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ABSTRACT 

Ants are among the most successful invasive organisms in the world. To curb the 

spread of invasive ants in non-native environments, their ecological, biological, and 

behavioral characteristics must be identified. The Asian needle ant, Brachyponera (= 

Pachycondyla) chinensis (Emery) is an emerging invasive pest in urban areas and forests 

in the southeastern United States. However, general basic biological information on B. 

chinensis and subsequent management options are deficient. This work contributes to the 

standing biological information on B. chinensis by examining the seasonal life cycle, 

social nesting habits, and transport behaviors of B. chinensis colonies. 

To determine the seasonal life cycle of Asian needle ants, nests were collected 

monthly for ten months from infested locations in South Carolina. During the study 40 

nests were collected and the number of workers, queens, male/female alates, eggs, larvae, 

and pupae was determined. The ants follow a seasonal cycle of production. Worker ant 

numbers are highest in May, August, and October while the majority of male and female 

reproductives are produced in July and August. Colonies also produce more males than 

reproductive females during the year. The number of workers and male ants found in a 

nest is positively correlated with the number of queens.  

To determine if Asian needle ants are polydomous, I investigated the spatial 

organization and aggression between B. chinensis nests. Spatial distribution of nests was 

determined in four B. chinensis infested locations. Monte Carlo tests for compete spatial 

randomness revealed that three nests followed a pattern of uniform distribution 

suggesting that the ants are not polydomous. However, nests in one of the plots did 
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follow a clumped distribution. Furthermore, workers originating from the same 

experimental plot and separate locations did not display aggression in 3 x 3 nestmate 

recognition assays, suggesting that B. chinensis are a polydomous ant species  

In a laboratory study, the recruitment behaviors of B. chinensis ants during nest 

emigration were determined. Before recruitment to the new nest location began, B. 

chinensis ants organized into three distinctive groups: queen-tending, brood-tending, and 

scouting.  Once the new nest site was identified, scout ants began physically transporting 

nestmates into the new harborage via tandem carrying or adult transport. Transport rates 

increased in the first 30 minutes and did not change during the 30-55-minute time interval 

when brood was transported. However, the adult transport rate increased again after 

brood transport was completed and decreased after 90 minutes.  

Results presented in the current study contribute to the growing body of biological 

knowledge on invasive B. chinensis populations in the U.S. The information presented 

here are the first to address the colony attributes of this species. I identified adult 

transport as a recruiting method during emigration. Further the information presented 

here, highlight the life cycle and polydomous nature of B. chinensis and support the 

development of a seasonally based and area-wide management strategies for this 

nuisance ant species.  
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CHAPTER ONE  

RESEARCH JUSTIFICATION 

The occurrence and potential threat of biological invasions continue to plague the 

world. Biological invasions can be detrimental to biodiversity and ecosystems, depending 

on the biology and behavior of the newly introduced species (Blight et al. 2017). Invasive 

ants have several common characteristics and are regarded as some of the most prolific 

invasive species causing ecological damage while impacting normal human behaviors in 

many environments (Lester and Gruber 2016).  

The Asian needle ant, Brachyponera (Pachycondyla) chinensis (Emery), is an 

invasive ant that is becoming a dominant species in the southeastern U.S. (Nelder et al. 

2006). Management options for the pest are limited because the invasive characteristics 

of the ant are unknown. To date, the most comprehensive biological study on B. chinensis 

was completed by Murata et al. (2017) who documented the ants’ seasonal life cycle in 

Japan. However, the biology, ecology, and behaviors of introduced species can differ 

from their native counterparts (Blight et al. 2017).  

The presence of multiple, connected nests in an ant society is a condition known 

as polydomy. Polydomy is a characteristic common to many invasive ant species 

(Holway et al. 2002). Brachyponera chinensis is identified as a polydomous ant species 

but the extent of polydomy in invasive populations is unknown. Moreover, polydomous 

ant colonies participate in budding during nest emigrations which contributes to the 

success of invasive ants. However, studies documenting the nest emigration behaviors of 

B. chinensis have not been identified.
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The purpose of the current research is to identify biological characteristics of B. 

chinensis populations in the southeastern U.S. The identification of these characteristics 

contributes to the growing knowledge on invasive organismal biology and may also 

influence the creation of management techniques for B. chinensis.  

The goals of this research were to:  

1) Monitor the seasonal life cycle of B. chinensis in South Carolina. 

Documenting the ants’ life cycle assisted in identifying the differences 

between native Japanese and U.S. populations and may also identify patterns 

that could be exploited by pest management professionals. 

2) To determine the extent of polydomy in B. chinensis by identifying spatial 

nesting distribution patterns and measuring agonistic behavior between 

colonies originating from separate locations. Results from this study will 

determine if colonies are polydomous and may also provide insight into the 

propagation patterns of B. chinensis. 

Hypothesis: B. chinensis colonies are polydomous and nestmate aggression 

increases with origin distance.  

3) 3) To determine if B. chinensis workers participate in adult transport during 

nest emigrations 

Hypothesis: Brachyponera chinensis workers employ adult transport during 

nest emigrations       
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CHAPTER TWO 
 

LITERATURE REVIEW 
 
 

Life History 

Brachyponera (= Pachycondyla) chinensis (Emery), the Asian needle ant, 

belongs to the primitive subfamily Ponerinae. The Ponerinae are a diverse ant group 

originating in the Tropics, but presently found in sub-tropical and temperate regions on 

all continents excluding Antarctica (Fisher and Cover 2007). As a group, the Ponerinae 

possess similar behavioral and morphological characteristics including worker caste 

monomorphism, small colonies consisting of several hundred adult workers, and solitary 

foraging behavior (Creighton 1950, Guénard and Dunn 2010, Schmidt and Shattuck 

2014). Additional characteristics common to the Ponerinae include engaging in adult 

transport during colony emigration, prey immobilization by stinger, and a preference for 

termitophagy (Schmidt and Shattuck 2014). The Ponerinae are morphologically and 

phylogenetically separated into two tribes, Platythyreini and Ponerini. Platythyreini are 

represented by one species while the Ponerini tribe contains the remaining Ponerinae 

species.  

Asian needle ant workers were initially described and named by F. Smith in 1874 

(Creighton 1950) but have since undergone several name changes and descriptions. 

Ponera solitaria (Smith), Ponera nigrita chinensis (Emery), Euponera chinensis 

(Emery), Pachycondyla chinensis (Emery), and Brachyponera chinensis (Emery) have all 

been used as acceptable names for the ant. Although F. Smith is credited with the initial 

identification of P. solitaria, Emery is currently credited as the identifier of B. chinensis 
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because chinensis is the junior synonym of solitaria (Brown 1958). The genus 

Brachyponera originates from the neotropics, and is one of the most diverse ant groups. 

However, Schmidt (2013) identified the Brachyponera as a paraphlyletic group. Thus, 

Brachyponera was divided into 19 genera and the Asian needle ant was placed into the 

genus, Brachyponera (Emery). The genus Brachyponera contains 24 species, with B. 

chinensis being the most studied, due to its invasive nature.    

The Asian needle ant is also known as the “giant needle ant” or “oo-hari-ari” in its 

native Japan and colonies have been documented in Eastern and Southeast Asia, (Yashiro 

et al. 2010). Yashsiro et al. (2010) reported that B. chinensis ants from the Japanese and 

Ryukyu archipelagoes display great morphological variation. A phylogenetic tree based 

on CO1 region mitochondrial sequence data revealed that the B. chinensis species 

complex is composed of B. chinensis and Brachyponera nakasujii (Yashiro, Matsuura, 

Guénard, Terayama & Dunn) (Yashiro et al. 2010). Although, similar in appearance B. 

chinensis workers possess larger morphological traits when compared to B. nakasujii but 

the latter species has a larger dorsal petiole width. Further, B. chinensis males are lighter 

in color with less developed mandibles.  

Morphology   

 Brachyponera chinensis workers are less than 4-5.0 mm in length and uniformly 

black in color but, possess brown mandibles and orange-brown legs (MacGown et al. 

2013). They possess 3-segmented antennae with 9 flagellomeres with the antennal scape 

extending beyond the posterior margin of the head by the length of the second antennal 

segment. Mandibles are composed of six or seven apical teeth and several less 
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conspicuous teeth basally. The petiole is one segmented, large, erect, and convex 

anteriorly (Smith 1934, MacGown 2009). Brachyponera chinensis workers do not climb 

smooth surfaces or vegetation because they possess reduced tarsal arolia (Guénard and 

Dunn 2010). The ants have well-defined stingers capable of injecting prey or potential 

predators with venom composed of several different histolytic and neurotoxic peptides 

(Nelder et al. 2006).   

Brachyponera chinensis queens are dark-brown to black in color, measure 

between 5.0 and 6.5 mm in length, possess 12-segmented antennae, and may possess two 

pairs of wings or thoracic dealation scars (MacGown 2009). Male ants are yellow-brown 

to dark-brown in color; 3.5 to 4.0 mm in length; head and mouthparts are reduced; and 

the antennae are 13-segmented (MacGown 2009).       

History in the U.S.    

The first U.S. documentation of B. chinensis occurred in 1932 when H.T. 

Vanderford of the United States Department of Agriculture collected specimens from 

forests near Decatur, GA (Smith 1934).  Since 1932, B. chinensis complete colonies and 

singular specimens have been documented in Alabama, Connecticut, Florida, Georgia, 

New Jersey, New York, North Carolina, South Carolina, Tennessee, Washington State, 

and Virginia (Smith 1934, Nelder et al. 2006, Pecarevic et al. 2010, MacGown et al. 

2013), becoming a common invasive insect species in its southeastern U.S range (Nelder 

et al. 2006).   

Asian needle ants are prevalent in the southeastern U.S., but could establish 

populations outside their introduced range. Bertelsmeier et al. (2013) used current global 
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distribution data for B. chinensis in addition to global climatic predictors (mean annual 

temperatures, annual precipitation) to determine the potential range increases for the 

insect. According to climate model predictions, B. chinensis can increase its range and 

survive in Northeast America, Southeast Asia, and South America. Specifically, by 2080 

the North American range of B. chinensis may increase by 1,972,781 km2 or 74.9% with 

continual climate change increases. 

Colony Life Cycle: 

   Brachyponera chinensis colonies are often composed of a few hundred workers 

(Creighton 1950) but Zungoli and Benson (2008) documented colonies consisting of 

several thousand workers. Colonies tend to establish nests near mature forests in termite 

galleries within logs or under pavement tiles and lawn ornaments in urban environments 

(Paysen 2007, Gúenard and Dunn 2010, Pecarevic et al. 2010).     

Zungoli and Benson (2008) reported the seasonal colony activity of B. chinensis 

in South Carolina. Brachyponera chinensis worker ant activity was first observed in 

January but consistent activity did not occur until March when ambient temperatures 

remained at or near 15°C. Ant activity peaked in August and began to decline until 

activity ceased in November. Reproductive alates were collected from light trap samples 

beginning in May and ending in September.   

 Information on the sociometric attributes of many ant species are unavailable 

(Tschinkel 2011) and B. chinensis is one of the least studied species, considering its pest 

status in the U.S. However, in 2008, Gotoh and Ito (2008) attempted to identify the 

seasonal life cycle of B. chinensis in Japan. However, after reviewing B. chinensis 
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morphological data provided in the 2008 study, Yashiro et al. (2010) proposed that Gotoh 

and Ito conducted their studies on a newly described cryptic species, B. nakasujii. It 

should be noted that Yashiro et al. (2010) did not compare physical specimens collected 

from their study with specimens identified by Gotoh and Ito (2008) as B. chinensis. 

Therefore, some of the information presented by Gotoh and Ito (2008) could pertain to B. 

chinensis. Murata et al. (2017) built on the work of Gotoh and Ito (2008) and documented 

the seasonal difference between the number of workers and queens in Japanese B. 

chinensis populations. The authors collected B. chinensis nests in October 2011 and in 

May 2012. The mean number of queens and workers per nest were not significantly 

different between months of May and October. Their results do contribute to the amount 

of biological information on B. chinensis but further studies must be conducted over a 

longer period to fully elucidate the seasonal life cycle of this invasive ant species.    

