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ABSTRACT 

This dissertation examines the morphology of Islamic Geometric Patterns (IGP). 

Using mixed methods, including the simulation of historical designs and content analysis, 

this dissertation explores the question of how it is possible to mathematically describe the 

IGP. The study argues that the compositional analysis of geometry is not solely sufficient 

to investigate the design characteristics of the IGP, and the underlying mathematics and 

computational nature of the IGP should be considered when investigating historical IGP.   

The study presents a parametric description method that captures the reality of the 

IGP in numeric form and utilizes the form to derive representational codes that include 

the information necessary to construct a geometry. The representational codes are utilized 

to further investigate the actual and virtual design space of the IGP, aiming at identifying 

morphological similarities between historical designs.   

This research challenges the long-standing paradigm that considers compositional 

analysis to be the key to researching historical IGP. Adopting a mathematical description 

shows that the historical focus on existing forms has left the relevant structural 

similarities between historical IGPs understudied.   

The research focused on the historical, hexagonal-based IGP and found that 

hexagonal-based IGP designs correlate to each other beyond just the actualized 

dimension and that deep, morphological connections exist in the virtual dimension. Using 

historical evidence, this dissertation identifies these connections and presents a 

categorization system that groups designs together based on their ‘morphogenetic’ 

characteristics.   
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CHAPTER ONE 

ISLAMIC ARCHITECTURE IN THE DIGITAL AGE 

 
1.1 INTRODUCTION  

The science and technology of the digital age is revolutionizing architecture 

(Kolarevic 2004). Digitals, both computerized and computational, advance the research 

and design practice of architecture by opening new opportunities to explore complex 

formal compositions and have recently shifted focus from the traditional 

“representational” nature of architecture toward design “formalism” (Oxman, Oxman 

2014).  

When it comes to the research and design of Islamic architecture, digitals are used 

primarily as an alternative to conventional tools such as pen and paper. Consequently, the 

discipline is overly dependent on approaches that focus on the formal representation of 

historical models. However, limiting Islamic architecture to particular compositional 

characteristics neglects the intellectual process responsible for producing designs.  

The inquiry should go beyond existing examples and examine “the emergence 

and evolution” of architectural forms. Such an approach provides new research 

opportunities and reestablishes an “open-ended” search for the forms that make Islamic 

architecture an active contributor to global architecture (Rabbat 2004). 

1.2 BACKGROUND 

Historically, Islamic art and architecture took advantage from the mathematics of 

its age. The enormous diversity of complex forms that exist in Islamic art and 

architecture are products of mathematical and geometrical advancements as discussed in 
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available historic documentation. One such document is Risâla fimâ yahtâju al-sâni’u min 

a’mâl al-handasa (On the Geometric Constructions Necessary for the Artisan), by Abu al-

Wafa' al-Būzjānī, ( 998). This manuscript shows that mathematicians collaborated with 

artisans to explore new relationships and prefect designs. Moreover, in the Fi tadakhul al-

ashkal al-mutashabiha aw mutawafiqa (On interlocking similar or congruent figures) 

manuscript, the author demonstrates awareness of several mathematical relationships 

such as the Pythagorean theorem and binomials (Chorbachi 1989). Yet, when it comes to 

the research and design of Islamic architecture, mathematics is mainly discussed in terms 

of proportion with less focus on the contribution of mathematics in the design process.  

European scholars conducted several surveys that examined architectural sites 

where Islamic monuments reside in the nineteenth and early twentieth centuries. They 

produced chronological and geographical classifications of building typologies and styles 

that essentially focused on the formal compositions of Islamic architecture (Rabbat 

2012). The discourse that followed these “Orientalism” studies mainly took two different 

approaches. One emphasized regional differences, while the other attempted to reproduce 

romantic architecture that reflects the past —nationalism and neo-Islamism. These 

approaches, because they only show consideration to particular formal styles, are both 

criticized of viewing Islamic architecture as a “stagnant” product that has ceased evolving 

(Rabbat 2004). With some exception of attempts by Rifat al-Chaderchi and Kamal el-

Kafrawi, who –as Nasser Rebbat argues—that actively engaged the design practiced 

through examining and understanding historic models, and produced designs that adopt 

the architectural style of their age (Rabbat 2012).  
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1.3 THEORETICAL FRAMEWORK 

The study and research of historic Islamic architecture are influenced by both 

positivism and relativism paradigms. European scholars from the nineteenth century took 

a positivist approach when examining historic Islamic architecture for the IGP. Several 

architectural monuments, especially in Spain, Egypt, the Holy Land, and Turkey, have 

been measured, documented, and dated. Later, this information was compiled to produce 

regional catalogs of selected works that introduced Islamic architecture to Europe with 

some attempts to analyze the underlying grids of the IGP. For instance, Owen Jones, in 

his book The Grammar of Ornament, published in 1856, presents the first systematic 

formal approach for researching the IGP (Jones 1868). Prisse d’Avennes, in L’art arabe, 

published in 1877, was the first to observe that the underlying grid of the IGP was based 

on scientific knowledge shared between various Islamic cities through design scrolls 

(d'Avennes 1877). Jules Bourgoin, who did not have access to the historical scrolls, had 

classified the patterns into categories according to their inner grid (Bourgoin 1879). This 

approach was used later by other European researchers in North Africa and Spain 

(Necipoğlu, Al-Asad 1995).  

On the other hand, other research argued that there is a spiritual meaning behind 

the art of geometric patterns. However, tracing back this approach takes us no further 

than the early part of the past century, during which Titus Burckhardt (Burckhardt 2009). 

Hossein Nasr, and, later, Keith Critchlow (Critchlow, Hossein-Nasr 1976) interpreted the 

geometric patterns and their hidden circles as a symbol of Islam referring to al-Tawhid, 

—the monotheism. This approach has been criticized of being highly subjective and 
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lacking the historical evidence to support its argument (Chorbachi 1989). None of the 

discovered design manuscripts mention such an interest. The only argument that has the 

historic evidence to support it is that the IGP are the products of scientific advancements 

in mathematics and geometry. 

Neither positivism nor relativism alone is well suited for this research. The 

understanding of IGP should emerge from the actualized data and can be used to 

“critically test and develop ideas about the existence and nature of the phenomena” 

(Groat, Wang 2002). The ontological foundation of this research acknowledges the 

existence of independent reality and views it as stratified. This means that reality is not 

only what is observed but is the result of a deeper-level process. This process is 

responsible for producing the multiplicities of observed reality (DeLanda 2002). 

Therefore, to understand the reality, the design process must be investigated. This 

ontological view of reality aligns with the writings of French philosopher Gilles Deleuze, 

who pioneered a theory of how forms come into existence—morphogenesis. Deleuze 

argued that the forms we observe in reality are an “actualized” state of an idea while the 

generative process is capable of producing other possibilities, what Deleuze identifies as 

“virtual” realities. This potential population of virtual design multiplicities precedes 

actualized design singularity and is perceived as just as real as the actual.  

Epistemologically, this research assumes that reality can be known using a wide 

range of research tools that are both objective and subjective. Methodologically, the 

research process involves both quantitative and qualitative methods to collect and analyze 
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data from multiple resources. This provides a deeper understanding of the problem being 

addressed. 

1.4 STATEMENT OF THE PROBLEM 

The dominant approach to studying IGP is representational in nature and focuses 

on the formal characteristics of historic singularities, with less focus on the mathematics 

and relations between design parts. Consequently, research on IGP does not incorporate 

the computational mechanism that is responsible for producing the design multiplicities 

in the investigation process. This representational approach is clearly evident in studies 

aimed at establishing systems of categorization to group together designs that share 

similar characteristics through the identification of an underlying grid system. The result 

is classification of the IGP into several categories. The designs included in each category 

range from designs that share the same repetition structures such as groups of square- or 

hexagon-based designs (Bourgoin 2012, Broug 2013a, Jones 1868)to designs that share 

the same system of proportions, such as in Issam El-said’s study  (El-Said, El-Bouri & 

Critchlow 1993a).  

However, a few studies have moved beyond this traditional formal approach—

and its ‘Orientalist roots’—to emphasize the relationship between mathematics and 

historic IGP. One such study is by Wasma al Chorbachi, where the author examined the 

geometry in the On Interlocking manuscript and identified the formula used to generate 

the design. By manipulating the formula, she was able to derive several new design 

variations(Chorbachi 1989). Although this study examined a specific design, it provides 
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an approach that is concerned with utilizing a scientific method rather than merely 

focusing on the formal qualities. 

However, the mathematical approach to classifying the patterns is primarily based 

on symmetry. The first study that scientifically investigated IGP was conducted by Edith 

Müller (Müller 1944, Necipoğlu, Al-Asad 1995). Müller analyzed the symmetry of the 

patterns based on group theory. This research was followed by a publication by Sayed 

Abas and Amer Salman  ( 1995) who attempted to identify a method to categorize the 

design of IGP. They acknowledged the important contribution of group theory in 

studying the patterns and used scientific notation to identify individual geometric designs. 

Mohamed Ould Djibril developed a computational method for identifying the symmetry 

group of the patterns (Djibril, Thami 2008) However, these studies did not investigate 

internal geometric designs. Rather, they focused on repetition and design propagation 

using symmetry. Consequently, it remains unapparent how designs that share the same 

symmetry may relate to or be differentiated morphologically from each other. 

1.5 RESEARCH QUESTION 

The research addresses the question of how to incorporate mathematics and 

morphology to describe the actual and virtual design space of IGP and identify and graph 

the relations among design parts? It then utilizes this description, in light of historical 

evidence, to address the question of what morphological correlations exist among historic 

design singularities? 
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1.6 SIGNIFICANCE OF THE RESEARCH 

“The precise definition of an ellipse introduces us to all ellipses in the world.”  

D’Arcy Thompson  ( 1917). 

The research and design of Islamic art and architecture must “catch up” and take 

advantage of the technological advancements of the digital age (Keshani 2012). This 

requires the development of an “infrastructure” that incorporates the computational 

mechanism that produces design multiplicities in the investigation process to explore 

historical designs in a way that goes beyond archiving information—digitization—and 

can be used as analytical instrument. 

This study eliminates the traditional boundary that focuses on either chronological 

and geographical development or mere geometrical analysis and seeks to provide a 

computational lens to investigate the historical evidence of surviving historic IGP that 

exploit innovative tools and the algorithmic nature of IGP. The goal is to provide an 

alternative understanding of historical IGP based on mathematics and morphology to 

complement conventional formal understanding that is aimed at establishing a new 

platform for engaged research on and design of the patterns. 

The significance of the identification of design formalism of IGP is that it enables 

the construction of databases of representations of design singularities, which provide an 

extensive source of information and connect knowledge on multiple levels. For instance, 

a single geometry can be examined regarding its design morphology, geographic 

location, and chronological order. These representations serve to investigate and analyze 

the morphology of historical designs empirically for possible correlations. In other words, 
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this research provides a non-linear reading of the history of IGP that complements 

historians’ approaches.  

Although the focus of this investigation is on IGP, the underlying goal is to 

provide a method to actively engage the design of Islamic architecture, based on 

mathematics and morphology, in order to construct a version of history that represents the 

digital age through incorporating innovative computational tools into the design process. 

Eventually, this will reduce the gap between the contemporary world’s practice of 

architecture and Islamic architecture by allowing the latter to contribute to current design 

practices. 

1.7 METHODS OVERVIEW 

This research utilizes mixed methods in two sequential phases. In phase one, 

simulation modeling is employed to develop a parametric description that describes the 

formalism of IGP. This description is used to construct the representational code of 

historical designs. In the subsequent phase, content analysis is utilized to study and 

compare the representational codes, searching them for possible correlations. 

 
 
 



 9 

CHAPTER TWO 

ISLAMIC GEOMETRIC PATTERNS 

2.1 INTRODUCTION  

The goal of chapter two is to discuss the design characteristics of the IGP and 

identify their chronological and geographical development through examining surviving 

monuments and historical manuscripts. The chapter provides a discussion on the parallel 

development in mathematics and its relationship to geometric patterns. Finally, the 

chapter identifies and discusses related literature for both the formal and mathematical 

approaches.  

2.2 GEOMETRIC MODE OF ISLAMIC PATTERNS 

Patterns are a common feature of Islamic architecture and exists in a variety of 

shapes and types. In general, Islamic patterns have been classified into two main 

categories: Arabic calligraphy and arabesque (Burckhardt 2009 p.52, Abas, Salman 

1995). Calligraphy is the art of Arabic writing in which various types of Arabic 

calligraphy that belong to different ethnic groups within the Islamic world are used for 

architectural decoration (Burckhardt 2009). For instance, Kufi style, which consists of 

simple rectangles and squares, is employed to create façade decoration (figure 2.1).  

Arabesque, on the other hand, has two modes: “stylized plant forms” and 

geometrical patterns (figure 2.2). The plant forms mainly consist of curvilinear elements 

forming “vines” and other floral forms such as leaves that show rhythm with some degree 

of symmetry (Abas, Salman 1995, Burckhardt 2009 p.62). 
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Figure 2.1 illustration of the Arabic calligraphy using Kufi style (Burckhardt 2009 p.44) 

   

Figure 2.2 Left: illustration of floral design from Bursa, Turkey. Right: Geometric 

pattern from Granada, Spain(Burckhardt 2009 p.66, p.68) 

Geometric patterns, however, are commonly constructed from several polygons or 

other regular figures (Burckhardt 2009). They consist of a “repeated unit” and a 

“repetitive structure” (El-Said, El-Bouri & Critchlow 1993a, Abas, Salman 1995). The 

repeated unit is the minimal possible region that contains the basic geometrical 
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composition, where the repetitive structure is a product of systematically reiterating the 

repeated unit to fill the space. The shape of the repeated unit dictates the periodicity of 

the structure. Thus, both periodic and quasi-periodic patterns exist due to the stacking 

capabilities of the selected repeated unit.  

 

Figure 2.3 Construction of IGP from a repeated unit using a hexagonal structure. 

In general, IGP have four recognizable characteristics: symmetry, flow, 

unboundedness, and interlacing (Abas, Salman 1995). Symmetry is a dominant 

characteristic of IGP. In fact, 17 types of wallpaper symmetry have been identified in 

Alhambra Palace alone (Abas, Salman 1995, Müller 1944, Grünbaum, Grünbaum & 

Shepard 1986a, Pérez-Gómez 1987). Regarding hexagonal patterns, symmetries of type 

P3, P3M1, P31M, P6, and P6M geometric designs have been identified on various 

monuments (Abas, Salman 1995). 

The flow characteristic of the IGP refers to the continuity of the geometric 

elements. It causes the eye to follow the lines and observe a variety of compositions and 

structures (Abas, Salman 1995). Within the flow, designers often utilize “visual anchors”, 
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which are typically composed of star components (Broug 2013b). Unboundedness, on the 

other hand, refers to the ability to recursively and infinitely extend a design by stacking 

repeated units or expanding the structure in the case of quasi-periodic patterns (Al 

Ajlouni 2012).  

Finally, the interlacing characteristic is found when the rectilinear elements that 

form patterns overlap (Burckhardt 2009). This characteristic emphasis the feature 

referred to as uqda in Arabic, or girih in Persian, which means a knot resulting from the 

interlacement of two lines (Necipoğlu, Al-Asad 1995). These knots can be emphasized or 

deemphasized based on the type of embellishment chosen by the artisan(Broug 2013b). 

Thus, in some cases the same geometric design embellished in terms of lines, as in 

interlaced geometric patterns, or in terms of geometric composition.   

It is also common for the same design to appear in different centuries, or appear in 

different geographic regions. For instance, consider the design in the left of figure 2.2. 

This design exists in Alhambra palace in Granada, Spain and a similar design found also 

in Konya, Turkey. However, the question here is how frequent such replications are? 
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Figure 2.4 Identical designs. Left: design from Alhambra palace Granada, Spain. Right: 

design from Konya, Turkey(Broug 2013b p.115) 

With the formal utilization of digitals, such similarities remain unapparent and 

can only be identified through manual comparison of historical designs. Computational 

utilization of digital tools, however, advances investigation and can detect such 

similarities in a much more efficient manner. 

2.3 CHRONOLOGICAL AND GEOGRAPHICAL DEVELOPMENT 

Geometry was widely used in ancient Mesopotamia and Egypt for land 

measurement, building construction, and astronomical calculations. The Greeks built 

upon this knowledge with Euclid’s studied, further discovered, and documented the 

geometries in a systematic manner. Later, the manuscripts were dispersed in the region 

and were available to Islamic civilizations (Wilson 1988). Islamic art utilized this 

knowledge and developed geometric patterns with sophisticated mathematics. 

During his expedition in Iraq (1911-13), Ernst Herzfeld, an archeologist and 

scholar of Islamic architecture, identified the earliest geometric ornamentations in the 

surviving monuments of the city of Samara, dated to the 9th century; these include Dar 
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al-Khilafa (Palace of the Caliph), constructed 836-42, and other houses in the city dated 

to the 9th century (Necipoğlu, Al-Asad 1995). These designs are considered to be older 

than the tiles of the Great Mosque of Kairouan in Tunisia, which is dated to the 856-731, 

and the geometric plasterworks found in the arches of the inner court of the Ibn Tulun 

Mosque in Egypt (879). Therefore, the consensus is that geometric patterns originated 

and developed in Abbasid capitals of Baghdad and Samarra, taking advantage of the 9th -

century mathematical advancement in the city of Baghdad, and then spread in the region. 

In fact, the tiles of the Great Mosque of Kairouan were designed and built in Baghdad 

and shipped to Tunisia (Broug 2013b). 

Later examples found in the Maqbara-i Isma'il Samani in Bukhara (914-43) and 

the Jurjin Mosque in Isfahan were built from brick with no star composition. However, 

Mazar-i 'Arab 'Ata in Tim, Uzbakistan (977-78) and another royal mausoleum and city 

minaret in Uzgand (1012-13) show the earliest geometric star designs built from brick 

(Necipoğlu, Al-Asad 1995).  

The geometric designs then spread in the region, appearing in several cities during 

the Seljuk Dynasty (1040-1157), such as the great mosque in Seljuk’s capital Isfahan 

(1072-92). However, the prime surviving examples in Seljuk are the two tombs towers in 

Kharraqan (1067-68 and 1093) (Stronach, Young 1966). Each of the towers has eight 

facades covered with a variety of geometric brick designs. A transition from traditional 

brick patterns to glass brick can be seen in the Gunbad-I surkh (1147-1148), Gunbad-I 

                                                
1 The mosque itself was constructed in 670. However, the tiles were designed and constructed in the time of Emir Abu 
Ibrahim Ahmed, who governed from 856-73 in the Qubla wall. The design was made in Baghdad and shipped to 
Tunisia. The initial intent was for it to be used in the palace of Abu Ibrahim Ahmed. However, he changed his mind 
and requested that these designs be placed in the Qubla wall of the Great Mosque of Kairouan (Eric p.37).	
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Qabud (1196-97), and Mu’mina Khatun (1186) towers of Maragha and Nakhehivan in 

Iran, where color was introduced for the first time in geometric designs(Necipoğlu, Al-

Asad 1995).  

The successors of the Seljuk Dynasty in the region, (i.e., Rum Seljuk (1081-

1307), Zangids (1127-1222), Ayyubids (1169-1260), and Mamluks (1250-1517) also 

utilized geometric patterns in their designs. A Rum Seljuk example is the minbar of the 

Ala’ al-Din Mosque in Konya Turkey (1155). A Zangid example is Nur al-Din Zangi 

Mosque in Hama (1163-1164). Moreover, the majority of Mamluks monuments show 

great variety in the use of geometric designs (Necipoğlu, Al-Asad 1995).  

