View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Clemson University: TigerPrints

Clemson University

TigerPrints

All Theses Theses

12-2017

Hierarchical Off-Road Path Planning and Its
Validation Using a Scaled Autonomous Car’

Angshuman Goswami
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all theses

Recommended Citation

Goswami, Angshuman, "Hierarchical Off-Road Path Planning and Its Validation Using a Scaled Autonomous Car" (2017). All Theses.

2793.
https://tigerprints.clemson.edu/all_theses/2793

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized

administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.


https://core.ac.uk/display/268664278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2793?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

HIERARCHICAL OFF-ROAD PATH PLANNING AND ITS VALIDATION
USING A SCALED AUTONOMOUSCAR

A Thesis
Presentedb
the Graduateschoolof
ClemsonUniversity

In PartialFulfillment
of theRequirement$or the Degree
Masterof Science
MechanicaEngineering

by
AngshumarGoswami
Decembep017

Acceptedby:
Dr. ArdalanVahidi, CommitteeChair
Dr. JohnR. Wagner
Dr. Phanindrarallapragada



Abstract

In the last few years. while a lot of research effort has b@emson autonomous vehicle navigation,
primarily focused on on-road vehicles, off-road path plagrstill presents new challenges. Path planning
for an autonomous ground vehicle over a large horizon in atructured environment when high-resolution
a-priori information is available, is still very much an epgroblem due to the computations involved. Local-
ization and control of an autonomous vehicle and how therobatgorithms interact with the path planner
is a complex task. The first part of this research details gwveldpment of a path decision support tool for
off-road application implementing a novel hierarchicatpalanning framework and verification in a simula-
tion environment. To mimic real world issues, like commuation delay, sensor noise, modeling error, etc.,
it was important that we validate the framework in a real emuinent. In the second part of the research, de-
velopment of a scaled autonomous car as part of a real expetafrenvironment is discussed which provides
a compromise between cost as well as implementation cotitipiegompared to a full-scale car. The third
part of the research, explains the development of a veimeleep (VIL) environment with demo examples
to illustrate the utility of such a platform.

Our proposed path planning algorithm mitigates the chgheaf high computational cost to find the
optimal path over a large scale high-resolution map. A dlpb#h planner runs in a centralized server and
uses Dynamic Programming (DP) with coarse informationéat an optimal cost grid. A local path planner
utilizes Model Predictive Control (MPC), running on-boanding the cost map along with high-resolution
information (available via various sensors as well as V2mpwnication) to generate the local optimal path.
Such an approach ensures the MPC follows a global optimal while being locally optimal. A central
server efficiently creates and updates route critical méttion available via vehicle-to-infrastructure(V2X)
communication while using the same to update the prescglwdxzhl cost grid.

For localization of the scaled car, a three-axis inertiahsugement unit (IMU), wheel encoders, a

global positioning system (GPS) unit and a mono-camera atsted. Driftin IMU is one of the major issues



which we addressed in this research besides developing-el@hcontroller which helped in implementing
the MPC in a constrained computational environment. Usimgraera and tire edge detection algorithm
we have developed an online steering angle measuremenagmeals well as a steering angle estimation
algorithm to be utilized in case of low computational re st

We wanted to study the impact of connectivity on a fleet of #igsi running in off-road terrain. It
is costly as well as time consuming to run all real vehiclessoAsome scenarios are difficult to recreate
in real but need a simulation environment. So we have deedlapvehicle-in-loop (VIL) platform using a
VIL simulator, a central server and the real scaled car tolinenthe advantages of both real and simulation
environment. As a demo example to illustrate the utility df \platform, we have simulated an animal
crossing scenario and analyze how our obstacle avoidagesthims performs under different conditions. In
the future it will help us to analyze the impact of connetgizin platoons moving in off-road terrain. For the
vehicle-in-loop environment, we have used JavaScript @ijetation (JSON) data format for information
exchange using User Datagram Protocol (UDP) for implemgntiehicle-to-Vehicle (V2V) and MySQL

server for Vehicle-to-Infrastructure (V2I) communicatio



Dedication

To my parents, teachers, guides, Puja, my brother, Mamu latitegpeople who have inspired me

in different walks of life.



Acknowledgments

I would like to thank my family and friends for their unconidital support and strong backing during
the course of this research without which it would not haveriygossible. | would like to thank Prof. Vahidi
for believing in me and providing me the opportunity to be at jgd this research project. His guidance,
attention to detail and enthusiasm towards the project bet me during all the stages of the research. |
would also like to thank my committee members, Prof. Talgda and Prof. Wagner for their support to
this research. | would like to thank Dr. Nianfeng Wan for hipgort in developing the programming tool,
Dr. Judhajit Roy for his support in validating our work in ansilation environment, Austin Dollar for his
suggestions in many crucial points of this research, Dr.Falyazi for his help on vehicle communications,
Dr. Hamed Saeidi for his help in image processing and Matt@&ieky for his help in building the scaled
car.

| would like to thank Dr. Paramsothy Jayakumar and the US ARARDEC and Automotive
Research Center at University of Michigan for their techhand financial support of this research. | would
also like to thank Dr. Chen Zhang from Ford Motor Co. for pobrg an industrial perspective on this

research project.



Table of Contents

Title Page
Abstract
Dedication
Acknowledgments

List of Figures

1

2

Introduction . . . . . . .. e e

Hierarchical Route Guidance Framework . . . . . . . . . . . . . . . ... .. ... ...
2.1 Architecture . . . . . . . . e
2.2 InformationLayers . . . . . . . . . . e

Optimal Off-Road Navigation . . . . . . .. . . . ... .. . ...
3.1 GlobalPlanner . . . . . . . . . . . e
3.2 Local Route Guidance via Model Predictive Path Planning . . . . . ... ... ..
3.3 SimulationResults . . . . . . .. e

Scaled Experimental Environment . . . . . . ... ... L
4.1 Experimental Setup . . . . . . . .
4.2 VehicleModel . . . . . . ..
4.3 Hierarchical Route Guidance Framework adapted to the Scaled Platform . . . . .
4.4 GlobalPlanneB1 . . . . . . . . . e
45 LocalPlanneBy . . . . . . .. e e
4.6 MotorControlBs . . . . . . . . e e e
4.7 Sensors Signal Conditionin®, . . . . . .. ...
4.8 LocalizationBs . . . . . . . . .. e e
4.9 Experiments: Localization and Low-Level Controller . . . . ... ... ......

MPC-based Obstacle Avoidance . . . . . . . . . . . . . . . . .. . ...
51 MPCFormulation . . . . . . . . . . . . . . e
5.2 Obstacles, Safeand Unsafe Zones . . . ... ... .. ... .. .........
5.3 Computational Delay Compensation and Predictor Mdggel,. . . . . . . .. .. ..
5.4 Experiments: Local Planner and Obstacle Avoidance . . .. ... ..... ...

Vehicle-in-the-Loop Platform for Verification of Obstacle Avoidance . . . . . .. .. ..
6.1 VILSImulator. . . . . . . . .

6.2 ExperimentsCollision Avoidancewith VariousLevelsof InformationandAnimal

CrossingAccidents. . . . . . . . L e

Vi

51



7 Conclusions

Bibliography . .

vii



List of Figures

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

51
5.2
53
5.4
5.5
5.6

6.1
6.2
6.3
6.4

Overview of the route guidance framework. . . . . . . . . . ... oL
Information Layers (Figure adopted from [34]) . . . . . . ... . ... ... ...

MPC radial steps and the optimal cost-to-go at the endREMircular horizon . . . . . ..
Prescribed routes with different information layerg(ffe adopted from [34]). . . . . . ..
Coordinated versus individual path planning (Figurepsed from [34]). . . . . . . . . . ..

Overview of the experimentaltestbed . . . . ... .. .. .. ... ..........
3 Degree of Freedom (DOF), 6 state BicycleModel. . . . . ...... ... ... ... ...
Framework adapted for the current testing platform. ...... . . . .. .. ... ... ...
Block Diagram of the Low-Level Controller. . . . . . . .. . .. ... ... ... ...
Overview of the motor control of the scaledcar. . . . . . ... .. ... ... .. ...
Block Diagram of the Open-Loop Acceleration Controller. . . . . . . .. .. ... ...
Block Diagram of the Open-Loop Steering Controller. . e
Plot of Observed Steering Angi® s Steering Motor PWMdpwm) ............
Block Diagram of Closed-Loop Steering Controller . . . . .. . ... ... ... ....
The internal block diagram of the Steering Angle Measwemtblock. . . . . .. ... ...
Steps of measuring steering anyléa the USBcamera . . . . . ... ... ... .....
Response laginthe servomotor . . . . . . . . . . . ... e
Steering model calibration for open-loopcontroller. . . . . . . . . ... ... ... ...
Comparison of open-loop and closed-loop control afrgétg. . . . . . . . ... ... ...
Response of the open-loop controller to random sigarigle demandd(). . . . . . . . ..
Sensor Signal Pre-Processing for Localization. . . .. .. ... ... .. ... ......
IMU Sensor Data Processing. . . . . . . . . . i v i i e e
Driftin IMU sensor measurement . . . . . . . . . . . e
Overview for Localizationof the scaledcar. . . . . . . . ... ... . . ... ..
Position Estimation with and without GPS . . . . . . . . . ... ..o oL
Yaw Angle Estimation . . . . . . . . ... e e
Advantage of the processing the IMU signal in the IMUveter . . . . . . ... ... ..
Yaw Control. . . . . . . L e e

Barycentric co-ordinate approach in determining tlie aad unsafe zones for the vehicle.
Assumed timing of measuring and applying signals (gaopted from [27]). . . . . . ..
Vehicle path trace running MPC along with differentisgts in the low-level controller . . .
Trace of Steering Angle and Yaw Angle inthe threetests. .. .. . . . . . ... ... ...
Vehicle path trace and steering command in with and witbbstacle scenarios. . . . . . .
Vehicle path trace and steering command with movingaatestscenarios . . . . .. .. ..

Yaw Angle Estimation . . . . . . .. e e
Framework adapted for simulated vehicles. . . . .. ... ... .. ... .......
Vehicle path trace and steering command using simulatiwironment in two scenarios
Obstacle avoidance with moving obstacle and noiseisosen. . . . . . .. .. ... ...

viii

43



6.5 Analysis of animal-vehicle collision avoidance usioffware-in-loop in four scenarios . . . 55
6.6 Analysis of animal-vehicle collision avoidance usiricle-in-loop in four scenarios. . . . 55



Chapter 1

Introduction

The field of off-road navigation has not yet been exploredxdmestively as on-road navigation.
While this presents an opportunity for research, there sse@ated challenges like lack of awareness, which
can not only lead to vulnerable situations but also increéasergy usage. Uninformed decisions in such
terrain can cause loss of a vehicle. Advances in connecteidlgetechnologies and real-time access to
computational clouds have caused a paradigm shift in theeaffiy of fleet management. Connected vehicles
which can talk amongst themselves as well as servers, egehiaformation, and automatically learn from
each other’s trip experience. Availability of precise 3Bwtion profiles, soil trafficability, and vegetation
maps present an opportunity for further improvement inroffel navigation. Off-road driving presents a
significantly different set of challenges when comparedto@ad driving [10,18,35,39]. In off-road vehicles,
more route considerations for the optimization routinesdseto be taken since they are not constrained to
the road network. Efforts have been made for improving ridelity in off-road driving based on terrain
roughness [38]. In recent years, extensive efforts in tHd Hé detection, classification and mapping of
terrain can largely be classified into two approaches; iptiging a terrain model with obstacle constraints
based on vehicle sensors and ii) using high-resolutionitemformation collected a priori[7,10,24,28]. For
generating the optimal route over a given terrain, an opdst exists to utilize both sources of data to better
inform the decision process.

