
Clemson University
TigerPrints

All Theses Theses

12-2017

Hierarchical Off-Road Path Planning and Its
Validation Using a Scaled Autonomous Car'
Angshuman Goswami
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Goswami, Angshuman, "Hierarchical Off-Road Path Planning and Its Validation Using a Scaled Autonomous Car'" (2017). All Theses.
2793.
https://tigerprints.clemson.edu/all_theses/2793

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268664278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2793?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


HIERARCHICAL OFF-ROAD PATH PLANNING AND ITS VALIDATION
USING A SCALED AUTONOMOUSCAR

A Thesis
Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

Angshuman Goswami

December 2017

Accepted by:

Dr. Ardalan Vahidi, Committee Chair

Dr. John R. Wagner

Dr. Phanindra Tallapragada



Abstract

In the last few years. while a lot of research effort has been spent on autonomous vehicle navigation,

primarily focused on on-road vehicles, off-road path planning still presents new challenges. Path planning

for an autonomous ground vehicle over a large horizon in an unstructured environment when high-resolution

a-priori information is available, is still very much an open problem due to the computations involved. Local-

ization and control of an autonomous vehicle and how the control algorithms interact with the path planner

is a complex task. The first part of this research details the development of a path decision support tool for

off-road application implementing a novel hierarchical path planning framework and verification in a simula-

tion environment. To mimic real world issues, like communication delay, sensor noise, modeling error, etc.,

it was important that we validate the framework in a real environment. In the second part of the research, de-

velopment of a scaled autonomous car as part of a real experimental environment is discussed which provides

a compromise between cost as well as implementation complexities compared to a full-scale car. The third

part of the research, explains the development of a vehicle-in-loop (VIL) environment with demo examples

to illustrate the utility of such a platform.

Our proposed path planning algorithm mitigates the challenge of high computational cost to find the

optimal path over a large scale high-resolution map. A global path planner runs in a centralized server and

uses Dynamic Programming (DP) with coarse information to create an optimal cost grid. A local path planner

utilizes Model Predictive Control (MPC), running on-board, using the cost map along with high-resolution

information (available via various sensors as well as V2V communication) to generate the local optimal path.

Such an approach ensures the MPC follows a global optimal path while being locally optimal. A central

server efficiently creates and updates route critical information available via vehicle-to-infrastructure(V2X)

communication while using the same to update the prescribedglobal cost grid.

For localization of the scaled car, a three-axis inertial measurement unit (IMU), wheel encoders, a

global positioning system (GPS) unit and a mono-camera are mounted. Drift in IMU is one of the major issues

ii



which we addressed in this research besides developing a low-level controller which helped in implementing

the MPC in a constrained computational environment. Using acamera and tire edge detection algorithm

we have developed an online steering angle measurement package as well as a steering angle estimation

algorithm to be utilized in case of low computational resources.

We wanted to study the impact of connectivity on a fleet of vehicles running in off-road terrain. It

is costly as well as time consuming to run all real vehicles. Also some scenarios are difficult to recreate

in real but need a simulation environment. So we have developed a vehicle-in-loop (VIL) platform using a

VIL simulator, a central server and the real scaled car to combine the advantages of both real and simulation

environment. As a demo example to illustrate the utility of VIL platform, we have simulated an animal

crossing scenario and analyze how our obstacle avoidance algorithms performs under different conditions. In

the future it will help us to analyze the impact of connectivity on platoons moving in off-road terrain. For the

vehicle-in-loop environment, we have used JavaScript Object Notation (JSON) data format for information

exchange using User Datagram Protocol (UDP) for implementing Vehicle-to-Vehicle (V2V) and MySQL

server for Vehicle-to-Infrastructure (V2I) communication.
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Chapter 1

Introduction

The field of off-road navigation has not yet been explored as exhaustively as on-road navigation.

While this presents an opportunity for research, there are associated challenges like lack of awareness, which

can not only lead to vulnerable situations but also increased energy usage. Uninformed decisions in such

terrain can cause loss of a vehicle. Advances in connected vehicle technologies and real-time access to

computational clouds have caused a paradigm shift in the efficiency of fleet management. Connected vehicles

which can talk amongst themselves as well as servers, exchange information, and automatically learn from

each other’s trip experience. Availability of precise 3D elevation profiles, soil trafficability, and vegetation

maps present an opportunity for further improvement in off-road navigation. Off-road driving presents a

significantly different set of challenges when compared to on-road driving [10,18,35,39]. In off-road vehicles,

more route considerations for the optimization routines needs to be taken since they are not constrained to

the road network. Efforts have been made for improving ride quality in off-road driving based on terrain

roughness [38]. In recent years, extensive efforts in the field of detection, classification and mapping of

terrain can largely be classified into two approaches; i) developing a terrain model with obstacle constraints

based on vehicle sensors and ii) using high-resolution terrain information collected a priori [7,10,24,28]. For

generating the optimal route over a given terrain, an opportunity exists to utilize both sources of data to better

inform the decision process.

A part of our research involves the investigation of an efficient hierarchical approach for vehicle

path planning across vast off-road terrains. A global optimization routine utilizes low resolution a-priori

information like terrain, soil and visibility to find an optimal cost-to-go grid. This approach helps in dis-

tributing computation cost between the on-board computer and the cloud. A global path planning algorithm
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can run in the cloud, updating the cost-to-go grid based on the augmented information available from V2X

communications. A local optimization routine incorporates high-resolution information and builds on the

cost map, arriving at a global optimal path. The cost-to-go grid ensures that the local planner is aware of the

optimal trajectory in case it deviates from the mandated path. In our simulation, we have utilized publicly

available terrain and soil maps in our algorithms before running vehicle-in-the-loop testing. Improving safety

of vehicles is one of the prime motivations for increasing autonomy. In military applications, visibility of a

platoon from the nearest communication towers or avoiding line-of-sight of adversarial observation towers is

of paramount importance. We address those objectives in ourpath planning algorithm. We will use the ter-

rain maps and known positions of adversarial towers, to generate a visibility map and incorporate it into our

optimization routine. For remote fleet operation, assisting the vehicle operator with updated route guidance

can make a critical difference.

After algorithm verification in a simulation environment, we built a scaled car to validate our al-

gorithm in a vehicle-in-the-loop environment. In our proposed scenarios, a real vehicle communicates with

virtual vehicles and a centralized server running on a back-end computational cloud. The system relies on

recent advances in vehicular connectivity that enable individual vehicles to cooperate and exchange infor-

mation within a fleet and to communicate with back-end infrastructure. The setup provides an affordable

research testbed which aims to reduce the costs associated with the use of full-scale autonomous vehicles.

Such monetary and time costs restrict many researchers to pure simulation environments [32] where it is

difficult to mimic real world issues like communication delay, sensor measurement noise and errors, and

modelling error in vehicle dynamics. Many researchers haveworked on the development of a scaled-down

platform which provides a balance between full-scale vehicles and pure computer simulations. La et. al. [22]

have developed a scaled-down platform for intelligent transportation systems (ITS) that is useful for prelimi-

nary study and feasibility tests. Verma et. al. [41] have designed a scaled vehicle with longitudinal dynamics

of a high-mobility multi-purpose wheeled vehicle (HMMWV).Travis et. al [40] have worked on using scaled

vehicles to investigate rollover propensity. For autonomous operation and navigation of a scaled car, its abil-

ity to localize itself is critical. Considerable efforts have been made in the area of simultaneous localization

and mapping (SLAM) [23] with high success in indoor environments [15]. Stereo vision has been used with

inexpensive GPS [5] for localization in outdoor environments while Kalman Filter based integration with

GPS, IMU, odometry and Lidar measurements has also been explored extensively [31].

While many advancements have been made in this domain, thereexists a scope for development of a

low-cost platform implementing feedback steering controland Vehicle-to-Everything (V2X) communication

2



using low-cost sensors. We have built a scaled car for our experiments based on Berkeley Autonomous

Race Car (BARC) [2], a low-cost open-source development platform for autonomous driving developed at

University of California, Berkeley. We have improved on thebase software of the BARC platform, so that

we can use it for our preliminary study and feasibility tests. We have worked on running this car on a

flat terrain (which reduces the complexity of all computations to a 2-D domain) while our future work will

consider implementation in 3-D terrains. To simulate a fleetand analyze the impact of connectivity, we have

introduced V2X communication via a wireless network between the real car and virtual vehicles running on

a back-end cloud. This enables individual vehicles to cooperate and exchange information within a fleet and

to communicate with a back-end server.
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Chapter 2

Hierarchical Route Guidance

Framework

2.1 Architecture

The proposed hierarchical route guidance approach seeks toaddress the challenge of high compu-

tational cost when finding the optimal path over large terrain when high-resolution information is available.

On-road applications typically optimize the route based onexisting known road networks. In off-road appli-

cations, no such pre-defined road network exists which makesthe optimization task even more challenging.
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Cost-to-go Map

Control Layers
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Figure 2.1: Overview of the route guidance framework.
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An overview of the software architecture and a flowchart of the developed hierarchical approach is

shown in Figure 2.1. A dynamic programming routine is used togenerate the approximate global optimal

path and the optimal cost-to-go map using low resolution elevation and soil trafficability information. The

optimal cost-to-go map is a map whose value at each grid pointis the optimal cost-to-go from that grid point

to the target destination. It is discussed in more detail in Section 3.1. A model predictive local optimization

routine uses the stored optimal cost-to-go map and high-resolution information from the on board sensor to

find the local optimal path. A part of the ongoing research in our group is traversability evaluation using a

high order 3D vehicle model which is not a part of this thesis.

A typical multiple level optimization will calculate an optimized trajectory followed by a low level

control. The optimized trajectory from high level may not beupdated in real-time due to computational

cost especially for long term/large scope planning. Dynamically calculating the optimal path for a fleet of

vehicles with the same destination, but different real-time position may be more challenging. The cost-to-go

based method does not need to calculate the optimal path globally or need memory to save the path. The

backward based cost-to-go could be used by all vehicles at different locations as long as they have the same

target position. An offline optimization routine uses coarse resolution information to generate an approximate

global optimal path. Each ground vehicle performs online optimization to find the optimal local path using

high-resolution information. The optimization routine uses a back-end server to obtain, store and share

relevant information amongst them.

2.2 Information Layers

An efficient path planning algorithm is predicated on efficient handling of the information database.