Scholars(Herzfeld 1942, Necipoğlu, Al-Asad 1995)have argued that Baghdad 

remained the center of innovation even after losing its political importance during the 

Seljuk Period. Thus, even in the mid-13th century, several sophisticated designs, such as 

the geometric designs in Madrasa al-Mustansiriyya (1233) and Abbasid Palace (1255), 

can be found. It was not until the Mongol invasion to Baghdad (1258) that the city’s 

importance began to decline. Later, during the Mongol-Ilkhanid Period, decorative design 

became more focused on floral designs. However, there are examples employing 

geometric compositions in decoration, such as Khanqah-i Shaykh 'Abd al-Samad, 

constructed between 1304 and 1325 (Broug 2008). Later, the existence of geometric 

patterns in the eastern part of Islamic lands mainly remained apparent in the buildings of 

the Timurid Dynasty (1370-1506 CE), where several monuments were decorated with 

geometric designs (Necipoğlu, Al-Asad 1995).  
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In the western Islamic world, several monuments from the Almoravid Dynasty 

(1053-1150) utilize two-dimensional and three-dimensional geometric designs, such as 

the Qarawiyyin Mosque (1135-1144) and the Marrakish Qubba (1066-1142). In 

neighboring Spain, the Spanish Umayyad for a long time did not use geometric patterns 

in their monuments. It was not until Almoravid unified North Africa and Spain that 

geometric designs began to appear in Spain, reached their peak in Alhambra Palace 

during the Nasrid Dynasty (1232-1492) (Necipoğlu, Al-Asad 1995).  

Therefore, close examination shows that geometric patterns emerged in Iraq in the 

9th century and then appeared in several Abbasid buildings in different regions by the 

10th century. They then appeared in several Seljuk monuments in Iran and Iraq during 

the 11th century. Several Seljuk successors used them as well. Later, geometric designs 

mainly exist in Mamluks, Nasrid, and Timrud monuments.  

2.4 PRIMARY SOURCES: HISTORICAL MANUSCRIPT AND DESIGN 

SCROLLS 

Although the design process of IGP has historically been surrounded by secrecy 

and is inherited by artisans from their masters (Necipoğlu 1992), there is some surviving 

evidence on how the geometry is designed. Two historical manuscripts and three design 

scrolls were retrieved and are available today (Necipoğlu, Al-Asad 1995) These are:  

1. Risâla fimâ yahtâju al-sâni’u min a’mâl al-handasa (Book on the Geometric 

Constructions Necessary for the Artisan) by Abu’l Wafa al-Buzjani’s from the 

10th century. Referred to as On Geometric Constructions in the rest of this 

dissertation. 
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2. Fi tadakhul al-ashkal al-mutashabiha aw al-mutawafiqa (On Interlocking Similar 

and Congruent Figures) by anonymous author from the 13th century. Referred to 

as On Interlocking in the rest of this dissertation. 

3. The Topkapi Scroll by anonymous author from the late 15th the early 16th 

century. 

4. The Tashkent Scrolls by anonymous author from the late 15th to the early 16th 

century. 

5. The Mirza Akbar Scrolls by Mirza Khan from the 19th century. 

Al-Buzjani’s On Geometric Constructions manuscript demonstrated to artisans 

the rules by which they can operate instruments to precisely construct different 

geometrical compositions and addressed the difficulties that artisans may face. This 

manuscript presents a step-by-step (algorithmic) procedure of constructing circles, 

identifying points, and creating lines. Al-Buzjani began by explaining the instruments 

used to design the geometry—gunya, mistar, and alburcar—and how to calibrate these 

instruments. In the subsequent chapter, he discussed fundamental rules that each artisan 

should master (e.g., how to divide lines and angles into equal parts and how to determine 

the center of a circle). In the rest of the book, he explained how to construct different 

geometrical figures. This text reveals the process of thinking employed in design that, in 

its core, is based on mathematical proof. The text simplifies this for the artisan through 

steps of geometric construction. As mentioned by Al-Buzjani himself, he deliberately 

“excluded [from the book] the causes and proofs, to make it easier for the artisan to 

understand” (al-Būzjānī 998). 
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The On Interlocking manuscript, on the other hand is a collection of notes 

compiled by the anonymous author. The manuscript reveals that the conversation 

between mathematician and artisans continued centuries after Al-Buzjani as 

mathematician Abu Bakr al-Khalil is cited on multiple occasions(Özdural 2000). This 

manuscript shows the awareness and application of mathematical relations in geometric 

designs such as the Pythagorean theorem and the 2nd degree binomial (Chorbachi 1989). 

However, mathematicians chose to use the “cut and paste” method when teaching 

artisans. The author takes an approach similar to Al-Buzjani’s by omitting theoretical 

proof that may have been complicated and difficult for artisans to comprehend (Özdural 

2000).  

The primary evidence that exists from later periods consists mainly of design 

scrolls. The Timurids Scroll, the so-called Topkapi Scroll, dates to the late 15th to the 

early 16th century and contains 114 drawings. Unlike the previous two historic texts, this 

scroll includes with no commentary that explains the steps of the design process. The 

scroll acts as a guidebook that presents the modular design method, focusing on the grid 

system and repeats united and utilizes symmetry to populate the design and fill spaces 

with geometric patterns (Necipoğlu 1992 p.54, Necipoğlu, Al-Asad 1995).  

A parallel scroll is the Tashkent Scroll, which is also dated to the late 15th to the 

early 16th century. Like the Topkapi Scroll, the Tashkent Scroll shows finished models 

with no explanatory text. This scroll also focuses on the concept of the repeated unit and 

the grid system. With the Topkapi Scroll, these two historical documents bridge the gap 

between two-dimensional and three-dimensional geometric design in Islamic architecture 
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through the demonstrated muqarnas drawings. When compared to actual monuments, the 

scroll reveals information on how two-dimensional drawings are treated in real three-

dimensional geometry (Necipoğlu 1992 p.50). 

The last known evidence is the so-called Mirza Akbar Scrolls; these scrolls are a 

collection of drawings designed by Persian state architect Mirza Khan and include plans, 

muqarnas, and geometric and calligraphic decoration. They show that the scroll tradition 

continued into the 19th century. 

2.5 MATHEMATICS AND GEOMETRIC DESIGNS 

In approximately 832, the al-Ma’mun Caliph established an academy of science 

called Bayt al-hikma (the House of Wisdom). This institution took over the translation of 

books from other civilizations in a wide range of subjects. Several books were translated 

to Arabic from other languages, including Greek Euclidian writings on geometry, as 

shown in the fihrist (index) of ibn al-Nadim of the translated books. Thus, Abbasid 

gained knowledge on geometry as early as the 9th century (Al-Khalili 2011).  

Scholars in Bayt al-hikma differentiated yet also connected theory and praxis. For 

instance, the 9th-century philosopher Abū Naṣr Muḥammad ibn Muḥammad al-Fārābī 

(Alpharabius) in his book Ihsa al-ulum (Survey of Science) divided mathematics into 

fields of specialized topics in which each has al-nazari and al-amali (theoretical and 

practical divisions) (Necipoğlu, Al-Asad 1995).  

Original contributions in a variety of sciences began to appear after the end of the 

translation period. Mathematics in particular flourished as new advancements were 

achieved. For instance, a scholar in Bayt al-hikma, Muḥammad ibn Mūsā al-Khwārizmī, 
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invented algebra by “synthesizing” Greek geometric knowledge and the Indian decimal 

system. Al-Khwārizmī, in his book al-kitāb al-mukhtaṣar fī ḥisāb al-ğabr wa’l-muqābala 

(The Compendious Book on Calculation by Completion and Balancing), presented a 

unified process for problem solving, eventually delivering a new revolutionary “form of 

mathematical thinking” (Al-Khalili 2010). 

Al-Khwārizmī’s contributions to arithmetic and trigonometry are equally 

important. For instance, his writings in arithmetic were widely read in Europe during 

medieval times. In fact, “algorithm,” which is derived from his last name al-Khwārizmī, 

was used to refer to the subject of arithmetic before gaining its modern meaning. 

Moreover, he further contributed to trigonometry by producing spherical trigonometry, as 

discussed in his book Zīj al-Sindhind. Al-Khwārizmī’s work influenced several 

mathematicians such as Thābit ibn Qurra, Sinān ibn al-Fatḥ, and Abu’l Wafa al-Buzjani.  

Al-Būzhjānī in particular, who was a famous mathematician and astronomer from 

the 10th century and produced notable work on mathematics, is considered an important 

link between the use of mathematics and the design of IGP. He participated in 

conversions with craftsman, teaching them the correct, precise way of creating geometry. 

In his book, On the Geometric Constructions, he aimed to facilitate the design of 

geometry without using complicated mathematical proofs and reasoning -al-barahin wa 

alillal (al-Būzjānī 998). 
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It has been argued that another mathematician, Omar Khayyam (1048-1131 CE), 

participated in such conversations with artisans(Özdural 1995)In an untitled treatise2 

written after 1073, Khayyam explained the cubic equation in practice. Some of the 

solutions that Khayyam presented were actually used and shown in the On Interlocking 

manuscript (Özdural 1995). Moreover, the On Interlocking manuscript cites another 

mathematician, Abu Bakr al-Khalil, as providing a mathematical solution to geometric 

designs and participating in conversations with artisans. 

Mathematics is exploited in a reverse manner (i.e. to convert geometry into 

numbers) for the purpose of cost estimation, as shown in the Ghiyāth al-Dīn Jamshīd 

Masʿūd al-Kāshī’s miftah al-hisab in which he demonstrates a method for estimating the 

cost of building a muqarnas. Gülru Necipoğlu observed that “Arithmetic and geometry 

were two independent but interchangeable modes of expression for the same 

mathematical concept, one based on the language of numbers the other on the geometric 

forms” (Necipoğlu, Al-Asad 1995). This holds true in the case of IGP, especially in the 

early stages when mathematics played a significant role in the establishment and 

development of the patterns. However, little information is available about the 

relationship between math and IGP, and the recently discovered design scrolls show 

dependence on modular-based catalogs. 

2.6 FORMAL APPROACH TO IGP 

The geometric mode of Islamic patterns received attention from European 

scholars in the 19th century, mostly because of the “practical agenda” of the Industrial 

                                                
2	Unlike Al-Būzhjānī’s manuscript, Khayyam’s treatise does not address the artisan in a direct manner. Alpay Özdural 
explained that it is uncertain that this particular treatise was directed to artisans, but evidence infers this.	
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Revolution (Necipoğlu, Al-Asad 1995). Owen Jones, in his book The Grammar of 

Ornament, which was published 1856, classified the patterns based on the development 

of ethnic groups as Arab, Persian, Turkish, Indian, and Moresque. Jones’ practical agenda 

led him to take a historical approach when dealing with IGP, similar to the one he uses 

when dealing with designs from other cultures in the same book. Jones presented the first 

systematic approach to research on IGP. Jones attempted to formulate a series of 

propositions by surveying existing designs to create new designs (Jones 1868). 

Priss d’Avennes, in L’art Arabe, published in 1877, recognized that the 

underlying, complex structure of the patterns was based on scientific knowledge shared 

between various Islamic cities through scrolls. D’Avennes produced catalogs that 

presented Islamic architecture to Europe. Jules Brourgoin, who did not have access to the 

historical scroll, classified the patterns into categories not based on the observed 

appearance of designs but according to the inner grid system: “Hexagon, octagon, 

dodecagon, star rosette combination of two types, square octagon combination, heptagon, 

and pentagons.” Brourgoin also had a practical agenda with his work of opening the new 

“infinite possibility” of design. In the 20th century, several studies examined North 

African designs between 1911 and 1975, utilizing the same approach to formally 

analyzing the underlying grid systems (Necipoğlu, Al-Asad 1995). 

Later, a study by Issam El-Said examined the proportions of the IGP. With a 

sample of 29 hexagon-based geometric patterns sampled from different regions in the 

Islamic world, he focused on periodic patterns and identified three categories based on 

the repeated unit shape and systems of proportion: square patterns based on the root of 
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two, hexagonal patterns based on the root of three, and patterns based on double 

hexagons  (El-Said, El-Bouri & Critchlow 1993b). Like his predecessors, El-Said also 

had a design agenda focused on proportions to identify “beautiful design”.  

2.7 MATHEMATICS-BASED APPROACH TO IGP 

The scientific study of IGP can be classified into two categories: studies that 

focus on the symmetry of IGP and studies that focus on repeated units. Although these 

approaches are not mutually exclusive, some studies focus on one aspect more than the 

other.  

In 1944, Edith Muller wrote a dissertation on the Moorish ornamentation in 

Alhambra Palace, employing group theory and crystallography to systematically annotate 

the patterns. She conducted symmetry analysis and discovered 11 types of symmetries 

(Müller 1944, Necipoğlu, Al-Asad 1995). Also around the same time, studies on 

symmetry were conducted by Soviet scholars, such as Gaganov and Baknaov, who had 

partial access to the historical design method through the Tashkent Scroll. In their work, 

they also focused on the underlying structure of symmetry groups (Necipoğlu, Al-Asad 

1995). In 1986, Branko Grünbaum, Zdenka Grünbaum, and G.C. Shepard further 

examined Alhambra Palace and discovered 13 types of symmetry groups  (Grünbaum, 

Grünbaum & Shepard 1986b). In 1987, R. Perez-Gomez and J. Montesinos found four 

missing groups to complete the 17 wallpaper types group theory (Pérez-Gómez 1987). 

Syed Jan Abas and Amer Shaker Salman, in their book “Symmetries of Islamic 

Geometrical Patterns,” presented a comprehensive examination of symmetry groups in 

IGP for geometries beyond Alhambra Palace (Abas, Salman 1995). 
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Other studies focus on the repeated pattern and its geometric motif. In 1989, 

Wasma Chorbachi presented a method for designing new IGP that is strongly tied to 

historical creative design methodology. Chorbachi examined the On Interlocking 

manuscript, identifying the design formula and manipulating to create new 

designs(Chorbachi 1989). Haresh Lalvani presented a grid of fixed subdivision for the 

“fundamental unit” then populating it with motifs to generate the pattern (Lalvani 1989).  

The studies that follow are primarily focused on design exploration. Ahmad 

Aljamali, Craig Kaplan, and Ali Izadi proposed different methods and developed 

computer programs for design exploration. By defining parameters and manipulating the 

values of those parameters, they derived new designs  (Kaplan, Salesin 2004, Aljamali, 

Banissi 2003, Izadi, Rezaei & Bastanfard 2010, Riether, Baerlecken 2012).   

2.8 SUMMARY 

IGP emerged from the intellectual center of the 9th and 10th centuries in the 

Abased capitals of Baghdad and Samara. The designs employed the most innovative 

mathematical knowledge of the time to produce a cultural heritage that spread throughout 

the Islamic world for centuries. Abu’l Wafa al-Buzjani’ book On the Geometric 

Constructions gives important clues about the methodology employed in deriving 

geometry. The thought process Al-Buzjani employed is known today as “algorithmic 

design thinking”, which identifies a step-by-step procedure of form generation to explore 

variations and increases the accuracy of the final product. In other words, al-Buzjani took 

advantage of advancements in mathematics –the language of his age— to create IGP.  
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Looking closely at the literature from the 19th and 20th century onward, one can 

clearly see two approaches: formal and scientific. The formal approach is more about 

practical geometry and conventional design tools. The scientific approach, on the other 

hand, utilizes mathematics and symmetry and focuses more on the generation of design 

from scratch with less interest in utilizing the methods for research historical IGP. 
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CHAPTER THREE 

MORPHOLOGICAL DESIGN THINKING 

3.1 INTRODUCTION  

This chapter discusses the theory of morphogenesis and its relation to 

architecture. The goal is to expand on the underpinning theoretical framework of this 

dissertation and to elaborate on the appropriateness of the selected methodology. The 

chapter also provides foundational definitions and discusses the line of research that 

utilizes mathematics to describe forms.  

3.2 DIGITAL MORPHOGENESIS 

The writings of French philosopher Gilles Deleuze (Deleuze 1994, Deleuze, 

Guattari 1988, Deleuze 1993) from the second half of the 20th century had an impact on 

the use of digitals in architectural design. In his book, Difference and Repetition, Deleuze 

developed a theory of how forms come into existence—morphogenesis—and aimed to 

identify ways of novel creation. Deleuze argued that the forms we observe in reality are 

an “actualized” status of an idea and that the generative process is capable of producing 

other possibilities of what Deleuze identifies as “virtual” realities3. To Deleuze, an 

actualized form carries morphogenetic possibilities that have not yet been actualized. He 

further argued that this potential population of virtual design multiplicities precedes the 

singularity of actualized design and, therefore, the virtual is just as real as the actual.  

Deleuze argued that the actualization of a form happens through the process of 

“‘differenciation”. The result features “extensive”’ qualities that give objects their 

                                                
3Virtual reality is often used to describe “substitute reality”, not to be confused with this concept; virtual reality here 
refers the space of possible ideas that can be actualized (Lynn, Kelly 1999).	
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distinct properties such as height or length. On the other hand, the process of 

“differentiation” determines the virtual space of a design concept and includes 

“intensive” qualities. Intensive qualities refer to internal properties that cannot be 

changed unless the structure of the object is changed. Both “differentiation” and 

“differenciation” are processes by which an idea “incarnates” itself into the physical 

world.  

Later, Deleuze’s work made its way to architectural philosophy through the 

writings of Greg Lynn. Folding in Architecture by Greg Lynn ( 1993), which is based on 

Deleuze’s Le pli, is considered one of the first attempts to theorize digital architecture. 

Lynn proposed the manipulation of formal representations using digital tools, 

fundamentally challenging the dominant representational logic of traditional architecture 

(Oxman, Oxman 2014).  

Lynn’s writings laid the foundations for the emergence of more specific theories 

centered on procedural processes and mathematical form generation that turn the focus 

from the “curvilinearity” and “blobby” forms of folding toward digital design thinking. 

These theories emphasize “formalism,” or the “mechanisms” that govern the structure of 

relations within an architectural form rather than formal compositional aspects (Oxman, 

Oxman 2014, Kolarevic 2004). In other words, it is a shift from form “making” toward 

form “finding” (Kolarevic 2004). 

3.3 MORPHOLOGY  

Morphology is defined as “the scientific study of the forms” and emphasizes 

continuity and form mutation. The word was originally derived from the ancient Greek 
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morphē and means form. However, morphology encapsulates the notion of animation4. 

According to the Oxford English Dictionary, morph as a verb means “change smoothly 

from one image to another by small gradual steps” (Stevenson 2010,P. 1151)  

The interest in continuity in architecture was born as a response to 

deconstructionism (Oxman, Oxman 2014). In Folding in Architecture, Greg Lynn called 

for a reconsideration of the architectural form, replacing the “fragmented” with “fluidity” 

and at the same time taking advantage of advancements in computing technology of the 

nineties of the past century. In fact, Lynn’s writings laid the foundations for a series of 

publications concerned with theorizing the use of digitals in architecture.  

Morphology is a term widely used in biology and refers to studying the form of 

living organisms and making connections between their structures. Morphology, and 

other relevant biological terms such as “genotype” and “phenotype”, were brought to 

architecture for the purpose of design exploration of different form configurations 

(Hillier, Hanson 1989, Steadman 1983). Two influential works by Albrecht Dürer  ( 

1528) and D’Arcy Thompson ( 1917) show the significance of morphological thinking. 