A part of our research involves the investigation of an effitihierarchical approach for vehicle
path planning across vast off-road terrains. A global o@tion routine utilizes low resolution a-priori
information like terrain, soil and visibility to find an optial cost-to-go grid. This approach helps in dis-

tributing computation cost between the on-board computdrthe cloud. A global path planning algorithm



can run in the cloud, updating the cost-to-go grid based eratlgmented information available from V2X
communications. A local optimization routine incorposatégh-resolution information and builds on the
cost map, arriving at a global optimal path. The cost-to-gé gnsures that the local planner is aware of the
optimal trajectory in case it deviates from the mandateti.pht our simulation, we have utilized publicly
available terrain and soil maps in our algorithms beforenig vehicle-in-the-loop testing. Improving safety
of vehicles is one of the prime motivations for increasingpaomy. In military applications, visibility of a
platoon from the nearest communication towers or avoidimgrbf-sight of adversarial observation towers is
of paramount importance. We address those objectives ipathirplanning algorithm. We will use the ter-
rain maps and known positions of adversarial towers, to igeaa visibility map and incorporate it into our
optimization routine. For remote fleet operation, asgistire vehicle operator with updated route guidance
can make a critical difference.

After algorithm verification in a simulation environmenteviuilt a scaled car to validate our al-
gorithm in a vehicle-in-the-loop environment. In our prepd scenarios, a real vehicle communicates with
virtual vehicles and a centralized server running on a akcomputational cloud. The system relies on
recent advances in vehicular connectivity that enableviddal vehicles to cooperate and exchange infor-
mation within a fleet and to communicate with back-end inftagure. The setup provides an affordable
research testbed which aims to reduce the costs associdtethe/use of full-scale autonomous vehicles.
Such monetary and time costs restrict many researchersrgosmulation environments [32] where it is
difficult to mimic real world issues like communication dgl&ensor measurement noise and errors, and
modelling error in vehicle dynamics. Many researchers veaked on the development of a scaled-down
platform which provides a balance between full-scale Mekiand pure computer simulations. La et. al. [22]
have developed a scaled-down platform for intelligentgpmmtation systems (ITS) that is useful for prelimi-
nary study and feasibility tests. Verma et. al. [41] haveagtesd a scaled vehicle with longitudinal dynamics
of a high-mobility multi-purpose wheeled vehicle (HMMWMjtavis et. al [40] have worked on using scaled
vehicles to investigate rollover propensity. For autonamoperation and navigation of a scaled car, its abil-
ity to localize itself is critical. Considerable effortsueabeen made in the area of simultaneous localization
and mapping (SLAM) [23] with high success in indoor enviramnts [15]. Stereo vision has been used with
inexpensive GPS [5] for localization in outdoor environrsewhile Kalman Filter based integration with
GPS, IMU, odometry and Lidar measurements has also beearexipxtensively [31].

While many advancements have been made in this domain,dkiste a scope for development of a

low-cost platform implementing feedback steering cordirtd Vehicle-to-Everything (V2X) communication



using low-cost sensors. We have built a scaled car for oueraxgnts based on Berkeley Autonomous
Race Car (BARC) [2], a low-cost open-source developmerifgrla for autonomous driving developed at
University of California, Berkeley. We have improved on these software of the BARC platform, so that
we can use it for our preliminary study and feasibility test&e have worked on running this car on a
flat terrain (which reduces the complexity of all computaido a 2-D domain) while our future work will

consider implementation in 3-D terrains. To simulate a fe®t analyze the impact of connectivity, we have
introduced V2X communication via a wireless network betwt real car and virtual vehicles running on
a back-end cloud. This enables individual vehicles to ceatpeand exchange information within a fleet and

to communicate with a back-end server.



Chapter 2

Hierarchical Route Guidance

Framework

2.1 Architecture

The proposed hierarchical route guidance approach seeddtess the challenge of high compu-
tational cost when finding the optimal path over large tervahen high-resolution information is available.
On-road applications typically optimize the route baseexisting known road networks. In off-road appli-

cations, no such pre-defined road network exists which mileesptimization task even more challenging.

Control Layers Information Layers

Global Path Optimization
Cost-to-go Map i wreodtn]  Elevation Map Visibility Map Soil Mapi
e High Resol Q @ -~ T

Local Path Optimization Vehicle-to-vehicle Communication

u\u ¥ g, . a n :VZV Map Update
QP f T« a

Vehicle Sensors

Low-leve; e-rge Control e & oo Upcots

Traversability
Evaluation
(3D Vehicle Model)

Figure 2.1: Overview of the route guidance framework.



An overview of the software architecture and a flowchart efdieveloped hierarchical approach is
shown in Figure 2.1. A dynamic programming routine is useddnerate the approximate global optimal
path and the optimal cost-to-go map using low resolutiomagien and soil trafficability information. The
optimal cost-to-go map is a map whose value at each grid ihé optimal cost-to-go from that grid point
to the target destination. It is discussed in more detaildcti®n 3.1. A model predictive local optimization
routine uses the stored optimal cost-to-go map and higbltregn information from the on board sensor to
find the local optimal path. A part of the ongoing researchungroup is traversability evaluation using a
high order 3D vehicle model which is not a part of this thesis.

A typical multiple level optimization will calculate an dptized trajectory followed by a low level
control. The optimized trajectory from high level may not ipgdated in real-time due to computational
cost especially for long term/large scope planning. Dyraithi calculating the optimal path for a fleet of
vehicles with the same destination, but different reaktjposition may be more challenging. The cost-to-go
based method does not need to calculate the optimal patalylaly need memory to save the path. The
backward based cost-to-go could be used by all vehicledfatelit locations as long as they have the same
target position. An offline optimization routine uses ceaesolution information to generate an approximate
global optimal path. Each ground vehicle performs onlingnoization to find the optimal local path using
high-resolution information. The optimization routineessa back-end server to obtain, store and share

relevant information amongst them.

2.2 Information Layers

An efficient path planning algorithm is predicated on effitieandling of the information database.
An novel method of integrating the information layers to tleeision process is presented here. Information
collected before and during the mission is stored as map#tijlumaps, each representing an information
layer, are stored on a backend server. Information storeti@server is accessible by the vehicles on the
ground as well as by a central computation server. The rouitdagce routines use these stored maps to
perform their respective optimizations. All the maps aogesd with a corresponding timestamp representing
the latest update. The maps are categorized into two typ&atic maps represent information layers that
remain constant over the full duration of the mission, ii)faynic maps contain information layers that are
either updated or generated during the mission. Exampléseahaps we have used in this work are shown

in Figure 2.2.
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Figure 2.2: Information Layers (Figure adopted from [34])

« Elevation Information: Various Digital Terrain Models (DTM) exist that provide mgraphic eleva-
tion data of bare terrain. Over the past 15 years, the etavatformation of the United States National
Map [3] was mapped by United States Geological Survey (USB8)presented in the National Eleva-
tion Dataset (NED). The NED bare earth elevation infornratar the entire US is available for public
download at medium resolution (every 10 or 30 meters). S2@deé, under its more recent 3D Eleva-
tion Program (3DEP), USGS now provides higher resolutienaion data (every 1/9 arc-second and

1 meter) for selected locations in the US and plans to expaiediaitaset in the coming year [1]. We



have selected a representative site where the higher tigsotiata is available and have successfully
retrieved the elevation. For our study, we chose a 10 sq. kea.reear Denver, Colorado. This area has

a rough terrain with two peaks, captured with high 1m elevatesolution as shown in Figure 2.2a.

Other existing DTM elevation sources are through the ShiRddar Topographic Mapping (SRTM,
every 30 m) and Advanced Spaceborne Thermal Emission anddiefi Radiometer (ASTER, every
30 meter) programs available by NASA and Japan’s Space Agentermap Technologies provides

high-resolution data (every 5 meter) for a wide range oftiocs across the world.

Soil Trafficability: The US Department of Agriculture (USDA) publishes soil imfation for the en-
tire contiguous USA [4]. Among the publicly available dasajl trafficability is the most pertinent
information when planning for off-road driving. The soiafficability layer is intended to rate the ca-
pacity of the soil to support military vehicles. Soil trafflaility ratings account for soil strength, soil
slipperiness, stickiness, stoniness, and slope. Thegratass indicates the verbal description of the
expectation to complete the task for the given military e&hcategory, number of passes to complete
the task, and the season of the year. Military vehicles aegoaized into seven types for trafficability
rating. Table 2.1 shows various trafficability ratings ahd expected task completion value. A man-
ual [6] provides a guideline to convert the verbal soil rgtin a probabilistic task completion value
as indicated in the second column of Table 2.1. The routeamaiel routine has been developed for
deterministic maps. Therefore, the probabilistic task plation values are converted to corresponding
numeric values for computational ease as shown in the toitdhm of Table 2.1.

Table 2.1: Soil Trafficability Ratings.

Rating Expected Completion Rat¢ Our Rating
Excellent 0.90-1.00 4
Good 0.75-0.89 3

Fair 0.50-0.74 2
Poor 0.00-0.49 1

Not Rated - 0.01

To run the optimization routines for the area correspondintgrrain map in Figure 2.2a, we have

extracted the soil trafficability data from the USDA databas shown in Fig. 2.2b.

Line of Sight (LoS): The concept of line-of-sight was initially used in guidedssiie development
in the 1940’'s [8]. Recent efforts in tactical path-findinggube concept wherein safety of the unit is
taken into account in path optimization by being out of th&lay enemy range while remaining in the

friendly LoS [20, 21, 25, 36]. In mountainous or hilly temathere are issues related to failure of radio

7



communication. In such situations, the concept of LoS caexbended to find the optimal path keeping
a fleet within range of the radio tower of the base statiorexcéffely improving safety of the operation.
Steve et al. [9] have explored a voxel-based modelling aggdrdor rapid viewshed calculation. A
viewshed is the geographical area that is visible from atlooavhich includes all surrounding points
that are in line-of-sight with that location and excludesy®that are beyond the horizon or obstructed
by terrain and other features like buildings, trees. (seur@Vikipedia). Here we have used the line
of sight as an extra information layer which aids in the ttgey optimization. The elevation layer is

used to find the grids which are visible from known locatiohadversarial watch towers.