An novel method of integrating the information layers to thedecision process is presented here. Information

collected before and during the mission is stored as maps. Multiple maps, each representing an information

layer, are stored on a backend server. Information stored onthe server is accessible by the vehicles on the

ground as well as by a central computation server. The route guidance routines use these stored maps to

perform their respective optimizations. All the maps are stored with a corresponding timestamp representing

the latest update. The maps are categorized into two types: i) Static maps represent information layers that

remain constant over the full duration of the mission, ii) Dynamic maps contain information layers that are

either updated or generated during the mission. Examples ofthe maps we have used in this work are shown

in Figure 2.2.
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Figure 2.2: Information Layers (Figure adopted from [34])

• Elevation Information: Various Digital Terrain Models (DTM) exist that provide topographic eleva-

tion data of bare terrain. Over the past 15 years, the elevation information of the United States National

Map [3] was mapped by United States Geological Survey (USGS)and presented in the National Eleva-

tion Dataset (NED). The NED bare earth elevation information for the entire US is available for public

download at medium resolution (every 10 or 30 meters). Since2015, under its more recent 3D Eleva-

tion Program (3DEP), USGS now provides higher resolution elevation data (every 1/9 arc-second and

1 meter) for selected locations in the US and plans to expand this dataset in the coming year [1]. We
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have selected a representative site where the higher resolution data is available and have successfully

retrieved the elevation. For our study, we chose a 10 sq. km. area near Denver, Colorado. This area has

a rough terrain with two peaks, captured with high 1m elevation resolution as shown in Figure 2.2a.

Other existing DTM elevation sources are through the Shuttle Radar Topographic Mapping (SRTM,

every 30 m) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, every

30 meter) programs available by NASA and Japan’s Space Agency. Intermap Technologies provides

high-resolution data (every 5 meter) for a wide range of locations across the world.

• Soil Trafficability: The US Department of Agriculture (USDA) publishes soil information for the en-

tire contiguous USA [4]. Among the publicly available data,soil trafficability is the most pertinent

information when planning for off-road driving. The soil trafficability layer is intended to rate the ca-

pacity of the soil to support military vehicles. Soil trafficability ratings account for soil strength, soil

slipperiness, stickiness, stoniness, and slope. The rating class indicates the verbal description of the

expectation to complete the task for the given military vehicle category, number of passes to complete

the task, and the season of the year. Military vehicles are categorized into seven types for trafficability

rating. Table 2.1 shows various trafficability ratings and the expected task completion value. A man-

ual [6] provides a guideline to convert the verbal soil rating to a probabilistic task completion value

as indicated in the second column of Table 2.1. The route guidance routine has been developed for

deterministic maps. Therefore, the probabilistic task completion values are converted to corresponding

numeric values for computational ease as shown in the third column of Table 2.1.

Table 2.1: Soil Trafficability Ratings.

Rating Expected Completion Rate Our Rating
Excellent 0.90–1.00 4
Good 0.75–0.89 3
Fair 0.50-0.74 2
Poor 0.00-0.49 1
Not Rated - 0.01

To run the optimization routines for the area correspondingto terrain map in Figure 2.2a, we have

extracted the soil trafficability data from the USDA database as shown in Fig. 2.2b.

• Line of Sight (LoS): The concept of line-of-sight was initially used in guided missile development

in the 1940’s [8]. Recent efforts in tactical path-finding use the concept wherein safety of the unit is

taken into account in path optimization by being out of the LoS or enemy range while remaining in the

friendly LoS [20,21,25,36]. In mountainous or hilly terrain, there are issues related to failure of radio
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communication. In such situations, the concept of LoS can beextended to find the optimal path keeping

a fleet within range of the radio tower of the base stations effectively improving safety of the operation.

Steve et al. [9] have explored a voxel-based modelling approach for rapid viewshed calculation. A

viewshed is the geographical area that is visible from a location which includes all surrounding points

that are in line-of-sight with that location and excludes points that are beyond the horizon or obstructed

by terrain and other features like buildings, trees. (source : Wikipedia). Here we have used the line

of sight as an extra information layer which aids in the trajectory optimization. The elevation layer is

used to find the grids which are visible from known locations of adversarial watch towers.

Figure 2.2c shows areas in the map which are visible from the known location of three fixed towers

in white. Darkly shaded areas are invisible parts of the terrain. The location of the towers are shown

in Figure 2.2a with red markers. MATLAB functionvoxelviewshedwas used to translate the elevation

information and the tower location to the visibility map.
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Chapter 3

Optimal Off-Road Navigation

We initially developed a simulation environment implementing the framework discussed in Chapter

2 in Matlab using a global and a local planner. We had run initial simulations to validate the effectiveness

of the developed hierarchical algorithm. The simulation was run for the 10×10 kilometre terrain shown in

Figure 2.2. The objective of the mission was to travel optimally from the start point at (0,0) to the end point at

(10000, 10000) meters. The research carried out in this Chapter has contribution of Dr. Judhajit Roy was had

formulated the MPC and the simulation environment, Nianfeng Wan who had developed the global planner.

My specific contribution is the developing of line of sight (visibility), MPC formulated including the line of

sight and the system in the hierarchical framework utilizing a centralized server developed using MySQL.

This chapter has been discussed in our research [34].

3.1 Global Planner

Dynamic Programming (DP) is a common and powerful method in solving optimization problems.

Based on Bellman’s principle of optimality, DP divides the whole optimization problem into smaller sub-

problems and solves them recursively. It also stores the intermediate results, thus helping in solving sub-

problems in case they reoccurs, thereby significantly reducing computational time with modest expenditure

in storage space. In computer science literature, Dijkstra’s algorithm [11] is one of the most important

and useful methods in solving a path planning/shortest pathproblem. The algorithm normally utilizes an

environment represented as a graph with vertices and edges to finds the minimum cost (e.g length) between

each vertex and the given vertex on the graph. Fibonacci heapimplementation in the algorithm makes it the

Dr. Judhajit Roy contributed in formulation of the MPC and simulations and Dr. Nianfeng Wan contributed in development of the
global planner. [34].
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fastest single source path finding algorithm for non-negative cost, asymptotically [13].

Dijkstra’s Algorithm was usually described as a greedy algorithm before 2000s, in the computer

science and operational research fields. The connection between Dynamic Programming and Dijkstra’s algo-

rithm was successfully shown by Sniedovich [37]. Dynamic Programming is usually used in research where

cost-to-go approximation is required to be obtained from all grids to the destination. Also with advanced data

structure implementation, Dijkstra’s Algorithm can achieve better computation performance with less storage

expense. Hence, we have chosen Dijkstra’s algorithm for ourglobal planning.

In our research, the entire terrain as shown in Figure 2.2 (a), is divided into small square grids and

each grid representing a vertex on a graph. Each small grid isconnected to only its 8 neighbouring grids.

The cost of a vehicle travelling from a gridi to j is defined by a cost function. The edges are assumed to

be undirected, which means travelling in the reverse, i.e. from grid j to i, cost remains the same. While

Dijkstra’s algorithm is mostly used to find the shortest route or distance, here we have increased the scope of

the algorithm by including different information layers such as distance, elevation changes and soil conditions

into account. In our research, the cost function is defined asfollows:

J(i, j) =
n

∑
k=1

wkJk(i, j)

J1(i, j) =
√

(xi − x j)2+(yi − y j)2+(zi − zj)2

J2(i, j) =
1
si
+

1
sj

J3(i, j) = |zi − zj |

(3.1)

wherex,y,z are the 3D coordinates of the grid,s is the trafficability coefficient andw is the weight coeffi-

cient.J1, J2 andJ3 represents the cost due to distance travelled, soil condition and absolute elevation change

respectively. DP finds the path which minimizes the total cost. IncludingJ2 in the cost function ensures that

the route with better soil condition is chosen.J3 ensures that the route chosen has smaller crest and trough.

To avoid extreme slope which are beyond the driving capability of the vehicle, the following constraint is

imposed in the optimization.

slope(i, j) < slopeMAX (3.2)

While travelling from one grid to another, if the slope constraint is violated, the cost is set to infinity. The cost

function can be expanded to incorporate more information layers with different associated weights which can

be tuned based on objective of the mission.
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The cost-to-go map is generated as the output of Dijkstra’s algorithm which computes the minimum

cost incurred when travelling from any grid on the graph to the final destination grid.The choice of resolution

or the size of each grid determines the computation complexity and the storage space needed. The grid reso-

lution is directly proportional to the memory usage while indirectly proportional to the precision. Hence, with

an optimal resolution of 50 m is chosen, balancing precisionand required memory. Each grid is considered

as one vertex and, different elevation changes or soil conditions within the grid are neglected.

The global path planning is solved off-line and the cost-to-go map is updated on the server. This cost-

to-go map is utilized by the local path planning along with high resolution and other available information to

find the global optimal path.

3.2 Local Route Guidance via Model Predictive Path Planning

The lower level route planning is assisted by the cost-to-gomap generated in the high-level route

planning which helps us achieve efficient integration of global and local planner. Model predictive control

(MPC) with receding horizon approach is used for the local route guidance as the vehicle navigates though

the terrain. For the MPC, we have used a simplified kinematic model of the vehicle defined by 3 states:x

andy are the coordinates of the center of gravity with respect to vehicle’s initial position andψ is the vehicle

heading angle with respect to the initial longitudinal direction. The input to this model is the commanded

change in heading angle and is denoted byδ. The discretized model is given by,

xk+1 = xk+∆sk cos(ψk)

yk+1 = yk+∆sk sin(ψk)

ψk+1 = ψk+ δk

(3.3)

where∆sk is the the displacement of the center of gravity in thex-y plane over stepk. For our simulations,

we have used the same model for the plant. In Section 4.9.2 we will see how the commanded heading angle

δ can be utilised by a low level vehicle controller for steering control to meet the desired heading angle.

Typically, MPC used for path planning and tracking [33, 42] employs a fixed temporal horizon. In

our research, we have used a fixed spatial horizon that encircles the vehicle as shown in Figure 3.1 for our

model predictive algorithm to run the local route guidance.A circular horizon is consistent with the vehicle

sensors horizon and therefore simplifies the formulation. Accordingly, discretization in Equation 3.3 and in

Dr. Judhajit Roy contributed in formulation of the MPC and simulations and Dr. Nianfeng Wan contributed in development of the
global planner. [34].
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Figure 3.1: MPC radial steps and the optimal cost-to-go at the end of MPC circular horizon shown as varying fence height (Figure
adopted from [34]).

the rest of this section is over position and not over time. More specifically, the circular horizon is divided

into concentric circles centered at the current vehicle location. The increase in radii,∆r, of successive circles

is fixed as the MPC’s step length. The steps are incremented inthe x-y plane and because the vehicle is

constrained to move on prescribed terrain, the change in elevation in thez direction is a function of the

vehicle’sx-y location.