Dürer morphed an image of the human face through manipulating a hypothetical grid that 

he established, producing a series of faces with the aim of understanding how different 

forms related to each other. In On Growth and Form, D’Arcy Thompson compared the 

shapes of different species. In one example, he deformed the shapes of mammals’ skulls 

to transform one into the other. Thompson argued that there is something essential in all 

                                                
4 According to Greg Lynn, the difference between animation and motion is that motion emphasizes “movement and 
action” while animation is more about “evolution of a form.” (Lynn, Kelly 1999)	
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related forms that is not changed by the deformation, which he called “topological 

similitude” (Thompson 1917)  

Topology is another term that is associated with morphology and is important in 

understating how new forms may relate to each other. Topology is more about structural 

relations and less about formal distinction. For instance, rectangles and squares are 

topologically equivalent, but both differ from triangles. Changing the length and width of 

the rectangle does not change its topology; however, adding or deleting a segment results 

in a topological transformation (Kolarevic 2004). Therefore, even if an actualized status 

of a particular form differs from that of another form, they may still have the same 

structural relations between their design components that cannot be identified though 

metric measurements.  

In digital design, topological thinking is employed to produce design 

multiplicities that allow the exploration of a family of solutions by performing sequential 

transformations that produce a large number of shape variations, Digital tools allows 

initiating the process of geometric metamorphosis, which adds time to the process; thus, 

it becomes possible to express the “keyshape” of the geometry, or the state of the 

geometry at a particular point in time (Kolarevic 2004) This provides a convenient way to 

explore design variations. 

Morphology and its related concept of topology are fundamental concepts in the 

digital design process; it helps not only in exploring design multiplicities and form 

optimization but also in understanding forms’ origin, evolution, and devolution, which 

are important concepts in both the research and design of forms.  
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3.4 PARAMETRIC DESIGN  

Scholars (Oxman, Oxman 2014, Terzidis 2006, Woodbury 2010) have called for 

distinguishing digital architecture from digital design. While digital architecture aims to 

use the powers of computerization for building complex forms, it is still an “emulation” 

of conventional design tools—paper and pencil (Woodbury 2010). Digital design 

systems, on the other hand, shift the use of digital technologies from mere drafting tools 

to design thinking tools.  

Parametric design is an approach to digital design. In a parametric design system, 

the designer establishes relationships between the design parts, manipulating them to 

generate infinite morphological variations (Oxman, Oxman 2014). 

The process of parameterization involves initiating parameters and establishing 

relations rather defining a specific form (Kolarevic 2004). Parameters are values that 

have an effect on the design output. They can be variable or constant, simple or complex, 

and have a direct or indirect effect on the final output. Gradual change of variable 

parameters evokes the metamorphosis process. Thus, it becomes possible to examine the 

entire population of a particular design morphology.  

3.5 MATHEMATICAL DESCRIPTION OF FORM 

Arthur Loeb presented a method that exploit mathematics for describing the 

undelaying mesh of tessellations. The method is based on the number of “rotocenter”, the 

number of folds in each pattern. For instance, Loeb uses 2 2' to refer to a frieze structure 

and 3 3' 3" to refer to hexagonal structures. Each mesh produces symmetrical cells that 

can host geometric designs; Loeb’s study focuses on the holding structures. He aimed to 
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show how mathematics and analytics advances the design process beyond what is 

“intuitively evident” and that mathematician and designers may complement each other’s 

work (Loeb 2012, Loeb 1978). 

Another work by Lionel March and Philip Steadman utilizes mathematics to 

describe forms. This work seeks an “economical” description of form. March and 

Steadman presented two descriptions: one for regular forms and one for irregular forms. 

The first description method utilizes the “grid system of quadrant” based on the Cartesian 

coordinate system (March, Steadman 1974). The description is a sequence of points that 

construct an architectural space, room by room, or building by building. For instance, 

R1=[25, 275; 0, 550] is a description of a room in a building. Here, R1 refers to the room. 

The following numbers refer to the location of the point in the quadrant grid. The first 

two points, 25 and 275, refer to the X-axis while 0 and 550 refer to Y-axis of the room. 

Subtracting X-axis values or Y-axis values from each other results in the width and 

length of the room, respectively.   

To describe irregular forms, they proposed either inscribing the lines on the 

Cartesian coordinate system to position the constructing points or using the length of the 

line segments (r) and the angles between the lines (∅) to construct the form in the 

following way:  

Q = 
𝐫𝟏 𝐫𝟐 𝐫𝐧
∅𝟏 ∅𝟐 ∅𝐧

 

Haresh Lalvani (Lalvani 1989) presented a “shape code” that describes Islamic 

geometry. He developed a grid system of fixed points with different “subdivisions” of a 
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fundamental unit. He positioned geometric composition on the subdivisions of this grid to 

create designs. The parts of the subdivision involved in creating the design define the 

“shape code” of the particular design. Although the method establishes an interesting 

relationship between design components, the presented code is diagrams the relations 

between the points; with complex and highly segmented designs, writing the code comes 

closer to drawing the design that it describes.  

3.6 SUMMARY 

The use of digitals is changing ways of thinking about architecture; research and 

design are no longer about a specific, actualized form but rather the process that 

generates the form and is capable of generating morphological multiplicities. Knowing 

what is possible in the virtual space and comparing it to the actualized designs can reveal 

information about the selection process(Steadman 1983). 

To discuss the morphology of IGP, a method that goes beyond the observed level 

and describes the virtual and actual space of design is needed. In other words, the method 

should allow the exploration of design morphology and symmetries and, at the same 

time, be capable of manipulating the actualized design. Thus, various states of a 

particular design can be detected, linked, and further examined. 
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CHAPTER FOUR 

MIXED METHOD APPROACH 

4.1 RESEARCH DESIGN  

This research addresses the question of how to incorporate mathematics and 

morphology to describe the actual and virtual design space of IGP. It then utilizes this 

description, in light of historical evidence, to address the question of what are the 

morphological correlations between historic design singularities. Consequently, this 

research is descriptive and exploratory in nature. The objective is to describe IGP and 

then investigate similarities between historical IGP. 

The concept of morphology operationalized in two dimensions: the actual and the 

virtual dimensions. The fixed design characteristics of historically existing hexagon-

based IGP indicated mathematically using measurable attributes of points and line 

segments. The actual design space is utilized to derive a mathematical definition that 

encompasses the virtual design space and, in turn, is confirmed by utilizing this definition 

to code the historic singularities.  

The design of this research is sequential. In phase one, a parametric description 

method is developed based on the examination of existing historic geometric patterns. 

The description aims to provide a unified method for describing existing IGP variations. 

The parametric description method is utilized to create databases of coded representations 

of historic designs. In the second phase of the research, content analysis is employed. The 

representational codes are compared to each other to identify similarities in both the 

actual and virtual dimensions.  
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4.2 PHASE ONE: PARAMETRIC DESCRIPTION   

Simulation is defined as the representation of a system in reality using modeling 

(Marans, Stokols 2013, Groat, Wang 2002). A model, on the other hand, is also a system 

of “potential” reality (Marans, Stokols 2013 p.30). Systems generally consist of 

identifiable components that interact with each other to actualize reality. The “states” of a 

system at particular point in time are a single representation of that system (Marans, 

Stokols 2013 p.105). A simulation model captures all possible arrangements of the 

components within the system, or the “state history”, in a sequenced manner (Marans, 

Stokols 2013 p.195).   

In this research, the system being represented is IGP, and the model used is the 

deterministic mathematical modeling (Groat, Wang 2002, Marans, Stokols 2013). 

Mathematical models, on the other hand, “capture real-world relationships in quantifiable 

abstract values” (Groat, Wang 2002 p.360). These are abstract models that adhere to 

“mathematical principles” (Marans, Stokols 2013 p.32). This research employs 

mathematical models to construct a unified parametric model that encompasses all 

possibilities and produces representational codes of IGP. The model is deterministic 

because it produces a unique “output” of IGP for each set of “input”.  

The simulation system is constructed through the observation of reality and aims 

to provide a comprehensive representation of these realities (Groat, Wang 2002 p.352). 

Herbert Simon argued that a simulation model needs to consider the “agreed-upon 

assumptions and specifications” to ensure the accuracy of the representation and identify 

a “bounded domain of the system” (Groat, Wang 2002 p.367, Simon 1996 p.42). In the 
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case of IGP, the bounded domain corresponds to the recognizable characteristics of 

symmetry, flow, and unboundedness (Abas, Salman 1995 p.4). These characteristics 

identify, in a general manner, the shared “agreed-upon” features of IGP. 

The validity of the identified model is confirmed by comparing the result of the 

model with the “real world”; the simulation model can be “calibrated” and validated to 

maximize its ability to reflect reality (Marans, Stokols 2013 p.195). Consequently, the 

description method can be tested on historically existing designs (Groat, Wang 2002 

p.365). Furthermore, the accuracy of the model depends to a high degree on the collected 

data. Therefore, the data collection process targeted all surviving identifiable hexagon-

based patterns (further explained in section 4.4). However, investigating historical data 

requires considering “selective survival,” which refers to the fact that “some objects 

survive longer than others” due to the type of material used, which could cause loss of 

data  (Singleton Jr, Straits & Straits 1993 p.411). To overcome this, the research takes 

advantage of the fact that the same IGP were implemented using different materials. 

Thus, the study accounts for the undelaying design—“ground geometry”—regardless of 

the materials used or the type of embellishment, which reduces the effect of systematic 

loss of a particular design due to its construction material. 

Chapter 5 discusses the first phase in detail. In the second phase, the study utilizes 

mathematical model to develop representational codes of historic designs for the purpose 

of conducting content analysis. 
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4.3 PHASE TWO: CONTENT ANALYSIS 

The second phase goal  is to identify the morphological correlations between 

existing historical singularities of IGP. To this end, the second phase of this research 

employs representational codes to conduct content analysis. Content analysis is a useful 

method for examining textual and visual materials through providing a systematic 

technique that transforms materials into quantifiable data  (Singleton Jr, Straits & Straits 

1993 p.420). The process of conducting content analysis (i.e., identification of the 

“content categories,” “recording units,” and “system of enumeration”) is discussed in 

Chapter 6 of this dissertation.  

4.4 DATA COLLECTION 

This research employs non-probabilistic purposive sampling that tracks surviving 

designs. The literature review played a central role in guiding the data search process. 

Chronologically, the period from the ninth to the 15th century is identified as the era of 

“invention” (Abas, Salman 1995 p.8). Geographically, close examination of the literature 

reveals that IGP were developed in the Abbasid Dynasty in Baghdad and Samara and 

then dispersed into other regions, later reaching the Mamluk, Timurid, and Nasrid 

Dynasties (Necipoğlu, Al-Asad 1995). Therefore, all designs that exist on monuments 

belonging to these dynasties were also considered.  

This research focuses on hexagonal IGP. These types of geometric patterns have 

been widely used in the Islamic world since the early days of the patterns. Furthermore, 

Abas and Salman’s study of symmetry showed that hexagonal IGP are the most 

frequently used periodic pattern (Abas, Salman 1995 p.138).  
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Data from historical buildings were collected through photographs gathered from 

books (Necipoğlu, Al-Asad 1995, Hill, Grabar 1967, Broug 2008, Broug 2013b, El-Said, 

Parman 1976), journal articles (Creswell 1919, Stronach, Young 1966), library archives 

(the Aga Khan Documentation Center at MIT and the Creswell Photographic Archive at 

The Ashmolean Museum), and authoritative websites (Archnet and dome websites). 

Appendix A shows the full list of the collected hexagonal patterns. 

In the early stages, designs were limited in number, and the literature (Necipoğlu, 

Al-Asad 1995, Broug 2013b)identifies the monuments by their original names, dynasty, 

and geographic location. Multiple sources were examined, and the designs were collected 

and arranged chronologically. The literature discusses designs after the early stages in 

terms of the governing dynasty and mentions some monuments as examples and 

discusses particular designs. In these cases, all buildings that were constructed or 

renovated during a dynasty were examined. Further reading regarding the history of the 

building were pursued when necessary to identify the authenticity of designs.  

The collection process resulted in a total of 273 designs collected from mosques, 

madrasa, hospitals, mausoleums, and palaces. Figure 4.1 (top) shows the geographic 

distribution of the collected data. In the same figure (bottom), a bar chart demonstrates 

the total number of designs collected from each region. The colors on each bar refer to 

the proportion of designs that belong to different dynasties. The figure on the bottom left 

shows the number of each collected design in relation to chronological period. 
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Figure 4.1 The geographic, chronological, and dynastic distribution of the collected 

data. 

4.5 INSTRUMENTATION 

The study collected the data in the form of digital photographs taken of either the 

IGP or the exterior or interior architectural surfaces of ancient monuments. In the latter 

case, hexagonal IGPs were identified in each photo and if more than one hexagonal 

geometric pattern existed, each was extracted in the form of a digital image. In some 

cases, more than one picture exists in different archives showing the same IGP. Thus, the 

surroundings of the IGP and erosion were examined to avoid confusion and inclusion of a 
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single design more than once. Photographs were stored in a spreadsheet together with 

other information about designs, including dates, regions, towns, and governing 

dynasties. 

Subsequently, the images were imported to the AutoCAD computer program as 

raster images and converted from digital photographs into CAD vectors. The process of 

conversion was conducted by tracing the photograph in AutoCAD. First, the geometric 

composition being repeated (“visual anchors”) was identified. Then, the geometric 

composition was bounded with a hexagon and repeatability to the neighboring cell was 

checked. Afterwards, the symmetry type and consequently the fundamental unit was 

identified (further explained in section 5.2, Chapter 5). Then, the geometry that fell into 

that fundamental unit was drawn and populated to the whole geometry. The next step 

involved checking the accuracy of the identified geometric composition by repopulating 

the hexagonal structures with the geometric composition. To increase accuracy when 

drawing the geometric patterns, the researcher referred, when possible, to the steps 

illustrated by Eric Broug(Broug 2008)for drawing whole designs or particular 

components. After the conversion process, each design was scaled so that each segment 

of the containing hexagonal unit was set to a length of 10 AutoCAD units.  
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Figure 4.2: Conversation process from a digital photograph to CAD vector. Image used 

in this illustration is from David Stronach and T. Cuyler Young( 1966). 
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CHAPTER FIVE 

PARAMETRIC DESCRIPTION OF THE IGP MORPHOLOGY 

5.1 INTRODUCTION 

This chapter consists of three main sections. In the first section, geometric 

analysis concerning the understanding of the “reality” of the IGP is conducted. The 

second section discusses the development of the parametric morphological description. 

Lastly, the third part verifies the morphological description through the development of 

the simulation program.  

5.2 ANALYSIS OF THE IGP 

Periodic IGP consist of two main components: a repeat unit (RU) and a repetitive 

structure  (El-Said, El-Bouri & Critchlow 1993a, Abas, Salman 1995). While the RU 

contains the primary geometric design to be populated, the repetitive structure stacks the 

RU to fill the space completely, leaving no gaps. Together, the RU and the repetitive 

structure determine the wallpaper symmetry group to which the pattern belongs.  

Determining the wallpaper group is important for identifying the “fundamental 

unit” (FU). This unit represents the minimum geometric composition that is being 

systematically (Abas, Salman 1995 p.79). Thus, the employment of such a unit in the 

development of a geometric description produces shorter, more “economical” codes.  

In the case of hexagonal patterns, there are five possible types of wallpaper groups: P3, 

P3M1, P31M, P6, and P6M5. Abas and Salamn identified the following steps by which 

the group can be distinguished (Abas, Salman 1995 p.108):  

                                                
5 ‘The International Crystallographic Notation’ was employed to label different types of symmetry groups.  
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• In the case of three-fold geometric designs, the existence of reflection symmetry 

within the FU must be checked: 

o If a reflection does not exist, the symmetry group is P3.  

o If a reflection does exist, the center of rotation needs to be confirmed and 

there are two possible cases: 

§ If the ‘center of rotation’ appears only on reflection lines, the 

wallpaper symmetry group is P3M1.  

§ If the ‘center of rotation’ not appears on reflection lines,  the 

wallpaper symmetry group is P31M. 

• In the case of six-fold geometric designs, the existence of reflection symmetry 

within the FU must be checked, and there are two possible scenarios: 

o If reflection symmetry does not exist, the symmetry group is P6. 

o If reflection symmetry does exist, the symmetry group is P6M. 

Figure 5.1 explains the identification process of the FU. This procedure was 

applied to the collected data, and it was found that 93.43% of the collected IGPs fall 

within the P6M category (figure 5.2).  
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Figure 5.1:  Examples of each of the five types of the symmetry wallpaper groups and the 

process of identifying the FU. Top left explains the FU by itself. 
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Figure 5.2: Percentage of each type of the five hexagonal wallpaper group symmetry 

categories in the collected data. 

Having determined the symmetry group, the FU can be obtained. By identifying 

the points of intersection between the geometric component’s lines and the intersection of 

the geometric lines with the hypothetical boundaries of the fundamental unit, the design 

can be decomposed into points series connected by line segments. The following point 

types can be identified (figure 5.3): 

• Single connection point (SP): points in this category connect only to one another, 

forming a single segment within the FU. 

• Double connection point (DP): points in this category connect to two other points, 

forming two segments within the FU. 

• Triple connection point (TP): points in this category connect to three other points, 

forming three segments within the FU. 
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• Quadruple connection point (QP)6: points in this category connect to four points, 

forming four segments within the FU.  

These points and their relationships are considered the basic constructional 

components of the morphological description.  

 

Figure 5.3: The illustrations on the left explain point categories. The illustrations on the 

right show two examples with different point types. 

5.3 THE MORPHOLOGICAL DESCRIPTION 

The morphological description exploits symmetry information and constructional 

components—points and their relationships— that fall within the FU to develop a 

                                                
6 Hereafter, triple and quadruple connection points referred to as T/QP. 
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“deterministic” simulation model that “outputs” geometric patterns based on an “input”’ 

of representational code, ultimately capturing the “reality” of the IGP in a numeric form.  

The constructional components within the FU can be represented mathematically 

by referring to each of the constructional points in a sequenced manner in a similar way 

to Lionel March and Phillip Steadman’s method (March, Steadman 1974 p.182 & p.190). 

In general, and based on the design within the FU, two scenarios were identified: single 

and multiple sequence(s) of straight lines, hereafter referred to as polyline(s). In the first 

scenario, the FU contains only a single polyline that can be described by listing all of the 

constructional points that fall within the FU in a sequenced manner. For instance, the 

design that exists within the FU of the Ibn Tulun mosque (shown in figure 5.4) can be 

represented as: 

𝐏𝐋𝟏 = [𝐏𝟏	𝐏𝟐	𝐏𝟑] 

where PL refers to the polyline and P refers to the constructional points. The square 

brackets indicate the beginning and the end of a single polyline. However, this 

description only represents the geometry within the FU. To populate the description to 

the RU and the structure, symmetry information should be added. Thus, the previous 

code can be rewritten as:  

𝐏𝟔𝐌:𝐏𝐋𝟏 

Similarly, PL can be substituted by a list of the constructional points: 

𝐏𝟔𝐌: [𝐏𝟏	𝐏𝟐	𝐏𝟑] 
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Figure 5.4 The top shows geometry from Ibn Tulun mosque, and the bottom shows 

geometry from the Karraqan East Tower. Both geometries are shown in terms of the 

whole pattern, the repeated unit, the fundamental unit, and the representational code. 

Designs with more constructional points can be coded in a similar fashion as 

shown in the Karraqan East Tower geometry in figure 5.4 (bottom). Further, if the 

polyline closes on itself at any point but remains as a single polyline, the design can still 

be described in a similar way, yet the shared point is addressed twice in the description as 
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it appears. For instance, the geometry found in Alhambra Palace (figure 5.5) can be 

described in the following possible ways: 

𝐏𝟔𝐌: [𝐏𝟏	𝐏𝟐	𝐏𝟑	𝐏𝟒	𝐏𝟓	𝐏𝟔	𝐏𝟑	𝐏𝟕	𝐏𝟖] 

 

Figure 5.5: Single polyline scenario that closes on itself in a quadruple connection point. 