Figure 2.2c shows areas in the map which are visible from ttmvk location of three fixed towers
in white. Darkly shaded areas are invisible parts of theaterrThe location of the towers are shown
in Figure 2.2a with red markers. MATLAB functioroxelviewshegvas used to translate the elevation

information and the tower location to the visibility map.



Chapter 3

Optimal Off-Road Navigation

We initially developed a simulation environment implemegthe framework discussed in Chapter
2 in Matlab using a global and a local planner. We had runahgimulations to validate the effectiveness
of the developed hierarchical algorithm. The simulatiorswan for the 1& 10 kilometre terrain shown in
Figure 2.2. The objective of the mission was to travel opliyrfeom the start point at (0,0) to the end point at
(10000, 10000) meters. The research carried out in thist&hhps contribution of Dr. Judhajit Roy was had
formulated the MPC and the simulation environment, Niagfé/an who had developed the global planner.
My specific contribution is the developing of line of sightqility), MPC formulated including the line of
sight and the system in the hierarchical framework utitizancentralized server developed using MySQL.

This chapter has been discussed in our research [34].

3.1 Global Planner

Dynamic Programming (DP) is a common and powerful methoaiviisg optimization problems.
Based on Bellman’s principle of optimality, DP divides théale optimization problem into smaller sub-
problems and solves them recursively. It also stores therirediate results, thus helping in solving sub-
problems in case they reoccurs, thereby significantly redumomputational time with modest expenditure
in storage space. In computer science literature, Dijlssablgorithm [11] is one of the most important
and useful methods in solving a path planning/shortest paghlem. The algorithm normally utilizes an
environment represented as a graph with vertices and eddiesls the minimum cost (e.g length) between

each vertex and the given vertex on the graph. Fibonacciingglpmentation in the algorithm makes it the

9
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global planner. [34].



fastest single source path finding algorithm for non-negatost, asymptotically [13].

Dijkstra’s Algorithm was usually described as a greedy athm before 2000s, in the computer
science and operational research fields. The connectisrebatDynamic Programming and Dijkstra’s algo-
rithm was successfully shown by Sniedovich [37]. DynamicgPamming is usually used in research where
cost-to-go approximation is required to be obtained framgrédis to the destination. Also with advanced data
structure implementation, Dijkstra’s Algorithm can achadetter computation performance with less storage
expense. Hence, we have chosen Dijkstra’s algorithm fogtmiral planning.

In our research, the entire terrain as shown in Figure 2,2qa)vided into small square grids and
each grid representing a vertex on a graph. Each small gaddrisected to only its 8 neighbouring grids.
The cost of a vehicle travelling from a grido j is defined by a cost function. The edges are assumed to
be undirected, which means travelling in the reverse, iremfgrid j to i, cost remains the same. While
Dijkstra’s algorithm is mostly used to find the shortest ot distance, here we have increased the scope of
the algorithm by including differentinformation layerscéiLas distance, elevation changes and soil conditions

into account. In our research, the cost function is definddlbmvs:

J .7. _ n J .7.
(i, 1) k;wk (i, })

31(0,1) = /06 = x)2+ (= 52+ (71— 7).

3.1
i) L o
21, ] _S S]
X(1,§) =1z —z]

wherex,y,z are the 3D coordinates of the grislis the trafficability coefficient ana is the weight coeffi-
cient. J;, J» andJs represents the cost due to distance travelled, soil comditnd absolute elevation change
respectively. DP finds the path which minimizes the totat.clveludingJ; in the cost function ensures that
the route with better soil condition is choseh.ensures that the route chosen has smaller crest and trough.
To avoid extreme slope which are beyond the driving capgtsli the vehicle, the following constraint is
imposed in the optimization.

slopdi, j) < slopatAX (3.2)

While travelling from one grid to another, if the slope caoastt is violated, the cost is set to infinity. The cost
function can be expanded to incorporate more informatiparlwith different associated weights which can

be tuned based on objective of the mission.

10



The cost-to-go map is generated as the output of Dijkstig&r#hm which computes the minimum
cost incurred when travelling from any grid on the graph ®fthal destination grid. The choice of resolution
or the size of each grid determines the computation contplexid the storage space needed. The grid reso-
lution is directly proportional to the memory usage whildinectly proportional to the precision. Hence, with
an optimal resolution of 50 m is chosen, balancing preciaioth required memory. Each grid is considered
as one vertex and, different elevation changes or soil ¢immgdiwithin the grid are neglected.

The global path planning is solved off-line and the costtanap is updated on the server. This cost-
to-go map is utilized by the local path planning along witgthiesolution and other available information to

find the global optimal path.

3.2 Local Route Guidance via Model Predictive Path Planning

The lower level route planning is assisted by the cost-torgg generated in the high-level route
planning which helps us achieve efficient integration otgloand local planner. Model predictive control
(MPC) with receding horizon approach is used for the locateg@uidance as the vehicle navigates though
the terrain. For the MPC, we have used a simplified kinematidehof the vehicle defined by 3 states:
andy are the coordinates of the center of gravity with respecetualte’s initial position and is the vehicle
heading angle with respect to the initial longitudinal dtien. The input to this model is the commanded

change in heading angle and is denote@byhe discretized model is given by,

X1 = Xk + AscCO Py
Yk+1 = Yk + Ascsin(Wy) (3.3)

ki1 = Pk + O

whereAs; is the the displacement of the center of gravity in xheplane over stefr. For our simulations,
we have used the same model for the plant. In Section 4.9.2ilvees how the commanded heading angle
o can be utilised by a low level vehicle controller for stegraontrol to meet the desired heading angle.
Typically, MPC used for path planning and tracking [33, 4@]ptoys a fixed temporal horizon. In
our research, we have used a fixed spatial horizon that éexitee vehicle as shown in Figure 3.1 for our
model predictive algorithm to run the local route guidan&eircular horizon is consistent with the vehicle

sensors horizon and therefore simplifies the formulatioccokdingly, discretization in Equation 3.3 and in
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Figure 3.1: MPC radial steps and the optimal cost-to-go atethd of MPC circular horizon shown as varying fence heighguife
adopted from [34]).

the rest of this section is over position and not over time.rdvkpecifically, the circular horizon is divided
into concentric circles centered at the current vehiclation. The increase in radiyr, of successive circles
is fixed as the MPC’s step length. The steps are incrementdtkiry plane and because the vehicle is
constrained to move on prescribed terrain, the change ratda in thez direction is a function of the
vehicle’sx-y location.

As schematically illustrated in Figure 3.1, the MPC optiesizhe local path (shown in red) based
on i) high-resolution map and sensor information over itsuar horizon and ii) the DP cost-to-go from the
perimeter of the horizon to destination point (represeigthe varying fence heights). The optimization
variables are commanded change in heading atigi¢ eachAr increment. Hard symmetric constraints are
imposed ordy and its rate of change over each step to more accuratelyseaprthe physical constraints on

the vehicle motion:

|6k| < 6max
(3.4)

|5k+1 - 6k| < A6max
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The structure of the cost function of the local routine echtbeat of the global routine for penalty surface

continuity. The objective of the optimization routine is to

min n n o1 n n n
J=w Al +w: — +W — Z_ W, obstaclg + wi visibilit
1kzl K+ Zgl soil, + 3kzl|2k Z_1|+ 4121 Q-+ 5kgl Yk

61"'6n (35)

+Jpp (%0, Yn)

In the above cost functiom,is the prediction horizon in radial steps ahare the free optimization variables
at successive radial steps; each represent the commanaegectm heading angle at stageThe penalty

weights are design variables shownmsThe six terms of the cost functions are,

« Al is the 3D distance covered in th® step which is computed as,

Al = [|As¢, (2 — Z-1) |2 (3.6)

whereAsis the topographic distance (2D), ani$ the elevation at each step point.

» The functionsoil is the computed value associated with the terrain traveasetkescribed in section
2.2. Since the objective is to minimize the cost functiom,itiverse of the soil computed value is used

in the cost function to ensure that the prescribed routzzetilthe best soil possible.

» Theterm|z — z_ 1| penalizes the elevation change in one radial step to preedstttion of steep paths.

A hard constraint oﬁz%*l‘can also be imposed to put an upper limit to the path steepness

« To ensure that the local route prescribed avoids colliswith the obstacles we penalize the locality
of the detected obstacles heavily. For an obstacle q, let d€gote the circular area surrounding the
obstacle centered at the geometric center of the obstaabel gvhose circular radius is equal to the

preferred safe distance between the vehicle and obstabkefuhctionobstaclg in Equation (3.5) is

13



defined as,

o

f Xkayk ¢ UqulA(q)a
obstaclg = (3.7)

X Yk € U1 AQ),

<

whereM represents a very large number.

 To reduce the chance of being detected, the cost functidh f&nalizes areas which can be seen from

the adversarial towers by introducing the cost term,

0 if XYk € invisible,
visibility, = (3.8)
1 if XYk € visible

* The last termJjp(Xn, Yn) represents the optimal cost-to-go, calculated by the dymarogram, from
the end of the MPC horizon to the final target. This cost is s@t&ally shown as fence heights in
Figure 3.1. Remember that the values for the optimal cegibtevere obtained (offline) using a coarse
dynamic program and stored as a layer of information mapb@srsin Figure 2.2d. Inclusion of the
cost-to-go is intended to prevent short-sighted decismnthe local path planner and ensures local

decisions are guided by global objectives.

The weights on elevation changesj), obstacle detectiomg), and the line of sightws) are used as
soft constraints, i.e. if the respective parameter valuegeeater than a predetermined limit a high penalty
is applied to that section of the path. The cost function iBY8 minimized subject to the vehicle kinematic
equations in (3.3) and the input constraints in (3.4). Thabfem is solved numerically using a sequential
guadratic programming approach. Ideally, the cost fundiis MPC and DP should be the same so that the
costs match at the boundary of the local prediction horidtwte that as Equation (3.5) shows, the ultimate
cost that each vehicle minimizes is broken down to a shoaBzbn MPC cost with higher resolution sensory
information added with a longer DP horizon and lower resotutnap information). The only difference
between them is the resolution of the available informatidote that because the cost function in (3.5) does

not explicitly depend on control input, in the numerical routine we minimize it with respect to hiegd
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anglesys, - - - , Wk while still enforcing input constraints in (3.4); this sififigs execution of the non-linear

optimization routine.

3.3 Simulation Results

As previously discussed, we ran simulations for thex10 kilometre terrain shown in Figure 2.2.
The objective of the mission was to travel optimally from #tart point at (0,0) to the end point at (10000,

10000) meters.

(a) Elevation + Soil

(b) Elevation + Soil + Visibility

10000 10000

Figure 3.2: Prescribed routes with different informatiepdrs (Figure adopted from [34]).

First simulations were conducted with only one vehicle. Tt algorithm is executed off-line
and then the local MPC path planner is run and is informed bylXR-calculated optimal cost-to-go map.
Multiple layers of information were considered in path plary decisions by both DP and MPC. The local
routine at each step tries to navigate the vehicle to thedbeest within its horizon as well as incorporates
the high-resolution map information. The global optimatit the prescribed route is enriched since the local
route guidance routine augments the results of the glohaé roptimization routine through the cost-to-go
map.