Polydomy 

 Many eusocial insects build one nest containing all colony members. However, 

some ant and termite species build several spatially separated yet connected nests, a 

phenomenon known as polydomy (Debout et al. 2007). Characteristics common to 

polydomous ant colonies include a high density of ant colonies within an area, decreased 

intraspecific aggression, and decreased distances between nests (Ellis et al. 2017, Debout 

et al. 2007). Benefits of polydomy may include increased brood production (Gotoh and 

Ito 2008), territorial dominance, decreased occurrence of predation (Debout et al. 2007), 

and increased foraging efficiency (Buczkowski 2011). Further, polydomous ant colonies 

are associated with polygynous queen social structure. However, select monogynous ant 
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colonies also display polydomous behavior(s). Debout et al. (2007) characterize 

polydomy by polygynous species as a secondarily evolved trait following polygyny 

expressed by a monogynous ancestor. Polydomy has been observed in 166 ant species 

belonging to 49 genera (Debout et al. 2007).  

Despite being a common phenomenon, the origins, mechanisms, and adaptive 

significance of polydomy have not been elucidated.  Understanding the social 

organization of a colony provides insight on the behavioral and evolutionary ecology of 

an ant species (Robinson 2014). Although, polydomy is poorly understood, it may 

contribute to the success of invasive ant species (Holway et al. 2002). Five ant species 

including Anoplolepis gracilipes (Smith), Linepithema humile (Mayr), Pheidole 

megacephala (Fabricius), Solenopsis invicta (Buren), and Wasmannia auropunctata 

(Roger) are listed on the world’s worst invasive species list (Robinson 2014) and each of 

these species exhibit polydomy.   

 Brachyponera chinensis is characterized as a polydomous ant species but 

experimental studies have not been conducted. However, anecdotal evidence supports the 

notion that B. chinensis exhibit polydomy. Paysen (2007) collected thirteen B. chinensis 

nests from the Great Smoky Mountain National Park and three of the nests did not 

contain dealate female reproductive, suggesting that the colonies participate in budding. 

Also, colonies did not display inter-colonial aggression, and nine of the colonies were 

polygynous. These results suggest that B. chinensis colonies could be unicolonial or 

polydomous. Gotoh and Ito (2008), conducted studies to identify the seasonal nesting 

cycle of B. nakasujii in Japan. During June 2004, 78 of the 104 B. nakasujii nests 
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collected did not contain any queens, but workers and brood were present. These findings 

in conjunction with Paysen’s (2007) observations indicate that B. chinensis could exhibit 

a polydomous nesting system.    

Nestmate Recognition 

For an ant colony to flourish, nest members must be able to distinguish nest mates 

from non-nestmates (Hölldobler and Wilson 1990, Sturgis and Gordon 2012). Ants use 

visual cues and cuticular hydrocarbons to distinguish nestmates from non-nestmates 

(Sturgis and Gordon 2012). Closely related ants produce and share the colony odors 

through the sharing of space, food, and through grooming (Sturgis and Gordon 2012). 

Nestmates and non-nestmates can be distinguished by comparing cuticular hydrocarbon 

profiles by chemical analysis (Wagner et al. 1998) or by conducting nestmate recognition 

assays (Roulston et al. 2003). Nestmate recognition assays are used to measure the 

amount of aggression displayed by ants originating from the same or different colonies 

(Roulston et al. 2003).  

  Murata et al. (2017) conducted nestmate recognition studies to determine if native 

B. chinensis populations displayed conspecific aggression. Their results show that 

regardless of nesting origin, non-nestmates did not display aggression towards one 

another. Nestmate recognition studies have not been conducted with non-native B. 

chinensis populations. Nestmate recognition studies could be performed to support or 

dispel B. chinensis’ status as an invasive and functionally polydomous ant species.         
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Foraging  

 The foraging activities of ants are well documented (Hölldobler and Wilson 1990, 

Showler et al. 1990, Pearce-Duvet et al. 2011). Studies have reported ants employ 

variable foraging behaviors. Foraging type is largely determined by dietary choice, food, 

and location (Hölldobler and Wilson 1990). According to Hölldobler and Wilson (1990), 

ants exhibit three different foraging/hunting categories including solitary foraging, 

recruitment, and group searching.  

   Ant colonies employ different recruitment methods during foraging expeditions. 

Foraging recruitment methods include tandem running, trail following (Hölldobler and 

Wilson 1990), and the recently described behavior of tandem carrying (Guénard and 

Silverman 2011). Tandem running occurs when a worker ant leads a nestmate to a known 

food item. During the process, the lead ant walks toward the item, stopping every so often 

allowing the trailing ant to catch up and strum the body of the lead ant with its antennae 

(Franklin 2014). The process continues until the pair reaches the desired food item. 

During trail following worker ants lay pheromone trails from a food source back to the 

nest. Workers follow the deposited trail to the food item and upon return reinforce the 

trail with pheromonal secretions (Hölldobler and Wilson 1990, Franklin 2014).  

 Bednar and Silverman (2011) hypothesized that polydomy, or multiple nesting 

sites may influence foraging behavior. In laboratory studies, they reported that B. 

chinensis employ several different foraging behaviors to collect food including 

termitolesty, group recruitment, and solitary foraging. The recruitment processes of B. 

chinensis were initially described by Takimoto (1988) but Guénard and Silverman (2011) 
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recently re-described this behavior. Workers participate in a context specific adult 

transport behavior known as tandem carrying. Tandem carrying occurs when a food item 

is too large for a single worker to collect and return to the nest. A worker unable to 

retrieve food items returns to the nest and drums its antennae on potential recruits. The 

recruited ant folds its legs inward towards its venter. According to Guénard and 

Silverman (2011) the carrying ant grasps the recruit with its mandibles between the first 

and second pairs of legs of the ventral mesothorax. They reported that studies to 

determine the presence and usage of pheromones during tandem carrying were 

inconclusive. However, visual and chemical signals may still solicit tandem carrying 

behavior.  

Medical Importance   

 Brachyponera chinensis use their sting to stun their prey before capture but 

stinging is not limited to prey items. The ants are known to sting humans (Nelder et al. 

2006). Sting victims experience local reactions persisting from several hours to two 

weeks after the initial sting. Symptoms arising from the sting may include urticaria, skin 

redness, swelling, and in extreme cases anaphylaxis may occur (Yun et al. 1999, Nelder 

et al. 2006, Lee et al. 2009). In fact, anaphylactic reactions were documented in 2.1% of 

persons stung by B. chinensis in a South Korean town (Lee et al. 2009). Allergens present 

in the venom are responsible for the variety of symptoms.  Lee et al. (2009) determined 

that a 23 kDa and 25 kDa protein belonging to the antigen 5 family are the major reactive 

B. chinensis venom components. Leath et al. (2006) reported the case of a 67-year-old 

male suffering from anaphylaxis stemming from stings delivered by an unknown insect at 
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his home. Several colonies around his home were collected and identified as B. chinensis. 

This case served as the first documentation of anaphylaxis due to B. chinensis stings in 

the United States.  

 In 2004, the first B. chinensis stings reported in South Carolina were made by 

Greenville Zoo workers who first observed the ants on their campus in 1997 (Nelder et al. 

2006).  Since 2004, multiple B. chinensis stinging events were reported in South 

Carolina, and three reports of anaphylaxis due to stings also were reported in the U.S. 

(Leath et al. 2006, Nelder et al. 2006).           

Ecological Impact 

One of the most important characteristics contributing to successful establishment 

of invasive ant colonies is the ability to outcompete other species for resources, 

specifically, the competitive displacement of native ant species (Hölldobler and Wilson 

1990, Holway et al. 2001). For example, the ability of two of the most successful 

invasive ant species, Linepithema humile (Mayr) (Human and Gordon 1996) and 

Solenopsis invicta (Buren) (Tschinkel 2006), have been extensively studied. Mechanisms 

contributing to invasive success include nestmate recruitment ability and increased 

interspecific aggression (Holway et al. 2002).  

Guénard and Dunn (2010) were first to report negative impact of B. chinensis 

presence on species richness and abundance of native ant populations in mature North 

Carolina hardwood forests. The abundance of B. chinensis workers was higher than 

native ants at all collection sites, accounting for more than half of all collected ant 

specimens. Furthermore, overall species density of native ants was 30 to 40% lower in B. 
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chinensis invaded areas. Moreover, B. chinensis presence was negatively correlated with 

smaller-sized Formicine, Myrmicine, litter foraging ant species, and Aphaenogaster spp. 

ants. On the other hand, the abundance of larger ants such as Camponotus and Formica 

species were not affected by B. chinensis presence. The reasons for this occurrence are 

currently unknown. 

The ability of invasive ants to outcompete interspecific ant species from primary 

food resources is suggested as a key to success (Holway et al. 2002). Bednar and 

Silverman (2011) conducted food preference studies determining that B. chinensis 

workers prefer Reticulitermes virginicus (Kollar) termites over other offered items 

(Parcoblatta spp., Elaterid larvae, Chilopoda, and Collembola). Also, B. chinensis 

workers preferred to reside in harborages previously occupied by R. virginicus. Results 

suggest that B. chinensis may be able to outcompete ants for nesting space and resources. 

Bednar et al. (2013) conducted additional studies to determine if B. chinensis workers 

outcompete Aphaenogaster rudis (Emery) for R. virginicus. Asian needle ant workers 

discovered termite nests faster than A. rudis and killed A. rudis workers in the presence of 

R. virginicus. Rodriguez-Cabal et al. (2012) reported that B. chinensis workers negatively 

impact the seed dispersing ability of A. rudis in invaded plots. The number of A. rudis 

workers was 70% lower in plots containing B. chinensis and the number of seeds 

removed from these plots was 70% lower than in non-invaded plots.                  
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Management            

Outside their native range invasive ants may achieve high local abundance, 

disrupt native ecological assemblages, and may cause public health concern (Tsutsui and 

Suarez 2003, Holway et al. 2002). As a result, control measures are necessary but may be 

difficult (Holway et al. 2002). Current viable control methods for invasive ants in urban 

environments include biocontrol (Tschinkel 2006) and cultural control methods 

(Silverman and Brightwell 2008), but residual liquid insecticide applications and toxic 

bait treatments remain the most widely used methods (Buczkowski et al. 2014). 

However, liquid insecticide applications provide short term control, inadequate control of 

subterranean ant nests, may negatively affect non-target ant populations, and may not 

control large unicolonial ant populations (Silverman and Brightwell 2008, Buczkowski et 

al. 2014) resulting with ant colonies reestablishing uninvaded areas. 

Insecticidal baits are recommended in many situations. Baits are non-repellent, 

express a delayed toxicity, and exploit the food sharing behavior of ants (Hooper et al. 

1998). Baits are delivered in liquid, gel, and granular formulations. Liquid formulations 

usually consist of an active ingredient suspended in a sugar based matrix. These baits are 

useful for ants preferring sweet items (Buczkowski et al. 2014) but may not be useful for 

ants subsisting on a diet dominated by protein-based items such as B. chinensis. Granular 

baits consisting of protein or oil-based matrices are instead used to control these ants 

(Tschinkel 2006, Buczkowski et al. 2014). Spicer-Rice et al. (2012) conducted studies to 

determine the efficacy of scattered and discrete applications of Maxforce Complete® (AI 

= hydramethylnon, 1.0%) (Bayer CropScience, Monheim, Germany) a granular 
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hydramethylnon bait to control B. chinensis populations in North Carolina. Results from 

the study indicate that granular applications of hydramethylnon provide rapid and 

effective control of B. chinensis colonies for twenty-eight days. However, during the 

baiting study the B. chinensis worker abundance also began to decline in control plots 

14–28 days after treatment in September and October. The continued suppression of B. 

chinensis worker in treatment plots may have been an artifact of seasonal changes in 

ambient temperature.      

Although Spicer-Rice et al. (2012) reported that protein-based bait can provide 

adequate control of B. chinensis. Mo (2013) reported that B. chinensis workers did not 

display a preference for agar/sucrose or vegetable oil. However, B. chinensis workers 

preferred canned tuna in field trials. Mo (2013) also compared the efficacy of several 

baits currently used for ant control. Results indicated that Advion® gel (AI = Indoxacarb, 

0.22%) (DuPont, Nemours, and Company, Wilmington, Delaware) performed better than 

MaxForce Complete® in field trails. The results are inconsistent with those reported by 

Spicer-Rice et al. (2012), so further comparisons are necessary.   

Buczkowski (2016) conducted mortality studies with R. flavipes termites exposed 

to 25 ppm fipronil (Termidor SC®, BASF Corp, Raleigh, NC) treated sand. A single-

contaminated termite killed 100 B. chinensis workers in 9 hours. Using contaminated 

termites as bait in field situations is difficult because termites will only remain viable for 

60 minutes following exposure. Also, additional termite feeding organisms could be 

negatively affected by exposure to fipronil treated termites. Further, Termidor SC® label 

directions instruct the user to apply the product to the exterior of structures to control 
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ants. Using fipronil treated termites is an off label use and therefore illegal application, so 

the proposed “trojan horse” technique is not a viable method of control at this time.   
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CHAPTER THREE 

SEASONAL LIFE CYCLE OF BRACHYPONERA CHINENSIS (EMERY) 
 

Introduction 

Invasive biology is the study of human-mediated transport and the subsequent 

introduction of species to areas outside their native range (Davis 2009). Transported 

species residing outside their natural environment are often removed from the threat of 

competition, disease, parasitism, and predation (Porter et al. 1997). Consequently, 

invasive species thrive in exotic locations and in some cases, cause negative impacts on 

economies, community assemblages, and biodiversity (Sanders et al. 2003).  

