach to digital design. In a parametric design system,

the designer establishes relationships between the design parts, manipulating them to

generate infinite morphological variations (Oxman, Oxman 2014).

The process of parameterization involves initiating parameters and establishing

relations rather defining a specific form (Kolarevic 2004). Parameters are values that

have an effect on the design output. They can be variable or constant, simple or complex,

and have a direct or indirect effect on the final output. Gradual change of variable

parameters evokes the metamorphosis process. Thus, it becomes possible to examine the

entire population of a particular design morphology.

3.5 MATHEMATICAL DESCRIPTION OF FORM

Arthur Loeb presented a method that exploit mathematics for describing the

undelaying mesh of tessellations. The method is based on the number of “rotocenter”, the

number of folds in each pattern. For instance, Loeb uses 2 2' to refer to a frieze structure

and 3 3' 3" to refer to hexagonal structures. Each mesh produces symmetrical cells that

can host geometric designs; Loeb’s study focuses on the holding structures. He aimed to

 31

show how mathematics and analytics advances the design process beyond what is

“intuitively evident” and that mathematician and designers may complement each other’s

work (Loeb 2012, Loeb 1978).

Another work by Lionel March and Philip Steadman utilizes mathematics to

describe forms. This work seeks an “economical” description of form. March and

Steadman presented two descriptions: one for regular forms and one for irregular forms.

The first description method utilizes the “grid system of quadrant” based on the Cartesian

coordinate system (March, Steadman 1974). The description is a sequence of points that

construct an architectural space, room by room, or building by building. For instance,

R1=[25, 275; 0, 550] is a description of a room in a building. Here, R1 refers to the room.

The following numbers refer to the location of the point in the quadrant grid. The first

two points, 25 and 275, refer to the X-axis while 0 and 550 refer to Y-axis of the room.

Subtracting X-axis values or Y-axis values from each other results in the width and

length of the room, respectively.

To describe irregular forms, they proposed either inscribing the lines on the

Cartesian coordinate system to position the constructing points or using the length of the

line segments (r) and the angles between the lines (∅) to construct the form in the

following way:

Q =
𝐫𝟏 𝐫𝟐 𝐫𝐧
∅𝟏 ∅𝟐 ∅𝐧

Haresh Lalvani (Lalvani 1989) presented a “shape code” that describes Islamic

geometry. He developed a grid system of fixed points with different “subdivisions” of a

 32

fundamental unit. He positioned geometric composition on the subdivisions of this grid to

create designs. The parts of the subdivision involved in creating the design define the

“shape code” of the particular design. Although the method establishes an interesting

relationship between design components, the presented code is diagrams the relations

between the points; with complex and highly segmented designs, writing the code comes

closer to drawing the design that it describes.

3.6 SUMMARY

The use of digitals is changing ways of thinking about architecture; research and

design are no longer about a specific, actualized form but rather the process that

generates the form and is capable of generating morphological multiplicities. Knowing

what is possible in the virtual space and comparing it to the actualized designs can reveal

information about the selection process(Steadman 1983).

To discuss the morphology of IGP, a method that goes beyond the observed level

and describes the virtual and actual space of design is needed. In other words, the method

should allow the exploration of design morphology and symmetries and, at the same

time, be capable of manipulating the actualized design. Thus, various states of a

particular design can be detected, linked, and further examined.

 33

CHAPTER FOUR

MIXED METHOD APPROACH

4.1 RESEARCH DESIGN

This research addresses the question of how to incorporate mathematics and

morphology to describe the actual and virtual design space of IGP. It then utilizes this

description, in light of historical evidence, to address the question of what are the

morphological correlations between historic design singularities. Consequently, this

research is descriptive and exploratory in nature. The objective is to describe IGP and

then investigate similarities between historical IGP.

The concept of morphology operationalized in two dimensions: the actual and the

virtual dimensions. The fixed design characteristics of historically existing hexagon-

based IGP indicated mathematically using measurable attributes of points and line

segments. The actual design space is utilized to derive a mathematical definition that

encompasses the virtual design space and, in turn, is confirmed by utilizing this definition

to code the historic singularities.

The design of this research is sequential. In phase one, a parametric description

method is developed based on the examination of existing historic geometric patterns.

The description aims to provide a unified method for describing existing IGP variations.

The parametric description method is utilized to create databases of coded representations

of historic designs. In the second phase of the research, content analysis is employed. The

representational codes are compared to each other to identify similarities in both the

actual and virtual dimensions.

 34

4.2 PHASE ONE: PARAMETRIC DESCRIPTION

Simulation is defined as the representation of a system in reality using modeling

(Marans, Stokols 2013, Groat, Wang 2002). A model, on the other hand, is also a system

of “potential” reality (Marans, Stokols 2013 p.30). Systems generally consist of

identifiable components that interact with each other to actualize reality. The “states” of a

system at particular point in time are a single representation of that system (Marans,

Stokols 2013 p.105). A simulation model captures all possible arrangements of the

components within the system, or the “state history”, in a sequenced manner (Marans,

Stokols 2013 p.195).

In this research, the system being represented is IGP, and the model used is the

deterministic mathematical modeling (Groat, Wang 2002, Marans, Stokols 2013).

Mathematical models, on the other hand, “capture real-world relationships in quantifiable

abstract values” (Groat, Wang 2002 p.360). These are abstract models that adhere to

“mathematical principles” (Marans, Stokols 2013 p.32). This research employs

mathematical models to construct a unified parametric model that encompasses all

possibilities and produces representational codes of IGP. The model is deterministic

because it produces a unique “output” of IGP for each set of “input”.

The simulation system is constructed through the observation of reality and aims

to provide a comprehensive representation of these realities (Groat, Wang 2002 p.352).

Herbert Simon argued that a simulation model needs to consider the “agreed-upon

assumptions and specifications” to ensure the accuracy of the representation and identify

a “bounded domain of the system” (Groat, Wang 2002 p.367, Simon 1996 p.42). In the

 35

case of IGP, the bounded domain corresponds to the recognizable characteristics of

symmetry, flow, and unboundedness (Abas, Salman 1995 p.4). These characteristics

identify, in a general manner, the shared “agreed-upon” features of IGP.

The validity of the identified model is confirmed by comparing the result of the

model with the “real world”; the simulation model can be “calibrated” and validated to

maximize its ability to reflect reality (Marans, Stokols 2013 p.195). Consequently, the

description method can be tested on historically existing designs (Groat, Wang 2002

p.365). Furthermore, the accuracy of the model depends to a high degree on the collected

data. Therefore, the data collection process targeted all surviving identifiable hexagon-

based patterns (further explained in section 4.4). However, investigating historical data

requires considering “selective survival,” which refers to the fact that “some objects

survive longer than others” due to the type of material used, which could cause loss of

data (Singleton Jr, Straits & Straits 1993 p.411). To overcome this, the research takes

advantage of the fact that the same IGP were implemented using different materials.

Thus, the study accounts for the undelaying design—“ground geometry”—regardless of

the materials used or the type of embellishment, which reduces the effect of systematic

loss of a particular design due to its construction material.

Chapter 5 discusses the first phase in detail. In the second phase, the study utilizes

mathematical model to develop representational codes of historic designs for the purpose

of conducting content analysis.

 36

4.3 PHASE TWO: CONTENT ANALYSIS

The second phase goal is to identify the morphological correlations between

existing historical singularities of IGP. To this end, the second phase of this research

employs representational codes to conduct content analysis. Content analysis is a useful

method for examining textual and visual materials through providing a systematic

technique that transforms materials into quantifiable data (Singleton Jr, Straits & Straits

1993 p.420). The process of conducting content analysis (i.e., identification of the

“content categories,” “recording units,” and “system of enumeration”) is discussed in

Chapter 6 of this dissertation.

4.4 DATA COLLECTION

This research employs non-probabilistic purposive sampling that tracks surviving

designs. The literature review played a central role in guiding the data search process.

Chronologically, the period from the ninth to the 15th century is identified as the era of

“invention” (Abas, Salman 1995 p.8). Geographically, close examination of the literature

reveals that IGP were developed in the Abbasid Dynasty in Baghdad and Samara and

then dispersed into other regions, later reaching the Mamluk, Timurid, and Nasrid

Dynasties (Necipoğlu, Al-Asad 1995). Therefore, all designs that exist on monuments

belonging to these dynasties were also considered.

This research focuses on hexagonal IGP. These types of geometric patterns have

been widely used in the Islamic world since the early days of the patterns. Furthermore,

Abas and Salman’s study of symmetry showed that hexagonal IGP are the most

frequently used periodic pattern (Abas, Salman 1995 p.138).

 37

Data from historical buildings were collected through photographs gathered from

books (Necipoğlu, Al-Asad 1995, Hill, Grabar 1967, Broug 2008, Broug 2013b, El-Said,

Parman 1976), journal articles (Creswell 1919, Stronach, Young 1966), library archives

(the Aga Khan Documentation Center at MIT and the Creswell Photographic Archive at

The Ashmolean Museum), and authoritative websites (Archnet and dome websites).

Appendix A shows the full list of the collected hexagonal patterns.

In the early stages, designs were limited in number, and the literature (Necipoğlu,

Al-Asad 1995, Broug 2013b)identifies the monuments by their original names, dynasty,

and geographic location. Multiple sources were examined, and the designs were collected

and arranged chronologically. The literature discusses designs after the early stages in

terms of the governing dynasty and mentions some monuments as examples and

discusses particular designs. In these cases, all buildings that were constructed or

renovated during a dynasty were examined. Further reading regarding the history of the

building were pursued when necessary to identify the authenticity of designs.

The collection process resulted in a total of 273 designs collected from mosques,

madrasa, hospitals, mausoleums, and palaces. Figure 4.1 (top) shows the geographic

distribution of the collected data. In the same figure (bottom), a bar chart demonstrates

the total number of designs collected from each region. The colors on each bar refer to

the proportion of designs that belong to different dynasties. The figure on the bottom left

shows the number of each collected design in relation to chronological period.

 38

Figure 4.1 The geographic, chronological, and dynastic distribution of the collected

data.

4.5 INSTRUMENTATION

The study collected the data in the form of digital photographs taken of either the

IGP or the exterior or interior architectural surfaces of ancient monuments. In the latter

case, hexagonal IGPs were identified in each photo and if more than one hexagonal

geometric pattern existed, each was extracted in the form of a digital image. In some

cases, more than one picture exists in different archives showing the same IGP. Thus, the

surroundings of the IGP and erosion were examined to avoid confusion and inclusion of a

 39

single design more than once. Photographs were stored in a spreadsheet together with

other information about designs, including dates, regions, towns, and governing

dynasties.

Subsequently, the images were imported to the AutoCAD computer program as

raster images and converted from digital photographs into CAD vectors. The process of

conversion was conducted by tracing the photograph in AutoCAD. First, the geometric

composition being repeated (“visual anchors”) was identified. Then, the geometric

composition was bounded with a hexagon and repeatability to the neighboring cell was

checked. Afterwards, the symmetry type and consequently the fundamental unit was

identified (further explained in section 5.2, Chapter 5). Then, the geometry that fell into

that fundamental unit was drawn and populated to the whole geometry. The next step

involved checking the accuracy of the identified geometric composition by repopulating

the hexagonal structures with the geometric composition. To increase accuracy when

drawing the geometric patterns, the researcher referred, when possible, to the steps

illustrated by Eric Broug(Broug 2008)for drawing whole designs or particular

components. After the conversion process, each design was scaled so that each segment

of the containing hexagonal unit was set to a length of 10 AutoCAD units.

 40

Figure 4.2: Conversation process from a digital photograph to CAD vector. Image used

in this illustration is from David Stronach and T. Cuyler Young(1966).

 41

CHAPTER FIVE

PARAMETRIC DESCRIPTION OF THE IGP MORPHOLOGY

5.1 INTRODUCTION

This chapter consists of three main sections. In the first section, geometric

analysis concerning the understanding of the “reality” of the IGP is conducted. The

second section discusses the development of the parametric morphological description.

Lastly, the third part verifies the morphological description through the development of

the simulation program.

5.2 ANALYSIS OF THE IGP

Periodic IGP consist of two main components: a repeat unit (RU) and a repetitive

structure (El-Said, El-Bouri & Critchlow 1993a, Abas, Salman 1995). While the RU

contains the primary geometric design to be populated, the repetitive structure stacks the

RU to fill the space completely, leaving no gaps. Together, the RU and the repetitive

structure determine the wallpaper symmetry group to which the pattern belongs.

Determining the wallpaper group is important for identifying the “fundamental

unit” (FU). This unit represents the minimum geometric composition that is being

systematically (Abas, Salman 1995 p.79). Thus, the employment of such a unit in the

development of a geometric description produces shorter, more “economical” codes.

In the case of hexagonal patterns, there are five possible types of wallpaper groups: P3,

P3M1, P31M, P6, and P6M5. Abas and Salamn identified the following steps by which

the group can be distinguished (Abas, Salman 1995 p.108):

5 ‘The International Crystallographic Notation’ was employed to label different types of symmetry groups.

 42

• In the case of three-fold geometric designs, the existence of reflection symmetry

within the FU must be checked:

o If a reflection does not exist, the symmetry group is P3.

o If a reflection does exist, the center of rotation needs to be confirmed and

there are two possible cases:

§ If the ‘center of rotation’ appears only on reflection lines, the

wallpaper symmetry group is P3M1.

§ If the ‘center of rotation’ not appears on reflection lines, the

wallpaper symmetry group is P31M.

• In the case of six-fold geometric designs, the existence of reflection symmetry

within the FU must be checked, and there are two possible scenarios:

o If reflection symmetry does not exist, the symmetry group is P6.

o If reflection symmetry does exist, the symmetry group is P6M.

Figure 5.1 explains the identification process of the FU. This procedure was

applied to the collected data, and it was found that 93.43% of the collected IGPs fall

within the P6M category (figure 5.2).

 43

Figure 5.1: Examples of each of the five types of the symmetry wallpaper groups and the

process of identifying the FU. Top left explains the FU by itself.

 44

Figure 5.2: Percentage of each type of the five hexagonal wallpaper group symmetry

categories in the collected data.

Having determined the symmetry group, the FU can be obtained. By identifying

the points of intersection between the geometric component’s lines and the intersection of

the geometric lines with the hypothetical boundaries of the fundamental unit, the design

can be decomposed into points series connected by line segments. The following point

types can be identified (figure 5.3):

• Single connection point (SP): points in this category connect only to one another,

forming a single segment within the FU.

• Double connection point (DP): points in this category connect to two other points,

forming two segments within the FU.