The route prescribed by the route guidance routine is glatter the terrain contour map in Figure

3.2. In sub-plot &) of Figure 3.2, both terrain and soil conditions are congdedn addition to soft and
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hard constraints on stepwise elevation change. Furthesnacommand heading angle constraints shown in
Equation (3.4) are also enforced. The chosen path balareediéd distance, road steepness, soil conditions,
and high-level vehicle kinematic limitations. As a resitlchooses a relatively flat valley that goes around

steep slopes.

An optimal path prescribed in the presence of visibilityoimhation is shown in Figure 3.2b. This
reflects a scenario where it is desirable to stay out of the difsight, e.g. of adversarial watch towers.
In Figure 2.2a, we have shown 3 watch tower locations withmedkers and used the MATLAB toolbox
Viewshedo find areas which are visible from those watch towers takitmgaccount the terrain information
we already have. The visible portions in the map from the kmaxtch tower locations are marked in white
in Figure 2.2c while the invisible portions are marked indilaTo remain in invisible areas, the optimal path
in Figure 3.2b takes a longer stealth route passing in betteetwo peaks.

A fleet of three identical vehicles is considered to demanstihe effectiveness of the connectivity
for a fleet of vehicles. The neighbouring vehicles wereatlifiseparated by a equilibrium distan@gyrizon,
heading due east (to the rightjicon described in Equation 3.9, is the cost associated to impiemthe

connectivity between vehicles which is added to the costriteed in Equation 3.5.

Jeon (p) = We||[dcon (PIP— 1), Jcon(plp+ 1)

= Wel| (Lp\ p—1— 2Rhorizon) ) (Lp\p+1 - 2Rhorizon) B

(3.9)

whereL,_1 andRnorizon represents the distance between two neighbouring vetaclésquilib-
rium distance respectively. Two scenarios were simulatadthe first scenario, the motion of the three
vehicles are not coordinated as shown in the Figure 3.3ainatheé second case the motions of the vehicles
are coordinated as shown in the Figure 3.3b. To highlightlifierence, the initial 500 m500 m subsection
is shown here. For both scenarios, all the vehicles evdptiggch the same destination point.

We can observe that in the first scenario each vehicle’s pdgdbnce routine determines the optimal
path for the vehicle without considering the location of thieer vehicles in the fleet. The three vehicles have
different starting points. Therefore, their optimal pathghe destination are different. The optimal path
of one of the vehicles (solid route) would lead it to lose eamhtwith the other vehicles in the fleet. Such
a scenario might increase the risk to the vehicle. On therdthed, if the local path planner incorporates

the location of its neighbouring vehicles, the motion of #rire fleet is coordinated. The benefit of a
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(a) Independent Vehicles

-
- 7/
-

-
-7 -

(b)Coordinated Fleet

Figure 3.3: Coordinated versus individual path planningFe adopted from [34]).

coordinated fleet from an information resource point of vieathe locally contiguous enrichment of the
information layers. On observing obstacles or steep atmvarofiles with higher cost than the coordination
cost, the vehicle’s local path planner prescribes a patidagthose grid points. When the risk reduces
in the local vicinity, the local routines coordinate to fyithe fleet vehicles back into a formation. Such
a coordinated fleet behaviour would mitigate the risk foréhére fleet since the fleet horizon is extended
while travelling in a formation. The flexibility of the proped route guidance framework was demonstrated
with these simulations. The fleet operators can use the algélhierarchical framework for more complex

scenarios by modifying the cost functions used at each &epkr their requirements.
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Chapter 4

Scaled Experimental Environment

4.1 Experimental Setup

Once our optimal off-road navigation was validated in a dation environment, we wanted to do
the same in an experimental environment which will help usesting various real world scenarios in a
vehicle-in-loop platform (discussed in Chapter 6). We hlanvigd a scaled car which is controlled using a
micro-controller and a host of sensors as shown in Fig. 4sédan the BARC platform. The steeririg)
and accelerationM2) servo motors are powered by a 7.4 V battery and controlladdvduino Nano. An
Odroid XU4 forms the brain of the car powered by 2 GB RAM and & fash memory. ROS (Robot
Operating System) is used as a structured communicatiges ébove the host operating system (Ubuntu
14.04, Trusty Tahr). The low-cost suite of sensors includipde-axis IMU (Inertial Measurement Unit)
used for measuring the instantaneous yaw angle and ratesffeait sensor mounted on the wheel hub for
vehicle speed measurement, GPS for global positioning,aatveb mega-pixel mono-camera for steering
wheel angle measurement. While the Encoders, IMU and GPSsackfor localization (refer Sec. 4.8), the
camera is used for steering angle measurement (refer S8).4-our magnets are mounted on each wheel

for measuring the wheel speeds using a hall effect sensgulafeed in detail in Sec. 4.7).

4.2 Vehicle Model

We use a 3-DOF and 6 state bicycle model derived from stamitficdbody mechanics illustrated

in Fig. 4.2. This model simplifies the vehicle dynamics asgidrbody with lumped rear and front wheels
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Figure 4.2: 3 Degree of Freedom (DOF), 6 state Bicycle Model.

[14,17,19,29]. We neglect roll, pitch and lateral air reggise. In this figure(X,Y) represent the coordinates
of the Center of Gravity (COG) of the vehiclg,denotes the yaw angle ands the yaw rate in the inertial

frame (X3, Ys). O is the steering angle in the non-inertial body framig, {f). L is the vehicle’s length. The
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dynamic equations of the motion take the following form [[19]

X = wcosy—vysiny
Y = wsiny+vcosy
o =
. 1 .
Vy = = (Fsr— FyF Sind) + vyr
i 1
Vy == H’] (FyF CO%"' FyR) - er
) 1
f = —(LiRrcosd—LFR), (4.1)

z

wherevy andvy denote longitudinal and lateral velocitiégr andFyr are longitudinal and lateral forces on
the rear wheels anB= and R are their counterparts for the front wheel in the non-irsétiiody frame
(X, Yn). Iz is the moment of inertia arourmlaxis andm represents vehicle’'s mas&.s andL; represent
the distance of front and rear wheel axles from the CoG of #re The Pacejka model [30] is used for the

estimation of tire lateral forces via a function of tire stipgles.

uFsin(Ctan1(Ba)) :|a| < dg

—R"¥sgn(a) Do > e

Fy(a) = : (4.2)

where is the friction coefficientF; is the vertical force due to its loaB,andC are fit parameters, and the

tire side slip angles of the rear and front tires are given by

O = tanﬁl (M) -0
Vx
w— Lr
ar = tanl (VT) @.3)
X

The tires cannot produce additional force after the sliplemgass a critical valuae,. The lateral and

longitudinal forces are bounded by the following circle

Fy2R+ FR< (HR)%, FyzF +FE < (MR)? (4.4)
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4.3 Hierarchical Route Guidance Framework adapted to the Saled

Platform

We have adapted the hierarchical framework (explained m 3gto our scaled platform as shown
in Fig. 4.3. &,Yr) is the reference position which the car is expected to réaeh its current estimated

position (). For simplification and better understanding of the whaderfework, we have divided it into 5

main blocks.
Other
Vehicleg
ad
y vav! Bz |
r»Yr Bl ‘ le 822 BB
Global | v2I . o | wm Scaled
Path Planne ] Patholgﬁalnne 'd Ié%vgltlr_c(?l}/eerl : Coc:tc;z)l car | [
(Server) P

0, Y0, Wp | Uiy, Uy, P
|

: I/
Predictor 5
Model ad, Od
Bs By
A o Tyw Sensors
= yquA Localization )_(7y;w_ Signal |
Vi, Vy, I Vx, Vy, T | Conditioning

Figure 4.3: Framework adapted for the current testing quiatf

Block 1 (B1) depicts the global path planner and V2X communicatiorliaes both V2V and V2I).
Block 2 (By) represents the local path planner and the low-level cbatrddutputs of the local planner are
the desired acceleration) and heading rater{), while the low-level controller decides the steering &ngl
demand §y). Block 3 (Bg) details the motor control logic which involves the convensof demand fronB;
to PWM signals. Block 4B,4) consists of the algorithms used for pre-processing ofémsar signals before
being used for localization while Block B£) consists of the localization algorithn, §, vy, vy, §,T) repre-
sents the measured position, velocity, yaw angle and regesginsor signal processing whiley(, Vx, Vi, {, f)
represents the estimated position, velocity, yaw angleratadfrom the Kalman Filter. Block @§) consists
of a predictor model which helps to account for computaticletay as well as latency of actuators. Blocks

B;1 — Bs are discussed in detail in Sections 4-4}.8. BlocksBg is discussed in detail in Section 5.3
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4.4 Global Planner,B;

A dynamic program (DP) is used for the global planner in otdeabtain the cost-to-go approxima-
tion from various points on the terrain (defined on a grid) mettbe vehicle is supposed to travel. The choice
of resolution or the size of each grid determines the contjmual complexity which increases exponentially
with the increase in resolution. Hence, the global pathrtagis done using coarse resolution information.
This cost map is then shared with the vehicles via V2| comation to guide their local planner. It has

been discussed in detail in Sec. 3.1

4.5 Local Planner,B>

A local path planner runs on-board the scaled car using M@alictive ControlB,1). Itis assisted
by the cost map shared by the global planner and the infoomatvailable via vehicle-to-vehicle (V2V)
communication. One of the advantages of this process istaiaing a safe distance within the fleet without
scattering. Also, using the cost map ensures the path tldnkéhe car is also globally optimal besides being
locally optimal. A low-level controller is used for fastezgponse due to the computational limitations of
the on-board computer which make it difficult for the car todiectly controlled by the MPC. The MPC
generates an optimal heading ratg @nd acceleration demanalj which is used by the low level controller
to steer the vehicle and apply the appropriate accelerafipg) which is a by-product of the optimization

and is used for robust steering control. MPC implementa$iatiscussed in detail in Chapter 5.4.2

4.5.1 Low-Level Controller (PID)

B2
Feed Switch  Saturation
r [ Forward | condition 0
: f o [
Wai+ &y PD 1,
Bo1 =5 Controller
¢ Bs v B4

Figure 4.4: Block Diagram of the Low-Level Controller.

A schematic of the low level controller is shown in Fig. 4.4PB controller is used for controlling
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the steering which tracks the desired output of the localqda Steering angle demand}) is the output of

the low level controller which is then sent to the motor cohittock B3). ( is the estimated heading which is
one of the outputs dBs (explained in detail in Sec. 4.8). A feed-forward part isdigden the error exceeds
a set limit G-ey). The feed - forward part uses the kinematic model of thealeld determine the desired

steering angle given by Equation 4.5

Lf . rdLr
I_f_i_l_rtan<sm 1( v ))] (4.5)

e~|Jmin S QU S e~|Jmax (46)

As a default, the switch is set to False, while it is set to Twien the condition (4.6) is met. A saturation

block is used to ensure that the demand steering is withiitslim

4.6 Motor Control, B3

B3

Bs1

Bs3

a4| Acceleration |apwm M
Controller

Bs2

0d | Steering  |3pwm
Controller

Scaled Car

Figure 4.5: Overview of the motor control of the scaled car.

