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Abstract

Technological advancements and globalization in recent decades have largely been responsible for

the ever-increasing energy and power demands across different industrial sectors. This has led to an extensive

use of fossil fuel based resources such as gasoline and diesel, especially in the transportation industry [1]. The

consequences of this utilization are excessive emission of greenhouse gases and degradation of air quality,

which have raised significant environmental concerns. Added to this, concerns over the eventual depletion

of fossil fuels has accelerated the exploration and development of new energy sources. At the same time,

increasingly stringent regulations have been imposed to enhance the fuel efficiency and minimize emissions

in automobiles. Efforts to meet current and future regulation targets have led to the development of new

technologies, some of which are: a) vehicle electrification [2], b) gasoline direct injection technology [3],

c) variable valve timing [4], d) advanced exhaust gas recirculation [5], and e) selective catalytic reduction

for NOx [6]. On the energy front, wind and solar technologies have been vastly explored [7], but these

technologies are time-dependent and intermittent in nature and must be supplemented by energy storage

devices. Lithium-ion batteries have been considered the most preferred technology for grid energy storage

and electrified transportation because of their higher energy and power densities, better efficiency, and longer

lifespan in comparison with other energy storage devices such as lead acid, nickel metal hydride, and nickel

cadmium [8].

Lithium-ion batteries are the most dominant technology today in small scale applications such as

portable phones and computers [9]. However, their wide-scale adoption in automotive and grid energy stor-

age applications has been hampered by concerns associated with battery life, safety, and reliability. A lack

of comprehensive understanding of battery behavior across different environments and operating conditions

make it challenging to extract their best performance. Currently, significant trade-off are being made to

optimize battery performance, such as over-sizing and under-utilization in automotive applications. While

sensors are used to evaluate battery performance and regulate their operation, their fundamental limitation
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lies in the inability to measure battery internal states such as state-of-charge (SoC) or state-of-health (SoH).

The aforementioned issues with lithium-ion batteries can addressed to a large extent with the help of mathe-

matical modeling. They play an important role in the design and utilization of batteries in an efficient manner

with existing technologies, because of their ability to predict battery behavior with minimal expenditure of

time and materials [10]. While empirical mathematical models are computationally efficient, they rely on a

significant amount of experimental data and calibration effort to predict future battery behavior. In addition,

such models do not consider the underlying physicochemical transport processes and hence cannot predict

battery degradation. Moreover, the knowledge acquired from such models cannot be generalized across dif-

ferent battery chemistry and geometry. This elucidates the need for fundamental physics-based mathematical

models to aid in the development of advanced control strategies through model-based control and virtual

sensor deployment. Such models can capture the underlying transport phenomena across various length and

time scales, and enhance performance and longevity of batteries while ensuring safe operation.

The overarching aim of this dissertation is to present a multiscale modeling approach that captures

the behavior of such devices with high fidelity, starting from fundamental principles. The application of

this modeling approach is focused on porous lithium-ion batteries. The major outcome of this work is to

facilitate the development of advanced and comprehensive battery management systems by: a) developing

a high fidelity multiscale electrochemical modeling framework for lithium-ion batteries, b) investigating the

temperature-influenced and aging-influenced multiscale dynamics for different battery chemistry and oper-

ating conditions, c) formulating a methodology to analytically determine effective ionic transport properties

using the electrode microstructure, and d) numerical simulation of the developed physics-based model and

comparison analysis with the conventionally used Doyle-Fuller-Newman (DFN) electrochemical model.

The new multiscale model presented in this dissertation has been derived using a rigorous homoge-

nization approach which uses asymptotic expansions of variables to determine the macroscopic formulation

of pore-scale governing transport equations. The conditions that allow successful upscaling from pore-to-

macro scales are schematically represented using 2-D electrode and electrolyte phase diagrams. These phase

diagrams are used to assess the predictability of macroscale models for different electrode chemistry and

battery operating conditions. The effective transport coefficients of the homogenized model are determined

by resolving a unit cell closure variable problem in the electrode microstructure, instead of conventionally

employed empirical formulations. The equations of the developed full order homogenized multiscale (FHM)

model are implemented and resolved using the finite element software COMSOL Multiphysics®. Numerical

simulations are presented to demonstrate the enhanced predictability of the FHM against the traditionally

iii



used DFN model, particularly at higher temperatures of battery operation. Model parameter identification

is performed by co-simulation studies involving COMSOL Multiphysics®and MATLAB®software using the

Particle Swarm Optimization (PSO) technique. The parameter identification studies are performed using data

from laboratory experiments conducted on 18650 cylindrical lithium-ion cells of nickel-manganese-cobalt

oxide (NMC) cathode chemistry.
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Chapter 1

Introduction

1.1 Motivation

The transportation sector has witnessed many technological advancements in recent years to enhance

fuel efficiency and reduce vehicular emissions [2–6,21]. These have been initiated by stringent fuel economy

and emissions regulations that stem from increasing concerns over greenhouse gas emissions, depleting air

quality, and the eventual depletion of fossil based resources [1]. Among these technologies, electrification

of the vehicle powertrain has been widely implemented in the automotive industry. Lithium-ion batteries,

electrochemical energy storage devices, have improved in energy and power density from research and devel-

opment efforts [22, 23], and the most preferred technology today for electric and hybrid propulsion systems.

The ragone plot in Fig. 1.1 depicts the enhanced abilities of lithium-ion batteries in comparison with energy

storage technologies such as super capacitors, lead-acid batteries, nickel-cadmium batteries, and nickel metal

hydride batteries. This makes lithium-ion technology ideal for consumer electronics, automotive, and grid

energy storage sectors [8]. The global energy demand for lithium-ion technology is forecasted to double to

124 GWh in the year 2020 from 61 GWh in the year 2015 [24].

From a material perspective, lithium-ion technology has begun to reach its theoretical energy lim-

its [25]. Yet, growth of the global electric vehicle market has been slower than initially predicted in the

beginning of this decade [26]. This is attributed primarily to the shortcomings of the current state of battery

technology. Lithium-ion battery packs used in automotive applications today are oversized and underutilized

to meet vehicle life expectations [27]. This conservative strategy to ensure that batteries work through their

designed lifecycles has resulted in suboptimal performance due to larger, heavier, and expensive battery sys-
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Figure 1.1: Ragone plot comparing the energy and power densities of different energy storage and vehicle
propulsion technologies. The plot is developed based on information acquired from [18, 19].

tems. Adding to that, safety concerns and performance degradation have become the biggest hindrance for

the full market penetration of batteries for vehicle electrification [28]. The most critical factor that has led

to the conservative use of lithium-ion batteries is a lack of comprehensive understanding of their behavior

across different operating environments. The transition from small scale electronic applications to large scale

vehicular applications with much higher power and energy demands has been hampered by the relative lack

of understanding of scaling effects, which impact battery performance and electrochemical and mechanical

responses [29].

Efficient, safe, and optimal utilization of batteries for large-scale applications is achievable through

the use of a sophisticated battery management system (BMS). A BMS is responsible for the safe and reli-

able operation of batteries. Its functions involve battery operation within specified voltage and current limits,

prevention of over-charging, over-discharging, and over-heating, cell balancing, battery safety, and the pre-

vention of battery abuse, fast degradation, and thermal runaway [30]. To optimize battery performance and

prolong useful life using a BMS, accurate estimation of battery state-of-charge (SoC) and prediction of the

battery state-of-health (SoH) [31] is required.

Battery internal states such as SoC and SoH cannot be measured directly on an vehicle. This reality

is currently being addressed through the use of equivalent circuit models (ECMs) in BMSs that incorporate

resistors and capacitor elements. ECMs are currently favored for real-time BMS applications because of
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their computational efficiency. However, these models rely on a significant amount of experimental data and

calibration effort to predict battery behavior [10]. Battery parameters are subject to change under different

operating conditions and aging, and a BMS must account for these changes. ECMs do not account for the

underlying transport phenomena, and hence cannot account for battery aging. In addition, the knowledge

acquired from ECMs cannot be generalized for different battery chemistry and cell formats. The limitations

of ECMs elucidate the need for physics-based models, which can predict transport phenomena in battery

systems that span multiple length and time-scales.

Accurate prediction of battery behavior is dependent on how accurately the mathematical equations

describe lithium transport, and how precisely the corresponding model parameters are measured, estimated,

or identified [32, 33]. Advanced electrochemical modeling and estimation of battery internal states are vital

to push batteries to operate at their physically permissible limits [34]. Simplified and reduced-order models

that retain the accuracy of the original high fidelity models will minimize CPU run time in vehicle on-board

applications, and can faciliate optimal BMS utilization in real-time [35, 36].

1.2 Background

The development of rechargeable lithium-ion batteries is widely credited to the efforts of Dr. John

B. Goodenough and his colleagues at the University of Texas at Austin [37]. The first commercially available

lithium-ion cell was composed of lithium cobalt oxide cathode and graphite anode. It was assembled by

Yoshino of the Asahi Kasei Corporation and commercialized by SONY Corporation in the year 1990 for

applications in portable phones and camcorders [38]. Gradually, their ability to provide a high energy and

power densities led to the expansion of their applications to other portable electronic devices such as laptop

computers, and power tool equipment [39]. Today, lithium-ion batteries are used as the primary energy

storage device for electrified propulsion in vehicles developed by automotive manufacturers such as Tesla,

General Motors, Toyota, Honda, etc. [40].

Figure 1.2 shows different commercially available lithium-ion cells of different formats that are uti-

lized in a wide range of applications ranging from portable electronics to automobiles. A lithium-ion cell is

defined as the smallest independent entity with all the functional capabilities of an energy storage device. A

battery is defined as a combination of different cells of the same type and is designed for a targeted applica-

tion. It can be as small as a group of 2 cells, or a module fabricated by combing several cells in series and/or

parallel configurations, or an entire pack that is assembled using many module components. Regardless of the
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Figure 1.2: Commercially available lithium-ion cell formats for different applications, and a schematic rep-
resentation of the integral cell components. Source of images: A123 Systems and Samsung Group.

format and chemistry, a lithium-ion cell is composed of four integral components: anode, cathode, separator,

and electrolyte. The anode and cathode are the battery electrodes and are porous by design. They are pri-

marily composed of layered structure materials (active particles) to store lithium. The porous matrix of these

electrodes is composed of active particles surrounded by a concentrated electrolyte solution that includes

binder materials to enhance conductivity. The anode and the cathode exist at different potentials. A separa-

tor is used as an electrical insulator between the electrodes to prevent internal short-circuit. It is made up of

polymeric substrates, and is porous by design to accommodate the electrolyte solution. It allows only lithium-

ions to be transported and ensures that electron transport takes place across the external circuit of the cell.

The electrolyte solution is composed of organic solvents such as ethylene carbonate and dimethyl carbonate

in specified proportions along with conducting salts such as lithium hexafluorophosphate. The electrolyte

solution is present throughout the medium and enables lithium-ion transfer during battery operation.

When the two terminals of a lithium-ion battery are connected either to a load that draws current

or a power supply that provides current, electron transport is initiated between the terminals of the battery
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through the external circuit. A copper foil is typically utilized as the current collector at the anode and is

connected to one end of this terminal. An aluminum foil serves as the current collector at the cathode and

is connected to one end of this terminal. Lithium-ions are transferred from the anode to the cathode during

discharge, and the reverse process occurs during charge. Some of the most prominent electrode technologies

for automotive applications are lithium graphite (LiC6) and lithium titanate (Li4Ti5O12) for the anode [41],

and lithium nickel cobalt aluminum oxide (NCA), lithium nickel manganese cobalt oxide (NMC), lithium

manganese dioxide (LMO), and lithium ferrous phosphate (LFP) for the cathode [30].

1.2.1 Literature review: lithium-ion battery modeling

• Electrode Li diffusion
• Structural stability

• Mass and charge balance
• Electrolyte Li+ transport

• Electronic potential & current distribution 
• Heat generation and transfer

Atomic Scale

Particle Scale

Electrode Scale Cell Scale

System Scale
• System operating conditions
• Environmental conditions 
• Control strategy

Module Scale
• Electrical inter-cell configuration 
• Thermal management 
• Safety control

• Lattice stability
• Thermodynamic properties

Pore-scale Models
Macroscale Models

Multiscale Models

Decreasing Complexity

10−10 10−8 10−6 10−4 10−2 100 m

Figure 1.3: Classification of mathematical models to capture transport processes in lithium-ion batteries that
span multiple length scales. This contents of this image have been obtained from [20].

Lithium-ion batteries involve highly non-linear transport processes, and exhibit physicochemical

properties at multiple length scales, ranging from the atomic level to the system level in decreasing order of

complexities [20], as depicted in Fig. 1.3. As such, ion transport can also be modeled on a multiplicity of

length scales. Atomic scale models apply monte carlo simulations [42] and density functional theory [43] to

investigate how crystal structure and particle size affect lithium transport. Particle scale models apply cou-

pled stress-diffusion models [44] and finite element analysis [45] to determine the volume change and stress

induced due to lithium transport and particle-particle interactions. At this pore scale, lithium transport in the
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electrodes and the interface kinetics can be modeled using robust first principles of mass and charge conser-

vations equations [46, 47] and 3-D finite element modeling techniques [48]. Electrode scale models [49, 50]

describe lithium transport using averaged mass and charge transport equations, and are developed from pore-

scale models using upscaling techniques [51, 52]. Cell scale [53, 54] and module scale models [55, 56] in-

corporate the effect of thermal dynamics by combining averaged mass and charge transport equations with

a global energy balance equation. They are useful in examining the electrical behavior and heat evolution

in cells and battery modules for various charging and discharging conditions. Multiscale models incorporate

transport processes and effects that span two or more length scales. The multi-scale multi-domain model de-

veloped by National Renewable Energy Laboratory [57] couples transport dynamics at the particle, electrode,

and cell scales to evaluate the electrical and thermal properties of different cell formats.

At the system level, equivalent circuit models (ECMs) [58–61] and reduced-order models [62–65]

developed from particle and electrode scale models are used to characterize single cell and battery mod-

ule/pack behavior, and develop model-based strategies for identification, estimation, control, and diagnostic

purposes [66–70]. The simplicity of ECMs makes them conducive for real-time BMS applications. They

have also been used for the prediction of thermal dynamics. Electrical-thermal models have been developed

for model parameter identification and estimation of battery SoC in cylindrical lithium-ion cells [71, 72].

Adaptive observers have been designed to estimate the core temperature in cylindrical LFP cells for health

monitoring purposes [73, 74].

Analytical models have been developed for the prediction of degradation in lithium-ion batter-

ies [75], and data from the experimental characterization of lithium-ion cells have ben used for the estimation

of remaining useful life for hybrid electric vehicle (HEV) applications [76]. Other studies have combined

aging models with ECMs to predict the cycle life of battery cells [77], and conduct offline battery model pa-

rameter estimation studies as a function of the battery SoH [69]. Semi-empirical models have been proposed

to devise methodologies for battery health management and strategies to prolong battery useful life while

minimizing energy consumption [78,79]. A capacity degradation model was developed in [80] and validated

using aging experiments conducted on LFP cylindrical cells. The model can be used to assess the state of

the health of the battery and predict its end-of-life based on the current rates of charge/discharge and the SoC

range of operation.

Despite their computational efficiency, the limitations of capturing thermal and aging dynamics

using ECMs and other empirical approaches is that they require an extensive amount of experimental data

and calibration effort to predict the future behavior of battery systems. Such models are based on fitting
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data for specific battery operating conditions, and cannot be extrapolated for other conditions of battery use.

In addition, they do not consider any of the underlying physicochemical process during battery operation,

hence their accuracy in their predictability over the duration of battery life remains an open ended question.

On the other hand, physics-based models at the particle and electrode scales provide higher accuracy due to

their ability to incorporate electrochemical kinetics along with other transport phenomena such as diffusion

and migration. Mathematicaly simplification and reformulation of such full order models have led to the

development of the single particle model (SPM) and the enhanced single particle model (eSPM).

The SPM captures lithium diffusion at the particle scale, and was first developed to study the be-

havior of metal hydride batteries [81] and later extended for lithium-ion battery systems [82, 83]. The SPM

assumes each electrode to be represented by a single spherical active particle with uniform current density

and infinite electrode conductivity. Concentration and potential gradients in the electrolyte are considered to

be uniform and time-invariant. As a result, only the electrode concentration dynamic equations are resolved

to predict the battery response. However, these models are applicable for only low current rates of charge

or discharge because the underlying assumptions of the model are violated at high current rates of opera-

tion [84]. To address some of the limitations of the SPM, the enhanced SPM was developed by incorporating

the electrolyte dynamic equations in addition to the SPM model equations [85, 86].

Reduced-order models have been developed using the SPM [87] and the eSPM [88] for the esti-

mation of battery SoC. Model-based techniques have been implemented to estimate battery SoC based on

the extended Kalman filter (EKF) and using the equations of the SPM [89, 90] and other reduced-order mod-

els [91,92]. Experimental validations of model-based SoC estimation techniques based on the EKF and using

the equations of a reduced-order electrochemical model are presented in [93, 94]. Coupled electrochemical-

thermal models have been developed based on the equations of the SPM for the design of non-linear observers

to improve battery SoC estimation [95, 96]. Reduced-order models have also been developed from the SPM

for studying long term battery degradation [97] and characterizing capacity fading dynamics [98]. Other

electrochemical models to study the growth of the solid-electrolyte-interface (SEI) layer in the anode are

presented in [99, 100].

Prior to the development of computer-aided engineering tools [101] for predicting battery dynamics

at very small length scales, research was focused at addressing system level issues such as [84]: a) underuti-

lization, b) capacity fading, c) lower energy density, and d) thermal runaway. Lithium-ion battery application

gradually expanded from portable electronics to automotive applications, motivated by emerging mobility op-

tions to reduce dependency on oil-based resources. New electrode chemistry were developed for applications
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based on energy and power demand, along with the fabrication of new cell formats to optimize cost, perfor-

mance, and longevity. These factors enabled researchers to understand that lithium-ion battery performance

is highly dependent on chemistry, temperature, current rates of charge/discharge, and the internal states [102].

Advancements in simulation tools and imaging techniques to study the electrode microstructure [103–106]

helped in the identification and different battery degradation and aging mechanisms, which was not a concern

prior to these developments. The conservative use of batteries to meet lifecycle targets in large scale applica-

tions undermines the impact of battery degradation and aging. While nominal temperature, current rate, and

SoC range of operation are not detrimental to battery performance in the short term, exposure to high current

rates and temperature of operation leads to irreversible battery damage over time. In HEVs, aging is a serious

concern when battery size and capacity is compromised for vehicle cost and weight.
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Figure 1.4: Predictability of different models to characterize lithium-ion battery behavior at different length
scales. There is a need to estalish better communication between the two modeling domains and bring more
physics into the current control and estimation efforts.

Figure 1.4 represents the predictability of different mathematical models for lithium-ion batteries.

ECMs, SPM, and eSPM models are the most commonly used tools to develop model-based control strate-

gies for online estimation applications. On the other hand, pore-scale and macroscale models with higher
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predictability have significant numerical complexity and need to be resolved using offline approaches. One

of the advantages of using physics-based models over ECMs is reduced calibration efforts to evaluate and

characterize cell behavior using experiments. From a control standpoint, the limitations of the SPM and

eSPM models are understood, but there has been no effort to supplement these limitations by incorporating

additional physics. For instance, atomic and particle scale models [47, 107, 108] have been used for design

and optimization of electrode morphology, but no studies have been reported on their use for model-based

control applications.

Models that characterize battery behavior at the smaller length scales capture battery behavior bet-

ter because they rely on only fundamental first principles to describing the underlying transport processes.

Atomic and particle scale models characterize battery behavior at those length scales where critical aging

mechanisms such as the SEI layer growth [109] and cyclic degradation [110] that lead to surface cracks,

material fracture, and active material loss can be best described. Hence, there is a critical need to establish a

communication and transfer of information from the physics-based to the control-oriented modeling domain.

Incorporating information from atomic- and pore-scale models in control-oriented model design can enable

the development of computationally tractable models and more accurate virtual sensors for estimation of the

battery internal states. New challenges emerge with new technologies, and the addition of more physics into

control-based design will lead to the development of a modeling framework that will enable researchers to

address these challenges.

1.2.2 The DFN Model: Properly Applied or Abused?

”Essentially, all models are wrong, but some are useful.”

- G. E. P. Box and N. R. Draper, Empirical Model-Building and Response Surfaces (1987)

When all transport phenomena cannot be experimentally verified within a system, one resorts to

develop a model incorporating all relevant physico-chemical interactions, understand and explain the obser-

vations in the system behavior, and optimize the design and utilization of the system for a targeted applica-

tion. The same is true in electrochemical batteries. While models have been effective for small scale battery

applications, their predictability is not accurate with the scaling up of battery technology for large scale ap-

plications. An aspect of significant interest over the past decades is the efficient utilization and useful life

enhancement of lithium-ion technology in the automotive sector.
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Lithium-ion transport can be captured at the microscopic length scales using robust pore-scale mod-

els. However, their computational intensity renders them impractical as a predictive tool at the system level.

Such limitations become dire when modeling battery lifetime and slow degradation processes over hundreds

or thousands of cycles. The need for real-time estimation of battery SoC and SoH to guide control strategies

in BMSs currently limits the application of more accurate and computationally intensive models in favour

of simpler and computationally efficient macroscale (effective or continuum) models [111, 112]. Macro-

scopic models, which are approximate representations of the pore-scale physics, are particularly appealing

for PDE-based control and estimation strategies of battery SoC and SoH.

Macroscale models are developed from pore-scale models using upscaling techniques [113–115].

Two well-known upscaling methods are volume-averaging [51] and homogenization [52]. In the volume-

averaging technique, the variable of interest is first averaged over a representative elementary volume (REV).

The REV is assumed to be a continuum representation of the underlying porous media. The pore-scale gov-

erning equations are then averaged in the REV so that they co-exist everywhere in the porous medium. The

homogenization technique uses asymptotic expansion of variables to rigorously derive the effective formula-

tion of the governing equations as the pore-scale asymptotically approaches to zero. The advantage of using

homogenization over volume-averaging is that the resulting closure variables for effective transport param-

eters in the homogenized model are obtained by detailed numerical modeling of the electrode architecture,

rather than using empirical approaches.

The electrochemical models used today have been derived from the work of Doyle et . al . [49] using

the volume averaging technique [116]. This isothermal macroscopic model is known as the Doyle-Fuller-

Newman (DFN) model, and treats the electrode as a homogeneous medium. The widespread use of this

model in different variations is attributed to the consideration of porous electrode and concentrated solution

theories to describe mass and charge transport between electrodes, and Bulter-Volmer kinetics to describe the

reaction dynamics [117]. This model is also known as the pseudo two-dimensional (P2D) model because the

electrode active particles are assumed to be spherical in shape, ordered and monodispersed [15], and mass

transport within these particles are resolved in spherical coordinates. However, one dimensional transport of

mass and charge is assumed in the electrolyte phase.

Since the full order homogeneous DFN model is computationally intensive and cannot be directly

implemented for real-time applications, research efforts over the years have led to the development of simpli-

fied [81,83] and reduced-order models [64,118] aimed at retaining the DFN model accuracy while improving

computational efficiency. To improve the predictability of the transport models in accounting for temperature

10



effects during operation, electrochemical-thermal models [119] have been developed by coupling lumped

cell temperature dynamic equations with the mass and charge conservation equations of the electrochemical

model. Other extensions of isothermal transport models include capacity fading effects due to the SEI layer

growth [120–122]. Advanced research efforts aided by enhanced computational capabilities in recent years

have enabled the development of multiscale approaches to model the electrochemistry of lithium-ion batter-

ies [57]. Yet, a comprehensive understanding of dynamical battery behavior has remained a complex problem

over decades, and a major bottleneck in achieving diagnostic capabilities, safety, optimization, and control of

battery systems.

Macroscale models overcome some of the computational limitations of pore-scale models by relying

on assumptions and constraints that guarantee scale separation between the pore- and the continuum-scales.

However, physical and electrochemical phenomena on one scale are often coupled to phenomena on a vastly

different scale. For example, pore-scale molecular diffusion fundamentally affects lithium-ion mixing and

heat generation at the electrode and cell scales [119]. Similarly, localised SEI layer growth in the pores over

time scales spanning many orders of magnitude can lead to drastic porosity changes and long term impair-

ment such as capacity fading in battery systems. Prior to the work outlined in this dissertation, there has

been no published research that has rigorously established the conditions under which pore-scale equations

describing migration, diffusion, and reaction of lithium ions correctly upscale to the classical macroscopic

porous-electrode equations. The determination of battery operating conditions under which continuum ap-

proaches are a valid representation of microscopic processes is critical to achieve model predictivity of battery

systems.