• Triple connection point (TP): points in this category connect to three other points,

forming three segments within the FU.

 45

• Quadruple connection point (QP)6: points in this category connect to four points,

forming four segments within the FU.

These points and their relationships are considered the basic constructional

components of the morphological description.

Figure 5.3: The illustrations on the left explain point categories. The illustrations on the

right show two examples with different point types.

5.3 THE MORPHOLOGICAL DESCRIPTION

The morphological description exploits symmetry information and constructional

components—points and their relationships— that fall within the FU to develop a

6 Hereafter, triple and quadruple connection points referred to as T/QP.
	

 46

“deterministic” simulation model that “outputs” geometric patterns based on an “input”’

of representational code, ultimately capturing the “reality” of the IGP in a numeric form.

The constructional components within the FU can be represented mathematically

by referring to each of the constructional points in a sequenced manner in a similar way

to Lionel March and Phillip Steadman’s method (March, Steadman 1974 p.182 & p.190).

In general, and based on the design within the FU, two scenarios were identified: single

and multiple sequence(s) of straight lines, hereafter referred to as polyline(s). In the first

scenario, the FU contains only a single polyline that can be described by listing all of the

constructional points that fall within the FU in a sequenced manner. For instance, the

design that exists within the FU of the Ibn Tulun mosque (shown in figure 5.4) can be

represented as:

𝐏𝐋𝟏 = [𝐏𝟏	𝐏𝟐	𝐏𝟑]

where PL refers to the polyline and P refers to the constructional points. The square

brackets indicate the beginning and the end of a single polyline. However, this

description only represents the geometry within the FU. To populate the description to

the RU and the structure, symmetry information should be added. Thus, the previous

code can be rewritten as:

𝐏𝟔𝐌:𝐏𝐋𝟏

Similarly, PL can be substituted by a list of the constructional points:

𝐏𝟔𝐌: [𝐏𝟏	𝐏𝟐	𝐏𝟑]

 47

Figure 5.4 The top shows geometry from Ibn Tulun mosque, and the bottom shows

geometry from the Karraqan East Tower. Both geometries are shown in terms of the

whole pattern, the repeated unit, the fundamental unit, and the representational code.

Designs with more constructional points can be coded in a similar fashion as

shown in the Karraqan East Tower geometry in figure 5.4 (bottom). Further, if the

polyline closes on itself at any point but remains as a single polyline, the design can still

be described in a similar way, yet the shared point is addressed twice in the description as

 48

it appears. For instance, the geometry found in Alhambra Palace (figure 5.5) can be

described in the following possible ways:

𝐏𝟔𝐌: [𝐏𝟏	𝐏𝟐	𝐏𝟑	𝐏𝟒	𝐏𝟓	𝐏𝟔	𝐏𝟑	𝐏𝟕	𝐏𝟖]

Figure 5.5: Single polyline scenario that closes on itself in a quadruple connection point.

Here 𝐏𝟑	is listed twice, and in this particular instance, 𝐏𝟑	is a quadruple

connection point (QP)7.

If there are multiple polylines within the FU (second scenario), each polyline is

described by listing all points in a sequenced manner. If a shared point exists between

two polylines, the point is addressed in each list. For instance, the geometry shown in

figure 5.6 (top) can be described as:

𝐏𝟔𝐌: [𝐏𝟏	𝐏𝟐	𝐏𝟑	𝐏𝟒]	[𝐏𝟓	𝐏𝟑	𝐏𝟔]

7 The description code can be also written as: 𝑷𝟔𝑴: [𝑷𝟏	𝑷𝟐	𝑷𝟑	𝑷𝟔	𝑷𝟓	𝑷𝟒	𝑷𝟑	𝑷𝟕	𝑷𝟖], where the sequences of points that
fall between the quadruple connection point are reversed. Chapter 6 addresses the sorting algorithm that was employed
to identify all possible descriptions.	

 49

Figure 5.6: Multiple polyline scenarios. The top shows a design with two polylines within

the FU, and the bottom shows a design with three polylines within the FU.

Furthermore, the actualization of the design requires clearly defining the exact

location of the constructional points. These points can be defined using their coordinates

on the Cartesian coordinate system. Therefore, the code for the design in figure 5.4 (top)

can be expressed as:

𝐏𝟔𝐌:	
𝐱𝐏𝟏 𝐱𝐏𝟐 𝐱𝐏𝟑
𝐲𝐏𝟏 𝐲𝐏𝟐 𝐲𝐏𝟑

Similarly, the design in figure 5.6 (top) can be expressed as:

 50

𝐏𝟔𝐌:	
𝐱𝐏𝟏 𝐱𝐏𝟐 𝐱𝐏𝟑 𝐱𝐏𝟒
𝐲𝐏𝟏 𝐲𝐏𝟐 𝐲𝐏𝟑 𝐲𝐏𝟒

𝐱𝐏𝟓 𝐱𝐏𝟑 𝐱𝐏𝟔
𝐲𝐏𝟓 𝐲𝐏𝟑 𝐲𝐏𝟔

Alternatively, polar coordinates can be utilized. These have proven to be more

convenient due to the fact that they enhance the parametric aspect of the description by

granting independent controls for the angle and distance for each point in a meaningful

way (figure 5.7). For instance, changing how far a point is from the center of the RU

requires manipulating only one parameter, while in the Cartesian coordinate system

method, two inputs are required to reach the same output. Here, the distance of each point

in the design is measured from the center of the RU; the angle between the distant line

and the hypothetical horizontal line that passes through the center is also measured

(figure 5.7). Therefore, the previous description of figure 5.4 (top) can be rewritten as:

𝐏𝟔𝐌:	
𝐫𝐏𝟏 𝐫𝐏𝟐 𝐫𝐏𝟑
	∅𝐏𝟏 ∅𝐏𝟐 ∅𝐏𝟑

Similarly, the design in figure 5.6 (top) can be expressed as:

𝐏𝟔𝐌:	
𝐫𝐏𝟏 𝐫𝐏𝟐 𝐫𝐏𝟑 𝐫𝐏𝟒
∅𝐏𝟏 ∅𝐏𝟐 ∅𝐏𝟑 ∅𝐏𝟒

𝐫𝐏𝟓 𝐫𝐏𝟑 𝐫𝐏𝟔
∅𝐏𝟓 ∅𝐏𝟑 ∅𝐏𝟔

In this code, r refers to a point’s respective distance value from the origin while ∅

refers to the value of the respective angles in which the points are located (Figure 5.7). In

this research, the values are measured within a hexagonal RU, with each side of the

hexagon measuring 10 units. Figure 5.8 shows more examples with the actualized values.

Hereafter, these codes are referred to as representational codes.

 51

Figure 5.7: The process of point actualization. The Cartesian coordinate system vs. the

polar coordinate system.

To develop a description model that represents the virtual space of IGP, the study

employs abduction reasoning, where the derivation process of the description model

moves from the actualized designs to construction of a model that encompass all IGP

possibilities. This also aligns with the philosophical argument of Gilles Deleuze, who

argued that actualized designs still carry “morphogenetic possibilities” within them.

Thus, the coding process was carried out for all of the 273 collected designs to extract a

description model that represents IGP morphology. Figure 5.9 shows an identified

polylines behavior pattern that exists within a historical IGP. That is, a design can be

constructed from at least a single polyline with at least two constructional points forming

a single segment within the FU.

 52

Figure 5.8 The pattern on left can be generated using the representational codes on the

bottom right of each design.

 53

Figure 5.9 The top diagram shows the identified behavior pattern and parametric aspects

of the IGP. The bottom is a historic example that demonstrates actualization of the

description model above.

Any parametric description model that represents IGP needs to capture all

scenarios and have the ability to be expand and to contain more polyline(s), while

preserving the sequence of the constructional points and providing actualization

information for each of the constructional points. Therefore, the code that captures the

virtual morphological design space of an IGP can be expressed as:

 54

𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲	𝐆𝐫𝐨𝐮𝐩:	
𝐫𝐏𝟏 𝐫𝐏𝟐 …	 𝐫𝐏𝐢
∅𝐏𝟏 ∅𝐏𝟐 …	 ∅𝐏𝐢

𝐫𝐏𝐢B𝟏 𝐫𝐏𝐢B𝟐 …	 𝐫𝐏𝐢B𝐯
∅𝐏𝐢B𝟏 ∅𝐏𝐢B𝟐 …	 ∅𝐏𝐢B𝐯

…

𝐫𝐏𝐢B𝐯B⋯B𝟏 𝐫𝐏𝐢B𝐯B⋯B𝟐 …	 𝐫𝐏𝐢B𝐯B⋯B𝐳
∅𝐏𝐢B𝐯B⋯B𝟏 ∅𝐏𝐢B𝐯B…𝟐 …	 ∅𝐏𝐢B𝐯B⋯B𝐳

where symmetry group in the above description refers to the symmetry type of the

pattern; i refers to the total number of points in the first polyline; v refers to the total

number of points in the second polyline; and z refers to the total number of points in the

nth polyline.

5.4 THE SIMULATION PROGRAM

The quality of a description is determined by its ability to reflect reality.

Therefore, to verify the ability of the code to describe the IGP, the researcher specifically

developed a simulation program that reads the representational code and visualizes the

design (figure 5.10). The inputs to the program are the representational code and the

outputs are the visual images in the processing “display window”. Further, the program

outputs a DXF file that can be imported to AutoCAD and compared with the associated

design.

When running the program, the user is promoted to enter the representational

code. After pressing the execute button, the code string of the input code is divided into

two parts and stored in an array of string. The first index stores the symmetry type, and

the second index contains points and their relations. The second part is later converted

into another array of string that stores each point in the form of the angle and distance in

a single array index. Next, the function that is responsible for drawing and displaying the

code is called. This function reads each index of the second string array and converts it

55

into a float array while performing a loop in the array to draw each point. If the end of a

polyline indicates, the program skips a segment and thus establishes a new polyline if

necessary. Subsequently, the IGP is displayed on the screen, and the user can export the

geometry in a DXF format. Appendix B shows the program script.

Furthermore, the program provides additional morphing functionality that

performed through changing the values of the representational code and redrawing the

design as figure 5.10 shows.

Figure 5.10 Explanation of the interface of the IGP explorer (the simulation program).

5.5 PILOT STUDY: MANIPULATING THE PARAMETRIC DESCRIPTION

A preliminary version of the parametric description method presented in this

chapter was published in the Conference Proceedings of the 20th International

Conference of the Association for Computer-Aided Architectural Design Research in

Asia (CAADRIA). In that paper, values within the representational code of the historical

 56

designs were manipulated, and new codes were derived. Figure 5.11 illustrates the

morphing process of the geometry originally existing in Ibn Tulun mosque. When the

results of the morphing process were compared with the representational codes of historic

IGP, it was found that some of the newly derived codes exactly matched historic designs

in other regions (figure 5.12). Therefore, two types of morphological correlations

between the historic designs were identified: identical designs and structurally equivalent

designs, which the study further investigates in the following chapter.

Figure 5.11 Following the arrow, this figure explains selected transformations of Ibn

Tulun geometry through various topological states (Wade 2015, Stronach, Young 1966,

Burckhardt 2009)

 57

Figure 5.12 Across region morphological correlations among historical designs. The x-

axis represent time, and the y-axis represents the geographic location arranged in an

ordinal manner from west (bottom) to east (top).

 58

CHAPTER SIX

THE MORPHOLOGICAL CORRELATIONS

6.1 INTRODUCTION

The goal of this chapter is to identify the morphological correlations that exist

among various historical hexagon-based IGP. This chapter utilizes the developed

representational code and begins by grouping hexagonal IGP into five groups based on

the number of polylines that exist within the FU. Next, the chapter establishes the content

category, discusses the search algorithms employed to investigate the representational

codes, and presents the results of each content category. Finally, the chapter discusses the

identified morphological correlations.

6.2 THE MORPHOLOGICAL GROUPS

The representational codes of historic designs were examined and, by counting

the total number of polylines within the FU of each design, the collected data can be

categorized into five groups as follows:

• MORPHOLOGICAL GROUP A (single polyline): The sequence of points forms

a single polyline within the FU. Of the 273 examined IGP, 168 designs fall within

this category. This category can be further subdivided based on the number of

T/QP within the FU into six specific morphological groups (SMG): A0, A1, A2,

A3, A4, and A8. Here, the letter A refers to the number of polylines, and the

following number indicates the total number of the identified T/QP within the FU.

The most frequent SMG is A0, with 152 designs (see figure 6.2 for examples of

all SMG).

 59

• MORPHOLOGICAL GROUP B (double polylines): The sequence of points

forms two polylines within the FU. A total of 88 designs fall within this category.

Moreover, this category can be further subdivided into the following SMG: B0,

B1, B2, B3, B4, and B6. B1 is the most frequent SMG, with 62 designs (figure

6.2).

• MORPHOLOGICAL GROUP C (triple polylines): The sequence of points forms

three polylines within the FU. Only 15 cases fall within this category. The group

can be subdivided into the following SMG: C1, C2, C3, and C5. C2 is the most

frequent design, with 10 cases.

• MORPHOLOGICAL GROUP D (quadruple polylines): The sequence of points

forms four polylines within the FU. Only one case from Madrasa al-

Mustansiriyya was identified (figure 6.1).

• MORPHOLOGICAL GROUP F (sextuple polylines): The sequence of points

forms six polylines within the FU. Only one case from Alhambra Palace falls

within this category (figure 6.1).

Overall, 61.54% of the collected designs falls within group A, and 32.23% falls

within group B. Only 6.23% falls into categories beyond two polylines. Figure 6.1 shows

examples of each morphological group and presents the total number of cases in each

SMG.

 60

Figure 6.1: Examples of all SMG. The y-axis represents the MG (number of polylines).

The x-axis represents the total number of Q/TP within the FU. The intersection of the two

axis defines the SMG. The intersection is represented by an example from the associated

SMG. The frequency of each SMG is shown in orange at the top right of each geometry.

6.3 THE CONTENT CATEGORIES

The identification of the content category is driven by the following questions:

What is the frequency of the replicated designs in the collected historical IGP?

Furthermore, does a structurally equivalent design exist? If yes, what is the frequency of

such designs? Consequently, two main categories based on Deleuzian’s actual-virtual

 61

conceptual framework were established: identical and structural equivalency. The

identical category is concerned with identifying replicated designs; therefore, the

recording unit in this category is the full match of the representational codes between the

compared designs.