Given their colonial structure, social insects are perfect models for invasion 

(Moller 1996). Ants are currently the most successful group of social insects. Their 

colonies are prominent members of an ecosystem and can become aggressive colonizers 

when populations are located outside their natural range (Tsutsui and Suarez 2003). Due 

to their propagation potential and ecological impacts, invasive ants cost the United States 

more than one billion dollars in damage and management costs annually (Pimentel et al. 

2005). 

Invasive ants often possess shared characteristics that allow them to efficiently 

exploit environments outside their native range including polygyny, reproduction by 

budding, unicoloniality, and decreased intraspecific aggression (Holway et al. 2002, 

Tsutsui and Suarez 2003).  Oftentimes, the biology and behavior of introduced ants 

differs from native populations. Red imported fire ants, Solenopsis invicta (Buren), native 

to the Pantanal region of Brazil, have a higher number of single queen colonies, low 
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intraspecific aggression and, colonies with defined territories (Porter et al. 1997). 

Conversely, S. invicta populations in the United States are more likely to be polygynous, 

display decreased intraspecific aggression, and have multiple colonies residing in close 

proximity. (Porter et al. 1997). Another successful, invasive ant is the Argentine ant, 

Linepithema humile (Mayr). Argentine ants are native to Argentina, Brazil, and Paraguay 

(Suarez et al. 1999). Native L. humile colonies have defined territories and are genetically 

distinct from one another (Buczkowski et al. 2004). Invasive L. humile populations are 

genetically similar, unicolonial, forming supercolonies in California (Buczkowski et al. 

2004, Suarez et al. 1999) and Europe (Berville et al. 2013). 

Another invasive ant species in the United States is the primitive ponerine ant, 

Brachyponera chinensis (Emery) (Nelder et al. 2006, Yashiro et al. 2010). Brachyponera 

chinensis is native to Japan (Gotoh and Ito 2008). The ants are currently established in 

the southeastern United States (Nelder et al. 2006) and a few workers have been collected 

in Washington State, Connecticut, New Jersey, New York, and Virginia (Pecarevic et al. 

2010, MacGown et al. 2013). Although primarily restricted to the southeastern U.S. the 

ant may naturally increase its range in the next 20 years according to climate-based 

population models (Bertelsmeier et al. 2013). Since its introduction, B. chinensis has 

displayed several characteristics in its native and introduced ranges common to invasive 

ant species. The ants exhibit polygyny in both ranges but polydomy and decreased 

intraspecific aggression has only been identified in Japanese populations (Murata et al. 

2017). Invasive ant populations are known to cause ecological damage by impacting the 

success of native ant species (Porter and Savignano 1990). United States B. chinensis 



 25 

populations are associated with outcompeting and subsequently displacing the native, 

seed-dispersing ant, Aphaenogaster rudis (Enzmann) (Bednar et al. 2013, Warren et al. 

2015).  

 Life cycle studies provide information on a species’ capability to flourish within 

an environment. A study conducted by Murata et al. (2017) determined the social 

structure of B. chinensis in Japan. Results from the study indicate that B. chinensis is 

functionally polygynous and the number of workers does not differ significantly between 

the spring and fall. The colony characteristics of B. chinensis have been studied in Japan 

(Murata et al. 2017), but information regarding the seasonal colony life cycle of the ant in 

the U.S. are absent. 

 The research presented here documents, the seasonal life cycle of B. chinensis. 

Specifically, the number of workers, reproductives, and brood were sampled over the 

course of nine months. I anticipated observing a fluctuating pattern of colony member 

with respect to month of nest censure. Yielded information can be used to determine 

differences between native and invasive populations, provide insight into reasons for B. 

chinensis’ invasive success, and aid future management efforts.    

Materials and Methods 
 
Nest Sampling 
 

Brachyponera chinensis nests were collected twice monthly from sites and 

locations within the Clemson Experimental Forest (CEF) (34⁰43’54” N, 82⁰51’06” W). 

The CEF is located in Anderson and Pickens Counties, South Carolina and is a 17,500-

acre mixed-hardwood and pine forest. 
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Brachyponera chinensis colonies establish nests in fallen timbers, stumps, 

beneath stones, and under pavement tiles (Smith 1934, Creighton 1950). All nests 

collected for the study were found within fallen timber, under timber, or within older tree 

stumps. Four B. chinensis nests were collected monthly from March 2014 to December 

2014. In total, 40 B. chinensis nests were collected. At each sampling, fallen timber 

containing a B. chinensis nest was manually extracted with a shovel and all 

accompanying soil/materials were transferred to a plastic tub. Collected nests (n=40) 

were returned to the lab and placed in a freezer until counting. When processed in the 

laboratory, nests were censused for number of workers, dealate queens, alate queens, 

males, eggs, larvae, and pupae. Worker, queen, male, and alate B. chinensis ants were 

deposited in the Clemson University Arthropod Museum in November of 2017.  

Statistical Analysis 

Separate one-way ANOVAs were conducted to determine if the number of 

collected workers, dealate queens, alate queens, males, eggs, larvae, or pupae was 

influenced by collection month (SAS 9.2; SAS Institute Inc., Cary, NC). Post hoc 

analyses of the means were analyzed using a Tukey’s HSD (JMP 12 Statistical Analyses). 

The inter-relationship between the presence of workers, queens, alate queens, males, 

eggs, larvae, and pupae was analyzed and determined by Pearson’s partial correlation 

(SAS 9.2; SAS Institute Inc., Cary, NC).  Relationships were considered significant when 

P < 0.05. 
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Results 

Forty B. chinensis nests were censused providing the monthly mean number of 

workers, dealate queens, alate queens, males, eggs, larvae, and pupae (Figures 3.1-3.8). 

ANOVA indicates there was a relationship between month and the number of workers 

produced (F9,30 = 6.12; P < 0.0001). The mean number and standard deviation of B. 

chinensis workers collected monthly during the study is shown in Figure 3.2. There was 

considerable variation between the number of workers collected from each nest during 

the study. The number of workers from a single nest ranged from 26 to 741 workers. The 

average number of worker ants in a nest was highest in May (488 ± SD 179.95) and 

August (402 ± 196.76) while the lowest number of workers was collected in December 

(50.7 ± SD 26.23). Worker numbers increased from March to May but decreased while 

male and female alates were produced in June (265.5±79.4) and July (312.5±78.8).  

However, there is not a significant relationship between worker presence and male ants 

(Pearson correlation; r = 0.010, P = 0.954) or alate queens (Pearson correlation; r = 

0.210, P = 0.253) (Table 3.1). The number of workers began to decrease significantly 

after October.  

Overall, ANOVA results indicate there was a relationship between month and the 

number of workers produced (F9,30 = 4.78; P = 0.0005). Four of the forty collected nests 

were queenless, while 36 were queenright. Queen numbers per month ranged from 0 to 

14. The highest average number of dealate queens was collected in August (9.5 ± SD 

3.69) and the lowest number in December (0.75 ± SD 1.5) (Figure 3.3). A seasonal 

change in the number of queens was observed. The number of queens increased from 
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March to August, peaking in the latter month. Queen numbers declined after August and 

continued into December. Queen presence was negatively correlated with male presence 

(Pearson correlation; r = -0.481, P = 0.006). 

  The number of alate B. chinensis queens collected from nests differed 

significantly between months (F9,30 = 14.65; P = 0.0001). Average female alate numbers 

were highest in July (24.75 ± SD 8.84) and zero in March, November, and December 

(Fig. 3.4). Female alates were not collected because reproductive females are not 

produced in early spring, late fall, or during winter months.  

The number of males found in nests was significantly different between months 

(F9,30 = 13.88; P = 0.0001). Male ants first appeared in May and were collected until 

October (Fig. 3.5). The highest number of males was collected in July (108 ± SD 41.04); 

males were not collected in March, April, November or December. Similar to alate 

queens, reproductive males are not produced in early spring, late fall, or during winter 

months.  

The number of eggs collected from nests differed significantly between months 

(F9,30 = 9.93; P = 0.0001). Eggs were laid from March to October (Fig. 3.6). The highest 

number of eggs was collected in May (154.5 ± SD 64.66) and June (147.5 ± SD 55.09) 

and eggs were not collected in November or December.  

Larvae were collected from April to September. Average larval collections were 

highest in June (76.25 ± SD 94.02) and zero in March, October, November, and 

December (Fig. 3.7). The number of larvae collected monthly did not differ significantly 

(F9,30 = 1.95; P = 0.08). Larval production increased from March to August. Larval 
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increases coincide with the production of workers and female alates observed in Figures 

3.1 - 3.4. However, the relationship between larval occurrence to worker and female alate 

numbers was not statistically significant (Table 3.1). The average number of pupae 

collected was highest in August (151.5 ± SD 34.15) but pupae were not collected in 

March, November, or December (Fig. 3.8). The average number of pupae collected 

monthly differed significantly (F9,30 = 7.06; P = 0.0001).  

Discussion 
 
 This study serves as the first to document the seasonal cycle of B. chinensis nest 

members in the United States. The mean number of workers collected from B. chinensis 

nests was highest in May, August, and October (Fig. 3.2) suggesting three different 

worker production periods. Worker numbers were lower in June, July, and September 

and a few factors may contribute to the worker number oscillations. Reproductive ant 

(females and male alates) counts were highest in July when the colony may have 

switched its production from workers to reproductive ants. Higher worker numbers 

observed in October could be an artifact of seasonal polydomy. Some polydomous ant 

colonies fuse their nests before the winter months (Gordon and Heller 2014). Japanese, B. 

chinensis populations exhibit seasonal polydomy (Murata et al. 2017). Seasonal spatial 

patterns have not been studied in U.S. B. chinensis populations, but the evidence could be 

used to determine if B. chinensis exhibit patterns of seasonal polydomy in the U.S. (Ellis 

et al. 2017). 

 During the study, queen ants were collected from nests monthly but queenless 

nests were collected in November (1) and December (3). Queenless nests are a common 
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feature of polydomous ant species (Hölldobler and Wilson 1990, Denis et al. 2007); 

queens are present in primary nests but are absent in associated secondary nests. In the 

case of secondary nests, workers can function sometimes as secondary reproductives 

(Hölldobler and Wilson 1990). However, B. chinensis workers are incapable of producing 

eggs because the workers lack ovarioles (Murata et al. 2017). Murata et al. (2017) also 

collected queenless B. chinensis nests from locations in Japan. Queenless colonies were 

prevalent after overwintering. I did not find any B. chinensis nests in the months of 

January/February and I did not find any queenless nests when the study began in March. 

Additional studies need to be conducted to determine if queenlessness follows a seasonal 

pattern similar to native Japanese B. chinensis populations. Also, queen numbers appear 

to be higher in U.S. populations than Japanese populations. Murata et al. (2017) reported 

average queen numbers in May (~ 2.5) and October (~3) but they did not follow nests 

over the course of one season so a true comparison is still needed. I hypothesize that B. 

chinensis queen number is higher in the U.S. Invasive ants tend to lean towards polygyny 

and possess higher queen numbers when compared to native populations (Tsutsui and 

Suarez 2003).     

Like the seasonal fluctuations in worker production, alate production within an 

ant species follows a distinctive  pattern (Hölldobler and Wilson 1990). Female alate 

production began in April but peaked in May and again in July. Winged queens were 

found in B. chinensis nests until October, ceasing in November and December. After 

September, the number of female alates decreased significantly. Zungoli and Benson 

(2008) collected female B. chinensis alates, using light traps and determined that female 
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numbers were highest in June/July. Although there is a discrepancy, the differences can 

be attributed to mating flight dates. Alates may be produced early in the year but are not 

released until colony and environmental cues stimulate flight. The initial collection of 

male B. chinensis ants occurred in May, peaked in June/July, and ceased after September. 