Since its development, the DFN model has been accepted with limited criticism and debate as the

most reliable physics-based modeling tool available for lithium-ion technology. However, its limitations

in predicting battery dynamics at operating conditions characterized by high discharge rates and operating

temperatures is an aspect of research that has not been addressed. This is attributed to the fact that all the

approximations and constraints that have facilitated the development of the DFN model, and battery operating

regimes that lead to the violation of these conditions have not been documented in published literature. While

the DFN model has been supplemented with thermal and aging models to improve its predictability, very few

electrochemical modeling methodologies have since been formulated, and none of them have demonstrated

any limitations of the DFN model nor any numerical simulations to supersede the DFN model in terms of

predictability. The lack of other modeling methodologies has led battery researchers to adopt the same model

in explaining every possible transport phenomena without prior assessment or justification.
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Due to its computational complexity, the DFN model has been mathematically simplified to SPM

and eSPM models and other reduced-order models through reformulation techniques for control, estimation,

and diagnostic purposes. Hence the predictability of these computationally efficient models at best is limited

to the accuracy of the DFN model. Different studies [22, 123–126] have presented computationally efficient

DFN reformulations and validated their performance for different operating patterns against the full order

DFN model as a benchmark. In most of these studies, battery operation is restricted to moderate temperatures

and low current rates of operation. Such studies do not verify a priori the predictability of the full order

DFN model for different electrode chemistry and aggressive battery operating conditions. As a result, the

performance of such control-oriented models may not accurately reflect real-world battery response even

though their performance is accurate with respect to the DFN model. Under these circumstances, model-

based control strategies to maintain a safe envelope of battery operation will clearly limit their threshold of

application to only those conditions for which the underlying model is accurate. These studies reflect the

need to adopt other strategies to validate reduced-order models rather than abusing the full order DFN model

in this process.

The DFN model has been formulated on the basis of certain underlying assumptions which are

summarized in [15,127,128]. The most critical assumption among these concerns the particle geometry. Ex-

perimental investigations [129, 130] have proven that practical battery electrodes have non-spherical particle

shapes which exhibit polydispersity. This means that the DFN model is capable of predicting battery dynam-

ics better in electrodes that consist of spherical monodispersed particle shapes. For other battery electrode

morphology, the DFN model must be used with caution. The volume averaging approach does not consider

the active particle morphology and orientation while determining the effective transport parameters [131].

The effective transport properties are obtained using an empirical formula that depends only on the elec-

trolyte volume fraction. However, the topology and the morphology of the electrode play a significant role

in influencing these effective properties [116]. The complexity of this problem is understated, but must be

seriously considered for the following reasons: (a) electrodes with the same volume fraction can have signifi-

cantly different performance characteristics due to differences in topology, and (b) topology and morphology

are not constant over the life of the battery because cyclic charging and discharging leads to volume changes,

cracks, and differential stress/strain effects in the electrodes.

The limitations of the DFN model may be significantly amplified in the simplified and reduced-order

model formulations. This will severely impact the accuracy of estimation of the battery battery internal states.

That there is still a lack of deployment of physics-based models in real-world large scale battery applications
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points to a need to address the following questions:

1. How accurate are macroscale models across different electrode chemistry and operating conditions?

2. Under what operating conditions do macroscale models provide an accurate reflection of battery dy-

namics, and what leads to a failure in the model predictability?

3. How can better battery models be developed to address safety issues, predict energy and power capa-

bilities, and overcome limitations in battery utilization due to degradation and aging?

This discussion in no manner intends to undermine previous modeling contributions and efforts.

Unequivocally, the development of the DFN model has been played an invaluable role and impact in the field

of battery model development and model-based control strategies for estimation, control, and diagnostics.

Rather, in the quest of understanding how to design and utilize batteries more effectively, this section serves

to highlight specific attributes that are missing in macroscale transport models today, and motivates the work

presented in this dissertation. The overarching goal is to understand when currently used models are good

enough and when there is a need for using something different. Thus far, research efforts have not completely

tackled the problem of identifying the right conditions of operation of the models that are being utilized.

Unless this is addressed, lack of awareness of model utilization may lead to its implementation for the wrong

applications. This dissertation aims to address the aforementioned questions through the development of

a rigorously derived multiscale modeling framework for lithium-ion batteries, and eventually enable better

battery utilization through better model(ing).

1.3 Dissertation Outline

1.3.1 Objectives

The main objective of this research work is to develop a physics-based modeling framework for

advanced BMS applications along with tools to assess model predictability. One of the major aims of this

dissertation is to facilitate the synthesis of control-oriented mathematical models that predict battery behavior

with higher fidelity than the models employed today. This will enable reliable estimation of the battery

internal states (SoC and SoH) and predict the remaining useful life for optimizing performance and longevity.

The versatility of the new modeling framework is evaluated across different electrode chemistry and operating

regimes characterized by temperature and C-rates of operation. This research work can be categorized into
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six sections: a) multi-scale modeling framework development, b) investigation of the veracity of macroscale

models for different electrode chemistry and operating conditions characterized by temperature, C-rate of

discharge, and capacity fading, c) determination of effective lithium ion transport properties, d) numerical

implementation of the homogenized model equations using COMSOL Multiphysics®and model parameter

identification using co-simulation studies involving COMSOL Multiphysics®and MATLAB®using a global

optimization approach, and e) model performance assessment using data acquired from temperature-based

experiments conducted on 18650 NMC lithium-ion cells.

1.3.2 Outline

This dissertation is structured as follows:

Chapter 2 presents the homogenization technique to derive macroscale mass and charge transport

equations of lithium. The conditions that guarantee scale separation between the pore- and continuum scales

are rigorously identified during the upscaling process. The region of validity of the continuum approximation

of the pore-scale transport equations is graphically represented using 2-D phase diagrams. The details of

the derivation of the homogenized model transport equations are presented in Appendices A and B. This is

followed by a systematic approach to determine the effective ionic transport properties by resolving a closure

variable in a unit cell of the electrode. The application of the phase diagrams to assess the validity of the

macroscale mass and charge transport equations in relations to different electrode chemistry, cell tempera-

tures, C-rates of discharge, and capacity fading due to aging dynamics over time, is elaborated in the later

sections of this chapter.

Chapter 3 describes the equipment used to perform experiments and data acquisition on 18650 NMC

cylindrical lithium-ion cells, design of experiments conducted at different cell temperatures, and the experi-

mentally measured voltage response for different operating conditions. The selection of the different temper-

atures for the experimental characterization of the NMC cells was based on the results of an electrolyte phase

diagram study, which is presented in 4.

Chapter 4 begins with a comparison of the lithium mass and charge transport equations of the full-

order homogenized macroscale model (FHM) and the DFN model, along with a discussion of different factors

that indicate higher predictability of the FHM model over the DFN model. The numerical implementation of

the DFN model using the finite element modeling software COMSOL Multiphysics® is summarized, followed

by a detailed description of the FHM model implementation in the same software platform. A user guide for

the development of the FHM model is presented in Appendix C. This is followed by parameter identification
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of the DFN and FHM models, performed using co-simulation studies involving COMSOL Multiphysics®and

MATLAB®software using the Particle Swarm Optimization (PSO) technique. The geometric and stoichio-

metric parameters are first identified for the DFN and FHM models individually, and the average of these

parameter values are used in both models. The electrode diffusion coefficients, reaction rate coefficients,

and contact resistance are the five model parameters that are then identified for the FHM and DFN models

as a function of temperature. The performance of both the models is assessed against experimental data,

the details of which have been elaborated upon in Chapter 3. This chapter concludes with a discussion of

the results from the parameter identification studies, and the summary of the results using a system level

phase diagram to quantify the error in the predictability of both models as a function of the battery SoC and

operating temperature.

Finally, Chapter 5 summarizes the conclusions from this dissertation and the potential direction of

future work.

1.3.3 Contributions

The contributions of this dissertation have potential implications in the field of modeling, estimation,

and control of lithium-ion batteries. In particular, the modeling framework development that is elaborated in

this work will enable the development of advanced battery management systems through model-based control

approaches. The key contributions of this dissertation are as follows:

1. Derivation of a physics-based multiscale model for lithium-ion batteries using mathematical homoge-

nization, a rigorous upscaling technique applied to the pore-scale Poisson-Nernst-Planck (PNP) equa-

tions of mass and charge transport in the lithium-ion electrodes and the electrolyte.

2. Development of 2-D electrode and electrolyte phase diagrams and assessment of the predictability of

the macroscale mass and charge transport equations across different operating conditions characterized

by temperature, C-rate of discharge, and battery aging.

3. Development of a modeling approach to determine the effective electrolyte diffusion and conductivity

coefficients by resolving a closure variable in the unit cell of the electrode microstructure.

4. Numerical implementation of the developed full order homogenized model of lithium mass and charge

transport using the finite element software COMSOL Multiphysics®.

5. Identification of the parameters of the FHM and DFN models as a function of the operating tempera-

ture by conducting co-simulation studies involving COMSOL Multiphysics®and MATLAB®software
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using the Particle Swarm Optimization (PSO) technique. The performance of the models is assessed

against data obtained from experiments conducted on 18650 NMC cylindrical lithium-ion cells, and a

schematic representation of the results of the identification studies using a system level phase diagram.

The peer-reviewed articles that were published over the course of this dissertation are listed below:

1. H. Arunachalam, S. Onori, and I. Battiato, ”On veracity of macroscopic Lithium-ion battery models”,

J. Electrochem. Soc., vol. 162, no. 10, pp. A1940-A1951, 2015.

2. H. Arunachalam, S. Onori, and I. Battiato, ”Temperature-dependent multiscale-dynamics in Lithium-

Ion battery electrochemical models”, in Proceedings of the 2015 American Control Conference, pp.

305-210, IEEE, 2015.

3. H. Arunachalam, I. Battiato, and S. Onori, ”Preliminary Investigation of Provability of Li-Ion Macroscale

Models Subject to Capacity Fade”, in Proceedings of the 2016 Dynamic Systems and Control Confer-

ence, ASME, 2016.

4. H. Arunachalam, S. Korneev, I. Battiato, and S. Onori, ”Multiscale modeling approach to determine

effective lithium-ion transport properties”, in Proceedings of the 2017 American Control Conference,

pp. 92-97, IEEE, 2017.
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Chapter 2

Multiscale Electrochemical Modeling

Framework Development

2.1 Introduction

This chapter elaborates upon the development of a multiscale electrochemical modeling framework

that describes mass and charge transport of lithium in the electrode and electrolyte phases. Starting with a di-

mensionless formulation of the Poisson-Nernst-Planck (PNP) equations [132] that describe lithium-ion trans-

port at the pore-scale, multiple-scale expansions technique [133] is applied to rigorously derive macroscopic

dual-continua models and identify the physics-based conditions under which classical porous-electrode con-

tinuum models accurately describe lithium-ion micro-scale dynamics with the accuracy prescribed by the ho-

mogenization technique. Application of the homogenization technique to derive effective equations of mass

and charge transport for lithium-ion batteries have been reported in literature [113, 134]. However, there

are two key differences between the approach implemented by the authors of [113, 134] and the approach

elaborated in this chapter:

1. The pore-scale equations describing mass transport of lithium within the active particles are not up-

scaled to an effective formulation. The authors of [113, 134] report that because of the much slower

diffusion of lithium in the active particles compared to the rate of diffusion of lithium ions in the elec-

trolyte, lithium transport in the electrodes can be adequately captured only at the pore-scale.

No supporting hypothesis has been provided to justify this argument, and there have been no studies
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Figure 2.1: Representation of the porous electrode of a lithium-ion cell in the form of spatially periodic unit
cell. Every unit cell Ŷ is composed of active particles S and electrolyte solution B that are separated by an
interface Γ.

reported that quantify the error associated with the upscaling of the electrode mass transport equation.

This chapter presents the first-ever study to develop fully upscaled mass and charge transport equations

of lithium-ion batteries along with a quantification of the predictability of the effective equations with

respect to their pore-scale counterparts.

2. In [113, 134], the pore-scale equations of electrode charge transport and electrolyte mass and charge

transport are upscaled in dimensional form. As a result, while the conditions that allow scale separation

and successful upscaling were formulated, no rigorous analysis was presented to identify the conditions

under which upscaled transport equations accurately represent pore-scale dynamics.

In this chapter, the pore-scale mass and charge transport equations are first converted to dimensionless

form. This enables the use of dimensionless parameters to represent the pore-scale transport processes,

and summarize the applicability conditions in a schematic manner. Another advantage of this approach

is that the conditions when macroscale models are accurate can be explained by comparing the time-

scales of lithium transport mechanisms and understand which mechanisms dominate the others.

Following the derivation of the electrochemical model, a modeling approach is presented to deter-

mine the effective ionic transport properties in the battery medium by resolving a closure variable in a unit

cell of the electrode microstructure. The later sections of this chapter are dedicated to the assessment of the

predictability of macroscopic models across different electrode chemistry and battery operating conditions

characterized by temperature, current rate of discharge, and aging mechanisms such as capacity fading due

to the growth of the SEI layer.
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2.2 Derivation of a homogenized electrochemical lithium-ion battery

model

2.2.1 Pore-scale Governing Equations

Microscale transport of lithium ions is considered inside a battery electrode composed of a porous

matrix Ω̂ with characteristic length L. The active particles are assumed to be microscopically arranged in the

medium in the form of spatially periodic unit cells Ŷ with a characteristic length `, as illustrated in Fig. 2.1.

The characteristic length at the pore-scale is defined as ` and is considered to be of the order of the diameter

of the spherical active particles. ε, the scale-separation parameter, is defined as ε ≡ `/L � 1. The unit cell

Ŷ = B̂ ∪ Ŝ consists of the electrolyte space B̂ and the ion permeable solid matrix Ŝ that are separated by

the smooth surface Γ̂. The pore spaces B̂ of each cell Ŷ form a multi-connected pore-space domain B̂ε ⊂ Ω̂

bounded by the smooth surface Γ̂ε. The mass and charge transport equations in the electrolyte and the

electrode phases control the spatiotemporal evolution of the concentration of lithium ions ĉiε(x, t) (molm−3)

and the electrostatic potential φ̂iε(x, t) (V ) in the active particles {i = s} and the electrolyte {i = e}. The set

of governing equations are summarized in section §2.2.1.1 and section §2.2.1.2.

2.2.1.1 Electrolyte phase

The pore-scale transport equations of mass and charge transport incorporate the porous electrode [135]

and concentrated solution theories for ion transport [117]. The conservation equations for lithium-ions in

the concentrated electrolyte solution is developed from the generalized Poisson-Nernst-Planck equations for

electrochemical systems with negligible convection, and is defined as [136]:

∂ĉeε
∂t̂

= −∇̂ · N̂e, (2.1)

where N̂e
[
molm−2s−1

]
is the flux of the positive lithium ions in the solution, and is expressed as [136]:

N̂e = −De∇̂ĉeε + t+F
−1ĵe, (2.2)

where D̂e
[
m2s−1

]
is the interdiffusion coefficient in the electrolyte, t+ is the transference number, F is

Faraday constant, and ĵe
[
Am−2

]
is the electric current density in the electrolyte phase, and is expressed
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as [136]:

ĵe = −K̂e∇̂φ̂eε −
(
λt+RTF

−1K̂e/ĉeε
)
∇̂ĉeε, (2.3)

where K̂e
[
Ω−1m−1

]
is the electric conductivity in the electrolyte, ĉsmax

[
molm−3

]
is the maximum con-

centration of lithium that can be stored in the active particle, f± [−] is the activity coefficient, λ = 1 +

d ln f±
d ln(ĉeε/ĉ

s
max)

[−] is assumed to be a constant [137], R [Jmol−1K−1] is the universal gas constant, and T is

temperature. Based on the condition of charge neutrality in the electrolyte solution between the lithium ions

and the negative counter ions, the charge conservation equation in the electrolyte phase is defined as [136]:

∂q̂

∂t̂
= ∇ · ĵe = 0. (2.4)

The intercalation reaction at the interface separating the active particle and the electrolyte phases is described

by using the Butler Volmer theory [117], and the current density across the interface due to the intercalation

reaction, ise
[
Am−2

]
, is defined as [138]:

ise = 2k
√
ĉeεĉ

s
ε(1− ĉsε/ĉsmax) · sinh[F (φ̂sε − φ̂eε − Û)/2RT ], (2.5)

where k
[
VmΩ−1mol−1

]
is the electrochemical reaction rate constant that describes the kinetics of lithium-

ion transfer on Γε, and Û [V] is the electrode open circuit potential. It is assumed under all circumstances

that the lithium-ions are either intercalated in the active particle are released into the electrolyte. This is in

accordance with the consideration that there are no side-reactions involved in the porous electrodes. Assum-

ing that there is no intercalation of any negative counter ions from the electrolyte, the total current across the

active particle-electrolyte interface is only due to the transport of positive lithium ions. These conditions are

formulated mathematically and expressed in the form of the following interface conditions [136]:

−ne · N̂e =
ise
F
, (2.6a)

−ne · ĵe = ise, (2.6b)

where ne is the outward unit normal vector to Γ̂ε pointing from the electrolyte towards the active particle.

The mass and charge transport equations in the electrolyte phase x ∈ B̂ε [138] can then be summarized as
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follows [138]:

∂ĉeε
∂t̂

= ∇̂ · [(D̂e + λt2+RTF
−2K̂e/ĉeε)∇̂ĉeε + t+F

−1K̂e∇̂φ̂eε], (2.7a)

0 = ∇̂ · [(λt+RTF−1K̂e/ĉeε)∇̂ĉeε + K̂e∇̂φ̂eε], (2.7b)

subject to

ne· [(D̂e + λt2+RTF
−2K̂e/ĉeε)∇̂ĉeε + t+F

−1K̂e∇̂φ̂eε] = kF−1f̂(ĉeε, ĉ
s
ε, φ̂

s
ε, φ̂

e
ε), (2.8a)

ne· [(λt+RTF−1K̂e/ĉeε)∇̂ĉeε + K̂e∇̂φ̂eε] = kf̂(ĉeε, ĉ
s
ε, φ̂

s
ε, φ̂

e
ε), (2.8b)

on the solid-electrolyte boundary Γε, respectively. In (2.8),

f̂(ĉeε, ĉ
s
ε, φ̂

s
ε, φ̂

e
ε) = 2

√
ĉeεĉ

s
ε(1− ĉsε/ĉsmax) · sinh[F (φ̂sε − φ̂eε − Û)/2RT ]. (2.9)

2.2.1.2 Electrode phase

The mass and charge transport of lithium ions in the solid phase Ŝε are governed by the material

balance and electroneutrality equations [138]. The equations for concentration and electric potential are based

on general thermodynamic principles, similar to that in the electrolyte phase. Transport in the active materials

is assumed to be isotropic on the microscopic scale [136]. It is also assumed that the transference number is

zero in the active materials, since the electrical current is primarily driven by the transport of electrons. The

net flux of lithium in an active particle is generally defined in terms of its thermodynamic driving force, and

is expressed as [139]:

N̂s = −Ls∇̂µs, (2.10)

where Ls is the kinetic coefficient and µs is the chemical potential of lithium in the active particles. It is

assumed that the electric potential gradient is so small that it does not influence the mass flux of lithium [139].

Under this assumption, the chemical potential can be expressed in terms of the concentration of lithium in

the solid phase, and equation (2.10) can be re-written in the form of a Fickian flux expression [139]:

N̂s = −D̂s∇̂ĉsε, (2.11)
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where D̂s
[
m2s−1

]
is the interdiffusion coefficient in the active material. The distribution of electrostatic

potential in the active materials is expressed using the current density, ĵs
[
Am−2

]
, as [139]:

ĵs = −K̂s∇̂φ̂sε, (2.12)

where K̂s
[
Ω−1m−1

]
is the electric conductivity in the active particles. The conservation of charge in the

active material phase yields [139]:

∇̂ · ĵs = 0. (2.13)

At the interface between the active materials and the electrolyte phases, the electrostatic potential gradient

and the flux of lithium in the active particles are governed by the charge-transfer intercalation reactions, and

the conditions are mathematically formulated as [136, 140]:

ns · N̂s =
ise
F
, (2.14a)

ns · ĵs = ise, (2.14b)

where ns is the outward unit normal vector to Γε pointing from the active particle towards the electrolyte.

The equations in the electrode phase can then be summarized as follows [138]:

∂ĉsε
∂t̂

= ∇̂ · (D̂s∇̂ĉsε), x̂ ∈ Ŝε, (2.15a)

0 = ∇̂ · (K̂s∇̂φ̂sε), x̂ ∈ Ŝε, (2.15b)

subject to

− ns · (D̂s∇̂ĉsε) = kF−1f̂(ĉeε, ĉ
s
ε, φ̂

s
ε, φ̂

e
ε), x̂ ∈ Γ̂ε (2.16a)

− ns · (K̂s∇̂φ̂sε) = kf̂(ĉeε, ĉ
s
ε, φ̂

s
ε, φ̂

e
ε), x̂ ∈ Γ̂ε (2.16b)

respectively.
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2.2.2 Dimensionless Formulation of Transport Equations

2.2.2.1 Transport Processes and Dimensionless Numbers

The transport processes occurring at the pore-scale include heterogenous reaction at the electrode-

electrolyte interface Γ̂ε, and lithium diffusion and conduction in the electrode phase Ŝε, and lithium-ion

diffusion and electromigration in the electrolyte phase B̂ε. The characteristic time scales associated with the

different transport processes: heterogenous reaction, electrode diffusion and conduction, and ionic diffusion

and electromigration, over a macroscopic length scale L, are

t̂R =
LF

k
, t̂Dj =

L2

Di
, t̂Mj

=
F 2L2ĉsmax

RTKj
, j = {e, s}, (2.17)

respectively. In (2.17), Dj = O(D̂j) and Kj = O(K̂j), j = {e, s}, are the characteristic values of

the interdiffusion and electric conductivity tensors D̂j and K̂j in the electrode (j = s) and the electrolyte

(j = s), respectively. Dimensionless Damköhler and electric Péclet numbers are then defined as

Daj :=
t̂Dj

t̂R
=

Lk

FDj
and Pej :=

t̂Dj

t̂Mj

=
RTKj

F 2Dj ĉsmax

, j = {e, s}. (2.18)

These parameters provide information about the relative magnitude of ion transport processes in the elec-

trolyte and the electrode phases. Let cjε := ĉjε/ĉ
s
max and φjε := φ̂jεF/(2RT ), j = {s, e} be the dimensionless

Li-ion concentration and electrostatic potential in the active particles (j = s) and the electrolyte (j = e).

Then, the mass and charge transport equations can be cast in dimensionless form as follows.

2.2.2.2 Electrolyte Phase

The dimensionless form of the mass and charge transport equations in the electrolyte (2.7)-(2.8) is

given by

∂ceε
∂t

= ∇ · [(De + λt2+PeeK
e/ceε)∇ceε + 2Peet+K

e∇φeε], x ∈ Bε (2.19a)

0 = ∇ · [(λt+Ke/ceε)∇ceε + 2Ke∇φeε], x ∈ Bε (2.19b)
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subject to

ne· [(De + λt2+PeeK
e/ceε)∇ceε + 2Pee t+K

e∇φeε] = Daef(ceε, c
s
ε, φ

s
ε, φ

e
ε), (2.20a)

ne· [(Peeλt+K
e/ceε)∇ceε + 2PeeK

e∇φeε] = Daef(ceε, c
s
ε, φ

s
ε, φ

e
ε), (2.20b)

on Γε, respectively. In (2.7) and (2.8), the dimensional spatial and time scales are nondimensionalized by

the macroscopic length L and the diffusion time in the electrolyte phase t̂De respectively, i.e. x = x̂/L

and te = t̂/t̂De ; De = D̂e/De and Ke = K̂e/Ke are the dimensionless interdiffusion coefficient and the

electric conductivity in the electrolyte. Also,

f(ceε, c
s
ε, φ

e
ε, φ

s
ε) = 2

√
ceεc

s
ε(1− csε)sinh(φsε − φeε − U) (2.21)

where U = FÛ/(2RT ) is the dimensionless open circuit potential. Bε and Sε represent the rescaled (non-

dimensional) electrolyte and electrode phases, with Γε the interface separating them.