Here 𝐏𝟑	is listed twice, and in this particular instance, 𝐏𝟑	is a quadruple 

connection point (QP)7.  

If there are multiple polylines within the FU (second scenario), each polyline is 

described by listing all points in a sequenced manner. If a shared point exists between 

two polylines, the point is addressed in each list. For instance, the geometry shown in 

figure 5.6 (top) can be described as:  

𝐏𝟔𝐌: [𝐏𝟏	𝐏𝟐	𝐏𝟑	𝐏𝟒]	[𝐏𝟓	𝐏𝟑	𝐏𝟔] 

                                                
7 The description code can be also written as: 𝑷𝟔𝑴: [𝑷𝟏	𝑷𝟐	𝑷𝟑	𝑷𝟔	𝑷𝟓	𝑷𝟒	𝑷𝟑	𝑷𝟕	𝑷𝟖], where the sequences of points that 
fall between the quadruple connection point are reversed. Chapter 6 addresses the sorting algorithm that was employed 
to identify all possible descriptions.	
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Figure 5.6: Multiple polyline scenarios. The top shows a design with two polylines within 

the FU, and the bottom shows a design with three polylines within the FU. 

Furthermore, the actualization of the design requires clearly defining the exact 

location of the constructional points. These points can be defined using their coordinates 

on the Cartesian coordinate system. Therefore, the code for the design in figure 5.4 (top) 

can be expressed as: 

𝐏𝟔𝐌:	
𝐱𝐏𝟏 𝐱𝐏𝟐 𝐱𝐏𝟑
𝐲𝐏𝟏 𝐲𝐏𝟐 𝐲𝐏𝟑

 

Similarly, the design in figure 5.6 (top) can be expressed as:  
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𝐏𝟔𝐌:	
𝐱𝐏𝟏 𝐱𝐏𝟐 𝐱𝐏𝟑 𝐱𝐏𝟒
𝐲𝐏𝟏 𝐲𝐏𝟐 𝐲𝐏𝟑 𝐲𝐏𝟒

𝐱𝐏𝟓 𝐱𝐏𝟑 𝐱𝐏𝟔
𝐲𝐏𝟓 𝐲𝐏𝟑 𝐲𝐏𝟔

 

Alternatively, polar coordinates can be utilized. These have proven to be more 

convenient due to the fact that they enhance the parametric aspect of the description by 

granting independent controls for the angle and distance for each point in a meaningful 

way (figure 5.7). For instance, changing how far a point is from the center of the RU 

requires manipulating only one parameter, while in the Cartesian coordinate system 

method, two inputs are required to reach the same output. Here, the distance of each point 

in the design is measured from the center of the RU; the angle between the distant line 

and the hypothetical horizontal line that passes through the center is also measured 

(figure 5.7). Therefore, the previous description of figure 5.4 (top) can be rewritten as: 

𝐏𝟔𝐌:	
𝐫𝐏𝟏 𝐫𝐏𝟐 𝐫𝐏𝟑
	∅𝐏𝟏 ∅𝐏𝟐 ∅𝐏𝟑

 

Similarly, the design in figure 5.6 (top) can be expressed as: 

𝐏𝟔𝐌:	
𝐫𝐏𝟏 𝐫𝐏𝟐 𝐫𝐏𝟑 𝐫𝐏𝟒
∅𝐏𝟏 ∅𝐏𝟐 ∅𝐏𝟑 ∅𝐏𝟒

𝐫𝐏𝟓 𝐫𝐏𝟑 𝐫𝐏𝟔
∅𝐏𝟓 ∅𝐏𝟑 ∅𝐏𝟔

 

In this code, r refers to a point’s respective distance value from the origin while ∅ 

refers to the value of the respective angles in which the points are located (Figure 5.7). In 

this research, the values are measured within a hexagonal RU, with each side of the 

hexagon measuring 10 units. Figure 5.8 shows more examples with the actualized values. 

Hereafter, these codes are referred to as representational codes. 
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Figure 5.7: The process of point actualization. The Cartesian coordinate system vs. the 

polar coordinate system. 

To develop a description model that represents the virtual space of IGP, the study 

employs abduction reasoning, where the derivation process of the description model 

moves from the actualized designs to construction of a model that encompass all IGP 

possibilities. This also aligns with the philosophical argument of Gilles Deleuze, who 

argued that actualized designs still carry “morphogenetic possibilities” within them. 

Thus, the coding process was carried out for all of the 273 collected designs to extract a 

description model that represents IGP morphology. Figure 5.9 shows an identified 

polylines behavior pattern that exists within a historical IGP. That is, a design can be 

constructed from at least a single polyline with at least two constructional points forming 

a single segment within the FU.  
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Figure 5.8 The pattern on left can be generated using the representational codes on the 

bottom right of each design. 



 53 

 

Figure 5.9 The top diagram shows the identified behavior pattern and parametric aspects 

of the IGP. The bottom is a historic example that demonstrates actualization of the 

description model above. 

Any parametric description model that represents IGP needs to capture all 

scenarios and have the ability to be expand and to contain more polyline(s), while 

preserving the sequence of the constructional points and providing actualization 

information for each of the constructional points. Therefore, the code that captures the 

virtual morphological design space of an IGP can be expressed as:  
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𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲	𝐆𝐫𝐨𝐮𝐩:	
𝐫𝐏𝟏 𝐫𝐏𝟐 …	 𝐫𝐏𝐢
∅𝐏𝟏 ∅𝐏𝟐 …	 ∅𝐏𝐢

𝐫𝐏𝐢B𝟏 𝐫𝐏𝐢B𝟐 …	 𝐫𝐏𝐢B𝐯
∅𝐏𝐢B𝟏 ∅𝐏𝐢B𝟐 …	 ∅𝐏𝐢B𝐯

… 

𝐫𝐏𝐢B𝐯B⋯B𝟏 𝐫𝐏𝐢B𝐯B⋯B𝟐 …	 𝐫𝐏𝐢B𝐯B⋯B𝐳
∅𝐏𝐢B𝐯B⋯B𝟏 ∅𝐏𝐢B𝐯B…𝟐 …	 ∅𝐏𝐢B𝐯B⋯B𝐳

 

where symmetry group in the above description refers to the symmetry type of the 

pattern; i refers to the total number of points in the first polyline; v refers to the total 

number of points in the second polyline; and z refers to the total number of points in the 

nth polyline. 

5.4 THE SIMULATION PROGRAM 

The quality of a description is determined by its ability to reflect reality. 

Therefore, to verify the ability of the code to describe the IGP, the researcher specifically 

developed a simulation program that reads the representational code and visualizes the 

design (figure 5.10). The inputs to the program are the representational code and the 

outputs are the visual images in the processing “display window”. Further, the program 

outputs a DXF file that can be imported to AutoCAD and compared with the associated 

design.  

When running the program, the user is promoted to enter the representational 

code. After pressing the execute button, the code string of the input code is divided into 

two parts and stored in an array of string. The first index stores the symmetry type, and 

the second index contains points and their relations. The second part is later converted 

into another array of string that stores each point in the form of the angle and distance in 

a single array index. Next, the function that is responsible for drawing and displaying the 

code is called. This function reads each index of the second string array and converts it 
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into a float array while performing a loop in the array to draw each point. If the end of a 

polyline indicates, the program skips a segment and thus establishes a new polyline if 

necessary. Subsequently, the IGP is displayed on the screen, and the user can export the 

geometry in a DXF format. Appendix B shows the program script. 

Furthermore, the program provides additional morphing functionality that 

performed through changing the values of the representational code and redrawing the 

design as figure 5.10 shows.  

Figure 5.10 Explanation of the interface of the IGP explorer (the simulation program). 

5.5 PILOT STUDY: MANIPULATING THE PARAMETRIC DESCRIPTION  

A preliminary version of the parametric description method presented in this 

chapter was published in the Conference Proceedings of the 20th International 

Conference of the Association for Computer-Aided Architectural Design Research in 

Asia (CAADRIA). In that paper, values within the representational code of the historical 
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designs were manipulated, and new codes were derived. Figure 5.11 illustrates the 

morphing process of the geometry originally existing in Ibn Tulun mosque. When the 

results of the morphing process were compared with the representational codes of historic 

IGP, it was found that some of the newly derived codes exactly matched historic designs 

in other regions (figure 5.12). Therefore, two types of morphological correlations 

between the historic designs were identified: identical designs and structurally equivalent 

designs, which the study further investigates in the following chapter. 

 

Figure 5.11 Following the arrow, this figure explains selected transformations of Ibn 

Tulun geometry through various topological states (Wade 2015, Stronach, Young 1966, 

Burckhardt 2009) 
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Figure 5.12 Across region morphological correlations among historical designs. The x-

axis represent time, and the y-axis represents the geographic location arranged in an 

ordinal manner from west (bottom) to east (top). 
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CHAPTER SIX 

THE MORPHOLOGICAL CORRELATIONS 

6.1 INTRODUCTION 

The goal of this chapter is to identify the morphological correlations that exist 

among various historical hexagon-based IGP. This chapter utilizes the developed 

representational code and begins by grouping hexagonal IGP into five groups based on 

the number of polylines that exist within the FU. Next, the chapter establishes the content 

category, discusses the search algorithms employed to investigate the representational 

codes, and presents the results of each content category. Finally, the chapter discusses the 

identified morphological correlations. 

6.2 THE MORPHOLOGICAL GROUPS 

The representational codes of historic designs were examined and, by counting 

the total number of polylines within the FU of each design, the collected data can be 

categorized into five groups as follows:  

• MORPHOLOGICAL GROUP A (single polyline): The sequence of points forms 

a single polyline within the FU. Of the 273 examined IGP, 168 designs fall within 

this category. This category can be further subdivided based on the number of 

T/QP within the FU into six specific morphological groups (SMG): A0, A1, A2, 

A3, A4, and A8. Here, the letter A refers to the number of polylines, and the 

following number indicates the total number of the identified T/QP within the FU. 

The most frequent SMG is A0, with 152 designs (see figure 6.2 for examples of 

all SMG).  
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• MORPHOLOGICAL GROUP B (double polylines): The sequence of points 

forms two polylines within the FU. A total of 88 designs fall within this category. 

Moreover, this category can be further subdivided into the following SMG: B0, 

B1, B2, B3, B4, and B6. B1 is the most frequent SMG, with 62 designs (figure 

6.2). 

• MORPHOLOGICAL GROUP C (triple polylines): The sequence of points forms 

three polylines within the FU. Only 15 cases fall within this category. The group 

can be subdivided into the following SMG: C1, C2, C3, and C5. C2 is the most 

frequent design, with 10 cases. 

• MORPHOLOGICAL GROUP D (quadruple polylines): The sequence of points 

forms four polylines within the FU. Only one case from Madrasa al-

Mustansiriyya was identified (figure 6.1). 

• MORPHOLOGICAL GROUP F (sextuple polylines): The sequence of points 

forms six polylines within the FU. Only one case from Alhambra Palace falls 

within this category (figure 6.1). 

Overall, 61.54% of the collected designs falls within group A, and 32.23% falls 

within group B. Only 6.23% falls into categories beyond two polylines. Figure 6.1 shows 

examples of each morphological group and presents the total number of cases in each 

SMG. 
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Figure 6.1: Examples of all SMG. The y-axis represents the MG (number of polylines). 

The x-axis represents the total number of Q/TP within the FU. The intersection of the two 

axis defines the SMG. The intersection is represented by an example from the associated 

SMG. The frequency of each SMG is shown in orange at the top right of each geometry. 

6.3 THE CONTENT CATEGORIES 

The identification of the content category is driven by the following questions: 

What is the frequency of the replicated designs in the collected historical IGP?  

Furthermore, does a structurally equivalent design exist? If yes, what is the frequency of 

such designs? Consequently, two main categories based on Deleuzian’s actual-virtual 
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conceptual framework were established: identical and structural equivalency. The 

identical category is concerned with identifying replicated designs; therefore, the 

recording unit in this category is the full match of the representational codes between the 

compared designs.  

The structural equivalency category is concerned with identifying the existence of 

shared morphological configurations among historical designs. This category is further 

subdivided into four levels that each has its own recording unit. The representational 

codes of the actualized designs were examined on several levels in this category, moving 

gradually from the actual dimension toward the virtual design dimension. At each level, 

the comparison between the representational codes considered specific variables that 

have connections to the actualized dimension; in the subsequent level, fewer connections 

to the actualized dimensions were considered, moving gradually toward the virtual 

dimension (table 6.1). 

 

Table 6.1: Variables considered in each content category. The check marks refer to the 

considered variables when comparing the recording units of the investigated designs.  
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6.4 THE SEARCH ALGORITHMS 

A search algorithm was developed for each of the above content categories that 

compares an input of representational code with the database of the historically existing 

hexagonal IGP and output types of existing correlations. However, before the comparison 

process can take place, the representational codes must be sorted. Although each 

representational code always refers to a single output, a single IGP design can have more 

than one possible representational code that describes the design depending on the 

possible ways to sort the sequence of the constructional components. In the case of 

intersection, the sorting algorithm defines the possible paths that each polyline can take. 

Therefore, before comparing the codes using the matching algorithm, all possible 

representational codes must be identified. This step is important to control any coding 

inconsistencies caused by the researcher in regard to coding similar designs in a reverse 

order or the identification of polyline paths. 

The following section discusses the sorting algorithm. Following this, matching 

algorithms and the results for all category are presented.  

6.5 SORTING ALGORITHMS 

Searching for identical designs or designs that are structurally equivalent of level 

one or two (these levels are discussed in the following section 6.6.2) requires the 

comparison of value and sequence of points information. Therefore, a sorting algorithm 

was developed for the following specific morphological groups: A0, A1, B0, B1, and B2. 

As multiple designs that share the same segment count exist within each group, these 
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designs can be considered candidates for an identical or level one or two structural 

equivalency categories.  

On the other hand, the A2, B4, C5, D3, and F3 groups include only one design, so 

it can be concluded that these designs cannot have identical designs or a level one or two 

structural equivalency. Other groups, A3, B3, A8, and C1, include designs that have a 

different number of segments; here, it is also possible to conclude that these designs 

cannot have an identical designs or a level one or two structural equivalency as the length 

of the representational code of the designs that falls into the same groups is different. The 

researcher was able to identify two identical designs for both the A4 and B6 groups. 

Group C3 includes both identical designs and designs that are different in segment 

numbers.  

Group C2 has 10 designs that fall within four levels of segments: one design of 12 

segments, two designs of ten segments, five of eight segments, and two of seven 

segments. The two designs of ten segments each fall within different symmetry groups 

and are thus neither identical nor structurally equivalent. For the five designs that have 

the eight segments, four were found to be identical, and the fifth falls within a different 

symmetry group. Only the two designs of seven segments required sorting. The 

researcher controlled the sorting of the codes by writing it in a selected predefined 

sequence. This is primarily because there are two cases on which to test the sorting 

algorithm.  

Table 6.2 explains segment availability for each morphological group. The 

following sections discuss the sorting algorithm for A0, A1, B0, B1, and B2 groups. 
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Table 6.2 The number of designs identified in each morphological group, broken down by 

the total number of segments in each design. 

A0 SMG: 

As discussed earlier, group A refers to a hexagonal IGP with a single polyline 

within the fundamental unit. The number “0” refers to the absence of any T/QP. In this 

case, there are only two possible ways to sort the representational code: 1) starting from 

P1 all the way to Pn, where n refers to the last point in the description; 2) the reverse of 

the first code, which is starting from Pn all the way to P1 (Figure 6.2). 
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Figure 6.2 Sorting of the A0 SMG. The bottom right shows the two possible sortation of 

codes that fall within the A0 group 

A1 SMG: 

Similarly, A1 refers to the existence of a single polyline within the fundamental 

unit that has a single T/QP. Therefore, there are two possible paths for the polyline 

(shown on the bottom of figure 6.3). Consequently, there are four ways to write the code: 

1) sorting the representational code starting from P1 all the way to Pn, where n refers to 

the last point in the description; 2) the reverse of the first code, 3) reversing the sequence 

of points contained between the T/QP following the steps below: 

• Identify the T/QP, and  
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• Reverse the order of the constructional points that fall in between the 

T/QP (in figure 6.4, this step changes the path of the polyline from FU 1 to 

FU 2);  

and 4) fourth possible representational code can be obtained by reversing the sequence of 

points in the third code.  

 

Figure 6.3 Sorting of the A1 SMG. The representational code of the design in Alhambra 

Palace. The starting code refers to code inputted by the researcher. Partial reverse refers 

to the process of partially flipping the highlighted point sequence (colored boxes). 
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B0 SMG: 

In this group, there are two polylines and no T/QP. Therefore, no path 

determination is required; however, flipping the sequence of points within each polylines 

is required. The following steps were utilized to identify the possible codes: 1) the first 

possible code is the input code (i.e., the initial representational code coded by the 

researcher); 2) reversing the input code; 3) reversing the first polyline in the input code 

while keeping the other polyline in the original state; 4) reversing the previous case; 5) 

reversing the second polyline in the input code while preserving the original sortation of 

the first 6) reversing the previous case 7) reversing both polylines in the input code while 

preserving their order (i.e., the first polyline followed by the second polyline); and 8) 

reversing the previous case (figure 6.4). 
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Figure 6.4 Sorting of the B0 SMG. The bottom left shows the flipping process for each 

polyline, and the bottom right shows the possible description codes for B0 group. 

B1 SMG: 

In this case, there are two polylines and a single TP or QP. Each polyline can take 

more than one path; therefore, to identify all possible paths that the two polylines can 

take, the following steps were followed, starting from an input code (figure 6.5): 
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• Identify the shared point between the two polylines (the delimiter) and divide 

each polyline into two parts—the first part, which is located before the delimiter 

point, and the second part, which is located after the delimiter point. 

• Identify the second possible paths by beginning with the input code and switching 

the first part of the first polyline with the second part of the second polyline and 

the second part of the first polyline with the first part of the second polyline (see 1 

and 2 in figure 6.5). 

• Identify the third possible paths by beginning with the input code and switching 

the first part of the first polyline with the first part of the second polyline and the 

second part of the first polyline with the second part of the second polyline (see 1 

and 3 in figure 6.5).  

• After these steps, each code of the paths (including the input code) can be treated 

as B0 to further derive all possible codes. 
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Figure 6.5 Sorting of the B1 SMG. Explanation of the possible paths for designs of B1 

specific morphological group. 
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B2 SMG: 

In this case, there are two polylines and two T/QP. The sorting for this group 

requires the identification of the possible paths of the two polylines. The following steps 

were followed to identify the main paths that the two polylines can take: 

• Identify both T/QP.  

• Use the T/QP that exist in both polylines as a delimiter to rearrange the polylines 

in a fashion similar to B1.  

• Use the two resulting representational codes from the last process to rearrange the 

polylines in a fashion similar to B1, this time using the other T/QP, the second 

delimiter. 

• At any point, if either T/QP listed twice in a single polyline, rearrange the 

constructional points in that polyline in a fashion similar to the A1 sorting 

method. 

If both T/QP exit on the two polylines in at least one configuration, this sorting 

methods yields eight possible paths (figure 6.6). Otherwise, the result is six possible paths 

(only two cases were identified in the later scenario: a design found in Jami' ibn Tulun 

mosque, number 100 in appendix A, and a design found in Imaret of Ibrahim Bey of 

Konya, number 234 in appendix A).  
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Figure 6.6 Sorting of the B2 SMG. The possible interpretation of the two polyline paths. 