As schematically illustrated in Figure 3.1, the MPC optimizes the local path (shown in red) based

on i) high-resolution map and sensor information over its circular horizon and ii) the DP cost-to-go from the

perimeter of the horizon to destination point (representedby the varying fence heights). The optimization

variables are commanded change in heading angleδk at each∆r increment. Hard symmetric constraints are

imposed onδk and its rate of change over each step to more accurately represent the physical constraints on

the vehicle motion:

|δk|6 δmax

|δk+1− δk|6 ∆δmax

(3.4)
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The structure of the cost function of the local routine echoes that of the global routine for penalty surface

continuity. The objective of the optimization routine is to:

min

δ1 · · ·δn

J = w1

n

∑
k=1

∆lk+w2

n

∑
k=1

1
soilk

+w3

n

∑
k=1

|zk− zk−1|+w4

n

∑
k=1

obstaclek+w5

n

∑
k=1

visibilityk

+J∗DP(xn,yn)

(3.5)

In the above cost function,n is the prediction horizon in radial steps andδi are the free optimization variables

at successive radial steps; each represent the commanded change in heading angle at stagei. The penalty

weights are design variables shown aswi . The six terms of the cost functions are,

• ∆lk is the 3D distance covered in thekth step which is computed as,

∆lk = ‖∆sk,(zk− zk−1)‖2
(3.6)

where∆s is the topographic distance (2D), andz is the elevation at each step point.

• The functionsoilk is the computed value associated with the terrain traversedas described in section

2.2. Since the objective is to minimize the cost function, the inverse of the soil computed value is used

in the cost function to ensure that the prescribed route utilizes the best soil possible.

• The term|zk− zk−1| penalizes the elevation change in one radial step to preventselection of steep paths.

A hard constraint on|zk−zk−1|
∆sk

can also be imposed to put an upper limit to the path steepness.

• To ensure that the local route prescribed avoids collisionwith the obstacles we penalize the locality

of the detected obstacles heavily. For an obstacle q, let A(q) denote the circular area surrounding the

obstacle centered at the geometric center of the obstacle q and whose circular radius is equal to the

preferred safe distance between the vehicle and obstacle. The functionobstaclek in Equation (3.5) is
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defined as,

obstaclek =















0 if xk,yk /∈
⋃Q

q=1A(q),

M if xk,yk ∈
⋃Q

q=1A(q),

(3.7)

whereM represents a very large number.

• To reduce the chance of being detected, the cost function (3.5) penalizes areas which can be seen from

the adversarial towers by introducing the cost term,

visibilityk =















0 if xk,yk ∈ invisible,

1 if xk,yk ∈ visible.

(3.8)

• The last termJ∗DP(xn,yn) represents the optimal cost-to-go, calculated by the dynamic program, from

the end of the MPC horizon to the final target. This cost is schematically shown as fence heights in

Figure 3.1. Remember that the values for the optimal cost-to-go were obtained (offline) using a coarse

dynamic program and stored as a layer of information maps as shown in Figure 2.2d. Inclusion of the

cost-to-go is intended to prevent short-sighted decisionsby the local path planner and ensures local

decisions are guided by global objectives.

The weights on elevation change (w3), obstacle detection (w4), and the line of sight (w5) are used as

soft constraints, i.e. if the respective parameter values are greater than a predetermined limit a high penalty

is applied to that section of the path. The cost function in (3.5) is minimized subject to the vehicle kinematic

equations in (3.3) and the input constraints in (3.4). This problem is solved numerically using a sequential

quadratic programming approach. Ideally, the cost function for MPC and DP should be the same so that the

costs match at the boundary of the local prediction horizon.Note that as Equation (3.5) shows, the ultimate

cost that each vehicle minimizes is broken down to a shorter horizon MPC cost with higher resolution sensory

information added with a longer DP horizon and lower resolution map information). The only difference

between them is the resolution of the available information. Note that because the cost function in (3.5) does

not explicitly depend on control inputsδk, in the numerical routine we minimize it with respect to heading

Dr. Judhajit Roy contributed in formulation of the MPC and simulations and Dr. Nianfeng Wan contributed in development of the
global planner. [34].
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anglesψ1, · · · ,ψk while still enforcing input constraints in (3.4); this simplifies execution of the non-linear

optimization routine.

3.3 Simulation Results

As previously discussed, we ran simulations for the 10×10 kilometre terrain shown in Figure 2.2.

The objective of the mission was to travel optimally from thestart point at (0,0) to the end point at (10000,

10000) meters.

Figure 3.2: Prescribed routes with different information layers (Figure adopted from [34]).

First simulations were conducted with only one vehicle. TheDP algorithm is executed off-line

and then the local MPC path planner is run and is informed by the DP-calculated optimal cost-to-go map.

Multiple layers of information were considered in path planning decisions by both DP and MPC. The local

routine at each step tries to navigate the vehicle to the lowest cost within its horizon as well as incorporates

the high-resolution map information. The global optimality of the prescribed route is enriched since the local

route guidance routine augments the results of the global route optimization routine through the cost-to-go

map.

The route prescribed by the route guidance routine is plotted over the terrain contour map in Figure

3.2. In sub-plot (a) of Figure 3.2, both terrain and soil conditions are considered in addition to soft and
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hard constraints on stepwise elevation change. Furthermore, command heading angle constraints shown in

Equation (3.4) are also enforced. The chosen path balances travelled distance, road steepness, soil conditions,

and high-level vehicle kinematic limitations. As a result,it chooses a relatively flat valley that goes around

steep slopes.

An optimal path prescribed in the presence of visibility information is shown in Figure 3.2b. This

reflects a scenario where it is desirable to stay out of the line of sight, e.g. of adversarial watch towers.

In Figure 2.2a, we have shown 3 watch tower locations with redmarkers and used the MATLAB toolbox

Viewshedto find areas which are visible from those watch towers takinginto account the terrain information

we already have. The visible portions in the map from the known watch tower locations are marked in white

in Figure 2.2c while the invisible portions are marked in black. To remain in invisible areas, the optimal path

in Figure 3.2b takes a longer stealth route passing in between the two peaks.

A fleet of three identical vehicles is considered to demonstrate the effectiveness of the connectivity

for a fleet of vehicles. The neighbouring vehicles were initially separated by a equilibrium distanceRhorizon,

heading due east (to the right).JCON described in Equation 3.9, is the cost associated to implement the

connectivity between vehicles which is added to the cost described in Equation 3.5.

JCON(p) = w6‖JCON(p|p−1) ,JCON(p|p+1)‖

= w6‖
(

Lp|p−1−2Rhorizon
)

,
(

Lp|p+1−2Rhorizon
)

‖,

(3.9)

whereLp|p−1 andRhorizon represents the distance between two neighbouring vehiclesand equilib-

rium distance respectively. Two scenarios were simulated:In the first scenario, the motion of the three

vehicles are not coordinated as shown in the Figure 3.3a, andin the second case the motions of the vehicles

are coordinated as shown in the Figure 3.3b. To highlight thedifference, the initial 500 m×500 m subsection

is shown here. For both scenarios, all the vehicles eventually reach the same destination point.

We can observe that in the first scenario each vehicle’s localguidance routine determines the optimal

path for the vehicle without considering the location of theother vehicles in the fleet. The three vehicles have

different starting points. Therefore, their optimal pathsto the destination are different. The optimal path

of one of the vehicles (solid route) would lead it to lose contact with the other vehicles in the fleet. Such

a scenario might increase the risk to the vehicle. On the other hand, if the local path planner incorporates

the location of its neighbouring vehicles, the motion of theentire fleet is coordinated. The benefit of a

16



Figure 3.3: Coordinated versus individual path planning (Figure adopted from [34]).

coordinated fleet from an information resource point of view, is the locally contiguous enrichment of the

information layers. On observing obstacles or steep elevation profiles with higher cost than the coordination

cost, the vehicle’s local path planner prescribes a path avoiding those grid points. When the risk reduces

in the local vicinity, the local routines coordinate to bring the fleet vehicles back into a formation. Such

a coordinated fleet behaviour would mitigate the risk for theentire fleet since the fleet horizon is extended

while travelling in a formation. The flexibility of the proposed route guidance framework was demonstrated

with these simulations. The fleet operators can use the developed hierarchical framework for more complex

scenarios by modifying the cost functions used at each levelas per their requirements.
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Chapter 4

Scaled Experimental Environment

4.1 Experimental Setup

Once our optimal off-road navigation was validated in a simulation environment, we wanted to do

the same in an experimental environment which will help us intesting various real world scenarios in a

vehicle-in-loop platform (discussed in Chapter 6). We havebuild a scaled car which is controlled using a

micro-controller and a host of sensors as shown in Fig. 4.1 based on the BARC platform. The steering (M1)

and acceleration (M2) servo motors are powered by a 7.4 V battery and controlled via Arduino Nano. An

Odroid XU4 forms the brain of the car powered by 2 GB RAM and 64 GB flash memory. ROS (Robot

Operating System) is used as a structured communications layer above the host operating system (Ubuntu

14.04, Trusty Tahr). The low-cost suite of sensors include atriple-axis IMU (Inertial Measurement Unit)

used for measuring the instantaneous yaw angle and rate, hall-effect sensor mounted on the wheel hub for

vehicle speed measurement, GPS for global positioning, anda two mega-pixel mono-camera for steering

wheel angle measurement. While the Encoders, IMU and GPS areused for localization (refer Sec. 4.8), the

camera is used for steering angle measurement (refer Sec. 4.6.3). Four magnets are mounted on each wheel

for measuring the wheel speeds using a hall effect sensor. (explained in detail in Sec. 4.7).

4.2 Vehicle Model

We use a 3-DOF and 6 state bicycle model derived from standardrigid body mechanics illustrated

in Fig. 4.2. This model simplifies the vehicle dynamics as a rigid body with lumped rear and front wheels
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Figure 4.2: 3 Degree of Freedom (DOF), 6 state Bicycle Model.

