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Summary Statement 15 

Understanding the adaptive changes in wheat pollen lipidome during high temperature stress is 16 

critical to improving seed set and developing high temperature tolerant wheat varieties. We 17 

found that the most heat-responsive lipids in pollen were extraplastidic phospholipids, 18 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), 19 

phosphatidic acid (PA), and phosphatidylserine (PS). Comparison of the present results on wheat 20 

pollen with results of our previous research on wheat leaves suggests that similar lipid changes 21 

contribute to high temperature adaptation in both leaves and pollen, though the lipidomes have 22 

inherently distinct compositions.  23 
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ABSTRACT 24 

Understanding the adaptive changes in wheat pollen lipidome under high temperature (HT) stress 25 

is critical to improving seed set and developing HT tolerant wheat varieties. We measured 89 26 

pollen lipid species under optimum and high day and/or night temperatures using electrospray 27 

ionization-tandem mass spectrometry in wheat plants. The pollen lipidome had a distinct 28 

composition compared to that of leaves. Unlike in leaves, 34:3 and 36:6 species dominated the 29 

composition of extraplastidic phospholipids in pollen under optimum and HT conditions. The 30 

most HT-responsive lipids were extraplastidic phospholipids, PC, PE, PI, PA, and PS. The 31 

unsaturation levels of the extraplastidic phospholipids decreased through the decreases in the 32 

levels of 18:3 and increases in the levels of 16:0, 18:0, 18:1, and 18:2 acyl chains. PC and PE 33 

were negatively correlated. Higher PC:PE at HT indicated possible PE-to-PC conversion, lower 34 

PE formation, or increased PE degradation, relative to PC. Correlation analysis revealed lipids 35 

experiencing coordinated metabolism under HT and confirmed the HT-responsiveness of 36 

extraplastidic phospholipids. Comparison of the present results on wheat pollen with results of 37 

our previous research on wheat leaves suggests that similar lipid changes contribute to HT 38 

adaptation in both leaves and pollen, though the lipidomes have inherently distinct compositions.  39 

 40 

Key words: Pollen lipids; wheat; high temperature stress; direct infusion automated electrospray 41 

ionization tandem mass spectrometry; lipid remodeling; lipid unsaturation; extraplastidic 42 

phospholipids; phosphatidylcholine; phosphatidylethanolamine; lipid co-occurrence. 43 
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INTRODUCTION 44 

High temperature is a major abiotic stress in wheat (Triticum aestivum L.) growing regions of the 45 

world. Lobell and Field (2007) reported that wheat yields decreased by 3.2 – 8.4 % for every 1°C 46 

increase in minimum and maximum temperatures from 1961 to 2002 around the globe. 47 

Controlled environmental research has shown that high night (HN), high day (HD), and high day 48 

and night (HDN) temperatures during flowering considerably decrease seed set (15 - 37 %), 49 

grain number (13 - 41 %) and grain yield (13 - 43 %) of wheat (Narayanan et al., 2015). The 50 

high temperature-induced yield decreases in wheat are expected to increase in the future with 51 

climate change, as global mean surface air temperature is predicted to increase by 1.4 – 3.1 °C by 52 

the end of the 21st century (Intergovernmental Panel on Climate Change, 2013). Tubiello et al. 53 

(2002) simulated the effects of climate change on crop production specifically in the U.S., and 54 

predicted that winter wheat production could be decreased by 30 – 40% in the rainfed areas of 55 

the U.S. due to climate change. Similarly, Asseng et al. (2015) reported that global wheat 56 

production will decrease by 6% for every further 1°C increase in global mean temperature, and 57 

will become more variable over time and space. In order to develop climate-resilient wheat 58 

varieties and to mitigate the impacts of climate change on wheat production, it is important to 59 

clearly elucidate the mechanisms of yield loss under high temperature stress.  60 

Wheat yields are more sensitive to high temperature stress if the stress occurs during 61 

reproductive stages, compared to vegetative stages (Farooq et al., 2011). If high temperature 62 

occurs only during flowering, decreased grain yields are the result of decreased seed set since 63 

high temperature does not affect individual grain weight as stress is absent during grain filling 64 

(Narayanan et al., 2015). Seed set is primarily the result of floret fertility, which is defined by 65 

functionality of male and female gametes (pollen and ovule, respectively) (Prasad and 66 
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Djanaguiraman, 2014). Prasad and Djanaguiraman (2014) evaluated the effect of short episodes 67 

(5 days) of high temperature stress on wheat floret fertility between 15 days prior to flowering 68 

and 30 days after flowering, and identified that floret fertility showed maximum decrease when 69 

stress occurred 5 days prior to flowering and at the time of flowering. This period coincides with 70 

gamete formation and development, pollination, and fertilization in wheat (Saini and Aspinall, 71 

1982). Pollen viability and performance are drastically affected if high temperature occurs during 72 

this highly sensitive period in wheat (Saini and Aspinall, 1982; Prasad and Djanaguiraman, 73 