Motor Control Block 83) consists of a steering and acceleration controller. Thiskconverts the
mechanical demandq,aq) to appropriate electrical signaldgym, apwm) for controlling the carM; andM

represent the steering motor and the acceleration motpecasely.
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4.6.1 Acceleration Controller

We have used a open-loop controller for the acceleratiotrabrin Fig. 4.6 we can see the block
diagram of the open-loop controller. The bloBk sends a steering angle demand to the steering controller
(Bs1). The angle demand is then converted into appropriate PVghasiin Bs;, which consists of a linear

model (described by Equation 4.7).

B, ad Bs1 Bpwm 5|\,

Figure 4.6: Block Diagram of the Open-Loop Acceleration Calfer.

apwm= Mc + Myayq, 4.7)

wherem: andmg represents motor constant and motor gain respectivelgwdrie calibrated based
on the vehicle running ground truth data. While, a closaxplacceleration controller was also developed but

it lead to jerks while running the car. Hence currently, weehased the open loop controller for convenience.

4.6.2 Steering Controller

We have developed open-loop and closed-loop steeringadtams. While the closed-loop control
is more accurate, the advantage of the open-loop contisltae computational cost savings which we will

discuss in detail in the next section.

2 8 B3> Spuwm > My

Figure 4.7: Block Diagram of the Open-Loop Steering Cotgrol

In Fig. 4.7 we can see the block diagram of the open-loop otletr The blockB, sends a steering
angle demand to the steering controllBg4). The angle demand is then converted into appropriate PWM
signal inBgp, which consists of polynomial models (described by Equedi@).

For model calibration, we made a sweep of the PWM signals alidoted steering angle data as

shown in Fig. 4.8. For steering angle measurement we arg ast@mera (explained in Sec. 4.6.3). From
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Figure 4.8: Plot of Observed Steering Ang&) s Steering Motor PWM&pwm)

the data, we observed that the characteristic curve of thermas dependent on the direction of turn of the
wheels. The probable reason might be the hysteresis in therrmaod mechanical linkages in the steering

system. The angl&§) to PWM bpwm) conversion involves polynomial models as described ingfigu 4.8.
Spwm= €183 + €284 + C3 (4.8)

wherecy, ¢y, c3 are the coefficients which are calibrated based on the erpatal data as seen in Fig. 4.8.
The coefficients are dynamically selected depending onitketibn of rotation of the steering wheel, which

takes into account the motor characteristics as observha iexperiments.

6d+ & R PD Spwm M
Controlle 2

By

Steering Angle
Measurement

Figure 4.9: Block Diagram of Closed-Loop Steering Congoll

A schematic of the closed-loop PD controller is shown in Bi§. The steering angle measurement
is done in real-time using a camera mounted on to the chas$is (o Fig. 4.1)e;5 is the steering angle error

between the demandy) and observed steering angfe.(
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4.6.3 Steering Angle Measurement

For the real-time measurement of steering alfﬁgb USB camera is used with a tire edge detection
algorithm. This algorithm uses the video frames from thetmgwv of the wheel and detects the steering

Steering Angle Measurement Block

Front [ usB ROS-OpenC\,

Steering 5
i ] . Measurement |+
Tire } Camera Bridge Code

Image.
Procegsmg

Figure 4.10: The internal block diagram of the Steering &rigkasurement block.

angle using a line fitted to the tire edge (see Fig. 4.11.d @&xample). The slope of tire edge provides the
steering anglé after a simple conversion according to what follows shorilge internal block diagram of
the Steering Angle Measurement in Fig. 4.9 is shown in Figj04 A built-in ROS-OpenCV bridge helps
to obtain the video frames from the USB camera and process itha ROS node using OpenCV library in

order to detect the tire edge and extract its slope.

Figure 4.11: Steps of measuring steering al&}ﬁﬁ the USB camera

These steps include) capturing a real-time video framb) cropping and scaling a useful portion
of the image for edge detectior), processing the results of stb@and detecting the pixels corresponding to

the tire edge, and) fitting a line to the detected pixels and extracting the slofdae (i.e. S(t)). For the last

26



step, using the image frame coordinates shown in Fig. 4.ivkaise the following equation to fir&{t)

X = my+b
3(t) = 1—:0m, (4.9)

wheremandb are the slope and offset of the line fit respectively.

4.6.4 Steering Angle Estimation

When the vehicle is running with the open-loop steering iletr, we need an steering angle es-
timation algorithm which takes into account the systemnayeand response lag in the servo motor for

improvement in localization.

25

= N
3 =)

Steering Angle (deg)
=
o

o

—— Steering Angle Measured
—— Steering Angle Demand

0 01 02 03 04 05 06 07 08
time (s)

Figure 4.12: Response lag in the servo motor

In Fig. 4.12, we can see that the system latency 8.14 s. We compensate this lag by using a
"double-ended queue” in Python, implementing First-InsEOut (FIFO) data structure. The response lag is

compensated by introducing a first order linear non-homegesdifferential equation (Equation 4.10).

Bolt) = —28u(t) + 28u(t) (4.10)

wherede anddqy are the estimated and demand steering angle. The time obnésacalibrated based on the

experimental data. Figure 4.13 shows the response of thensydefined by Equation 4.10 with respect to

different values of.

Based on the optimum value of( we choosa = 0.10 ), the system written in discrete time for a sampling
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Figure 4.13: Steering model calibration for open-loop oalier.

time of 0.02s is given by Equation 4.11

Oc(k+1) = Ade(k) +Bdy(k), (4.11)
whereA andB are the coefficients of the discrete time equation with \&é703 and 0.3297 respectively.

4.6.5 Comparison of the closed-loop and open-loop contreits

We performed experiments to compare the two controllershasis in Fig. 4.14. Pre-defined

steering angle inputd§) were given and the estimated steering an§)e/\(as measured. It is observed that
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Figure 4.14: Comparison of open-loop and closed-loop obofrsteering.
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the closed-loop controller is more effective in tracking steering demand based on Fig. 4.14, where we
can see that the tracking errag) is minimal. We tried to check the response of the open-lgspesn with
random steering angle demardg ) as shown in the Fig. 4.15. There is a clear lag in the demaddetual
steering in the open-loop control which is mostly due to #ttericy and response lag. The closed-loop control

takes care of this lag based on the measured steering aeglediek.
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Figure 4.15: Response of the open-loop controller to ransie®ring angle demandy).

The measurements were plotted taking into account thedgtefhe advantage of the open-loop
controller is use of minimal computational resources withdjtracking capability and response which makes
it viable with the limited computational power in the on-bdaomputer (2 GB RAM processor). In the future,
we plan to use a more powerful on-board computer enablingsbef the closed-loop controller which can

be vital when the vehicle is driven on off-road terrain.

4.7 Sensors Signal ConditioningB4

The raw signals from the sensors are processed before theseat to the localization blocBs
(refer Sec. 4.8). Encoder, IMU and GPS converter blocks see tor processing the signals from the wheel

encoders, IMU and GPS respectively (Fig. 4.16).
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Figure 4.16: Sensor Signal Pre-Processing for Locali@atio

4.7.1 Encoder Converter

The encoder converter is used for vehicle speed measurémssd on the raw signals from the hall
effect sensors. Each wheel sends the encoder co@tamhich counts the number of times the magnets on
the wheels have passed the sensor) from the Arduino, whitters used to measure the individual wheel

speed as shown in Eqg. (4.12).

Vi = ”A_{’ i € {fL, fr,bL,br} (4.12)
Y 2T[;rtire (4.13)

wheref, fr, by, br corresponds to the front-left, front-right, back-leftchearight wheel.AC corresponds to
the change in the wheel counter whileis the time between each measuremaegs. is the radius of the tire
and s represents the distance along quarter tire edge as thedeeayei-spaced magnets on the tire. Using

simple kinematics, we derive the velocity of the car as shmwEquation. (4.14) based on, .

Uy =+cosp [VfL cos(3+ () + fd sin(A + LAIJ)} +siny |:VfL sin(8+ @) — fd cogA + LAIJ)} .10
4.14

vy = —sin{ [VfL cos(d+ () + Fd sin(A + LAIJ)} + cosy {va sin(d + () — fd cog A + LAIJ)}

where(), f, 8, are the estimated yaw angle, yaw rate and steering angleatasgly. d represents the distance
between the left-front wheel and the centre of mass of theleelvhile A represents the angle made by front

wheel hub with longitudinal axis of the caXy) (Fig. 4.2). The two components of vehicle velocity thus
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obtained are then sent to the Kalman Filter (explained in Sk8) as measurement signals after passing

through a low-pass filter. Similarly, we can fiidandvy with respect tov,.

4.7.2 IMU Converter

IMU Converter

L|Jf Low-Pass f _ l-|Jraw i
@‘——' Filter Yy Wraw — Wac 50 Hz |

r r
f Fraw — de |31

Figure 4.17: IMU Sensor Data Processing.

The IMU converter is used to process the raw yaw andllg.) and raw yaw rater(,y) obtained
from the IMU before sending it to the Kalman Filter as measwest signals. Fig. 4.17 shows the control
flow of this algorithm.rqc is a calibratable variable which is used to correct the sehsf. To calibrate this
variable, we measure the signals from the IMU in a standsiilidition and study the drift in the sensor over
time. In Fig. 4.18, we have a plot of the yaw anglg)(obtained by integrating theay signals. Theaaw
signals were analyzed and a glimpse of the same is shown iottraed view. We use the slope of a first

order polynomial fit on the yaw angle data as a baseline faoredion ofr 4.

Wac(k+ 1) = Wac(k) —m(K)rge(k) (4.15)

Wqc is defined by Eq. 4.15 where the countey (s incremented every time a signal passes.
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o of T 0.02
~— [
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= -0.005 — ! ‘ Hoo01
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15 152 154, 156 . 158 16 o 5 10 15 (20) 25 30
time(s) time(s

Figure 4.18: Drift in IMU sensor measurement
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Theryc takes into account the influences of magnets used for speadumsment as well as the
electric field generated by the motor. Hence, fitting the £skxpe might not work for accurate estimation
and we need to calibrate it based on ground truth data. Twghireg variablesv; andw, are used to fuse

the filtered yaw angledf;) and corrected yaw anglé)§) based on the ground truth data to get the processed

yaw angle ().

4.7.3 GPS Converter

A GPS converter is used to convert the latitude/longitudeesifrom the GPS sensors into the

Cartesian coordinate system according to the equation 4.16

% = R(E — £0) O
(4.16)

y=R(6—8o)

whereR &, 0 corresponds to the radius of the earth, instantaneousiategand latitude respectively.
&0, 00 corresponds to the latitude and longitude of the initiaitstg point of the car. This is a simplified form
arrived at using geometry with the assumption that the robwels a small distance-(200m). In the future,

we plan to use the haversine formula which take into accdwnttirvature of the earth.