The peak average number of males and winged females occurred in July and the 

calculated male: female sex ratio for July was 4.4:1 (Figure 3.1). Zungoli and Benson 

(2008) also collected more B. chinensis males than females (19:1) in their study. The 

presence of female alates is negatively correlated with the presence of males (Pearson 

correlation; r = -0.002, P = 0.9924) but the relationship is not significant. The specific 

mating methods of B. chinensis are unknown, but male-biased production ratios are 

common in polygynous ant species (Crozier and Pamilo 1996). Studies documenting the 

mating behaviors of B. chinensis are lacking, but given the preponderance of males 

collected, the ants may participate in budding and the adoption of newly mated queens 

into established colonies (Brown and Keller 2000) which are two behaviors common to 

polygynous ants (Franks 1987).  

The collection of B. chinensis eggs and larvae proved to be difficult. During the 

study, nests were placed in the freezer before counting. Nest counts were not always 

performed immediately and some of the brood material was not preserved well. 

Brachyponera chinensis larvae are attached to the walls of their nests but some larvae 

were damaged during the removal and thawing process. Instead of emerging as a distinct 

specimen, some larvae appeared as gel-like masses. Egg to adult developmental time is 

unknown but the first eggs appeared in March and pupae were initially collected in April. 
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Development from egg to pupa may take 5-6 weeks but additional studies are necessary. 

Pupae were collected from April to October but the cases were not dissected to determine 

the ratio of workers to reproductives. 

The  research reported here focused on studying the seasonal life cycle of B. 

chinensis at the nest level. To effectively study the sociometry (quantitative measurement 

of all parts of an insect society) (Tschinkel 2011) of B. chinensis the boundaries and 

territory of a colony must be identified. Understanding the invasive biology of B. 

chinensis can serve as a basis for the design of management practices for this invasive 

ant. The information presented here provides preliminary data on the sociometry of B. 

chinensis in the United States. 
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Table 3.1 Pearson’s partial correlation coefficients as tests of the null hypothesis that 
there is no association between Brachyponera chinensis (Emery) nest member 
demographic relative to monthly nest samples. Each table entry presents (in descending 
order); correlation coefficient (r), the probability (P) that there is a significant 
interrelationship between nest members. 
   

          Nest Members     
 Workers Queens Alate Queens      Males Eggs Larvae Pupae 

Workers 
r 
P 

 
1.000 

 
0.345 
 0.057 

 
0.210 
0.255 

 
0.010 
0.954 

 
0.561 
0.001 

 
-0.235 
0.203 

 
-0.078 
0.675 

Queens 
r 
P 

 
 

 
1.000 

 
0.231 
0.210 

 
-0.480 

   0.0062* 

 
0.473 

  
0.007* 

 
-0.032 
0.863 

 
-0.233 
0.206 

Alate 
Queens 

r 
P 

   
1.000 

 

 
-0.002 
0.992 

 
0.350 
 0.053 

 
-0.056 
0.746 

 
0.243 
0.186 

Males 
r 
P 

    
1.000 

 

 
0.058 
0.755 

 
0.300 
0.101 

 
0.311 
0.088 

Eggs 
r 
P 

     
1.000 

 
-0.178 
0.338 

 
0.087 
0.641 

Larvae 
r 
P 

      
1.000 

 
0.328 
 0.071 

Pupae 
r 
P 

       
1.000 

Probability values followed by * indicate significance P < 0.05. 
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Figure 3.1. Total mean number of Brachyponera chinensis (Emery) workers, queens, 
males, female alates, eggs, larvae, and pupae collected from nests per month. Each 
monthly statistic was derived from four censused nests. Statistical analysis was not 
conducted on these data.  
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Figure 3.2. Mean number of Brachyponera chinensis (Emery) worker ants collected 
from nests per month. Columns show mean number and the SD is represented by 
whiskers. Each monthly statistic was derived from four censused nests. One-way 
ANOVA of the mean number of workers by month (F9,30 = 6.1179; P < .0001). Mean 
values connected by same letter are not significantly different.   
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Figure 3.3. Mean number of Brachyponera chinensis (Emery) queens collected from 
nests per month. Columns show mean number and the SD is represented by whiskers. 
Each monthly statistic was derived from four censused nests. One-way ANOVA of the 
mean number of queens by month (F9,30 = 4.7784; P = .0005). Mean values connected by 
same letter are not significantly different.   

 

 

 

 



 37 

 
 
Figure 3.4. Mean number of Brachyponera chinensis (Emery) female alates collected 
from nests per month. Columns show mean number and the SD is represented by 
whiskers. Each monthly statistic was derived from four censused nests. One-way 
ANOVA of the mean number of female alates by month (F9,30 = 14.65; P < .0001). Mean 
values connected by same letter are not significantly different.   
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Figure 3.5.  Mean number of Brachyponera chinensis (Emery) males collected from 
nests per month. Columns show mean number and the SD is represented by whiskers. 
Each monthly statistic was derived from four censused nests. One-way ANOVA of the 
mean number of males by month (F9,30 = 13.88; P < .0001). Mean values connected by 
same letter are not significantly different.         
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Figure 3.6. Mean number of Brachyponera chinensis (Emery) eggs collected from nests 
per month. Columns show mean number and the SD is represented by whiskers. Each 
monthly statistic was derived from four censused nests. One-way ANOVA of the mean 
number of eggs by month (F9,30 = 9.93; P < .0001). Mean values not by same letter are 
not significantly different.   
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Figure 3.7. Mean number of Brachyponera chinensis (Emery) larvae collected from 
nests per month. Columns show mean number and the SD is represented by whiskers. 
Each monthly statistic was derived from four censused nests. One-way ANOVA of the 
mean number of larvae by month (F9,30 = 1.95; P < .08). Mean values connected by same 
letter are not significantly different.   
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Figure 3.8.  Mean number of Brachyponera chinensis (Emery) pupae collected from 
nests per month. Columns show mean number and the SD is represented by whiskers. 
Each monthly statistic was derived from four censused nests. One-way ANOVA of the 
mean number of pupae by month (F9,30 = 7.06; P < .0001). Mean values connected by 
same letter are not significantly different.   
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CHAPTER FOUR 

INTRASPECIFIC AGGRESSION AND POLYDOMY IN THE ASIAN NEEDLE ANT, 
BRACHYPONERA CHINENSIS (EMERY) 

 
Introduction 

An ant colony is a cooperative group of closely related workers, reproductive 

ants, and brood (Robinson 2014) residing in a harborage or cooperatively functioning as a 

moving unit (Hölldobler and Wilson 1990). A singular colony may inhabit one nest, a 

phenomenon identified as monodomy, or a colony may be polydomous and inhabit two 

or more spatially separated nests (Debout et al. 2007). Although spatially separated, 

polydomous ant colonies participate in the exchange of workers, queens, brood, and food 

between nests (Buczkowski and Bennett 2008). Independent ant colonies freely 

participating in the exchange of materials are unicolonial. Unicolonial colonies have 

lower genetic diversity between nests than monodomous colonies and nest members 

perform as one large colony unit (Debout et al. 2007, Robinson 2014).  

The causes and consequences of polydomy have not been fully elucidated and the 

characteristics associated with polydomy vary among species (Debout et al. 2007, 

Buczkowski and Bennett 2008). However, the social organization of a colony can be 

determined experimentally through comparison of inter-colony cuticular hydrocarbon 

chemical profiles (Newey 2011), resource exchange between nests (Dahbi et al. 2008), 

inter-nest aggression assays (Roulston et al. 2003), genetic relatedness (Steinmeyer et al. 

2012), and spatial nesting patterning (Dillier and Wehner 2004).   

Overall, more than 150 ant species have a polydomous nesting structure (Debout 

et al. 2007). Additionally, polydomy is a social trait expressed by invasive or tramp ant 
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species (Holway et al. 2002). For example, five ant species; Anoplolepis gracilipes 

(Smith), Linepithema humile (Mayr), Pheidole megacephala (Fabricius), Solenopsis 

invicta (Buren), and Wasmannia auropunctata (Roger) that are on the world’s worst 

invasive species list exhibit polydomy (Robinson 2014, Lowe et al. 2000). Holway et al. 

(2002) attributes the invasive success of the five species to polydomy and unicoloniality. 

The Asian needle ant, Brachyponera (=Pachycondyla) chinensis (Emery) is a 

recent invader of the southeastern U.S. It is associated with the suppression of native ant 

populations specifically disturbing the seed dispersing capabilities of Aphaenogaster 

rudis (Emery) (Rodriguez-Cabal 2012, Guénard and Dunn 2010). Bednar and Silverman 

(2011) reported that B. chinensis workers can exclude native ants from feeding on 

Reticulitermes virginicus (Kollar) termites. In each study, the authors state that B. 

chinensis are polydomous. However, these postulations have not been confirmed through 

experimentation in the United States. Murata et al. (2017) determined that Japanese 

populations of B. chinensis workers did not display aggression toward nestmates or non-

nestmates in aggression assays and aggression did not increase with distance between 

nests.      

Because B. chinensis is increasing its U.S. range, determining its colony structure 

is important to understanding its potential for invasive success and for designing potential 

management programs. The current study focused on using inter-nest/intra-nest agonistic 

behavior and the spatial distance between colonies as a measure of determining 

polydomy in B. chinensis colonies. In addition to using aggression and spatial 

information as measures of polydomy, cuticular hydrocarbon profiles of different B. 
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chinensis colonies were compared. I hypothesized that Brachyponera chinensis colonies 

are polydomous but nestmate aggression increases with origin distance.    

Materials and Methods  
 
Study Areas 
 

Field studies were conducted in four Asian needle ant infested locations in upstate 

South Carolina (Agricultural Service Station 34° 39’ 29.219” N, 82°49’56.241” W; 

Sturkey 34° 38’ 42.78” N, 82°48’46.799” W; Lawrence Bridge 34°44’1.608” N, 

82°52’25.895” W; Pendleton 34° 40’21.247” N, 82° 48’ 38.75” W). In July 2014, one 10 

x 10 m plot was established at each site (Figures 4.1, 4.2, 4.3, and 4.4).  

Visual inspections were performed at each location and all identified B. chinensis 

nests were flagged. Ant aggregations designated as nests, contained worker ants 

accompanied by at least one queen and brood. Brachyponera chinensis nests were 

shallow and composed of small galleries usually within or under fallen timber. GPS 

coordinates for each nest were recorded but, nests separated by < 2.0 m could not be 

distinguished using geographic coordinates. As a result, plots were broken up into 1 x 1m 

squares and nests were identified with X, Y coordinates.      

Field Collection of Nests  

Two nests separated by a maximum distance within each plot at each location 

were collected and used in field and laboratory nestmate recognition assays. Agricultural 

Service (AgSer) nests were separated by 7.62m, Lawrence Bridge (LB) by 8.6m, 

Pendleton (PD) by 8.2m, and Sturkey (ST) by 8.8m. On average, the nests were separated 

by 8.3m. Nests separated by the maximum distance were selected to account for potential 
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unicoloniality. After identification, two nests from each site were physically removed 

with a shovel and transferred to separate plastic tubs. A total of eight nests (AgSer-1, 

AgSer-2, LB-1, LB-2, PD-1, PD-2, ST-1, ST-2) were collected.  

Field Intra-nest Nestmate Recognition Assays  

To determine if worker ants originating from the same nest displayed aggression, 

I conducted intra-nest recognition assays in the field. Before conducting the assays, the 

bottoms of 44.3 ml plastic, medicine cups were removed with scissors. The “open” cups 

were inverted and placed into a 60 x 15mm polystyrene petri dish (Becton, Dickinson and 

Company, 1 Becton Drive; Franklin Lakes, NJ). Six worker ants were removed from each 

nest with featherweight forceps. Contamination was minimized during the study. A 

different pair of forceps was used for each nest and forceps were washed with 70% 

isopropyl alcohol between each rep. Three ants were transferred to the inside of the 

inverted cup and three ants were placed on the exterior of the cup. Ants acclimated to the 

medicine cup/petri dish for one minute. New petri dishes were used for each rep to 

minimize contamination. After acclimation, the cup was removed allowing interaction 

between both groups. Nestmate recognition interactions were scored according to an 

aggression scale created by Suarez et al. (1999). Scoring is outlined as: 0 = ignore, 1 = 

touch, 2 = avoid, 3 = aggression, and 4 = fighting (Suarez et al. 1999). Trials lasted for a 

maximum of five minutes and were replicated five times for each nest from each 

location.  
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Field Inter-nest Nestmate Recognition Assays 
  

To determine if worker ants originating from different nests within the same plot 

displayed agonistic behavior, I conducted inter-nest recognition assays in the field. The 

inter-nest aggression assays were conducted using the previously collected nests. For 

each location, three ants were removed from each collected nest using featherweight 

forceps. Contamination was minimized as described before. A group of three ants from 

one nest within a location was randomly placed into the inside of a bottomless medicine 

cup or placed directly onto a petri dish as previously described.  After acclimation, the 

cup was removed allowing interaction between the groups. Nestmate recognition 

interactions were scored in the same manner as the intra-nest assays (Suarez et al. 1999). 