2014). Thus, reduced seed set in wheat due to high temperature stress can primarily be attributed 74 

to poor pollen performance, when stress occurs just before flowering or at the time of flowering.  75 

Prasad and Djanaguiraman (2014) reported anatomical evidence explaining reasons for 76 

poor pollen performance under high temperature stress in wheat. For example, high temperature 77 

stress (35/25 °C) resulted in collapsed and desiccated pollen grains with deeply pitted and non-78 

smooth surfaces. In addition, high temperature stress also decreased the number of pollen grains 79 

adhered to the stigmatic surface. Similarly, Saini and Aspinall (1982) and Saini et al. (1984) 80 

showed that high temperature causes structural abnormalities in wheat pollen, which lead to 81 

reduced pollen viability and performance. However, the metabolic changes leading to poor 82 

pollen performance are not clearly understood in wheat. 83 

Only limited literature is available on metabolic changes leading to poor pollen 84 

performance in crops. Jain et al. (2007, 2010) reported that impaired sugar-starch metabolism in 85 

developing microspores leads to decreased pollen germination and viability in sorghum 86 

[Sorghum bicolor (L.) Moench]. Prasad and Djanaguiraman (2011) found that high temperature 87 

increases the amount of reactive oxygen species in pollen grains, leading to membrane damage, 88 

which results in reduced pollen viability and germination in the same species. Sakata et al. 89 
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(2010) reported that decreased endogenous levels of auxin in anther cells at high temperature 90 

cause impaired pollen development and pollen sterility in barley (Hordeum vulgare L.). 91 

Considering the unique lipidome that the pollen grains possess, Ischebeck (2016) reasoned that 92 

pollen lipid remodeling would be important for plants to cope with high temperature stress.  93 

Recent studies have started investigating the role of lipid metabolic changes on pollen 94 

performance in crops. Prasad and Djanaguiraman (2011) found relatively increased 95 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylcholine (LPC), 96 

lysophosphatidylethanolamine (LPE), and phosphatidylserine (PS) contents and decreased 97 

monogalactosyldiacylglycerol (MGDG), phosphatidylglycerol (PG), and phosphatidic acid (PA) 98 

contents associated with reduced pollen viability and germination under high temperature 99 

conditions in sorghum. Djanaguiraman et al. (2013) reported increased MGDG, 100 

digalactosyldiacylglycerol (DGDG), PC, phosphatidylinositol (PI), lysophosphatidylglycerol 101 

(LPG) levels and decreased PG and PA levels associated with reduced pollen viability and 102 

germination under high temperature conditions in soybean [Glycine max (L.) Merr.]. Potocky´ et 103 

al. (2003) found that PA produced by the action of phospholipase D is required for pollen tube 104 

growth in tobacco (Nicotiana tabacum L.).  105 

Studies on Arabidopsis (Arabidopsis thaliana) reveal that silencing of 106 

phosphoethanolamine N-methyltransferase, a key enzyme involved in biosynthesis of PC, results 107 

in temperature-sensitive male sterility (Mou et al., 2002). Zienkiewicz et al. (2013) reported that 108 

phospholipase A (cleaves acyl side chains of phospholipids and releases lysophospholipids) and 109 

lipoxygenase (catalyzes fatty acid oxidation) are involved in oil body mobilization, which 110 

enables pollen germination in olive (Olea europaea L.). Lalanne et al. (2004) found that 111 

glycosylphosphatidylinositol (synthesized in the endoplasmic reticulum via the sequential 112 
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addition of monosaccharides, fatty acids, and phosphoethanolamines to PI) is required for pollen 113 

germination and tube growth in Arabidopsis. Zheng et al. (2003) found that membrane-bound 114 

glycerol-3-phosphate acyltransferase that mediates the initial step of glycerolipid biosynthesis in 115 

the extraplastidic compartments is essential for tapetum differentiation and pollen development 116 

in Arabidopsis. In spite of the importance of lipid metabolic changes and the enzymes involved 117 

in those pathways in pollen performance under optimum and high temperature stress conditions, 118 

no studies have investigated high temperature-induced perturbations in pollen lipidome and their 119 

role in high temperature adaptation of wheat plants.  120 

In 2013-2014, we conducted a study, in which we grew plants of a heat tolerant wheat 121 

genotype Ventnor and a heat susceptible wheat genotype Karl 92 to evaluate the changes in the 122 

lipid profiles of leaf and pollen under high day and/or night temperatures and to relate that to the 123 

high temperature responses of these genotypes. The results of leaf lipid profiling are presented in 124 