The structural equivalency category is concerned with identifying the existence of

shared morphological configurations among historical designs. This category is further

subdivided into four levels that each has its own recording unit. The representational

codes of the actualized designs were examined on several levels in this category, moving

gradually from the actual dimension toward the virtual design dimension. At each level,

the comparison between the representational codes considered specific variables that

have connections to the actualized dimension; in the subsequent level, fewer connections

to the actualized dimensions were considered, moving gradually toward the virtual

dimension (table 6.1).

Table 6.1: Variables considered in each content category. The check marks refer to the

considered variables when comparing the recording units of the investigated designs.

 62

6.4 THE SEARCH ALGORITHMS

A search algorithm was developed for each of the above content categories that

compares an input of representational code with the database of the historically existing

hexagonal IGP and output types of existing correlations. However, before the comparison

process can take place, the representational codes must be sorted. Although each

representational code always refers to a single output, a single IGP design can have more

than one possible representational code that describes the design depending on the

possible ways to sort the sequence of the constructional components. In the case of

intersection, the sorting algorithm defines the possible paths that each polyline can take.

Therefore, before comparing the codes using the matching algorithm, all possible

representational codes must be identified. This step is important to control any coding

inconsistencies caused by the researcher in regard to coding similar designs in a reverse

order or the identification of polyline paths.

The following section discusses the sorting algorithm. Following this, matching

algorithms and the results for all category are presented.

6.5 SORTING ALGORITHMS

Searching for identical designs or designs that are structurally equivalent of level

one or two (these levels are discussed in the following section 6.6.2) requires the

comparison of value and sequence of points information. Therefore, a sorting algorithm

was developed for the following specific morphological groups: A0, A1, B0, B1, and B2.

As multiple designs that share the same segment count exist within each group, these

 63

designs can be considered candidates for an identical or level one or two structural

equivalency categories.

On the other hand, the A2, B4, C5, D3, and F3 groups include only one design, so

it can be concluded that these designs cannot have identical designs or a level one or two

structural equivalency. Other groups, A3, B3, A8, and C1, include designs that have a

different number of segments; here, it is also possible to conclude that these designs

cannot have an identical designs or a level one or two structural equivalency as the length

of the representational code of the designs that falls into the same groups is different. The

researcher was able to identify two identical designs for both the A4 and B6 groups.

Group C3 includes both identical designs and designs that are different in segment

numbers.

Group C2 has 10 designs that fall within four levels of segments: one design of 12

segments, two designs of ten segments, five of eight segments, and two of seven

segments. The two designs of ten segments each fall within different symmetry groups

and are thus neither identical nor structurally equivalent. For the five designs that have

the eight segments, four were found to be identical, and the fifth falls within a different

symmetry group. Only the two designs of seven segments required sorting. The

researcher controlled the sorting of the codes by writing it in a selected predefined

sequence. This is primarily because there are two cases on which to test the sorting

algorithm.

Table 6.2 explains segment availability for each morphological group. The

following sections discuss the sorting algorithm for A0, A1, B0, B1, and B2 groups.

 64

Table 6.2 The number of designs identified in each morphological group, broken down by

the total number of segments in each design.

A0 SMG:

As discussed earlier, group A refers to a hexagonal IGP with a single polyline

within the fundamental unit. The number “0” refers to the absence of any T/QP. In this

case, there are only two possible ways to sort the representational code: 1) starting from

P1 all the way to Pn, where n refers to the last point in the description; 2) the reverse of

the first code, which is starting from Pn all the way to P1 (Figure 6.2).

 65

Figure 6.2 Sorting of the A0 SMG. The bottom right shows the two possible sortation of

codes that fall within the A0 group

A1 SMG:

Similarly, A1 refers to the existence of a single polyline within the fundamental

unit that has a single T/QP. Therefore, there are two possible paths for the polyline

(shown on the bottom of figure 6.3). Consequently, there are four ways to write the code:

1) sorting the representational code starting from P1 all the way to Pn, where n refers to

the last point in the description; 2) the reverse of the first code, 3) reversing the sequence

of points contained between the T/QP following the steps below:

• Identify the T/QP, and

 66

• Reverse the order of the constructional points that fall in between the

T/QP (in figure 6.4, this step changes the path of the polyline from FU 1 to

FU 2);

and 4) fourth possible representational code can be obtained by reversing the sequence of

points in the third code.

Figure 6.3 Sorting of the A1 SMG. The representational code of the design in Alhambra

Palace. The starting code refers to code inputted by the researcher. Partial reverse refers

to the process of partially flipping the highlighted point sequence (colored boxes).

 67

B0 SMG:

In this group, there are two polylines and no T/QP. Therefore, no path

determination is required; however, flipping the sequence of points within each polylines

is required. The following steps were utilized to identify the possible codes: 1) the first

possible code is the input code (i.e., the initial representational code coded by the

researcher); 2) reversing the input code; 3) reversing the first polyline in the input code

while keeping the other polyline in the original state; 4) reversing the previous case; 5)

reversing the second polyline in the input code while preserving the original sortation of

the first 6) reversing the previous case 7) reversing both polylines in the input code while

preserving their order (i.e., the first polyline followed by the second polyline); and 8)

reversing the previous case (figure 6.4).

 68

Figure 6.4 Sorting of the B0 SMG. The bottom left shows the flipping process for each

polyline, and the bottom right shows the possible description codes for B0 group.

B1 SMG:

In this case, there are two polylines and a single TP or QP. Each polyline can take

more than one path; therefore, to identify all possible paths that the two polylines can

take, the following steps were followed, starting from an input code (figure 6.5):

 69

• Identify the shared point between the two polylines (the delimiter) and divide

each polyline into two parts—the first part, which is located before the delimiter

point, and the second part, which is located after the delimiter point.

• Identify the second possible paths by beginning with the input code and switching

the first part of the first polyline with the second part of the second polyline and

the second part of the first polyline with the first part of the second polyline (see 1

and 2 in figure 6.5).

• Identify the third possible paths by beginning with the input code and switching

the first part of the first polyline with the first part of the second polyline and the

second part of the first polyline with the second part of the second polyline (see 1

and 3 in figure 6.5).

• After these steps, each code of the paths (including the input code) can be treated

as B0 to further derive all possible codes.

 70

Figure 6.5 Sorting of the B1 SMG. Explanation of the possible paths for designs of B1

specific morphological group.

 71

B2 SMG:

In this case, there are two polylines and two T/QP. The sorting for this group

requires the identification of the possible paths of the two polylines. The following steps

were followed to identify the main paths that the two polylines can take:

• Identify both T/QP.

• Use the T/QP that exist in both polylines as a delimiter to rearrange the polylines

in a fashion similar to B1.

• Use the two resulting representational codes from the last process to rearrange the

polylines in a fashion similar to B1, this time using the other T/QP, the second

delimiter.

• At any point, if either T/QP listed twice in a single polyline, rearrange the

constructional points in that polyline in a fashion similar to the A1 sorting

method.

If both T/QP exit on the two polylines in at least one configuration, this sorting

methods yields eight possible paths (figure 6.6). Otherwise, the result is six possible paths

(only two cases were identified in the later scenario: a design found in Jami' ibn Tulun

mosque, number 100 in appendix A, and a design found in Imaret of Ibrahim Bey of

Konya, number 234 in appendix A).

 72

Figure 6.6 Sorting of the B2 SMG. The possible interpretation of the two polyline paths.

6.6 MATCHING ALGORITHMS

Matching algorithms compare two representational codes and return the type of

the morphological correlations that exists between the two compared designs. All

possible codes from previous section were considered in the comparison. A matching

algorithm was developed for each of the content categories. The following sections

present the matching algorithms and the result for each category in terms of frequency of

occurrence.

 73

6.6.1 IDENTICAL MATCH

This category determines the frequency of occurrence of the replicated hexagonal

IGP. The recording unit in this category is the full match of the representational code of

the compared designs. The code of each IGP in the collected data is compared with the

other 272 designs. If the code matches another design, the two designs are labeled as

identical. Figure 6.7 shows the implemented codes.

Figure 6.7 The code used for identifying identical designs, implemented using processing

programing language.

Based on the examination of 273 designs, 181 were found to share their

representational codes with at least one other design while 92 designs were not replicated.

To find the percentage of designs that share representational code, the identical designs

grouped were together and each group was counted as one design. Therefore, the total

number of unique designs becomes 138, and the percentage of replicated designs

becomes 33.33% (46 designs) (table 6.3).

Table 6.3: Unique (grouped) designs vs. ungrouped designs.

 74

The earliest identified copied designs found in Karraqan East Tower from 1067

CE in Iran (figure 6.7 top). The design was copied from an earlier design that existed in

977 at the Ata Arab from in Uzbekistan. This design was found later in three other

monuments: Rasd-khaneh-i Ulugh Beg in Uzbekistan (1420 CE), Aramgah-i Shah-i

Zindeh in Transoxiana (1434 CE), and Ishrat Khana Tomb in Uzbekistan (1464 CE).

The most frequently copied design, however, is the star design, which originally

existed in the West Karraqan Tower (1093 CE) and was then replicated in 23 locations

between the 12th and 17th centuries in various regions (figure 6.7 middle). The most

frequent design in B1 group is a design that first existed at Masjid-i Jami' Golpayegan in

Iran (1105 CE) and was later found in 11 other locations between the 12th and 15th

centuries (figure 6.8 bottom).

6.6.2 STRUCTURAL EQUIVALENCY

In this category, the search for morphological correlations departs from the

identification of identical forms to the search for matches in the internal arrangements of

the constructional components of the compared historical designs.

The matching process is implemented in four levels. The levels are ordinal in

nature and span Deleuzian’s actual-virtual extremes. In each level, the search is

constrained by specific conditions that make connections to the actualized dimension; in

each following level, fewer connections to the actualized dimensions were considered,

moving gradually toward the virtual dimension (table 6.1 shows the considered variables

in each level). The levels are discussed in the following:

 75

Figure 6.8: The top shows the earliest copied design, the middle the most frequently

copied design, and the bottom the most frequently copied design in B1 group.

 76

Level One:

The representational code of the historic designs is examined to compare the

value and sequence of the angle parameter while discarding the actualized values of

distances (shown in light gray in the below description model):

𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲	𝐆𝐫𝐨𝐮𝐩:	
𝐫𝐏𝟏 𝐫𝐏𝟐 …	 𝐫𝐏𝐢
∅𝐏𝟏 ∅𝐏𝟐 …	 ∅𝐏𝐢

𝐫𝐏𝐢B𝟏 𝐫𝐏𝐢B𝟐 …	 𝐫𝐏𝐢B𝐯
∅𝐏𝐢B𝟏 ∅𝐏𝐢B𝟐 …	 ∅𝐏𝐢B𝐯

…

𝐫𝐏𝐢B𝐯B⋯B𝟏 𝐫𝐏𝐢B𝐯B⋯B𝟐 …	 𝐫𝐏𝐢B𝐯B⋯B𝐳
∅𝐏𝐢B𝐯B⋯B𝟏 ∅𝐏𝐢B𝐯B…𝟐 …	 ∅𝐏𝐢B𝐯B⋯B𝐳

In doing so, this level identifies designs that share the same number of segments,

the exact flow of polylines, and specific morphological groups, regardless of the

actualized measurements of the polyline. Therefore, the recording unit in this level is the

entire value and sequence match of angles’ parameters. Figure 6.9 shows the

implemented codes.

Of the 138 unique designs, 23.19% fall into this level because they share the

values and sequence of angles in their representational codes with at least one other

design and were identified as structurally equivalent (LV1). The most frequent structure

in level one is the following:

𝐏𝟔𝐌:	
𝐫𝐏𝟏	 𝐫𝐏𝟐	
𝟔𝟎 𝟗𝟎	

The above structure exists in six different arrangements (shown in figure 6.10).

The earliest existing design within this structure dates to the 9th century and was

discovered by Ernest Hartsfield during the Samara excavations. However, if being extra

cautious and considering only designs that are purely geometric (the Samara design

 77

contains floral designs), the earliest frequent structure can be dated to the Karraqan East

Tower (1067 CE).

Figure 6.9 The code used for identifying structurally equivalent designs, implemented

using processing programing language.

The algorithm used in the search within this level is more conservative in preserving the

flow characteristics, as it requires an entire value and sequence match of all angles.

However, it is also possible to examine the representational code of the historic designs

to compare the value and sequence of only angles that lay at the internal boundaries of

the FU –as only these points determine the general flow layout of the designs—while

discarding the actualized values of all distances and the values of angles of the

constructional points that do not lay at the internal boundaries of the FU (figure 6.11).

 78

Figure 6.10: The most frequent structures in LV1 structural equivalency.

Fig 6.11: The internal boundaries of the FU and the control of the points that lay on

these boundaries. The dark black variable in the representational code represents the

considered variable in the comparison.

 79

In doing so, this level identifies designs that share a flow in a more flexible

manner, regardless of the actualized measurements of the distances of the constructional

points. Therefore, the recording unit in this category is the value and sequence match of

30, 60, 90, and 120° angles in the representational codes of the compared designs. It is

important to highlight that in this level, the sequence of the discarded angles is still

considered. For example, the sequence of 90, 43, 60, and 90° angles matches the

sequence of 90, 73, 60, and 90° angles but does not match the sequence of 90, 60, and

90° angles. Figure 6.12 shows the implemented codes.

Figure 6.12 The code used for identifying structurally equivalent designs of level one for

ascertaining the flow in a more flexible manner.

 80

Figure 6.12 Cont.

The results of the new algorithm indicate that 44.20% of the 138 unique designs

have at least a structural equivalence with one or more designs (figure 6.13). The most

frequent structure is the following:

𝐏𝟔𝐌:	
𝐫𝐏𝟏 𝐫𝐏𝟐 𝐫𝐏𝟑
𝟔𝟎 𝟗𝟎	 ∅𝐏𝟑

Level Two:

In this level, the representational code of the historic designs is compared by

searching for similar sequences of constructional points while discarding the values of

distances and angles (shown in light gray in the description model below):

𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲	𝐆𝐫𝐨𝐮𝐩:	
𝐫𝐏𝟏 𝐫𝐏𝟐 …	 𝐫𝐏𝐢
∅𝐏𝟏 ∅𝐏𝟐 …	 ∅𝐏𝐢

𝐫𝐏𝐢B𝟏 𝐫𝐏𝐢B𝟐 …	 𝐫𝐏𝐢B𝐯
∅𝐏𝐢B𝟏 ∅𝐏𝐢B𝟐 …	 ∅𝐏𝐢B𝐯

…

𝐫𝐏𝐢B𝐯B⋯B𝟏 𝐫𝐏𝐢B𝐯B⋯B𝟐 …	 𝐫𝐏𝐢B𝐯B⋯B𝐳
∅𝐏𝐢B𝐯B⋯B𝟏 ∅𝐏𝐢B𝐯B…𝟐 …	 ∅𝐏𝐢B𝐯B⋯B𝐳

In doing so, this level identifies designs that share the same number of segments

and specific morphological groups, regardless of the actualized measurements or the flow

of the polyline (figure 6.14). Therefore, the recording unit is the match of the sequence of

 81

constructional points in polylines between the compared codes. Figure 6.15 shows the

implemented codes.