[14,17,19,29]. We neglect roll, pitch and lateral air resistance. In this figure,(X,Y) represent the coordinates

of the Center of Gravity (COG) of the vehicle,ψ denotes the yaw angle andr is the yaw rate in the inertial

frame (Xa,Ya). δ is the steering angle in the non-inertial body frame (Xb,Yb). L is the vehicle’s length. The
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dynamic equations of the motion take the following form [19],

Ẋ = vx cosψ− vysinψ

Ẏ = vx sinψ+ vycosψ

ψ̇ = r

v̇x =
1
m
(FxR−FyF sinδ)+ vyr

v̇y =
1
m
(FyF cosδ+FyR)− vxr

ṙ =
1
Iz
(L f FyF cosδ−LrFyR) , (4.1)

wherevx andvy denote longitudinal and lateral velocities,FxR andFyR are longitudinal and lateral forces on

the rear wheels andFxF andFyF are their counterparts for the front wheel in the non-inertial body frame

(Xb,Yb). Iz is the moment of inertia aroundz axis andm represents vehicle’s mass.L f andLr represent

the distance of front and rear wheel axles from the CoG of the car. The Pacejka model [30] is used for the

estimation of tire lateral forces via a function of tire slipangles.

Fy(α) =











µFzsin(Ctan−1(Bα)) : |α| ≤ αcr

−Fmax
y sgn(α) : |α|> αcr

, (4.2)

whereµ is the friction coefficient,Fz is the vertical force due to its load,B andC are fit parameters, and the

tire side slip angles of the rear and front tires are given by

αF = tan−1
(

vy+L f r
vx

)

− δ

αR = tan−1
(

vy−Lr r

vx

)

. (4.3)

The tires cannot produce additional force after the slip angles pass a critical valueαcr. The lateral and

longitudinal forces are bounded by the following circle

F2
yR+F2

xR≤ (µFz)
2, F2

yF +F2
xF ≤ (µFz)

2 (4.4)
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4.3 Hierarchical Route Guidance Framework adapted to the Scaled

Platform

We have adapted the hierarchical framework (explained in Sec. 2) to our scaled platform as shown

in Fig. 4.3. (xr ,yr ) is the reference position which the car is expected to reachfrom its current estimated

position (x̂, ŷ). For simplification and better understanding of the whole framework, we have divided it into 5

main blocks.

xr, yr

Path Planner Path Planner

Global Local Low-Level

ad,δd

ψ̂

Controller

B1

δd Scaled
Car

Motor
Control

B2

B21 B22
B3

B4
B5

Signal
Conditioning

Sensors

(Server)

Other
Vehicles

Localization

V2I

V2V

Predictor
Model

rd
ψd

ad

x̂p, ŷp, ψ̂p v̂xp, v̂yp, r̂p

x̂, ŷ, ψ̂
v̂x, v̂y, r̂

x,y,ψ
vx,vy, r

Figure 4.3: Framework adapted for the current testing platform.

Block 1 (B1) depicts the global path planner and V2X communication (includes both V2V and V2I).

Block 2 (B2) represents the local path planner and the low-level controller. Outputs of the local planner are

the desired acceleration (ad) and heading rate (rd), while the low-level controller decides the steering angle

demand (δd). Block 3 (B3) details the motor control logic which involves the conversion of demand fromB2

to PWM signals. Block 4 (B4) consists of the algorithms used for pre-processing of the sensor signals before

being used for localization while Block 5 (B5) consists of the localization algorithm. (x,y,vx,vy,ψ, r) repre-

sents the measured position, velocity, yaw angle and rate after sensor signal processing while ( ˆx, ŷ, v̂x, v̂y, ψ̂, r̂)

represents the estimated position, velocity, yaw angle andrate from the Kalman Filter. Block 6 (B6) consists

of a predictor model which helps to account for computational delay as well as latency of actuators. Blocks

B1−B5 are discussed in detail in Sections 4.4− 4.8. BlocksB6 is discussed in detail in Section 5.3
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4.4 Global Planner,B1

A dynamic program (DP) is used for the global planner in orderto obtain the cost-to-go approxima-

tion from various points on the terrain (defined on a grid) where the vehicle is supposed to travel. The choice

of resolution or the size of each grid determines the computational complexity which increases exponentially

with the increase in resolution. Hence, the global path planning is done using coarse resolution information.

This cost map is then shared with the vehicles via V2I communication to guide their local planner. It has

been discussed in detail in Sec. 3.1

4.5 Local Planner,B2

A local path planner runs on-board the scaled car using ModelPredictive Control (B21). It is assisted

by the cost map shared by the global planner and the information available via vehicle-to-vehicle (V2V)

communication. One of the advantages of this process is maintaining a safe distance within the fleet without

scattering. Also, using the cost map ensures the path tracked by the car is also globally optimal besides being

locally optimal. A low-level controller is used for faster response due to the computational limitations of

the on-board computer which make it difficult for the car to bedirectly controlled by the MPC. The MPC

generates an optimal heading rate (rd) and acceleration demand (ad) which is used by the low level controller

to steer the vehicle and apply the appropriate acceleration. (ψd) which is a by-product of the optimization

and is used for robust steering control. MPC implementationis discussed in detail in Chapter 5.4.2

4.5.1 Low-Level Controller (PID)

 
 

+

−

ψd

ψ̂ ψ

eψ PD
Controller

δd B3

B4B5

B22
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rd

Feed
Forward Condition

Switch

1
1

0
0

Saturation

Figure 4.4: Block Diagram of the Low-Level Controller.

A schematic of the low level controller is shown in Fig. 4.4. APD controller is used for controlling
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the steering which tracks the desired output of the local planner. Steering angle demand (δd) is the output of

the low level controller which is then sent to the motor control block (B3). ψ̂ is the estimated heading which is

one of the outputs ofB5 (explained in detail in Sec. 4.8). A feed-forward part is used when the error exceeds

a set limit (±eψ). The feed - forward part uses the kinematic model of the vehicle to determine the desired

steering angle given by Equation 4.5

δd = tan−1

[

L f

L f +Lr
tan

(

sin−1
( rdLr

v

)

)

]

(4.5)

eψmin ≤ eψ ≤ eψmax (4.6)

As a default, the switch is set to False, while it is set to Truewhen the condition (4.6) is met. A saturation

block is used to ensure that the demand steering is within limits.

4.6 Motor Control, B3

B3

B31

B32

B33

δd

ad Acceleration

Steering

Controller

Controller

M1

M2

Scaled Car

δpwm

apwm

Figure 4.5: Overview of the motor control of the scaled car.

Motor Control Block (B3) consists of a steering and acceleration controller. This block converts the

mechanical demand (δd,ad) to appropriate electrical signals (δpwm,apwm) for controlling the car.M1 andM2

represent the steering motor and the acceleration motor respectively.
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4.6.1 Acceleration Controller

We have used a open-loop controller for the acceleration control. In Fig. 4.6 we can see the block

diagram of the open-loop controller. The blockB2 sends a steering angle demand to the steering controller

(B31). The angle demand is then converted into appropriate PWM signal inB31, which consists of a linear

model (described by Equation 4.7). 
 M1

apwmB2 B31
ad

Figure 4.6: Block Diagram of the Open-Loop Acceleration Controller.

apwm= mc+mgad, (4.7)

wheremc andmg represents motor constant and motor gain respectively, which are calibrated based

on the vehicle running ground truth data. While, a closed-loop acceleration controller was also developed but

it lead to jerks while running the car. Hence currently, we have used the open loop controller for convenience.

4.6.2 Steering Controller

We have developed open-loop and closed-loop steering controllers. While the closed-loop control

is more accurate, the advantage of the open-loop controlleris the computational cost savings which we will

discuss in detail in the next section. 
 M2

δpwmB2 B32
δd

Figure 4.7: Block Diagram of the Open-Loop Steering Controller.

In Fig. 4.7 we can see the block diagram of the open-loop controller. The blockB2 sends a steering

angle demand to the steering controller (B32). The angle demand is then converted into appropriate PWM

signal inB32, which consists of polynomial models (described by Equation 4.8).

For model calibration, we made a sweep of the PWM signals and collected steering angle data as

shown in Fig. 4.8. For steering angle measurement we are using a camera (explained in Sec. 4.6.3). From
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the data, we observed that the characteristic curve of the motor was dependent on the direction of turn of the

wheels. The probable reason might be the hysteresis in the motor and mechanical linkages in the steering

system. The angle (δd) to PWM (δpwm) conversion involves polynomial models as described in Equation 4.8.

δpwm= c1δ2
d + c2δd + c3 (4.8)

wherec1,c2,c3 are the coefficients which are calibrated based on the experimental data as seen in Fig. 4.8.

The coefficients are dynamically selected depending on the direction of rotation of the steering wheel, which

takes into account the motor characteristics as observed inthe experiments. 
 -

+ δpwm M2

δ̂

eδδd
B2

Steering Angle
Measurement

PD
Controller

Figure 4.9: Block Diagram of Closed-Loop Steering Controller

A schematic of the closed-loop PD controller is shown in Fig.4.9. The steering angle measurement

is done in real-time using a camera mounted on to the chassis (refer to Fig. 4.1).eδ is the steering angle error

between the demand (δd) and observed steering angle (δ̂).

Dr. Hamed Saeidi contributed in development of the tire-edge detection using sobel operator [16].
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4.6.3 Steering Angle Measurement

For the real-time measurement of steering angleδ̂, a USB camera is used with a tire edge detection

algorithm. This algorithm uses the video frames from the topview of the wheel and detects the steering

Front

Tire Bridge
ROS-OpenCV δ̂Steering

Measurement
Code

USB
Camera

Image
Processing

Steering Angle Measurement Block

Figure 4.10: The internal block diagram of the Steering Angle Measurement block.

angle using a line fitted to the tire edge (see Fig. 4.11.d as anexample). The slope of tire edge provides the

steering anglêδ after a simple conversion according to what follows shortly. The internal block diagram of

the Steering Angle Measurement in Fig. 4.9 is shown in Fig. 4.10. A built-in ROS-OpenCV bridge helps

to obtain the video frames from the USB camera and process them in a ROS node using OpenCV library in

order to detect the tire edge and extract its slope.