Narayanan et al. (2016a, 2016b). The current paper is the third one in the series, and here we 125 

report the results of the pollen lipid profiling on the same plants, which were sampled for leaf 126 

lipid profiling. The objectives of the present research were to quantify the effects of high day 127 

and/or night temperatures during flowering on pollen lipid profile of wheat and identify the lipids 128 

that are associated with high temperature response of wheat plants. We hypothesized that the 129 

pollen lipidome will be altered by high temperature that some lipids will be particularly 130 

responsive to high temperature, and that some lipid responses will be associated with high 131 

temperature adaptation of wheat plants. 132 

MATERIALS AND METHODS 133 

Plant material and growth conditions 134 
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Two experiments with the same treatment structure and measurement conditions were conducted 135 

in controlled environment facilities at Kansas State University, USA in 2013 and 2014. The 136 

experimental details and the plant material and growth conditions are described in Narayanan et 137 

al. (2016a). Briefly, wheat genotypes Ventnor (heat-tolerant) and Karl 92 (heat susceptible) were 138 

grown at optimum temperature conditions (OT; 25/15 °C, maximum/minimum) until the onset of 139 

flowering. At this point, the main spike (where flowering started) was tagged. Thereafter, plants 140 

were exposed to HN (25/24 °C), HD (35/15 °C), HDN (35/24 °C) or OT for 12 days. For lipid 141 

extraction, pollen grains were collected from five plants per genotype from each temperature 142 

regime. The five plants were individual biological replicates, and the final number of samples 143 

was n = 10 (5 plants × 2 experiments) for each genotype in each temperature regime.  144 

Pollen collection and lipid extraction 145 

Pollen grains were collected from the tagged main spike on each plant between 07:30 and 09:30 146 

h on day 3 of stress or at the same time point for plants at OT. At sampling, pollen grains (0.3-6 147 

mg dry weight) were dusted into 3 mL of isopropanol with 0.01% butylated hydroxytoluene at 148 

75 °C in a 50-mL glass tube with a Teflon-lined screw-cap (Thermo Fisher Scientific, Inc., 149 

Waltham, MA, USA). Tubes were kept at 75 °C for 15 min to deactivate lipid-hydrolyzing 150 

enzymes. After cooling the samples to room temperature, 1.5 mL of chloroform and 0.6 mL of 151 

water were added, and samples were stored at -80 °C until analysis. The lipid extraction 152 

procedure was carried out as described by Narayanan et al. (2016a) with slight modifications. 153 

Briefly, the lipid extract in isopropanol, butylated hydroxytoluene, chloroform, and water was 154 

shaken on an orbital shaker at room temperature for 1 h, centrifuged for 15 min (for pollen 155 

sedimentation), and transferred to a new glass tube using a Pasteur pipette, leaving the pollen 156 

grains at the bottom of the original tube. Four milliliters of chloroform:methanol (2:1) and 4 mL 157 
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of isopropanol (for pollen sedimentation) were added to the pollen grains, the samples were 158 

shaken on an orbital shaker at room temperature overnight, centrifuged for 15 min, and the 159 

solvent was transferred to the first extract. The addition, shaking (1 h), spinning, and transfer 160 

steps were performed four times until the pollen grains of every sample appeared white. At this 161 

stage, the solvent was evaporated from the extract in an N-EVAP 112 nitrogen evaporator 162 

(Organomation Associates, Inc., Berlin, MA, USA). Finally, the lipid extract was dissolved in 1 163 

mL of chloroform and stored at -80 °C. The extracted pollen grains were dried in an oven at 105 164 

°C overnight, cooled, and weighed to estimate the lipid content on a dry weight basis. Pollen dry 165 

weights were determined using a balance (Mettler Toledo AX, Mettler Toledo International, Inc., 166 

Columbus, OH, USA), which had a detection limit of 2 µg. The precision and accuracy of the 167 

balance were described by Vu et al. (2012). 168 

Electrospray ionization-triple quadrupole mass spectrometry lipid profiling 169 

An automated electrospray ionization-tandem mass spectrometry (ESI-MS/MS) approach was 170 

used, and data acquisition and analysis and acyl group identification were carried out as 171 

described previously (Narayanan et al., 2016a). The lipid molecular species were identified by 172 

precursor or neutral loss scanning, and the lipids in each head group class were quantified in 173 

comparison with internal standards of that class [See Supporting Information Table S1 in 174 

Narayanan et al. (2016a)]. The goal of the quantification was to compare different pollen 175 

samples for the amount of each lipid molecular species, rather than to compare the absolute 176 

amounts of various lipid molecular species with each other. To assure that the data for each 177 

molecular species could be compared throughout long periods of mass spectral data acquisition, 178 

a quality-controlled approach was employed (Dunn et al., 2011; Vu et al., 2014; Narayanan et 179 

al., 2016a). Quality control (QC) samples were prepared by pooling an aliquot from each pollen 180 
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sample and were analyzed recurrently among the experimental samples. The intensity of each 181 

lipid species in the experimental samples was normalized using the QC analyte intensities, as 182 

described in Narayanan et al. (2016a) (see ‘Materials and Methods’). The lipid values were 183 

calculated as normalized intensity per mg pollen dry weight, where a value of one is the intensity 184 

of 1 nmol of internal standard. The lipid values were converted to percentage of total signal (as 185 

presented here), which was estimated as the signal for a lipid species x 100/total signal for that 186 

sample (Supporting Information Table S1). To maintain data quality, the following data were 187 