Fig 6.13: The most frequent structure in LV1 structural equivalency when identifying the

flow based on points that lay on the internal boundaries of the FU.

 82

Fig 6.14: Different polyline flows with similar segment counts (five segments each) and

similar specific morphological case (A0).

Figure 6.15 The code used for identifying structurally equivalent designs of level two,

implemented using processing programing language.

 83

Of the 138 designs, 76.09% share the same structure with at least one other

design. The following structure code represents the most frequent structure (identified

design variations are shown in figure 6.16):

𝐏𝟔𝐌:	
𝐫𝐏𝟏 𝐫𝐏𝟐 𝐫𝐏𝟑
∅𝐏𝟏 ∅𝐏𝟐 ∅𝐏𝟑

Figure 6.16 The most frequent structures in LV2 structural equivalency

Level Three:

In this level, the representational code of the historic designs is compared by

searching for designs that share the same specific morphological groups while discarding

 84

the segment counts and the values and sequences of the actualized distances and angles in

all of the constructional points (figure 6.17). In doing so, this level identifies designs that

share the same number of polylines and T/QP counts regardless of the segment count,

flow of polylines, or the actualized measurements of the polylines within the FU.

Therefore, the recording unit is the match of the specific morphological groups. Figure

6.18 shows the implemented code.

Figure 6.17 Example of LV3 structural equivalency.

Figure 6.18 The code used for identifying structurally equivalent designs of level three,

implemented using processing programing language.

 85

Of the 138 designs, 86.96% share the level of their structures with at least one

other design. The most frequent structure is designs composed form a single polyline

with no T/QP.

Level Four:

The representational code of the historic designs is compared by searching for

similar polyline counts while discarding the existence of T/QP, segment counts, and the

values and sequences of the actualized distances and angles of all the constructional

points (figure 6.19). Therefore, the recording unit is the match of morphological groups.

Figure 6.20 shows the implemented code.

𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲	𝐆𝐫𝐨𝐮𝐩:	
𝐫𝐏𝟏 𝐫𝐏𝟐 …	 𝐫𝐏𝐢
∅𝐏𝟏 ∅𝐏𝟐 …	 ∅𝐏𝐢

𝐫𝐏𝐢B𝟏 𝐫𝐏𝐢B𝟐 …	 𝐫𝐏𝐢B𝐯
∅𝐏𝐢B𝟏 ∅𝐏𝐢B𝟐 …	 ∅𝐏𝐢B𝐯

…

𝐫𝐏𝐢B𝐯B⋯B𝟏 𝐫𝐏𝐢B𝐯B⋯B𝟐 …	 𝐫𝐏𝐢B𝐯B⋯B𝐳
∅𝐏𝐢B𝐯B⋯B𝟏 ∅𝐏𝐢B𝐯B…𝟐 …	 ∅𝐏𝐢B𝐯B⋯B𝐳

Of the 138 unique designs, 94.20% share level four structures with at least one

other design. The most frequent structure is the single sequence of points (single

polyline). Figure 6.20 shows example from the structural equivalency of this level.

 86

Figure 6.19: Example of LV4 structural equivalency. Simple design vs. complex designs

in terms of segment count and specific morphological case. All designs are considered

equal in terms of LV4 as they are composed from a single polyline.

Fig 6.20: The code used for identifying structurally equivalent designs of level four,

implemented using processing programing language

6.7 THE MORPHOLOGICAL CORRELATIONS

The results from the previous section show that similarities between the hexagon-

based designs become more frequent as the virtual dimension is approached. Figure 6.21

shows the identical category and the four levels of structural equivalency categories

 87

arranged in an ordinal fashion starting from the actual dimension, which is represented by

the frequency of identical designs, followed by the closest level of structural equivalency

category to the actual dimension, moving toward the virtual dimension (right of the

figure).

Figure 6.21: Line graph shows the frequency of identical and the four levels of structural

equivalency categories.

Figure 6.19 in the previous section shows how a simple design (in terms of

segment count and type of connection points) can be structurally equivalent to another

more complex design. To identify such morphological correlations in a holistic manner,

connections between the content categories and design segment must be established.

Figure 6.22 shows the flowchart for each of the five symmetry groups, with the

morphological groups on the x-axis broken down by the specific morphological groups.

ID LV.1 LV.2 LV.3 LV.4
Frequency 33.33% 44.20% 76.09% 86.96% 94.20%

33.33%

44.20%

76.09%

86.96%

94.20%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

 88

The y-axis shows the segment count. Each circle in the figure represents a single or group

of actualized designs (further explained in the subsequent enlarged views).

This figure shows the existence of a minimum of single polyline (Morphological

Group A) in symmetry groups P6M, P6, P3, and P31M and the existence of a maximum

of six polylines (Morphological Group F) in symmetry group of P6 only. In addition, the

figure shows the existence of a single segment design as well as a design with a

maximum of 37 segments (SMG A8).

Figure 6.23 shows an enlarged view of SMG B2 from the P6M symmetry group.

This figure shows how the actualized designs relate to each other on multiple structural

levels. For instance, if we look at designs that contains 11 segments, we can see four

designs each two designs are structurally equivalent at level 1, as indicated by the

underlined labeled LV1, since the designs share the same flow of polylines, the same

number of segments, and the same specific morphological groups. However, the four

designs within 11 segments are structurally equivalent at level 2 as these designs share

the same number of segments and the same specific morphological groups. These designs

(i.e., all those containing 11 segments) share the same specific morphological group with

the entire branch shown in the figure. All the branches include designs with two polylines

(indicated in the figure by different colors for each polyline) and two T/QP. However,

when comparing this branch to another branch within the B morphological group, the two

branches have designs with two polylines but differ in the number of T/QP. Figure 6.23

explains this using morphological group C as an example.

 89

Figure 6.22: Morphological groups that exist within each symmetry type. Each

morphological group is broken down by its specific morphological groups on the x-axis,

and the segment count on the y-axis.

 90

Figure 6.22 cont.

 91

Figure 6.23 Enlarged view of the specific morphological case B2 within the P6M

symmetry group.

 92

Figure 2.24 shows how designs that fall within the same morphological group can

be related to each other. For instance, the figure explains how designs that fall within

SMG C5 correlate to designs that fall within SMG C3; that is, both designs contain three

polylines (structurally equivalent at level four).

This grouping system is parametrically expandable and capable to accommodate

designs that go beyond the identified historic ones. For instance, if a design contains

more than six polylines, or more that 37 segments, such a design will still fit within the

same flowchart, and morphological correlations with historical designs can be

established. Appendix C shows the flowcharts for all five types of the investigated

symmetry groups: P3, P3M1, P31M, P6, and P6M.

The results of the search algorithm utilized when developing the flowcharts.

Therefore, The flowcharts help not only to visually understand structural similarities but

also assists in validating the results of the search algorithms.

6.8 CHRONOLOGY OF THE MORPHOLOGICAL GROUPS

The morphological groups were revisited to investigate the appearance of

categories chronologically. This section examines only the P6M symmetry group as it

comprises 93.41% of the data and fewer cases are available for the other four symmetry

groups: P6, P3, P3M1, and P31M.

 93

Figure 6.24: Enlarged view from the morphological group C within the P6M symmetry

group. Three polylines are indicated in different colors.

 94

The data shows that A0 SMG designs have been the most common since the early

period of hexagonal-based IGP and afterwards. The earliest existing design with a single

polyline and no T/QP dates to the 9th century in Samara. However, if being extra

cautious and considering only designs that are purely geometric (the Samara design

contains floral motifs), the earliest A0 SMG design dates to 977 CE at Ata Arab. The

highest number of A0 segments was found in 1133 CE with the existence of a design

with six segments (figure 6.19).

The rest of the A morphological group (i.e., A1, A2, A3, A4, and A8) occurred

later between the 13th and early 15th centuries. The highest number of segments was

reached with 37 segments of A8 SMG in 1274 CE (figure 6.25).

Figure 6.25: Chronological segment count within A MG for symmetry Group P6M. Color

indicates the SMG.

Designs of the B MG (two polylines) existed as early as the 9th century with a

floral design in the Ibn Tulum mosque dated to this time by K. A. C. Creswell (1919

 95

p.187). This design is a B1. However, B MG designs disappeared after this time and

returned in the mid-11th century at the Karraqan East Tower in 1067 CE, reaching the

highest number of segments in the late 13th century with nine segments. B2, B3, B4, and

B6 existed later between the 13th and early 15th centuries, with the highest number of

segments reached in 1323 CE with 29 segments (figure 6.26).

Designs within the C MG started as early as the mid-12th century with C2 designs

with 12 segments that later dropped to 10 segments in other designs. C3 designs in the

late 13th century had 14 segments, reaching 18 segments in the early 14th century.

Moreover, a single case of a C5 design with 21 segments was identified (figure 6.27).

Figure 6.26: Chronological segment count within B MG for symmetry Group P6M. Color

indicates the SMG.

 96

Figure 6.27: Chronological segment count within C MG for symmetry Group P6M. Color

indicates the SMG.

In her discussion of the chronological development of Islamic Geometric patterns,

Gülru Necipoglu argued that the peak development period falls between the 11th and

mid-13th centuries. The findings of this research shows that in the case of the hexagon-

based IGP this development is indicated by the introduction of segment intersections and

the emergence of cases of designs with multiple polylines. The following SMG were

identified before the mid-13th century: A0, A1, B1, B2, B3, and C2. However, the

maximum segment count is 13. After the mid-13th century an A8 SMG design with 37

segments existed in Konya, Turkey in 1274 CE.

Necipoglu also argued that the “last creative impulse” for IGP took place between

the 14th century and early 16th century. The findings of this research shows that in the

case of hexagon-based IGP there are some sophisticated single polyline cases such as A2,

 97

A3, and A4 and multiple polyline cases such as the B4, B6, C3, and C5 that began to

emerge and be replicated.

 98

CHAPTER SEVEN

TOWARD MORPHOLOGICAL UNDERSTANDING OF HEXAGONAL-BASED

ISLAMIC GEOMETRIC PATTERNS

7.1 CONCLUSION	

This research addressed the question of how to incorporate mathematics and

morphology to describe IGP. It then utilized this description to address the question of

what are the morphological corrections between historic design singularities.

Through investigating the historical evidence, the study identified that a

hexagonal IGP is the product of infinite replication of a polyline(s) using one of the five

hexagon-based wallpaper symmetry groups: P3, P3M1, P31M, P6, and P6M. The

fundamental unit of a hexagon-based IGP contains at least a single polyline with at least a

single segment and it can be expanded to include multiple polylines with multiple

segments that can interact with each other. When put into mathematical terms, this

definition captures the reality of historical IGP designs in a parametric, numerical form.

Consequently a parametric description model was developed.

The parametric description model was utilized to derive representational codes

that store actualized value and structural relations of the historically existing designs.

These codes facilitated communication between the historical designs and innovative

computational tools and enabled the investegation of similarities between the historical

designs. In this sense, this dissertation shares a goal with Abu’l Wafa al-Buzjani, who, in

his book On Geometric Constructions, aimed to facilitate communication between

geometric designs and the scientific language of his age—mathematics.

 99

When the representational codes of historical designs were compared to each

other in this research, it was found that hexagon-based IGP correlate to each other in both

the actual and virtual dimensions.

The representational codes enabled to identify identical designs that exist in

different regions and chronological periods and show how a particular design where

replicated. It has been found that 66.3% of the collected 273 designs share their

representational codes with at least one other design. This shows that design replication

was often practiced and many designs were reproduced later using same, or different

embellishment techniques. Furthermore, this study shows that replication is not limited to

simple designs in terms of segment count or the design SMG; yet, complex designs also

replicated. For instance, consider the design shown in figure 7.1 which show the design

exist Madrasa al-'Attarin in Fez, Moroco and its replication in Alhambra palace in

Granada, Spain. This design is with up to 29 segments and of B6 SMG. This also

supports the transmission of historic designs between regions using some sort of medium

such as manuscripts or design scrolls.

 100

Figure 7.1 Identical designs. From left to right: Madrasa al-'Attarin, Alhambra palace,

the ground geometry (Wade 2015).

Beyond the actual dimension, IGP also correlate to each other in the virtual

dimension. The representational codes when investigated helped in detecteding links

between designs. These structural links are foundational to existing designs and helped to

create the enormous diversity of design of hexagonal IGP.

This research determined that a total of 44.2% of designs share with at least one

other design the same flow of polylines, number of segments, and specific morphological

group. A total of 76.09% of designs share with at least one other design the same number

of segments and specific morphological group. A total of 86.96% share with at least one

other design the same specific morphological group, and 94.20% share with at least one

other design the same morphological group.

The morphological groups are used as a categorization system for patterns that

incorporate designs that share basic “morphogenetic” characteristics. Five morphological

groups were established: morphological group A, morphological group B, morphological

group C, morphological group D, and morphological group F. This system, because it

 101

considers both the actual and the virtual dimensions, represent not only what exists but

what could exist.

Moreover, this system of categorization does not contradict with previous systems

developed by other scientific studies of IGP such as Abas and Salman’s symmetry

classification, nor is it intended to replace those systems. In contrast, this system further

considers the details of each symmetry group to further relate or differentiate the designs

within each symmetry group based on the internal relationships of the design

components.

Finally, the research investigated the historical development of hexagon-based

IGP using morphological categorization. It was found that all three A, B, and C MG were

reached prior to the 13th century, with continued use afterwards. However, after the 14th

century, the historical designs evolved in regard to segment count and by creating more

internal intersections between the polylines.

7.2 LIMITATIONS

Although the results are generalizable for hexagon-based IGP and not for other

periodic Islamic geometries, insights can still be gained to create similar procedures for

other types of repeat units. The results presented in this research are based on the

examination of periodic hexagon-based Islamic geometric designs and thus the results

represent those designs.

7.3 FUTURE RESEARCH

Future research will include investigation of other types of periodic structures

such as square-based Islamic patterns, with the goal of constructing a database that

 102

includes all periodic geometric patterns to advance the research and design practice of

periodic IGP. According to Sayed Abas and Amer Salman(1995) symmetry study the

hexagonal and square repeat unit constitutes the dominant majority of periodic IGP.