Steering angle: -22.7 (deg)

a b

c d

X

Y

Figure 4.11: Steps of measuring steering angleδ̂ via the USB camera

These steps include,a) capturing a real-time video frame,b) cropping and scaling a useful portion

of the image for edge detection,c) processing the results of stepb and detecting the pixels corresponding to

the tire edge, andd) fitting a line to the detected pixels and extracting the slopeof line (i.e. δ̂(t)). For the last
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step, using the image frame coordinates shown in Fig. 4.11.a, we use the following equation to find̂δ(t)

x = my+b

δ̂(t) =
180
π

m, (4.9)

wheremandb are the slope and offset of the line fit respectively.

4.6.4 Steering Angle Estimation

When the vehicle is running with the open-loop steering controller, we need an steering angle es-

timation algorithm which takes into account the system latency and response lag in the servo motor for

improvement in localization.
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Figure 4.12: Response lag in the servo motor

In Fig. 4.12, we can see that the system latency is≃ 0.14 s. We compensate this lag by using a

”double-ended queue” in Python, implementing First-In-First-Out (FIFO) data structure. The response lag is

compensated by introducing a first order linear non-homogeneous differential equation (Equation 4.10).

δ̇e(t) = −
1
τ

δe(t)+
1
τ

δd(t), (4.10)

whereδe andδd are the estimated and demand steering angle. The time constant τ is calibrated based on the

experimental data. Figure 4.13 shows the response of the system defined by Equation 4.10 with respect to

different values ofτ.

Based on the optimum value ofτ ( we chooseτ = 0.10 ), the system written in discrete time for a sampling
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Figure 4.13: Steering model calibration for open-loop controller.

time of 0.02s is given by Equation 4.11

δe(k+1) = Aδe(k)+Bδd(k), (4.11)

whereA andB are the coefficients of the discrete time equation with values 0.6703 and 0.3297 respectively.

4.6.5 Comparison of the closed-loop and open-loop controllers

We performed experiments to compare the two controllers as shown in Fig. 4.14. Pre-defined

steering angle inputs (δd) were given and the estimated steering angle (δ̂) was measured. It is observed that
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Figure 4.14: Comparison of open-loop and closed-loop control of steering.
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the closed-loop controller is more effective in tracking the steering demand based on Fig. 4.14, where we

can see that the tracking error (eδ) is minimal. We tried to check the response of the open-loop system with

random steering angle demand (δd) as shown in the Fig. 4.15. There is a clear lag in the demand and actual

steering in the open-loop control which is mostly due to the latency and response lag. The closed-loop control

takes care of this lag based on the measured steering angle feedback.
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Figure 4.15: Response of the open-loop controller to randomsteering angle demand (δd).

The measurements were plotted taking into account the latency. The advantage of the open-loop

controller is use of minimal computational resources with good tracking capability and response which makes

it viable with the limited computational power in the on-board computer (2 GB RAM processor). In the future,

we plan to use a more powerful on-board computer enabling theuse of the closed-loop controller which can

be vital when the vehicle is driven on off-road terrain.

4.7 Sensors Signal Conditioning,B4

The raw signals from the sensors are processed before they are sent to the localization block,B5

(refer Sec. 4.8). Encoder, IMU and GPS converter blocks are used for processing the signals from the wheel

encoders, IMU and GPS respectively (Fig. 4.16).
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Figure 4.16: Sensor Signal Pre-Processing for Localization.

4.7.1 Encoder Converter

The encoder converter is used for vehicle speed measurementbased on the raw signals from the hall

effect sensors. Each wheel sends the encoder counter (C, which counts the number of times the magnets on

the wheels have passed the sensor) from the Arduino, which isthen used to measure the individual wheel

speed as shown in Eq. (4.12 ).

vi = κ
∆Ci

∆t
, i ∈ { fL, fR,bL,bR} (4.12)

κ =
2πrtire

4
(4.13)

where fL, fR,bL,bR corresponds to the front-left, front-right, back-left, back-right wheel.∆C corresponds to

the change in the wheel counter while∆t is the time between each measurement.rtire is the radius of the tire

andκ represents the distance along quarter tire edge as there are4 equi-spaced magnets on the tire. Using

simple kinematics, we derive the velocity of the car as shownin Equation. (4.14) based onvfL .

vx =+cosψ̂
[

vfL cos(δ̂+ ψ̂)+ r̂d sin(λ+ ψ̂)
]

+ sinψ
[

vfL sin(δ̂+ ψ̂)− r̂d cos(λ+ ψ̂)
]

vy =−sinψ̂
[

vfL cos(δ̂+ ψ̂)+ r̂d sin(λ+ ψ̂)
]

+ cosψ
[

vfL sin(δ̂+ ψ̂)− r̂d cos(λ+ ψ̂)
]

(4.14)

whereψ̂, r̂, δ̂, are the estimated yaw angle, yaw rate and steering angle respectively.d represents the distance

between the left-front wheel and the centre of mass of the vehicle whileλ represents the angle made by front

wheel hub with longitudinal axis of the car (Xb) (Fig. 4.2). The two components of vehicle velocity thus
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obtained are then sent to the Kalman Filter (explained in Sec. 4.8) as measurement signals after passing

through a low-pass filter. Similarly, we can findvx andvy with respect tovfR.

4.7.2 IMU Converter
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IMU Converter
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ψraw

rraw− rdc
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r
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Figure 4.17: IMU Sensor Data Processing.

The IMU converter is used to process the raw yaw angle (ψraw) and raw yaw rate (rraw) obtained

from the IMU before sending it to the Kalman Filter as measurement signals. Fig. 4.17 shows the control

flow of this algorithm.rdc is a calibratable variable which is used to correct the sensor drift. To calibrate this

variable, we measure the signals from the IMU in a standstillcondition and study the drift in the sensor over

time. In Fig. 4.18, we have a plot of the yaw angle (ψi) obtained by integrating therraw signals. Therraw

signals were analyzed and a glimpse of the same is shown in thezoomed view. We use the slope of a first

order polynomial fit on the yaw angle data as a baseline for calibration ofrdc.

ψdc(k+1) = ψdc(k)−m(k)rdc(k) (4.15)

ψdc is defined by Eq. 4.15 where the counter (m) is incremented every time a signal passes.
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Figure 4.18: Drift in IMU sensor measurement
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The rdc takes into account the influences of magnets used for speed measurement as well as the

electric field generated by the motor. Hence, fitting the exact slope might not work for accurate estimation

and we need to calibrate it based on ground truth data. Two weighing variablesw1 andw2 are used to fuse

the filtered yaw angle (ψ f ) and corrected yaw angle (ψc) based on the ground truth data to get the processed

yaw angle (ψ).

4.7.3 GPS Converter

A GPS converter is used to convert the latitude/longitude values from the GPS sensors into the

Cartesian coordinate system according to the equation 4.16.

x= R(ξ− ξ0)cosθ

y= R(θ−θ0)

(4.16)

whereR,ξ,θ corresponds to the radius of the earth, instantaneous longitude and latitude respectively.

ξ0,θ0 corresponds to the latitude and longitude of the initial starting point of the car. This is a simplified form

arrived at using geometry with the assumption that the robottravels a small distance (≃ 200m). In the future,

we plan to use the haversine formula which take into account the curvature of the earth.

4.8 Localization,B5

We use an Extended Kalman Filter for localization of the vehicle as shown in Fig. 4.19. The

measurements from the localization sensors are pre-processed as explained in Sec. 4.7. The control input is

received from the output of the Low-Level Controller.

B2

B4

B5

x̂, ŷ, ψ̂
v̂x, v̂y, r̂

δd,ag

x,y,ψ
vx,vy, r

Kalman
Filter

Control
Input

Sensor
Measurements

Figure 4.19: Overview for Localization of the scaled car.

Denotex = [x,y,θ,v] as the state vector,u = [δ,a] as the input vector. Therefore, using the standard

EKF notation, we definexk|k−1 andxk|k as thea priori anda posterioriestimated state at the time stepk,

xk−1|k−1 as the most recent updated state before the current stepk. Similar notation applies to the state
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covariance matrixS∈ R
4×4. The non-linear dynamic equations of motionxk+1 = f(xk,uk,νk), using a first-

order Euler approximation, are given as follows


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
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Xk+1 = Xk+(vxk cosψk− vyk sinψk)∆t

Yk+1 =Yk+(vxk sinψk+ vyk cosψk)∆t

ψk+1 = ψk+ r∆t

vxk+1 = vxk +(
FxRk−FyFk sinδk

m + vykrk)∆t +ν1

vyk+1 = vyk +(
FyRk+FyFk cosδk
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(4.17)

whereνk = [ν1,ν2] is the process noise andν1 = N (0,σ2
FxR

) andν2 = N (0,σ2
δ) are random samples repre-

senting unknown effects of traction force and steering angle. Denote the measurement model asyk = h(xk,nk)

wherenk is the measurement/observation noise. When using the IMU and wheel encoder sensors,h(xk,nk)

takes the following form,

h1(xk,n1) =
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xk+n1, (4.18)

and when using the GPS sensor measurements it takes the following form

h2(xk,n2) =
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xk+n2, (4.19)

wheren1 = [nIMU ,nenc] andn2 = [nGPSx,nGPSy,nIMU ,nenc] are the observation noise via different sensors. For

these noises, we assume a Gaussian distributionnIMU =N (0,σIMU ), nenc=N (0,σenc), nGPSx=N (0,σGPSx),
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andnGPSy= N (0,σGPSy) whereσIMU , σenc, σGPSx, andσGPSyare the standard deviations. The equations for

the EKF prediction step are according to the following

xk|k−1 = f(xk−1|k−1,uk−1)

Sk|k−1 =
∂f
∂x

Sk−1|k−1
∂f
∂x

T

+
∂f
∂ν

Q
∂f
∂ν

T

, (4.20)

and for the update step are according to the following

K k = Sk|k−1
∂h
∂x

T[∂h
∂x

Sk|k−1
∂h
∂x

T

+
∂h
∂n

R
∂h
∂n

T]−1

xk|k = xk|k−1+K k[yk−h(xk|k−1)] (4.21)

Sk|k =

[

I −K t
∂h
∂x

]

Sk|k−1. (4.22)

In Equation. (4.21),K k is the Kalman gain. Here, assuming independence of the measured variables, we

haveQ = diag[0,0,σFxR,σδ] as the dynamic noise covariance matrix, andR1 = diag[σIMU ,σenc] andR2 =

diag[σGPSx,σGPSy,σIMU ,σenc] as the measurement noise covariance matrices.