2.2.2.3 Electrode Phase

In a similar manner, the dimensional transport equations in the electrode phase x ∈ Sε, (2.15)

and (2.16), are cast in dimensionless form as

∂csε
∂t

= DaeDa−1
s ∇ · (Ds∇csε), x ∈ Sε (2.22a)

0 = ∇ · (Ks∇φsε), x ∈ Sε (2.22b)

subject to

− ns · (Ds∇csε) = Dasf(ceε, c
s
ε, φ

s
ε, φ

e
ε), x ∈ Γε (2.23a)

− ns · (2PesK
s∇φsε) = Dasf(ceε, c

s
ε, φ

s
ε, φ

e
ε), x ∈ Γε (2.23b)

respectively.

Section §2.2.3 describes the multiple scale expansion technique that is used to derive a continuum

(or) macroscopic approximation of the pore-scale equations, and identification of the conditions under which

continuum equations are valid descriptors of pore-scale dynamics.
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2.2.3 Homogenization via Multiple-Scale Expansions

The local averages of a quantity A(x) in the porous medium are defined as

〈A〉e ≡
1

|Y |

∫
B(x)

Ady, 〈A〉s ≡
1

|Y |

∫
S(x)

Ady, (2.24)

〈A〉B ≡
1

|B|

∫
B(x)

Ady, 〈A〉S ≡
1

|S|

∫
S(x)

Ady, (2.25)

〈A〉Γ ≡
1

|Γ|

∫
Γ(x)

Ady, (2.26)

where 〈A〉e = η〈A〉B, 〈A〉s = (1 − η)〈A〉S and η = |B|/|Y | is the electrode porosity. Using the method

of multiple-scale expansions, a fast space variable y defined in the unit cell Y , y ∈ Y , is introduced along

with three time variables. One of the three time variables is related to reaction τr, one to conduction in the

electrode phase τms, and one to electromigration in the electrolyte phase τme:

y := ε−1x, τr := t̂−1
R t̂ = Daet, τmj := t̂−1

Ms
t̂ = PejDaeDa−1

j t, j = {e, s} (2.27)

where t = t̂/t̂De is a dimensionless time variable. No Einstein notation convention is implied if a repeated

index is present. Replacing any pore scale quantity ψε (x, t) (e.g. concentration, electrostatic potential in

either phase) with ψ(x,y, t, τr, τm) provides the following relations for the space and time derivatives,

∇ψε = ∇xψ + ε−1∇yψ (2.28a)

∂ψε
∂t

=
∂ψ

∂t
+ Dae

∂ψ

∂τr
+ Pee

(
∂ψ

∂τme
+

Dae
Das

∂ψ

∂τms

)
. (2.28b)

Additionally, ψ is represented as an asymptotic series in integer powers of ε:

ψ(x,y, t, τr, τm) =

∞∑
n=0

εnψn(x,y, t, τr, τm), (2.29)

where ψn, n = 0, 1, · · · are Y -periodic functions in y. Finally, the dimensionless transport parameters are

defined in terms of the scale separation parameter ε:

Pee = ε−α, Dae = εβ , Das = εγ , Pes = ε−δ, (2.30)
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where the exponents α, β, γ and δ determine the system behavior in the electrolyte and electrode phases.

2.2.3.1 Upscaled Transport Equations in the Electrolyte

In Appendix A, it is shown in an elaborated manner that lithium ion transport in the electrolyte

phase described by (2.19a)–(2.20b) can be homogenized, i.e., approximated up to order ε2, by the following

effective mass and charge transport equations:

η∂t〈ce〉B =∇x · [(De?? + ε−αλt2+K
e??/〈ce〉)∇x〈ce〉B + 2ε−αt+K

e??∇x〈φe〉B]

+ 2ηε−1K?Daef(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s), (2.31)

and

Pee∇x · [(λt+Ke??/〈ce〉)∇x〈ce〉B + 2Ke??∇x〈φe〉B]

= 2ηε−1K?Daef(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s), (2.32)

where

f(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s) = 2
√
〈ce〉B〈cs〉s(1− 〈cs〉s)sinh(〈φs〉s − 〈φe〉B − U) (2.33)

provided the following conditions are satisfied:

1) ε� 1,

2) Dae < 1,

3) Pee < 1,

4) Dae/Pee < 1,

5) 〈χe〉Γ ≈ 〈χe〉B.

In (2.31) and (2.32), the dimensionless effective reaction rate constant in the electrolyte phase K? is deter-

mined by the pore geometry,

K? =
|Γ|
|B|

, (2.34)
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Figure 2.2: Phase diagram specifying the range of applicability of the upscaled equation for the diffusion-
migration-reaction of lithium ions in the electrolyte in terms of Pee and Dae. The blue region identifies
the conditions under which the macro-scale equations hold. In the white region, micro- and macro-scale
equations are coupled and need to be solved simultaneously. Diffusion, migration, and reaction are of the
same order of magnitude at the point (α, β) = (0, 0).

and the dispersion tensors are given by:

De?? = 〈De(I +∇yχ
e)〉e,

Ke?? = 〈Ke(I +∇yχ
e)〉e, (2.35)

where I is the identity matrix. The closure variable, χe(y), has zero mean, 〈χe〉e = 0, and is defined as a

solution to the local problem

∇y · (∇yχ
e + I) = 0, y ∈ B, (2.36a)

ne · (∇yχ
e + I) = 0, y ∈ Γ. (2.36b)

Constraints 1)–4) ensure the separation of scales. While constraint 1) is almost always met in practical appli-

cations since the pore size is generally much smaller that the electrode dimension, constraints 2)–4) depend

on the relative importance of the diffusion, electromigration, and reaction mechanisms, i.e. they impose con-
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straints on the transport regimes that can be appropriately modeled by the continuum scale equations (2.31)

and (2.32) within errors of order ε2. These conditions are summarized in the form of an electrolyte phase

diagram in Fig. 2.2, where the line β = 0 refers to Dae = 1 and the half-space β > 0 refers to Dae < 1

because ε < 1; the line α = 0 refers to Pee = 1 and the half-space αe < 0 refers to Pee < 1; the line

α + β = 0 refers to Dae/Pee = 1; and the half-space underneath this line refers to Dae/Pee < 1. Con-

straint 5) is not necessary for scale separation, but facilitates the derivation of the effective parameters (2.34)

and (2.35). As shown in Appendix A, this constraint enables the interchanging of the surface and volume

averages, 〈ce1〉Γ ≈ 〈ce1〉B and 〈φe1〉Γ ≈ 〈φe1〉B, within errors on the order of ε2.

2.2.3.2 Upscaled Transport Equations in the Electrode

In Appendix B, it is shown that the microscale reactive transport processes described by (2.22)–

(2.23) can also be homogenized, i.e., approximated up to order ε2 in the solid phase by the following effective

mass and charge transport equations:

∂t〈cs〉s = ∇x · (Ds??∇x〈cs〉s)− ε−1ηDasK?f(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s), (2.37)

and

2Pes∇x · (Ks??∇x〈φs〉s) = ε−1ηDasK?f(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s), (2.38)

for x ∈ Ω, provided the following additional conditions are satisfied:

1) Das < 1,

2) Das/Pes < 1,

3) 〈χs〉Γ ≈ 〈χs〉s.

In (2.37) and (2.38), the dimensionless parameter K? is defined by (2.34) and the effective diffusion and

conductivity tensors are given by

Ds?? = 〈Ds(I +∇yχ
s)〉s

Ks?? = 〈Ks(I +∇yχ
s)〉s (2.39)
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Figure 2.3: Phase diagram specifying the range of applicability of the upscaled equation for the diffusion-
reaction of lithium ions in the electrode in terms of Pes and Das. The green region identifies the conditions
under which the macro-scale equations hold. In the white region, micro- and macro-scale equations are
coupled and need to be solved simultaneously. Diffusion and reaction are of the same order of magnitude at
the point (δ, γ) = (0, 0).

The closure variable, χs(y), has zero mean, 〈χs〉s = 0, and is defined as a solution of the local problem

∇y · [Ds(I +∇yχ
s)] = 0, y ∈ S, (2.40a)

ns · [Ds(I +∇yχ
s)] = 0, y ∈ Γ. (2.40b)

Constraints 2)–3) ensure separation of scales, and depend on the relative importance of the solid phase dif-

fusion, conduction, and reaction mechanisms of transport. Condition 3) simply facilitates the derivation of

the effective tensor (2.39). These constraints are summarised in the form of an electrode phase diagram in

Fig. 2.3.

2.2.3.3 Physical Interpretation of Applicability Conditions of Macroscopic Models

The constraints identified in section §2.2.3.1 and section §2.2.3.2 impose conditions on the relative

magnitude of the main processes controlling lithium-ion transport at the microscale: diffusion and conduction

within electrode active particles, ionic diffusion and electromigration in the electrolyte solution, and heteroge-

29



nous reaction at the electrolyte-electrode interface. The constraints Dae < 1 and Das < 1 require that the

intercalation reaction be slower than diffusion processes both in the electrolyte and the electrode. Similarly,

Pee < 1 requires that diffusion processes in the electrolyte be faster than electromigration. Both conditions

guarantee that lithium ions are uniformly distributed, i.e. well mixed, both in the pore-space occupied by the

electrolyte and within the electrode active particles at the unit cell scale.

Under well-mixed conditions, i.e. when lithium-ion concentration is locally uniform, a dual-continua

macroscale model can describe processes at the micro scale within errors of order O(ε2) as prescribed by

the homogenization approach. On the other hand, under diffusion-limited conditions, or high resistance to

mass transport, concentration gradients are formed at the sub-pore scale, and the predictability of continuum

scale models, which replace pore-scale quantities with their spatial averages, cannot no longer be guaranteed.

These findings are consistent with the widespread observation that classical macroscopic approximations

loose predictive power under high C-rate 1 operating conditions [142], when a strong current imbalance

between electrodes generates sharp concentration gradients at the sub-pore level.

The importance of lack of sub-pore scale mixing was already pointed out by [119], where sub-grid

concentration gradients were associated with generation of highly localized heat of mixing. The constraints

Dae/Pee < 1 and Das/Pes < 1 suggest that elecromigration can play a favourable role in improving the

sub-pore scale mixing in presence of high mass transfer resistance, or diffusion-limited regimes. Finally, the

dependence of Pee and Pes on the operating temperature, see (2.18), demonstrates that isothermal conditions

are not sufficient to guarantee macroscale model accuracy: operating the same battery at a higher temperature

may lead to the violation of Pee < 1 and/or Pes < 1, once a critical temperature is reached. A more thorough

analysis of temperature-dependent breakdown for different battery chemistry is discussed in section §2.2.3.1.

The following section presents a multiscale modeling approach to resolve the electrolyte closure variable

problem (2.36) in the unit cell of an electrode microstructure, and utilize the results to determine the effective

electrolyte diffusion and conductivity tensors defined in (2.35).

1C-rate is defined as the rate of charge or discharge current in normalized form:

C-rate =
I

Qnom
[1/h]

where I is the battery current and Qnom is the rated capacity of the battery. The general expression C/hh indicates that the number of
hours to completely discharge the battery at a constant current is hh [141].
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Figure 2.4: Representation of a lithium-ion battery (left), the corresponding 3-D electrode microstructure
(middle), and the unit cell in which the closure variable is resolved (right).

2.3 Determination of effective lithium-ion ionic transport properties

2.3.1 Significance of the closure variable

The effective diffusion and conductivity parameters of the homogenized model, defined in (2.35),

are resolved by a multiscale approach where the pore-scale closure problem, defined in (2.36), is resolved in

the unit cell of the electrodes. This approach allows the incorporation of the microstructural grain distribution

in order to estimate the effective parameters. Garcia et . al . [143] and Tartakovsky et . al . [144] have demon-

strated the impact of the underlying electrode morphology on the performance of electrochemical energy

storage devices and elucidate the need for optimizing their geometrical configuration. The topology of the

porous electrodes is critical for the estimation of their effective material transport properties. The advantage

of the closure variable is its ability to assess material performance for different topological structures on the

pore-scale. Such information is not captured using empirical approaches such as the such as the Brugge-

man approximation [145] which is utilized by the DFN model to approximate the effective diffusion and

conductivity coefficients.

2.3.2 Resolution of the unit cell closure problem

The closure variable accounts of the impact of the pore-scale structure and can be determined using

offline calculations. As a result, the closure problem can be resolved as a pre-processing step and the effective

parameter values can be directly used in the homogenized model equations (2.37) and (2.38). Numerical

simulation for the closure problem is performed in a cubic unit cell containing spherical active particles using

the computational fluid dynamics solver OpenFOAM [146]. Fig. 2.4 shows the schematic representation of

a lithium-ion battery. In this study,spherical active particles were selected to make a direct comparison with

the effective parameter values using Bruggeman theory. The cubic unit cell of the electrode is of dimensions
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Figure 2.5: Schematic representation of the mesh used to solve for closure variable (left). The 2-D (middle)
and 3-D (right) plots represent the magnitude of the resolved closure variable. The porosity of the unit cell
considered in this study is equal to 0.40.

{
10.94µm, 10.94µm, 10.94µm

}
, consists of spherical particles of radius 5µm with centers at each corner of

the unit cell, and a spherical particle at the center of the unit cell. This geometrical configuration results in an

electrolyte volume fraction of 0.4. Since the closure variable χe(y) is solved in the fast variable y, the size

of the unit cell is
{

1,1,1
}

. The dimensions of the spherical particles within the unit cell are also normalized,

and they have a dimensionless radius of 0.46. Fig. 2.4 also illustrates the spherical particle configuration in

the unit cell and the domain of the electrolyte in a representative unit cell of the electrode.

The closure variable, χe(y), defined in (2.36), is solved in the electrolyte domain of the unit

cell using laplacianFoam . The mesh in which the finite volume analysis is performed is prepared with

snappyHexMesh , with standard sets of parameters, and is shown in Fig. 2.5. The discretized equations

are solved using standard linear solvers. The boundary conditions for the closure problem are implemented

through the extension groovyBC of the OpenFOAM library swak4Foam . The boundary condition for the

closure variable is imposed at the interface separating the spherical active particles and the electrolyte. Fig-

ure 2.5 represents the distribution of the resolved closure variable in the electrolyte domain. The superficial

average values of the x-, y-, and z-components of χe(y) are respectively 6.43e−6, 6.40e−6, and 6.38e−6.

The results obtained are consistent with the definition of the closure variable, since they satisfy the zero mean

criteria, 〈χe〉 = 0, with a numerical accuracy in the unit cell.

The pore-scale diffusion coefficient, De,j , and the pore-scale conductivity coefficient, Ke,j , are

assumed to be constant. j = {n, p} represents the electrode under consideration. As a result, the effective

diffusion tensor, Deff
e,j and the effective conductivity tensor, Keff

e,j , can be determined by computing the

superficial average of the tensor (I +∇yχ
e). The superficial average of this tensor results in the following
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Figure 2.6: Comparison of the effective electrolyte diffusion (left) and effective electrolyte conductivity
(right) calculated using the closure and the Bruggeman approach. Effective transport properties increase with
porosity, and higher effective parameter values are obtained using the closure approach.

matrix: 

0.299 −6.63e− 10 −3.62e− 7

−4.34e− 10 0.299 −1.36e− 10

−2.87e− 7 3e− 10 0.299


(2.41)

The tensor in (2.41) is essentially diagonal, with negligible off-diagonal components. It is also noted that the

tensor is isotropic, due to the symmetric nature of the unit cell in which the closure variable was resolved.

As a result, the tensor can be expressed as 0.299 I, where I is the identity matrix. The effective diffusion

and conductivity parameters obtained from the closure variable are compared with with the parameter values

obtained using the Bruggeman theory [145]. The values of the parameters, De,j = 3.94e − 11 m2s−1, and

Ke,j = 0.192 S−1m−1 are obtained from literature [147]. The effective transport parameters is obtained by
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the product of the pore-scale transport coefficients with the tensor 0.299 I:

Deff
e,j =

(
0.299 · 3.94e− 11

)
I m2s−1

= 1.18e− 11 I m2s−1,

Keff
e,j =

(
0.299 · 0.192

)
I S−1m−1

= 0.060 I S−1m−1 (2.42)

The effective electrolyte diffusion and conductivity transport parameters determined by the Bruggeman the-

ory are obtained as follows [148]:

Deff
e,j = De,j · η1.5

e,j = 3.94e− 11 · (0.4)1.5 = 0.99e− 11 m2s−1,

Keff
e,j = Ke,j · η1.5

e,j = 0.192 · (0.4)1.5 = 0.048 S−1m−1 (2.43)

Comparison with an isotropic diagonal element of the closure-based effective parameters indicates that the

Bruggeman theory underpredicts the effective parameter values in the electrolyte medium. This can be ob-

served by comparing the results shown in (2.42) and (2.43). This analysis can be extended in a similar

manner to determine the effective transport parameters in any electrode and separator, provided information

about the unit cell morphology is available through imaging techniques. The closure problem was resolved

for the following values of porosity: {0.30, 0.40, 0.48, 0.56, 0.62} using a unit cell configuration similar to

that shown in Fig. 2.4. In each case, the values of effective diffusion and conductivity were calculated for

the closure and the Bruggeman approach. The results of this study are summarized in Fig. 2.6, where the

diagonal element of the effective parameter from the closure approach and the effective parameter value from

the Bruggeman approach are plotted as a function of the porosity. Both approaches indicate that the effec-

tive transport parameters increase with porosity, with the closure-based approach resulting in higher effective

parameter values. The results indicate that the geometry of the unit cell strongly influences the effective

transport parameters. For the spherical particle geometry, which is one of the simplest structures that can be

considered, the Bruggeman theory still under-predicted the effective parameter values by about 20% for a

unit cell porosity of 0.40. Such influence of the electrode geometry on the effective parameters could be even

more pronounced for complex non-spherical active particles.
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2.4 Assessment of the veracity of macroscale electrochemical battery

models

Different studies [142, 149, 150] have focused on the development of control strategies and estima-

tion of battery SoC and SoH using electrochemical models. Some of the most popular models on which

Partial Differential Equation (PDE) control and estimation strategies are based upon reduced-order formu-

lations [151] and simplified versions [152] of the DFN model. Such models have the advantage of being

relatively simple for controller/observer design as they are classical macroscopic/upscaled models which

treat the complex porous structure and the electrolyte as superimposed fully-connected continua.

For example, the single particle model (SPM) is based on the key idea that the solid phase of each

electrode can be idealized as a single spherical particle, while the electrolyte lithium-ion concentration is

constant in space and time [152]. Its governing equations are therefore reduced to the Fick’s law in spheri-

cal coordinates and can be readily derived from (2.31)-(2.32) and (2.37)-(2.38) under the appropriate model

assumptions (e.g. constant 〈ce〉B and negligible electromigration). Similarly, the DFN model electrolyte

transport equations can be obtained from (2.31)-(2.32) by relaxing the assumption that 〈ce〉B is approxi-

mately constant and including the full mass transport equation in the electrolyte phase (2.31), while assuming

negligible electromigration.

As such, these macroscopic models formulations are based on the fundamental, and often untested,

assumption that separation of scales occurs and, consequently, macroscopic representations of averaged quan-

tities can describe pore-scale processes with an accuracy prescribed by mathematical homogenization. Yet,

since their validity is limited to the same constraints identified in section §2.2.3.1 and section §2.2.3.2, they

should be used with caution when the sufficient conditions listed above are violated. In sections §2.4.1-§2.4.4,

the application of the phase diagrams in Fig. 2.2 and Fig. 2.3 is demonstrated to a priori estimate macroscale

model accuracy compared to their pore-scale counterparts for different commercially used battery electrodes

across different operating temperatures, current rates, and battery aging.

2.4.1 Case Study: Commercial Lithium-ion Batteries

In this section, the validity of the macroscale models is investigated for a series of commercially

available batteries in relation to: 1) different electrode chemistry, and 2) different conditions of operation

characterized by temperature and current rates of discharge. In particular, the accuracy of continuum-scale

models is compared with respect to either their fully resolved (3-D) counterparts (or) with experiment data
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as reported in a number of studies [11–17]. More importantly, the predictive performance of the macroscale

models is related to the applicability regimes defined in Fig. (2.2) and Fig. (2.3). These phase diagrams serve

as a screening tool to a priori evaluate continuum model predictivity under variable C-rates of operation.

2.4.1.1 Chemistry dependence of macroscale models

The battery cell parameter data used in this case study are summarized in Table 2.1, based on

a variety of electrode and electrolyte compositions at room temperature conditions (T = 298K), and ob-

tained from published literature [11–17]. The different electrodes investigated in this study are: lithium

graphite anode (LixC6), lithium cobalt oxide cathode or LCO (LiCoO2), lithium ferrous phosphate cath-

ode or LFP (LiFePO4), lithium titanate anode or LTO (Li4Ti5O12), lithium nickel manganese cobalt ox-

ide cathode or NMC (LiNi1/3Mn1/3Co1/3O2), and lithium nickel cobalt aluminum oxide cathode or NCA

(LixNiyCozAl1−y−zO2). The dimensions of the electrode geometry and transport parameters listed in Ta-

ble 2.1 are: [m] for ` and L, [m2s−1] for De anf Ds, [Ω−1m−1] for Ke and Ks, [A·m·mol−1] for k, and

[molm−3] for cmax. ε is a dimensionless quantity. The dimensionless parameters α, β, γ and δ in the elec-

trolyte and electrode phases, calculated using (2.18) and (2.30), are reported in Table 2.2 and plotted on the

corresponding phase diagram for the electrolyte and electrode, Fig. 2.7 and Fig. 2.8, respectively.

Among the twelve electrode chemistry considered in this analysis [11–17], ten possess electrolyte

effective transport coefficients, i.e. dimensionless numbers (α, β), which do not violate the applicability

conditions of macroscale models, see Fig. 2.7. The theory developed in Section 2.2.3 ensures that the ho-

mogenized equations in the electrolyte will be able to accurately capture the dynamics at the pore-scale:

this is consistent with the numerical simulations performed in [11–17], where DFN-type macroscale models

have been successfully used to model transport in the electrolyte phase. On the contrary, two data points

(solid symbols in Fig. 2.7), corresponding to LTO and NMC chemistry [16, 17], lie outside of the range of

applicability. For these two electrode chemistry, it is not guaranteed that the homogenized equations (2.31)

and (2.32) describing electrolyte transport will be effective in capturing the pore-scale transport processes.

Again, this is confirmed by the results presented in [16, 17], where a DFN-type model response could not

accurately capture experimental data, see Fig. 6 in [17]. Such a discrepancy is understandable: LTO has a

very fast intercalation reaction rate (between 6 and 9 orders of magnitude faster than the other chemistry),

which leads to mass transport limitations (or reaction-dominated regimes) and lack of pore-scale mixing.

Figure 2.8 shows the data points corresponding to the (δ, γ) values for the battery chemistry elec-

trodes listed in Table 2.1 and calculated in Table 2.2.
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Table 2.1: Lithium-ion battery parameters for both electrode and electrolyte phases as reported in [11–17].
The characteristic time scale associated with the heterogeneous reaction is defined according to the unit of k
reported in each source, before applying (2.18) to determine the Damköhler numbers Dae and Das.

Electrode ` L ε k csmax De Ke Ds Ks Source

Graphite 1.02e-6 9.85e-5 1.04e-2 6.15e-4 26000 3.94e-11 0.192 9.89e-14 100 [11]

Graphite 2.5e-5 1.62e-4 0.154 7.5e-4 28200 2.93e-10 1.29 1e-13 100 [12]

Graphite 2e-6 7.9e-5 0.025 3.02e-4 31540 2.3e-10 1.323 3.9e-14 2 [13]

Graphite 2e-5 1.13e-4 0.177 3.11e-4 26000 2.6e-10 1 3.9e-14 100 [14]

Graphite 2e-6 3.7e-5 0.054 1.75e-2 16,100 2.6e-10 5.676 2e-16 100 [15]

LCO 2e-5 1.05e-4 0.190 4.36e-4 51000 2.6e-10 1 1e-13 100 [14]

LFP 3.31e-8 9.5e-5 3.48e-4 1.15e-4 22806 3.94e-11 0.192 4.29e-18 0.49 [11]

LFP 2e-6 1.12e-4 0.152 5.68e-4 26390 2.3e-10 1.323 1.25e-15 0.01 [13]

LTO 1.075e-8 9.6e-5 1.12e-4 1.49e7 51385 2e-10 0.38 6.8e-15 100 [16, 17]

NMC 2.4e-6 8.6e-5 0.028 9.92e-3 51385 2e-10 0.38 2.5e-16 139 [16, 17]

NCA 8e-6 8.6e-5 0.093 5.5e-3 49195 2.93e-10 1.29 2e-13 10 [12]

NCA 2.5e-6 2.9e-5 0.086 9.76e-3 23,900 2.6e-1 5.676 3.7e-16 10 [15]

All the data points lie outside the range of applicability of the upscaled equations of lithium-ion

transport in the electrode phase, therefore suggesting that full pore-scale models have to be employed to ac-

curately capture lithium-ion transport in the active particles. This is consistent with the numerical approaches

used in [11–17], where no upscaled model is used to model lithium transport in active particles, and the

transport in the solid electrode is resolved at the microscale using spherical coordinates. It is worth noticing

that, since bounds on α, β, γ and δ have to be concurrently satisfied, the numerical simulations matched well

the experiments only when the conditions on (α, β) were not violated, as discussed earlier.