Future research will aim to employ the methodology of this research to other periodic

patterns to create a unified understanding across different repeat units. For instance,

figure 7.2 shows a hexagonal RU next to a square RU. Using the new morphological

categorization, both patterns can be identified as B1 as each FU include two polylines

and a single QP within the FU.

Figure 7.2 employing the morphological categorization across RU.

Furthermore, the developed parametric description establishes a lower level

interaction with the methodology that grants designers complete control of the geometric

components and their internal structure. Such control of shape is considered the “primary

ingredient” for producing architecture that alters shape(Kolarevic, Parlac 2015). To this

end, the researcher has taken steps in that direction to build the physical metamorphosis

of geometric patterns. Preliminary results of the investigation was presented in poster

 103

format at the Conference Proceedings of the Architectural Research Centers Consortium

2017 (figure 7.1).

Fig.7.1 Bottom left: digital model with ten hexagonal repeat units. Bottom right: finished

prototype

 104

APPENDICES

 105

Appendix A

Collected Hexagonal-Based Islamic Geometric Patterns that explains the pattern, single

geometry, and the fundamental unit.

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

Appendix B

IGP Explorer (the Simulation Program)

 123

//Program Name: IGP EXPLORER
//Program description: SIMULATION PROGRAM FOR VISUALIZATION AND MORPHING HEXAGONAL BASED
ISLAMIC GEOMETRIC PATTERNS
//PROGRAMING LANGUAGE: PROCESSING
//MAY 15TH, 2017
//PROGRAM'S AUTHOR: MOSTAFA ALANI

// IMPORT LIBRARY
// IMPORT LIBRARY
// IMPORT LIBRARY

import processing.dxf.*;

//
DECLARATION
//
DECLARATION
//
DECLARATION

boolean record;
int codeLength;
String[] Code, CodeDrawingTemp, CodeSpliting, Str, MorphCodeDis;
float[] CodeDrawing, CodeDrawingMorphed, CodeMorph, CodeToMorph;

// DECLARATION & INITIALIZATION
// DECLARATION & INITIALIZATION
// DECLARATION & INITIALIZATION

color[] theme = {#FFFFFF, #D7DADB, #FC4349, #2C3E50, #FC4349};
String myCode = "p6m:[3.3-90][5.8-60][8.8-71][6.7-90]";
String myCodeMorphed = "SAO"; // SameAsOrigional
int executeLock = 0, morphLock = 0, x1 = 0, y1 = 635;
float morphAddition = 0, morphSubstraction = 0;

// SETUP
// SETUP
// SETUP

void setup(){
 size(1280, 695, P3D);
 if (frame != null)
 {
 surface.setResizable(true);
 }
 background(theme[0]);
 smooth();
}

// DRAW
// DRAW
// DRAW

void draw(){
 background(theme[0]); //Background refresh
 viewPort(); //Viewports Display
 hovering(); //Buttons
 Code = split(myCode, ':'); //Code conversion
 codeLength = Code.length;
 execute(); // execute Button
 textSize(13);

 if(executeLock != 0){
 drawCodeR(1160, 120);
 fill(theme[2]);
 text("Symmetry Type= " + Code[0], 820, 270);
 CaseIdentifier(Code[1]);
 }

 124

 if(morphLock == 1)
 {
 morph(920, 120);
 }
 noCursor(); //Curser Location
 fill(theme[1]);
 ellipse(mouseX,mouseY,1,1);
 fill(theme[4]);
 text((mouseX + " " + mouseY), mouseX, mouseY+20, width, height);

 patternGenerator();

 if(record) {
 beginRaw(DXF, "output.dxf");
 }
 if(record) {
 endRaw();
 record = false;
 }
}

// VIEWPORT
// VIEWPORT
// VIEWPORT

void viewPort(){
 pushMatrix();

 noFill(); //Big viewport
 stroke(theme[3],150);
 rect(0,0,800,y1);
 fill(theme[3]);
 text("Pattern View", 0,0, width, height);

 fill(theme[1]);
 noStroke();
 rect(800+1,0,displayWidth,displayHeight);

 translate(800,0);

 fill(theme[0]); //Small viewports
 stroke(theme[3],150);
 rect(0, 0, 240, 240);
 fill(theme[3]);
 text("Morphed view", 0,0, width, height);

 fill(theme[0]);
 stroke(theme[3],150);
 rect(240, 0, 240, 240);
 fill(theme[3]);
 text("Origional view", 240,0, width, height);

 popMatrix();
 pushMatrix();
 translate(10,370);
 fill(theme[3],150);
 popMatrix();
}

// HOVERING
// HOVERING
// HOVERING

float hovering(){
 fill(255);
 rect(x1+53,y1,width,30);
 rect(x1+53,y1+30,width,30);
 fill(0, 150);
 text(myCode, x1+59,y1, width, height);

 125

 if(morphLock == 1){
 MorphCodeDis = new String[CodeMorph.length];
 MorphCodeDis[0] = "[";
 for(int i=0; i<CodeMorph.length-2; i+=3){
 if(i!=0){MorphCodeDis[i] = "][";}
 if(i!=0){
 if(CodeDrawingTemp[i].equals("/"))
 {
 MorphCodeDis[i] = "]/[";
 }
 }
 MorphCodeDis[i+1] = str((CodeMorph[i+1]));
 MorphCodeDis[i+1] = MorphCodeDis[i+1] + "-";
 MorphCodeDis[i+2] = str(int(CodeMorph[i+2]));
 MorphCodeDis[i+3] = "]";
 }
 String newCode = join(MorphCodeDis,"");
 text("P6M:" + newCode, x1+59,y1+30, width, height);
 print(" NEW CODE :: " + newCode + "\n");
 }
 if(mouseX>x1+53){
 if(mouseX<width){
 if(mouseY>y1){
 if(mouseY<y1+30)
 {
 fill(255);
 rect(x1+53,y1,width,30);
 fill(0);
 text(myCode, x1+59,y1, width, height);
 }
 }
 }
 }
 return(float(myCode));
}

// EXECUTION
// EXECUTION
// EXECUTION

void execute(){
 fill(0);
 rect(0,y1,50,15);
 rect(0,y1+30,50,15);
 fill(255,150);
 text("Execute",0,y1,width,height);
 text("Animate ",0,y1+30,width,height);
 if(mouseX>0){
 if(mouseX<500){
 if(mouseY>y1){
 if(mouseY<y1+20){
 if(mousePressed)
 {
 fill(255);
 rect(0,y1,50,15);
 fill(0,150);
 text("Execute",0,y1,width,height);

 String f = Code[1].replace("]", ",");
 f = f.replace("[", ",");
 f = f.replace("-", ",");
 CodeDrawingTemp = split(f, ',');

 executeLock = 1;
 morphLock = 1;
 CodeToMorph = float(split(f, ','));
 CodeMorph = float(CodeDrawingTemp);

 firstP1 = 1;

 126

 firstP2= 0;

 secondP1 = 1;
 secondP2= 0;

 thirdP1 = 1;
 thirdP2= 0;
 }
 }
 }
 }
 }

 if(mouseX>0){
 if(mouseX<500){
 if(mouseY>y1+30){
 if(mouseY<y1+45){
 if(mousePressed)
 {
 fill(theme[4]);
 rect(0,y1+30,50,15);
 fill(0);
 text("Animate ",0,y1+30,width,height);
 animate();
 }
 }
 }
 }
 }
 if(morphLock ==1)
 {
 for(int y = 0; y < CodeMorph.length; y++)
 {
 if(y == CodeMorph.length-1)
 print(" END \n");
 }
 }
}

// DRAW CODE
// DRAW CODE
// DRAW CODE

void drawCodeR(int x, int y){
 if(Code[0].equals("P6M") == true || Code[0].equals("p6m") == true ||
Code[0].equals("p6") == true || Code[0].equals("P6") == true || Code[0].equals("P31M") ||
Code[0].equals("p31m") || Code[0].equals("P3M1") || Code[0].equals("p3m1"))
 {
 pushMatrix();
 translate(x,y);

 CodeDrawing = float(CodeDrawingTemp);
 for(int z=0; z<CodeDrawingTemp.length-2; z+=3)
 {
 float tempAng = float(CodeDrawingTemp[z+2]);
 float tempDis = float(CodeDrawingTemp[z+1]);
 CodeDrawing[z+2] = sin(radians(tempAng)) * tempDis; // X coordinate
 CodeDrawing[z+1] = cos(radians(tempAng)) * tempDis; // Y coordinate
 }

 for(int c=0; c<6; c++)
 {
 stroke(theme[3]);
 strokeWeight(2.2);
 pushMatrix();
 if(CodeDrawing.length<6)
 text("Incorrect CODE" + "\n", 400,400,width,height);
 int iii = 0;
 for(int ii=0; ii+iii<CodeDrawing.length-6; ii+=3)

 127

 {
 line(10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii],
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]);
 if(Code[0].equals("p6m") || Code[0].equals("P6M") || Code[0].equals("P3M1") ||
Code[0].equals("p3m1") || Code[0].equals("p31m") || Code[0].equals("P31M") ||
Code[0].equals("P31m") || Code[0].equals("p31M")){
 line(-10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii], -
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]);
 }
 if(Code[0].equals("p31m") || Code[0].equals("P31M") || Code[0].equals("P31m") ||
Code[0].equals("p31M")){
 pushMatrix();
 rotate(radians(120));
 translate(0,100);
 line(10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii],
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]);
 line(-10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii], -
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]);
 rotate(radians(120));
 translate(0,100);
 line(-10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii], -
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]);
 rotate(radians(-120));
 line(10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii],
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]);
 popMatrix();
 }

 if(CodeDrawingTemp[ii+6+iii].equals("/"))
 {
 iii+=3;
 }
 fill(theme[4]);
 }
 popMatrix();
 if(Code[0].equals("p6m") || Code[0].equals("P6M") || Code[0].equals("P6") ||
Code[0].equals("p6")){
 rotate(radians(60));
 }
 if(Code[0].equals("p3") || Code[0].equals("P3") || Code[0].equals("P3M1") ||
Code[0].equals("p3m1") || Code[0].equals("P31M") || Code[0].equals("p31m")){
 rotate(radians(120));
 }
 }
 popMatrix();
 }
}

// ANALYSIS
// ANALYSIS
// ANALYSIS

String TQp;
String MG;

void CaseIdentifier(String g){
 int f =70;
 text("Characteristics of the FU: ", 820, 310);

 //Counting Segment
 int Count;
 String[] S = splitTokens(g, "[]");
 Count = S.length-1;
 for(int i=0; i<S.length; i++){
 if(S[i].equals("/")){
 Count-=2;
 }
 }
 text("Count of Segments = " + Count, 820, 260+f);

 128

 println(Count);

 //Q/TP
 println(g);
 String[] Sarray = splitTokens(g,"[/]");

 IntDict Search = new IntDict();
 for(int i=0; i<Sarray.length; i++){
 Search.increment(Sarray[i]);
 }
 Search.sortValuesReverse();
 int[] counts = Search.valueArray();
 String[] SEARCH = Search.keyArray();
 println(Search);

 if(counts[0] == 1){
 println("QV = " + 0);
 TQp = "0";
 }
 if(counts[0] > 1 && counts[1] == 1){
 println("QV = " + 1);
 TQp = "1";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] == 1){
 println("QV = " + 2);
 TQp = "2";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] == 1){
 println("QV = " + 3);
 TQp = "3";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] == 1){
 println("QV = " + 4);
 TQp = "4";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1 &&
counts[5] == 1){
 println("QV = " + 5);
 TQp = "5";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1
&& counts[5] > 1 && counts[6] == 1){
 println("QV = " + 6);
 TQp = "6";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1
&& counts[5] > 1 && counts[6] > 1 && counts[7] == 1){
 println("QV = " + 7);
 TQp = "7";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1
&& counts[5] > 1 && counts[6] > 1 && counts[7] > 1 && counts[8] == 1){
 println("QV = " + 8);
 TQp = "8";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1
&& counts[5] > 1 && counts[6] > 1 && counts[7] > 1 && counts[8] > 1 && counts[9] == 1){
 println("QV = " + 9);
 TQp = "9";
 }

 text("Count of Points = " + counts.length, 820, 280+f);
 text("Count of Triple/Quadrable Connection Point = " + TQp, 820, 300+f);

 //Polyline
 int countPolylines = 1;
 String[] S1 = splitTokens(g, "[]");
 for(int i=0; i<S1.length; i++){
 if(S1[i].equals("/")){

 129

 countPolylines++;
 }
 }
 print("Polyline count " + (countPolylines) + " ", 820, 320+f);
 text("Count of Polylines = " + countPolylines, 820, 340+f);

 //Group
 if(countPolylines==1){
 MG="A";
 }
 if(countPolylines==2){
 MG="B";
 }
 if(countPolylines==3){
 MG="C";
 }
 if(countPolylines==4){
 MG="D";
 }
 if(countPolylines==5){
 MG="E";
 }
 if(countPolylines==6){
 MG="F";
 }
 text("Morphological Group = " + MG, 820, 380+f);
 text("Specific Morphological Group = " + MG+TQp, 820, 400+f);
}

// MORPH
// MORPH
// MORPH

void morph(int x, int y){
 pushMatrix();
 translate(x,y);
 for(int z=0; z<CodeMorph.length-2; z+=3)
 {
 float tempAng = (CodeMorph[z+2]);
 float tempDis = (CodeMorph[z+1]);

 CodeToMorph[z+2] = sin(radians(tempAng)) * tempDis; // X coordinate
 CodeToMorph[z+1] = cos(radians(tempAng)) * tempDis; // Y coordinate
 }

 for(int c=0; c<6; c++)
 {
 pushMatrix();
 if(CodeToMorph.length<6){
 text("Incorrect CODE" + "\n", 400,400,width,height);
 }
 int iii = 0;
 for(int ii=0; ii+iii<CodeToMorph.length-6; ii+=3)
 {
 line(10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii],
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]);
 if(Code[0].equals("p6m") || Code[0].equals("P6M") || Code[0].equals("P3M1") ||
Code[0].equals("p3m1") || Code[0].equals("p31m") || Code[0].equals("P31M") ||
Code[0].equals("P31m") || Code[0].equals("p31M")){
 line(-10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii], -
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]);
 }
 if(Code[0].equals("p31m") || Code[0].equals("P31M") || Code[0].equals("P31m") ||
Code[0].equals("p31M")){
 pushMatrix();
 rotate(radians(120));
 translate(0,100);
 line(10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii],
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]);