It can be easily shown that the position state vector is not observable using only IMU and wheel

encoder sensors. Moreover,ψ is not observable by using only GPS and wheel encoder sensors. Here, we

fuse these sensors with the algorithm shown in Algorithm 1 toobtain a more precise tracking of the location

of the vehicle. In the fusion algorithm, each time a new measurement from the sensors is obtained the state

estimations are updated using the observation models (i.e.h1 andh2) corresponding to the received sensory

data. The details are of calculating the∂f
∂x , ∂f

∂ν , ∂h
∂x , and∂h

∂n are trivial and hence omitted here.

Algorithm 1 The sensor fusion algorithm for localization.

1: procedure FUSING THE IMU, WHEEL ENCODER, AND GPSMEASUREMENTS TO ESTIMATEx
2: while Experiment is runningdo
3: Calculate∆t
4: Implement EKF in (4.20) and (4.21) via
5: if GPS measurement unavailablethen
6: h(x) = h1(x) andR= R1.
7: else ifGPS measurement availablethen
8: h(x) = h2(x) andR= R2.
9: end if

10: end while
11: end procedure
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4.9 Experiments: Localization and Low-Level Controller

To analyze the efficacy of our localization and low-level control algorithms, we bypassed the global

and the local path planner by providing pre-defined inputs tothe low-level controller (ψd,ad) and observed

the behaviour of the steering control (δpwm) and the accuracy of position estimation ( ˆx, ŷ) and yaw angle (̂ψ)

with ground truth data. After a pre-defined time, the controlaction is set to zero to bring the car to a standstill.

After the localization and control algorithm were verified,we used the local planner to test the path planning

as well as the obstacle avoidance algorithm’s effectiveness.

4.9.1 Localization Accuracy
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Figure 4.20: Position Estimation with and without GPS

The vehicle was run for varying inputs (ψd,ad) and it was found that for up to 4 seconds, the

estimations were acceptable (error within %) when GPS signal was unavailable. Without GPS, the system

is inherently unobservable, and hence any error in measurement leads to the states growing unbounded.

This analysis is important for finding the limitations of accurate estimations in case of GPS signal drop or

missing. A low-cost GPS which normally runs at a frequency of1 Hz can be used to perform relatively

good localization using our algorithms. We measured the ground truth data at the end of each test using an

inclinometer and a rolling measuring wheel and compared with the estimated position ( ˆx, ŷ) as well as yaw

angle (̂ψ) of the car. Our future plan is to use an accurate high frequency positioning system to measure the

accuracy of the estimations at each time instant.

Fig. 4.20 shows the ground truth data against the estimated position (x̂, ŷ) in both cases, with and
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without the GPS signal available. With GPS, the system is observable, and hence it is predicted to improve

accuracy of the state estimation. The estimations improvedas predicted, which can be judged by comparison

of theR2 value in both cases.
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Figure 4.21: Yaw Angle Estimation

Fig. 6.1 shows the predicted yaw angle against the ground truth data. This relatively accurate estimations

were possible due to the drift correction algorithm in the IMU converter as shown in Fig. 4.22. It can been

seen that the there is a clear drift in the raw yaw angle (ψraw) primarily arising due to the raw yaw raterraw

as shown in Fig. 4.18. The high accuracy can also be attributed to the fact that the car was driven for≤15 m.

When it is run for longer durations or length, the drift will eventually creep in, but our target was to improve

it in the local domain so that a low frequency signal can be used for any corrections.

Fig. 4.22 which shows the movement of the vehicle withψd = 0 and underlines the importance of

the IMU converter where the raw signals are processed for drift correction to accurately estimate the yaw

angle.

4.9.2 Low-Level Controller

We ran multiple tests to analyze the efficacy of the control algorithm of the low-level controller in

conjunction with the localization algorithm. Fig. 4.22 is one of the tests where we usedψd = 0. In the

discussions below, we have a few tests where we usedψd = {10◦, 45◦, 90◦}, 180◦ with fixedad for collecting

data and analysis. The role of the low-level controller is totake the vehicle to the demand heading (δd).

During the tests the feed-forward part of the controller which utilizes the output (rd )of the MPC, is bypassed

and it runs purely as a PD controller which is ensured by changing the de-activation of the Feed-Forward part
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(a) Scaled Car running withψd = 0
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Figure 4.22: Advantage of the processing the IMU signal in the IMU converter
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Figure 4.23: Yaw Control.

In Fig. 4.23, we can see the estimated yaw angle (ψ̂) as the vehicle moves to achieve the demand

yaw angle (ψd). The overshoot atψd = 10◦ was due to the higher PD gain which had to be applied so that

the handling is not too sluggish with higherψd. The estimated yaw angle was compared to the ground truth

at the end of each test and they were within±1%. We also run multiple tests with different PD gains and

found a need for using a gain scheduler or a phase lead compensator to improve vehicle handling for stability

37



at wide ranges ofψd. We will see in Sec. 5.4 how implementation of the feed-forward part in the controller

in a way acts as compensator or variable gain controller.

The development of the scaled car along with accurate localization and low-level had been discussed

in our research which is under review [16].
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Chapter 5

MPC-based Obstacle Avoidance

5.1 MPC Formulation

The local route guidance routine is based on a model predictive control approach. The optimal local

route in the immediate neighbourhood of a vehicle is calculated in a receding horizon manner as the vehicle

navigates through the terrain. We propose to use a simple kinematic model of the vehicle [19] over the MPC

horizon with 4 states:X andY are the coordinates of the center of gravity with respect to vehicle’s initial

position andψ is the vehicle heading angle with respect to the fixed coordinate frame,Xa−Ya ( refer Sec.

4.2) andv is the vehicle velocity. The input to this model is the commanded change in steering angle (δd) and

the acceleration (a) . The dynamic equations of the vehicle model are shown in Equation 5.1

Ẋ = vcosψ

Ẏ = vsinψ

ψ̇ =
v
Lb

sinβ

v̇ = ad

β = tan−1
( L f

L f +Lr
tanδd

)

, (5.1)
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whereL f andLr represent the distance of front and rear wheel axles from theCoG of the car.

Ẋ = vcosψ

Ẏ = vsinψ

ψ̇ = rd

v̇ = ad, (5.2)

Another MPC model as shown above was developed where the yaw rate (rd) is used as the control input

instead of steering angle. This provided us more control on the movement of the car as we can constrain

the rate of turning of the vehicle. We had conducted two sets of experiments: 1) with the vehicle directly

controlled by the MPC (using Equation 5.1) which runs at 2 Hz and, 2) the low level controller running

at 10 Hz directly controlling the vehicle with inputs from the MPC (using Equation 5.2) at 2 Hz. We saw

that with the second experiment vehicle control was much more smoother since in the first experiment, the

MPC can correct for any modeling error every 0.5 seconds while the low-level can correct every 0.1 seconds.

Also to have more control on the rate of turning of the vehicle, in the kinematic model defined by Equation

5.1 we would have to introduce steering angle as a new state and steering rate as the control input which

constraints the computational resources. We have also developed a simulation environment where the plant

is based on the vehicle kinetic model (Section 4.2). Our simulation results also showed the need of using a

lower level controller (Section 4.5.1) for faster control of the steering, rather than MPC controlling steering

command. Hence we have proceeded using equation 5.3 for the rest of our research. Using Euler’s Method,

the discretized form of the MPC is given by

X(k+1) = X(k)+∆t
[

v(k)cosψ(k)
]

Y(k+1) = Y(k)+∆t
[

v(k)sinψ(k)
]

ψ(k+1) = ψ(k)+∆t
[

rd(k)
]

v(k+1) = v(k)+∆t
[

ad(k)
]

, (5.3)
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The objective of the modified MPC optimization routine is to,

min

rd1 · · · rdn,ad1 · · ·adn

J = w1

n

∑
k=1

∆lk+w2

n

∑
k=1

rdk
2+w3

n

∑
k=1

adk
2+w4

n

∑
k=1

εk
2

w5

n

∑
k=1

visk+w6

n

∑
k=1

soilk+ J∗DP(xn,yn)

(5.4)

with the following inequality constraints,

rmin 6 rk 6 rmax

admin 6 adk 6 admax

vmin 6 vk 6 vmax

06 εk

dsa f e6 dobsk + εk

(5.5)

In the cost function,n is the prediction horizon and,rk andak are the free optimization variables at successive

steps; each represents the commanded change in heading angle and velocity at stagei. The penalty weights

are design variables and denoted bywi . The seven terms of the cost functions are respectively:

• ∆lk is the 2D distance covered in thekth step which is computed as,

∆lk = (xr − xk)
2+(yr − yk)

2 (5.6)

• To ensure that minimal control effort is used in achieving the objective of the optimization routine, we

penalize the control inputs(adk, rdk).

• To ensure that the local route prescribed avoids collisionwith the obstacles we penalize the locality of

the detected obstacles heavily. For an obstacle q, let(xobsq,yobsq) denote the geometric center of the

obstacle q, whiledsa f edenotes the preferred safe distance between the vehicle andobstacle. Introduc-

tion of εk in Equation 5.5 softens the obstacle avoidance constraint.The penalty weight on the obstacle

avoidance cost is set to zero if the obstacle is outside the unsafe zone of the vehicle which is determined

using a barycentric method (explained in detail in Sec 5.2).
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• To reduce the chance of being detected, the cost function (5.4) penalizes areas which can be seen from

the adversarial towers by introducing the cost term,

visibilityk =















0 if xk,yk ∈ invisible,

1 if xk,yk ∈ visible.

(5.7)

• The functionsoilk is the computed value associated with the terrain traversedas described in section

2.2. Hence the cost functions ensure that the prescribed route utilizes the best soil possible.

• The last termJ∗DP(xn,yn) represents the optimal cost-to-go, calculated by the dynamic program (Sec.

4.4), from the end of the MPC horizon to the final target. Inclusion of the cost-to-go is intended to

prevent short-sighted decisions by the local path planner and ensures local decisions are guided by

global objectives.

The cost function in (5.4) is minimized subject to the vehicle kinematic equations in (5.3) and the

constraints in (5.5). This problem is solved numerically with an interior point method using Julia which

is a high-level, high-performance programming language for numerical computing. For implementation of

the interior point method, we use the IPOPT (Interior Point OPTimizer) software package. The cost function

associated with soil, visibility and optimal cost-to-go has been validated in our preliminary simulation studies

which showed how they can improve the path planning (Sec 3.3). In the context of this thesis, we will not

use them in our experiments due to the computational limitations associated with running the interpolation

algorithm to implement in the MPC, in real-time.