removed from the data set; (1) lipid analytes for which the amount (normalized mass spectral 188 

signal) per mg of pollen dry weight less than the limit of detection (LOD), (2) lipid analytes with 189 

coefficient of variation (CoV; standard deviation divided by mean of the amount of the analyte in 190 

the quality control samples) greater than 0.3, and (3) samples with total mass spectral signal less 191 

than 5 or greater than 100. 192 

Unsaturation index 193 

Unsaturation index refers to the number of double bonds in a lipid, such that the greater the 194 

unsaturation index, the greater is the number of double bonds (degree of unsaturation) in that 195 

lipid. The unsaturation index of each lipid molecular species was calculated as the product of the 196 

amount of that lipid molecular species and the average number of double bonds per acyl chain, 197 

where the average number of double bonds per acyl chain was calculated as the number of 198 

double bonds in the lipid molecular species divided by the number of acyl chains. Finally, the 199 

unsaturation index of a lipid head group class was calculated as the sum of the unsaturation 200 

indices of individual lipid molecular species in that class (Hong et al., 2002; Narayanan et al., 201 

2016a). 202 

Production of heat maps and dendrograms 203 
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Utilities of the MetaboAnalyst web server (metabolanalyst.ca; Xia et al., 2009, 2012) were used 204 

to perform the autoscaling of lipid data (Supporting Information Table S2) and to produce the 205 

correlation tables (Supporting Information Tables S3 and S4) and heat maps. Autoscaling allows 206 

for easy comparison of lipid levels in different samples. The autoscaled value of a lipid in a 207 

sample is calculated as follows: [(the amount of lipid in that sample) - (the average amount of 208 

that lipid among all samples)] divided by (the standard deviation for the amount of that lipid 209 

among all samples). 210 

The lipid data of each genotype (Supporting Information Table S1) were uploaded to 211 

CLUSTER 3.0 (Open source software, Human Genome Center, The Institute of Medical 212 

Science, The University of Tokyo, Tokyo, Japan) (Eisen et al., 1998) for determining lipid 213 

clusters. CLUSTER 3.0 generated lipid clusters for each genotype using a single-linkage 214 

hierarchical algorithm based on Spearman’s correlation coefficient, ρ. The clustering output (.cdt 215 

file) of each genotype were viewed using ‘Java Treeview’ (Open source software, available at 216 

http://jtreeview.sourceforge.net) for identifying lipids with ρ ≥ 0.80 with at least one other lipid. 217 

The data on these lipids (with ρ ≥ 0.80 with at least one other lipid in either genotype) were again 218 

uploaded to CLUSTER 3.0, and the resulting output (.cdt file) for each genotype were converted 219 

to NEWICK format (.nwk) using a Python script written by Haibao Tang (J. Craig Venter 220 

Institute, Rockville, MD, USA). The script can be obtained from the following link: 221 

https://github.com/tanghaibao/treecut/blob/master/scripts/eisen_to_newick.py. The NEWICK 222 

files of each genotype were exported to Dendroscope (Huson et al., 2007; Huson and 223 

Scornavacca, 2012) to produce the dendrograms, which were modified in color. 224 

Statistical analyses 225 
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The experimental design for plant husbandry was a randomized complete block with a split plot 226 

treatment structure. Temperature was the main plot factor and genotype was the split plot factor. 227 

The treatment factor, temperature had four levels (OT, HN, HD, and HDN) and genotype had 228 

two levels (genotypes Ventnor and Karl 92). There were five replications (five plants, biological 229 

replications) for the split plot treatment factor, genotype. The experiment was conducted two 230 

times. MIXED procedure in SAS (Version 9.4, SAS Institute) was used to perform analysis of 231 

variance and to estimate means and standard errors. Treatment means were compared using least 232 

significant difference (LSD) (P<0.05).  233 

RESULTS 234 

Electrospray ionization-triple quadrupole mass spectrometry profiling and quantification 235 

of wheat pollen lipids 236 

The ESI-MS/MS approach quantified a total of 89 lipid analytes (Supporting Information Table 237 

S1). These included plastidic lipids [digalactosylmonoacylglycerol (DGMG), DGDG, 238 

monogalactosylmonoacylglycerol (MGMG), MGDG, PG, and sulfoquinovosyldiacylglycerol 239 

(SQDG)], extraplastidic phospholipids (PE, PC, PI, PA, and PS), lysolipids (LPG, LPC, and 240 

LPE), diacylglycerols (DAG), TAGs, and ox-lipids (lipids with oxidized acyl chains). Pollen 241 

lipid composition and lipid changes under high temperature stress are discussed in detail in the 242 

following sections. Since the composition and alteration of pollen lipidome were essentially the 243 

same for both the heat tolerant and susceptible genotypes, data for only the susceptible genotype 244 

are presented here; data for the tolerant genotype are given as Supporting Information Figs. S1-245 

S6. 246 

Composition of extraplastidic phospholipids in pollen differed from that in leaves 247 

Page 11 of 33 Plant, Cell & Environment



12 

 