6.6 MATCHING ALGORITHMS 

Matching algorithms compare two representational codes and return the type of 

the morphological correlations that exists between the two compared designs. All 

possible codes from previous section were considered in the comparison. A matching 

algorithm was developed for each of the content categories. The following sections 

present the matching algorithms and the result for each category in terms of frequency of 

occurrence.  
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6.6.1 IDENTICAL MATCH  

This category determines the frequency of occurrence of the replicated hexagonal 

IGP. The recording unit in this category is the full match of the representational code of 

the compared designs. The code of each IGP in the collected data is compared with the 

other 272 designs. If the code matches another design, the two designs are labeled as 

identical. Figure 6.7 shows the implemented codes. 

 

Figure 6.7 The code used for identifying identical designs, implemented using processing 

programing language. 

Based on the examination of 273 designs, 181 were found to share their 

representational codes with at least one other design while 92 designs were not replicated. 

To find the percentage of designs that share representational code, the identical designs 

grouped were together and each group was counted as one design. Therefore, the total 

number of unique designs becomes 138, and the percentage of replicated designs 

becomes 33.33% (46 designs) (table 6.3).  

 

Table 6.3: Unique (grouped) designs vs. ungrouped designs.  
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The earliest identified copied designs found in Karraqan East Tower from 1067 

CE in Iran (figure 6.7 top). The design was copied from an earlier design that existed in 

977 at the Ata Arab from in Uzbekistan. This design was found later in three other 

monuments: Rasd-khaneh-i Ulugh Beg in Uzbekistan (1420 CE), Aramgah-i Shah-i 

Zindeh in Transoxiana (1434 CE), and Ishrat Khana Tomb in Uzbekistan (1464 CE). 

The most frequently copied design, however, is the star design, which originally 

existed in the West Karraqan Tower (1093 CE) and was then replicated in 23 locations 

between the 12th and 17th centuries in various regions (figure 6.7 middle). The most 

frequent design in B1 group is a design that first existed at Masjid-i Jami' Golpayegan in 

Iran (1105 CE) and was later found in 11 other locations between the 12th and 15th 

centuries (figure 6.8 bottom). 

6.6.2 STRUCTURAL EQUIVALENCY  

In this category, the search for morphological correlations departs from the 

identification of identical forms to the search for matches in the internal arrangements of 

the constructional components of the compared historical designs.  

The matching process is implemented in four levels. The levels are ordinal in 

nature and span Deleuzian’s actual-virtual extremes. In each level, the search is 

constrained by specific conditions that make connections to the actualized dimension; in 

each following level, fewer connections to the actualized dimensions were considered, 

moving gradually toward the virtual dimension (table 6.1 shows the considered variables 

in each level). The levels are discussed in the following: 
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Figure 6.8: The top shows the earliest copied design, the middle the most frequently 

copied design, and the bottom the most frequently copied design in B1 group. 
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Level One: 

The representational code of the historic designs is examined to compare the 

value and sequence of the angle parameter while discarding the actualized values of 

distances (shown in light gray in the below description model):  

𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲	𝐆𝐫𝐨𝐮𝐩:	
𝐫𝐏𝟏 𝐫𝐏𝟐 …	 𝐫𝐏𝐢
∅𝐏𝟏 ∅𝐏𝟐 …	 ∅𝐏𝐢

𝐫𝐏𝐢B𝟏 𝐫𝐏𝐢B𝟐 …	 𝐫𝐏𝐢B𝐯
∅𝐏𝐢B𝟏 ∅𝐏𝐢B𝟐 …	 ∅𝐏𝐢B𝐯

… 

𝐫𝐏𝐢B𝐯B⋯B𝟏 𝐫𝐏𝐢B𝐯B⋯B𝟐 …	 𝐫𝐏𝐢B𝐯B⋯B𝐳
∅𝐏𝐢B𝐯B⋯B𝟏 ∅𝐏𝐢B𝐯B…𝟐 …	 ∅𝐏𝐢B𝐯B⋯B𝐳

 

In doing so, this level identifies designs that share the same number of segments, 

the exact flow of polylines, and specific morphological groups, regardless of the 

actualized measurements of the polyline. Therefore, the recording unit in this level is the 

entire value and sequence match of angles’ parameters. Figure 6.9 shows the 

implemented codes. 

Of the 138 unique designs, 23.19% fall into this level because they share the 

values and sequence of angles in their representational codes with at least one other 

design and were identified as structurally equivalent (LV1). The most frequent structure 

in level one is the following:  

𝐏𝟔𝐌:	
𝐫𝐏𝟏	 𝐫𝐏𝟐	
𝟔𝟎 𝟗𝟎	  

The above structure exists in six different arrangements (shown in figure 6.10). 

The earliest existing design within this structure dates to the 9th century and was 

discovered by Ernest Hartsfield during the Samara excavations. However, if being extra 

cautious and considering only designs that are purely geometric (the Samara design 
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contains floral designs), the earliest frequent structure can be dated to the Karraqan East 

Tower (1067 CE).  

 

Figure 6.9 The code used for identifying structurally equivalent designs, implemented 

using processing programing language.   

The algorithm used in the search within this level is more conservative in preserving the 

flow characteristics, as it requires an entire value and sequence match of all angles. 

However, it is also possible to examine the representational code of the historic designs 

to compare the value and sequence of only angles that lay at the internal boundaries of 

the FU –as only these points determine the general flow layout of the designs—while 

discarding the actualized values of all distances and the values of angles of the 

constructional points that do not lay at the internal boundaries of the FU (figure 6.11). 
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Figure 6.10: The most frequent structures in LV1 structural equivalency. 

 

Fig 6.11: The internal boundaries of the FU and the control of the points that lay on 

these boundaries. The dark black variable in the representational code represents the 

considered variable in the comparison. 
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In doing so, this level identifies designs that share a flow in a more flexible 

manner, regardless of the actualized measurements of the distances of the constructional 

points. Therefore, the recording unit in this category is the value and sequence match of 

30, 60, 90, and 120° angles in the representational codes of the compared designs. It is 

important to highlight that in this level, the sequence of the discarded angles is still 

considered. For example, the sequence of 90, 43, 60, and 90° angles matches the 

sequence of 90, 73, 60, and 90° angles but does not match the sequence of 90, 60, and 

90° angles. Figure 6.12 shows the implemented codes. 

 

Figure 6.12 The code used for identifying structurally equivalent designs of level one for 

ascertaining the flow in a more flexible manner. 
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Figure 6.12 Cont. 

The results of the new algorithm indicate that 44.20% of the 138 unique designs 

have at least a structural equivalence with one or more designs (figure 6.13). The most 

frequent structure is the following:  

𝐏𝟔𝐌:	
𝐫𝐏𝟏 𝐫𝐏𝟐 𝐫𝐏𝟑
𝟔𝟎 𝟗𝟎	 ∅𝐏𝟑

 

Level Two: 

In this level, the representational code of the historic designs is compared by 

searching for similar sequences of constructional points while discarding the values of 

distances and angles (shown in light gray in the description model below): 

 

𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲	𝐆𝐫𝐨𝐮𝐩:	
𝐫𝐏𝟏 𝐫𝐏𝟐 …	 𝐫𝐏𝐢
∅𝐏𝟏 ∅𝐏𝟐 …	 ∅𝐏𝐢

𝐫𝐏𝐢B𝟏 𝐫𝐏𝐢B𝟐 …	 𝐫𝐏𝐢B𝐯
∅𝐏𝐢B𝟏 ∅𝐏𝐢B𝟐 …	 ∅𝐏𝐢B𝐯

… 

𝐫𝐏𝐢B𝐯B⋯B𝟏 𝐫𝐏𝐢B𝐯B⋯B𝟐 …	 𝐫𝐏𝐢B𝐯B⋯B𝐳
∅𝐏𝐢B𝐯B⋯B𝟏 ∅𝐏𝐢B𝐯B…𝟐 …	 ∅𝐏𝐢B𝐯B⋯B𝐳

 

In doing so, this level identifies designs that share the same number of segments 

and specific morphological groups, regardless of the actualized measurements or the flow 

of the polyline (figure 6.14). Therefore, the recording unit is the match of the sequence of 
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constructional points in polylines between the compared codes. Figure 6.15 shows the 

implemented codes. 

 

Fig 6.13: The most frequent structure in LV1 structural equivalency when identifying the 

flow based on points that lay on the internal boundaries of the FU. 
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Fig 6.14: Different polyline flows with similar segment counts (five segments each) and 

similar specific morphological case (A0). 

 

Figure 6.15 The code used for identifying structurally equivalent designs of level two, 

implemented using processing programing language.   
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Of the 138 designs, 76.09% share the same structure with at least one other 

design. The following structure code represents the most frequent structure (identified 

design variations are shown in figure 6.16): 

𝐏𝟔𝐌:	
𝐫𝐏𝟏 𝐫𝐏𝟐 𝐫𝐏𝟑
∅𝐏𝟏 ∅𝐏𝟐 ∅𝐏𝟑

 

 

Figure 6.16 The most frequent structures in LV2 structural equivalency 

Level Three: 

In this level, the representational code of the historic designs is compared by 

searching for designs that share the same specific morphological groups while discarding 
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the segment counts and the values and sequences of the actualized distances and angles in 

all of the constructional points (figure 6.17). In doing so, this level identifies designs that 

share the same number of polylines and T/QP counts regardless of the segment count, 

flow of polylines, or the actualized measurements of the polylines within the FU. 

Therefore, the recording unit is the match of the specific morphological groups. Figure 

6.18 shows the implemented code. 

 

Figure 6.17 Example of LV3 structural equivalency. 

 

Figure 6.18 The code used for identifying structurally equivalent designs of level three, 

implemented using processing programing language. 
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Of the 138 designs, 86.96% share the level of their structures with at least one 

other design. The most frequent structure is designs composed form a single polyline 

with no T/QP.   

Level Four: 

The representational code of the historic designs is compared by searching for 

similar polyline counts while discarding the existence of T/QP, segment counts, and the 

values and sequences of the actualized distances and angles of all the constructional 

points (figure 6.19). Therefore, the recording unit is the match of morphological groups. 

Figure 6.20 shows the implemented code.  

𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲	𝐆𝐫𝐨𝐮𝐩:	
𝐫𝐏𝟏 𝐫𝐏𝟐 …	 𝐫𝐏𝐢
∅𝐏𝟏 ∅𝐏𝟐 …	 ∅𝐏𝐢

𝐫𝐏𝐢B𝟏 𝐫𝐏𝐢B𝟐 …	 𝐫𝐏𝐢B𝐯
∅𝐏𝐢B𝟏 ∅𝐏𝐢B𝟐 …	 ∅𝐏𝐢B𝐯

… 

𝐫𝐏𝐢B𝐯B⋯B𝟏 𝐫𝐏𝐢B𝐯B⋯B𝟐 …	 𝐫𝐏𝐢B𝐯B⋯B𝐳
∅𝐏𝐢B𝐯B⋯B𝟏 ∅𝐏𝐢B𝐯B…𝟐 …	 ∅𝐏𝐢B𝐯B⋯B𝐳

 

Of the 138 unique designs, 94.20% share level four structures with at least one 

other design. The most frequent structure is the single sequence of points (single 

polyline). Figure 6.20 shows example from the structural equivalency of this level.  
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Figure 6.19: Example of LV4 structural equivalency. Simple design vs. complex designs 

in terms of segment count and specific morphological case. All designs are considered 

equal in terms of LV4 as they are composed from a single polyline. 

 

Fig 6.20: The code used for identifying structurally equivalent designs of level four, 

implemented using processing programing language 

6.7 THE MORPHOLOGICAL CORRELATIONS  

The results from the previous section show that similarities between the hexagon-

based designs become more frequent as the virtual dimension is approached. Figure 6.21 

shows the identical category and the four levels of structural equivalency categories 
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arranged in an ordinal fashion starting from the actual dimension, which is represented by 

the frequency of identical designs, followed by the closest level of structural equivalency 

category to the actual dimension, moving toward the virtual dimension (right of the 

figure).  

 

Figure 6.21: Line graph shows the frequency of identical and the four levels of structural 

equivalency categories.  

Figure 6.19 in the previous section shows how a simple design (in terms of 

segment count and type of connection points) can be structurally equivalent to another 

more complex design. To identify such morphological correlations in a holistic manner, 

connections between the content categories and design segment must be established. 

Figure 6.22 shows the flowchart for each of the five symmetry groups, with the 

morphological groups on the x-axis broken down by the specific morphological groups. 

ID LV.1 LV.2 LV.3 LV.4
Frequency 33.33% 44.20% 76.09% 86.96% 94.20%
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The y-axis shows the segment count. Each circle in the figure represents a single or group 

of actualized designs (further explained in the subsequent enlarged views).  

This figure shows the existence of a minimum of single polyline (Morphological 

Group A) in symmetry groups P6M, P6, P3, and P31M and the existence of a maximum 

of six polylines (Morphological Group F) in symmetry group of P6 only. In addition, the 

figure shows the existence of a single segment design as well as a design with a 

maximum of 37 segments (SMG A8).  

Figure 6.23 shows an enlarged view of SMG B2 from the P6M symmetry group. 

This figure shows how the actualized designs relate to each other on multiple structural 

levels. For instance, if we look at designs that contains 11 segments, we can see four 

designs each two designs are structurally equivalent at level 1, as indicated by the 

underlined labeled LV1, since the designs share the same flow of polylines, the same 

number of segments, and the same specific morphological groups. However, the four 

designs within 11 segments are structurally equivalent at level 2 as these designs share 

the same number of segments and the same specific morphological groups. These designs 

(i.e., all those containing 11 segments) share the same specific morphological group with 

the entire branch shown in the figure. All the branches include designs with two polylines 

(indicated in the figure by different colors for each polyline) and two T/QP. However, 

when comparing this branch to another branch within the B morphological group, the two 

branches have designs with two polylines but differ in the number of T/QP. Figure 6.23 

explains this using morphological group C as an example.  
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Figure 6.22: Morphological groups that exist within each symmetry type. Each 

morphological group is broken down by its specific morphological groups on the x-axis, 

and the segment count on the y-axis. 
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Figure 6.22 cont. 
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Figure 6.23 Enlarged view of the specific morphological case B2 within the P6M 

symmetry group. 
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Figure 2.24 shows how designs that fall within the same morphological group can 

be related to each other. For instance, the figure explains how designs that fall within 

SMG C5 correlate to designs that fall within SMG C3; that is, both designs contain three 

polylines (structurally equivalent at level four).  

This grouping system is parametrically expandable and capable to accommodate 

designs that go beyond the identified historic ones. For instance, if a design contains 

more than six polylines, or more that 37 segments, such a design will still fit within the 

same flowchart, and morphological correlations with historical designs can be 

established. Appendix C shows the flowcharts for all five types of the investigated 

symmetry groups: P3, P3M1, P31M, P6, and P6M.  

The results of the search algorithm utilized when developing the flowcharts. 

Therefore, The flowcharts help not only to visually understand structural similarities but 

also assists in validating the results of the search algorithms.   

6.8 CHRONOLOGY OF THE MORPHOLOGICAL GROUPS 

The morphological groups were revisited to investigate the appearance of 

categories chronologically. This section examines only the P6M symmetry group as it 

comprises 93.41% of the data and fewer cases are available for the other four symmetry 

groups: P6, P3, P3M1, and P31M. 
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Figure 6.24: Enlarged view from the morphological group C within the P6M symmetry 

group. Three polylines are indicated in different colors. 
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The data shows that A0 SMG designs have been the most common since the early 

period of hexagonal-based IGP and afterwards. The earliest existing design with a single 

polyline and no T/QP dates to the 9th century in Samara. However, if being extra 

cautious and considering only designs that are purely geometric (the Samara design 

contains floral motifs), the earliest A0 SMG design dates to 977 CE at Ata Arab. The 

highest number of A0 segments was found in 1133 CE with the existence of a design 

with six segments (figure 6.19).  

The rest of the A morphological group (i.e., A1, A2, A3, A4, and A8) occurred 

later between the 13th and early 15th centuries. The highest number of segments was 

reached with 37 segments of A8 SMG in 1274 CE (figure 6.25). 

 

Figure 6.25: Chronological segment count within A MG for symmetry Group P6M. Color 

indicates the SMG. 

Designs of the B MG (two polylines) existed as early as the 9th century with a 

floral design in the Ibn Tulum mosque dated to this time by K. A. C. Creswell ( 1919 
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p.187). This design is a B1. However, B MG designs disappeared after this time and 

returned in the mid-11th century at the Karraqan East Tower in 1067 CE, reaching the 

highest number of segments in the late 13th century with nine segments. B2, B3, B4, and 

B6 existed later between the 13th and early 15th centuries, with the highest number of 

segments reached in 1323 CE with 29 segments (figure 6.26). 

Designs within the C MG started as early as the mid-12th century with C2 designs 

with 12 segments that later dropped to 10 segments in other designs. C3 designs in the 

late 13th century had 14 segments, reaching 18 segments in the early 14th century. 

Moreover, a single case of a C5 design with 21 segments was identified (figure 6.27).  

 

Figure 6.26: Chronological segment count within B MG for symmetry Group P6M. Color 

indicates the SMG. 
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Figure 6.27: Chronological segment count within C MG for symmetry Group P6M. Color 

indicates the SMG. 

In her discussion of the chronological development of Islamic Geometric patterns, 

Gülru Necipoglu argued that the peak development period falls between the 11th and 

mid-13th centuries. The findings of this research shows that in the case of the hexagon-

based IGP this development is indicated by the introduction of segment intersections and 

the emergence of cases of designs with multiple polylines. The following SMG were 

identified before the mid-13th century: A0, A1, B1, B2, B3, and C2. However, the 

maximum segment count is 13. After the mid-13th century an A8 SMG design with 37 

segments existed in Konya, Turkey in 1274 CE.  

Necipoglu also argued that the “last creative impulse” for IGP took place between 

the 14th century and early 16th century. The findings of this research shows that in the 

case of hexagon-based IGP there are some sophisticated single polyline cases such as A2, 
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A3, and A4 and multiple polyline cases such as the B4, B6, C3, and C5 that began to 

emerge and be replicated. 
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CHAPTER SEVEN 

TOWARD MORPHOLOGICAL UNDERSTANDING OF HEXAGONAL-BASED 

ISLAMIC GEOMETRIC PATTERNS 

7.1 CONCLUSION	

This research addressed the question of how to incorporate mathematics and 

morphology to describe IGP. It then utilized this description to address the question of 

what are the morphological corrections between historic design singularities. 

Through investigating the historical evidence, the study identified that a 

hexagonal IGP is the product of infinite replication of a polyline(s) using one of the five 

hexagon-based wallpaper symmetry groups: P3, P3M1, P31M, P6, and P6M. The 

fundamental unit of a hexagon-based IGP contains at least a single polyline with at least a 

single segment and it can be expanded to include multiple polylines with multiple 

segments that can interact with each other. When put into mathematical terms, this 

definition captures the reality of historical IGP designs in a parametric, numerical form. 

Consequently a parametric description model was developed. 

The parametric description model was utilized to derive representational codes 

that store actualized value and structural relations of the historically existing designs. 

These codes facilitated communication between the historical designs and innovative 

computational tools and enabled the investegation of similarities between the historical 

designs. In this sense, this dissertation shares a goal with Abu’l Wafa al-Buzjani, who, in 

his book On Geometric Constructions, aimed to facilitate communication between 

geometric designs and the scientific language of his age—mathematics.   
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When the representational codes of historical designs were compared to each 

other in this research, it was found that hexagon-based IGP correlate to each other in both 

the actual and virtual dimensions.  