Trials lasted for a maximum of five minutes and were replicated five times at each 

location. Scores were not evaluated via statistical analysis.  

Laboratory Nestmate Recognition Aggression Assays – Trial 1 
 

To determine if ants originating from separate locations displayed aggression, 3x3  

nestmate recognition assays were conducted. Brachyponera chinensis nests used in the 

field assays were brought to the Cherry Farm Insectary (Clemson, SC; 34° 39.108’N, 

82°50.328’W), and maintained in an environmentally controlled room at 21°- 24°C; RH: 

40% with a 12:12: L/D cycle. Collected nests (n=8) were allowed to acclimate to lab 

conditions for 24 hours. All assays were conducted after the acclimation period. During 

assays, one nest was randomly designated as the “primary nest” and the seven additional 

nests were identified as “secondary” nests. The “primary” nest was used in each round of 

assays while the “secondary” nests were used in one round. For example, if AgSer-1 was 
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selected as the primary nest, AgSer-2, LB-1, LB-2, PD-1, PD-2, ST-1, and ST-1 were 

designated as secondary nests. All assay combinations (within nests, within nests from 

the same plot, or between nests from separate locations) were explored during 

experimentation. An experimental trial consisted of selecting 21 workers from the 

primary nest and 21 workers from the secondary nests. Laboratory assay procedures were 

the same as field assays. Three worker ants from each nest were randomly placed inside 

an inverted bottomless 44.3 mL medicine cup or placed directly onto the 60 x 15mm 

polystyrene petri dish. Contamination was minimized as described before. Ants were 

allowed to acclimate for one minute. After acclimation, the medicine cup was removed 

allowing interaction between both groups. Assays were replicated seven times.  Nestmate 

recognition interactions were scored according to an aggression scale created by Suarez 

et al. (1999). A total of 1,336 worker ants were used in the assay.   

Laboratory Nestmate Recognition Assays – Trial 2 

To determine if B. chinensis originating from alternate locations displayed 

aggression, 3 ant x 3 ant nestmate recognition studies were conducted. Ant colonies were 

collected from locations included in Trial 1 (Agricultural Service Station 34° 39’ 29.219” 

N, 82°49’56.241” W; Sturkey 34° 38’ 42.78” N, 82°48’46.799” W; Lawrence Bridge 

34°44’1.608” N, 82°52’25.895” W; Pendleton 34° 40’21.247” N, 82° 48’ 38.75” W). Ant 

colonies also were collected from three additional sites in South Carolina; Westminster 

(W) 34° 36’45.644” N, 83° 4’ 57.302” W, Pickens (P) 34° 52’ 16.783” N, 82° 42’ 6.245” 

W, and Anderson (A) 34° 33’ 19.516” N, 82° 40’ 42.176” W. One colony was collected 

from each site on May 6, 2015. Colonies were physically removed with a shovel and 
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transferred to separate plastic tubs. Brachyponera chinensis nests were brought to the 

Cherry Farm Insectary (Clemson, SC) for experimentation. A total of seven nests were 

collected. Assays were conducted on the same day as nest collection. Twenty-seven 

worker ants were manually selected from each nest and placed into separate plastic 

medicine cups. Contamination was minimized as described before. Ants were held in the 

cups until experimentation. Assay procedures performed in Trial 1 were replicated in 

Trial 2. All within nest and between nests from separate locations pairwise combinations 

were explored. Assays were scored according to the Suarez et al (1999) aggression scale. 

Assays were replicated three times for each nest pairing. A total of 189 worker ants were 

used in the assay.           

Statistical Analyses 
 

To evaluate the distribution of B. chinensis nests at each location a Monte Carlo 

test for complete spatial randomness (Besag and Diggle 1977) using the quadrat method 

was applied (SAS 9.1; SAS Institute Inc., Cary, NC). A one-way analyses of variance 

(ANOVA) on ranks test was conducted to determine if nestmate recognition assay scores 

differed within nests, within nests from the same plot, or between nests from separate 

locations (SAS 9.1; SAS Institute Inc., Cary, NC) in Trial 1. A one-way analyses of 

variance (ANOVA) on ranks test was conducted to determine if nestmate recognition 

assay scores differed within nests or between nests from separate locations (SAS 9.1; 

SAS Institute Inc., Cary, NC) in Trial 2.  
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Cuticular Hydrocarbon (CHC) Collection  

To determine if B. chinensis ants originating from separate locations displayed 

similar cuticular hydrocarbon profiles, worker ants were collected from four different 

nests in the Clemson Experimental Forest. Locations include: Agricultural Service 

(AgSer), Lawrence Bridge (LB), Pendleton (PD), and Sturkey (ST). Twenty workers 

from each nest were manually removed, transferred to four different glass vials (1 dram), 

and stored in a freezer at -20°C until use. Cuticular components were obtained from each 

ant sample (n=4) by rinsing the ants in 1mL of n-hexane for 10 minutes.  

GC-MS Analysis 

Seven hundred microliters of each sample (n = 4) and a hexane control were dried 

by RapidVap for five minutes and reconstituted in 100 µL of hexane. Cuticular extracts 

were examined by GC-MS on an Agilent 7890A GC with a DB=5 bonded phase column 

connected to an Agilent 5975C mass selector. Helium was used as carrier gas and 

samples were injected in splitless mode at 2 µL per minute. Analyses were done using 

temperature programming, at an initial oven temperature of 80°C, a final temperature of 

300°C, a program rate of 8°C /min, and a 2-minute final hold at 300°C. Total run time 

was 31 minutes. Hydrocarbons were identified by their mass spectra and their retention 

indices.        

Results 

Spatial Distribution 
 

A total of forty-nine B. chinensis nests were identified in the four experimental 

plots (Figures 4.1 – 4.4). The highest number of nests was found at the AgSer location 
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(14) and the fewest number of nests were located at LB (9) (Table 4.1). Regardless of 

location, all flagged nests were located under or within fallen timber. Results from the 

complete spatial randomness test for randomization revealed that nests located at LB (P 

= 0.99), PD (P = 0.376), and ST (P = 0.888) were not clumped in distribution (Table 

4.1). Nests studied at the AgSer location were found to have a clumped distribution (P = 

0.034).   

Field Inter-nest Nestmate Recognition Assays 
 

Inter-nest nestmate recognition assays were conducted in the field to determine if 

ants originating from different nests within the same plot displayed aggression. Because 

aggressive behavior was not observed, the results from the assay were not analyzed 

(Table 4.2). Average aggression scores ranged from 0.00 to 1.00, indicating that the ants 

were docile towards one another.      

Laboratory Nestmate Recognition Assays – Trial 1 
 

Brachyponera chinensis workers originating from the same nest or plot did not 

display aggression towards one another in field assays. To determine if these field results 

were consistent, I conducted nestmate recognition assays in a laboratory setting. The lab 

tests consisted of intra-nest and inter-nest assays with all pairwise combinations. 

Regardless of treatment level, mean aggression scores indicate that B. chinensis workers 

did not behave aggressively regardless of nest location; Within Nest (0.98 ± 0.13 SD), 

Same Location (1.00), and Between Location (1.05 ± 0.34 SD). As expected, assays 

conducted with ants from the same colony or from the same plot produced results similar 

to those observed in field assays. Further, inter-colony pairings produced comparable 
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results. Kruskall-Wallis results (Table 4.2) indicate that aggression levels did not differ 

between assays conducted with ants from the same nest, same plot, or different plots (P = 

0.1571). 

Laboratory Nestmate Recognition Assays – Trial 2 
 
 Mean aggression scores from nestmate recognition assays with ants from the 

same nest (0.41 ± 0.51 SD) and ants originating from separate locations (1.45 ± 0.82 SD) 

did differ significantly from one another (F1,82 = 18.02; p < 0.0001).  

Cuticular Hydrocarbon Analyses 

 A total of 42 different compounds were obtained between the four samples and 18 

different cuticular hydrocarbons (CHC) peaks were identified by GC/MS (GC/MS data 

can be found in Appendix A). The most commonly observed cuticular hydrocarbons were 

tetradecane, hexadecane, heptadecene, 8-heptadecene, and tricosane (Table 4.5). 

However, the number and type of CHCs varied between sample locations.  

Discussion 

Results from the current study indicate that three of the four B. chinensis nests 

were uniformly distributed and workers originating from different colonies do not display 

aggression towards one another. Nestmate recognition assay results suggest that B. 

chinensis colonies are polydomous.  

 Nests located at the LB, PD, and ST plots had a uniform distribution while nests 

within the AgSer plot had a clumped distribution. Although ANOVA results indicate that 

nests located at LB, PD, and ST are not clumped, the results should be scrutinized. A 

general observation of the plots in (Fig. 4.1 - 4.4) shows that nests are grouped together 
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in aggregations of two to three nests but the total number of nests within each plot may 

have influenced the statistical outcome. The number of nests at the LB (9), PD (12), ST 

(13) locations was lower than the number observed at the AgSer (14) location. Each field 

site was 10 m2 but larger sites may be required to identify B. chinensis nesting patterns 

and subsequent colony boundaries. Scale has a direct impact on the outcome of spatial 

studies involving ants (Ellis et al. 2017). As the study area and number of analyzed nests 

increase in number, there may be an increase in the amount of ecological information 

obtained on an ant species.  

The distance between the four plots used in the first laboratory nestmate 

recognition assay ranged from 4.3 km to 18.5 km. Because I did not observe significant 

aggression interactions in the assay, I located three more field sites separated by a 

distance greater than 18.5 km. Theoretically, intra-specific aggression increases as the 

distance between two nests increases (Lehmann and Rousset 2010). The three new sites 

A, P, and W were separated from the AgSer, LB, PD, and ST sites by at least 26.9 km. 

During the additional trials, aggression was not observed in assays conducted with ants 

from the same nests and nests from separate locations.  

 Results of the nestmate recognition assays (Trial 1) demonstrate that B. chinensis 

workers originating from different colonies within the same location or separate locations 

did not display aggression towards non-nestmates. However, ANOVA results produced 

in Trial 2 indicate that same nest (0.45) and different location (1.45) scores differed 

significantly. The scores are different but the average difference location score is below 3 

(aggression). Therefore, I speculate that agonistic behavior did not occur. The lack of 
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aggression between colonies could be the result of a single introduction of B. chinensis in 

the U.S. The invasive Argentine ant, Linepithema humile (Mayr) is unicolonial and forms 

supercolonies spanning hundreds of meters in California (Tsutsui and Suarez 2003), 

Heller et al. 2006). Lack of aggression between colonies is attributed to a genetic 

bottleneck influenced by the within nest mating and budding dispersal behaviors of L. 

humile. Asian needle ant nests are not separated by great distances but may participate in 

nuptial flights. Zungoli and Benson (2008) collected B. chinensis reproductives in light 

traps and observed a male to female ratio of 19:1 indicating the possibility of nuptial 

flights. However, B. chinensis workers use adult transport during nest emigrations 

(unpublished data) which may be an artifact of budding; another characteristic of 

polydomous ant colonies (Debout et al. 2007). 

 The data suggest that colony boundaries are not well defined and colonies are 

polydomous but the nestmate recognition studies may be flawed (Roulston et al. 2003, 

Buczkowski 2012). Sometimes, nestmate recognition assays fail to produce measurable 

aggression potentially due to lack of ecological or social cues. In the current study, three 

vs. three assays were used but I experimented with one vs. one, three vs. three, five vs. 

five, and ten vs. ten ants in preliminary trials. Roulston et al. (2003) determined that 

aggression increases with the number of ants used but I did not observe any increase in 

behavior during preliminary lab trials. Aggression responses in ants are also influenced 

by a colony’s seasonal life cycle (Katzerke et al. 2006). Formica exsecta (Nylander) 

workers did display aggression towards non-nestmates in the spring but not in the 

summer or fall. Brachyponera chinensis aggression studies were conducted in the spring 
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when resources were available, but aggression may increase as resources become less 

available in the fall. 

  A preliminary cuticular hydrocarbon analysis was conducted with worker ants 

collected during the first laboratory nestmate recognition trial. Cuticular profiles were 

analyzed via GC-MS with tetradecane (AgSer, PD), hexadecane (AgSer, LB, ST), 

heptadecane (LB, ST), 8-heptadecene (LB, ST), eicosane (AgSer, PD), and tricosane 

(AgSer, ST) appearing in more than one sample. However, changes to the analytical 

methods should be performed before the results can be verified in additional studies. 