The composition of extraplastidic phospholipids in pollen was dominated by two species, 34:3 248 

and 36:6, which contain linolenic acid (18:3) as 16:0/18:3 or as 18:3/18:3 (Fig.1a, c, e, g, and i). 249 

These species together made up >90, >85, and > 79% of total PC under OT and HN, HD, and 250 

HDN, respectively (Fig. 2). They were the predominant species in PE, PI, and PA, making up 251 

over 85% of these classes under optimum conditions and over 70% under high temperature stress 252 

conditions (Figs. 1 & 2). This is in contrast to the situation in leaves where 34:3 and 36:6 species 253 

made up <60% of each class for PC, PE, PI, and PA under any temperature regime (Figs. 1b, d, f, 254 

h, and j). Instead, leaf extraplastidic phospholipid compositions had large proportions of species 255 

containing linoleic acid (18:2), such as 34:2 (16:0/18:2), 36:5 (18:2/18:3), and 36:4 (likely 256 

primarily 18:2/18:2) (Figs. 1 & 2). Thus, wheat pollen grains contained the same extraplastidic 257 

phospholipid classes as leaves, but they had different compositions, compared to leaves, under 258 

optimum and high temperature stress conditions. Although the pollen lipids are somewhat altered 259 

in response to stress (Figs. 1 & 2 and following sections), the composition of the major 260 

extraplastidic phospholipids remain dominated by two molecular species. The following sections 261 

describe pollen lipid remodeling in wheat plants as they cope with high temperature stress.   262 

High temperature alters composition and unsaturation levels of extraplastidic 263 

phospholipids in pollen 264 

High day and/or night temperatures resulted in significant changes in the diacyl lipid species 265 

composition of extraplastidic classes PC, PE, PI, PA, and PS (Fig. 3). These are the 266 

phospholipids that are synthesized in the endoplasmic reticulum. High temperature caused 267 

decreases in the amounts of more unsaturated lipid species and increases in the amounts of less 268 

unsaturated lipid species. For example, lipid species containing two polyunsaturated acyl chains, 269 

such as 36:6- (which is a di18:3 combination) PC, PE, and PA, decreased at high temperatures 270 
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(Fig. 3). On the other hand, the amount of less unsaturated species, such as 34:1- (largely 271 

16:0/18:1), 34:2- (largely 16:0/18:2), 36:4- (largely 18:2/18:2), 36:3- (largely 18:1/18:2), and 272 

36:2- (18:1/18:1 or 18:0/18:2) PC, PE, and/or PI increased at high temperatures [Fig. 3; acyl 273 

composition is provided based on Table 1 of Devaiah et al. (2006)]. 34:2- PC had a threefold or 274 

greater increase at HD and HDN, compared with OT. In general, lipid species that had 18:3 acyl 275 

chains (e.g. 36:6 species) decreased during high-temperature stress, and lipid species that had 276 

16:0, 18:0, 18:1, and/or 18:2 acyl chains (e.g. 34:1, 34:2, 36:4, 36:3, and 36:2 species) increased 277 

during high-temperature stress. This led to a decrease in unsaturation index of PE, PC, PI, PA, 278 

and PS at high-temperature stress (although the decrease was not statistically significant for PA 279 

and PS) (Fig. 4). Similar trends in the composition and unsaturation levels of extraplastidic 280 

phospholipids were noticed in the leaves of these plants (Narayanan et al., 2016a). 281 

Interestingly, 34:3- [16:0/18:3; Devaiah et al. (2006)] PC, PI, and PS did not decrease 282 

under high temperature conditions (Fig. 3). This might be a reason for unsaturation index 283 

remaining high even when it decreased under high temperature stress conditions for these lipid 284 

classes (Fig. 4). Whether the 34:3 species contribute to any unique mechanism for high 285 

temperature adaptation in pollen grains needs to be investigated in future studies.   286 

PC and PE species levels are negatively correlated  287 

PC and PE species were negatively correlated in wheat pollen (Fig. 5a). In addition, a significant 288 

increase in PC:PE ratio was noticed at high temperatures (Fig. 5b). PC:PE ratio increased 96, 61, 289 

and 125 % at HN, HD, and HDN, respectively. Higher PC:PE ratios were also found in the 290 

leaves of these plants at high temperatures (Narayanan et al., 2016a).  291 

Correlation analysis reveals co-occurring lipids under high temperature stress and 292 

confirms the high temperature responsiveness of extraplastidic phospholipids  293 
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Spearman’s correlation coefficient (ρ), calculated among lipid analytes across all individual 294 

pollen samples (two experiments of five replicates each under four temperature regimes) 295 

revealed co-occurring lipids (lipids experiencing coordinated metabolism) under high 296 

temperature conditions. Spearman’s correlation coefficient ranges from -1 (perfect negative 297 

correlation) to 1 (perfect positive correlation), and a value of zero indicates no correlation. 298 

Correlation analysis was performed on all 89 lipid analytes based on ρ (Supporting Information 299 