A subject of our ongoing research is to use a higher fidelity vehicle model to evaluate the perfor-

mance of the vehicle when following the MPC command, which isbeyond the scope of this thesis. We had

to restrict ourselves to a simpler model due to the computational limitations of running MPC in the on-board

computer. In our future research, we plan to use the dynamic model (refer Sec. 4.2) to run the MPC with

more powerful on-board computer.
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5.2 Obstacles, Safe and Unsafe Zones

In this thesis, we have used virtual obstacles for our experiments in place of real obstacles since we

wanted to concentrate on developing the hierarchical platform as well as high and low-level control of the

car. Using a LIDAR and stereo camera for obstacle detection was out of the scope of this research. Two types

of obstacles have been created, i) whose location are known a-priori ii) which are recognized based on the

simulated sensor horizon.

A

B

C

DP

Q

dsa f e

dsa f e

αsa f e

αsa f e

Figure 5.1: Barycentric co-ordinate approach in determining the safe and unsafe zones for the vehicle.

dsa f eandαsa f e are the preferred safe distance and angle. They are used as constraints for defining

the safety region for the vehicle to traverse. The region ABDC as shown in Fig. 5.1 is considered as unsafe

zone, where A is the position of the vehicle and, P and Q are theposition of two obstacles. The region ABDC

is shown as an unsafe zone so ensure the vehicle takes course correction if any obstacle is seen in that area,

while obstacles outsize the zone, it doesn’t need to take immediate course correction and can continue on

its planned route. To determine if a obstacle is in the safe orunsafe zone of the vehicle, we used a obstacle

detection algorithm based on the work by Ericson [12]. For anobstacle q, let A(q) denote the unsafe region.

Any point, P on the plane can be written as,

−→
AP= u

−→
AB+ v

−→
AC, (5.8)

where, u and v are two arbitrary constants which can be calculated if the position of the obstacle is known.

Using simple vector algebra, we can find, u and v, as shown in Equation 5.9
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u=
(
−→
AB.

−→
AB)(

−→
AP.

−→
AC)− (

−→
AB.

−→
AC)(

−→
AP.

−→
AB)

(
−→
AC.

−→
AC)(

−→
AB.

−→
AB)− (

−→
AC.

−→
AB)(

−→
AB.

−→
AC)

v=
(
−→
AC.

−→
AC)(

−→
AP.

−→
AB)− (

−→
AC.

−→
AB)(

−→
AP.

−→
AC)

(
−→
AC.

−→
AC)(

−→
AB.

−→
AB)− (

−→
AC.

−→
AB)(

−→
AB.

−→
AC)

(5.9)

So the condition necessary to be satisfied for the obstacles to be in the unsafe zone is given by equation 5.10.















P /∈
⋃Q

q=1A(q) if u2+ v2 > 1,u< 0,v< 0

P∈
⋃Q

q=1A(q) if u2+ v2 ≤ 1,u≥ 0,v≥ 0

(5.10)

Hence for any obstacle detected in the region will activate the penalty function in the MPC cost,J,

while for any other obstacles detected outside of this zone,penalty weight will be set to zero. The penalty

weightw4 in the cost function (5.4) is defined as,

w4 =















0 if P /∈
⋃Q

q=1A(q),

105 if P∈
⋃Q

q=1A(q).

(5.11)

The obstacle detection algorithm runs in Python and provides the MPC running Julia with obstacle

information. For reducing the computational cost in obstacle detection, we have used a method of priority

queuing in Python, which considers the closed two obstaclesin the unsafe zone.

5.3 Computational Delay Compensation and Predictor Model,B6

Predictive control involves on-line optimization which might lead to considerable computational

delay if we use an underpowered computing resource. The Fig.5.2, taken from Machiejowski’s book ”Pre-

dictive Control with Constraints” [27] helps in explainingthe need to take into account the computational

delay in predictive control.

In our case, it was an important to factor in this delay as we were running a lot of computations

besides the MPC in a low computationally powered computer ( 2GB RAM). We also took into consideration

the latency for every control input update. So the MPC state estimates are predicted for the time when control
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Figure 5.2: Assumed timing of measuring and applying signals (Figure adopted from [27]).

input is actually applied by the actuators. We have used the concept of constant output disturbance observer

in this predictor model to take into account the model mismatch in prediction. As shown in equation 5.12,

the disturbance/model mismatch is calculated by comparingthe measured output with the predicted one. It

is then added to the predicted output for the next state. Herewe consider that the control inputs don’t change

during the prediction interval.

d̂(k|k) = yp(k)− ŷp(k|k−1) (5.12)

ŷpcorr(k+1|k) = ŷp(k+1|k)+ d̂(k|k) (5.13)

5.4 Experiments: Local Planner and Obstacle Avoidance

In the following experiments, we define the reference position (xr ,yr ) as the target position for the

vehicle to reach. We conducted experiments with and withoutobstacles in its path to analyze the efficacy of

the MPC in optimally avoiding the obstacles as well as reach its target position.
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5.4.1 Local Planner

As a part of testing the local planner, we initially tested with different reference target position

(xr ,yr ). Below we detail the results of one set of experiments where(xr ,yr ) was (3,2.5). During our experi-

ments with the local controller we found that it will be useful to have a gain scheduler or a compensator for

better vehicle control. We ran three sets of experiments with the same reference target and analyzed the out-

puts: 1) only PD controller activated by setting the switch condition to 1 throughout the experiment, 2) only

Feed-Forward part activated by setting the switch condition to 0 throughout the experiment, 3) the activation

of the PD controller and the Feed-Forward part based on switch condition given by Equation 4.6 throughout

the experiment. For better understanding of the three experiments please refer to Figure 4.4. Hence test 1 was

running only on the PD controller, test 2 was running only on the feed-forward part and test 3 was running

on a optimal combination of the two. The input to both the PD and the feed-forward part came from the

MPC controller and hence this test also helped us to analyze how the MPC in conjunction with the low-level

controller was performing as the local planner.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Test 1
Test 2
Test 3

X Position (m)

Y
P

o
si

tio
n

(m
)

Target

Figure 5.3: Vehicle path trace running MPC along with different settings in the low-level controller

We can see from Fig 5.3, in test 1, the steering controller is too slow while in test 2 it is very

aggressive. We can tune the PD gain to improve the results in test 1, but then we will have overshooting

issues as in Sec. 4.9.2. Hence an optimal combination of the two is useful.

From Fig. 5.4 we can see that the combined controller is more efficient since it uses a higher gain

which corresponds to bigger steering angle demand when theeψ which is the difference betweenψd andψ is

high while it uses much smaller steering demand wheneψ is small.
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Figure 5.4: Trace of Steering Angle and Yaw Angle in the threetests

5.4.2 Obstacle Avoidance: Stationary and Moving

We ran a few tests to test the obstacle avoidance capability of the MPC with virtual obstacles. To

compare how the MPC performs the local planning with varyingconstraints, we ran two tests on the vehicle

with the same reference target position (xr ,yr ) which was (10,10).
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Figure 5.5: Vehicle path trace and steering command in with and without obstacle scenarios.

In the test 1, there were no obstacles while in test 2 we had a few virtual obstacles whose position

can be accessed by the MPC only when it is in its sensing horizon. The data from the two tests are shown in
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the Fig. 5.5. We can see that the local planner takes into account the obstacles and avoids them optimally.

While the obstacles were stationary in the previous experiment, in the next, we tried to analyze how our MPC

behaves and controls the car when it encounters a moving obstacle. We command the vehicle to go to a

reference target position (xr ,yr ) which was (3,2.5) in this case. The movement of the obstaclewas defined by

a simple linear function given by Equation 5.14.

xobs(k+1) = xobs(k)+ δt
[

(

X(k)− xobs(k)
)

α
]

yobs(k+1) = yobs(k)+ δt
[

(

Y(k)− yobs(k)
)

α
]

,

(5.14)

where (xobs,yobs) and (X,Y) represent the positions of the obstacle and the vehicle respectively.α is

a scaling factor which is used to simulate changes in velocity of the obstacle.
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Figure 5.6: Vehicle path trace and steering command with moving obstacle scenarios

In test 1, test 2 and test 3, the starting position of the moving obstacle were (3,2), (3,0) and (2,0)

respectively and then they trace the path as shown in Fig. 5.6towards the scaled car. In all the cases, we

assumed that the MPC can anticipate the movement accuratelyas Equation 5.14 is added as a constraint. In

the Test 2 and Test 3 as shown in Fig. 5.6, we can see that the MPCdoes a good job in avoiding the moving

obstacle as well as reaching the target destination optimally. While in Test 1, the MPC does a good job in

avoiding the obstacle while managing to be in the vicinity ofthe target. We will try to analyze and perform

experiments on how the MPC behaves when it has limited or partial information about the movement of

obstacle in Sec. 6.2.2
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Chapter 6

Vehicle-in-the-Loop Platform for

Verification of Obstacle Avoidance

A central server has been setup in the lab which enables data storage, information sharing, updating,

running global planner and a vehicle-in-loop simulator (simulation environment). The scaled experimental

car in conjunction with the server form the vehicle-in-loopplatform. The central server also hosts a SQL data

server for data storage.

Figure 6.1: Yaw Angle Estimation

As shown in the figure, the VIL simulator runs the virtual vehicle based on the dynamic vehicle

model (defined by Equation 4.1) as the plant model and the online MPC (defined by Equation 5.3). It also
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runs the virtual obstacles and animals. A real-time visualization developed with assistance from Dr. Ali

Fayazi, helps to analyze the interaction between the real vehicle and the virtual environment. VIL simulator

runs a ROS master and performs all communications via ROS communication protocol. The communication

between the VIL simulator and the scaled car is routed via thecentralized server which uses UDP encoded

as a JSON object over simple Wi-Fi. This helps in sharing information about virtual obstacles, animal and

vehicles running on the vehicle-in-loop simulator and the scaled car. In the future all route critical information

(elevation, soil, vegetation, obstacle, risk maps, etc.) collected before and during the mission can be stored

as multi layered maps, each representing an information layer, in the database. The information stored in the

database are accessible by the vehicles on the ground as wellas by the global planner which runs on the central

computation server. All the maps are stored with a corresponding timestamp representing the latest update.