2.4.1.2 Influence of the operating conditions on macroscale models

Figures 2.7 and 2.8 illustrate the distribution of the dimensionless transport parameters α, β, γ and

δ at room temperature in the phase diagrams and enable the a priori assessment of the validity of DFN-type

macroscale models across different battery chemistry. Such models, on the other hand, might also fail when

used for the proper chemistry (i.e., the chemistry for which the corresponding α and β data points fall in the

applicability regime regions at room temperature) but improper operating conditions. For this reason, the
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Table 2.2: Dimensionless transport parameters calculated from (2.18) and (2.30) for the different battery
chemistry listed in Table 2.1.

Electrode Dae [-] Pee [-] α [-] β [-] Das [-] Pes [-] δ [-] γ [-] Source

Graphite 1.59e-2 4.98e-2 -0.66 0.91 6.35 1.03e4 2.02 -0.40 [11]

Graphite 4.3e-3 4.16e-2 -1.70 2.92 1.26 9.44e3 4.90 -1.36 [12]

Graphite 1.08e-3 4.85e-2 -0.82 1.86 6.35 4.33e2 1.65 -0.50 [13]

Graphite 1.4e-3 3.94e-2 -1.87 3.79 9.34 2.62e4 5.88 -1.29 [14]

Graphite 2.58e-2 3.61e-1 -0.35 1.25 3.36e4 8.27e6 5.46 -3.57 [15]

LCO 1.82e-3 2.01e-2 -2.36 3.80 4.74 5.22e3 5.16 -0.94 [14]

LFP 2.87e-3 5.68e-2 -0.36 0.74 2.64e4 1.33e6 1.77 -1.28 [11]

LFP 2.87e-3 5.8e-2 -0.71 1.45 5.28e2 8.07e1 1.09 -1.56 [13]

LTO 7.4e7 9.84e-3 -0.51 -1.99 2.18e12 7.62e4 1.24 -3.12 [16, 17]

NMC 4.42e-2 9.84e-3 -1.29 0.87 3.54e4 2.88e6 4.16 -2.93 [16, 17]

NCA 1.67e-2 2.38e-2 -1.57 1.72 2.45 2.70e2 2.36 -1.35 [12]

NCA 1.13e-2 2.43e-1 -0.58 1.83 7.93e3 3.01e5 5.15 -3.66 [15]

veracity of the upscaled equations of mass and charge transport in the electrolyte across battery cell operating

conditions is also investigated. In particular, the study presented here focuses on temperature and C-rate of

operation and utilizes the electrode-electrolyte system described in [153]. In this work, the authors compared

the performance of their (continuum-scale) numerical simulations with experimental data for lithium-ion

cells with LiyMn2O4 and LiNi0.8Co0.15Al0.05O2 cathode materials at different C-rates ranging from C/25 to

10C. The phase diagram analysis is conducted for the LiyMn2O4 cathode material, and can be extended in a

similat manner to describe the predictability of macroscale models for the LiNi0.8Co0.15Al0.05O2 cathode.

The case study analysis relies on the premise that temperature is one of the primary factors that

influences the ability of macroscale transport models in capturing battery dynamics at high C-rates. In fact,

the battery cell temperature strongly influences transport parameters in the electrolyte phase: k (reaction rate

constant), De (the electrolyte diffusion coefficient), and Ke (the electrolyte conductivity coefficient). When

the influence of temperature on k is much more pronounced than on De and Ke, as will be verified in the

case of battery operation at high C-rates, ionic diffusion is no longer the dominant mode of transport. In this

case, the homogenized transport equations do not accurately capture transport at the pore-scale.
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Figure 2.7: Values of the dimensionless parameters (α, β) for the most commonly used lithium-ion battery
materials. These values, determined at room temperature (298K), lie either inside the electrolyte applicability
regime region (empty symbols) or outside (filled symbols).

Figure 2.8: Values of the dimensionless parameters (δ, γ) for the most commonly used lithium-ion battery
materials. These values, determined at room temperature (298K), all lie outside the electrode applicability
regime region.

A single and constant value for the reaction rate k was considered in [153]. Yet, experimental evi-

dence shows significant cell temperature variations in terms of C-rate [154–159]. The analysis presented here

is conducted for three different C-rates: low (C/25), medium (1C), and high (10C). Following experimental
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data [154–159], the temperature increase, starting from room temperature, can be estimated as follows: from

298K to 299K for C/25 rate of discharge, from 298K to 306K for 1 C-rate of discharge and from 298K to

333K at 10 C-rate of discharge. The reaction rate constant at room temperature (Tref =298K), kref , is

estimated using the following relationship:

Iapp = 2 · kref ·

√
ĉeεĉ

s
ε

(
1− ĉsε

ĉsmax

)
· sinh[F (φ̂sε − φ̂eε − Û)/2RTref ] (2.44)

where Iapp (A/m2), the applied current density, is provided in [160] for each C-rate, and summarized in

Table 2.3. The electrochemical reaction rate constant k(T ) for a given electrode system can be described as

a function of temperature using the Arrhenius equation, as reported in [56]:

k(T ) = kref exp
[Ear
R

( 1

Tref
− 1

T

)]
, (2.45)

where k(T ) is the reaction rate constant of a given electrode at the desired temperature T . In (2.48), Ear

is the electrode reaction rate activation energy. Following [161], the value of Ear is set to 78.24 kJ/mol

at a reference temperature of 298K . Using (2.48), the values of k are computed for different temperature

conditions, and used to determine the parameter values α and β as a function of temperature. Similarly,

Table 2.3: Reference reaction rate constants kref for lithium manganate cathode in terms of applied current
Iapp.

C-rate [1/h] Iapp [A/m2] kref [A·m·mol−1]

C/25 0.34 2.03e-5

1C 8.5 5.07e-4

10C 85 5.07e-3

the diffusion and conductivity coefficients, De and Ke, vary as a function of both temperature and lithium

concentration in the electrolyte phase. For an estimate of De and Ke values at the reference temperature

Tref , the approach used by [153] has been implemented, where:

De = 6.5 · 10−10 exp
(
− 0.7

ĉeε
1000

)
, (2.46)
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and

Ke = 0.84
( 1.134(ĉeε/1000)

1 + 0.2(ĉeε/1000) + 0.08(ĉeε/1000)4
+ 0.1

)
, (2.47)

Based on [153], the electrolyte concentration varies in the range of 1,000 to 2,000 mol/m3 over the entire

duration of the simulations. As a result, an averaged value is considered for lithium concentration in the

electrolyte: ĉeε = 1500 mol/m3. This leads to reference values of 2.41e-10 m2/s and 0.922 S/m for De and

Ke, respectively. Since no analytical dependence on temperature is available for De and Ke, a curve fitting

procedure was applied on figures 13 and 14 in [162] to determine De(T ) and Ke(T ). A summary of the

estimated parameters for different C-rates and temperature ranges is presented in Table 2.4. The values of

the electrode geometrical parameters, ` and L, are respectively 3.4e-6 [m] and 100e-6 [m], which yields a

valaue of 0.034 for the scale separation parameter ε. From the above calculations, the temperature-dependent

trajectories of data points (α,β) were determined at the temperature intervals characteristic of each C-rate.

Table 2.4 summarizes the variation of parameters α and β as a function of the operating conditions for the

three C-rates of interest. The data points and their variation with temperature and C-rate are schematically

represented in Fig. 2.9.

Figure 2.9 (top) illustrates that at 1/25 C-rate of discharge, there is minimal temperature increase over the

duration of a discharge event. The magnitude of parameter α remains invariant, while β increases slightly due

to an increase in the Dae number. The behavior of the system (as a function of temperature) is linear with β.

The data points satisfy the constraints on α and β. Hence, the upscaled equations for lithium mass transport

should provide an accurate description of the pore scale behavior. This is consistent with the simulation results

from a continuum-scale simulator obtained in [153], where there is a perfect match between the model and

the experimental response.

At 1 C-rate of discharge, illustrated in Fig. 2.9 (middle), there is a moderate increase in temperature

over the duration of the simulation cycle. The magnitude of parameter α remains invariant, while β increases

at a moderate rate due to a faster increase in the Dae number. The behavior of this system is linear in α and β.

At elevated temperatures, the effect of increase in the reaction rate constant k dominates any increase of De

andKe. The data points satisfy the constraints on α and β over the range of operating temperature conditions.

Hence the homogenized set of transport equations used in [153] still provide an accurate description of the

pore scale behavior, leading to good correlation with experimental data.

At 10 C-rate of discharge, illustrated in Fig. 2.9 (bottom), there is a very significant increase in the
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Table 2.4: Dimensionless transport parameters of LiyMn2O4 cathode for different C-rates and temperatures.

C-rate [1/h] k T [K] De Ke Dae [-] Pee [-] α [-] β [-]

C/25 2.03e-5 298 2.41e-10 0.922 8.72e-5 4.26e-2 -0.93 2.76

C/25 2.07e-5 298.2 2.41e-10 0.922 8.91e-5 4.26e-2 -0.93 2.76

C/25 2.12e-5 298.4 2.41e-10 0.922 9.1e-5 4.27e-2 -0.93 2.75

C/25 2.16e-5 298.6 2.41e-10 0.922 9.29e-5 4.27e-2 -0.93 2.75

C/25 2.25e-5 299.0 2.41e-10 0.922 9.69e-5 4.27e-2 -0.93 2.73

1C 5.07e-4 298 2.41e-10 0.922 2.18e-3 4.26e-2 -0.93 1.81

1C 6.26e-4 300 2.55e-10 0.972 2.55e-3 4.28e-2 -0.93 1.77

1C 7.70e-4 302 2.69e-10 1.022 2.97e-3 4.29e-2 -0.93 1.72

1C 9.45e-4 304 2.82e-10 1.072 3.47e-3 4.31e-2 -0.93 1.67

1C 1.16e-3 306 2.96e-10 1.122 4.05e-3 4.33e-2 -0.93 1.63

10C 5.07e-3 298 2.41e-10 0.922 2.18e-2 4.26e-2 -0.93 1.13

10C 8.54e-3 303 2.75e-10 1.047 3.21e-2 4.30e-2 -0.93 1.02

10C 2.30e-2 313 3.44e-10 1.297 6.93e-2 4.41e-2 -0.92 0.79

10C 5.84e-2 323 4.13e-10 1.547 1.47e-1 4.52e-2 -0.92 0.57

10C 1.40e-1 333 4.82e-10 1.797 3.01e-1 4.64e-2 -0.91 0.35

battery temperature over the operating conditions. There is a very small increase in α as the increase in De

marginally dominates the increase in Ke, leading to an incremental increase in the Pee number. The reaction

rate constant is 2 to 3 orders of magnitude higher than at lower C-rates, due to which the rate of decrease

in β is higher than the rate of increase in α. For the LiMn2O4 cathode system, the macroscale transport

equations are no longer accurate in describing microscale transport processes at temperatures 313K or higher.

This is because the value of α + β is less than 0, which violates one of the three constraints on these two

parameters. At high operating temperatures and C-rates, the lithium manganate cathode system is represented

in a transport regime where the three lithium transport processes (reaction, diffusion, and electro-migration)

are of the same order. In this scenario, very fast reaction kinetics lead to diffusion-limited regimes where
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Figure 2.9: Phase diagram parameters (α,β) in lithium manganate cathode batteries for three C-rate of dis-
charge: C/25 (top), 1C (middle), and 10C (bottom). Neglible temperature variation in the first scenario results
in nearly constant α and β values inside the applicability regime, represented by square data points (empty
symbols). In the second scenario, moderate temperature variation results in faster reaction kinetics and in-
crease in β, while α is constant. The applicability constraints are satisfied, hence the circular data points lie
within the blue region (empty symbols). The third scenario is characterized by rapid temperature increase
and very fast reaction kinetics. This drives the data points out of the applicability regime beyond a critical
temperature, and these conditions are depicted by the star shaped data points (filled symbols).
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diffusion is no longer the dominant transport mechanism in the medium. As a result, macroscale equations

describing electrolyte transport are vulnerable and can be invalidated due to lack of scale separation with

respect to the pore-scale.

The performance prediction of continuum-scale models based on the phase diagram Fig. 2.9 (bot-

tom) is, again, consistent with the analysis performed by [153], where the numerical solution obtained from

macroscopic models cannot capture the experimental results. Under these circumstances, a multi-scale model

is necessary to incorporates the effects of transport both at the pore-scale and the macroscopic scale. The ap-

proach implemented above is significant in terms of identifying the temperature of operation and C-rate of

current charge/discharge as crucial parameters that dictate the dominance of one transport mechanism over

the other(s) in the battery electrode/electrolyte medium. Standard DFN-type macroscopic models under sce-

narios similar to the one described above are invalid and may fail to capture microscale transport processes.

Better battery models need to be developed to accurately predict battery response under these conditions.

2.4.2 Temperature-influenced Predictability of Macroscale Models

In the process of developing a more predictive model, there is a need to identify the operating

conditions where effective macroscale transport equations would break down. The premise of this study

is to determine a priori if there is a critical temperature of operation beyond which macroscopic transport

equations are incapable of describing the microscale dynamics of a different battery systems. The values of

parameters α and β are determined as a function of temperature for different electrodes to ascertain if DFN-

type macroscopic models are the most appropriate modeling tools across different operating temperatures.

The key parameters of interest in this temperature-based phase diagram study are: the electro-

chemical reaction rate constant k [A · m2.5·mol−1.5], the electrolyte pore-scale diffusion coefficient De

[m2·s−1], the electrolyte pore-scale conductivity coefficient Ke [S ·m−1], battery operating temperature T

[K], the scale separation parameter ε = `/L, and the maximum electrode lithium storage concentration csmax

[mol · m−3]. In the electrolyte phase, the separator is treated as an inherent property of the electrolyte. For

this reason, the value for the macroscale characteristic length L is taken as the combined thickness of the

electrode and separator, expressed in m. The value for the microscale characteristic length ` is taken as the

average diameter of the active particles in the electrode, expressed in m. `, L, and csmax are considered invari-

ant with respect to temperature in this study. Following these consideration, the the effect of temperature is

investigated on the transport parameters k, Ke, and De.

The initial phase of this study involved plotting the data points (α,β) in the phase diagram for
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Figure 2.10: Electrolyte phase diagram representing the dimensionless parameters (α,β) evaluated at 25◦C
for commonly used lithium-ion battery electrodes. The data points with empty symbols in the blue region
represent operation conditions where the applicability constraints are satisfied. The two data points with filled
symbols in the white region represent operating conditions that violate the constraint (α+ β ≥ 0).

eight different battery electrode chemistries whose key parameters were provided under room temperature

conditions (298K). This is illustrated in Fig. 2.10. These battery compositions chosen in this study are the

most commonly used cathode materials in commercial lithium-ion batteries. The first battery system consists

of a graphite anode and LCO cathode, and the electrolyte is composed of 1.2 M of LiPF6 salt dissolved

in a 1:2 v/v mixture of ethylene carbonate and dimethyl carbonate (EC:2DMC). All parameter values for

this system were obtained from [163] and [164]. The second battery system consists of graphite anode and

lithium manganese dioxide (LMO) cathode, and the polymer electrolyte is comprised of LiClO4 salt dissolved

in polyethylene oxide. Parameter values for this system have been obtained from [165] and [166].

The third battery system consists of a graphite anode and LFP cathode. The parameter values have

been procured from [167]. The fourth battery chemistry is composed of graphite anode and NMC cathode.

The parameter values have been acquired from [168]. The phase diagram of Fig. 2.10 indicates that the battery

systems composed of LFP, LCO, and NMC cathodes have parameters that fall in the shaded region of our

phase diagram in Fig. 2.2. This implies that the macroscale mass transport equation is capable of describing

the porous medium composed of these materials. However, the system containing LMO cathode and graphite

anode must also utilize the microscale equations in order to describe electrolyte transport dynamics in the

medium. When compared with the other three chemistries, this observation is attributed to a combination of
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two factors: the lower value of the scaling parameter ε coupled with faster kinetics of lithium transport at the

reaction interface. This implies that the active material and porous electrode structure play an important role

in determining the validity of the electrochemical model at a given operating condition.

To emphasize the importance of these two factors, another lithium ion battery chemistry composed

of lithium manganate cathode and lithium graphite anode is studied. The electrolyte is composed of 1.0 M

of LiPF6 salt dissolved in a 3:7 v/v mixture of ethylene carbonate and ethyl methyl carbonate. The values

for ionic conductivity in the electrolyte have been reported as a function of temperature in [169]. Valøen and

Reimers have reported the variation in the ionic diffusion coefficient for this system for different temperatures

in [162]. By applying a cubic spline interpolation, the ionic diffusivity were computed for intermediate

operating temperatures in the regions of interest in this study. The values obtained were in agreement with

those reported by Nyman et al. in [170].

The electrochemical reaction rate constant k for a given electrode system is described as a function

of temperature using the Arrhenius equation [158, 171]:

kj(T ) = kj,ref · exp
[Ear,j

R

( 1

Tref
− 1

T

)]
. (2.48)

kj(T ) and kj,ref are the reaction rate constants of electrode j at the desired temperature T and the reference

temperature Tref , respectively. Ear,j is the reaction rate activation energy of electrode j. For the system

of electrodes considered in this study, the values of kj,ref and Ear,j are provided in [172] for a reference

temperature of 298K. The parameter values necessary to determine α and β for this system are also presented

here. Using (2.48), the values of k are computed for different temperatures of interest.

The phase diagrams for graphite anode and LMO cathode are presented in Fig. 2.11 and Fig. 2.12,

respectively. In this case, both the systems exhibit a similar behavior. The magnitude of parameters α and

β increase at a nearly equal rate with the operating temperature, since a line joining these data points would

almost be parallel with the line α + β = 0. This indicates that the behavior of the system (as a function

of temperature) is a linear function in α and β. At elevated temperatures, the effect of increase in k is

compensated by the increase in De, leading to only a small change in β. Similarly, the small change in α at

elevated temperatures is a result of increase in Ke compensated by increase in De. For these systems, the

data points satisfy the constraints on α and β over the range of operating temperature conditions. Hence the

upscaled equations of lithium transport in the electrolyte should provide an accurate description of pore-scale

behavior. In this system, increasing temperature caused data points (α,β) to shift further inside the domain
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Figure 2.11: Representation of parameters α and β in the phase diagram for graphite anode as a function of
temperature. The data points satisfy the applicability constraints for the range of temperatures considered.
Hence the triangular data points (empty symbols) stay within the blue region.

Figure 2.12: Representation of parameters α and β in the phase diagram for LMO cathode as a function of
temperature. The data points satisfy the applicability constraints for the range of temperatures considered.
Hence the circular data points (empty symbols) stay within the blue region.

of interest. It is also possible for the dimensionless parameters to exhibit a contrasting behavior. Such case

studies are presented below by investigating the effect of increasing temperature for three different cathode
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chemistries: NMC, LFP, and LCO. The electrolyte used in these systems consists of LiPF6 salt dissolved in

an organic solvent mixture of propylene carbonate, ethylene carbonate, and dimethyl carbonate.

The parameters necessary to compute α and β for the Li NMC battery system are derived from [173].

Since the electrolyte material considered is common for all the three cathode materials, the ionic diffusivity

De and ionic conductivity Ke equations for LFP and LCO are also utilized from this journal. The phase

diagram for the lithium nickel manganese cobalt oxide cathode system is presented in Fig. 2.13. Values for

the reaction rate constant k for LFP are determined using the Arrhenius equation (2.48). The parameter val-

ues for LFP are provided in [167] and the value of the reaction rate activation energy is obtained from [174].

The phase diagram for the LFP cathode system is presented in Fig. 2.14. The reaction rate constant expres-

sion (2.48) is also used for the LCO system. The parameter values for LCO are provided in [175] and the

value of the reaction rate activation energy is obtained from [176]. The phase diagram for the lithium cobalt

oxide cathode system is presented in Fig. 2.15.

Figure 2.13: Representation of parameters α and β in the phase diagram for NMC cathode as a function of
temperature. The data points satisfy the applicability constraints for the range of temperatures considered.
Hence the rhombus data points (empty symbols) stay within the blue region.

In analyzing the phase diagrams depicted in Fig. 2.13 to Fig. 2.15, it is inferred that for all the three

cathode systems, the value of α increased and the value of β decreased with increasing operating tempera-

ture. In comparison, the relatively very slow kinetics of reaction at the NMC-electrolyte interface resulted in

significantly higher values for β for this system. For the LFP and LCO systems, the kinetics of the interface
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Figure 2.14: Representation of parameters α and β in the phase diagram for LFP cathode as a function of
temperature. The applicability constraint (α+β ≥ 0) is violated beyond 50◦C, and these operating conditions
are represented by the triangular data points (filled symbols) in the white region.

Figure 2.15: Representation of parameters α and β in the phase diagram for LCO cathode as a function of
temperature. The applicability constraint (α+β ≥ 0) is violated beyond 30◦C, and these operating conditions
are represented by the star shaped data points (filled symbols) in the white region.

reaction were several order of magnitude higher than the Li NMC system, and with increasing temperature,

the rate of decrease in β was higher than the rate of increase in α. For the NMC system, it is noted that the
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upscaled equation of mass transport is valid for the entire range of operating temperatures considered. How-

ever, for the LFP system, the macroscale equation is no longer accurate in describing microscale transport

processes at temperatures 323K and higher. For the LCO system, beyond 303K, the microscale equation of

mass transport must be simultaneously solved with the upscaled equation. This is because the value of α+ β

is less than 0.

For the battery chemical compositions considered in this study, it is observed that α and β vary

linearly with temperature. The key transport parameters k, Ke, and De exhibit an exponential behavior with

temperature, and the logarithmic dependence of α and β on the scale separating parameter ε results in a

linear relationship of the data points with temperature. The NMC cathode system can be represented in the

transport regime where diffusion and migration are of the same order (comparable) and dominate the reaction

transport mechanism. The upscaled equations of such systems can also be reduced to a simpler form. The

LFP and LCO system are represented in the transport regime where all three lithium transport processes are

of the same order. Macroscale equations describing such systems are vulnerable to the effect of the operating

temperature and may fail to describe battery physics at the microscopic level.

2.4.3 Impact of Capacity Fading on Pore-scale Transport Parameters

As batteries age, their performance degrades due to capacity and power fading. Capacity fade is the

loss of cyclable lithium ions as a result of electrode degradation and leads to the depletion of the electrode

energy storage capacity. Lithium-ion batteries age differently as a consequence of their operating patterns.

Their utilization behavior greatly determines the extent of capacity fading due to cyclic aging and the eventual

end of life of the battery. Among the different aging mechanisms, the SEI layer growth has been the most

influential cause of battery capacity degradation. Many studies have identified this growth at the anode during

galvanostatic and dynamic operating conditions.

During cycling, the SEI layer forms between the anode and electrolyte. Initially, this layer acts as

a protective barrier, allowing lithium ion transfer while keeping the electrolyte separated physically from

the anode. The continued growth that occurs during cycling will increase the resistive layer and remove

active lithium from the cycling system. Gradually, this leads to diminishing energy and power capacity of the

battery. This study evaluates the predictability of macroscopic models as a function of the battery state-of-

health (SoH), and is initiated by formulating mathematical expressions to determine the transport parameters

Dae and Pee as a function of battery aging due to the SEI layer growth.
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The capacity fade analysis explored in this study is based on the work of Prada et. al. in [177].