Table S3). A dendrogram was created by matching each lipid analyte with the one to which it 300 

was most highly correlated (Fig. 6; see Section on ‘Materials and Methods’). The dendrogram 301 

includes groups of lipids (indicated by the red and blue bars on the dendrogram) in which every 302 

lipid is correlated with at least one other lipid within the group with ρ ≥ 0.85. The arrows on the 303 

dendrogram indicate the directionality of differences in levels of each lipid under HDN 304 

compared with OT. The dendrogram of the wheat genotype Karl 92 included 10 lipid groups 305 

(Fig. 6). Each group comprises co-occurring lipids that are up-regulated or down-regulated 306 

together through time under various temperature treatments. The lipid groups detected in the 307 

present study mainly included ER synthesized phospholipids, which formed groups 1-7. This 308 

confirms that the pollen lipid changes, which are likely adaptive to the temperature increases, 309 

mainly included altered metabolism of ER synthesized phospholipids. 310 

DISCUSSION  311 

In the present study, we found that wheat pollen lipidome contained the same extraplastidic 312 

phospholipid classes as leaves, but their composition differed under optimum and high 313 

temperature stress conditions. Unlike in leaves, the composition of extraplastidic phospholipids 314 

in pollen was dominated by 34:3 and 36:6 species, which contain linolenic acid (18:3). This 315 

unique composition of the pollen lipidome might be important for the functioning of pollen 316 
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grains under optimum and stress conditions. Unlike in pollen, leaf extraplastidic phospholipid 317 

compositions had large proportions of 34:2, 36:5, and 36:4 species, which contain linoleic acid 318 

(18:2). Our results support Ischebeck (2016), who, after reviewing extensive data on the plant 319 

lipidome, commented that the pollen lipidome comprises the same lipid classes as other plant 320 

cells and tissues, but has different compositions, compared to other tissues.  321 

The alterations in the composition and unsaturation levels of extraplastidic phospholipids 322 

in wheat pollen suggest that lipid remodeling and decreases in the level of lipid unsaturation are 323 

adaptive mechanisms in pollen under high temperature stress. However, some damage had 324 

occurred to pollen grains leading to their reduced performance, which was documented in terms 325 

of reduced seed set (Narayanan et al., 2016a). Lipid remodeling refers to decreases in the 326 

amounts of certain lipids and increases in others (Zheng et al., 2011). In the present study, the 327 

type of lipid remodeling, in terms of decreases in the amounts of extraplastidic phospholipids 328 

containing highly unsaturated acyl chains (e.g., 18:3) and increases in the amounts of 329 

extraplastidic phospholipids containing less unsaturated or saturated acyl chains (e.g., 16:0, 18:0, 330 

18:1, and 18:2) (Fig.3), is consistent with the notion that it could prevent a phase transition of 331 

membranes from a liquid crystalline phase to a hexagonal II or cubic phase (corresponding to 332 

non-bilayer structure) at high temperatures. 333 

Fatty acid double bonds largely have a cis configuration in plant lipids. The cis double 334 

bonds introduce bends in the fatty acid chains and thereby, reduce tight packing of adjacent lipid 335 

molecules. Decreasing the number of double bonds, and thus, the degree of unsaturation at high 336 

temperatures are adaptive mechanisms in plants to maintain the close packing of lipid molecules 337 

within the membranes, in order to maintain the optimal fluidity and integrity of membranes 338 

(Larkindale and Huang, 2004). In the present study, the degree of unsaturation of extraplastidic 339 
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phospholipids in wheat pollen decreased at high temperatures (Fig. 4). The decrease in 340 

unsaturation level was mainly due to the decrease in the polyunsaturated fatty acid, linolenic acid 341 

(18:3), and the increases in the less unsaturated fatty acids, oleic acid (18:1) and linoleic acid 342 

(18:2), and saturated fatty acids, palmitic acid (16:0) and stearic acid (18:0) (Fig. 3). The same 343 

trend was also noticed in the leaves of these plants (Narayanan et al., 2016a). This suggests that 344 

similar lipid metabolic changes contributed to adaptive mechanisms under high temperature 345 

stress in wheat leaves and pollen. 346 

In the present study, we found that PC and PE species were negatively correlated in 347 

wheat pollen such that a significant increase in PC:PE ratio was observed at high temperatures 348 

(Fig. 5). A larger PC:PE ratio at high temperatures indicates possible PE-to-PC conversion, 349 

reduced PE formation from PC, or PE degradation; the metabolic alterations are compensatory 350 

for the physical changes in membrane structure due to the temperature increases. Lipids such as 351 

PE tend to form hexagonal II phase or other non-bilayer phases, whereas PC forms bilayers 352 

(Seddon, 1990). Higher ratios of PC to PE reduce the propensity of membranes to form non-353 

bilayer phases (Williams, 1998; de Vries et al., 2004). In the present study, increased PC:PE 354 

ratios in pollen grains at high temperatures would be consistent with maintenance of membrane 355 

fluidity, presumably avoiding high-temperature-induced non-bilayer phase formation. Higher 356 