The representational codes enabled to identify identical designs that exist in 

different regions and chronological periods and show how a particular design where 

replicated. It has been found that 66.3% of the collected 273 designs share their 

representational codes with at least one other design. This shows that design replication 

was often practiced and many designs were reproduced later using same, or different 

embellishment techniques. Furthermore, this study shows that replication is not limited to 

simple designs in terms of segment count or the design SMG; yet, complex designs also 

replicated. For instance, consider the design shown in figure 7.1 which show the design 

exist Madrasa al-'Attarin in Fez, Moroco and its replication in Alhambra palace in 

Granada, Spain. This design is with up to 29 segments and of B6 SMG. This also 

supports the transmission of historic designs between regions using some sort of medium 

such as manuscripts or design scrolls. 
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Figure 7.1 Identical designs. From left to right: Madrasa al-'Attarin, Alhambra palace, 

the ground geometry (Wade 2015). 

Beyond the actual dimension, IGP also correlate to each other in the virtual 

dimension. The representational codes when investigated helped in detecteding links 

between designs. These structural links are foundational to existing designs and helped to 

create the enormous diversity of design of hexagonal IGP. 

This research determined that a total of 44.2% of designs share with at least one 

other design the same flow of polylines, number of segments, and specific morphological 

group. A total of 76.09% of designs share with at least one other design the same number 

of segments and specific morphological group. A total of 86.96% share with at least one 

other design the same specific morphological group, and 94.20% share with at least one 

other design the same morphological group.  

The morphological groups are used as a categorization system for patterns that 

incorporate designs that share basic “morphogenetic” characteristics. Five morphological 

groups were established: morphological group A, morphological group B, morphological 

group C, morphological group D, and morphological group F. This system, because it 



 101 

considers both the actual and the virtual dimensions, represent not only what exists but 

what could exist.  

Moreover, this system of categorization does not contradict with previous systems 

developed by other scientific studies of IGP such as Abas and Salman’s symmetry 

classification, nor is it intended to replace those systems. In contrast, this system further 

considers the details of each symmetry group to further relate or differentiate the designs 

within each symmetry group based on the internal relationships of the design 

components. 

Finally, the research investigated the historical development of hexagon-based 

IGP using morphological categorization. It was found that all three A, B, and C MG were 

reached prior to the 13th century, with continued use afterwards. However, after the 14th 

century, the historical designs evolved in regard to segment count and by creating more 

internal intersections between the polylines.   

7.2 LIMITATIONS  

Although the results are generalizable for hexagon-based IGP and not for other 

periodic Islamic geometries, insights can still be gained to create similar procedures for 

other types of repeat units. The results presented in this research are based on the 

examination of periodic hexagon-based Islamic geometric designs and thus the results 

represent those designs.  

7.3 FUTURE RESEARCH 

Future research will include investigation of other types of periodic structures 

such as square-based Islamic patterns, with the goal of constructing a database that 
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includes all periodic geometric patterns to advance the research and design practice of 

periodic IGP. According to Sayed Abas and Amer Salman( 1995) symmetry study the 

hexagonal and square repeat unit constitutes the dominant majority of periodic IGP. 

Future research will aim to employ the methodology of this research to other periodic 

patterns to create a unified understanding across different repeat units. For instance, 

figure 7.2 shows a hexagonal RU next to a square RU. Using the new morphological 

categorization, both patterns can be identified as B1 as each FU include two polylines 

and a single QP within the FU.  

 

Figure 7.2 employing the morphological categorization across RU. 

Furthermore, the developed parametric description establishes a lower level 

interaction with the methodology that grants designers complete control of the geometric 

components and their internal structure. Such control of shape is considered the “primary 

ingredient” for producing architecture that alters shape(Kolarevic, Parlac 2015). To this 

end, the researcher has taken steps in that direction to build the physical metamorphosis 

of geometric patterns. Preliminary results of the investigation was presented in poster 
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format at the Conference Proceedings of the Architectural Research Centers Consortium 

2017 (figure 7.1). 

 

    

Fig.7.1 Bottom left: digital model with ten hexagonal repeat units. Bottom right: finished 

prototype 
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Appendix A 

Collected Hexagonal-Based Islamic Geometric Patterns that explains the pattern, single 

geometry, and the fundamental unit. 
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Appendix B 

IGP Explorer (the Simulation Program) 
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//Program Name: IGP EXPLORER 
//Program description: SIMULATION PROGRAM FOR VISUALIZATION AND MORPHING HEXAGONAL BASED 
ISLAMIC GEOMETRIC PATTERNS 
//PROGRAMING LANGUAGE: PROCESSING  
//MAY 15TH, 2017 
//PROGRAM'S AUTHOR: MOSTAFA ALANI 
 
//                                                                         IMPORT LIBRARY 
//                                                                         IMPORT LIBRARY 
//                                                                         IMPORT LIBRARY 
 
import processing.dxf.*; 
 
//                                                                                
DECLARATION 
//                                                                                
DECLARATION 
//                                                                                
DECLARATION 
 
boolean record; 
int codeLength; 
String[] Code, CodeDrawingTemp, CodeSpliting, Str, MorphCodeDis; 
float[] CodeDrawing, CodeDrawingMorphed, CodeMorph, CodeToMorph; 
 
//                                                          DECLARATION & INITIALIZATION 
//                                                          DECLARATION & INITIALIZATION 
//                                                          DECLARATION & INITIALIZATION 
 
color[] theme = {#FFFFFF, #D7DADB, #FC4349, #2C3E50, #FC4349}; 
String myCode = "p6m:[3.3-90][5.8-60][8.8-71][6.7-90]"; 
String myCodeMorphed = "SAO"; // SameAsOrigional 
int executeLock = 0, morphLock = 0, x1 = 0, y1 = 635; 
float morphAddition = 0, morphSubstraction = 0;  
 
//                                                                                SETUP 
//                                                                                SETUP 
//                                                                                SETUP 
 
void setup(){ 
  size(1280, 695, P3D); 
    if (frame != null) 
    { 
      surface.setResizable(true); 
    } 
  background(theme[0]); 
  smooth(); 
} 
 
//                                                                                DRAW 
//                                                                                DRAW 
//                                                                                DRAW 
 
void draw(){ 
  background(theme[0]); //Background refresh 
  viewPort(); //Viewports Display 
  hovering(); //Buttons 
  Code = split(myCode, ':'); //Code conversion 
  codeLength = Code.length; 
  execute(); // execute Button 
  textSize(13); 
   
  if(executeLock != 0){ 
    drawCodeR(1160, 120); 
    fill(theme[2]); 
    text("Symmetry Type= " + Code[0], 820, 270); 
    CaseIdentifier(Code[1]); 
  } 
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  if(morphLock == 1) 
  { 
    morph(920, 120); 
  } 
  noCursor(); //Curser Location 
  fill(theme[1]); 
  ellipse(mouseX,mouseY,1,1); 
  fill(theme[4]); 
  text((mouseX + " " + mouseY), mouseX, mouseY+20, width, height); 
 
  patternGenerator(); 
 
  if(record) { 
    beginRaw(DXF, "output.dxf"); 
  } 
  if(record) { 
    endRaw(); 
    record = false; 
  } 
} 
 
//                                                                               VIEWPORT 
//                                                                               VIEWPORT 
//                                                                               VIEWPORT 
 
void viewPort(){ 
  pushMatrix(); 
   
  noFill(); //Big viewport 
  stroke(theme[3],150); 
  rect(0,0,800,y1);  
  fill(theme[3]); 
  text("Pattern View", 0,0, width, height); 
   
  fill(theme[1]); 
  noStroke();   
  rect(800+1,0,displayWidth,displayHeight); 
   
  translate(800,0); 
   
  fill(theme[0]); //Small viewports 
  stroke(theme[3],150); 
  rect(0, 0, 240, 240); 
  fill(theme[3]); 
  text("Morphed view", 0,0, width, height); 
   
  fill(theme[0]);  
  stroke(theme[3],150); 
  rect(240, 0, 240, 240); 
  fill(theme[3]); 
  text("Origional view", 240,0, width, height); 
   
  popMatrix(); 
  pushMatrix(); 
  translate(10,370); 
  fill(theme[3],150); 
  popMatrix(); 
} 
 
//                                                                               HOVERING 
//                                                                               HOVERING 
//                                                                               HOVERING 
 
float hovering(){ 
  fill(255); 
  rect(x1+53,y1,width,30); 
  rect(x1+53,y1+30,width,30); 
  fill(0, 150); 
  text(myCode, x1+59,y1, width, height); 
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  if(morphLock == 1){ 
    MorphCodeDis = new String[CodeMorph.length]; 
    MorphCodeDis[0] = "["; 
    for(int i=0; i<CodeMorph.length-2; i+=3){ 
      if(i!=0){MorphCodeDis[i] = "][";} 
      if(i!=0){ 
        if(CodeDrawingTemp[i].equals("/")) 
        { 
          MorphCodeDis[i] = "]/["; 
        } 
      }      
      MorphCodeDis[i+1] = str((CodeMorph[i+1])); 
      MorphCodeDis[i+1] = MorphCodeDis[i+1] + "-"; 
      MorphCodeDis[i+2] = str(int(CodeMorph[i+2])); 
      MorphCodeDis[i+3] = "]"; 
    } 
    String newCode = join(MorphCodeDis,""); 
    text("P6M:" + newCode, x1+59,y1+30, width, height); 
    print(" NEW CODE :: " + newCode + "\n"); 
  } 
  if(mouseX>x1+53){ 
    if(mouseX<width){ 
      if(mouseY>y1){ 
        if(mouseY<y1+30) 
        { 
          fill(255); 
          rect(x1+53,y1,width,30); 
          fill(0); 
          text(myCode, x1+59,y1, width, height); 
        } 
      } 
    } 
  } 
  return(float(myCode)); 
} 
 
//                                                                              EXECUTION 
//                                                                              EXECUTION 
//                                                                              EXECUTION 
 
void execute(){ 
  fill(0); 
  rect(0,y1,50,15); 
  rect(0,y1+30,50,15); 
  fill(255,150); 
  text("Execute",0,y1,width,height); 
  text("Animate ",0,y1+30,width,height); 
  if(mouseX>0){ 
    if(mouseX<500){ 
      if(mouseY>y1){ 
        if(mouseY<y1+20){ 
          if(mousePressed) 
          { 
            fill(255); 
            rect(0,y1,50,15); 
            fill(0,150); 
            text("Execute",0,y1,width,height); 
             
            String f = Code[1].replace("]", ","); 
            f = f.replace("[", ","); 
            f = f.replace("-", ","); 
            CodeDrawingTemp = split(f, ','); 
 
            executeLock = 1; 
            morphLock = 1;  
            CodeToMorph = float(split(f, ',')); 
            CodeMorph = float(CodeDrawingTemp); 
             
            firstP1 = 1; 
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            firstP2= 0; 
             
            secondP1 = 1; 
            secondP2= 0; 
             
            thirdP1 = 1; 
            thirdP2= 0; 
          } 
        } 
      } 
    } 
  } 
           
  if(mouseX>0){ 
    if(mouseX<500){ 
      if(mouseY>y1+30){ 
        if(mouseY<y1+45){ 
          if(mousePressed) 
          { 
            fill(theme[4]); 
            rect(0,y1+30,50,15); 
            fill(0); 
            text("Animate ",0,y1+30,width,height); 
            animate(); 
          } 
        } 
      } 
    } 
  } 
  if(morphLock ==1) 
  { 
    for(int y = 0; y < CodeMorph.length; y++) 
    { 
      if(y == CodeMorph.length-1) 
        print(" END \n"); 
    }  
  } 
} 
 
//                                                                              DRAW CODE 
//                                                                              DRAW CODE 
//                                                                              DRAW CODE 
 
void drawCodeR(int x, int y){ 
  if(Code[0].equals("P6M") == true || Code[0].equals("p6m") == true || 
Code[0].equals("p6") == true || Code[0].equals("P6") == true || Code[0].equals("P31M") || 
Code[0].equals("p31m") || Code[0].equals("P3M1") || Code[0].equals("p3m1")) 
  { 
    pushMatrix(); 
    translate(x,y); 
     
    CodeDrawing = float(CodeDrawingTemp); 
    for(int z=0; z<CodeDrawingTemp.length-2; z+=3) 
    { 
      float tempAng = float(CodeDrawingTemp[z+2]); 
      float tempDis = float(CodeDrawingTemp[z+1]); 
      CodeDrawing[z+2] = sin(radians(tempAng)) * tempDis; // X coordinate 
      CodeDrawing[z+1] = cos(radians(tempAng)) * tempDis; // Y coordinate 
    }   
     
    for(int c=0; c<6; c++) 
    { 
      stroke(theme[3]); 
      strokeWeight(2.2); 
      pushMatrix(); 
      if(CodeDrawing.length<6) 
        text("Incorrect CODE" + "\n", 400,400,width,height); 
      int iii = 0; 
      for(int ii=0; ii+iii<CodeDrawing.length-6; ii+=3) 
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      { 
        line(10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii], 
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]); 
        if(Code[0].equals("p6m") || Code[0].equals("P6M") || Code[0].equals("P3M1") || 
Code[0].equals("p3m1") || Code[0].equals("p31m") || Code[0].equals("P31M") || 
Code[0].equals("P31m") || Code[0].equals("p31M")){ 
          line(-10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii], -
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]); 
        } 
        if(Code[0].equals("p31m") || Code[0].equals("P31M") || Code[0].equals("P31m") || 
Code[0].equals("p31M")){ 
          pushMatrix(); 
          rotate(radians(120)); 
          translate(0,100); 
          line(10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii], 
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]); 
          line(-10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii], -
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]); 
          rotate(radians(120)); 
          translate(0,100); 
          line(-10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii], -
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]); 
          rotate(radians(-120)); 
          line(10*CodeDrawing[ii+1+iii], -10*CodeDrawing[ii+2+iii], 
10*CodeDrawing[ii+4+iii], -10*CodeDrawing[ii+5+iii]); 
          popMatrix(); 
        } 
         
        if(CodeDrawingTemp[ii+6+iii].equals("/")) 
        { 
          iii+=3; 
        } 
        fill(theme[4]); 
      } 
      popMatrix(); 
      if(Code[0].equals("p6m") || Code[0].equals("P6M") || Code[0].equals("P6") || 
Code[0].equals("p6")){ 
        rotate(radians(60)); 
      } 
      if(Code[0].equals("p3") || Code[0].equals("P3") || Code[0].equals("P3M1") || 
Code[0].equals("p3m1") || Code[0].equals("P31M") || Code[0].equals("p31m")){ 
        rotate(radians(120)); 
      } 
    } 
    popMatrix(); 
  } 
} 
 
//                                                                               ANALYSIS 
//                                                                               ANALYSIS 
//                                                                               ANALYSIS 
 
String TQp; 
String MG; 
 
void CaseIdentifier(String g){ 
  int f =70; 
  text("Characteristics of the FU: ", 820, 310); 
   
  //Counting Segment  
  int Count; 
  String[] S = splitTokens(g, "[]"); 
  Count = S.length-1; 
  for(int i=0; i<S.length; i++){ 
    if(S[i].equals("/")){ 
      Count-=2; 
    } 
  } 
  text("Count of Segments = " + Count, 820, 260+f); 
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  println(Count); 
   
  //Q/TP 
  println(g); 
  String[] Sarray = splitTokens(g,"[/]"); 
   
  IntDict Search = new IntDict(); 
  for(int i=0; i<Sarray.length; i++){ 
    Search.increment(Sarray[i]); 
  } 
  Search.sortValuesReverse(); 
  int[] counts = Search.valueArray(); 
  String[] SEARCH = Search.keyArray(); 
  println(Search); 
   
  if(counts[0] == 1){ 
    println("QV = " + 0); 
    TQp = "0"; 
  } 
  if(counts[0] > 1 && counts[1] == 1){ 
    println("QV = " + 1); 
    TQp = "1"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] == 1){ 
    println("QV = " + 2); 
    TQp = "2"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] == 1){ 
    println("QV = " + 3); 
    TQp = "3"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] == 1){ 
    println("QV = " + 4); 
    TQp = "4"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1 && 
counts[5] == 1){ 
    println("QV = " + 5); 
    TQp = "5"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1  
&& counts[5] > 1 && counts[6] == 1){ 
    println("QV = " + 6); 
    TQp = "6"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1  
&& counts[5] > 1 && counts[6] > 1 && counts[7] == 1){ 
    println("QV = " + 7); 
    TQp = "7"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1  
&& counts[5] > 1 && counts[6] > 1 && counts[7] > 1 && counts[8] == 1){ 
    println("QV = " + 8); 
    TQp = "8"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1  
&& counts[5] > 1 && counts[6] > 1 && counts[7] > 1 && counts[8] > 1 && counts[9] == 1){ 
    println("QV = " + 9); 
    TQp = "9"; 
  } 
 
  text("Count of Points = " + counts.length, 820, 280+f); 
  text("Count of Triple/Quadrable Connection Point = " + TQp, 820, 300+f); 
   
  //Polyline 
  int countPolylines = 1; 
  String[] S1 = splitTokens(g, "[]"); 
  for(int i=0; i<S1.length; i++){ 
    if(S1[i].equals("/")){ 
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      countPolylines++; 
    } 
  } 
  print("Polyline count " + (countPolylines) + " ", 820, 320+f ); 
  text("Count of Polylines = " + countPolylines, 820, 340+f); 
   
  //Group 
  if(countPolylines==1){ 
    MG="A"; 
  } 
  if(countPolylines==2){ 
    MG="B"; 
  } 
  if(countPolylines==3){ 
    MG="C"; 
  } 
  if(countPolylines==4){ 
    MG="D"; 
  } 
  if(countPolylines==5){ 
    MG="E"; 
  } 
  if(countPolylines==6){ 
    MG="F"; 
  } 
  text("Morphological Group = " + MG, 820, 380+f); 
  text("Specific Morphological Group = " + MG+TQp, 820, 400+f); 
} 
 
//                                                                                MORPH 
//                                                                                MORPH 
//                                                                                MORPH 
 
void morph(int x, int y){ 
  pushMatrix(); 
  translate(x,y); 
  for(int z=0; z<CodeMorph.length-2; z+=3) 
  { 
    float tempAng = (CodeMorph[z+2]); 
    float tempDis = (CodeMorph[z+1]); 
 
    CodeToMorph[z+2] = sin(radians(tempAng)) * tempDis; // X coordinate 
    CodeToMorph[z+1] = cos(radians(tempAng)) * tempDis; // Y coordinate 
  }     
   
  for(int c=0; c<6; c++) 
  { 
    pushMatrix(); 
    if(CodeToMorph.length<6){ 
      text("Incorrect CODE" + "\n", 400,400,width,height); 
    } 
    int iii = 0; 
    for(int ii=0; ii+iii<CodeToMorph.length-6; ii+=3) 
    { 
        line(10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii], 
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]); 
        if(Code[0].equals("p6m") || Code[0].equals("P6M") || Code[0].equals("P3M1") || 
Code[0].equals("p3m1") || Code[0].equals("p31m") || Code[0].equals("P31M") || 
Code[0].equals("P31m") || Code[0].equals("p31M")){ 
          line(-10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii], -
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]); 
        } 
        if(Code[0].equals("p31m") || Code[0].equals("P31M") || Code[0].equals("P31m") || 
Code[0].equals("p31M")){ 
          pushMatrix(); 
          rotate(radians(120)); 
          translate(0,100); 
          line(10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii], 
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]); 
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          line(-10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii], -
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]); 
          rotate(radians(120)); 
          translate(0,100); 
          line(-10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii], -
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]); 
          rotate(radians(-120)); 
          line(10*CodeToMorph[ii+1+iii], -10*CodeToMorph[ii+2+iii], 
10*CodeToMorph[ii+4+iii], -10*CodeToMorph[ii+5+iii]); 
          popMatrix(); 
        } 
      if(CodeDrawingTemp[ii+6+iii].equals("/")) 
      { 
        iii+=3; 
      } 
      fill(theme[4]); 
    } 
    popMatrix(); 
    if(Code[0].equals("p6m") || Code[0].equals("P6M") || Code[0].equals("P6") || 
Code[0].equals("p6")){ 
      rotate(radians(60)); 
    } 
    if(Code[0].equals("p3") || Code[0].equals("P3") || Code[0].equals("P3M1") || 
Code[0].equals("p3m1") || Code[0].equals("P31M") || Code[0].equals("p31m")){ 
      rotate(radians(120)); 
    } 
  } 
  popMatrix(); 
} 
 