The evolution of the SEI layer at the anode surface in [177] is based on solvent diffusion and single particle

approximation [160]. A lumped parameter approach is used to describe the variation in the negative electrode

porosity. No active material deformation is considered, and the loss of cyclic lithium ions is the main capacity

loss mechanism. Assuming that the loss of cell capacityQcell is exclusively due to the loss of cyclable Li-ions

in the negative electrode due to the side reaction after de-lithiation, then [177]

dQcell
dt

= Sn · is, (2.49)

where Sn is the electroactive surface area of the negative electrode and is is the current density of the side-

reaction leading to the formation of the SEI layer. Sn is related to the geometrical parameters of the electrode

as [177]

Sn = 3 · ηs,n · Lneg ·Acell/Rs,n. (2.50)

In (2.50), ηs,n is the anode porosity, Lneg is the thickness of the anode, Acell is the cell cross-sectional area,

and Rs,n is the radius of the anode active particle. The growth rate of the SEI layer can be expressed using

the current density of the SEI layer side-reaction current, [177]

δSEI
dt

= − is
2F
· MSEI

ρSEI
, (2.51)

with MSEI the molar mass of the SEI layer, ρSEI the density of the SEI layer. Combining (2.49), (2.50),

and (2.51), an expression for the SEI layer growth is postulated as a function of time:

δSEI,t = δSEI,0 +
MSEI

2 · F · Sn · ρSEI
· (Q0 −Qt) (2.52)

where δSEI,0 and Q0 are the initial SEI layer thickness and capacity, and δSEI,t and Qt are the SEI layer

thickness and capacity at a later time t > 0. (2.52) is postulated based on the knowledge of the initial SEI layer

thickness. In most cases, as indicated in [177], this value is estimated. The battery capacity is determined by

considering that the anode provides all the cyclic lithium ions that travel across the electrolyte to the cathode.

Assuming discharge conditions, Qt is expressed in terms of the applied current, Iapp, and the time at the
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beginning and end of discharge, t0 and tf , respectively as follows,

Qt =

∫ tf

t0

Iapp · dt (2.53)

Qt can be expressed in terms of the maximum lithium-ion concentration in the anode, csmax,n,t, as [177]

Qt = ηs,n · z · csmax,n,t ·Acell · Lneg · F ·
(
x100%,n − x0%,n

)
. (2.54)

In (2.54), z is the valence number, x100%,n is the stoichiometric coefficient at 100% SoC, and x0%,n is the

stoichiometric coefficient at 0% SoC. The value of csmax,n,t as a function of aging can be determined by

equating the cell capacity from the assessment tests in the expression for Qt.

The effective electrolyte conductivity, Keff
e,n , decreases due to cell aging according to the following

relationship, due to the growth of the SEI layer thickness at the outer surface of the anode active material [177]

Keff
e,n = Ke ·

{
1− ηf,n − ηs,n

(
1 +

3δSEI,t
Rs,n

)}1.5

(2.55)

In the above expression, ηf,n is the porosity of the filler material in the anode, and Ke is the electrolyte

conductivity in the microscale. The power factor of 1.5 is obtained by incorporating the Bruggeman rela-

tionship to determine the effective conductivity in the electrolyte [177]. An expression is then postulated for

the microscopic electrolyte conductivity Ke
ag , in which aging effects are incorporated using the following

relationship:

Keff
e,n = Ke

ag · (ηe,n)1.5 (2.56)

No description has been reported till date in published literature on the impact of SEI layer growth on pore-

scale parameters. Since their impact on effective transport parameters has been described in [177], this

information is incorporated while postulating the expression (2.56). Combining (2.55) and (2.56),

Ke
ag =

Ke

(ηe,n)1.5
·
{

1− ηf,n − ηs,n
(

1 +
3δSEI,t
Rs,n

)}1.5

. (2.57)

Similarly, a parameter De
ag is postulated for the electrolyte diffusion as a function of aging. The effective
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electrolyte diffusivity of lithium ions in the anode, Deff
e,n , decreases due to cell aging as: [177]

Deff
e,n = De ·

{
1− ηf,n − ηs,n

(
1 +

3δSEI,t
Rs,n

)}1.5

. (2.58)

Therefore, the microscopic electrolyte diffusion De
ag which incorporates the effect of the SEI layer growth

(aging) is

De
ag =

De

(ηe,n)1.5
·
{

1− ηf,n − ηs,n
(

1 +
3δSEI,t
Rs,n

)}1.5

. (2.59)

For isothermal macroscopic models which do not incorporate aging effects, the microscopic transport param-

eters are re-defined considering the the effect of aging using (2.57) and (2.59). The Damköhler and Péclet

numbers for the electrolyte are then defined as a function of the aging parameters:

Dae =
Lnegk

FDe
ag

=
Lnegk

FDe
· (ηe,n)1.5{

1− ηf,n − ηs,n
(

1 +
3δSEI,t
Rs,n

)}1.5 , (2.60)

Pee =
RTKe

ag

De
agF

2csmax,n,t
=

RTKe

DeF 2csmax,n,t
. (2.61)

2.4.4 Aging-influenced Predictability of Macroscale Models

The subsection investigates the the impact of the SEI layer growth on the applicability conditions

of macroscale electrolyte transport equations by conducting an analytical study of moderate and aggressive

battery galvanostatic discharge as a function of the battery SoH. The phase diagram analysis has been until

now implemented to study the robustness of macroscopic models at a given state of health. This study focuses

on evaluating the ability of macroscopic models to predict the behavior of battery cells as they age. Data

for this study is obtained from [178]. Accelerated aging experimental tests were conducted on lithium-ion

pouch cells of blended cathodes NMC-LMO (nickel-manganese-cobalt oxide-lithium manganese dioxide).

Intermittent cell characterization tests (capacity test in discharge, and hybrid pulse power characterization

(HPPC)) were conducted to assess the energy and power capability of these cells as a function of their SoH.

Experimental data from these capacity tests have been utilized for this analysis. The following assumptions

have been made to facilitate this study:

1. The effect of the relaxation phase of the pulse train event on the growth of the SEI layer is negligible

compared to the positive and negative pulse events during cyclic aging.
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2. The assessment tests conducted for cell characterization have minimal impact on the SEI layer growth

compared to the accelerated aging experiment.

3. The SEI layer is formed only at the anode during charging/discharging events, and is assumed to

uniformly grow at the outer surface of the active anode particle.

The target application for the lithium-ion pouch cells analyzed in this study is plug-in hybrid electric vehi-

cles (PHEVs), which operate under charge-depleting (CD) and charge-sustaining modes (CS). The power

demand of the CD and CS micro-cycles described in [178] indicates that the pouch-cell under investigation

operates in discharge mode between C-rates of 1 and 10. The phase diagram analysis is conducted for two

current rates of galvanostatic discharge of the pouch cell: 1 C-rate (moderate) and 10 C-rate (high). The

galvanostatic discharge is considered to begin with a battery SoC of 100%. This analysis is used to evaluate

model predictability when the cell is tested at two different health conditions: 100% SoH (fresh) and 86%

SoH (aged).

Model parameters used to assess the veracity of macroscale models as a function of the pouch

cell SoH were obtained from [53, 158, 179]. This analysis investigates the impact of C-rate of operation,

temperature, and SoH on the micro-scale transport parameters (k, De, and Ke). The reaction rate constant at

room temperature (Tref = 298K) is determined from the applied current Iapp using the expression:

Iapp
Acell

= 2 · kref ·

√
ĉeεĉ

s
ε

(
1− ĉsε

csmax

)
· sinh[F (φ̂sε − φ̂eε − Û)/2RTref ]. (2.62)

The stoichiometric coefficient x is used to determine the value of csε from the cell SoC and csmax. The value

of ceε is set to 1,000 mol/m3. The value of the cell overpotential is taken as 100mV for this analysis based on

values reported in [158]. The scale separation parameter ε =
2Rs,n
Lneg

is the ratio of the anode particle diameter

(25µm) and anode thickness (162µm).

In order to determine Dae as a function of aging, k must be determined as csmax,n,t decreases with

the SEI layer growth. The anode reaction rate constant kref,n is determined assuming galvanostatic discharge

at the anode. Table (2.5) presents the values of kref,n determined as a function of the C-rate of discharge and

csmax,n,t. Table (2.6) summarizes the results of the capacity fading analysis performed on the lithium-ion

pouch cell. Using this information, the variation of the phase diagram parameters (α,β) is determined for

galvanostatic discharge at 1 C-rate and 10 C-rate for a fresh pouch-cell (SoH = 100%) and an aged pouch-cell

(SoH = 86%). Based on prior experimental data [156, 158, 180, 181] and assuming the discharge to begin at

an initial cell temperature of 298K, the cell temperature is estimated to increase from 298K to 306K for 1
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Table 2.5: Reference reaction rate constant kref,n in terms of the applied current Iapp as a function of its SoH
and C-rate.

SoH [%] csmax,n,t [mol/m3] C-rate [1/h] Iapp
Acell

[A/m2] kref,n [A·m/mol]

100 31,833 1 2.84 1.94e-4

86.4 27,499 1 2.84 2.09e-4

100 31,833 10 28.4 1.94e-3

86.4 27,499 10 28.4 2.08e-3

Table 2.6: Lithium-ion pouch cell parameters determined from capacity fading analysis.

Ah-throughput [kAh] Qt [Ah] SoH [%] δSEI,t [m] csmax,n,t [mol/m3] De
ag [m2/s] Ke

ag [Ω−1m−1]

0 14.98 100 0 31,833 2e-10 0.56

3.1 14.36 95.9 2.09e-7 30,516 1.83e-10 0.51

4.7 14.27 95.3 2.40e-7 30,325 1.8e-10 0.51

8.5 13.96 93.2 3.44e-7 29,666 1.72e-10 0.48

12.8 13.87 92.6 3.75e-7 29,475 1.7e-10 0.48

17.5 13.34 89.1 5.53e-7 28,349 1.56e-10 0.44

21 13.13 87.7 6.24e-7 27,903 1.5e-10 0.42

21.3 12.94 86.4 6.88e-7 27,499 1.46e-10 0.41

C-rate of discharge and from 298K to 333K for 10 C-rate of discharge.

The electrochemical transport parameters k, De, andKe also vary as a function of temperature. The

reaction rate constant, k(T ), is expressed as a function of temperature using the Arrhenius relationship [56]:

k(T ) = kref · exp
[Ear
R

( 1

Tref
− 1

T

)]
. (2.63)

Ear is the electrode reaction rate activation energy, and is set to a value of 78.24 kJ/mol [182]. As reported

earlier, due to the lack of an analytical expression for the dependency of De and Ke on temperature, a curve

fitting procedure was implemented to determine De(T ) and Ke(T ). Based on the determined pore-scale

transport parameter values and the methodology described earlier, the temperature-dependent trajectory of

the phase diagram coefficients (α,β) is computed at different temperature intervals that are characteristic of
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Table 2.7: Variation of the electrolyte phase diagram parameters for different C-rate and temperature, as a
function of their SoH.

SoH C-rate ε k T [K] De
ag Ke

ag Dae Pee α β

100 1 0.154 1.94e-4 298 2e-10 0.56 1.63e-3 2.34e-2 -2.01 3.44

100 1 0.154 2.39e-4 300 2.14e-10 0.61 1.88e-3 2.40e-2 -2.00 3.36

100 1 0.154 2.95e-4 302 2.28e-10 0.66 2.17e-3 2.45e-2 -1.98 3.28

100 1 0.154 3.62e-4 304 2.42e-10 0.71 2.51e-3 2.50e-2 -1.97 3.20

100 1 0.154 4.43e-4 306 2.56e-10 0.76 2.90e-3 2.55e-2 -1.96 3.13

86.4 1 0.154 2.09e-4 298 1.45e-10 0.406 2.41e-3 2.71e-2 -1.93 3.22

86.4 1 0.154 2.57e-4 300 1.59e-10 0.456 2.72e-3 2.79e-2 -1.91 3.16

86.4 1 0.154 3.17e-4 302 1.73e-10 0.506 3.08e-3 2.87e-2 -1.90 3.10

86.4 1 0.154 3.89e-4 304 1.87e-10 0.556 3.49e-3 2.94e-2 -1.89 3.03

86.4 1 0.154 4.76e-4 306 2.01e-10 0.606 3.98e-3 3.00e-2 -1.88 2.96

100 10 0.154 1.94e-3 298 2e-10 0.56 1.63e-2 2.34e-2 -2.01 2.20

100 10 0.154 3.26e-3 303 2.35e-10 0.685 2.33e-2 2.48e-2 -1.98 2.01

100 10 0.154 8.79e-3 313 3.04e-10 0.93 4.86e-2 2.69e-2 -1.94 1.62

100 10 0.154 2.23e-2 323 3.73e-10 1.17 1e-1 2.84e-2 -1.91 1.23

100 10 0.154 5.35e-2 333 4.42e-10 1.42 2.03e-1 3e-2 -1.88 0.85

86.4 10 0.154 2.08e-3 298 1.45e-10 0.406 2.41e-2 2.71e-2 -1.93 1.99

86.4 10 0.154 3.51e-3 303 1.80e-10 0.53 3.27e-2 2.90e-2 -1.90 1.83

86.4 10 0.154 9.46e-3 313 2.49e-10 0.77 6.38e-2 3.14e-2 -1.85 1.47

86.4 10 0.154 2.40e-2 323 3.19e-10 1.02 1.26e-1 3.35e-2 -1.82 1.11

86.4 10 0.154 5.76e-2 333 3.88e-10 1.26 2.49e-1 3.51e-2 -1.79 0.74

the C-rate of operation and the cell SoH. The variation of parameters α and β as a function of the operating

conditions is summarized in Table (2.7), and schematically represented in Fig. 2.16. The dimensions of the

different transport parameters are: [K] for T, [A·m·mol−1] for k, [m2sec−1] forDe
ag , [Ω−1m−1] forKe

ag , and

[1/h] for C-rate. Battery SoH is expressed in [%], and the parameters, ε, Dae, Pee, α, and β are dimensionless.

At a 1 C-rate, moderate increase in temperature during the discharge event results in a minor change
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1 C − rate

10 C − rate

Figure 2.16: Variation with temperature of the data points (α,β) for constant current discharge at 1 C-rate and
10 C-rate, and with the battery at 100% SoH and 86% SoH. For 1 C-rate discharge, the temperature of the
cell is estimated to increase from 298K to 306K. The applicability conditions are satisfied from beginning to
end of discharge, but the circular data points are closer to the boundary of the applicability regime. For 10
C-rate discharge, the temperature of the cell is estimated to increase from 298K to 333K. The applicability
conditions are violated during discharge, and represented by the star shaped and circular data points with
filled symbols. This indicates that capacity fading will lead to diminishing macroscale model predictability.

in the parameter α compared to β. This is due to the faster rate of increase in reaction kinetics compared

to the enhanced electrolyte diffusion and conductivity. The effect of cell operation at different SoH can be

clearly observed in both parameters, as lower SoH pushes the parameter values closer to the boundary of

the applicability regime (indicated by the dotted lines in Fig. 2.16). In both cases, the data points satisfy the

constraints over the range of temperature increase. Hence macroscale transport models would be capable of

capturing pore-scale dynamics accurately.

During 10 C-rate of discharge, significant increase in battery internal temperature leads to an ac-

celerated decrease in β. The effect of increasing k dominates any increase in parameters De and Ke. The
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condition α + β > 0 is violated shortly after discharge begins. This is because fast reaction kinetic lead to

the formation of diffusion-limited regimes. Such poorly mixed conditions leads to the lack of scale separa-

tion between the pore-scale and macroscale domains. Operating aged cells under aggressive conditions of

discharge has a significant effect on the trajectory of (α,β). The data points for aged cell tend to violate the

conditions of homogenizability faster, as shown in Fig. 2.16. Lower SoH battery operation lead the points

closer to the limiting boundaries and invalidate macroscale models.

The proposed theory suggests that the predictability of macroscale models degrade as the battery

SoH decreases over time. This is consistent with previous experimental/numerical studies, and can be ex-

plained by variation of the parameters Dae and Pee as a function of aging using the applicability conditions:

1. The Péclet number Pee increases with aging due to the decrease in battery capacity Qt, which leads to

a decrease in csmax,n,t.

2. The Damkhöler number Dae increases with aging due to the decrease in De
ag , which is the result of the

SEI formation side-reaction.

3. The ratio of the Damkhöler and Péclet number, Dae/Pee, increases with aging and is directly propor-

tional to the ratio
csmax,n,t{

1−ηf,n−ηs,n

(
1+

3δSEI
Rs,n

)}1.5 .

In addition, decreasing csmax,n,t leads to an increase in the rate constant kref,n for the same current demand

as the cell ages. As explained in [160], the applied current determines the total current density at the negative

electrode. The total current density is a sum of the intercalation and the side-reaction current densities. As the

growth of the SEI layer depletes cyclable lithium ions and increases the unwanted side-reaction dynamics, the

intercalation current density must compensate for these losses in order to meet the required current demand.

This results in an increase in the intercalation side-reaction kinetics. This study demonstrates that the ability

of the phase diagrams in identifying when classical macroscopic models may fail to accurately capture battery

dynamics with respect to degradation.
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2.5 Conclusion

Lithium-ion transport involves diffusion, conduction, electromigration and heterogeneous reactions

in geometrically complex porous electrodes. Macroscopic models, which are approximate representations of

the pore-scale physics, offer advantageous due to their relative simplicity and limited computational burden

in comparison with their pore-scale counterparts. These aspects renders them as suitable tools from which

simplified and reduced-order model formulations can be developed for model-based control and estimation

of battery SoC and SoH. However, macroscale models fail as predictive tools under operating conditions such

as high C-rates and high temperatures. This critically impacts any control and estimation strategies developed

based on these models.

Section §2.2 presents a rigorous derivation of macroscopic dual-continua models and the identi-

fication of sufficient conditions under which the averaged model equations describe micro-scale dynamics

with an accuracy that is prescribed by the homogenization technique. The relative importance between the

pore-scale transport processes can be quantified using electric Péclet Pej and Damköhler Daj , j = {e, s}

numbers in the electrolyte and electrode phases. A significant outcome of this derivation, summarized in the

form of two (Da,Pe)-based phase diagrams, is the development of an approach that establishes the robustness

of macroscopic transport equations in describing the evolution of lithium concentration and potential in the

electrolyte and electrode phases.

Section §2.3 presents a finite volume approach using OpenFOAM software to resolve the unit-cell

closure problem for porous battery electrodes. The closure variable results are integrated in the homogenized

model equations through the effective transport parameters. A significant outcome of this multiscale modeling

approach is that it can be extended to determine the effective transport properties in realistic battery electrode

structures obtained from imaging techniques.

Section §2.4 presents a detailed analytical study where the phase diagrams were implemented to

evaluate the predictability of the macroscale transport models across different electrode chemistry and a wide

spectrum of battery operation characterized by temperature, C-rate, and aging effects. § 2.4.1 summarized

the distribution of phase diagram parameters (α,β) for commercially used battery electrode compositions,

followed by a case study that determined the transport parameters Pee and Dae for different operating con-

ditions based on electrode composition, temperature, and C-rate. The performance predictions of continuum

models based on the phase diagram analysis confirmed the results that were independently obtained from

other numerical and experimental studies, i.e. a breakdown of continuum models at high C-rates.
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In section §2.4.2, phase diagram analyses are presented to examine the temperature-dependent dy-

namics in lithium-ion battery electrodes. Different battery compositions are examined to determine the range

of applicability of DFN-type models. The results indicate two major implications: 1) temperature is a critical

parameter that governs transport processes in the electrode and induces the onset of multi-scale dynamics,

and 2) standard macroscopic models may fail to describe micro-scale processes in batteries that are operated

above critical temperature conditions. Section §2.4.3 and section §2.4.4 present a phase diagram study to eval-

uate the predictability of macroscale transport models throughout the useful life of a battery. Mathematical

expressions for the dimensionless Damkhöler and Péclet numbers in the electrolyte phase are formulates as

a function of battery aging due to the SEI layer growth. Results indicate that the predictability of macroscale

models degrades with battery aging due to the side-reaction dynamics that affect pore-scale transport. The

applicability conditions provide a quantitative framework to identify the onset of mass transport limitations

as the battery SoH decreases over time.

The phase diagram analysis has been demonstrated to assess the predictability of macroscale mod-

els in capturing pore-scale battery dynamics under different operating conditions and SoH. The sufficient

conditions identified on parameters Pej and Daj , j = {e, s} also highlight the importance of mixing at the

sub-pore scale for continuum equations to be valid. Very fast reaction kinetics resulting from high operating

temperatures would lead to diffusion-limited regimes, under which continuum models would be invalidated.

Under these operating conditions, hybrid algorithms that account for a full coupling between the two scales

must be employed instead to classical continuum models for accurate prediction of the battery response. Pub-

lished literature has so far lacked such a systematic methodology to guide researchers on the use of the correct

modeling tools for battery systems. Estimation strategies for battery SoC and SoH must account for model

robustness and error. The outcomes of this chapter is envisioned to pave the way for developing strategies to

prolong battery life through accurate modeling and control.
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Chapter 3

Experimental Characterization of

Lithium-ion Cells

3.1 Introduction

This chapter describes the testing equipment and presents the design of experiments conducted to

evaluate the performance of the homogenized macroscale modeling framework. It starts with an overview

of the features of the test equipment used to conduct current and voltage-based experiments on lithium-ion

batteries under controlled cell surface temperatures. Cylindrical cells of 18650 geometrical format are utilized

in these experiments. The cells are subjected to experiments at different cell surface temperatures. The anode

in the 18650 cell is composed of lithium graphite, and the cathode is composed of layered structures of NMC

transition metal oxide. A detailed description of the initial setup and testing of the two devices, Arbin BT-

2000 tester and the Peltier junctions, is presented. The later part of this chapter summarizes the different

types of experiments conducted on each cell chemistry, and a summary of the measured voltage response of

different cells as a function of temperature and C-rate of discharge.

3.2 Testing equipment

Experiments were conducted in the Battery Aging and Characterization (BACh) Laboratory at the

Department of Automotive Engineering, Clemson University. The experimental test setup is depicted in
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Figure 3.1: Experimental testing on lithium-ion battery cells at the BACh laboratory.

Fig. 3.1. The testing equipment consists of an Arbin BT-2000 testing station incorporating a programmable

power supply and an electronic load, capable of performing charge-discharge cycles with high precision and

data acquisition up to a rate of 100 Hz. The Arbin BT-2000 is completely software controlled, enabled by

the use of MITS Pro data acquisition software to design test cycle input profiles, along with real-time data

review and analysis. The cells under test are installed in the fixture of a Peltier junction heater/cooler system

that controls the surface temperature of the cells in direct contact using the thermoelectric effect.

Arbin BT-2000

The Arbin BT-2000 is a multiple independent-channel operating system for testing battery cells and modules.

The MITS Pro software system has built-in as well as user-defined control mechanisms for highly accurate

programmable control of current, voltage, load, and power. The software platform enables around-the-clock

safe and reliable testing of energy storage devices, thanks to the presence of the following safety features:

1. Current limiting circuitry to prevent the current from exceeding maximum range if the loaded device

short circuits.

2. Watchdog feature that shuts the system down in the event of a major hardware or communication

failure.

3. Thermoswitches that prevents overheating from a long-term over-current or breakdown of cooling fans.

4. Software safety and step limits to terminate the test in the event that current, voltage, and/or other
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relevant test variables exceed their upper or lower threshold limits of allowable operation.

5. Voltage clamp to allow smooth transition from constant current to constant voltage during a charging

or discharging event.

Table 3.1: Technical specifications of the Arbin BT-2000 tester used for the experimental characterization of
lithium-ion cells.

Number of channels 4

Maximum current rating ±200 A

Medium current rating ±20 A

Low current rating ± 5 A

Voltage rating 0-6 V

Maximum power rating ±1.2 kW

Software Version

Current Profiles

Batch File

Configuration File

Launch Profile

Figure 3.2: Features of the MITS Pro software platform to program and control the Arbin BT-2000 during
experimental measurements.
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1 Hz Sampling Rate

Step View
Limit View

Step/Limit

Global Default safety settings

Figure 3.3: Schedule file designed for capacity test in discharge experiments on 18650 NMC cells.

The specifications of the Arbin BT-2000 equipment used for the experimental characterization of

lithium-ion cells is presented in Table 3.1. The MITS Pro software platform ensures reliable operation of the

Arbin BT-2000 with minimal supervision. An overview of the software interface is presented in Fig. 3.2. The

batch file represents the experimental profiles that are set to run on each channel of the Arbin BT-2000. To

execute the battery experiments, input current profiles are designed and saved in the form of schedule files.