Individual vehicles in the fleet can subscribe/request for the information according to their requirements. Each

vehicle publishes its current position, heading and its anticipated control action along with a unique vehicle

ID. Any other vehicle within its range will be able to receivethe messages and take appropriate corrections to

its control action. In this research, we have provided an outline of the communication infrastructure developed

while this platform will provide an opportunity to analyze the impact of connectivity in a fleet by studying

the interactions between the scaled car and simulated vehicles which will run on the central server, a part of

our ongoing research.

6.1 VIL Simulator

The VIL simulator uses dynamic vehicle model as detailed in Sec. 4.2 as the plant model for the

simulated vehicles.

Fig. 6.2 details the framework in which the simulated vehicles run. The whole framework runs in

the central server. The VIL simulator is also used for simulated obstacles, animals,etc. One of the purposes of

building this environment was to analyze and quantify the impact of connectivity on path planning. Another

purpose it served was tuning and debugging the MPC weights and PD controllers prior to running it on the

scaled car. The global server has information about all the obstacles in our experiments. It is passed on to

the scaled car when the obstacle is in the range of the sensinghorizon of the car via V2I communication.

Our vehicle is not equipped with LIDAR, Stereo Camera or Ultrasonic sensors and hence it is not capable

of detecting new obstacles which are not present in the global server. As a future research, we plan to use a

combination of the sensors to update the obstacle layer in the global server as discussed in Chapter 2.
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Figure 6.2: Framework adapted for simulated vehicles.

6.2 Experiments: Collision Avoidance with Various Levels of Infor-

mation and Animal Crossing Accidents

In Section 5.4.2, we have seen how the path planning is effective in avoiding moving obstacles when

the MPC has complete information. In the vehicle-in-the-loop environment, we will try to analyze the impact

in situations when there is partial or noisy information about approaching vehicles. As a demo example, we

will simulate an animal crossing scenario and analyze how the obstacle avoidance algorithms perform under

different conditions.

6.2.1 Collision Avoidance with Various Levels of Information

In Fig. 6.3, we try to analyze collision avoidance with approaching vehicles, when the sensors

cannot measure the velocity of the obstacle in the co-simulation environment (explained in Sec. 6.1) and

compare it with the situation where velocity measurements are available. The goal of the experiment was

to reach the target located at (9,9) while avoiding the obstacle on the way and minimizing the cost function

defined by Equation 5.4.

In test 1, velocity measurements are available and hence MPCcan anticipate the movement more

precisely compared to test 2 where the sensors cannot measure the velocity of the obstacle. In this case, it

treats the obstacle as stationary at every iteration. In test 1 the MPC is aware about the obstacle movement

and hence it makes course correction much before test 2 whereit has to suddenly correct its path based on

the location of the obstacle. It can also be seen that in test 2, the vehicle has to use more steering effort to
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Figure 6.3: Vehicle path trace and steering command using simulation environment in two scenarios: a) MPC has complete information
about the approaching obstacles b) MPC is not informed aboutthe velocity of approaching obstacles

avoid the obstacle than in test 1. The condition of sensor information was simulated by adding equation 5.14

to the constraints of the MPC in test 1. This experiment showshow our VIL platform can help in analysis of

various scenarios like collision avoidance.

In the next experiment we tried to see the impact of noisy signals on obstacle avoidance. Here, the

MPC considers that the obstacle will continue moving with the same velocity as the virtual sensors measure.

In Fig. 6.4, test 1 there is no noise in the sensed position of the obstacle and in test 2 there is white noise in the

sensed position of the obstacle with standard deviation of 0.25. The goal of the experiment was similar to the

previous experiment, i.e to reach the Target at (9,9) while avoiding the obstacle on the way and minimizing

the cost function defined by Equation 5.4. The vehicle is ableto dodge the moving obstacle since the MPC

cost related to the obstacle ensures that the vehicle avoidsa circular region around the obstacle. Obstaclereal

was the real position traced by the obstacle and Obstaclesensorwas the sensed position traced by the obstacle

which included white noise. To improve the obstacle avoidance in case of more noisy signals, vehicle safety

distance (dsa f e) can be increased. Also a probability model can be used for noisy signals which will be a part

of our future work.
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Figure 6.4: Obstacle avoidance with moving obstacle and noise in sensor.

6.2.2 Using VIL to simulate animal-vehicle collisions

Animal-vehicle collisions (AVCs) are a huge challenge specially in wildlife corridors but still little

is known about AVCs and what goes wrong in such incidents. Lima et. al. [26] have provided insight into

how animals react to oncoming vehicles. As an example we willtry a scenario of AVCs. It is a perfect

example of benefit of VIL because including a real animal in anexperiment is very difficult or impossible.

With the proposed method we can simulate the interaction of areal vehicle with virtual animals. In the

proposed scenario, we consider that animal behaviours could be predicted accurately based on the the kind of

animal, its immediate reactions or movements and conditions of the encounter. We have tried to simulate four

probable behaviours animals might exhibit when it encounters a vehicle and try to analyze how our obstacle

avoidance algorithms will behave if it had knowledge on the kind of reaction the animal makes. The four

scenarios are :

• (a) Blind Crossing : In this condition, we have considered that the animal doesn’t notice the vehicle

but it can be seen by the sensors on the vehicle.

• (b) Panic Stop : In this condition, we have considered that the animal panics and stops as soon as it

notices the vehicle.

• (c) Panic Run : In this condition, we have considered that the animal panics as it notices the vehicle

and runs in the direction of its motion.
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• (d) Panic Return : : In this condition, we have considered that the animal panics as it notices the vehicle

and runs in the opposite direction of its motion.

We initially run our simulations in a software-in-loop environment (SIL) where both the vehicles as

well as the animals are simulated run. After, the verifications, we run the scaled-car with simulated animals

in a vehicle-in-loop (VIL) environment. To include the predictive movement of the animal in the MPC,

following states given by Equation 6.1 are added,

xobs(k+1) = xobs(k)+ δt
[

(

vxobs(k)
)

αx

]

yobs(k+1) = yobs(k)+ δt
[

(

vyobs(k)
)

αy

]

,

(6.1)

where (xobs,xobs) and (vxobs,vyobs) are the position and velocity of the animal, whileαx,αy are two factors for

incorporating the predictive movement of the animal given by,

αx = αcos

(

tan−1
(vyobs

vxobs

)

)

αy = αsin

(

tan−1
(vyobs

vxobs

)

) (6.2)

α =















































1 if scenario is blind crossing ordobs> dsa f e or vmobs = vobs

0 if scenario is panic stop anddobs≤ dsa f e,

η if scenario is panic run anddobs≤ dsa f e and vmobs > vobs,

−η if scenario is panic run anddobs≤ dsa f e and vmobs > vobs,

(6.3)

wherevmobs andvobsare the maximum and the measured speed of the animal,dobsanddsa f eare the measured

and safe distance to the animal, andη is the ratio of maximum to the current speed of the animal.

Fig. 6.5 shows the four scenarios simulated in a software-in-loop environment while Fig. 6.6 shows

them in a vehicle-in-loop environment. The green vectors indicate the relative position of the vehicle and the

animal. In scenario (a) and scenario (c), we can see that the vehicle waits for the animal to pass, while in

scenario (b) and scenario (d) the MPC knows that the animal iseither going to stop or change its direction

and hence makes the necessary control decisions to avoid a collision.
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Figure 6.5: Analysis of animal-vehicle collision avoidance using software-in-loop in four scenarios: a) Blind Crossing, b) Panic Stop, c)
Panic Run and d) Panic Return
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Figure 6.6: Analysis of animal-vehicle collision avoidance using vehicle-in-loop in four scenarios: a) Blind Crossing, b) Panic Stop, c)
Panic Run and d) Panic Return
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Chapter 7

Conclusions

The first stage of this research was conducted in collaboration with Dr. Judhajit Roy and Dr. Ni-

anfeng Wan where we formalized path planning for off-road terrain as a two stage optimal control problem:

The first stage relies on large scale but perhaps coarse multi-layer maps and employs dynamic programming

to calculate the optimal cost-to-go from any point on the coarsely gridded map to a pre-specified destination.

The second stage is based on MPC which calculates the optimalpath in a receding horizon, centered on a

vehicle, and based on higher resolution data from on-board sensors, guided by the cost-to-go map. The layer

based approach helped in efficient handling of route critical information as shown in our experiment where,

if a vehicle is not informed about enemy’s Line of Sight and doesn’t take it into account, it might get trapped.

Using a centralized server for storing all the route information which can be enriched by the vehicles also

ensures that all vehicles in the platoon have access to the latest information.

While the first stage of the research was carried out in a simulation environment, the the next stage

focused on experimental implementation of the route guidance framework in a scaled platform. The efficacy

of the localization, obstacle avoidance and vehicle control strategies developed have been shown experi-

mentally, specifically the drift correction algorithm for the IMU. An important aspect of the research is the

utilization of a low-level controller for augmenting the control decisions made by the MPC with minimal

computational resources available. Online measurement ofsteering angle using a camera-based tire edge

detection algorithm as well as steering angle estimation were other novel aspects of this research. Due to the

constraints on the computational power, we couldn’t implement the global cost-to-go map in the local planner

but it is in the scope of future work of this project.

Finally, the vehicle-in-the-loop framework helped in analysis of our obstacle avoidance algorithms
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in various scenarios. In the animal-vehicle collision simulations, we demonstrated a beneficial instance of

VIL in an animal avoidance scenario where experimenting with a real animal is not practical.

Future scope of this work include the following:

• use a powerful on-board computer which will enable to activation of online steering angle measurement

algorithm along with the MPC for more robust steering control.

• use higher order models starting with the kinetic model used for state estimation in the MPC, so that it

can take into account the dynamic forces working on the vehicle.

• run the vehicle in off-road terrain with different information layers like elevation, soil, visibility and

use the cost-to-go map to guide the local planner.

• use the vehicle-in-the-loop platform for analyzing the impact of connectivity on fleet of vehicles, where

each vehicle can update its position, the perceived terrainand soil information to the server which helps

to create a dynamic map of any unexplored terrain. This will enable successive vehicles in the fleet to

learn from the mistakes of the preceding vehicles and gradually move faster, safer, and more energy

efficiently. Eventually, this test bed will aid future research in the domain of autonomous vehicles for

preliminary algorithm verification like collision avoidance and performing feasibility tests.

• use of combination of sensors like LIDAR, stereo camera, etc for online obstacle detection and updating

in the global obstacle map layer.
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