Hexane was used as the solvent but the compound has a propensity to maintain 

impurities; pentane or iso-octane should be used in further studies. Also, additional 

hydrocarbon standards should be used to identify unknown peaks and to substantiate 

GC/MS library findings.  

Spatial analyses, nestmate recognition assays, and cuticular analyses were the 

three methods used to explore polydomy in B. chinensis. I found that B. chinensis nests 

are uniformly distributed suggesting monodomy and that colonies separated by a distance 

less than 34 km are not aggressive suggesting polydomy. The two outcomes are 

competitive but I hypothesize that B. chinensis is a polydomous ant species based on 

results in this study in conjunction with nesting behaviors like its sister species 

Brachyponera nakasujii (Yashiro, Matsuura, Guénard, Terayama & Dunn) (Gotoh and 

Ito 2008). To further understand the social organization of B. chinensis colonies, mark 

and recapture studies (Katzerke et al. 2006), genetic analyses (Tschinkel 2006), and 

observations of resource sharing between nests (Ellis et al. 2017) should also be 
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conducted but, each method used to identify colony characteristics has its advantages and 

disadvantages (Ellis et al. 2017, Debout et al. 2007). Polydomy is a complex behavior 

and may be a context dependent behavior (Cao 2013) and to determine the proper study 

methods questions regarding B. chinensis’ seasonal cycle, colony demographics, 

reproductive behaviors, and ecology must be answered.                        

 Determining colony boundaries and nesting behaviors are integral to ecological 

and pest management programs. The impacts of polydomy on the current and future 

invasive success of B. chinensis in the United States are unknown but could explain how 

the ants outcompete A. rudis for resources (Rodriguez-Cabal et al. 2012, Bednar and 

Silverman 2011), displace L. humile (Spicer-Rice and Silverman 2013a, 2013b), and 

continue to increase their populations across the United States (Guénard and Dunn 2010).     
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Table 4.1. Monte Carlo test for complete spatial randomness analysis for Brachyponera 
chinensis (Emery) nests. The values in the table represent the location, total number of 
nests, and probability that nests from a specific location are randomly distributed. Values 
> 0.05 indicate random distribution. Values < 0.05 indicate clumped distribution.

Location Total Number of Nests P – value 

AS 14 0.034 
LB 9 0.99 
PD 12 0.376 
ST 13 0.888 

Table 4.2. Field inter-nest nestmate recognition assays. Three by three nestmate 
recognition raw scores and mean score for assays conducted with Brachyponera 
chinensis (Emery) worker ants originating from the same location. Nestmate recognition 
scores ranged from 0 to 4; 0 = ignore, 1 = touch, 2 = avoid, 3 = aggression, 4 = fighting 
(Suarez et al. 1999). Ant behavior was measured up to 5 minutes after the assay began. 
Average scores < 3 indicate that aggression was not observed between ants originating 
from the same location.      

Location Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Avg. 

AS 0 0 0 0 0 0.00 
LB 1 1 1 1 1 1.00 
PD 1 1 1 1 1 1.00 
ST 1 1 0 1 1 0.80 
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Table 4.3. Cuticular hydrocarbons identified in Brachyponera chinensis (Emery) by 
location through GC/MS. Location abbreviations are as follows; Agricultural Service = 
AgSer, Lawrence Bridge (LB), Pendleton (PD), and Sturkey (ST).    

Cuticular Hydrocarbons Locations 

AgSer LB PD ST 

Cyclohexane X 

4-Octene X 

Nonane X 

2,5 Nonadiene X 

Tetradecane X X 

Hexadecane X X X 

Heptadecane X 

8-heptadecane X 

Heptadecene X X 

8-Heptadecene X X 

Heneicoasane X 

Docosane X 

Eicosane X X 

Tricosane X X 

E-7 Octadecene X 

Z-5 Nonadecane X 

9-Nonadecene X 

3-Undecene X 
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Figure 4.1 Spatial distribution of Brachyponera chinensis (Emery) nests located in a 10m 
x 10m Agricultural Service Station (Pickens County, SC) plot. Yellow circles represent 
B. chinensis nests (n = 14). Monte Carlo test for complete spatial randomness analysis of
nests indicated a clumped distribution (P = 0.034).
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Figure 4.2. Spatial distribution of Brachyponera chinensis (Emery) nests located in a  
10m x 10m Sturkey (Pickens County, SC) plot. Yellow circles represent B. chinensis 
nests (n = 13). Monte Carlo test for complete spatial randomness analysis of nests 
indicated a random distribution (P = 0.888).      
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Figure 4.3. Spatial distribution of Brachyponera chinensis (Emery) nests located at 10m 
x 10m Lawrence Bridge (Oconee County, SC) plot. Yellow circles represent B. chinensis 
nests (n = 9). Monte Carlo test for complete spatial randomness analysis of nests 
indicated a random distribution (P = 0.99).      
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Figure 4.4. Spatial distribution of Brachyponera chinensis (Emery) nests located at 10m 
x 10m Pendleton (Anderson County, SC) plot. Yellow circles represent B. chinensis nests 
(n = 12). Monte Carlo test for complete spatial randomness analysis of nests indicated a 
random distribution (P = 0.376).      
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CHAPTER FIVE 
 
CARRY ON: NEST EMIGRATION BEHAVIORS OF BRACHYPONERA CHINENSIS 
 
Introduction 
 

The process of nest emigration is essential to the propagation and establishment of 

ant colonies.  Many ant colonies are labile with members changing nest location in 

response to drought, flooding, predation, competition, budding, and nest disturbance 

(Fowler 1981, Tay and Lee 2015). Although emigration is a familiar process, recruitment 

methods during emigration differ between and within ant species (Hölldobler and Wilson 

1990; Planque et al. 2010). Recruitment methods include pheromone trail following, 

tandem running, and physical adult transport (Maschwitz et al. 1986, Beckers et al. 

1989). A single species may employ a variety of recruitment methods during an 

emigration event. For example, Bothroponera tesseronoda (Emery) uses tandem running 

and trail following to complete emigration (Jessen and Maschwitz 1986), whereas tandem 

running is preceded by adult transport in Neoponera obscuricornis (Emery) (Traniello 

and Hölldobler 1984) and Leptothorax albipennis (Curtis) (Pratt et al. 2002).       

Adult transport by ants was initially characterized solely as a nest emigration 

recruitment method (Haskins and Haskins 1950). However, Guénard and Silverman 

(2011) re-described the physical transport methods of the invasive Asian needle ant, 

Brachyponera (=Pachycondyla) chinensis (Emery), during foraging expeditions 

(Takimoto 1988). The foraging recruitment method, tandem carrying, is a newly 

described context-dependent recruitment behavior, occurring three to ten times more 

often when a food item is too large to be moved by a single worker. In addition to being a 

http://www.researchgate.net/profile/Benoit_Guenard
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new foraging strategy, tandem carrying was further distinguished from other forms of 

adult transport because the carrying posture differed from previously described transport 

postures (Guénard and Silverman 2011). In other ant species, worker ants are grasped 

and/or transported by the mandibles, the neck, or on their side (Möglich and Hölldobler 

1974), whereas ants being transported during tandem carrying are grasped between their 

first and second pairs of legs on the ventral mesothorax. Guénard and Silverman (2011) 

described this region as the mesometasternum but this designation is incorrect, as the 

sternites on ants are internal invaginations and not external features. 

Research on B. chinensis has increased due to its potential as a public health 

threat (Cho et al. 2002; Nelder et al. 2006; Lee et al. 2009), negative impact on native and 

introduced ant species populations (Guénard and Dunn 2010; Bednar et al. 2013; Spicer-

Rice and Silverman 2013), spread in the southeastern U.S., and potential spread into 

areas outside its current range (Bertelsmeier et al. 2013). Brachyponera chinensis 

typically nests in downed timber or under objects in contact with the soil, usually in areas 

where termites are abundant, contributing to their success (Bednar and Silverman 2011). 

Identifying and determining the potential for geographic spread and nesting behavior are 

central to understanding the invasive ecology of B. chinensis. 

During field and laboratory observations, B. chinensis workers engaged in adult 

transport. The observed transport took place in the absence of immovable food items. The 

ants were physically transporting nestmates to various locations in space but I did not 

identify any subsequent tasks. Because adult transport occurred outside of foraging 

recruitment and is associated with nest emigration, I hypothesized that B. chinensis 
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employs adult transport to complete nest emigration using the posture assumed during 

tandem carrying reported by Guénard and Silverman (2011). In the laboratory study 

reported here, field-collected colony fragments were subjected to identical nest 

emigration trials elicited by physical disturbance to determine the recruitment methods of 

B. chinensis during emigration. In a separate study ants were marked with paint and 

subsequently subjected to nest emigration trials to determine the extent of task allocation 

during nest emigration in B. chinensis.   

Materials and Methods 
 

Twenty queenright B. chinensis nests were collected from separate locations 

within the Clemson Experimental Forest, a mixed hardwood-pine forest in Pickens 

County, SC (34⁰43’55.018” N, 82⁰51’6.654” W) between August-October 2012 and 

April-June 2013. Each nest used in the study contained at least one queen, brood, and 200 

worker ants.  Laboratory trails were conducted between September-November 2012 and 

April-June 2013. Collected nests were subjected to experimental trials within one week 

of collection. Ants nests were housed in 20-gallon uncovered plastic tubs (40.89 cm x 

39.06 cm) and provided with a glass test tube (250 mm x 25 mm) wrapped in red 

transparent cellophane with a piece of moistened cellulose sponge inside as a water 

source (Figure 4.1). Test tube harborages were used to mimic B. chinensis galleries in 

fallen timber. Colonies were fed Reticulitermes sp. workers, and Tenebrio molitor 

(Linnaeus) larvae ad libitum, and maintained at 21°C at a 12:12 L/D cycle with 70-80% 

RH. 
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All studies were conducted in arenas consisting of a plastic container (60 cm x 42 

cm x 16 cm) divided into equal halves by a 37-cm acrylic glass insert (Figure 4.1).  

Before testing began, an uninhabited glass test-tube harborage was placed in one half of 

the arena, and the other half remained empty. Because the acrylic glass insert was not 

completely flush with the bottom of the arena, 37-cm strips of Play-Doh® (Hasbro 

Corporation, Pawtucket, RI) were used to seal openings. Worker ants inspected Play-

Doh® strips but did not attempt to feed on or remove the inserts.  

Colony emigration studies were conducted concurrently in separate treatment (n = 

10) and control (n = 10) arenas. Overall, ten colonies were used per treatment. On the day 

of experimentation, a colony subset consisting of 200 workers, one queen, and 20 brood 

items (eggs, larvae, or pupae) were manually removed from two separate colonies and 

transferred to two different glass test tubes (250 mm x 25 mm) prepared as previously 

described (Figure 4.1). After removal, the test subjects were allowed to acclimate to the 

new environment for two hours. Treatments consisted of a physical nest disturbance, 

defined as manually removing all nest members and associated materials from a test tube 

harborage. Specifically, during disturbance the sponge insert was removed and the test 

tube was lightly shaken to dislodge any ants remaining in the test tube. Any ants latching 

onto the sponge insert were removed using a paintbrush. Test tube harborages were not 

physically disturbed in control treatments. In each round of experimental trials two 

colonies were selected. Selected colonies were randomly designated as “treatment” or 

“control” and were used once during the study.  In both treatments, the Play-Doh® 
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barrier and plexiglass inserts were removed from the arenas after a one-hour acclimation 

period following the disturbance, permitting unrestricted ant movement.   

  Data collection began after the first successful carrying event was observed.  

Successful transport consisted of the carried individual being released inside the new 

harborage. All carrying events were visually observed, time of carry was recorded, as 

well as the total number of successful carries. Data collection ceased after 90 minutes. 

Preliminary data indicated, after this time, the interval between carrying events was 

greater than five minutes. A one-way Wilcoxon test was conducted to determine 

differences between total number of successful transports occurring in treatment and 

control arenas during nest emigration trials (JMP® Pro 10, SAS Institute, Inc. 2012. 

Cary, NC). An alpha error of < 0.05 indicated statistical significance. The difference in 

number of ants being carried in 15-minute intervals was compared using a Repeated 

Measures MANOVA in SAS 9.3 (SAS Institute, Inc. 2012. Cary, NC). An P-value < 0.05 

indicated statistical significance.   