The configuration file is modified in the event of a system failure or calibration. The launch profile window

is the master screen that reflects the current status of all running programs. The sign convention of the Arbin

BT-2000 for current input is: positive current indicates charging, and negative current indicates discharging.

An experimental schedule file designed to perform a capacity test in discharge on a lithium-ion cell

is illustrated in Fig. 3.3. The program is executed in a sequence of steps, beginning at Step-A and terminating

at the end of Step-F. The step view summarizes the sequence of each experimental profile run, while the limit

view elaborates the time limit (or) condition for the successful execution of each step in the profile of the

experiment. At each step of the schedule file, the current range must be specified as either low, medium, or

high, depending on the magnitude of the current, as specified in Table 3.1. For every step that is subjected

to data acquisition, the sampling rate is specified. A sampling rate is f hertz means that each data point is
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Voltage Profile

Current Profile

Step A Step F

Step E

Step B

Step C Step D

Figure 3.4: An illustration of the current profile and the measured voltage response from a capacity test in
discharge experiment on an NMC cell, indicating the different steps of the schedule file.

collected at time steps of (1/f) seconds. Under the Global tab, the upper and lower safety limits for current

and voltage are specified for the experimental profile under consideration. In Fig. 3.3, the current limits are

±2.1 A, and the upper and lower voltage limits are respectivelt 4.21 V and 2.49 V. By default, they are set to

±105% of the maximum values entered in the schedule file program, as shown in Fig. 3.3.

The first step, Step A, in the experimental schedule file is the Rest phase. In the event that a wrong

schedule file is loaded, it enables the user to terminate the test and rectify the error without affecting the state

of the battery cell under test. A capacity test in discharge experiment starts by fully charging the battery to

its upper allowable voltage limit of operation. This is executed using constant-current constant-voltage (CC-

CV) charging. The second step,Step B, represents constant-current charge. During the CC phase, the battery

is charged from its initial state until it reaches its upper voltage limit. Table 3.2 provides the allowable limits
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Figure 3.5: MITS Pro batch file that indicates the current schedule file that is setup for execution on each
Arbin channel.

of voltage operation for the 18650 NMC cells. The third step, Step C, represents the constant-voltage phase.

When the CV phase is initiated, the voltage of the cell is held constant at its upper limit until the current value

drops to 1% of its initial value at the beginning of the CV phase.

The fourth step, Step D, is represents battery rest after complete charging. This rest provides the

battery sufficient time to reach steady-state and thermal equilibrium with the surroundings. The fifth step,

Step E, represents the discharge phase of the experiment. The constant current capacity test experiment is

initiated by discharging the battery between from its upper cut-off voltage to its lower cut-off voltage. The

final step, Step F, is a rest phase. When the battery reaches its lower operating voltage limit, the final step

of the experiment begins, where the OCP of the cell is recorded as the battery is resting after discharge. The

outcome of a capacity test in discharge experiment on an NMC cell is depicted in 3.4.

After creating the schedule file, the batch file is updated with information about the experiment that

must be conducted on each Arbin channel. A typical batch file initialization is illustrated in Fig. 3.5. An

advantage that the MITS Pro offers is the ability to design input profiles for current in the form of C-rate in

addition to the magnitude of current in amperes. If the schedule file is designed for current input in terms of

C-rate instead of amperes, then the capacity of the battery must be entered in the batch file, and the magnitude

of current input during battery operation is accordingly determined by the software and commanded to the

Arbin.

The final step prior to the beginning of experiments is to launch the schedule files. The master screen

of the launch window is initiated after assigning specific input profiles for each Arbin channel and completing

the electrical connections between the terminals of the Arbin channels the battery cell under experiment.

Figure 3.6 represents a general outlook of the launch window, along with a display of the measured current

and voltage values of two experiments in real-time. During the experiments, the launch window displays the
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Figure 3.6: A snapshot of the MITS Pro launch window that describes the experiments running on each
Arbin channel and their current status. Real-time review and analysis of experiments is enabled using the
Data Watcher feature.

current status of each running experiment along with the battery phase, i.e. charge, discharge, or rest. The

Data Watcher feature of MITS Pro enables real-time review and analysis of the measured current and voltage

values during the experiments to verify nominal operation and detect any anomalies. After the experiments

are completed, experimentally measured data can be exported from the Arbin environment in a spreadsheet

format using the Microsoft®Excel®software tool for analysis and simulation studies.

Peltier Junction

The Peltier junction heater/cooler device is a dual purpose integrated system designed by CAR Technologies

to facilitate the testing of both 18650 and 26650 cylindrical lithium-ion battery cells. It is designed to provide

an effective control of the battery skin temperature in the range of -5◦C to +55◦C, and is used for the modeling

and data analysis of battery cells for hybrid and electric vehicle applications. The thermoelectric assembly of

a Peltier junction is represented in Fig. 3.7. The main components of the Peltier junction are:
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Locations for 
18650/26650 cells

Cold Sink Fan

Cold Sink Heat Sink 

Temperature Sensor Mount

Figure 3.7: Peltier junction assembly used for controlled temperature experiments on cylindrical cells, and
different components of the heating/cooling assembly.

1. CP-110 Thermoelectric Cold Plate Cooler that utilizes direct contact cooling for precision temperature

control.

2. TCC-36-25 RS232 Temperature Controller that utilizes bi-directional, solid-state H-bridge operation

for heating and cooling.

3. MP-3193 Temperature Sensor that acts as an over-temperature safety device. It is moisture resistant

for applications with surface condensation issues, and has a large thermal contact area for accurate

temperature measurements.

One of the advantages of the Peltier junction is its ability to be used either as a stand-alone device, or in

conjunction with a computer using a LabVIEW program interface. For all the experiments conducted, the

Peltier junction was controlled using the LabVIEW program. To enable Peltier junction control using the

software platform, three steps must be followed in sequence:

1. Step 1: Load default settings. In this step, the configuration parameters regulating the operation of the

Peltier device are initially loaded for each thermoelectric device. Every Peltier junction has a dedicated

communication port under which all default parameter values are loaded.
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2. Step 2: Verify configuration settings. In this step, the configuration of each communication port is

verified by re-loading the parameters from Step 1, and ensuring that the parameters are correctly loaded

for optimal Peltier junction performance.

3. Step 3: Load controller screen. The third and final step prior to Peltier junction control is to load

the thermal control platform. Once the communication port is selected, the controller gains, default

temperature set point, and current thermal sensor measurement values are displayed on the screen.

Figure 3.8: A snapshot illustrating the simultaneous operation and control of four Peltier junctions for battery
temperature controlled experiments.

Figure 3.8 presents a snapshot of the thermal control of four battery systems using different Peltier junctions.

Multiple Peltier junctions can be operated and controlled simultaneously using the same computer device,

allowing to test simultaneously many cells at different temperatures. The LabVIEW program for battery

thermal control using a Peltier junction is presented in Fig. 3.9. Each Peltier junction is driven by an isolated

power supply device. By manually setting the value under the Power ON/OFF tab to 1 in the controller and

activating the tab, the thermoelectric junctions are supplied power to perform their designated operation.

To test a cell at a temperature Tdes, the value of Tdes is manually entered under the Set Point Temp

tab and activated. The difference between the desired and current temperature values drives the direction of

current inside the Peltier junction to either cool or heat the fixture where the battery cell is mounted. The

thermal control program utilizes a proportionalintegralderivative controller to achieve the desired tempera-
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Figure 3.9: Battery thermal control LabVIEW program used for the operation of a Peltier junction.

ture. As the temperature reaches towards its target value, the current provided to the thermoelectric junctions

is regulated accordingly, indicating the PID control in action. After the completion of the experiments, the

Peltier devices are turned off by commanding the power to zero in the thermal control screen. Before turning

off the device, the set point must be reverted back to room temperature conditions. The BACh laboratory

also hosts a ESPEC BTX-475 environmental chamber with the ability to maintain ambient conditions within

a temperature range of -70◦C to 180◦C, and relative humidity within a range of 10% to 95%. However, the

Peltier junctions were used for the experimental characterization of the 18650 cells because they are more

efficient in terms of the overall duration of testing.

3.3 Lithium-Ion Cell Experiments

Both the Arbin BT-2000 and the Peltier thermoelectric devices were utilized in conjunction for

experiments on 18650 lithium-ion cells. The NMC cells used for experimental characterization are shown

in Fig. 3.10 and their technical specifications are summarized in Table 3.2. Constant current capacity test in

discharge experiments are conducted at five different temperatures: 5◦C, 23◦C, 40◦C, 45◦C, and 52◦C. The

selection of these temperature values for the experiments is based on the predictions of an electrolyte phase

diagram study for the anode and cathode of an 18650 NMC cell, which is elaborated in section §4.6.1 of

chapter 4. The cell is installed in the fixture of the Peltier junction, as shown in Fig. 3.10, and soaked for
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Figure 3.10: Temperature controlled experiments on 18650 lithium-ion cells using the Peltier junction.

Table 3.2: Technical specifications of NMC US18650VTC4 lithium-ion cells.

Type of Cell NMC US18650VTC4

Nominal Capacity 2100 mAh

Recommended standard charging method 2.0 A to 4.2 V CCCV, 90 min

Maximum continuous discharge current 30 A

Cyclic performance 60% of initial capacity after
500 cycles of 5 C-rate discharge

Upper cut-off voltage at 23◦C 4.20 V

Lower cut-off voltage at 23◦C 2.50 V

Operating temperature range -20◦C to +60◦C

three (3) hours to achieve thermal equilibrium at each targeted temperature of operation.

The results of the NMC cell capacity test is summarized in Fig. 3.11. The magnitude of the constant

current in discharge used for the NMC cell is 2 A. Table 3.3 summarizes the experimentally measured capacity

of the NMC cell from the discharge experiments.
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Table 3.3: Measured capacity values of the 18650 NMC cell from the constant current discharge experiments.

Temperature Measured NMC Cell Capacity

5◦C 1739.1 mAh

23◦C 1952.9 mAh

40◦C 2059.6 mAh

45◦C 2127.4 mAh

52◦C 2150.8 mAh

52°C
45°C
40°C
23°C
5°C

Figure 3.11: Voltage response of an 18650 cylindrical NMC cell as a function of time obtained from 2 A
constant current discharge experiments conducted at different temperatures.

72



Chapter 4

Comparative Studies on the DFN and

FHM Macroscale Models

4.1 Introduction

This chapter elaborates upon the numerical implementation of the homogenized macroscale model

equations derived in Chapter 2. A comparison of the mass and charge transport equations of the DFN and

FHM model is presented in the next section, along with a discussion of different factors that indicate enhanced

predictability of battery behavior using the FHM model equations. The section that follows is a summary of

the numerical implementation of the DFN model using a model developed by Plett et. al [183] using the finite

element modeling software COMSOL Multiphysics®. This model is utilized for comparative studies, and is

summarized for completeness in this dissertation. A detailed explanation of the implementation of this model

can be found in [183]. Following the summary of the DFN model, the numerical implementation of the FHM

model is elaborated in the subsequent section. The later part of this chapter then presents an approach to iden-

tify the parameters of the DFN and FHM models by conducting co-simulation studies involving COMSOL

Multiphysics®and MATLAB®software using the Particle Swarm Optimization (PSO) technique. The perfor-

mance of both models is assessed against experimental data, the details of which are presented in Chapter 3.

The results of the identification studies are analyzed using electrolyte phase diagrams and comparison of the

model-predicted electrode dynamics. A system level phase diagram is used to quantify the error in the DFN

and FHM model-predicted voltage as a function of the cell SoC and operating temperature. Appendix C
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describe the procedure to develop the FHM COMSOL model and conduct the co-simulation studies.

4.2 Comparison Analysis: DFN and FHM Model Equations

This section discusses the similarities and differences between the mass and charge transport gov-

erning equations of the DFN model, obtained from [65], and the FHM model. The DFN model is developed

using the volume-averaging technique, while the FHM model is rigorously derived using mathematical ho-

mogenization. One of the major outcomes of the application of the homogenization theory to lithium-ion

batteries is the ability to assess the veracity of macroscale models on temperature-influenced battery dynam-

ics. The dimensional transport equations of the DFN and FHM models are summarized in Table 4.1. n, s,

and p represent the anode, separator, and cathode, respectively. The separator does not contain any active

particles, hence there is no intercalation current density in the separator.

4.2.1 Mass transport in the electrode

Fick’s law of diffusion is used to define the governing equation for electrode mass transport. The

DFN model assumes spherical particle shape for electrode concentration dynamics. The electrode concentra-

tion is represented as cs,j to denote that it is a pore-scale quantity. The FHM model electrode mass transport

equation is derived from Fick’s law of diffusion without making any assumption about the particle shape.

The concentration term of the homogenized model is a quantity that is averaged over the unit cell.

In the DFN model, the term Ds,j represents the pore-scale diffusion coefficient, whereas in the ho-

mogenized equation, Deff
s,j represents the effective diffusion tensor. It is obtained by resolving the closure

variable χs(y) in the electrode phase of the unit cell using the set of equations defined in (2.40). y is a

fast space variable in the unit cell Y , y ∈ Y , and is defined as y = ε−1x, where x is the variable in the

macroscale domain. Ds,j is the pore-scale electrode diffusion coefficient and is assumed to be constant at a

given temperature. The diagonal components of the tensor Deff
s,j are identified for the FHM model. In the

DFN model, the pore-scale electrode mass transport equation is used in conjunction with macroscale equa-

tions of transport in the electrolyte phase. The justification for this combined implementation of equations

at different length scales has not been adequately addressed. In Chapter 2, the applicability conditions in the

electrode phase revealed a lack of scale-separation between the pore and macro scales for different cathode

materials. Under these circumstances, either full pore-scale or fully coupled micro-macroscopic equations of

mass transport are necessary for accurate modeling of active material transport.
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Table 4.1: Mass and charge transport equations of the DFN and FHM macroscale models.

DFN Model FHM Model

Electrode Mass Transport Equation; j = (n, p)

∂cs,j(x,r,t)
∂t = 1

r2
∂
∂r

(
Ds,jr

2 ∂cs,j(x,r,t)
∂r

)
∂c̄s,j
∂t = ∇ ·

[
Deff
s,j ∇c̄s,j

]
− 1

F JLi,j

Electrolyte Mass Transport Equation; j = (n, s, p)

ηe,j
∂c̄e,j(x,t)

∂t = ∂
∂x

(
Deff
e,j

∂c̄e,j(x,t)
∂x

)
+ (1−t+)

F JLi,j(x, t)

ηe,j
∂c̄e,j
∂t = ∇ ·

[{
Deff
e,j +

RTλt2+
F 2c̄e,j

Keff
e,j

}
∇c̄e,j

]
+∇ ·

[{
t+
F Keff

e,j

}
∇φ̄e,j

]
+ 1

F JLi,j

Electrode Charge Transport Equation; j = (n, p)

Keff
s,j

∂2φ̄s,j(x,t)
∂x2 = JLi,j(x, t) ∇ ·

[
Keff
s,j ∇φ̄s,j

]
= JLi,j

Electrolyte Charge Transport Equation; j = (n, s, p)

−Keff
e,j

∂2φ̄e,j(x,t)
∂x2 − 2Keff

e,j (x,t)RT (1−t+)

F
∂2 ln c̄e,j
∂x2

= JLi,j(x, t)

∇ ·
[{

RTλt+
F c̄e,j

Keff
e,j

}
∇c̄e,j + Keff

e,j ∇φ̄e,j
]

= −JLi,j

Intercalation Current Density; j = (n, p)

JLi,j(x, t) = ajk0,j ·
√
cs,surf,j · c̄e,j(x, t)

·
√(

cs,max,j − cs,surf,j
)

·2 sinh
[

0.5F
RT

(
φ̄s,j − φ̄e,j − U0,j

)]
,

JLi,s(x, t) = 0

JLi,j =
ε−1
j K

∗
| ηe,j

Lj
· kj ·

√
c̄e,j · c̄s,j

·
√(

1− c̄s,j
cs,max,j

)
·2 sinh

(
F

2RT

[
φ̄s,j − φ̄e,j − U0,j

])
JLi,s = 0

4.2.2 Mass transport in the electrolyte

The electrolyte phase lithium-ion transport equation is based on the concentrated solution theory.

The difference between the DFN and FHM model equations can be summarized as follows:

1. The DFN model considers the effect of only diffusion in electrolyte mass balance, whereas the FHM

model considers the effect of both diffusion and electromigration.

2. The DFN model approximates effective diffusion and conductivity coefficients based on the asymmet-

rical Bruggeman effective-medium model [145], also known as the Bruggeman theory. The effective
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diffusion coefficient is mathematically represented in the DFN model as [148]:

Deff
e,j = De,j · ηbrugge,j , (4.1)

where brugg is the Bruggeman exponent, and is typically considered to be equal to 1.5 for perfectly

spherical particles [148]. On the other hand, the effective diffusion and conductivity coefficients of

the homogenized model, Deff
e,j and Keff

e,j , are obtained by resolving the closure variable χe(y) in the

electrolyte phase of the unit cell using the set of equations defined in (2.36). De,j and Ke,j are the

pore-scale diffusion and conductivity coefficients, respectively. The Bruggeman approximation works

well only for the case of dilute electrolyte solutions. Du et . al . [184] report significant deviation of the

effective transport coefficients from the Bruggeman approximation when experiments are compared to

pore-scale simulations of battery dynamics.

4.2.3 Charge transport in the electrode and electrolyte

The solid phase lithium-ion potential is obtained using the charge conservation equation described

by Ohm’s law, and modeled as a 1-D transport equation in the DFN model. The effective electrode conduc-

tivity in the DFN model is expressed in terms of the electrode porosity as [148]:

Keff
s,j = Ks,j · ηbruggs,j , (4.2)

On the other hand, the FHM model incorporates the in the homogenized the effective solid-phase conductivity

parameter, obtained by resolving the closure variable χs(y). Ks,j is the pore-scale conductivity coefficient

and is assumed to be constant at a given temperature. The equation for the electrolyte phase lithium-ion charge

transport is obtained by combining Kirchhoff’s law with Ohm’s law. The effective electrolyte conductivity is

mathematically represented using the Bruggeman theory as [148]:

Keff
e,j = Ke,j · ηbrugge,j , (4.3)

where the Bruggeman coefficient is assumed to be equal to 1.5 [148]. On the other hand, the effective

electrolyte conductivity Keff
e,j is determined by resolving the closure variable χe(y).
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4.2.4 Remarks

1. The homogenization technique, represents pore-scale quantities as an asymptotic series in powers of

the scale separation parameter ε1. On the other hand, the DFN model approximates the pore-scale

PNP equations such that only the zeroth order terms of an asymptotic series expansion are accounted

for [113].

2. The DFN model has an order of accuracy of ε and must rely on significantly small ratio of length

scales between the micro and macro media [113], while the homogenization model has an accuracy of

the order of ε2 [185].

3. The DFN model accounts for only spherically shaped active particle in the determination of the effec-

tive parameters. As evidenced by the scanning electron microscope images of the structure of lithium

cobalt oxide cathode and graphite anode [148], the homogenized electrode material balance equation

is better suited for resolving concentration dynamics in these electrodes.

4. The homogenization technique provides a more robust approach to determine the effective transport

parameters when the analytical expressions, such as the Bruggeman relationship, are invalidated.

4.3 Numerical Implementation of the DFN Model

The implementation of the DFN model using the finite element solver COMSOL Multiphysics®is

summarized in this section. The model is developed by Plett et. al [183] and is summarized here for com-

pleteness and to facilitate the comparison studies presented in this chapter. The developers of this model

considered COMSOL for its user friendly interface and the flexibility in the evaluation of battery dynamics

across different current and temperature conditions of operation. This is a pseudo two-dimensional battery

model since the electrolyte mass and charge transport, along with electrode charge transport are modeled

along the direction perpendicular to the current collectors (1-D) while electrode mass transport is resolved in

a pseudo radial direction from the center to the surface of each active particle, which are assumed to be spher-

ical in shape. The implementation of the DFN model in COMSOL can be visualized with the help of Fig. 4.1.

To accommodate the convenience of utilizing different geometrical configurations in the DFN model with-

1The scale separation parameter ε is defined as the ratio of the characteristic length scale l of the unit cell Y , and the characteristic
length scale L of the porous electrode: ε ≡ l

L
. For porous battery electrodes, L is typically of the order of the thickness of the electrode

under consideration.
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out the need to resize the designed geometry, for instance the electrode thickness values, normalized length

values were utilized in the model instead of natural length values.
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Figure 4.1: Visualization of the implementation of the DFN model in COMSOL. Electrolyte concentration
along with the potential variables are resolved in 1-D in the direction of electrode thickness. Electrode
concentration is resolved along the radial direction of every active particle that is considered in the direction
perpendicular to the current collectors.

Lneg , Lsep, and Lpos represent the thickness of the anode, separator, and cathode regions of the

lithium-ion battery, respectively. The sum of these three parameters is equal to Lcell. The symbol x̄ is

used to represent position with respect to the normalized length while x is retained to represent the physical

position. The advantage offered by normalization is that regardless of the values of Lneg , Lsep, and Lpos, the

dimension of each region inside the battery is equal to 1.0. In general, the normalized variable can be defined

in terms of the natural variable as

x̄region =
x

Lregion
+ constant. (4.4)

As a result, the derivative terms can be transformed to the normalized coordinate system using the relationship

∂(·)
∂x

=
1

Lregion

∂(·)
∂x̄

(4.5)

The electrode mass conservation equation is resolved in the pseudo radial direction, r, instead of the Carte-

sian linear dimension, x. At every x location in the anode and the cathode, the concentration profile of

lithium within the active particles, from center to the surface, is determined using the spherical coordinate
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formulation. This process is first initiated by normalizing the radial dimension:

r̄ =
r

Rs,j
, j = {n, p}, (4.6)

which then leads to the following transformation of the derivative term in the normalized coordinate system:

∂(·)
∂r

=
1

Rs,j

∂(·)
∂r̄

. (4.7)
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Figure 4.2: Illustration of the normalization of the linear x and radial r coordinates during the implementation
of the DFN model equations.

Figure 4.2 schematically represents the normalization of the linear and radial coordinate dimensions

for the implementation of the DFN model equations. It must be noted that in COMSOL, x is utilized to repre-

sent the normalized linear coordinate x̄, and y is utilized instead of r̄ as the representation of the normalized

radial coordinate. In the pseudo radial direction, y = 0 represents the center of the spherical active particle,

i.e. r = 0, while y = 1 represents the outer surface of the spherical active particle, i.e. r = Rs,j . In the DFN
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Table 4.2: General and normalized mass and charge transport equations of the DFN macroscale model. The
normalized equations are implemented in COMSOL.

General DFN Model Normalized DFN Model

Electrode Mass Transport Equation; j = (n, p)

∂cs,j(x,r,t)
∂t = 1

r2
∂
∂r

(
Ds,jr

2 ∂cs,j(x,r,t)
∂r

)
r̄2Rs,j

∂cs,j(x̄,r̄,t)
∂t = 1

∂r̄

(
Ds,j

r̄2

Rs,j

∂cs,j(x̄,r̄,t)
∂r̄

)
Electrolyte Mass Transport Equation; j = (n, s, p)

ηe,j
∂c̄e,j(x,t)

∂t = ∂
∂x

(
Deff
e,j

∂c̄e,j(x,t)
∂x

)
+ (1−t+)

F JLi,j(x, t)

ηe,j
∂c̄e,j(x̄,t)

∂t = 1
(Lregion)2

∂
∂x̄

(
Deff
e,j

∂c̄e,j(x̄,t)
∂x̄

)
+ (1−t+)

F JLi,j(x̄, t)

Electrode Charge Transport Equation; j = (n, p)

Keff
s,j

∂2φ̄s,j(x,t)
∂x2 = JLi,j(x, t) Keff

s,j
∂2φ̄s,j(x̄,t)

∂x̄2 = (Lregion)2JLi,j(x̄, t)

Electrolyte Charge Transport Equation; j = (n, s, p)

−Keff
e,j

∂2φ̄e,j(x,t)
∂x2 − 2Keff

e,j (x,t)RT (1−t+)

F
∂2 ln c̄e,j
∂x2

= JLi,j(x, t)

−Keff
e,j

∂2φ̄e,j(x̄,t)
∂x̄2 − 2Keff

e,j (x̄,t)RT (1−t+)

F
∂2 ln c̄e,j
∂x̄2

= (Lregion)2JLi,j(x̄, t)

model, there is no consideration of lithium diffusion within the solid in the linear direction x. Solid phase

lithium diffusion is considered in the ”vertical” y direction (or) the radial direction. The electrolyte mass

and charge transport equations are normalized similar to the electrode charge transport equation. Table 4.2

summarizes the normalized mass and charge transport equations of the DFN model that is implemented in

COMSOL.