 130

 line(-10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii], -
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]);
 rotate(radians(120));
 translate(0,100);
 line(-10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii], -
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]);
 rotate(radians(-120));
 line(10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii],
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]);
 popMatrix();
 }
 if(CodeDrawingTemp[ii+6+iii].equals("/"))
 {
 iii+=3;
 }
 fill(theme[4]);
 }
 popMatrix();
 if(Code[0].equals("p6m") || Code[0].equals("P6M") || Code[0].equals("P6") ||
Code[0].equals("p6")){
 rotate(radians(60));
 }
 if(Code[0].equals("p3") || Code[0].equals("P3") || Code[0].equals("P3M1") ||
Code[0].equals("p3m1") || Code[0].equals("P31M") || Code[0].equals("p31m")){
 rotate(radians(120));
 }
 }
 popMatrix();
}

// PATTERN GENERATOR
// PATTERN GENERATOR
// PATTERN GENERATOR

void patternGenerator(){
 pushMatrix();
 translate(920,120);
 hexa();
 translate(240,0);
 hexa();
 popMatrix();

 pushMatrix();
 translate(100,100);
 scale(.5);
 for(int z=0; z<7; z++)
 {
 for(int i =0; i<8; i++)
 {
 if(executeLock == 0){
 hexa();
 }
 if(executeLock != 0){
 stroke(theme[3]);
 morph(0, 0);
 }
 translate(173.206,0);
 }
 if(z == 0 || z == 2 || z == 4 || z == 6 || z == 8)
 translate((-9*173.206)+(173.206/2),150);
 else
 translate((-8*173.206)+(173.206/2),150);
 }
 popMatrix();
}

// HEXAGONAL
// HEXAGONAL
// HEXAGONAL

 131

void hexa(){
 stroke(theme[3],50);
 line(0,-100,86.603,-50);
 rotate(PI/3);
 line(0,-100,86.603,-50);
 rotate(PI/3);
 line(0,-100,86.603,-50);
 rotate(PI/3);
 line(0,-100,86.603,-50);
 rotate(PI/3);
 line(0,-100,86.603,-50);
 rotate(PI/3);
 line(0,-100,86.603,-50);
 rotate(PI/3);
}

// ANIMATE
// ANIMATE
// ANIMATE

int reverseDirection = -1;

int firstP1 = 1;
int firstP2= 0;
float aimationSpeed = 0.01;

int secondP1 = 1;
int secondP2= 0;
float aimationSpeed3 = 0.01;

int thirdP1 = 1;
int thirdP2= 0;
float aimationSpeed4 = 0.01;

int fourthP1 = 1;
int fourthP2= 0;
float aimationSpeed5 = 0.01;

void animate()
{
 if(CodeMorph[1] <= limits(CodeMorph[2], CodeMorph[1]) && firstP1 == firstP2)
 {
 CodeMorph[1] += 1; // CHANGE TO 0.01 TO RESTORE ACTUAL SPEED
 firstP1 +=1;

 if(CodeMorph[1] == limits(CodeMorph[2], CodeMorph[1]))
 {
 CodeMorph[1] = limits(CodeMorph[2], CodeMorph[1]);
 }

 if(CodeMorph[1] >10)
 CodeMorph[1] =10;
 }

 if(CodeMorph.length <=7 || secondP1 == secondP2) // Two or point points senerio
 {
 if(CodeMorph[4] < limits(CodeMorph[5], CodeMorph[4])+.01 || CodeMorph[4] == limits(
CodeMorph[5], CodeMorph[4]))
 {
 if(CodeMorph[4] == limits(CodeMorph[5], CodeMorph[4]) || CodeMorph[4] <= 0)
 {
 aimationSpeed = aimationSpeed * -1;
 firstP2 += 1;
 }
 CodeMorph[4] += aimationSpeed*10; // CHANGE TO aimationSpeed TO RESTORE ACTUAL
SPEED
 secondP1+=1;
 }

 132

 if(CodeMorph[4] > limits(CodeMorph[5], CodeMorph[4])+.01) // to optimize and prevent
outlyers, i.e. points that are higher than LIMITS
 CodeMorph[4] = limits(CodeMorph[5], CodeMorph[4]);
 }

 if(CodeMorph.length ==10 || thirdP1 == thirdP2) // 10 means u have 3 points
 {
 if(CodeMorph[7] < limits(CodeMorph[8], CodeMorph[7])+.01 || CodeMorph[7] == limits(
CodeMorph[8], CodeMorph[7]))
 {
 if(CodeMorph[7] == limits(CodeMorph[8], CodeMorph[7]) || CodeMorph[7] <= 0)
 {
 aimationSpeed3 = aimationSpeed3 * -1;
 secondP2 += 1;
 }
 CodeMorph[7] += aimationSpeed3 * 10; // CHANGE TO aimationSpeed TO RESTORE ACTUAL
SPEED
 thirdP1 += 1;
 }
 if(CodeMorph[7] > limits(CodeMorph[8], CodeMorph[7])+.01) // to optimize and prevent
outlyers, i.e. points that are higher than LIMITS
 CodeMorph[7] = limits(CodeMorph[8], CodeMorph[7]);
 }

 if(CodeMorph.length ==13) // 13 means u have 4 points
 {
 if(CodeMorph[10] < limits(CodeMorph[11], CodeMorph[10])+.01 || CodeMorph[10] ==
limits(CodeMorph[11], CodeMorph[10]))
 {
 if(CodeMorph[10] == limits(CodeMorph[11], CodeMorph[10]) || CodeMorph[10] <= 0)
 {
 aimationSpeed4 = aimationSpeed4 * -1;
 thirdP2 += 1;
 }
 CodeMorph[10] += aimationSpeed4 * 5; // CHANGE TO aimationSpeed TO RESTORE ACTUAL
SPEED
 }
 if(CodeMorph[10] > limits(CodeMorph[11], CodeMorph[10])+.01) // to optimize and
prevent outlyers, i.e. points that are higher than LIMITS
 CodeMorph[10] = limits(CodeMorph[11], CodeMorph[10]);
 }

 if(CodeMorph.length ==16) // 16 means u have 5 points
 {
 if(CodeMorph[13] < limits(CodeMorph[14], CodeMorph[13])+.01 || CodeMorph[13] ==
limits(CodeMorph[14], CodeMorph[13]))
 {
 if(CodeMorph[13] == limits(CodeMorph[14], CodeMorph[13]) || CodeMorph[13] <= 0)
 {
 aimationSpeed5 = aimationSpeed5 * -1;
 fourthP2 += 1;
 }
 CodeMorph[13] += aimationSpeed5 * 5; // CHANGE TO aimationSpeed TO RESTORE ACTUAL
SPEED
 }
 if(CodeMorph[13] > limits(CodeMorph[14], CodeMorph[13])+.01) // to optimize and
prevent outlyers, i.e. points that are higher than LIMITS
 CodeMorph[13] = limits(CodeMorph[14], CodeMorph[13]);
 }
}

float result;
float limits(float angle, float distance)
{
 if(angle <=90)
 {
 float reverseAngle = 90 - angle;
 float missingAngle = 180 - 60 - reverseAngle;
 result = (10 * sin(radians(60)) / sin(radians(missingAngle)));

 133

 }
 return result;
}

// KEYPRESSED
// KEYPRESSED
// KEYPRESSED

void keyPressed() {
 if(mouseX>x1+53)
 if(mouseX<width)
 if(mouseY>y1)
 if(mouseY<y1+30)
 {
 if (keyCode == BACKSPACE) {
 if (myCode.length() > 0) {
 myCode = myCode.substring(0, myCode.length()-1);
 }
 } else if (keyCode == DELETE) {
 myCode = "";
 } else if (keyCode != SHIFT && keyCode != CONTROL && keyCode != ALT) {
 myCode = myCode + key;
 }
 }
 if (key == 'r')
 record = true;
}

 134

Appendix C

Representational Code Analyzer (the Search Program)

 135

//PROGRAM NAME: repCode analyzer
//PROGRAM DESCRIPTION: READ THE REPRESENTATIONAL CODES AND DETECT MORPHOLOGICAL
SIMILARITIES ON MULTIPLE LEVELS
//PROGRAMING LANGUAGE: PROCESSING
//MAY 15TH, 2017
//PROGRAM'S AUTHOR: MOSTAFA ALANI

color[] theme = {#E8E6EB, #84B1D9, #075473, #A62D12, #D94E41};// Color theme of the
visualization
Table t; // CSV(Excel) sheet
Geometry g; // Geometry has all information about particular historical design
Geometry[] G; // Object array for the above geometries
int readDataOnlyOnce=0; //So the code read the data only once
int textInhowverCounter = 0;
float growth =810.0;
String Original; int CADno;

// SETUP
// SETUP
// SETUP

void setup(){
 size(500, 500);
 background(theme[0]);
 smooth();
 processData();
}

// DRAW
// DRAW
// DRAW

void draw(){
 background(theme[0]);
 //below assign each value from CSV to temprory variable to prepare the transfer to the
object and put it in a particualr array index
 if(readDataOnlyOnce == 0)// So the file read data only once
 {
 for(int i =0; i<t.getRowCount(); i++)
 {
 TableRow tr = t.getRow(i);
 int x = tr.getInt("CAD#"); int d = tr.getInt("DATE"); int td = tr.getInt("TO-
DATE"); int c = tr.getInt("CENTURY"); String m = tr.getString("MONUMENT"); String r =
tr.getString("REGION"); String tow = tr.getString("TOWN"); String dy =
tr.getString("DYNASTY"); String mat = tr.getString("MATERIAL"); String fun =
tr.getString("FUNCTION"); String SY = tr.getString("SYMMETRY"); String SC =
tr.getString("SHAPE-CODE"); float SLR = tr.getFloat("SCALER"); float XL =
tr.getFloat("xLocation"); float YL = tr.getFloat("yLocation"); String C =
tr.getString("Case"); String seg = tr.getString("Seg"); String id = tr.getString("ID");
String mc = tr.getString("MC"); String N = tr.getString("Nominal"); String L =
tr.getString("List");
 G[i] = new Geometry(x, m, d, td, c, r, tow, dy, mat, fun, SY, SC, SLR, XL, YL, C,
seg, id, mc, N, L); //transfere to the object through constructor
 GroupIdentifier(G[i]);
 }
 }

 if(readDataOnlyOnce == 0)
 {
 //for(int i =36; i<37; i++)//
 for(int i =0; i<t.getRowCount(); i++)
 {
 Original = G[i].repCODE; CADno = G[i].CAD;
 //Analysis control keys
 print(G[i].CAD+ " ");
 //ID
 int identity =0;
 //LV1 con.
 int LV0 =0;

 136

 //LV1
 int LV1 =0;
 //LV2
 int LV2 = 0;
 //LV3
 int LV3=0;
 //LV4
 int LV4=0;

 if(LV3==1){LevelThreeSE(G[i], G);}
 if(LV4==1){LevelFourSE(G[i], G);}

///////////// FLIPPING & SEARCHING ALL SMG EXCEPT A0, A1, B0, B1, & B2 //////

 if(G[i].Case.equals("A0")==false && G[i].Case.equals("A1")==false &&
G[i].Case.equals("B0")==false && G[i].Case.equals("B1")==false &&
G[i].Case.equals("B2")==false){
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 flipCode(G[i].repCODE); G[i].repCODE=flipResults;
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 }

///////////// FLIPPING & SEARCHING SMG A0 /////////////

 if(G[i].Case.equals("A0")){
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 flipCode(G[i].repCODE); G[i].repCODE=flipResults;
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 G[i].repCODE = Original;
 }

///////////// FLIPPING & SEARCHING SMG A1 /////////////

 if(G[i].Case.equals("A1")){
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 flipCode(G[i].repCODE); G[i].repCODE=flipResults;
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 G[i].repCODE = Original;
 partialA1Flip(G[i].repCODE, G[i]); G[i].repCODE=partialA1flipResults;
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 flipCode(G[i].repCODE); G[i].repCODE=flipResults;
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 G[i].repCODE = Original;
 }

///////////// FLIPPING & SEARCHING SMG B0 /////////////

 if(G[i].Case.equals("B0")){
 flipCaseB(G[i].repCODE, G[i], G, identity, LV0, LV1, LV2);
 }
/////////////// FLIPPING & SEARCHING SMG B1 /////////////

 if(G[i].Case.equals("B1")){
 caseB1Flip(G[i].repCODE, G[i], "");
 flipCaseB(G[i].repCODE, G[i], G, identity, LV0, LV1, LV2);
 flipCaseB(caseB1possibleCodeA, G[i], G, identity, LV0, LV1, LV2);
 flipCaseB(caseB1possibleCodeB, G[i], G, identity, LV0, LV1, LV2);
 }

/////////////// FLIPPING & SEARCHING SMG B2 /////////////

 137

 if(G[i].Case.equals("B2")){
 caseB2Flip(G[i].repCODE, G[i], "");
 flipCaseB(G[i].repCODE, G[i], G, identity, LV0, LV1, LV2);
 flipCaseB(newB2code1, G[i], G, identity, LV0, LV1,LV2);
 flipCaseB(caseB2possibleCodeA, G[i], G, identity, LV0, LV1, LV2);
 flipCaseB(caseB2possibleCodeB, G[i], G, identity, LV0, LV1, LV2);
 flipCaseB(caseB2possibleCodeC, G[i], G, identity, LV0, LV1, LV2);
 flipCaseB(caseB2possibleCodeD, G[i], G, identity, LV0, LV1, LV2);
 flipCaseB(caseB2possibleCodeE, G[i], G, identity, LV0, LV1, LV2);
 flipCaseB(caseB2possibleCodeF, G[i], G, identity, LV0, LV1, LV2);
 flipCaseB(newB2code2, G[i], G, identity, LV0, LV1, LV2);
 }
 //special B2 case
 if(G[i].CAD == 234){
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 flipCode(G[i].repCODE); G[i].repCODE=flipResults;
 if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}
 if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}
 }
 println();
 G[i].repCODE = Original;
 }
 }
 readDataOnlyOnce =1;
}

// DATA FROM TABLES
// DATA FROM TABLES
// DATA FROM TABLES

void processData(){
 t = loadTable("data10.csv", "header");//CSV file name
 G = new Geometry[t.getRowCount()]; // array intialiatiazion and allocation
}

// CLASS GEOMETRY
// CLASS GEOMETRY
// CLASS GEOMETRY

class Geometry{
 int CAD, DATE, TODATE, CENTURY;
 float SCALER, XL, YL;
 String MONUMENT,REGION,TOWN,DYNASTY,MATERIAL,FUNCTION, SYMMETRY, repCODE, Case, Seg,
ID, MC, Nomi, List;
 IntDict conc = new IntDict();//Dictionar used in countPoints function belowreads
chuncks of angle and distance, for instanc "90-10" as one string to count correctlly
 IntDict countPoints = new IntDict();
 float Xlocation, ylocation;