PC:PE ratios were also found in the leaves of these plants at high temperatures (Narayanan et al., 357 

2016a); again suggesting the same type of lipid remodeling as an adaptive mechanism under high 358 

temperature stress in wheat leaves and pollen.  359 

The present study revealed lipid groups that included co-occurring lipids in pollen grains 360 

(Fig. 6). These lipids undergo co-metabolism and are up-regulated or down-regulated together 361 

through time under various temperature treatments. The strong metabolite correlations that form 362 
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the lipid groups could be attributed to strong mutual control by a single enzyme (Camacho et al., 363 

2005). Several lipid-metabolizing enzymes acting on multiple, related lipid substrates that 364 

contain the same component acyl chain or head group are well known. Vu et al. (2014) reported 365 

that co-occurring lipids could be the products of the same rate-limiting enzyme or downstream of 366 

the rate-limiting enzyme(s) in a pathway. In the present study, the co-metabolism of the ER 367 

synthesized phospholipids, which formed groups 1-7, comprises a possible upregulation of fatty 368 

acid desaturase (FAD) 2 (which converts 18:1 PC to 18:2 PC), downregulation of FAD3 (which 369 

converts 18:2 PC to 18:3 PC) and conversion of desaturated PCs to other phospholipids (such as 370 

PI, PS, and PA).  371 

The predominant appearance of PE and PC species in lipid groups (Fig. 6), negative 372 

correlations among PE and PC molecular species (Fig. 5a), and the increased PC:PE ratios at 373 

high temperatures (Fig. 5b), together indicate the role of PE and PC and PE-to-PC conversion, 374 

reduced PE formation, or PE loss, relative to PC, in high temperature adaptive mechanisms in 375 

pollen grains. The phospholipids, PC and PE, are abundant in plant tissues. PC accounts for 40 to 376 

60% of lipids in extraplastidic membranes of plants (Moore, 1990; Bolognese and McGraw, 377 

2000) and performs important functions required for reproductive success; e.g., diurnally 378 

changing molecular species of PC bind with florigen FT protein to promote flowering 379 

(Nakamura et al., 2014). PC can be synthesized in eukaryotic cells through the CDP-choline 380 

pathway or phosphatidylethanolamine N-methyltransferase (PEMT) pathway. In the latter, 381 

PEMT catalyzes three repeated methylation reactions with S-adenosylmethionine as the methyl 382 

donor, converting PE to PC (Keogh et al., 2009). Another possible synthetic route is high 383 

temperature induced activation of phospholipases, such as phospholipase C, which can convert 384 

PE to DAG and phosphoethanolamine, and the subsequent trimethylation of 385 
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phosphoethanolamine to phosphocholine by S-adenosyl-L-methionine: phosphoethanolamine N-386 

methyltransferase (PMT) (Bolognese and McGraw, 2000). Thereafter, phosphocholine can be 387 

converted to cytidine diphospho-choline by CTP:phosphorylcholine cytidylyltransferase 388 

(Inatsugi et al., 2002), which is then incorporated into the DAG backbone by amino 389 

alcohol:aminophosphotransferase to produce PC. Further research is needed to understand which 390 

pathway and enzymes are activated under high temperature stress in pollen that results in co-391 

occurrence of PE and PC molecular species (lipid groups 1 and 2, respectively) and increased 392 

PC:PE ratio. 393 

Liu et al. (2015) reported that suppression of amino alcohol:aminophosphotransferases, 394 

which catalyze the final step of PC synthesis resulted in pollen sterility in Arabidopsis. Mou et 395 

al. (2002) reported that Arabidopsis plants in which the PMT gene is silenced failed to produce 396 

functional pollen at high temperatures. This high temperature-induced male sterility is attributed 397 

to defective biosynthesis of phosphocholine, and thus that of PC. This indicates a possible role of 398 

PC in maintaining pollen performance under high temperature conditions. Thus, in the present 399 

study, the increased co-metabolism of certain PC species (forming lipid group 2, Fig. 6) and the 400 

increased PC:PE ratio at high temperatures might be adaptive mechanisms to minimize high 401 

temperature induced pollen sterility. 402 

CONCLUSIONS 403 

Wheat pollen lipidome had a distinct composition compared to that of leaves. Unlike in leaves, 404 

the composition of extraplastidic phospholipids in pollen was dominated by two species, 34:3 405 

and 36:6, under optimum and high temperature stress conditions. High temperature stress altered 406 

the composition and unsaturation levels of pollen lipids. Lipids that were most responsive to high 407 

temperature stress were extraplastidic phospholipids (PC, PE, PI, PA, and PS). Lipid remodeling 408 
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and decreases in the level of lipid unsaturation were adaptive mechanisms in pollen grains under 409 

high temperature stress. The lipid remodeling included decreases in the amounts of more 410 

unsaturated extraplastidic phospholipids, and increases in the amounts of less unsaturated 411 

extraplastidic phospholipids. The lower unsaturation levels of extraplastidic phospholipids under 412 

high-temperature stress were predominantly due to lower levels of 18:3 fatty acyl chains and 413 

higher levels of 16:0, 18:0, 18:1, and 18:2 fatty acyl chains. Among extraplastidic phospholipids, 414 