Table 4.3: Boundary conditions of the variables φ̄s, φ̄e, and c̄e of the DFN model.

Variable Location: x = 0
Location:
x = Lneg

Location:
x = Lneg + Lsep

Location: x = Lcell

φ̄s Constraint: φ̄s,n = 0
∂φ̄s,n
∂x = 0

∂φ̄s,p
∂x = 0 Keff

s,p
∂φ̄s,p
∂x = − Iapp

Acell

φ̄e
Keff
e,n

[
∂φ̄e,n
∂x +

2RT (1−t+)
F

∂ ln c̄e,n
∂x

]
= 0

Not required due
to continuity

Not required due
to continuity

Keff
e,p

[
∂φ̄e,p
∂x +

2RT (1−t+)
F

∂ ln c̄e,p
∂x

]
=

0

c̄e
∂c̄e,n
∂x = 0

Not required due
to continuity

Not required due
to continuity

∂c̄e,p
∂x = 0
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Table 4.4: Initial conditions of the four variables of the DFN model.

Variable Anode Separator Cathode

φ̄s φ̄s,n = 0 Not applicable φ̄s,p (t = 0) =[
U0,p(xp,init)− U0,n(xn,init)

]
φ̄e φ̄e,n (t = 0) = 0 φ̄e,sep (t = 0) = 0 φ̄e,p (t = 0) = 0

cs cs,n (t = 0) = xn,init · cs,n,max Not applicable cs,p (t = 0) = xp,init · cs,p,max

c̄e c̄e,n (t = 0) = ce,init c̄e,sep (t = 0) = ce,init c̄e,p (t = 0) = ce,init

The boundary conditions of the variables φ̄s, φ̄e, and c̄e of the DFN model are summarized in

Table 4.3. Iapp refers to the applied current and Acell refers to the cross-sectional area of the electrode in a

cell. Since cs is resolved in the radial direction, the boundary conditions that apply for cs at the center and

the outer surface of each spherical active particle are:

∂cs,j
∂r

∣∣∣∣∣
r=0

= 0 and Ds,j
∂cs,j
∂r

∣∣∣∣∣
r=Rs,j

= − JLi,j
aj · F

, j = {n, p}. (4.8)

The initial conditions for the four variables of the DFN model are summarized in Table 4.4. xn,init and xp,init

are anode and cathode stoichiometric coefficients, respectively, that indicate the total amount of lithium stored

in the active particls of each electrode during the beginning of simulation. ce,init is the initial concentration

of electrolyte inside the medium, and is considered to be the same everywhere when the battery is at steady-

state. The non-linear partial differential equations (PDEs) of the model are coupled through the intercalation

current density. In addition to this coupling, the charge conservation equation in the electrolyte consists of

both the electrolyte concentration and potential variables. Individual physics-based study interfaces are used

for each model variable, wherein the general form of the particular PDE is input along with all the boundary

and initial conditions, and any constraints that apply to that particular variable. While the variables φ̄s, φ̄e,

and c̄e are resolved in a 1-D setting, the variable cs is resolved in a 2-D setting where one direction is the

linear x and the other direction is the radial y. However, as mentioned earlier, solid-phase lithium is not

considered in the x direction, hence the xx, xy, and yx components of the solid phase diffusion tensor are

set to zero.

Even though all four variable of the DFN model are resolved simultaneously, the variable cs is re-

solved in a different computational domain. In order to transfer the results from one domain to the other 3
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variables and vice-sersa, the linear extrusion operator functionality is utilized in COMSOL to establish a

mapping between the two regions. When φ̄s, φ̄e, and c̄e are solved in the 1-D domain, their resolved values

are treated as the source and transferred to the destination surface boundary of the 2-D domain where cs is

resolved. The surface boundary of the 2-D domain is represented using the black dotted lines in Fig. 4.2. The

same approach is implemented when cs is solved in the source 2-D domain and its resolved values are trans-

ferred to the destination 1-D domain. For the 1-D domain,a predefined physics-based fine mesh is utilized

for discretization while a customized user-controlled mesh is utilized for the 2-D domain. The DFN model

variables are resolved for a specified input current profile using a time-dependent study in COMSOL. Fixed

time-step is used during the simulation studies, and the obtained results are exported from the COMSOL

environment in a spreadsheet format for review and analysis.

4.4 Numerical Implementation of the FHM Model

The implementation of the FHM model in COMSOL Multiphysics®is discussed in this section. A

detailed user guide that elaborates upon the procedure to develop the FHM model from the initiation phase

to the final solver configuration setup prior to simulation is presented. The development of this model in

COMSOL facilitates the comparison studies conducted to assess the performance of the DFN and FHM

models using the same computational platform. The FHM model can be developed in 2-D or 3-D, provided

intricate geometrical information and details of the electrode morphology in the 18650 cylindrical cells is

available. This information is generally not provided by the manufacturer. Taking into consideration that

an unbiased comparison of both the DFN and FHM models must be made, the FHM model is developed in

a one-dimensional setting. Unlike the DFN model where a pseudo dimension is defined to resolve cs, the

FHM model is developed as a completely 1-D model where all four variables are resolved in the direction

perpendicular to the current collectors. The implementation of the FHM model in COMSOL can be visualized

with the help of Fig. 4.3.

It must be noted that in the DFN model, the variable cs is resolved using a pore-scale mass transport

equation that is simplified in spherical coordinates. However, in the FHM model, the variable c̄s is an aver-

aged transport variable that is resolved using an effective or upscaled mass tranport equation. Hence there

is no need to implement the use of a pseudo dimension during the resolution of the FHM model equations.

In addition, it is observed that there is no specific need to utilize normalized length values while resolving

the FHM model, since COMSOL did not indicate any added computational demand or inconveniences cause
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Figure 4.3: Illustration of the FHM model implementation using COMSOL. The variables of the model that
are resolved in specific regions of the battery medium in 1-D are specified in the image shown.

Table 4.5: Boundary conditions of the variables c̄s, φ̄s, c̄e, and φ̄e of the FHM model.

Variable Location: x = 0 Location: x = Lneg
Location:

x = Lneg + Lsep
Location: x = Lcell

c̄s Deff
s,n

∂c̄s,n
∂x = 0 Deff

s,n
c̄s,n
∂x = − JLi,n

F ·Lneg Deff
s,p

c̄s,p
∂x = − JLi,p

F ·Lpos Deff
s,p

∂c̄s,p
∂x = 0

φ̄s Constraint: φ̄s,n = 0
∂φ̄s,n
∂x = 0

∂φ̄s,p
∂x = 0 Keff

s,p
∂φ̄s
∂x = − Iapp

Acell

c̄e
∂c̄e,n
∂x = 0

Not required due to
continuity

Not required due to
continuity

∂c̄e,p
∂x = 0

φ̄e
Keff
e,n

[
∂φ̄e,n
∂x +

RTt+
F

∂ ln c̄e,n
∂x

]
= 0

Not required due to
continuity

Not required due to
continuity

Keff
e,p

[
∂φ̄e,p
∂x +

RTt+
F

∂ ln c̄e,p
∂x

]
= 0

due to the presence of natural dimensionalized length values. Hence the FHM model equations summarized

in Table 4.1 are implemented in 1-D coordinates. While no additional modifications are required, the diffu-

sion and conductivity tensors in 3-D notation are now reduced to scalar values in the 1-D formulation of the

FHM model equations. Effective electrode diffusion and conductivity are represented by Deff
s and Keff

s ,

respectively and are assumed to be concentration-independent entities. Electrolyte diffusion and conductivity

are represented by Deff
e and Keff

e , respectively and are concentration-dependent entities. The boundary

conditions and initial conditions of the variables c̄s, φ̄s, c̄e, and φ̄e are specified in Table 4.5 and Table 4.6,

respectively.

It must be noted in the FHM model that in addition to the coupling of the non-linear PDEs of

the model through the intercalation current density, both the mass and charge conservation equations in

the electrolyte phase consist of the electrolyte concentration and potential variables. Similar to the DFN
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Table 4.6: Initial conditions of the four variables of the FHM model.

Variable Anode Separator Cathode

φ̄s φ̄s,n = 0 Not applicable φ̄s,p (t = 0) =[
U0,p(xp,init)− U0,n(xn,init)

]
φ̄e φ̄e,n (t = 0) = 0 φ̄e,sep (t = 0) = 0 φ̄e,p (t = 0) = 0

c̄s c̄s,n (t = 0) = xn,init · cs,n,max Not applicable c̄s,p (t = 0) = xp,init · cs,p,max

c̄e c̄e,n (t = 0) = ce,init c̄e,sep (t = 0) = ce,init c̄e,p (t = 0) = ce,init

model implementation, individual physics-based study interfaces are used for each FHM model variable.

The general form of the PDE is input along with the associated boundary conditions, initial conditions, and

any constraints that apply to each model variable. The FHM model variables are also resolved for an input

current profile using a time-dependent study and fixed time-step during simulations. The terminal voltage of

the cell in both the DFN and the FHM models is determined using the expression:

V (t) = φ̄s(Lcell, t)− φ̄s(0, t)−Rc · Iapp(t), (4.9)

where Rc is the contact resistance at the current collectors. This is the model-predicted output of cell voltage

from the simulations and is compared with the experimentally measured voltage response. To facilitate

consistent and reliable results for cell chemistry and prevent any numerical stability issues that result from

the generation of complex numbers during simulation, the following steps were implemented in the FHM

COMSOL model:

1. The graphite anode and NMC cathode open circuit potential (OCP) values for the simulation of the

18650 NMC cell behavior were obtained from literature [88]. An interpolation function is used in

COMSOL to express the OCP of each electrode as a function of their respective stoichiometric coeffi-

cient.

2. The pore-scale electrolyte diffusion and conductivity coefficients as a function of concentration and

temperature were obtained from literature [162] using linear interpolation. The effective diffusion and

conductivity values for the DFN model were obtained using the Bruggeman approach [148]. For the

FHM model, the effective ionic transport properties were calculated by resolving the closure variable

problem, as explained in section §2.3.
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3. To prevent numerical instabilities due to the terms in square root in the intercalation current density,

the following stopping criteria were imposed during simulations to prevent the generation of complex

numbers:

Stopping Criteria 1 c̄s,n ≤ 32
[
mol/m3

]
Stopping Criteria 2 c̄s,p ≥

(
cs,p,max − 32

) [
mol/m3

]
Stopping Criteria 3

(
φ̄s(Lcell, t)− φ̄s(0, t)−Rc · Iapp(t)

)
≤ 2.50 [V]

At every time instant, the values of c̄s,n and c̄s,p were monitored at the locations x = Lneg and

x = Lneg + Lsep respectively, since the minimum and maximum concentrations in the two electrodes

were first attained at these locations. This is performed using an integration function in COMSOL to

update the concentration values at these locations during every time step.

4. All four variables of the FHM model are resolved simultaneously at each time step, and successive

iterations are performed until convergence is achieved. To ensure that that there are no convergence

related issues, particularly during model parameter identification where initial parameter guess is pro-

vided to COMSOL through an external source, the termination technique for convergence is based on

a tolerance value of 0.001, and the maximum number of iterations is increased to 800 from a default

value of 4.

The applied current Iapp(t) is provided as an input in COMSOL using the interpolation function. The afore-

mentioned steps to improve stability and convergence are also implemented in the DFN COMSOL model.

In this case, stopping criteria 1 and 2 were based on the values of the surface concentration cs,surf,n and

cs,surf,p, respectively. The locations where these variables were monitored at every time step is the same as

that in the FHM model. The next section describes the approach implemented to identify the parameters of

the DFN and the FHM models using experimental data.

4.5 Model Parameter Identification Approach

This section elaborates upon the identification studies conducted to determine the parameters of the

DFN and the FHM models using an integrated Matlab®and COMSOL Multiphysics®co-simulation frame-

work. The parameters of both models were identified by selecting a specific experimental data set and min-

imizing the error between the measured voltage response and the model-predicted voltage for a specified
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current input using an objective function. A total of 18 parameters of the DFN and FHM models are identi-

fied using experimental data, with the vector of parameters, θ, being:

θDFN =
[
Lneg Lsep Lpos Acell Ds,n Ds,p k0,n k0,p Rc

xn,init xp,init cs,n,max cs,p,max ηn ηp ηe,n ηe,sep ηe,p
]T

(4.10)

for the DFN model and

θFHM =
[
Lneg Lsep Lpos Acell D

eff
s,n Deff

s,p kn kp Rc

xn,init xp,init cs,n,max cs,p,max ηn ηp ηe,n ηe,sep ηe,p
]T

(4.11)

for the FHM model. The vector of parameters for both the models are identified using the Particle Swarm Op-

timization algorithm [186]. PSO is a non-gradient based evolutionary computational approach based on the

social behavior of certain animal species [35]. It is designed to achieve the global minumum for a designed

objective/fitness function by moving a population of possible solutions, constituting the swarm, through a

multi-dimensional solution hyperspace in an iterative fashion [187]. The objective of the parameter identifi-

cation study is to determine the element values of the vector θ, such that the model-predicted voltage output

matches the experimentally measured voltage as closely as possible. Mathematically, this is defined using the

cost function:

J(θ) =

√√√√{ 1

N

N∑
i=1

(
Vexp(i)− Vmod(θ; i)

)2
}
, (4.12)

where Vexp is the experimentally measured voltage response of the lithium-ion cell, Vmod is the model-

predicted voltage that is a function of θ, N is the total number of data samples, and i is the time index. The

mathematical expression for the cost function is a representation of the root mean square (RMS) error.
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Figure 4.4: Flowchart describing the iterative process of parameter identification for the FHM model in the
co-simulation framework involving COMSOL Multiphysics® and Matlab®.

Figure 4.4 describes the co-simulation flowchart for the parameter identification studies conducted

on the FHM model using COMSOL Multiphysics® and Matlab®. The variables c̄s,n and c̄s,p are replaced

with cs,n and cs,p for the DFN model. The PSO-based identification is initiated by providing an initial guess

for the vector θ. A suitable initial guess is determined based on values reported in literature and minor

modifications through trial and error. The PSO initializes the particles with random position and velocity

vectors. The initial guess is provided to the COMSOL model, the four model variables are resolved for the

provided input parameter vector θ, and the results are exported to the Matlab® framework.

The PSO algorithm begins with an evaluation of the fitness function for each particle. At the end

of these evaluations, the individual and global best fitness values are recorded. For each particle, the local

best fitness value is set as its current fitness value, and the local best position is set as its current position.

In subsequent iterations, if a particle’s fitness value is better than the individual best fitness value, then the

current fitness value is assigned the individual best value. Otherwise, the individual best value remains

unchanged. The best fitness value among all the particles is assigned as the global best value. Then, using

the individual and global best fitness values, the position and velocity of each swarm particle is updated

for the next iteration. If the termination criteria is satisfied, the identification study is terminated by exiting
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the loop and the optimized vector of parameter values, θ? is saved as the output of the identification study.

Otherwise, the updated vector of parameters θ is provided to COMSOL® for the next iteration and the process

is continued.

The common elements of the vector θ in the DFN and the FHM models comprise anode thickness

Lneg , separator thickness Lsep, cathode thickness Lpos, cross-sectional area of the cell Acell, contact resis-

tance Rc, anode and cathode stoichiometric coefficients xn,init and xp,init, the maximum anode and cathode

lithium storage concentrations cs,n,max andCs,p,max, the anode and cathode active material volume fractions

ηn and ηp, and the electrolyte volume fraction in the anode, separator, and cathode represented respectively

by ηe,n, ηe,sep, and ηe,p. The identification range of these 14 parameters for the 18650 NMC cells have been

desgined based on values reported in literature [88], and are reported in Table 4.7. The radius of the active

particles in the anode and cathode were kept constant at a value of 5 µm for both the models.

The parameter identification approach to determine model parameters is implemented as follows:

Table 4.7: The range of variation of the common parameters of both models during the identification process.

Parameter Identification Range Parameter Identification Range

Lneg [45e− 6, 55e− 6] cs,n,max [26000, 31500]

Lsep [20e− 6, 32e− 6] cs,p,max [45000, 50000]

Lpos [35e− 6, 45e− 6] ηn [0.54, 0.66]

Acell [0.1006, 0.1120] ηp [0.50, 0.60]

Rc [0.024, 0.036] ηe,n [0.28, 0.36]

xn,init [0.75, 0.80] ηe,sep [0.35, 0.45]

xp,init [0.31, 0.36] ηe,p [0.28, 0.36]

1. Step 1: The parameter identification study is conducted using the PSO algorithm [186], with a popula-

tion size of 200 and 10 total generations. The termination criteria is defined as either 2200 completed

iterations (or) the completion of 5 successive generations without any improvement in the cost function.

Table 4.8 summarizes the details of the parameter identification study using the PSO algorithm.

2. Step 2: The 18 parameters represented in θ were individually identified for both models using data

from 2 A constant current capacity test in discharge experiment conducted at room temperature (23◦C).

The anode and cathode conductivity coefficients were maintained constant, since prior identification

studies [188] observed that they had no impact on model-predicted voltage response. Their true values

were obtained from literature [7] and kept unchanged in subsequent identification studies.
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Table 4.8: Details of the parameter identification study.

PSO Option Value/Setting

options.PopulationSize 200

options.Generations 10

options.Vectorized off

options.TolFun 0.5e-6

options.StallGenLimit 5

options.CognitiveAttraction 0.3

options.SocialAttraction 3.6

options.BoundaryMethod absorb

3. Step 3: The 13 geometric and stoichiometric parameters identified for the DFN and FHM models were

averaged. These parameters characterize the design of the cell, and are optimized by the manufacturer

for a target application. This information is generally not provided by the manufacturers. Identification

is a non-destructive approach to determine these parameters. However, it is not justified to make use

of different values for these parameters on the basis of different models, when in reality they possess a

unique value. To address this issue while enabling unbiased simulations and identification studies, the

averaged values of these 13 parameters are used in both the models, and are summarized in Table 4.9.

4. Step 4: The 13 averaged parameter values are invariant with respect to temperature and kept fixed for all

the subsequent identification studies. Since the averaging of parameters compromises the predictability

of both the models, the identification study in Step 1 is repeated to optimized the other 5 parameters:

the two electrode diffusion coefficients, the two reaction rate constants, and the contact resistance.

Table 4.10 reports the identification range used for these parameters.

5. Step 5: In predicting battery dynamics at other thermal conditions of cell operation, only the aforemen-

tioned 5 parameters are identified as a function of temperature. The same cost function is utilized in all

the identification studies to minimize the model-predicted error in the output cell voltage. The results

from the identification of these five parameters as a function of temperature are reported in Table 4.11.
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Table 4.9: The individually identified geometric and stoichiometric parameters of the DFN and FHM models,
and their average values.

Parameter DFN Model
Identified Value

FHM Model
Identified Value Average

Lneg [m] 50.60e− 6 51.60e− 6 51.1e− 6

Lsep [m] 31.0e− 6 24.9e− 6 28e− 6

Lpos [m] 40.8e− 6 39.4e− 6 40.1e− 6

Acell [m2] 0.1058 0.1026 0.1042

xn,init [−] 0.7878 0.7748 0.7813

xp,init [−] 0.3507 0.3402 0.3455

cs,n,max [mol/m3] 29970 27611 28791

cs,p,max [mol/m3] 46264 47852 47058

ηs,n [−] 0.5813 0.6599 0.6206

ηs,p [−] 0.5729 0.5724 0.5727

ηe,n [−] 0.3037 0.2939 0.2988

ηe,sep [−] 0.4320 0.3888 0.4104

ηe,p [−] 0.2841 0.3035 0.2938

Table 4.10: The identification range of the 5 parameters used for the 23◦C experimental data set.

DFN Parameter Identification Range FHM Parameter Identification Range

Ds,n [1.8e− 14, 5.0e− 14] Deff
s,n [8e− 12, 4e− 11]

Ds,p [2.7e− 14, 6.0e− 14] Deff
s,p [1e− 11, 6e− 11]

k0,n [3e− 4, 14e− 4] kn [6e− 5, 1e− 4]

k0,p [2e− 4, 10e− 4] kp [3e− 5, 8e− 5]

Rc [0.024, 0.030] Rc [0.024, 0.030]

The parameter identification studies were conducted on a Dell Precision T5810 desktop computer

with 32.0 GB random access memory and Intel(R) Xeon(R) CPU E5-1650 v3 3.50 GHz processor. The

parameter identification study using the FHM model and 23◦C data took 65, 048 s to complete, while the

DFN model identification study using the 23◦C data took 86, 709 s to complete. The longer simulation time

per iteration of the DFN model is attributed to the resolution of the model variables in two computational

domains (radial and linear). The FHM model is computationally more efficient because of the resolution of

all four model variables in only one computational domain (linear).
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Table 4.11: The identified values of the five parameters of the DFN and FHM models using different
temperature-based experimental data sets.

DFN Parameter 5◦C 23◦C 40◦C 45◦C 52◦C

Ds,n [m2·s−1] 2.78e− 14 3.50e− 14 7.73e− 14 9.27e− 14 1.11e− 13

Ds,p [m2·s−1] 7.93e− 14 1.42e− 13 4.32e− 13 5.64e− 13 8.23e− 13

k0,n [A·m2.5·mol−1.5] 2.01e− 6 2.98e− 5 1.64e− 4 2.04e− 4 2.80e− 4

k0,p [A·m2.5·mol−1.5] 9.14e− 7 1.72e− 5 2.52e− 5 4.20e− 5 6.86e− 5

Rc [Ω] 0.060 0.030 0.021 0.018 0.015

FHM Parameter 5◦C 23◦C 40◦C 45◦C 52◦C

Deff
s,n [m2·s−1] 2.73e− 11 3.30e− 11 7.38e− 11 1.82e− 10 2.73e− 10

Deff
s,p [m2·s−1] 4.33e− 11 6.40e− 11 8.41e− 11 1.26e− 11 1.21e− 10

kn [A·m·mol−1] 1.23e− 4 1.44e− 4 1.49e− 4 1.55e− 4 1.77e− 4

kp [A·m·mol−1] 9.69e− 5 1.05e− 4 2.15e− 4 2.64e− 4 2.71e− 4

Rc [Ω] 0.054 0.032 0.018 0.016 0.015

4.6 Results and Discussion

The results of the parameter identification study using the five experimental data sets are presented

in Fig. 4.5. The RMS error between the experimental and model-predicted voltage response of both models

are reported in Table 4.12. It can be observed that the performance of both models in predicting battery

behavior is accurate at 5◦C and 23◦C. At higher temperatures of battery operation, the DFN model loses its

accuracy towards the end of discharge. On the other hand, the FHM model predicts cell dynamics until the

end of the discharge curve.

Table 4.12: Comparison of FHM and DFN model performance against experimental data.

Temperature FHM Model RMS Error DFN Model RMS Error

5◦C 16.40 mV 20.60 mV

23◦C 21.60 mV 22.10 mV

40◦C 21.00 mV 75.80 mV

45◦C 19.00 mV 83.90 mV

52◦C 17.00 mV 87.80 mV
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Figure 4.5: Performance of the DFN and FHM models against experimental data at different temperatures.

The performance of the DFN and FHM models is investigated by analyzing the simulation results

of lithium concentration dynamics in the anode and cathode, illustrated in Fig. 4.6. Locations x = Lneg and

x = Lneg + Lsep are selected for observation because anode electrode concentration is lowest at x = Lneg

and cathode concentration is highest at x = Lneg+Lsep during cell discharge. The total duration of discharge

during the 2 A constant constant experiments was 3829 s at 45◦C and 3871 s at 52◦C. At both temperatures,
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in comparison with the FHM model, the DFN model predicts a faster rate of lithium depletion in the anode as

well as faster rate of lithium deposition in the cathode. Lithium concentration is depleted to approximately 32

[mol/m3] at around t = 3550 s in the anode, indicated by the red dashed line. Around the same time, lithium

is nearly fully deposited to approximately 47030 [mol/m3] in the cathode, indicated by the blue dashed line.

This leads to the violation of stopping criteria 1 and 2 in the DFN model. As a result, battery dynamics is not

captured for the complete range of discharge. The FHM model is able to predict battery behavior until the

end of discharge, indicated by the black and magenta dash-dotted lines. Stopping criteria conditions 1 and 2

are not violated during the simulation of the FHM model for 45◦C and 52◦C.