Task Allocation 

To determine if B. chinensis workers performed repeated adult transport episodes 

during an emigration, worker ants were marked with paint and subjected to physical 

disturbance to elicit nest emigration. Ants used in the current study were obtained from 

four of the nests used in the previous study. As part of the study, two hundred worker 

ants were removed from a colony along with one queen and brood. Queen ants and brood 

items were not marked with paint during trials. Before marking, five ants were selected, 

placed into a 1.5 mL plastic medicine cup, and transferred to a freezer (-18 ⁰C) for 2 
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minutes. After removal from the freezer, the ants were transferred from the medicine cup 

onto a chilled metal panel. To mark an ant, a single ant was placed onto a foam platform 

with a single strand of hair taped down as a loop. The hair loop served as a restraint for 

the ants. Worker ants were marked either on the head, abdomen, thorax, or a combination 

of the body parts with Testors® modeling paint (Testors, Vernon Hills, IL) to distinguish 

workers. After marking, each ant was placed into a plastic container (60 cm x 42 cm x 16 

cm). The queen ant and brood items were transferred to the arena after the worker ants 

were distributed. A glass test tube (250 mm x 25 mm) wrapped in red transparent 

cellophane with a piece of moistened cellulose sponge inside as a water source was added 

to the arena to elicit emigration. Observational data were recorded but statistical analyses 

were not performed.       

Results 
 

Brachyponera chinensis workers used adult transport as a recruitment method 

during nest emigration. In total, I observed 396 successful transport events in treatment 

arenas and 42 in control arenas (Table 5.1). The mean number of successful transports 

occurring in treatment arenas (39.6 ± 6.94 SD) was significantly more than the number of 

successful transports observed (4.2 ± 2.2 SD) in control arenas. Treatment had a 

significant effect on the number of successful transports occurring during the study 

(Wilcoxon Test, x2 = 14.35, p = 0.0002). On average, 19% of ants were physically 

transported inside the new harborages. The remaining 81% of ants walked into the new 

harborage without worker assistance. 
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I observed workers in treatment arenas organizing into task-associated groups 

before plexiglass inserts were removed. Groups consisted of brood retrievers (Fig. 5.2), 

members of the queen’s tending group (Fig. 5.3), and scouts. Queen-tending ants 

surrounded the queen, remaining with the group until the queen walked into the new 

harborage. Scouting groups consisted of transporting and non-transporting worker ants. 

Non-transporting scouts moved around the arena but not in a particular pattern. After the 

insert was removed, ants either remained in groups or began walking into or under the 

new test tube harborage. Adult transport began after several scouts explored the new test 

tube harborage 12-15 minutes after the trial began (Fig. 5.4).      

The number of successful transports occurring every fifteen minutes in treatment 

arenas was compared. Results indicate that the number of transports did change with time 

(F = 62.58, p = 0.0002). Once initiated, transport continued at a steady rate for 30 min. 

(Fig. 5.4). Transport rates remained constant from 35 to 55minutes. During this period, 

retrieval and placement of brood from the open arena into the new harborage became the 

focus of non-transporting ants. Queen ants were also moved during the 35-55 minute 

period. After 55 minutes, the number of successful transports increased again for 15 

minutes on average.     

When transporting scouts encounter other ants, the pair interacts by drumming 

their antennae together. In each successful case, the ant being transported lowers its head, 

allowing the transporting ant to grasp it by the mandibles. From this position, as defined 

by Guénard and Silverman (2011), the carried ant assumes a pharate pupal posture and 

eventually is grasped on its venter. The pair then walked toward the harborage; however, 

http://www.researchgate.net/profile/Benoit_Guenard


 75 

the path to the new nest site may not be direct. Once the pair reaches the new nest, the 

carrier ant releases its nest mate within the harborage. The carrier may remain inside the 

nest or return to the arena after releasing its nestmate.  

The marking experiment was not successful but one ant was observed performing 

two consecutive transports. The marked ant picked up a nestmate dropped her off inside 

of the harborage and immediately entered the arena to retrieve another nestmate. 

Consecutive transporting was not observed in any of the other trials.        

Discussion        
 

Social carrying in B. chinensis was initially characterized as a context-dependent 

behavior performed only to recruit nestmates to food items too large to be carried by 

individual ants, a process known as tandem carrying (Guénard and Silverman 2011). The 

data presented in the current study indicate that B. chinensis workers also employ adult 

transport during nest emigration. 

In some ant species, adult transport during emigration is sometimes preceded by 

tandem running (Möglich 1978; Traniello and Hölldobler 1984; Pratt 2005). 

Brachyponera chinensis, however, do not employ multiple methods during emigration. 

On average in this study, 19% of workers were physically transported into the new 

harborages during trials and the remaining 81% traveled alone to the nest site. 

Consequently, the question of how non-transported ants locate new nest sites remains 

unanswered. Non-transported ants were observed walking directly into the harborage 

without exhibiting tandem-running or trail-laying behavior. However, for a worker ant to 

locate the new nest site, directional cues must be present. Guénard and Silverman (2011) 
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attempted to determine if B. chinensis use trail pheromones during tandem carries, but 

their experimental results were inconclusive. However, the use of trail pheromones 

should not be discounted. To exclude pheromones as a contributing factor, gaster 

positions during emigration must be analyzed and extractions of glands commonly 

associated with pheromone production, such as the Dufour’s gland or pygidial gland 

should be made (Hölldobler et al. 1982). In addition to chemical signaling, tactile and 

visual signaling should also be evaluated as directional cues used by B. chinensis during 

emigration.  

Although adult transport is an effective recruitment strategy for B. chinensis, each 

carrying attempt is not successful. The “transporting” ant always initiated the process in 

this experiment, but the “transported” ant may resist. Resisting ants pull away from the 

transporter or place their thorax/abdomen on the floor of the arena, preventing the other 

ant from gaining the leverage needed for carrying. This observation is in accordance with 

Langridge et al. (2008) who documented comparable behaviors in Temnothorax 

albipennis Curtis during colony emigration. An unsuccessful transport could be the result 

of a “transporter” ant encountering an individual that previously experienced visiting the 

new nest, another “transporter”, or encountering an ant responsible for protecting brood 

or the queen.  

Before initiating transport, B. chinensis worker ants organized into groups. 

Groups consisted of scouts, brood tenders, and the queens’ retinue. Scouting ants spent 

time exploring the foraging arena and were the first to locate the new nest. It appeared 

that worker ants were protecting the queen during emigration. Queen protective behavior 
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during emigration was also observed in Oecophylla longinoda (Latreille), weaver ants 

(Hölldobler and Wilson 1983). Oecophylla longinoda queens exude pheromones 

produced by the exocrine gland that attract workers to the queen during emigrations, 

allow workers to produce trophic eggs, but prevent workers from producing viable 

developing eggs. The loss of worker egg production ensures that queens are the sole 

producer of life within a colony making her a vital asset to the longevity of the colony. 

Worker ants of B. chinensis (Ito and Ohkawara 1994) and its sister species B. nakasujii 

do not possess ovarioles (Gotoh and Ito 2008). As a result, B. chinensis colonies solely 

depend on the queen for egg production. The presence of queen retinue in B. chinensis 

and absence of ovarioles in B. chinensis worker ants may be linked to queen produced 

pheromones. Brood items and the queen were transported during the middle (35-50 min.) 

of the study. Queen movement during this period is consistent with Pezon et al. (2005) in 

which N. obscuricornis queens were transported mid-way through emigration presumably 

to optimize their protection.    

The number of potential transporters was lower than the number of potential 

transportees suggesting that a small proportion of the total workforce is allocated towards 

adult transport. Previous studies show related results (Langridge et al. 2008, Sendova-

Franks and Franks 1995), but studies attempting to identify if carrying behavior was 

relegated to a specific group of ants during emigration have been inconclusive (Sendova-

Franks and Franks 1995). However, physical marking caused workers to devote more 

time to grooming than to colony tasks. Yet, in one marking trial, I documented one 

marked ant carrying two nestmates into the new harborage. In view of repeat transports, I 



 78 

anticipate that B. chinensis workers can perform multiple carries, but additional marking 

studies are needed to determine the worker ant carrying frequency.  

Colony duties may also be associated with a worker ant’s age, a phenomenon 

known as temporal polyethism (Robinson et al. 1994, Sendova-Franks and Franks 1993). 

In some studies, younger ants tend to work within the nest whereas older ants usually 

take on tasks outside the nest, such as colony defense, foraging, and recruitment. During 

trials, we observed workers transporting dusky-yellow colored callow workers into the 

nest, but callow workers never behaved as transporters. Abraham and Pasteels (1980) 

reported similar behavior in Myrmica rubra (L.). Recognition of this phenomenon raises 

the possibility that temporal polyethism also may play a role in task allocation during 

adult transport in B. chinensis. 

 As B. chinensis continues to increase its geographic range (Guénard and Dunn 

2010), thorough documentation of colony movements will be more important. The 

dispersal abilities of invasive ant species are affected by dispersal type. After 

establishment, invasive ants may naturally increase their range by mating flights (Markin 

et al. 1971) or increase their foraging range through an emigration process known as 

budding (Holway et al. 2002). During budding a portion of a colony leaves the original 

nest to found a new nest a few meters away. Brachyponera chinensis use adult transport 

during foraging (Guénard and Silverman 2011) and during nest emigrations (current 

study) so it is possible to suggest that ants also use adult transport to increase their range.  

My studies serve as the first to provide insight into the nest emigration 

recruitment behaviors of B. chinensis workers. In this laboratory study, B. chinensis 
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employed adult transport during emigration to move colony members to new nesting 

locations, but only a subset of the entire colony was relocated in this manner. These 

results suggest that B. chinensis may disperse through budding. However, Zungoli and 

Benson (2008) collected  winged males and females in a light trapping study, suggesting 

that mating flights may also occur; although, males alates were trapped more frequently 

than females (19:1). Future studies of B. chinensis emigration should attempt to address 

colony propagation and task allocation during emigrations. Studies of this nature will 

help us understand dispersal factors contributing to the invasive success of B. chinensis in 

the United States. 
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Table 5.1. Total number, mean, and standard deviation of successful carries performed 
by Brachyponera chinensis (Emery) workers during nest emigration trials. Means 
followed by different letters are significantly different (p < 0.05) based on one-way 
Wilcoxon test.  Total number, mean, and standard deviation of successful carries 
performed by B. chinensis workers during nest emigration trials. Means followed by 
different letters are significantly different (p < 0.05) based on one-way Wilcoxon rank 
sum test 
 

 N Total Mean Standard 
Deviation 

Control 10 42 4.2a ± 2.2 
Physical Disturbance 10 396 39.6b ± 6.94 
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Figure 5.1. Brachyponera chinensis (Emery) nest emigration arena (60.9 cm x 42.6 cm x 
16.7 cm) with test tube (250 mm x 25 mm) harborages, plexiglass insert, and Play-Doh® 
lining. Test tubes are wrapped with red cellophane paper with a moistened 8-cm sponge 
inserted. During experimental trials, the plexiglass insert, Play-Doh ®, and one harborage 
were removed allowing the ants to freely move in the arena.   
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Figure 5.2 Group of Brachyponera chinensis(Emery) worker ants retrieving and 
hoarding brood during nest emigration trials. 
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Figure 5.3. Queen (red circle) Brachyponera chinensis (Emery) and her retinue during a 
nest emigration trial.  
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Figure 5.4. Pooled total number of successful carries by Brachyponera chinensis 
(Emery) workers occurring at 5-minute intervals during treatment nest emigration 
trials (n = 10 colonies). Worker ants organized into groups (GRP ORG) from 0-13 
min. Adult transport (AT) began at the 12 min and continued for 90 min. Queens 
and brood were transported from 35 to 55 min. The number of successful 
transports performed by B. chinensis workers decreased during queen and brood 
movement. Transport activities increased after the queen and brood were moved 
to the new harborage.  

 

 

 

 

 

 

 

 

 

-5

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r o

f S
uc

ce
ss

fu
l C

ar
rie

s

Time (Minutes)

Queen and Brood

AT
GRP ORG



 85 

References 
 
Abraham, M. and Pasteels, J. 1980. Social-behavior during nest-moving in the ant 

Myrmica rubra L (Hymenoptera: Formicidae). Insect Soc. 27(2):127-147. 
 
Beckers, R., Goss, S., Deneubourg, J. L., & Pasteels, J. M. 1989. Colony size 

communication and ant foraging strategy. Psyche 96(3-4): 239-256. 
  
Bednar, D. M. and Silverman, J. 2011. Use of termites, Reticulitermes virginicus, as a 

springboard in the invasive success of a predatory ant, Pachycondyla 
(=Brachyponera) chinensis. Insect Soc. 58(4): 459-467.  