4.8 Localization,Bg

We use an Extended Kalman Filter for localization of the glhas shown in Fig. 4.19. The
measurements from the localization sensors are pre-medes explained in Sec. 4.7. The control input is

received from the output of the Low-Level Controller.

By
Bs
4, ag Control
o Input
%y, Kalman
7\ f Filter oo
o Vys T XY, T Sensor
Ve VT Measurements
By

Figure 4.19: Overview for Localization of the scaled car.

Denotex = [x,Y, 0, V] as the state vectau,= [d,a] as the input vector. Therefore, using the standard
EKF notation, we defingyy_; andx as thea priori anda posterioriestimated state at the time stiep

Xk-1)k—1 as the most recent updated state before the currentkste&pmilar notation applies to the state
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covariance matrid € R*4, The non-linear dynamic equations of motig 1 = f(Xk, Uk, Vk), Using a first-

order Euler approximation, are given as follows

Xir1 = X+ (Vi COSPK — Vy, SiNP ) At
Yicr1 = Yk + (Vi SINPk + Wy, COSPy ) At

Wiy1 = P +rat

Fyrc—FyE, SINg (4.17)
Vg g = Vi + (SRR vy )AL+ Vg

Fyret FyF, COSH
Wirr = Wy + (W + V) At

Mke1 =i+ ( At+v

Lt Fychosﬁka, FyRk )
z

wherevy = [v1,V3] is the process noise and = A (0, oéxR) andv, = \((0,03) are random samples repre-
senting unknown effects of traction force and steeringanpenote the measurement modefias: h(xy, nk)
whereny is the measurement/observation noise. When using the IMUM@el encoder sensors(Xy, N)

takes the following form,

h1(Xk,n1) = Xk + Ny, (4.18)

o O o o o o
O O o o o o
o O o +» O o
o O B O O O
© B O O O o
O O O O O

and when using the GPS sensor measurements it takes theifgltorm

ha(Xk,n2) = Xk + N2, (4.19)

o O O o O Pk
o O o o +» O
o O o » O o
o O B O O o
o BB O O O o
O O O O O

wheren; = [nimu , Nend @ndnz = [Napsx NGPsy NiMU ; Nend are the observation noise via different sensors. For

these noises, we assume a Gaussian distribofign= A (0, oimu ), Nenc= N (0, Genc), Napsx= N(0,Ocpsy),
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andngpsy= N((0,0gpsy) Whereoivu, Oene, Opsyx andogpsyare the standard deviations. The equations for

the EKF prediction step are according to the following

Xqk-1 = F(Xk-1k-1,Uk-1)
of ofT of of
Sk-1 = &S‘*l\k*1& +EQE ) (4.20)

and for the update step are according to the following
ohT[ah ohT oh_onh™
K = Sqe13y [53«16—)( 3 a_n}

Xk = Xk—1+ Kk[Yk —h(Xqr-1)] (4.21)

So = [1-Kigg S @22

In Equation. (4.21)Ky is the Kalman gain. Here, assuming independence of the mezhsariables, we
haveQ = diag0, 0, 0,5, 05] as the dynamic noise covariance matrix, &o= diagomu,Oend andRy> =
diagocpsx 0GpPsy OIMU , Oend @s the measurement noise covariance matrices.

It can be easily shown that the position state vector is neenkable using only IMU and wheel
encoder sensors. Moreovér,is not observable by using only GPS and wheel encoder senserg, we
fuse these sensors with the algorithm shown in Algorithm dhitain a more precise tracking of the location
of the vehicle. In the fusion algorithm, each time a new measent from the sensors is obtained the state

estimations are updated using the observation modeldhgi.andh,) corresponding to the received sensory

of oh

data. The details are of calculating tg[g N o and% are trivial and hence omitted here.

Algorithm 1 The sensor fusion algorithm for localization.

1: procedure FUSING THEIMU, WHEEL ENCODER AND GPSMEASUREMENTS TO ESTIMATEX
while Experiment is runninglo
CalculateAt
Implement EKF in (4.20) and (4.21) via
if GPS measurement unavailatien
h(x) = h1(x) andR=Ry.
else ifGPS measurement availalkeen
h(X) = hz(X) andR= Ro.
end if
10: end while
11: end procedure

N
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4.9 Experiments: Localization and Low-Level Controller

To analyze the efficacy of our localization and low-levelwohalgorithms, we bypassed the global
and the local path planner by providing pre-defined inputh#olow-level controller {4, a4) and observed
the behaviour of the steering contréhm and the accuracy of position estimationy)"and yaw angle()
with ground truth data. After a pre-defined time, the cordiaiion is set to zero to bring the car to a standstill.
After the localization and control algorithm were verifiege used the local planner to test the path planning

as well as the obstacle avoidance algorithm'’s effectivenes

4.9.1 Localization Accuracy

WITHOUT GPS WITH GPS
4 14 .
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Estimated PositioiX, Y )(m) Estimated PositioX,Y)(m)
Figure 4.20: Position Estimation with and without GPS

The vehicle was run for varying inputg{,aq) and it was found that for up to 4 seconds, the
estimations were acceptable (error within %) when GPS $igaa unavailable. Without GPS, the system
is inherently unobservable, and hence any error in measnehaads to the states growing unbounded.
This analysis is important for finding the limitations of acate estimations in case of GPS signal drop or
missing. A low-cost GPS which normally runs at a frequencyl ¢z can be used to perform relatively
good localization using our algorithms. We measured thempidruth data at the end of each test using an
inclinometer and a rolling measuring wheel and comparel thi¢ estimated positiorx,() as well as yaw
angle () of the car. Our future plan is to use an accurate high frequensitioning system to measure the
accuracy of the estimations at each time instant.

Fig. 4.20 shows the ground truth data against the estimatsitign (X;y) in both cases, with and
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without the GPS signal available. With GPS, the system ieofable, and hence it is predicted to improve
accuracy of the state estimation. The estimations impraggatedicted, which can be judged by comparison

of theR?2 value in both cases.
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Figure 4.21: Yaw Angle Estimation

Fig. 6.1 shows the predicted yaw angle against the grounkl ttata. This relatively accurate estimations
were possible due to the drift correction algorithm in thelMonverter as shown in Fig. 4.22. It can been
seen that the there is a clear drift in the raw yaw andilg) primarily arising due to the raw yaw ratgy
as shown in Fig. 4.18. The high accuracy can also be attdlotthe fact that the car was driven f@d.5 m.
When it is run for longer durations or length, the drift willentually creep in, but our target was to improve
it in the local domain so that a low frequency signal can beldigeany corrections.

Fig. 4.22 which shows the movement of the vehicle with= 0 and underlines the importance of
the IMU converter where the raw signals are processed ffrairection to accurately estimate the yaw

angle.

4.9.2 Low-Level Controller

We ran multiple tests to analyze the efficacy of the contrgbathm of the low-level controller in
conjunction with the localization algorithm. Fig. 4.22 iseof the tests where we usdg = 0. In the
discussions below, we have a few tests where we Yiged{10°, 45°, 90°}, 180 with fixed a4 for collecting
data and analysis. The role of the low-level controller igake the vehicle to the demand headidg)(
During the tests the feed-forward part of the controllerahhitilizes the outputr( )of the MPC, is bypassed

and it runs purely as a PD controller which is ensured by cimgrihe de-activation of the Feed-Forward part
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Comparison of Raw and Processed Yaw Angle
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Figure 4.22: Advantage of the processing the IMU signal enlMU converter
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Figure 4.23: Yaw Control.

In Fig. 4.23, we can see the estimated yaw angjleas the vehicle moves to achieve the demand
yaw angle ()g). The overshoot apy = 10° was due to the higher PD gain which had to be applied so that
the handling is not too sluggish with highgg. The estimated yaw angle was compared to the ground truth
at the end of each test and they were withih%. We also run multiple tests with different PD gains and

found a need for using a gain scheduler or a phase lead coatpetsimprove vehicle handling for stability
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at wide ranges ofyg. We will see in Sec. 5.4 how implementation of the feed-fadhgart in the controller
in a way acts as compensator or variable gain controller.
The development of the scaled car along with accurate at#din and low-level had been discussed

in our research which is under review [16].
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Chapter 5

MPC-based Obstacle Avoidance

5.1 MPC Formulation

The local route guidance routine is based on a model predictintrol approach. The optimal local
route in the immediate neighbourhood of a vehicle is catedlin a receding horizon manner as the vehicle
navigates through the terrain. We propose to use a simpésriatic model of the vehicle [19] over the MPC
horizon with 4 statesX andY are the coordinates of the center of gravity with respectefuicte’s initial
position andy is the vehicle heading angle with respect to the fixed coatdiframe X5 — Y ( refer Sec.
4.2) andv is the vehicle velocity. The input to this model is the comuaeshchange in steering angfg ) and

the acceleratiord) . The dynamic equations of the vehicle model are shown ireEon 5.1

X = vcos
Y = vsiny
Vo
Py = L—bsmB
V = ag
B = tan’l( Lt tanzsd) (5.1)
Lf+|_|' ’
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whereL¢ andL, represent the distance of front and rear wheel axles fror@ @ of the car.

X = vcosy

Y = vsing

Y = rq

vV = a4, (5.2)

Another MPC model as shown above was developed where the atavf ) is used as the control input
instead of steering angle. This provided us more controhenniovement of the car as we can constrain
the rate of turning of the vehicle. We had conducted two skexperiments: 1) with the vehicle directly
controlled by the MPC (using Equation 5.1) which runs at 2 IHd,a&2) the low level controller running
at 10 Hz directly controlling the vehicle with inputs frometMPC (using Equation 5.2) at 2 Hz. We saw
that with the second experiment vehicle control was muchensaroother since in the first experiment, the
MPC can correct for any modeling error every 0.5 secondsawhé low-level can correct every 0.1 seconds.
Also to have more control on the rate of turning of the vehitiehe kinematic model defined by Equation
5.1 we would have to introduce steering angle as a new statestarring rate as the control input which
constraints the computational resources. We have alsdapmda simulation environment where the plant
is based on the vehicle kinetic model (Section 4.2). Our Ktian results also showed the need of using a
lower level controller (Section 4.5.1) for faster contrbkloe steering, rather than MPC controlling steering
command. Hence we have proceeded using equation 5.3 foeshefrour research. Using Euler's Method,

the discretized form of the MPC is given by

X(k+1) = X(K)+At[v(k) cosp(k)]
Y(k+1) = Y(K) +At[v(k)sing(k)]
Wk+1) = Wk +At[rg(k)]

v(k) + Ot [ag(K)], (5.3)

v(k+1)
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The objective of the modified MPC optimization routine is to,

min n n ) n ) n )
J=W12A|k+szrdk +Wgzadk +W4Z£k
Fdy - Tdys@dy ** - Ad k=1 k=1 k=1 k=1 (5.4)
n n
Ws z Visc + Weg z s0ilk + I5p (Xn, Yn)
k=1 k=1
with the following inequality constraints,
Fmin < Nk < 'max
admln g adk g adm(—,\x
Vmin < Vk < Vmax (5.5)