//                                                                      PATTERN GENERATOR 
//                                                                      PATTERN GENERATOR 
//                                                                      PATTERN GENERATOR 
 
void patternGenerator(){ 
  pushMatrix(); 
  translate(920,120); 
  hexa(); 
  translate(240,0); 
  hexa(); 
  popMatrix(); 
   
  pushMatrix(); 
  translate(100,100); 
  scale(.5); 
  for(int z=0; z<7; z++) 
  { 
    for(int i =0; i<8; i++) 
    { 
      if(executeLock == 0){ 
        hexa(); 
      } 
      if(executeLock != 0){ 
        stroke(theme[3]); 
        morph(0, 0); 
      } 
      translate(173.206,0); 
    } 
    if(z == 0 || z == 2 || z == 4 || z == 6 || z == 8) 
      translate((-9*173.206)+(173.206/2),150); 
    else 
      translate((-8*173.206)+(173.206/2),150); 
  }   
  popMatrix(); 
} 
 
//                                                                              HEXAGONAL 
//                                                                              HEXAGONAL 
//                                                                              HEXAGONAL 
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void hexa(){ 
  stroke(theme[3],50); 
  line(0,-100,86.603,-50); 
  rotate(PI/3); 
  line(0,-100,86.603,-50); 
  rotate(PI/3); 
  line(0,-100,86.603,-50); 
  rotate(PI/3); 
  line(0,-100,86.603,-50); 
  rotate(PI/3); 
  line(0,-100,86.603,-50); 
  rotate(PI/3); 
  line(0,-100,86.603,-50);   
  rotate(PI/3); 
} 
 
//                                                                                ANIMATE 
//                                                                                ANIMATE 
//                                                                                ANIMATE 
 
int reverseDirection = -1; 
 
int firstP1 = 1; 
int firstP2= 0; 
float aimationSpeed = 0.01; 
 
int secondP1 = 1; 
int secondP2= 0; 
float aimationSpeed3 = 0.01; 
 
int thirdP1 = 1; 
int thirdP2= 0; 
float aimationSpeed4 = 0.01; 
 
int fourthP1 = 1; 
int fourthP2= 0; 
float aimationSpeed5 = 0.01; 
 
void animate() 
{ 
  if(CodeMorph[1] <= limits( CodeMorph[2], CodeMorph[1]) && firstP1 == firstP2) 
  { 
    CodeMorph[1] += 1;  // CHANGE TO 0.01 TO RESTORE ACTUAL SPEED 
    firstP1 +=1; 
     
    if(CodeMorph[1] == limits( CodeMorph[2], CodeMorph[1])) 
    { 
      CodeMorph[1] = limits( CodeMorph[2], CodeMorph[1]); 
    } 
     
    if(CodeMorph[1] >10) 
      CodeMorph[1] =10; 
  } 
 
  if(CodeMorph.length <=7 || secondP1 == secondP2) // Two or point points senerio 
  { 
    if(CodeMorph[4] < limits( CodeMorph[5], CodeMorph[4])+.01 || CodeMorph[4] == limits( 
CodeMorph[5], CodeMorph[4])) 
    { 
      if(CodeMorph[4] == limits( CodeMorph[5], CodeMorph[4]) || CodeMorph[4] <= 0) 
      { 
        aimationSpeed = aimationSpeed * -1; 
        firstP2 += 1; 
      } 
      CodeMorph[4] += aimationSpeed*10; // CHANGE TO aimationSpeed TO RESTORE ACTUAL 
SPEED 
      secondP1+=1; 
    } 
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    if(CodeMorph[4] > limits( CodeMorph[5], CodeMorph[4])+.01) // to optimize and prevent 
outlyers, i.e. points that are higher than LIMITS 
      CodeMorph[4] = limits( CodeMorph[5], CodeMorph[4]); 
  } 
 
  if(CodeMorph.length ==10 || thirdP1 == thirdP2) // 10 means u have 3 points 
  { 
    if(CodeMorph[7] < limits( CodeMorph[8], CodeMorph[7])+.01 || CodeMorph[7] == limits( 
CodeMorph[8], CodeMorph[7])) 
    { 
      if(CodeMorph[7] == limits( CodeMorph[8], CodeMorph[7]) || CodeMorph[7] <= 0) 
      { 
        aimationSpeed3 = aimationSpeed3 * -1; 
        secondP2 += 1; 
      } 
      CodeMorph[7] += aimationSpeed3 * 10; // CHANGE TO aimationSpeed TO RESTORE ACTUAL 
SPEED 
      thirdP1 += 1; 
    } 
    if(CodeMorph[7] > limits( CodeMorph[8], CodeMorph[7])+.01) // to optimize and prevent 
outlyers, i.e. points that are higher than LIMITS 
      CodeMorph[7] = limits( CodeMorph[8], CodeMorph[7]); 
  } 
 
  if(CodeMorph.length ==13) // 13 means u have 4 points 
  { 
    if(CodeMorph[10] < limits( CodeMorph[11], CodeMorph[10])+.01 || CodeMorph[10] == 
limits( CodeMorph[11], CodeMorph[10])) 
    { 
      if(CodeMorph[10] == limits( CodeMorph[11], CodeMorph[10]) || CodeMorph[10] <= 0) 
      { 
        aimationSpeed4 = aimationSpeed4 * -1; 
        thirdP2 += 1; 
      } 
      CodeMorph[10] += aimationSpeed4 * 5; // CHANGE TO aimationSpeed TO RESTORE ACTUAL 
SPEED 
    } 
    if(CodeMorph[10] > limits( CodeMorph[11], CodeMorph[10])+.01) // to optimize and 
prevent outlyers, i.e. points that are higher than LIMITS 
      CodeMorph[10] = limits( CodeMorph[11], CodeMorph[10]); 
  }   
 
  if(CodeMorph.length ==16) // 16 means u have 5 points 
  { 
    if(CodeMorph[13] < limits( CodeMorph[14], CodeMorph[13])+.01 || CodeMorph[13] == 
limits( CodeMorph[14], CodeMorph[13])) 
    { 
      if(CodeMorph[13] == limits( CodeMorph[14], CodeMorph[13]) || CodeMorph[13] <= 0) 
      { 
        aimationSpeed5 = aimationSpeed5 * -1; 
        fourthP2 += 1; 
      } 
      CodeMorph[13] += aimationSpeed5 * 5; // CHANGE TO aimationSpeed TO RESTORE ACTUAL 
SPEED 
    } 
    if(CodeMorph[13] > limits( CodeMorph[14], CodeMorph[13])+.01) // to optimize and 
prevent outlyers, i.e. points that are higher than LIMITS 
      CodeMorph[13] = limits( CodeMorph[14], CodeMorph[13]); 
  }   
} 
 
float result; 
float limits( float angle, float distance) 
{ 
  if(angle <=90) 
  { 
    float reverseAngle = 90 - angle; 
    float missingAngle = 180 - 60 - reverseAngle; 
    result = (10 * sin(radians(60)) / sin(radians(missingAngle))); 
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  } 
  return result; 
} 
 
//                                                                             KEYPRESSED 
//                                                                             KEYPRESSED 
//                                                                             KEYPRESSED 
 
void keyPressed() { 
  if(mouseX>x1+53) 
  if(mouseX<width) 
    if(mouseY>y1) 
      if(mouseY<y1+30) 
      { 
        if (keyCode == BACKSPACE) { 
          if (myCode.length() > 0) { 
            myCode = myCode.substring(0, myCode.length()-1); 
          } 
        } else if (keyCode == DELETE) { 
          myCode = ""; 
        } else if (keyCode != SHIFT && keyCode != CONTROL && keyCode != ALT) { 
          myCode = myCode + key; 
        } 
      } 
  if (key == 'r')  
    record = true; 
} 
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Appendix C 

Representational Code Analyzer (the Search Program) 
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//PROGRAM NAME: repCode analyzer 
//PROGRAM DESCRIPTION: READ THE REPRESENTATIONAL CODES AND DETECT MORPHOLOGICAL 
SIMILARITIES ON MULTIPLE LEVELS 
//PROGRAMING LANGUAGE: PROCESSING  
//MAY 15TH, 2017 
//PROGRAM'S AUTHOR: MOSTAFA ALANI 
 
color[] theme = {#E8E6EB, #84B1D9, #075473, #A62D12, #D94E41};// Color theme of the 
visualization 
Table t; // CSV(Excel) sheet  
Geometry g; // Geometry has all information about particular historical design 
Geometry[] G; // Object array for the above geometries 
int readDataOnlyOnce=0; //So the code read the data only once 
int textInhowverCounter = 0; 
float growth =810.0; 
String Original; int CADno; 
 
//                                                                                SETUP 
//                                                                                SETUP 
//                                                                                SETUP 
 
void setup(){ 
  size(500, 500); 
  background(theme[0]); 
  smooth(); 
  processData(); 
} 
 
//                                                                                DRAW 
//                                                                                DRAW 
//                                                                                DRAW 
 
void draw(){ 
  background(theme[0]); 
  //below assign each value from CSV to temprory variable to prepare the transfer to the 
object and put it in a particualr array index 
  if(readDataOnlyOnce == 0)// So the file read data only once 
  {  
    for(int i =0; i<t.getRowCount(); i++) 
    { 
      TableRow tr = t.getRow(i); 
      int x = tr.getInt("CAD#");   int d = tr.getInt("DATE");   int td = tr.getInt("TO-
DATE");   int c = tr.getInt("CENTURY"); String m = tr.getString("MONUMENT");   String r = 
tr.getString("REGION");   String tow = tr.getString("TOWN");   String dy = 
tr.getString("DYNASTY");   String mat = tr.getString("MATERIAL");   String fun = 
tr.getString("FUNCTION");   String SY = tr.getString("SYMMETRY");   String SC = 
tr.getString("SHAPE-CODE");   float SLR = tr.getFloat("SCALER"); float XL = 
tr.getFloat("xLocation"); float YL = tr.getFloat("yLocation"); String C = 
tr.getString("Case"); String seg = tr.getString("Seg"); String id = tr.getString("ID"); 
String mc = tr.getString("MC"); String N = tr.getString("Nominal"); String L = 
tr.getString("List"); 
      G[i] = new Geometry(x, m, d, td, c, r, tow, dy, mat, fun, SY, SC, SLR, XL, YL, C, 
seg, id, mc, N, L); //transfere to the object through constructor  
      GroupIdentifier(G[i]); 
    } 
  } 
   
  if(readDataOnlyOnce == 0) 
  {  
    //for(int i =36; i<37; i++)// 
    for(int i =0; i<t.getRowCount(); i++) 
    { 
      Original = G[i].repCODE; CADno = G[i].CAD; 
      //Analysis control keys 
      print(G[i].CAD+ " ");    
      //ID 
      int identity =0; 
      //LV1 con. 
      int LV0 =0;  
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      //LV1 
      int LV1 =0;  
      //LV2 
      int LV2 = 0;  
      //LV3 
      int LV3=0; 
      //LV4 
      int LV4=0;             
 
      if(LV3==1){LevelThreeSE(G[i], G);} 
      if(LV4==1){LevelFourSE(G[i], G);} 
       
/////////////        FLIPPING & SEARCHING ALL SMG EXCEPT A0, A1, B0, B1, & B2      ////// 
                           
      if(G[i].Case.equals("A0")==false && G[i].Case.equals("A1")==false && 
G[i].Case.equals("B0")==false && G[i].Case.equals("B1")==false && 
G[i].Case.equals("B2")==false){ 
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);} 
        flipCode(G[i].repCODE); G[i].repCODE=flipResults; 
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}  
      } 
       
/////////////        FLIPPING & SEARCHING SMG A0      /////////////   
                           
      if(G[i].Case.equals("A0")){ 
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}  
        flipCode(G[i].repCODE); G[i].repCODE=flipResults; 
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}  
        G[i].repCODE = Original; 
      } 
       
/////////////        FLIPPING & SEARCHING SMG A1      /////////////  
                           
      if(G[i].Case.equals("A1")){ 
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}  
        flipCode(G[i].repCODE); G[i].repCODE=flipResults; 
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}  
        G[i].repCODE = Original; 
        partialA1Flip(G[i].repCODE, G[i]); G[i].repCODE=partialA1flipResults; 
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}  
        flipCode(G[i].repCODE); G[i].repCODE=flipResults; 
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}  
        G[i].repCODE = Original; 
      } 
       
/////////////        FLIPPING & SEARCHING SMG B0      /////////////  
                           
      if(G[i].Case.equals("B0")){ 
        flipCaseB(G[i].repCODE, G[i], G, identity, LV0, LV1, LV2); 
      } 
///////////////      FLIPPING & SEARCHING SMG B1      /////////////  
                           
      if(G[i].Case.equals("B1")){ 
        caseB1Flip(G[i].repCODE, G[i], ""); 
        flipCaseB(G[i].repCODE, G[i], G, identity, LV0, LV1, LV2); 
        flipCaseB(caseB1possibleCodeA, G[i], G, identity, LV0, LV1, LV2); 
        flipCaseB(caseB1possibleCodeB, G[i], G, identity, LV0, LV1, LV2); 
      } 
       
///////////////      FLIPPING & SEARCHING SMG B2      /////////////  
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      if(G[i].Case.equals("B2")){ 
        caseB2Flip(G[i].repCODE, G[i], ""); 
        flipCaseB(G[i].repCODE, G[i], G, identity, LV0, LV1, LV2); 
        flipCaseB(newB2code1, G[i], G, identity, LV0, LV1,LV2); 
        flipCaseB(caseB2possibleCodeA, G[i], G, identity, LV0, LV1, LV2); 
        flipCaseB(caseB2possibleCodeB, G[i], G, identity, LV0, LV1, LV2); 
        flipCaseB(caseB2possibleCodeC, G[i], G, identity, LV0, LV1, LV2); 
        flipCaseB(caseB2possibleCodeD, G[i], G, identity, LV0, LV1, LV2); 
        flipCaseB(caseB2possibleCodeE, G[i], G, identity, LV0, LV1, LV2); 
        flipCaseB(caseB2possibleCodeF, G[i], G, identity, LV0, LV1, LV2); 
        flipCaseB(newB2code2, G[i], G, identity, LV0, LV1, LV2); 
      } 
      //special B2 case  
      if(G[i].CAD == 234){  
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}  
        flipCode(G[i].repCODE); G[i].repCODE=flipResults; 
        if(identity==1){IdenticalMatch(G[i], G);} if(LV0==1){LevelZeroSE(G[i], G);}  
        if(LV1==1){LevelOneSE(G[i], G);} if(LV2==1){LevelTwoSE(G[i], G);}  
      } 
      println(); 
      G[i].repCODE = Original; 
    } 
  } 
  readDataOnlyOnce =1; 
} 
 
//                                                                       DATA FROM TABLES 
//                                                                       DATA FROM TABLES 
//                                                                       DATA FROM TABLES 
 
void processData(){ 
  t = loadTable("data10.csv", "header");//CSV file name 
  G = new Geometry[t.getRowCount()]; // array intialiatiazion and allocation 
} 
 
//                                                                         CLASS GEOMETRY 
//                                                                         CLASS GEOMETRY 
//                                                                         CLASS GEOMETRY 
 
class Geometry{ 
  int  CAD, DATE, TODATE, CENTURY; 
  float SCALER, XL, YL; 
  String MONUMENT,REGION,TOWN,DYNASTY,MATERIAL,FUNCTION, SYMMETRY, repCODE, Case, Seg, 
ID, MC, Nomi, List; 
  IntDict conc = new IntDict();//Dictionar used in countPoints function belowreads 
chuncks of angle and distance, for instanc "90-10" as one string to count correctlly 
  IntDict countPoints = new IntDict(); 
  float Xlocation, ylocation; 
 
//Constructor 
  Geometry(int cad, String monument,int date, int todate, int century, String region, 
String town, String dynasty, String material, String function, String Symmetry, String 
repCode, Float scaler , Float xl, Float yl, String cases, String seg, String id, String 
mc, String N, String L){ 
    CAD = cad; 
    MONUMENT = monument; 
    DATE = date; 
    TODATE = todate; 
    CENTURY = century; 
    REGION = region; 
    TOWN = town; 
    DYNASTY = dynasty; 
    MATERIAL = material; 
    FUNCTION = function; 
    SYMMETRY = Symmetry; 
    repCODE = repCode; 
    SCALER = scaler; 
    XL = xl; 
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    YL = yl; 
    Case = cases; 
    Seg=seg; 
    ID=id; 
    MC = mc; 
    Nomi=N; 
    List=L; 
  } 
} 
 
//                                                                   GROUP IDENTIFICATION 
//                                                                   GROUP IDENTIFICATION 
//                                                                   GROUP IDENTIFICATION 
 
String TQp; 
String MG; 
 
void GroupIdentifier(Geometry G){ 
  String g = G.repCODE; 
  int f =70; 
   
  //COUNTING SEGMENT 
  int Count; 
  String[] S = splitTokens(g, "[]"); 
  Count = S.length-1; 
  for(int i=0; i<S.length; i++){ 
    if(S[i].equals("/")){ 
      Count-=2; 
    } 
  } 
  print(G.CAD + " #Segments = " + Count + " "); 
   
  //Q/TP 
  String[] Sarray = splitTokens(g,"[/]"); 
  IntDict Search = new IntDict(); 
  for(int i=0; i<Sarray.length; i++){ 
    Search.increment(Sarray[i]); 
  } 
  Search.sortValuesReverse(); 
  int[] counts = Search.valueArray(); 
  String[] SEARCH = Search.keyArray(); 
   
  if(counts[0] == 1){ 
    TQp = "0"; 
  } 
  if(counts[0] > 1 && counts[1] == 1){ 
    TQp = "1"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] == 1){ 
    TQp = "2"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] == 1){ 
    TQp = "3"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] == 1){ 
    TQp = "4"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1 && 
counts[5] == 1){ 
    TQp = "5"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1  
&& counts[5] > 1 && counts[6] == 1){ 
    TQp = "6"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1  
&& counts[5] > 1 && counts[6] > 1 && counts[7] == 1){ 
    TQp = "7"; 
  } 
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  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1  
&& counts[5] > 1 && counts[6] > 1 && counts[7] > 1 && counts[8] == 1){ 
    TQp = "8"; 
  } 
  if(counts[0] > 1 && counts[1] > 1 && counts[2] > 1 && counts[3] > 1 && counts[4] > 1  
&& counts[5] > 1 && counts[6] > 1 && counts[7] > 1 && counts[8] > 1 && counts[9] == 1){ 
    TQp = "9"; 
  } 
  print(" | #Points = " + counts.length); 
  print(" | #T/QP = " + TQp); 
   
  //POLYLINES 
  int countPolylines = 1; 
  String[] S1 = splitTokens(g, "[]"); 
  for(int i=0; i<S1.length; i++){ 
    if(S1[i].equals("/")){ 
      countPolylines++; 
    } 
  } 
  print(" | #Polyline= " + (countPolylines)); 
   