//Constructor
 Geometry(int cad, String monument,int date, int todate, int century, String region,
String town, String dynasty, String material, String function, String Symmetry, String
repCode, Float scaler , Float xl, Float yl, String cases, String seg, String id, String
mc, String N, String L){
 CAD = cad;
 MONUMENT = monument;
 DATE = date;
 TODATE = todate;
 CENTURY = century;
 REGION = region;
 TOWN = town;
 DYNASTY = dynasty;
 MATERIAL = material;
 FUNCTION = function;
 SYMMETRY = Symmetry;
 repCODE = repCode;
 SCALER = scaler;
 XL = xl;

 138

 YL = yl;
 Case = cases;
 Seg=seg;
 ID=id;
 MC = mc;
 Nomi=N;
 List=L;
 }
}

// GROUP IDENTIFICATION
// GROUP IDENTIFICATION
// GROUP IDENTIFICATION

String TQp;
String MG;

void GroupIdentifier(Geometry G){
 String g = G.repCODE;
 int f =70;

 //COUNTING SEGMENT
 int Count;
 String[] S = splitTokens(g, "[]");
 Count = S.length-1;
 for(int i=0; i<S.length; i++){
 if(S[i].equals("/")){
 Count-=2;
 }
 }
 print(G.CAD + " #Segments = " + Count + " ");

 //Q/TP
 String[] Sarray = splitTokens(g,"[/]");
 IntDict Search = new IntDict();
 for(int i=0; i<Sarray.length; i++){
 Search.increment(Sarray[i]);
 }
 Search.sortValuesReverse();
 int[] counts = Search.valueArray();
 String[] SEARCH = Search.keyArray();

 if(counts[0] == 1){
 TQp = "0";
 }
 if(counts[0] > 1 && counts[1] == 1){
 TQp = "1";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] == 1){
 TQp = "2";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] == 1){
 TQp = "3";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] == 1){
 TQp = "4";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1 &&
counts[5] == 1){
 TQp = "5";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1
&& counts[5] > 1 && counts[6] == 1){
 TQp = "6";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1
&& counts[5] > 1 && counts[6] > 1 && counts[7] == 1){
 TQp = "7";
 }

 139

 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1
&& counts[5] > 1 && counts[6] > 1 && counts[7] > 1 && counts[8] == 1){
 TQp = "8";
 }
 if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1
&& counts[5] > 1 && counts[6] > 1 && counts[7] > 1 && counts[8] > 1 && counts[9] == 1){
 TQp = "9";
 }
 print(" | #Points = " + counts.length);
 print(" | #T/QP = " + TQp);

 //POLYLINES
 int countPolylines = 1;
 String[] S1 = splitTokens(g, "[]");
 for(int i=0; i<S1.length; i++){
 if(S1[i].equals("/")){
 countPolylines++;
 }
 }
 print(" | #Polyline= " + (countPolylines));

 //GROUPS
 if(countPolylines==1){MG="A";}
 if(countPolylines==2){MG="B";}
 if(countPolylines==3){MG="C";}
 if(countPolylines==4){MG="D";}
 if(countPolylines==5){MG="E";}
 if(countPolylines==6){MG="F";}
 println(" | SMG: " + MG+TQp + " | MG:"+MG);
}

// IDENTITY MATCH
// IDENTITY MATCH
// IDENTITY MATCH

// Identity Match function, takes two inputs:
// 1) An IGP to be examined;
// 2) Array of Geometry object (stores the historical Data).
void IdenticalMatch(Geometry g, Geometry[] G){
 // A loop through the array of Geometry object.
 for(int i=0; i<G.length; i++){
 // Compare the representational code of the input IGP with each geometry in the array
 if(g.repCODE.equals(G[i].repCODE) && g.CAD != G[i].CAD &&
g.SYMMETRY.equals(G[i].SYMMETRY)){
 // Only if a match exist, print the number of the design.
 print(G[i].CAD+",");
 }
 }
}

// LV0 STRUCTURAL EQUIVALENCY MATCH
// LV0 STRUCTURAL EQUIVALENCY MATCH
// LV0 STRUCTURAL EQUIVALENCY MATCH

// LV0 structural equivalency function, takes two inputs:
// 1) An IGP to be examined;
// 2) Array of Geometry object (stores the historical Data).
void LevelZeroSE(Geometry g, Geometry[] G){
 String[] S1 = splitTokens(g.repCODE,"[]"); // Convert First representational code into
array
 //Keep only the angle parameter in each array index in the first representational code
 for(int y=0; y<S1.length; y++){
 if(S1[y].equals("/") == false){
 String[] clean = splitTokens(S1[y], "-");
 S1[y] = clean[0];
 }
 }
 String comparison1 = join(S1," ");
 // A loop through the array of Geometry object.

 140

 for(int i=0; i<G.length; i+=1){
 //Fillters to avoid including identical design in this category, design itself, or
comparing with different symmetry group
 if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD &&
g.SYMMETRY.equals(G[i].SYMMETRY))
 {
 String[] S2 = splitTokens(G[i].repCODE,"[]");
 //Keep only the angle parameter in each array index in the Second representational
code
 for(int y=0; y<S2.length; y++){
 if(S2[y].equals("/") == false){
 String[] clean = splitTokens(S2[y], "-");
 S2[y] = clean[0];
 }
 }
 String comparison2 = join(S2," ");
 //Conduct the comparison
 if(comparison1.equals(comparison2)){
 print(G[i].CAD + ",");
 }
 }
 }
}

// LV1 STRUCTURAL EQUIVALENCY MATCH
// LV1 STRUCTURAL EQUIVALENCY MATCH
// LV1 STRUCTURAL EQUIVALENCY MATCH

// LV1 structural equivalency function, takes two inputs:
// 1) An IGP to be examined;
// 2) Array of Geometry object (stores the historical Data).
void LevelOneSE(Geometry g, Geometry[] G){
 String[] S1 = splitTokens(g.repCODE,"[]"); // Convert First representational code into
array
 //Keep only the angle parameter in each array index in the first representational code
 for(int y=0; y<S1.length; y++){
 if(S1[y].equals("/") == false){
 String[] clean = splitTokens(S1[y], "-");
 S1[y] = clean[0];
 //if the angle is not equal to 30, 60, 90, 120, change the angle to "A"
 if(S1[y].equals("30") == false && S1[y].equals("60") == false && S1[y].equals("90")
== false && S1[y].equals("120") == false){
 S1[y] = "A";
 }
 }
 }
 String comparison1 = join(S1," ");
 // A loop through the array of Geometry object.
 for(int i=0; i<G.length; i+=1){
 if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD && g.Case.equals(G[i].Case) &&
g.SYMMETRY.equals(G[i].SYMMETRY))
 {
 String[] S2 = splitTokens(G[i].repCODE,"[]");
 //Keep only the angle parameter in each array index in the Second representational
code
 for(int y=0; y<S2.length; y++){
 if(S2[y].equals("/") == false){
 String[] clean = splitTokens(S2[y], "-");
 S2[y] = clean[0];
 //if the angle is not equal to 30, 60, 90, 120, change the angle to "A"
 if(S2[y].equals("30") == false && S2[y].equals("60") == false &&
S2[y].equals("90") == false && S2[y].equals("120") == false){
 S2[y] = "A";
 }
 }
 }
 String comparison2 = join(S2," ");
 //Conduct the comparison
 if(comparison1.equals(comparison2) && g.SYMMETRY.equals(G[i].SYMMETRY)){

 141

 print(G[i].CAD + ", ");
 }
 }
 }
}

// LV2 STRUCTURAL EQUIVALENCY MATCH
// LV2 STRUCTURAL EQUIVALENCY MATCH
// LV2 STRUCTURAL EQUIVALENCY MATCH

// LV2 structural equivalency function, takes two inputs:
// 1) An IGP to be examined;
// 2) Array of Geometry object (stores the historical Data).
void LevelTwoSE(Geometry g, Geometry[] G){
 String[] S1 = splitTokens(g.repCODE,"[]"); // Convert First representational code into
array
 // Preserve only point sequence
 for(int y=0; y<S1.length; y++){
 if(S1[y].equals("/") == false){
 String[] clean = splitTokens(S1[y], "-");
 S1[y] = "P";
 }
 }
 String comparison1 = join(S1," ");
 // A loop through the array of Geometry object.
 for(int i=0; i<G.length; i+=1){
 if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD && g.Seg.equals(G[i].Seg) &&
g.Case.equals(G[i].Case) && g.SYMMETRY.equals(G[i].SYMMETRY))
 {
 String[] S2 = splitTokens(G[i].repCODE,"[]");// Convert second representational
code into array
 // Preserve only point sequence
 for(int y=0; y<S2.length; y++){
 if(S2[y].equals("/") == false){
 String[] clean = splitTokens(S2[y], "-");
 S2[y] = "P";
 }
 }
 String comparison2 = join(S2," ");
 //Conduct the comparison
 if(comparison1.equals(comparison2) && g.SYMMETRY.equals(G[i].SYMMETRY)){
 print(G[i].CAD + ",");
 }
 }
 }
}

// LV3 STRUCTURAL EQUIVALENCY MATCH
// LV3 STRUCTURAL EQUIVALENCY MATCH
// LV3 STRUCTURAL EQUIVALENCY MATCH

// LV3 structural equivalency function, takes two inputs:
// 1) An IGP to be examined;
// 2) Array of Geometry object (stores the historical Data).
void LevelThreeSE(Geometry g, Geometry[] G){
 // A loop through the array of Geometry object.
 for(int i=0; i<G.length; i+=1){
 if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD && g.Case.equals(G[i].Case) &&
g.SYMMETRY.equals(G[i].SYMMETRY)){
 //If the specific morphological group is the same, print the number of the geometry
 print(G[i].CAD + ",");
 }
 }
}

// LV4 STRUCTURAL EQUIVALENCY MATCH
// LV4 STRUCTURAL EQUIVALENCY MATCH
// LV4 STRUCTURAL EQUIVALENCY MATCH

 142

// LV4 structural equivalency function, takes two inputs:
// 1) An IGP to be examined;
// 2) Array of Geometry object (stores the historical Data).
void LevelFourSE(Geometry g, Geometry[] G){
 // A loop through the array of Geometry object.
 for(int i=0; i<G.length; i+=1){
 if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD && g.MC.equals(G[i].MC) &&
g.SYMMETRY.equals(G[i].SYMMETRY)){
 //If the specific morphological group is the same, print the number of the geometry
 print(G[i].CAD + ",");
 }
 }
}

// A0 SORTING
// A0 SORTING
// A0 SORTING

String flipResults;

void flipCode(String S){
 String[] Sarray = splitTokens(S, "[]");
 String[] SarrayTemp = new String[Sarray.length];
 for(int i=0; i<Sarray.length; i++){
 if(Sarray[Sarray.length-1-i].equals("/") ==false){
 SarrayTemp[i] = "["+Sarray[Sarray.length-1-i]+"]";
 }
 if(Sarray[Sarray.length-1-i].equals("/") ==true){
 SarrayTemp[i] = Sarray[Sarray.length-1-i];
 }
 }
 flipResults = join(SarrayTemp,"");
}

// A1 SORTING
// A1 SORTING
// A1 SORTING

String partialA1flipResults;

void partialA1Flip(String S, Geometry g){
 String[] lookUpSharedPoint = splitTokens(S, "[]/");
 IntDict Search = new IntDict();
 for(int i=0; i<lookUpSharedPoint.length; i++){
 Search.increment(lookUpSharedPoint[i]);
 }
 Search.sortValuesReverse();
 String[] SEARCH = Search.keyArray();
 String delimiter = SEARCH[0];
 String[] divideCode = split(S, delimiter);
 flipCode(divideCode[1]);

partialA1flipResults=divideCode[0]+delimiter+"]"+flipResults+"["+delimiter+divideCode[2];
}

// B0 SORTING
// B0 SORTING
// B0 SORTING

void flipCaseB(String S, Geometry g, Geometry[] G, int identity, int LV0, int LV1, int
LV2){
 g.repCODE = S;
 if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g,
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);}
 //FLIP ALL
 flipCode(S); g.repCODE=flipResults;
 if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g,
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);}
 g.repCODE=Original;

 143

 //FLIP-KEEP
 flipFirst(S);g.repCODE=flipFirstResult;
 if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g,
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);}

 //FLIP-KEEP REVERSED
 flipCode(g.repCODE); g.repCODE=flipResults;
 if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g,
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);}
 g.repCODE=Original;

 //KEEP-FLIP REVERSED
 flipSecond(S);g.repCODE=flipSecondResult;
 if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g,
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);}

 //KEEP-FLIP REVERSED
 flipCode(g.repCODE); g.repCODE=flipResults;
 if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g,
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);}
 g.repCODE=Original;

 //FLIP-FLIP REVERSED
 flipboth(S);g.repCODE=flipbothResult;
 if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g,
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);}

 //FLIP-FLIP REVERSED
 flipCode(g.repCODE); g.repCODE=flipResults;
 if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g,
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);}
 g.repCODE=Original;
}

String flipFirstResult;
void flipFirst(String S){
 String[] Sarray = split(S, "/");
 String[] SarrayfirstPart = splitTokens(Sarray[0], "[]");
 String[] tempSarrayfirstPart = new String[SarrayfirstPart.length];
 for(int i=0; i<SarrayfirstPart.length; i++){
 tempSarrayfirstPart[tempSarrayfirstPart.length-1-i] = "[" + SarrayfirstPart[i] + "]";
 }
 flipFirstResult = join(tempSarrayfirstPart,"");
 flipFirstResult = flipFirstResult+"/"+Sarray[1];
}

String flipSecondResult;
void flipSecond(String S){
 String[] Sarray = split(S, "/");
 String[] SarraySecondPart = splitTokens(Sarray[1], "[]");
 String[] tempSarraySecondPart = new String[SarraySecondPart.length];
 for(int i=0; i<SarraySecondPart.length; i++){
 tempSarraySecondPart[tempSarraySecondPart.length-1-i] = "[" + SarraySecondPart[i] +
"]";
 }
 flipSecondResult = join(tempSarraySecondPart,"");
 flipSecondResult = Sarray[0] + "/" + flipSecondResult;
}