0< g

dsafe < Oobg + &

In the cost functionn is the prediction horizon and, anday are the free optimization variables at successive
steps; each represents the commanded change in headiegaadglelocity at stagie The penalty weights

are design variables and denoteddy The seven terms of the cost functions are respectively:

« Al is the 2D distance covered in th® step which is computed as,

Al = (% — %)% + (% — Yi)? (5.6)

 To ensure that minimal control effort is used in achieving tbjective of the optimization routine, we

penalize the control inpu(®y,,rq,)-

» To ensure that the local route prescribed avoids colligiith the obstacles we penalize the locality of
the detected obstacles heavily. For an obstacle dxgt;,Yobs,) denote the geometric center of the
obstacle g, whilelsy e denotes the preferred safe distance between the vehiclebstakle. Introduc-
tion of g in Equation 5.5 softens the obstacle avoidance constrHiet penalty weight on the obstacle
avoidance cost is set to zero if the obstacle is outside thafarzone of the vehicle which is determined

using a barycentric method (explained in detail in Sec 5.2).
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 To reduce the chance of being detected, the cost functidh f&nalizes areas which can be seen from

the adversarial towers by introducing the cost term,

0 if XYk € invisible
visibility, = (5.7)
1 if XYk € visible

» The functionsoil is the computed value associated with the terrain traveasetkescribed in section

2.2. Hence the cost functions ensure that the prescribed uilizes the best soil possible.

* The last termJjp(Xn, Yn) represents the optimal cost-to-go, calculated by the dy;mpregram (Sec.
4.4), from the end of the MPC horizon to the final target. Is@ua of the cost-to-go is intended to

prevent short-sighted decisions by the local path planndremsures local decisions are guided by

global objectives.

The cost function in (5.4) is minimized subject to the velikinematic equations in (5.3) and the
constraints in (5.5). This problem is solved numericallghadn interior point method using Julia which
is a high-level, high-performance programming languagefonerical computing. For implementation of
the interior point method, we use the IPOPT (Interior PoiR{linizer) software package. The cost function
associated with soil, visibility and optimal cost-to-galseen validated in our preliminary simulation studies
which showed how they can improve the path planning (Sec 33the context of this thesis, we will not
use them in our experiments due to the computational liroitatassociated with running the interpolation
algorithm to implement in the MPC, in real-time.

A subject of our ongoing research is to use a higher fidelityicte model to evaluate the perfor-
mance of the vehicle when following the MPC command, whichagond the scope of this thesis. We had
to restrict ourselves to a simpler model due to the compurtatilimitations of running MPC in the on-board

computer. In our future research, we plan to use the dynaroief(refer Sec. 4.2) to run the MPC with

more powerful on-board computer.
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5.2 Obstacles, Safe and Unsafe Zones

In this thesis, we have used virtual obstacles for our erpats in place of real obstacles since we
wanted to concentrate on developing the hierarchical gilaifas well as high and low-level control of the
car. Using a LIDAR and stereo camera for obstacle detectamsout of the scope of this research. Two types
of obstacles have been created, i) whose location are kngwioa ii) which are recognized based on the

simulated sensor horizon.

dsafe \\\
\
Osafe >0 |
a P ' D
A safe ;]
dsafe )
C

Figure 5.1: Barycentric co-ordinate approach in detemngithe safe and unsafe zones for the vehicle.

dsafeandasae are the preferred safe distance and angle. They are usedstsagots for defining
the safety region for the vehicle to traverse. The region 8843 shown in Fig. 5.1 is considered as unsafe
zone, where A is the position of the vehicle and, P and Q arpdbkiion of two obstacles. The region ABDC
is shown as an unsafe zone so ensure the vehicle takes coursetion if any obstacle is seen in that area,
while obstacles outsize the zone, it doesn’t need to takeeidigite course correction and can continue on
its planned route. To determine if a obstacle is in the safeafe zone of the vehicle, we used a obstacle
detection algorithm based on the work by Ericson [12]. Foobstacle g, let A(q) denote the unsafe region.

Any point, P on the plane can be written as,
AP — UAB+ VAC, (5.8)

where, u and v are two arbitrary constants which can be atkedlif the position of the obstacle is known.

Using simple vector algebra, we can find, u and v, as shown iraimn 5.9
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(AB.AB)(AP.AC)
(AC.AC)(ABAB) —
_ (ACAC)(APAB) —
T (AR (ABAB)

ABAC)(AP.AB)
AC.AB)(ABAC)
ACAB)(AP.AC)
AC.AB)(ABAC)

u=

(5.9)

P P

So the condition necessary to be satisfied for the obstaxles in the unsafe zone is given by equation 5.10.

PEUSA@) if W+ >1u<0v<0 510

PeUg A@) if w+v¥<1u>0v>0

Hence for any obstacle detected in the region will activiategtenalty function in the MPC cost,
while for any other obstacles detected outside of this zpamalty weight will be set to zero. The penalty

weightw, in the cost function (5.4) is defined as,

0 if P¢US,A@Q),
Wa = I %Uqfl (q) (511)

10° if PeUg,A).

The obstacle detection algorithm runs in Python and previde MPC running Julia with obstacle
information. For reducing the computational cost in obstaletection, we have used a method of priority

gueuing in Python, which considers the closed two obstéclé®e unsafe zone.

5.3 Computational Delay Compensation and Predictor ModelBg

Predictive control involves on-line optimization which ght lead to considerable computational
delay if we use an underpowered computing resource. TheSEytaken from Machiejowski's book "Pre-
dictive Control with Constraints” [27] helps in explainitige need to take into account the computational
delay in predictive control.

In our case, it was an important to factor in this delay as weewenning a lot of computations
besides the MPC in a low computationally powered computdeBRAM). We also took into consideration

the latency for every control input update. So the MPC ststimates are predicted for the time when control
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Figure 5.2: Assumed timing of measuring and applying sig(figure adopted from [27]).

input is actually applied by the actuators. We have useddheept of constant output disturbance observer
in this predictor model to take into account the model mistnén prediction. As shown in equation 5.12,

the disturbance/model mismatch is calculated by compahiegneasured output with the predicted one. It
is then added to the predicted output for the next state. Wereonsider that the control inputs don’t change

during the prediction interval.

d(kIk) = yp(k) — Jp(kIk—1) (5.12)

ypcorr(k+1|k) :9p(k+1|k)+a(k|k) (5.13)

5.4 Experiments: Local Planner and Obstacle Avoidance

In the following experiments, we define the reference pmsif;,y;) as the target position for the
vehicle to reach. We conducted experiments with and witbbstacles in its path to analyze the efficacy of

the MPC in optimally avoiding the obstacles as well as rettarget position.
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5.4.1 Local Planner

As a part of testing the local planner, we initially testedhndifferent reference target position
(%r,Yr). Below we detail the results of one set of experiments wibgre;) was (3,2.5). During our experi-
ments with the local controller we found that it will be uslefuhave a gain scheduler or a compensator for
better vehicle control. We ran three sets of experiments thi¢ same reference target and analyzed the out-
puts: 1) only PD controller activated by setting the switondition to 1 throughout the experiment, 2) only
Feed-Forward part activated by setting the switch comliiaoO throughout the experiment, 3) the activation
of the PD controller and the Feed-Forward part based onswdadition given by Equation 4.6 throughout
the experiment. For better understanding of the three @rpats please refer to Figure 4.4. Hence test 1 was
running only on the PD controller, test 2 was running only lo@ feed-forward part and test 3 was running
on a optimal combination of the two. The input to both the P #re feed-forward part came from the
MPC controller and hence this test also helped us to analyzeline MPC in conjunction with the low-level

controller was performing as the local planner.
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Figure 5.3: Vehicle path trace running MPC along with difetr settings in the low-level controller

We can see from Fig 5.3, in test 1, the steering controlleo@sdlow while in test 2 it is very
aggressive. We can tune the PD gain to improve the resulissinlt but then we will have overshooting
issues as in Sec. 4.9.2. Hence an optimal combination ofwhéstuseful.

From Fig. 5.4 we can see that the combined controller is mifi@est since it uses a higher gain
which corresponds to bigger steering angle demand whegythwich is the difference betweepy and( is

high while it uses much smaller steering demand whgis small.
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Figure 5.4: Trace of Steering Angle and Yaw Angle in the thests

5.4.2 Obstacle Avoidance: Stationary and Moving

We ran a few tests to test the obstacle avoidance capabilttyedVIPC with virtual obstacles. To
compare how the MPC performs the local planning with varyiagstraints, we ran two tests on the vehicle

with the same reference target positian {;) which was (10,10).
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N — - Target
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[
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Figure 5.5: Vehicle path trace and steering command in withwaithout obstacle scenarios.

In the test 1, there were no obstacles while in test 2 we had aif¢ual obstacles whose position

can be accessed by the MPC only when it is in its sensing harikbe data from the two tests are shown in
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the Fig. 5.5. We can see that the local planner takes intousmtdbe obstacles and avoids them optimally.
While the obstacles were stationary in the previous expanrtimin the next, we tried to analyze how our MPC
behaves and controls the car when it encounters a movingabstWe command the vehicle to go to a
reference target positiom( y;) which was (3,2.5) in this case. The movement of the obstaatedefined by

a simple linear function given by Equation 5.14.

Xabstk+1) = XapfK) + 8t (X(K) — xop(k) a (5.14)

Yoosk-+1) = yonslk) + 3t (Y(K) — youe() ]

where Kobs Yobs) and (X,Y) represent the positions of the obstacle and the vehigeotisely.a is

a scaling factor which is used to simulate changes in vegladithe obstacle.
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Figure 5.6: Vehicle path trace and steering command withingoebstacle scenarios

In test 1, test 2 and test 3, the starting position of the npwinstacle were (3,2), (3,0) and (2,0)
respectively and then they trace the path as shown in Figtobuéirds the scaled car. In all the cases, we
assumed that the MPC can anticipate the movement accuest@yuation 5.14 is added as a constraint. In
the Test 2 and Test 3 as shown in Fig. 5.6, we can see that thedd®Ca good job in avoiding the moving
obstacle as well as reaching the target destination ogdiimaihile in Test 1, the MPC does a good job in
avoiding the obstacle while managing to be in the vicinityraf target. We will try to analyze and perform
experiments on how the MPC behaves when it has limited oigbamformation about the movement of

obstacle in Sec. 6.2.2
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Chapter 6

Venhicle-in-the-Loop Platform for

Verification of Obstacle Avoidance

A central server has been setup in the lab which enables@ataye, information sharing, updating,
running global planner and a vehicle-in-loop simulatomfgiation environment). The scaled experimental
car in conjunction with the server form the vehicle-in-Igdatform. The central server also hosts a SQL data

server for data storage.