  //GROUPS 
  if(countPolylines==1){MG="A";} 
  if(countPolylines==2){MG="B";} 
  if(countPolylines==3){MG="C";} 
  if(countPolylines==4){MG="D";} 
  if(countPolylines==5){MG="E";} 
  if(countPolylines==6){MG="F";} 
  println(" | SMG: " + MG+TQp + " | MG:"+MG); 
} 
 
//                                                                         IDENTITY MATCH 
//                                                                         IDENTITY MATCH 
//                                                                         IDENTITY MATCH 
 
// Identity Match function, takes two inputs:  
// 1) An IGP to be examined;  
// 2) Array of Geometry object (stores the historical Data). 
void IdenticalMatch(Geometry g, Geometry[] G){  
  // A loop through the array of Geometry object. 
  for(int i=0; i<G.length; i++){              
    // Compare the representational code of the input IGP with each geometry in the array 
    if(g.repCODE.equals(G[i].repCODE) && g.CAD != G[i].CAD && 
g.SYMMETRY.equals(G[i].SYMMETRY)){         
      // Only if a match exist, print the number of the design.  
      print(G[i].CAD+",");                                                                               
    } 
  } 
} 
 
//                                                       LV0 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV0 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV0 STRUCTURAL EQUIVALENCY MATCH 
 
// LV0 structural equivalency function, takes two inputs:  
// 1) An IGP to be examined;  
// 2) Array of Geometry object (stores the historical Data). 
void LevelZeroSE(Geometry g, Geometry[] G){ 
  String[] S1 = splitTokens(g.repCODE,"[]"); // Convert First representational code into 
array 
  //Keep only the angle parameter in each array index in the first representational code 
  for(int y=0; y<S1.length; y++){ 
    if(S1[y].equals("/") == false){ 
      String[] clean = splitTokens(S1[y], "-"); 
      S1[y] = clean[0]; 
    } 
  } 
  String comparison1 = join(S1," "); 
  // A loop through the array of Geometry object. 
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  for(int i=0; i<G.length; i+=1){  
    //Fillters to avoid including identical design in this category, design itself, or 
comparing with different symmetry group 
    if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD && 
g.SYMMETRY.equals(G[i].SYMMETRY)) 
    { 
      String[] S2 = splitTokens(G[i].repCODE,"[]"); 
      //Keep only the angle parameter in each array index in the Second representational 
code 
      for(int y=0; y<S2.length; y++){ 
        if(S2[y].equals("/") == false){ 
          String[] clean = splitTokens(S2[y], "-"); 
          S2[y] = clean[0]; 
        } 
      } 
      String comparison2 = join(S2," "); 
      //Conduct the comparison 
      if(comparison1.equals(comparison2)){ 
        print(G[i].CAD + ","); 
      } 
    } 
  }   
} 
 
//                                                       LV1 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV1 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV1 STRUCTURAL EQUIVALENCY MATCH 
 
// LV1 structural equivalency function, takes two inputs:  
// 1) An IGP to be examined;  
// 2) Array of Geometry object (stores the historical Data). 
void LevelOneSE(Geometry g, Geometry[] G){ 
  String[] S1 = splitTokens(g.repCODE,"[]"); // Convert First representational code into 
array 
  //Keep only the angle parameter in each array index in the first representational code 
  for(int y=0; y<S1.length; y++){ 
    if(S1[y].equals("/") == false){ 
      String[] clean = splitTokens(S1[y], "-"); 
      S1[y] = clean[0]; 
      //if the angle is not equal to 30, 60, 90, 120, change the angle to "A" 
      if(S1[y].equals("30") == false && S1[y].equals("60") == false && S1[y].equals("90") 
== false && S1[y].equals("120") == false){ 
        S1[y] = "A"; 
      } 
    } 
  } 
  String comparison1 = join(S1," "); 
  // A loop through the array of Geometry object. 
  for(int i=0; i<G.length; i+=1){  
    if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD && g.Case.equals(G[i].Case) && 
g.SYMMETRY.equals(G[i].SYMMETRY)) 
    { 
      String[] S2 = splitTokens(G[i].repCODE,"[]"); 
      //Keep only the angle parameter in each array index in the Second representational 
code 
      for(int y=0; y<S2.length; y++){ 
        if(S2[y].equals("/") == false){ 
          String[] clean = splitTokens(S2[y], "-"); 
          S2[y] = clean[0]; 
          //if the angle is not equal to 30, 60, 90, 120, change the angle to "A" 
          if(S2[y].equals("30") == false && S2[y].equals("60") == false && 
S2[y].equals("90") == false && S2[y].equals("120") == false){ 
            S2[y] = "A"; 
          } 
        } 
      } 
      String comparison2 = join(S2," "); 
      //Conduct the comparison 
      if(comparison1.equals(comparison2) && g.SYMMETRY.equals(G[i].SYMMETRY)){ 
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        print(G[i].CAD + ", "); 
      } 
    } 
  }  
} 
 
//                                                       LV2 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV2 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV2 STRUCTURAL EQUIVALENCY MATCH 
 
// LV2 structural equivalency function, takes two inputs:  
// 1) An IGP to be examined;  
// 2) Array of Geometry object (stores the historical Data). 
void LevelTwoSE(Geometry g, Geometry[] G){ 
  String[] S1 = splitTokens(g.repCODE,"[]"); // Convert First representational code into 
array 
  // Preserve only point sequence 
  for(int y=0; y<S1.length; y++){ 
    if(S1[y].equals("/") == false){ 
      String[] clean = splitTokens(S1[y], "-"); 
      S1[y] = "P"; 
    } 
  } 
  String comparison1 = join(S1," "); 
  // A loop through the array of Geometry object. 
  for(int i=0; i<G.length; i+=1){  
    if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD && g.Seg.equals(G[i].Seg) && 
g.Case.equals(G[i].Case) && g.SYMMETRY.equals(G[i].SYMMETRY))  
    { 
      String[] S2 = splitTokens(G[i].repCODE,"[]");// Convert second representational 
code into array 
      // Preserve only point sequence 
      for(int y=0; y<S2.length; y++){ 
        if(S2[y].equals("/") == false){ 
          String[] clean = splitTokens(S2[y], "-"); 
          S2[y] = "P"; 
        } 
      } 
      String comparison2 = join(S2," "); 
      //Conduct the comparison 
      if(comparison1.equals(comparison2) && g.SYMMETRY.equals(G[i].SYMMETRY)){ 
        print(G[i].CAD + ","); 
      } 
    } 
  } 
} 
 
//                                                       LV3 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV3 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV3 STRUCTURAL EQUIVALENCY MATCH 
 
// LV3 structural equivalency function, takes two inputs:  
// 1) An IGP to be examined;  
// 2) Array of Geometry object (stores the historical Data). 
void LevelThreeSE(Geometry g, Geometry[] G){ 
  // A loop through the array of Geometry object. 
  for(int i=0; i<G.length; i+=1){  
    if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD && g.Case.equals(G[i].Case) && 
g.SYMMETRY.equals(G[i].SYMMETRY)){ 
      //If the specific morphological group is the same, print the number of the geometry 
      print(G[i].CAD + ","); 
    } 
  } 
} 
 
//                                                       LV4 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV4 STRUCTURAL EQUIVALENCY MATCH 
//                                                       LV4 STRUCTURAL EQUIVALENCY MATCH 
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// LV4 structural equivalency function, takes two inputs:  
// 1) An IGP to be examined;  
// 2) Array of Geometry object (stores the historical Data). 
void LevelFourSE(Geometry g, Geometry[] G){ 
  // A loop through the array of Geometry object. 
  for(int i=0; i<G.length; i+=1){  
    if(g.ID.equals(G[i].ID) == false && CADno != G[i].CAD && g.MC.equals(G[i].MC) && 
g.SYMMETRY.equals(G[i].SYMMETRY)){ 
      //If the specific morphological group is the same, print the number of the geometry 
      print(G[i].CAD + ","); 
    } 
  } 
} 
 
//                                                                             A0 SORTING 
//                                                                             A0 SORTING 
//                                                                             A0 SORTING 
 
String flipResults; 
 
void flipCode(String S){ 
  String[] Sarray = splitTokens(S, "[]"); 
  String[] SarrayTemp = new String[Sarray.length]; 
  for(int i=0; i<Sarray.length; i++){ 
    if(Sarray[Sarray.length-1-i].equals("/") ==false){ 
      SarrayTemp[i] = "["+Sarray[Sarray.length-1-i]+"]"; 
    } 
    if(Sarray[Sarray.length-1-i].equals("/") ==true){ 
      SarrayTemp[i] = Sarray[Sarray.length-1-i]; 
    } 
  } 
  flipResults = join(SarrayTemp,""); 
} 
 
//                                                                             A1 SORTING 
//                                                                             A1 SORTING 
//                                                                             A1 SORTING 
 
String partialA1flipResults; 
 
void partialA1Flip(String S, Geometry g){ 
  String[] lookUpSharedPoint = splitTokens(S, "[]/"); 
  IntDict Search = new IntDict(); 
  for(int i=0; i<lookUpSharedPoint.length; i++){ 
    Search.increment(lookUpSharedPoint[i]); 
  } 
  Search.sortValuesReverse(); 
  String[] SEARCH = Search.keyArray(); 
  String delimiter = SEARCH[0];  
  String[] divideCode = split(S, delimiter); 
  flipCode(divideCode[1]); 
  
partialA1flipResults=divideCode[0]+delimiter+"]"+flipResults+"["+delimiter+divideCode[2]; 
} 
 
//                                                                             B0 SORTING 
//                                                                             B0 SORTING 
//                                                                             B0 SORTING 
 
void flipCaseB(String S, Geometry g, Geometry[] G, int identity, int LV0, int LV1, int 
LV2){ 
  g.repCODE = S;   
  if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g, 
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);} 
  //FLIP ALL 
  flipCode(S); g.repCODE=flipResults; 
  if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g, 
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);} 
  g.repCODE=Original; 
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  //FLIP-KEEP 
  flipFirst(S);g.repCODE=flipFirstResult; 
  if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g, 
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);} 
   
  //FLIP-KEEP REVERSED 
  flipCode(g.repCODE); g.repCODE=flipResults; 
  if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g, 
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);} 
  g.repCODE=Original; 
   
  //KEEP-FLIP REVERSED 
  flipSecond(S);g.repCODE=flipSecondResult; 
  if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g, 
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);} 
   
  //KEEP-FLIP REVERSED 
  flipCode(g.repCODE); g.repCODE=flipResults; 
  if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g, 
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);} 
  g.repCODE=Original; 
   
  //FLIP-FLIP REVERSED 
  flipboth(S);g.repCODE=flipbothResult; 
  if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g, 
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);} 
   
 
  //FLIP-FLIP REVERSED 
  flipCode(g.repCODE); g.repCODE=flipResults; 
  if(identity==1){IdenticalMatch(g, G);} if(LV0==1){LevelZeroSE(g, 
G);}if(LV1==1){LevelOneSE(g, G);} if(LV2==1){LevelTwoSE(g, G);} 
  g.repCODE=Original; 
} 
 
String flipFirstResult; 
void flipFirst(String S){ 
  String[] Sarray = split(S, "/"); 
  String[] SarrayfirstPart = splitTokens(Sarray[0], "[]"); 
  String[] tempSarrayfirstPart = new String[SarrayfirstPart.length]; 
  for(int i=0; i<SarrayfirstPart.length; i++){ 
    tempSarrayfirstPart[tempSarrayfirstPart.length-1-i] = "[" + SarrayfirstPart[i] + "]"; 
  } 
  flipFirstResult = join(tempSarrayfirstPart,""); 
  flipFirstResult = flipFirstResult+"/"+Sarray[1]; 
} 
 
String flipSecondResult; 
void flipSecond(String S){ 
  String[] Sarray = split(S, "/"); 
  String[] SarraySecondPart = splitTokens(Sarray[1], "[]"); 
  String[] tempSarraySecondPart = new String[SarraySecondPart.length]; 
  for(int i=0; i<SarraySecondPart.length; i++){ 
    tempSarraySecondPart[tempSarraySecondPart.length-1-i] = "[" + SarraySecondPart[i] + 
"]"; 
  } 
  flipSecondResult = join(tempSarraySecondPart,""); 
  flipSecondResult = Sarray[0] + "/" + flipSecondResult; 
} 
 
String flipbothResult; 
void flipboth(String S){ 
  String[] Sarray1 = split(S, "/"); 
  String[] SarrayfirstPart = splitTokens(Sarray1[0], "[]"); 
  String[] tempSarrayfirstPart = new String[SarrayfirstPart.length]; 
  for(int i=0; i<SarrayfirstPart.length; i++){ 
    tempSarrayfirstPart[tempSarrayfirstPart.length-1-i] = "[" + SarrayfirstPart[i] + "]"; 
  } 
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  flipFirstResult = join(tempSarrayfirstPart,""); 
  String[] Sarray2 = split(S, "/"); 
  String[] SarraySecondPart = splitTokens(Sarray2[1], "[]"); 
  String[] tempSarraySecondPart = new String[SarraySecondPart.length]; 
  for(int i=0; i<SarraySecondPart.length; i++){ 
    tempSarraySecondPart[tempSarraySecondPart.length-1-i] = "[" + SarraySecondPart[i] + 
"]"; 
  } 
  flipSecondResult = join(tempSarraySecondPart,""); 
  flipbothResult = flipFirstResult + "/" + flipSecondResult; 
} 
 
//                                                                             B1 SORTING 
//                                                                             B1 SORTING 
//                                                                             B1 SORTING 
 
String caseB1possibleCodeA; 
String caseB1possibleCodeB; 
 
void caseB1Flip(String S, Geometry g, String delimiter){ 
  String[] lookUpSharedPoint = splitTokens(S, "[]/"); 
  IntDict Search = new IntDict(); 
  for(int i=0; i<lookUpSharedPoint.length; i++){ 
    Search.increment(lookUpSharedPoint[i]); 
  } 
  Search.sortValuesReverse(); 
  int[] counts = Search.valueArray(); 
  String[] SEARCH = Search.keyArray(); 
  String[] S1 = splitTokens(S,"/"); 
  if(delimiter==""){ 
    delimiter = SEARCH[0]; 
  } 
  String[] S1A = split(S1[0], delimiter); 
  String[] S2A = split(S1[1], delimiter); 
  caseB1possibleCodeA = S1A[0]+delimiter+S2A[1]+"/"+S2A[0]+delimiter+S1A[1]; 
  flipCode(S2A[0]); S2A[0]=flipResults; 
  flipCode(S1A[1]); S1A[1]=flipResults; 
  caseB1possibleCodeB = S1A[0]+delimiter+S2A[0]+"]/["+S1A[1]+delimiter+S2A[1]; 
  String[] Cleaning = splitTokens(caseB1possibleCodeB, "[]"); 
  for(int i=0; i<Cleaning.length; i++){ 
    if(Cleaning[i].equals("/")==false){ 
      Cleaning[i] = "["+Cleaning[i]+"]"; 
    } 
  } 
  caseB1possibleCodeB = join(Cleaning,""); 
} 
 
//                                                                             B2 SORTING 
//                                                                             B2 SORTING 
//                                                                             B2 SORTING 
 
String caseB2possibleCodeA; 
String caseB2possibleCodeB; 
String caseB2possibleCodeC; 
String caseB2possibleCodeD; 
String caseB2possibleCodeE; 
String caseB2possibleCodeF; 
String newB2code1; 
String newB2code2; 
 
void caseB2Flip(String S, Geometry g, String delimiter){ 
  String[] lookUpSharedPoint = splitTokens(S, "[]/"); 
  IntDict Search = new IntDict(); 
  for(int i=0; i<lookUpSharedPoint.length; i++){ 
    Search.increment(lookUpSharedPoint[i]); 
  } 
  Search.sortValuesReverse(); 
  int[] counts = Search.valueArray(); 
  String[] SEARCH = Search.keyArray(); 
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  String delimiter1 = SEARCH[0]; 
  String delimiter2 = SEARCH[1]; 
  int c1 =0, c2 =0; 
  String[] B2search = split(S, "/"); 
  String[] firstSide = splitTokens(B2search[0],"[]"); 
  for(int p=0; p<firstSide.length; p++){ 
    if(delimiter1.equals(firstSide[p])){ 
      c1++; 
    } 
    if(delimiter2.equals(firstSide[p])){ 
      c2++; 
    } 
  } 
  if(c1==1 && c2==2){ 
   String[] B2split = split(S, "/");  
   partialA1Flip(B2split[0], g); 
   B2split[0] = partialA1flipResults; 
   newB2code1 = B2split[0]+"/"+B2split[1]; /// Main CODE 2 
   caseB1Flip(S, g, delimiter1); 
   caseB2possibleCodeA = caseB1possibleCodeA; /// Main CODE 3 
   caseB2possibleCodeB = caseB1possibleCodeB; /// Main CODE 4 
   if(g.CAD != 234){ 
     caseB1Flip(caseB2possibleCodeA, g, delimiter2); 
     caseB2possibleCodeC = caseB1possibleCodeA; 
     caseB2possibleCodeD = caseB1possibleCodeB; 
     caseB1Flip(caseB2possibleCodeB, g, delimiter2);  
     caseB2possibleCodeE = caseB1possibleCodeA; 
     caseB2possibleCodeF = caseB1possibleCodeB; 
     B2split = split(caseB1possibleCodeB,"/"); 
     partialA1Flip(B2split[1], g); 
     B2split[1] = partialA1flipResults; 
     newB2code2 = B2split[0]+"/"+B2split[1]; /// Main CODE 2 
   } 
  } 
  if(c1==0 && c2==1){ 
   String[] B2split = split(S, "/");  
   partialA1Flip(B2split[1], g); 
   B2split[1] = partialA1flipResults; 
   newB2code1 = B2split[0]+"/"+B2split[1]; /// Main CODE 2 
   caseB1Flip(S, g, delimiter2); 
   caseB2possibleCodeA = caseB1possibleCodeA; /// Main CODE 3 
   caseB2possibleCodeB = caseB1possibleCodeB; /// Main CODE 4 
   caseB1Flip(caseB2possibleCodeA, g, delimiter1); 
   caseB2possibleCodeC = caseB1possibleCodeA; 
   caseB2possibleCodeD = caseB1possibleCodeB; 
   caseB1Flip(caseB2possibleCodeB, g, delimiter1);  
   caseB2possibleCodeE = caseB1possibleCodeA; 
   caseB2possibleCodeF = caseB1possibleCodeB; 
   B2split = split(caseB1possibleCodeB,"/"); 
   partialA1Flip(B2split[0], g); 
   B2split[0] = partialA1flipResults; 
   newB2code2 = B2split[0]+"/"+B2split[1]; /// Main CODE 2 
  } 
  if(c1==1 && c2==0){ 
   String[] B2split = split(S, "/");  
   partialA1Flip(B2split[1], g); 
   B2split[1] = partialA1flipResults; 
   newB2code1 = B2split[0]+"/"+B2split[1]; /// Main CODE 2 
   caseB1Flip(S, g, delimiter1); 
   caseB2possibleCodeA = caseB1possibleCodeA; /// Main CODE 3 
   caseB2possibleCodeB = caseB1possibleCodeB; /// Main CODE 4 
   caseB1Flip(newB2code1, g, delimiter1); 
   caseB2possibleCodeC = caseB1possibleCodeA; 
   caseB2possibleCodeD = caseB1possibleCodeB; 
   B2split = split(caseB1possibleCodeA,"/"); 
   partialA1Flip(B2split[0], g); 
   B2split[0] = partialA1flipResults; 
   newB2code2 = B2split[0]+"/"+B2split[1]; /// Main CODE 2 
  }} 
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Appendix D 

Morphological Correlations Flowcharts 
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