String flipbothResult;
void flipboth(String S){
 String[] Sarray1 = split(S, "/");
 String[] SarrayfirstPart = splitTokens(Sarray1[0], "[]");
 String[] tempSarrayfirstPart = new String[SarrayfirstPart.length];
 for(int i=0; i<SarrayfirstPart.length; i++){
 tempSarrayfirstPart[tempSarrayfirstPart.length-1-i] = "[" + SarrayfirstPart[i] + "]";
 }

 144

 flipFirstResult = join(tempSarrayfirstPart,"");
 String[] Sarray2 = split(S, "/");
 String[] SarraySecondPart = splitTokens(Sarray2[1], "[]");
 String[] tempSarraySecondPart = new String[SarraySecondPart.length];
 for(int i=0; i<SarraySecondPart.length; i++){
 tempSarraySecondPart[tempSarraySecondPart.length-1-i] = "[" + SarraySecondPart[i] +
"]";
 }
 flipSecondResult = join(tempSarraySecondPart,"");
 flipbothResult = flipFirstResult + "/" + flipSecondResult;
}

// B1 SORTING
// B1 SORTING
// B1 SORTING

String caseB1possibleCodeA;
String caseB1possibleCodeB;

void caseB1Flip(String S, Geometry g, String delimiter){
 String[] lookUpSharedPoint = splitTokens(S, "[]/");
 IntDict Search = new IntDict();
 for(int i=0; i<lookUpSharedPoint.length; i++){
 Search.increment(lookUpSharedPoint[i]);
 }
 Search.sortValuesReverse();
 int[] counts = Search.valueArray();
 String[] SEARCH = Search.keyArray();
 String[] S1 = splitTokens(S,"/");
 if(delimiter==""){
 delimiter = SEARCH[0];
 }
 String[] S1A = split(S1[0], delimiter);
 String[] S2A = split(S1[1], delimiter);
 caseB1possibleCodeA = S1A[0]+delimiter+S2A[1]+"/"+S2A[0]+delimiter+S1A[1];
 flipCode(S2A[0]); S2A[0]=flipResults;
 flipCode(S1A[1]); S1A[1]=flipResults;
 caseB1possibleCodeB = S1A[0]+delimiter+S2A[0]+"]/["+S1A[1]+delimiter+S2A[1];
 String[] Cleaning = splitTokens(caseB1possibleCodeB, "[]");
 for(int i=0; i<Cleaning.length; i++){
 if(Cleaning[i].equals("/")==false){
 Cleaning[i] = "["+Cleaning[i]+"]";
 }
 }
 caseB1possibleCodeB = join(Cleaning,"");
}

// B2 SORTING
// B2 SORTING
// B2 SORTING

String caseB2possibleCodeA;
String caseB2possibleCodeB;
String caseB2possibleCodeC;
String caseB2possibleCodeD;
String caseB2possibleCodeE;
String caseB2possibleCodeF;
String newB2code1;
String newB2code2;

void caseB2Flip(String S, Geometry g, String delimiter){
 String[] lookUpSharedPoint = splitTokens(S, "[]/");
 IntDict Search = new IntDict();
 for(int i=0; i<lookUpSharedPoint.length; i++){
 Search.increment(lookUpSharedPoint[i]);
 }
 Search.sortValuesReverse();
 int[] counts = Search.valueArray();
 String[] SEARCH = Search.keyArray();

 145

 String delimiter1 = SEARCH[0];
 String delimiter2 = SEARCH[1];
 int c1 =0, c2 =0;
 String[] B2search = split(S, "/");
 String[] firstSide = splitTokens(B2search[0],"[]");
 for(int p=0; p<firstSide.length; p++){
 if(delimiter1.equals(firstSide[p])){
 c1++;
 }
 if(delimiter2.equals(firstSide[p])){
 c2++;
 }
 }
 if(c1==1 && c2==2){
 String[] B2split = split(S, "/");
 partialA1Flip(B2split[0], g);
 B2split[0] = partialA1flipResults;
 newB2code1 = B2split[0]+"/"+B2split[1]; /// Main CODE 2
 caseB1Flip(S, g, delimiter1);
 caseB2possibleCodeA = caseB1possibleCodeA; /// Main CODE 3
 caseB2possibleCodeB = caseB1possibleCodeB; /// Main CODE 4
 if(g.CAD != 234){
 caseB1Flip(caseB2possibleCodeA, g, delimiter2);
 caseB2possibleCodeC = caseB1possibleCodeA;
 caseB2possibleCodeD = caseB1possibleCodeB;
 caseB1Flip(caseB2possibleCodeB, g, delimiter2);
 caseB2possibleCodeE = caseB1possibleCodeA;
 caseB2possibleCodeF = caseB1possibleCodeB;
 B2split = split(caseB1possibleCodeB,"/");
 partialA1Flip(B2split[1], g);
 B2split[1] = partialA1flipResults;
 newB2code2 = B2split[0]+"/"+B2split[1]; /// Main CODE 2
 }
 }
 if(c1==0 && c2==1){
 String[] B2split = split(S, "/");
 partialA1Flip(B2split[1], g);
 B2split[1] = partialA1flipResults;
 newB2code1 = B2split[0]+"/"+B2split[1]; /// Main CODE 2
 caseB1Flip(S, g, delimiter2);
 caseB2possibleCodeA = caseB1possibleCodeA; /// Main CODE 3
 caseB2possibleCodeB = caseB1possibleCodeB; /// Main CODE 4
 caseB1Flip(caseB2possibleCodeA, g, delimiter1);
 caseB2possibleCodeC = caseB1possibleCodeA;
 caseB2possibleCodeD = caseB1possibleCodeB;
 caseB1Flip(caseB2possibleCodeB, g, delimiter1);
 caseB2possibleCodeE = caseB1possibleCodeA;
 caseB2possibleCodeF = caseB1possibleCodeB;
 B2split = split(caseB1possibleCodeB,"/");
 partialA1Flip(B2split[0], g);
 B2split[0] = partialA1flipResults;
 newB2code2 = B2split[0]+"/"+B2split[1]; /// Main CODE 2
 }
 if(c1==1 && c2==0){
 String[] B2split = split(S, "/");
 partialA1Flip(B2split[1], g);
 B2split[1] = partialA1flipResults;
 newB2code1 = B2split[0]+"/"+B2split[1]; /// Main CODE 2
 caseB1Flip(S, g, delimiter1);
 caseB2possibleCodeA = caseB1possibleCodeA; /// Main CODE 3
 caseB2possibleCodeB = caseB1possibleCodeB; /// Main CODE 4
 caseB1Flip(newB2code1, g, delimiter1);
 caseB2possibleCodeC = caseB1possibleCodeA;
 caseB2possibleCodeD = caseB1possibleCodeB;
 B2split = split(caseB1possibleCodeA,"/");
 partialA1Flip(B2split[0], g);
 B2split[0] = partialA1flipResults;
 newB2code2 = B2split[0]+"/"+B2split[1]; /// Main CODE 2
 }}

 146

Appendix D

Morphological Correlations Flowcharts

 147

 148

 149

 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

 163

REFERENCES

 Abas, S.J. & Salman, A.S. 1995, Symmetries of Islamic geometrical patterns, World Scientific.

Al Ajlouni, R.A. 2012, "The global long-range order of quasi-periodic patterns in Islamic
architecture", vol. 68, no. 2, pp. 235-243.

al-Būzjānī, A.a. 998, Kitāb fī mā yaḥtāj ilayh al-ṣāniʿ min al-aʿmāl al-handasiyya (A book on
those geometric constructions which are necessary for a craftsman), , Baghdad.

Aljamali, A. & Banissi, E. 2003, "Normalization and exploration design method of Islamic
geometric patterns", Geometric Modeling and Graphics, 2003. Proceedings. 2003
International Conference onIEEE, , pp. 42.

Al-Khalili, J. 2011, The house of wisdom: How Arabic science saved ancient knowledge and gave
us the Renaissance, Penguin.

Al-Khalili, J. 2010, Science and Islam, The Language of Science.

Bourgoin, J. 2012, Arabic geometrical pattern and design, Courier Corporation.

Broug, E. 2013a, Internation Workshop on Geometric Patterns in Islamic Art, Turkey.

Broug, E. 2013b, Islamic Geometric Design, Thames & Hudson; 1 edition.

Broug, E. 2008, Islamic geometric patterns, Thames & Hudson London.

Burckhardt, T. 2009, Art of Islam: Language and meaning, World Wisdom, Inc.

Chorbachi, W.K. 1989, "In the Tower of Babel: Beyond symmetry in islamic design", vol. 17, no.
4, pp. 751-789.

Creswell, K.A.C. 1919, "Some Newly Discovered Ṭûlûnide Ornament", The Burlington
Magazine for Connoisseurs, , pp. 180-188.

Deleuze, G. 1994, Difference and repetition, Columbia University Press.

Deleuze, G. 1993, The fold: Leibniz and the Baroque, U of Minnesota Press.

Deleuze, G. & Guattari, F. 1988, A thousand plateaus: Capitalism and schizophrenia,
Bloomsbury Publishing.

Djibril, M.O. & Thami, R.O.H. 2008, "Islamic geometrical patterns indexing and classification
using discrete symmetry groups", Journal on Computing and Cultural Heritage (JOCCH),
vol. 1, no. 2, pp. 10.

 164

Dürer, A. 1528, Hierinn sind begriffen vier Bücher von menschlicher Proportion, Formschnyder.

El-Said, I., El-Bouri, T. & Critchlow, K. 1993a, Islamic art and architecture: the system of
geometric design, Garnet Pub Ltd.

El-Said, I., El-Bouri, T. & Critchlow, K. 1993b, Islamic art and architecture: the system of
geometric design, Garnet Pub.

El-Said, I. & Parman, A. 1976, Geometric concepts in Islamic art, Dale Seymour Pubn.

Greg Lynn 1993, Folding in architecture, Academy Editions Limited.

Groat, L. & Wang, D. 2002, Architectural research methods, Springer.

Grünbaum, B., Grünbaum, Z. & Shepard, G. 1986a, "Symmetry in Moorish and other
ornaments", Computers & Mathematics with Applications, vol. 12, no. 3, pp. 641-653.

Grünbaum, B., Grünbaum, Z. & Shepard, G. 1986b, "Symmetry in Moorish and other
ornaments", Computers & Mathematics with Applications, vol. 12, no. 3, pp. 641-653.

Herzfeld, E. 1942, "Damascus: Studies in Architecture: I", Ars islamica, vol. 9, pp. 1-53.

Hill, D. & Grabar, O. 1967, Islamic Architecture and Its Decoration AD 800-1500: A
Photographic Survey, Faber.

Hillier, B. & Hanson, J. 1989, The social logic of space, Cambridge university press.

Izadi, A., Rezaei, M. & Bastanfard, A. 2010, "A Computerized Method to Generate Complex
Symmetric and Geometric Tiling Patterns" in Intelligent Computer Graphics 2010 Springer,
, pp. 185-210.

Jones, O. 1868, The grammar of ornament, B. Quaritch.

Kaplan, C.S. & Salesin, D.H. 2004, "Islamic star patterns in absolute geometry", vol. 23, no. 2,
pp. 97-119.

Keshani, H. 2012, "Towards digital Islamic art history", Journal of Art Historiography Number, .

Kolarevic, B. & Parlac, V. 2015, Building dynamics: exploring architecture of change,
Routledge.

Kolarevic, B. 2004, Architecture in the Digital Age: Design and Manufacturing, Taylor &
Francis.

Lalvani, H. 1989, "Coding and generating complex periodic patterns", vol. 5, no. 4, pp. 180-202.

165

Loeb, A. 2012, Concepts & images: Visual mathematics, Springer Science & Business Media.

Loeb, A.L. 1978, Color and symmetry, Krieger Pub Co.

Marans, R.W. & Stokols, D. 2013, Environmental simulation: Research and policy issues,
Springer Science & Business Media.

March, L. & Steadman, P. 1974, "Geometry of Environment: an Introduction to Spatial
Organisation in Design."

Müller, E. 1944, Gruppentheoretische und strukturanalytische Untersuchungen der maurischen
Ornamente aus der Alhambra in Granada, Buchdruckerei Baublatt ag.

Necipoğlu, G. 1992, Geometric Design in Timurid/Turkmen Architectural Practice: Thoughts on
Recently Discovered Scroll and Its Late Gothic Parallel.

Necipoğlu, G. & Al-Asad, M. 1995, The Topkapı Scroll: Geometry and Ornament in Islamic
Architecture: Topkapı Palace Museum Library MS, Getty Center for the History of Art and
the Humanities.

Oxman, R. & Oxman, R. 2014, Theories of the Digital in Architecture, Routledge.

Özdural, A. 2000, "Mathematics and arts: Connections between theory and practice in the
medieval Islamic world", vol. 27, no. 2, pp. 171-201.

Özdural, A. 1995, "Omar Khayyam, mathematicians, and" conversazioni" with artisans", Journal
of the Society of Architectural Historians, vol. 54, no. 1, pp. 54-71.

Pérez-Gómez, R. 1987, "The four regular mosaics missing in the Alhambra", Computers &
Mathematics with Applications, vol. 14, no. 2, pp. 133-137.

Rabbat, N. 2012, Re-Branding Islamic Architecture, Indianapolis Museum of Art.

Rabbat, N. 2004, "Islamic Architecture as a Field of Historical Enquiry", Architectural design, ,
no. 6, pp. 18-23.

Riether, G. & Baerlecken, D. 2012, "Digital Girih, a digital interpretation of Islamic architecture",
International Journal of Architectural Computing, vol. 10, no. 1, pp. 1-11.

Simon, H.A. 1996, The sciences of the artificial, MIT press.

Singleton Jr, R.A., Straits, B.C. & Straits, M.M. 1993, Approaches to social research, Oxford
University Press.

Steadman, P. 1983, Architectural morphology: An introduction to the geometry of building plans,
Taylor & Francis.

166

Stevenson, A. 2010, Oxford dictionary of English, Oxford University Press, USA.

Stronach, D. & Young, T.C. 1966, "Three Seljuq tomb towers", Iran, vol. 4, pp. 1-20.

Terzidis, K. 2006, Algorithmic architecture, Routledge.

Thompson, D.W. 1917, "On growth and form."

Wade, D. 2015, Pattern in Islamic Art.

Wilson, E. 1988, Islamic designs, British Museum Publications.

Woodbury, R. 2010, "Elements of parametric design."

	Clemson University
	TigerPrints
	5-2018

	Computational Investigation of the Morphological Design Dimensions of Historic Hexagonal-Based Islamic Geometric Patterns
	Mostafa Waleed Hashem Alani
	Recommended Citation

	Microsoft Word - MOSTAFA ALANI | DISSERTATION -SUBMISSION DOCUMENT- THIS.docx