 
Bednar, D. M., Shik, J. Z., and Silverman, J. (2013). Prey handling performance 

facilitates competitive dominance of an invasive over native keystone ant. Behav 
Ecol. 24(6): 1312-1319.  

 
Bertelsmeier, C., Guénard, B., and Courchamp, F. 2013. Climate change may boost 

the invasion of the Asian needle ant. Plos One. 8(10): e75438. 
doi.org/10.1371/journal.pone.0075438. Accessed 23 August 2015. 

 
Cho, Y., Lee, C., Yoo, Moon, H., Lee, Y., and Park, H. 2002. Prevalence of 

Brachyponera chinensis - venom allergy in the ant habitat area in Korea J Allergy 
Clin Immun. 109(1): S80-S81.  

 
Fowler, H.G. 1981. On the emigration of leaf-cutting ant colonies. Biotropica 13(4): 316. 
 
Gotoh, A. and Ito, F. 2008. Seasonal cycle of colony structure in the Ponerine ant 

Pachycondyla chinensis in western Japan (Hymenoptera; Formicidae). Insect Soc. 
55: 98-104.  

 
Guénard, B. and Dunn, R. 2010. A new (old) invasive ant in the hardwood forests of 

eastern North America and its potentially widespread impacts. Plos One 5(7): 
e11614. doi.org/10.1371/journal.pone.0011614. Accessed 23 August 2015. 

 
Guénard, B. and Silverman, J. 2011. Tandem carrying, a new foraging strategy in ants: 

Description, function, and adaptive significance relative to other described foraging 
strategies. Naturwissenschaften 98(8): 651-659.  

 
Haskins, C.P. and Haskins, E.F. 1950. Notes on the biology and social behavior of the 

archaic ponerine ants of the genera Myrmecia and Promyrmecia. Ann Entomol Soc 
Am. 43(4): 461-491. 

 
Hölldobler, B., and Wilson, E. O. 1990. The Ants. Belknap, Cambridge Massachusetts, 

USA. 732 pgs. 



 86 

 
Hölldobler, B., and Wilson, E. O. 1983. Queen control in colonies of weaver ants 

(Hymenoptera: Formicidae). Ann Entomol Soc Am. 76(2): 235-238.   
 
Hölldobler B., Engel H., and Taylor R.W. 1982. A new sternal gland in ants and its 

function in chemical communication. Naturwissenschaften 69(2): 90-91.  
 
Holway, D., Lach, L., Suarez, A., Tsutsui, N., and Case, T. 2002. The causes and 

consequences of ant invasions. Annu Rev Ecol Syst. 33: 181-233.  
 
Ito, F. and Ohkawara, K. 1994. Spermatheca size differentiation between queens and 

workers in primitive ants. Naturwissenschaften 81: 138-140. 
 
Jessen, K. and Maschwitz, U. 1986. Orientation and recruitment behavior in the 

ponerine ant Brachyponera tesserinoda ((Emery) - laying of individual-specific 
trails during tandem running. Behav Ecol and Sociobiol. 19(3): 151-155.  

 
Langridge E., Sendova-Franks, A., and Franks, N. 2008. The behavior of ant 

transporters at the old and new nests during successive colony emigrations. Behav 
Ecol and Sociobiol. 62: 1851-1861. 

 
Lee, E. K., Jeong, K. Y., Lyu, D., Lee, Y., Sohn, J., Lim, K., and Park, J. 2009. 

Characterization of the major allergens of Pachycondyla chinensis in ant sting 
anaphylaxis patients. Clin Exp Allergy 39(4): 602-607.  

 
Markin, G.P., Dillier, J.H., Hills, S.O., Blum, M.S., and Hermann, H.R. 1971. 

Nuptial flight and flight ranges of the imported fire ant Solenopsis saevissima 
(Hymenoptera: Formicidae). J Georgia Entomol. So. 6: 145-156.  

 
Maschwitz, U., Jessen, K., and Knecht, S. 1986. Tandem recruitment and trail laying in 

the ponerine ant Diacamma rugosum: signal analysis. Ethology 71(1): 30-41. 
 
Möglich, M. 1978. Social-organization of nest emigration in Leptothorax (Hym: Form). 

Insect Soc. 25(3): 205-225.  
 
Möglich, M. and Hölldobler, B. 1974. Social carrying behavior and division of labor 

during nest moving in ants. Psyche 81:219-236. 
 
Nelder, M. B., Paysen, E. S., Zungoli, B. A., and Benson, E. B. 2006. Emergence of 

the introduced ant Pachycondyla chinensis (Formicidae: Ponerinae) as a public 
health threat in the southeastern United States. J Med Entomol. 43(5): 1094-1098.  

 



 87 

Pezon, A, Denis, D., Cerdan, P., Valenzula, J., and Fresneau, D. 2005. Queen 
movement during colony emigration in the facultatively polygynous ant, 
Pachycondyla obscuricornis. Naturwissenschaften 92: 35-39. 

 
Planque, R., van den Berg, J. B., and Franks, N. R. 2010. Recruitment strategies and 

colony size in ants. Plos One. 5(8): e11664. doi.org/10.1371/journal.pone.0011664. 
Accessed 12 October 2016.  

 
Pratt, S. 2005. Behavioral mechanisms of collective nest-site choice by the ant 

Temnothorax curvispinosus. Insect Soc. 52(4): 383-392.  
 
Pratt, S.C., Mallon, E.B., Sumpter, D.J.T., and Franks, N.R. 2002. Quorum sensing, 

recruitment, and collective decision-making during colony emigration by the ant 
Leptothorax albipennis. Behav Ecol Sociobiol. 52:117-127. 

 
Spicer-Rice, E., and Silverman, J. 2013. Propagule pressure and climate contribute to 

the displacement of Linepithema humile by Brachyponera chinensis. Plos One. 8(2): 
e56281. doi.org/10.1371/journal.pone.0056281. Accessed 9 February 2015. 

Robinson, G.E., Page, R.E., and Huang, Z.Y. 1994. Temporal polyethism in social 
insects is a developmental process. Anim Behav. 48(2): 467-469.  

 
Sendova-Franks A.B. and Franks, N.R. 1995. Spatial relationships within nests of the 

ant Leptothorax unifasciatus (Latr.) and their implications for the division of labour. 
Anim. Behav. 50(1): 121-136. 

 
Sendova-Franks S, A., and Franks, N. 1993. Task allocation in ant colonies within 

variable environments (A study of temporal polyethism: Experimental). Bull Math 
Biol. 55(1): 75-96.  

 
Takimoto, T. 1988. Carrying behavior for the recruitment of workers in Brachyponera 

chinensis. Ari 16: 21-22. 
 
Tay, J.W. and Lee, C.Y. 2015. Induced disturbances cause Monomorium pharaonis 

(Hymenoptera: Formicidae) nest relocation. J Econ Entomol. 108:1237-1242. 
 
Traniello J.F. and Hölldobler, B. 1984. Chemical communication during tandem 

running in Pachycondyla obscuricornis (Hymenoptera: Formicidae). J Chem Ecol. 
10:783-794. 

 
Zungoli P.A. and Benson E.P. 2008. Seasonal occurrence of swarming activity and 

worker abundance of Pachycondyla chinensis. Proc 6th Internat Conf Urban Pests 
51-57. 

 

https://doi.org/10.1371/journal.pone.0056281


 88 

CHAPTER SIX 

SUMMARY AND RECOMMENDATIONS 

As humans continue to encroach upon the natural habitats of organisms and 

spread into new environments the potential to spread non-indigenous species 

geographically will remain. Human-assisted transport is responsible for the spread of 

many organisms throughout the world (Floerl et al. 2009). In fact, human-assisted 

transport is responsible for the spread of the majority of the 250 non-native ant species 

throughout the world (Lach et al. 2010). Outside their natural environment, invasive ants 

can cause public health concerns (Breed 2016), cost municipalities millions in 

management efforts, and cause ecological damage (Holway et al. 2002). The Asian 

needle ant, Brachyponera chinensis (Emery) an invasive ant species, is a public health 

and ecological pest in the U.S. The biology of this ant is poorly understood and the need 

for biological and ecological information on this pest are vital to creating specific 

management programs for this insect. 

Oftentimes, the biology and behavior of invasive ants in new environments differs 

from the behavior of the same species in their native environment (Holway et al. 2002). 

Because the biology of Asian needle ant is not well documented, I first wanted to identify 

the seasonal life cycle of the ants in the U.S. Results from the seasonal life cycle study 

suggest that Asian needle ant populations follow a seasonal cycle of nest member 

production. I was able to document the seasonal change in the production of worker ants 

and reproductives. These results differ from the information presented by Murata et al. 

(2017) who reported that there was not a seasonal change in the number of workers and 
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queens in native Asian needle ant populations in Japan. However, although my results 

add to the current knowledge, the sociometry of B. chinensis is still incomplete. I 

collected four nests a month during the study but additional nests should be censused to 

determine if population sizes can change from year to year, if nest sizes change with age, 

and to determine the seasonal reproductive output of queens. An ant colony is a 

cooperative functional unit and the unified characteristics of a colony will lead to further 

insights and understanding of the ecology and evolution of a species. 

The objective of the second study was to determine if B. chinensis displayed a 

polydomous social nesting structure by analyzing spatial nesting patterns and agonistic 

behavior of workers originating from the same nest, different nests, and separate 

locations. Results from the spatial nesting study indicated that three of the four, B. 

chinensis display a uniform nesting pattern. However, one of the nests displayed a 

clumped nesting pattern indicative of a polydomous nesting structure. Results from the 

second objective suggest that B. chinensis has a polydomous nesting structure because 

aggression was not observed in any of the nestmate recognition assays. Results of the 

spatial study should be viewed with skepticism. Uniformity and the clustering of ant 

colonies may be the product of unknown ecological factors and a matter of scale. The 

plots used in the study were 10 m2. Larger plots need to be studied to determine if 

clustering occurs at a larger scale. These results are counter to what was observed during 

the recognition assays. Polydomy can be inferred from non-aggressive ants originating 

from separate locations but these results also come with limitations. Aggression comes 

with costs and ants must make a decision of whether to attack non-nestmates (Ellis et al. 
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2017). I performed 3 x 3 nestmate recognition assays but a higher number of ants may be 

needed to elicit aggressive behavior. However, Murata et al. (2017) reported that B. 

chinensis workers in Japan did not display aggression towards non-nestmates. Therefore, 

B. chinensis may be a species that simply does not show aggression towards non-

nestmates so nestmate recognition studies may not be viable measure of social nesting 

structure. 

The third objective was to determine if B. chinensis workers used adult transport 

during nest emigrations. I successfully reported that B. chinensis uses adult transport 

during nest emigrations caused by physical disturbance. I also documented the social 

organization of B. chinensis during emigration. Before transport began, ants organized 

into brood tending, scouting, queen tending, and transport groups. These studies should 

be further used to explore resource sharing in the form of workers in between nests and to 

determine the extent of social carrying during emigrations. These results may provide 

insight into polydomy and further characterize the colony establishment patterns of this 

invasive ant species.  

 Because biological and ecological information for B. chinensis are lacking, the 

opportunity to study the organism and create management options before populations 

spread outside of the southeastern U.S. are great. Mo (2013) and Spicer-Rice et al. (2012) 

studied the impact of gel and granular baits on Asian needle ants but because we don’t 

fully understand the emigration processes, nesting patterns, and colony life cycle of B. 

chinensis many of these research endeavors may not fully capture the requirements 

necessary for efficient and optimal control. In addition, further studies are needed to 
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determine the extent of infestation and to document the true long-term impacts of B. 

chinensis in the U.S.        
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Appendix A 

Chapter Three Supplementary Data 

 
 

Figure A.1. Chromatogram of cuticular hexane extracts of Brachyponera chinensis (Emery) workers collected from 
Agricultural Service Station (34° 39’ 29.219” N, 82°49’56.241” W; Pickens County, SC). See Table 3.5 for the peak identities. 
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Figure A.2. Chromatogram of cuticular hexane extracts of Brachyponera chinensis (Emery) workers collected from Lawrence 
Bridge (34°44’1.608” N, 82°52’25.895” W; Oconee County, SC). See Table 3.5 for the peak identities. 
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Figure A.3. Chromatogram of cuticular hexane extracts of Brachyponera chinensis (Emery) workers collected from Pendleton 
(34° 40’21.247” N, 82° 48’ 38.75” W; Anderson County, SC). See Table 3.5 for the peak identities.
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Figure A.4. Chromatogram of cuticular hexane extracts of Brachyponera chinensis (Emery) workers collected from Sturkey 
(34° 38’ 42.78” N, 82°48’46.799” W Pickens County, SC). See Table 3.5 for the peak identities. 
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