Cloud Server

Real-time Visualization (Java)
3
L s & 5

ROS ubpP

‘ l ‘-‘ v -
AHEAD
@ . Real vehicle in the loop
VIL Simulator

Figure 6.1: Yaw Angle Estimation

As shown in the figure, the VIL simulator runs the virtual v@bibased on the dynamic vehicle

model (defined by Equation 4.1) as the plant model and the@MPC (defined by Equation 5.3). It also
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runs the virtual obstacles and animals. A real-time vigasilbn developed with assistance from Dr. Al
Fayazi, helps to analyze the interaction between the rédtheand the virtual environment. VIL simulator
runs a ROS master and performs all communications via RO$momication protocol. The communication
between the VIL simulator and the scaled car is routed viaémralized server which uses UDP encoded
as a JSON object over simple Wi-Fi. This helps in sharingrimfation about virtual obstacles, animal and
vehicles running on the vehicle-in-loop simulator and tteded car. In the future all route critical information
(elevation, soil, vegetation, obstacle, risk maps, etollected before and during the mission can be stored
as multi layered maps, each representing an informaticer|aythe database. The information stored in the
database are accessible by the vehicles on the ground essvibglthe global planner which runs on the central
computation server. All the maps are stored with a corredipgrtimestamp representing the latest update.
Individual vehicles in the fleet can subscribe/requestfeimformation according to their requirements. Each
vehicle publishes its current position, heading and it&cgrated control action along with a unique vehicle
ID. Any other vehicle within its range will be able to recethe® messages and take appropriate corrections to
its control action. In this research, we have provided alireubf the communication infrastructure developed
while this platform will provide an opportunity to analyzeetimpact of connectivity in a fleet by studying
the interactions between the scaled car and simulatedleshidich will run on the central server, a part of

our ongoing research.

6.1 VIL Simulator

The VIL simulator uses dynamic vehicle model as detailedén. $4.2 as the plant model for the
simulated vehicles.

Fig. 6.2 details the framework in which the simulated vedsgalun. The whole framework runs in
the central server. The VIL simulator is also used for sinedabstacles, animals,etc. One of the purposes of
building this environment was to analyze and quantify thpagt of connectivity on path planning. Another
purpose it served was tuning and debugging the MPC weiglit$&8ncontrollers prior to running it on the
scaled car. The global server has information about all Hstazles in our experiments. It is passed on to
the scaled car when the obstacle is in the range of the sehsiigpn of the car via V2 communication.
Our vehicle is not equipped with LIDAR, Stereo Camera or &itmic sensors and hence it is not capable
of detecting new obstacles which are not present in the gk#yaer. As a future research, we plan to use a

combination of the sensors to update the obstacle layeeigltbal server as discussed in Chapter 2.
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Figure 6.2: Framework adapted for simulated vehicles.

6.2 Experiments: Collision Avoidance with Various Levels 6 Infor-
mation and Animal Crossing Accidents

In Section 5.4.2, we have seen how the path planning is efésictavoiding moving obstacles when
the MPC has complete information. In the vehicle-in-theglenvironment, we will try to analyze the impact
in situations when there is partial or noisy information ab&pproaching vehicles. As a demo example, we
will simulate an animal crossing scenario and analyze hewtkstacle avoidance algorithms perform under

different conditions.

6.2.1 Collision Avoidance with Various Levels of Informaton

In Fig. 6.3, we try to analyze collision avoidance with apgmioing vehicles, when the sensors
cannot measure the velocity of the obstacle in the co-sitienl@&nvironment (explained in Sec. 6.1) and
compare it with the situation where velocity measuremergsasailable. The goal of the experiment was
to reach the target located at (9,9) while avoiding the aibstan the way and minimizing the cost function
defined by Equation 5.4.

In test 1, velocity measurements are available and hence déiaGnticipate the movement more
precisely compared to test 2 where the sensors cannot negaguvelocity of the obstacle. In this case, it
treats the obstacle as stationary at every iteration. Inltése MPC is aware about the obstacle movement
and hence it makes course correction much before test 2 \itheais to suddenly correct its path based on

the location of the obstacle. It can also be seen that in tebie2vehicle has to use more steering effort to
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Figure 6.3: Vehicle path trace and steering command usinglation environment in two scenarios: a) MPC has compféterination
about the approaching obstacles b) MPC is not informed aheutelocity of approaching obstacles

avoid the obstacle than in test 1. The condition of sensorinétion was simulated by adding equation 5.14
to the constraints of the MPC in test 1. This experiment shwove our VIL platform can help in analysis of
various scenarios like collision avoidance.

In the next experiment we tried to see the impact of noisyadgyan obstacle avoidance. Here, the
MPC considers that the obstacle will continue moving with $ame velocity as the virtual sensors measure.
In Fig. 6.4, test 1 there is no noise in the sensed positionebbstacle and in test 2 there is white noise in the
sensed position of the obstacle with standard deviation2.0rhe goal of the experiment was similar to the
previous experiment, i.e to reach the Target at (9,9) whitéding the obstacle on the way and minimizing
the cost function defined by Equation 5.4. The vehicle is sbodge the moving obstacle since the MPC
cost related to the obstacle ensures that the vehicle asaittsular region around the obstacle. Obstagle
was the real position traced by the obstacle and Obstaglgvas the sensed position traced by the obstacle
which included white noise. To improve the obstacle avoddan case of more noisy signals, vehicle safety
distance dsato can be increased. Also a probability model can be used fisysignals which will be a part

of our future work.
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Figure 6.4: Obstacle avoidance with moving obstacle ansknioi sensor.

6.2.2 Using VIL to simulate animal-vehicle collisions

Animal-vehicle collisions (AVCs) are a huge challenge spicin wildlife corridors but still little
is known about AVCs and what goes wrong in such incidents.alLén al. [26] have provided insight into
how animals react to oncoming vehicles. As an example wetwyil scenario of AVCs. It is a perfect
example of benefit of VIL because including a real animal ireaperiment is very difficult or impossible.
With the proposed method we can simulate the interaction efah vehicle with virtual animals. In the
proposed scenario, we consider that animal behaviours t@upredicted accurately based on the the kind of
animal, its immediate reactions or movements and conditddthe encounter. We have tried to simulate four
probable behaviours animals might exhibit when it encasrdevehicle and try to analyze how our obstacle

avoidance algorithms will behave if it had knowledge on tivdlof reaction the animal makes. The four

scenarios are :

« (a) Blind Crossing : In this condition, we have considereakt the animal doesn’t notice the vehicle

but it can be seen by the sensors on the vehicle.

* (b) Panic Stop : In this condition, we have considered thatanimal panics and stops as soon as it

notices the vehicle.

* (c) Panic Run : In this condition, we have considered thatahimal panics as it notices the vehicle

and runs in the direction of its motion.
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« (d) Panic Return : : In this condition, we have considered tihe animal panics as it notices the vehicle

and runs in the opposite direction of its motion.

We initially run our simulations in a software-in-loop ersiment (SIL) where both the vehicles as
well as the animals are simulated run. After, the verifiaaijave run the scaled-car with simulated animals
in a vehicle-in-loop (VIL) environment. To include the pretive movement of the animal in the MPC,

following states given by Equation 6.1 are added,

Xobs(K+ 1) = Xops(K) + &t {(onbs(k))ax} (6.1)

Yobs(K+ 1) = Yobs(K) + &t [(Vyobs(k))ay] )

where Kops, Xobs) and (i, Vy,,s) are the position and velocity of the animal, whilg ay are two factors for

incorporating the predictive movement of the animal givgn b

Vi
Oy = 0 COS tan’l( y"bs)
onbs
. WA
ay = asin | tan 1( y"bs)
onbs

(6.2)

1 if scenario is blind crossing  ordgps > dsafe OF Vi, = Vobs

0 if scenario is panic stop anddgps < dsafe

o= (6.3)
n if scenario is panic run  anddgps < dsafe and  Vimg,, > Vobs,

—n ifscenariois panic run  anddgps < dsafe and Vmg,, > Vobs,

wherevm,, andvgps are the maximum and the measured speed of the anigagghnddsa e are the measured
and safe distance to the animal, anis the ratio of maximum to the current speed of the animal.

Fig. 6.5 shows the four scenarios simulated in a softwadedp environment while Fig. 6.6 shows
them in a vehicle-in-loop environment. The green vectodscite the relative position of the vehicle and the
animal. In scenario (a) and scenario (c), we can see thatehiele waits for the animal to pass, while in
scenario (b) and scenario (d) the MPC knows that the aninwithgr going to stop or change its direction

and hence makes the necessary control decisions to avoltistooo
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Chapter 7

Conclusions

The first stage of this research was conducted in collalmoratith Dr. Judhajit Roy and Dr. Ni-
anfeng Wan where we formalized path planning for off-roachia as a two stage optimal control problem:
The first stage relies on large scale but perhaps coarselaygti maps and employs dynamic programming
to calculate the optimal cost-to-go from any point on thersely gridded map to a pre-specified destination.
The second stage is based on MPC which calculates the oggattalin a receding horizon, centered on a
vehicle, and based on higher resolution data from on-baarsis's, guided by the cost-to-go map. The layer
based approach helped in efficient handling of route ctitifarmation as shown in our experiment where,
if a vehicle is not informed about enemy’s Line of Sight an@slwt take it into account, it might get trapped.
Using a centralized server for storing all the route infatiovawhich can be enriched by the vehicles also
ensures that all vehicles in the platoon have access totis laformation.

While the first stage of the research was carried out in a sitioul environment, the the next stage
focused on experimental implementation of the route guiddramework in a scaled platform. The efficacy
of the localization, obstacle avoidance and vehicle cérsimategies developed have been shown experi-
mentally, specifically the drift correction algorithm fdret IMU. An important aspect of the research is the
utilization of a low-level controller for augmenting thertool decisions made by the MPC with minimal
computational resources available. Online measuremestieefing angle using a camera-based tire edge
detection algorithm as well as steering angle estimatiarwther novel aspects of this research. Due to the
constraints on the computational power, we couldn’timmatthe global cost-to-go map in the local planner
but it is in the scope of future work of this project.

Finally, the vehicle-in-the-loop framework helped in aysa$ of our obstacle avoidance algorithms
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in various scenarios. In the animal-vehicle collision dimions, we demonstrated a beneficial instance of
VIL in an animal avoidance scenario where experimentin@ witeal animal is not practical.

Future scope of this work include the following:

« use a powerful on-board computer which will enable to attbn of online steering angle measurement

algorithm along with the MPC for more robust steering contro

* use higher order models starting with the kinetic modetidse state estimation in the MPC, so that it

can take into account the dynamic forces working on the \ehic

« run the vehicle in off-road terrain with different inforti@n layers like elevation, soil, visibility and

use the cost-to-go map to guide the local planner.

« use the vehicle-in-the-loop platform for analyzing thepamt of connectivity on fleet of vehicles, where
each vehicle can update its position, the perceived tearadrsoil information to the server which helps
to create a dynamic map of any unexplored terrain. This wiflde successive vehicles in the fleet to
learn from the mistakes of the preceding vehicles and gthduave faster, safer, and more energy
efficiently. Eventually, this test bed will aid future resgfain the domain of autonomous vehicles for

preliminary algorithm verification like collision avoidee and performing feasibility tests.

« use of combination of sensors like LIDAR, stereo cameraatonline obstacle detection and updating

in the global obstacle map layer.
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