PC and PE were particularly responsive to high temperature stress. PC and PE species had 415 

negative correlations. In addition, a significant increase in PC:PE ratio was noticed at high 416 

temperatures, indicating possible PE-to-PC conversion, lower PE formation, or increased PE 417 

degradation, relative to PC. In general, the changes in the extraplastidic phospholipid profile of 418 

wheat pollen were likely compensatory for the physical changes in membrane structure due to 419 

the temperature increases, i.e., to maintain membrane fluidity by avoiding high-temperature-420 

induced non-bilayer phase formation. This could be an adaptive mechanism to prevent 421 

temperature-induced pollen sterility. Correlation analysis revealed co-occurring lipids (i.e., lipids 422 

experiencing coordinated metabolism) under high temperature stress and confirmed the high 423 

temperature responsiveness of extraplastidic phospholipids. Comparison of present results on 424 

wheat pollen with that of our previous research on wheat leaves suggests that similar lipid 425 

changes contribute to adaptive mechanism under high temperature stress in wheat leaves and 426 

pollen, though pollen and leaf lipidomes have inherently distinct compositions. 427 
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Figure 1.  Composition of extraplastidic phospholipids of pollen grains (a, c, e, g, and i) and leaves (b, d, f, 
h, and j) of wheat genotype Karl 92. Leaf lipid compositions are reproduced from Narayanan et al. (2016a) 
for novel comparison with pollen lipid compositions. Values shown are mean ± SE; n = 10 [two experiments 

and five replications (plants)]. OT, optimum temperature; HN, high night temperature; HD, high day 
temperature; HDN, high day and night temperature; PC, phosphatidylcholine; PE, 

phosphatidylethanolamine; PI, phosphatidylinositol; PA, phosphatidic acid; PS, phosphatidylserine.  
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Figure 2.  Composition of various lipid species as a percentage of total PC and PE of pollen grains and leaves 
of wheat genotype Karl 92. Leaf lipid compositions are reproduced from Narayanan et al. (2016a) for novel 
comparison with pollen lipid compositions. OT, optimum temperature; HN, high night temperature; HD, high 

day temperature; HDN, high day and night temperature; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine.  
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Figure 3.  Effects of temperature on extraplastidic phospholipid molecular species of wheat genotype Karl 
92. Values shown are mean ± SE; n = 10 [two experiments and five replications (plants)]. Means with 

different letters are significantly different according to the least significant difference (LSD) test at P<0.05. 

Breaks on the y-axis indicate a change in scale. OT, optimum temperature; HN, high night temperature; HD, 
high day temperature; HDN, high day and night temperature; PC, phosphatidylcholine; PE, 

phosphatidylethanolamine; PI, phosphatidylinositol; PA, phosphatidic acid; PS, phosphatidylserine.  
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Figure 4. Effects of temperature on unsaturation index of extraplastidic phospholipid classes of wheat 
genotype Karl 92. The unsaturation index of each lipid molecular species was calculated as the product of 
the amount of that lipid molecular species and the average number of double bonds per acyl chain, where 

the average number of double bonds per acyl chain was calculated by dividing the number of double bonds 
in the lipid molecular species by the number of acyl chains. Finally, the unsaturation index of a lipid head 

group class was calculated as the sum of the unsaturation indices of individual lipid molecular species in that 
class. Values shown are mean ± SE; n = 10 [two experiments and five replications (plants)]. Means with 

different letters are significantly different according to the least significant difference (LSD) test at P<0.05. 
OT, optimum temperature; HN, high night temperature; HD, high day temperature; HDN, high day and 
night temperature; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PA, 

phosphatidic acid; PS, phosphatidylserine.  
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Figure 5. Heat map showing the correlation among phosphatidylcholine (PC) and phosphatidylethanolamine 
(PE) species of wheat genotype Karl 92 (a) based on Spearman’s correlation coefficient, ρ. Blue and red 

colors on the heat map indicate negative and positive correlations, respectively. Effects of temperature on 

PC:PE ratio (unitless) of Karl 92 (b). OT, optimum temperature; HN, high night temperature; HD, high day 
temperature; HDN, high day and night temperature.  
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Figure 6. Lipid dendrogram of wheat genotype Karl 92. Eighty nine lipid analytes were clustered using a 
single-linkage hierarchical algorithm based on Spearman’s correlation coefficient, ρ. Co-occurring lipid 

groups (Groups 1-10) with ρ ≥ 0.85 are indicated by red and blue bars on the dendrogram. The arrows on 
the dendrogram indicate the directionality of differences in levels of each lipid (based on % of total signal) 

under high day and night temperature stress conditions compared to optimum temperature conditions; lipids 
that decreased in amount are indicated by green-colored downward arrows, and lipids that increased in 

amount are indicated by pink-colored upward arrows.  
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