Figure 4.6: Electrode concentration dynamics predicted by the DFN and FHM models at the locations x =
Lneg and x = Lneg + Lsep.
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Table 4.13: Dimensionless transport parameters Pee and Dae calculated for the graphite anode.

DFN Model (Graphite Anode)

Temperature [K] De [m2·s−1] Ke [Ω−1m−1] Dae [-] Pee [-] α [-] β [-]

296 2.22e-10 1.00 1.21e-2 4.14e-2 -2.17 3.01

303 2.68e-10 1.15 2.08e-2 4.03e-2 -2.18 2.63

308 3.12e-10 1.32 2.96e-2 4.04e-2 -2.18 2.39

313 3.56e-10 1.46 4.23e-3 3.98e-2 -2.19 2.15

318 4.01e-10 1.63 6.03e-2 4.01e-2 -2.19 1.91

323 4.47e-10 1.77 8.55e-2 3.97e-2 -2.20 1.67

328 4.89e-10 1.89 1.22e-1 3.93e-2 -2.20 1.43

FHM Model (Graphite Anode)

Temperature [K] De [m2·s−1] Ke [Ω−1m−1] Dae [-] Pee [-] α [-] β [-]

296 2.22e-10 1.00 3.44e-4 4.14e-2 -2.19 5.47

303 2.68e-10 1.15 4.79e-4 4.03e-2 -2.20 5.25

308 3.12e-10 1.32 1.03e-3 4.04e-2 -2.20 4.72

313 3.56e-10 1.46 1.47e-3 3.98e-2 -2.21 4.48

318 4.01e-10 1.63 2.09e-3 4.01e-2 -2.21 4.23

323 4.47e-10 1.77 2.96e-3 3.97e-2 -2.22 3.99

328 4.89e-10 1.89 4.23e-3 3.93e-2 -2.22 3.75

4.6.1 Phase Diagram Analysis - Pore-Scale to System Level

In this subsection, the observations made from an electrolyte phase diagram analysis is presented.

This study is conducted to assess the validity of the applicability constraints of macroscale models in predict-

ing 18650 NMC cell behavior. The values of the phase diagram parameters (α,β) were plotted as a function

of different cell operating temperatures, ranging from 23◦C to 55◦C. The pore-scale transport parameters

identified using 23◦C experimental data and summarized in Tables 4.9 and 4.11 were considered as the start-

ing point. The phase diagram study after the completion of the first identification study at 23◦C, in order to

understand the critical temperature at which the applicability constraints are violated. For higher operating

temperatures, a reliable estimate of the temperature-dependent rate constant kj , j =
(
n, p
)

value was calcu-

lated using the Arrhenius equation (2.48) and information from [172]. Pore-scale electrolyte diffusion and

conductivity were computed at a reference concentration value of 1200 [mol/m3] for different temperatures

using linear interpolation of the experimentally measured coefficients presented in [162]. This value was

considered as the initial electrolyte lithium concentration in the DFN and FHM models for all the parameter

identification studies.

The dimensionless Péclet number Pee and the dimensionless Damkhöler number Dae are computed
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for the cell electrodes at different temperatures of cell operation. The dimensionless transport parameters are

calculated using the approach presented in section §2.4. Table 4.13 reports the values of the phase diagram

parameters computed for the graphite anode, and the electrolyte phase diagram corresponding to this analysis

is illustrated in Fig. 4.7a.

Table 4.14: Dimensionless transport parameters Pee and Dae are calculated for the NMC cathode.

DFN Model (NMC Cathode)

Temperature [K] De [m2·s−1] Ke [Ω−1m−1] Dae [-] Pee [-] α [-] β [-]

296 2.22e-10 1.00 7.00e-3 2.53e-2 -3.10 4.18

303 2.68e-10 1.15 1.21e-2 2.47e-2 -3.12 3.72

308 3.12e-10 1.32 1.72e-2 2.47e-2 -3.11 3.42

313 3.56e-10 1.46 2.45e-2 2.44e-2 -3.13 3.12

318 4.01e-10 1.63 3.50e-2 2.45e-2 -3.12 2.82

323 4.47e-10 1.77 4.96e-2 2.43e-2 -3.13 2.53

328 4.89e-10 1.89 7.07e-2 2.41e-2 -3.14 2.23

FHM Model (NMC Cathode)

Temperature [K] De [m2·s−1] Ke [Ω−1m−1] Dae [-] Pee [-] α [-] β [-]

296 2.22e-10 1.00 1.97e-4 2.53e-2 -3.10 7.19

303 2.68e-10 1.15 4.67e-4 2.47e-2 -3.12 6.46

308 3.12e-10 1.32 6.65e-4 2.47e-2 -3.11 6.16

313 3.56e-10 1.46 9.49e-4 2.44e-2 -3.13 5.86

318 4.01e-10 1.63 1.35e-3 2.45e-2 -3.12 5.56

323 4.47e-10 1.77 1.92e-3 2.43e-2 -3.13 5.27

328 4.89e-10 1.89 2.73e-3 2.41e-2 -3.14 4.97

Similarly, Table 4.14 provides the values of the phase diagram parameters (α,β) for the NMC cath-

ode, and the results are schematically represented in Fig. 4.7b. It can be observed from both the phase

diagrams that the points (α,β) of the DFN model transport parameters violate the applicability constraint

(α + β ≥ 0) at temperatures of 40◦C and beyond. Under all operating temperature conditions, the points

(α,β) of the FHM model satisfy all the applicability constraints, and hence the points stay within the blue

shaded region. Based on these results, five operating temperatures were selected for conducting experiments:

a) the phase diagram transition temperature (40◦C), b) 5◦C and 23◦C (two conditions below the transition

temperature), and c) 45◦C and 52◦C (two conditions above the transition temperature).

The phase diagram plots shown in Fig. 4.7a and Fig. 4.7b are a predictive tool to single out the

conditions of battery operating where model predictability is guaranteed, i.e. macroscale modeling error is

bounded with respect to its pore-scale counterpart equations. When data points (α,β) of these phase diagrams
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fall out of the applicability regime (defined by the blue shaded region), macroscale modeling electrolyte

equation error is no longer bounded. Under these circumstances, it is important to provide a quantitative

assessment of the error in the prediction of macroscale models using information from measurable system

level quantities such as temperature, voltage, and current. Most of the parameters required to determine the

phase diagram parameters (α,β) are either identified or estimated, but not experimentally measured. As a

result, the 2-D phase diagrams are not directly utilizable as a predictive tool at the system level.

To address this issue, a system-level 3-D phase diagram is proposed that quantifies the theoretical

predictability of macroscopic models within certain specified bounds for different operating conditions. This

phase diagram correlates the percentage error between the experimentally measured and model-predicted

cell voltage as a function of: a) the battery SoC and b) the cell temperature. This normalized voltage error is

mathematically determined using the expression:

% Voltage Error =

√√√√{ 1

N

N∑
i=1

(
Vexp(i)− Vmod(θ; i)

)2
}
· 100 ·N∑N

i=1 Vexp(i)
. (4.13)

Estimation studies on lithium-ion batteries reported in [189, 190] considered the underlying models to be

accurate if the error in voltage prediction was within an RMS error of ±2%.

The state-of-charge (SoC) of the cell was calculated using the Coulomb counting technique. Using

the measured cell current during discharge, the cell SoC, SoC(t), is determined using the mathematical

expression:

SoC(t) = SoCini −
1

Qcell
·
∫ tf

t0

Iapp(t)dt , (4.14)

where SoCini is the initial cell SoC, Qcell is the measured capacity of the cell for each experimental data

set in units of [A·s], t0 and tf denote the time at the beginning and end of the experiment, and Iapp(t) is the

applied current and is positive during discharge. For the capacity tests in discharge, SoCini = 100% and

t0 = 0 s.

Figure 4.7c illustrates the prediction error in cell voltage by the DFN and FHM models as a function

of the cell SoC for the five different temperature-based experimental data sets. The accuracy in voltage

prediction by the two models to within an RMS error of ±2% is indicated by data points that lie within the

region that is shaded in cyan. At temperatures of 5◦C and 23◦C, the DFN and FHM models show good

accuracy in voltage prediction in the cell SoC range of
[
0.05, 1.00

]
.
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Graphite Anode

(a) Electrolyte phase diagram for the graphite anode of the 18650 cell.

NMC Cathode

(b) Electrolyte phase diagram for the NMC cathode of the 18650 cell.

(c) Percentage RMS error in model-predicted voltage as a function of SoC and cell temperature.

Figure 4.7: The electrolyte phase diagrams (top and middle) assess the veracity of DFN and FHM macroscale
models. The square and circular data points represent (α,β) values calculated for the DFN and FHM models,
respectively. In the system level phase diagram (bottom), the black square data points represent the percentage
RMS error in the DFN model-predicted voltage. The orange circular data points represent the percentage
RMS error in the FHM model-predicted voltage. The data points in the bottom figure are plotted as a function
of the cell SoC for five experimental data sets. The cell operating temperatures for the data points represented
in this phase diagram are: 278K, 296K, 313K, 318K, and 325K.
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Towards the end of the discharge curve, the DFN model has a voltage prediction error greater than

2% at SoC values of 1% and 3.5% for the 5◦C and 23◦C experimental data sets, respectively. The FHM

model is always accurate to within 2% for the 5◦C data set, and has an error of 2% at an SoC value of 0.5%

for the 23◦C experimental data set. The DFN model voltage prediction error exceeded 20% towards the end

of cell discharge at 40◦C, 45◦C and 52◦C. Under the same conditions, the FHM model retained less than

2% error. The DFN model error was greater than 2% at all SoC values below 8.30% for the 40◦C data set,

13.40% for the 45◦C data set, and 14.60% for the 52◦C data set.

These observations validate the predictions made by the 2-D phase diagrams in Fig. 4.7a and

Fig. 4.7b. Table 4.12 and Fig. 4.7c quantify the error in the predictability of the DFN and FHM models.

For data points that lie within the applicability regime, the RMS error in voltage prediction is within 25 mV.

For data points that violate the applicability constraints, the RMS error in voltage prediction exceeded 69 mV,

as observed in the DFN model. These observations also indicate that significant caution must be exercised

while implementing the DFN model and its simplified versions for model-based control applications, partic-

ularly full electric vehicles, where the battery cells operate over a wide range of SoC.
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4.7 Conclusion

Accurate prediction of battery behavior across a wide range of operating temperatures and current

rates of charge or discharge is dependent on a reliable description of battery internal transport processes.

The fact that lithium-ion transport processes are highly non-linear and span multiple length scales indicates

that ion transport can also be modeled on a multiplicity of scales. Macroscale battery models describing

mass and charge transport are well suited as a reference model for developing model-based control and

estimation strategies. The battery research community, for long, has considered the Doyle-Fuller-Newman

(DFN) macroscale model [49, 191] as the benchmark to evaluate the predictability of reduced-order and

simplified electrochemical models. However, macroscale models are approximate representations of micro-

scale battery dynamics, and are vulnerable as predictive tools under specific operating conditions. One of the

major contributions of this chapter is the identification of operating conditions under which the assumptions

and approximations that facilitate the use of the DFN macroscale model are violated, leading to a loss of

model predictability.

Section §4.2 presents a detailed comparison analysis of the mass and charge transport equations of

the DFN and the FHM models. In the process, specific model attributes were highlighted to indicate enhance

prediction capabilities of the FHM model over the DFN model. In particular, the electrolyte mass transport

equation in the FHM model considers the effect of both diffusion and electromigration in the transport of

lithium ions. In addition, the effective ionic transport parameters are determined using information from the

geometric configuration of active particles in the unit cells, rather than relying on empirical formulations.

Section §4.3 summarizes the numerical implementation of the DFN model mass and charge transport

equations using the finite element modeling software COMSOL Multiphysics®. The DFN model described in

this chapter is developed by Plett et. al [183] and is a pseudo two-dimensional battery model. This is because

electrode concentration is resolved in a pseudo radial direction as opposed to the other model variables that

are resolved in the direction perpendicular to the current collectors. The equations of the DFN model were

converted to a normalized form and setup in COMSOL prior to simulations. A linear extrusion operator

function was used in COMSOL to facilitate the simultaneous resultion of all the four model variables and

transfer information from one computational domain to the other at every time-step.

Section §4.4 presents a detailed discussion of the numerical implementation of the FHM model

equations using COMSOL. The same software platform was utilized to validate the comparison studies on the

performance of both models against experimental data. Unlike the DFN model, all the four model variables
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of the FHM model are completely resolved in the direction perpendicular to the current collectors. The

equations of the FHM model were resolved in dimensional form. The initial and boundary conditions of the

FHM model are summarized in the form of tables. Different steps were implemented in the FHM model

for reliable simulations and to prevent any numerical stability issues. Three different stopping criteria were

imposed during the simulations such that no complex numbers were generated in the intercalation current

density term, and battery operation was confined to its upper and lower voltage cut-off limits. The same

stopping criterion was later incorporated in the DFN model. To ensure convergence at every time-step, the

termination technique was based on a tolerance value of 1e− 3, and the maximum number of iterations were

set to 800.

Section §4.5 elaborates the approach to determine the parameters of the DFN and FHM models

using an integrated co-simulation framework involving COMSOL Multiphysics® and Matlab®. The particle

swarm optimization (PSO) algorithm was used to identify the parameters of both models. A cost function

was designed to minimize the error between experimentally measured and model-predicted voltage response

the cell. A flowchart of the identification approach was presented to explain the closed-loop communication

established between the two software platforms. The same geometric and stoichiometric parameters were

used in both the models, and 5 temperature-dependent parameters were identified for both the models using

constant current discharge experimental data sets conducted at five different temperatures: 5◦C, 23◦C, 40◦C,

45◦C, and 52◦C. The values of the identified parameters of the DFN and FHM models using these data sets

are summarized in the form of tables.

Section §4.6 summarizes the outcome of the parameter identification studies. An independent 2-D

phase diagram analysis was conducted for 18650 NMC cells to identify the operating conditions where the

applicability constraints are violated. Based on these observations, five temperatures were chosen to conduct

NMC cell experiments. The results of the parameter identification studies are summarized using a 3-D system

level phase diagram that quantifies the error in voltage prediction by both models as a function of the cell

SoC and operating temperature. It is inferred from the results that the DFN model, which predicts battery

dynamics accurately at 5◦C and 23◦C, fails to replicate the same at 40◦C, 45◦C, and 52◦C towards the end

of cell discharge.

The FHM model accurately predicts battery response under all temperature conditions. This ob-

servation was validated by two means: a) observing the model-predicted concentration dynamics at higher

operating temperatures, and b) confirmation of the predictions of the 2-D electrolyte phase diagrams and

quantification of the model prediction error under these conditions using a 3-D system level phase diagram.
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The loss in the predictability of the DFN model is due to violation of the constraints that enable successful

upscaling of the macroscale transport equations. At higher operating temperature, the dominance of reac-

tion transport leads to the formation of diffusion-limited regimes. Under these circumstances, the system

is no longer well-mixed, and macroscopic transport models become invalidated and incapable of capturing

pore-scale dynamics.

These results have significant importance in the context of implementation of the DFN and its

reduced-order formulations for full electric vehicle (FEV) applications. Battery cells in FEVs operate over a

wide range of SoC. The poor predictability of the DFN model at higher temperatures can seriously compro-

mise estimation and control strategies to regulate battery performance and longevity. A major contribution of

this chapter is the development and validation of the enhanced predictability of the FHM model, which will

enable the development of better physics-based control strategies to prolong battery life for battery manage-

ment system applications.
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Chapter 5

Conclusions and Future Work

This dissertation presented the theory, development, and experimental validation of a new multiscale

modeling framework to characterize the mass and charge transport dynamics of lithium-ion batteries. The

contents of this dissertation are summarized as follows:

1. Chapter 1 presented the motivation, background, and literature review for the development of physics-

based models to characterize lithium-ion battery behavior on a multitude of length scales. The evolution

in the prediction of battery behavior from using empirical models to models based on first principles

of transport phenomena facilitated the advancement of model-based strategies for the estimation, con-

trol, and prognostics of battery systems. Despite this progress, battery systems remain conservatively

utilized for large-scale applications and their full market penetration in this segment remains hampered

due to various factors.

The foundation of this dissertation was built on addressing some of the fundamental challenges as-

sociated with the physics-based models available today, such as: a) the lack of a systematic approach

to quantify the error in modeling accuracy for different electrode chemistry, b) the absence of tools to

identify the operating conditions under which models fail to provide an accurate description of battery

dynamics, and c) the need to understand when currently used models are good enough for developing

model-based battery management strategies, and when there is a need to develop something better.

2. Chapter 2 summarized the theory of the formulation of pore-scale equations based on first principles

of mass and charge transport in the electrode and electrolyte phases of a porous lithium-ion battery. A
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rigorous mathematical technique was applied to derive macroscopic formulations of the fundamental

pore-scale transport equations. In the process, conditions were identified that allow successful upscal-

ing of the pore-scale equations to the macroscale. The satisfaction of these applicability conditions

bounds the modeling error using the macroscale equations to within a certain order of accuracy with

respect to their pore-scale counterparts. These conditions were schematically represented using phase

diagrams, which can be used to conduct analytical studies to a priori determine the predictability of

macroscopic transport equations as a function of electrode chemistry, operating temperature, and ca-

pacity fading.

A multiscale modeling approach was presented to determine the effective ionic transport properties by

resolving the electrolyte closure in the microstructure of the electrodes. This approach provides an

advantage of determining transport properties in realistic battery electrodes using imaging techniques

rather than relying on empirical formulations. Appendices A and B provided the detailed mathematical

derivation of the transport equations of the homogenized model in the electrolyte and electrode phases,

respectively.

3. Chapter 3 described the testing equipment used for the experimental characterization of lithium-ion

cells. A design of experiment is presented to evaluated the performance of the full-order homogenized

macroscale (FHM) model against experimental measurements at different temperatures of cell opera-

tion. 18650 lithium-ion cells of NMC and LFP chemistry were subjected to constant current discharge

experiments at five different temperatures: 5◦C, 23◦C, 40◦C, 45◦C, and 52◦C. The selection of these

temperatures was based on an independent phase diagram study, summarized in Chapter 4, to evalu-

ate the temperature-influenced veracity of macroscopic battery models. An Arbin BT-2000 tester was

used to provide the current input and measure the voltage response of the cells, and these temperature-

controlled experiments were performed by installing the cells in the fixture of a thermoelectric device

called the Peltier junction. The setup and operation of these devices was elaborated in this chapter,

and the experimentally measured cell response was summarized for the different cells as a function of

temperature.

4. Chapter 4 presented a detailed comparison of the mass and charge transport equations of the FHM

model with the commonly used Doyle-Fuller-Newman (DFN) model, highlighting different attributes

that indicated higher predictability of the FHM model. The performance of the FHM and DFN models
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was evaluated using the finite element modeling software COMSOL Multiphysics®. The DFN model

was developed by Plett et. al [183], and made available as an open-source software. The implementa-

tion of this model was summarized with a description of the model equations, the initial conditions, and

the boundary conditions. The development of the FHM model in COMSOL was elaborated in detail,

starting with the model equations, the initial and boundary conditions, and a series of steps to ensure

numerical stability of the model during simulations.

The performance of the DFN and FHM models were evaluated against data obtained from cell exper-

iments at different temperatures of operation. The parameters of the DFN and the FHM models were

identified by conducting parameter identification studies using an integrated co-simulation framework

involving Matlab®and COMSOL Multiphysics®. The parameters were identified using the PSO tech-

nique, and the same geometric and stoichiometric parameter values were used in both the models. The

diffusion, reaction-rate, and contact resistance were identified as a function of temperature. The results

of the model parameter identification studies were discussed in detail in this chapter. Appendix C pre-

sented a detailed user guide for the development of the FHM model using COMSOL. Following the

development of the model, the approach to conduct parameter identification studies, enabled by the use

of the MATLAB® LiveLinkTM feature of COMSOL, was elaborated at the end of this appendix.

One of the major contributions of the phase diagram studies presented in Chapter 2 is the identifi-

cation of temperature as a critical parameter that governs the predictability of macroscale models such as the

DFN model. Beyond critical temperatures of operation, the applicability conditions that enable successful

upscaling of the DFN model equations using the volume averaging technique are violated, which results in

a loss of model predictability. When diffusion-limited regimes are developed due to the dominance of reac-

tion transport, the system is no longer well mixed and homogeneous, and the veracity of macroscale models

cannot be guaranteed. The results from the parameter identification studies presented in Chapter 4 indicate

the loss of DFN model predictability in predicting the voltage response at temperatures greater than 40◦ C in

18650 NMC cells.

The loss in the predictability of the DFN model at higher operating temperatures was initially in-

ferred from an independent phase diagram study conducted for 18650 NMC cells. The information from the

phase diagrams was utilized in the selection of different temperatures for cell characterization experiments.

On the other hand, the FHM model accurately predicted battery voltage response under all the five tempera-

tures of cell operation. The better predictability of the FHM model was confirmed using the phase diagrams,

104



and a comparison of the electrode concentration dynamics predicted by the DFN and FHM models at higher

cell temperatures. A system level phase diagram was developed to quantify the percentage error in the DFN

and FHM model predictability as a function of cell SoC and temperature.

Results indicated that the DFN model loses predictability towards the end of the discharge curve,

characterized by low SoC values. Sufficient caution must be exercised in the implementation of this model for

applications that involve a wide range of battery SoC operations. This dissertation presented a higher fidelity

multiscale modeling framework than the DFN model through the development and validation of the FHM

model. Models obtained from the reformulation and/or simplification of FHM model transport equations will

enable the development of more accurate and predictive physics-based control strategies to prolong battery

useful life for BMS applications.

Potential recommendations for the direction of future work are listed below:

1. Development of reduced-complexity models: The computational intensity of a full-order homoge-

nized macroscale renders it unsuitable for real-time estimation applications directly. The development

of models obtained by the simplification of the mass and charge transport equations of the FHM model

can facilitate better model-based control strategies.

2. Model order reduction of the FHM model: Model order reduction techniques on the DFN model [63,

65, 192–194] have been investigated for the development of model-based control strategies for BMS

applications in real-time. However, the FHM model presents one of the first-ever case of a fully coupled

and upscaled set of mass and charge transport equations for lithium-ion batteries. Given the better

computational efficiency and predictability with respect to the DFN model, reduced order modeling

techniques on the FHM transport equations can enable more accurate estimation studies.

3. Electrochemical-thermal model development: The FHM model is an isothermal model of mass and

charge transport. For high current rate applications, it is important to consider temperature dependency

in the prediction of the electrochemical response. A reliable and consistent prediction can be achieved

by coupling the mass and charge transport equations with an energy balance equation to predict the

rate of heat generation and estimate the core and surface temperature of battery cells. This will enable

the development of enhanced thermal management strategies.
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Appendix A Homogenization in the electrolyte

After setting cjε (x, t) = cj(x,y, t, τr, τme, τms) and φjε (x, t) = φj(x,y, t, τr, τme, τms), j =

{e, s}, equation (2.28) is combined with (2.19a) and (2.19b) to obtain

∂ce

∂t
+Dae

∂ce

∂τr
+ Pee

(
∂ce

∂τme
+

Dae
Das

∂ce

∂τms

)
= (1)

=∇x ·
[
(De + λt2+PeeK

e/ce)(∇xc
e + ε−1∇yc

e) + 2t+PeeK
e(∇xφ

e + ε−1∇yφ
e)
]

+ε−1∇y ·
[
(De + λt2+PeeK

e/ce)(∇xc
e + ε−1∇yc

e) + 2t+PeeK
e(∇xφ

e + ε−1∇yφ
e)
]

and

∇x · [(λ t+PeeK
e/ce)(∇xc

e + ε−1∇yc
e) + 2KePee (∇xφ

e + ε−1∇yφ
e)] (2)

+ ε−1∇y ·
[
Ke(λ t+Pee/c

e)(∇xc
e + ε−1∇yc

e) + 2KePee (∇xφ
e + ε−1∇yφ

e)
]

= 0,

for y ∈ B, subject to

ne · [(De + λt2+PeeK
e/ce)(∇xc

e + ε−1∇yc
e) + 2t+PeeK

e(∇xφ
e + ε−1∇yφ

e)]

= Daef(ceε, c
s
ε, φ

s
ε, φ

e
ε) y ∈ Γ, (3)

and

ne · [(λt+PeeK
e/ce)(∇xc

e + ε−1∇yc
e) + 2PeeK

e(∇xφ
e + ε−1∇yφ

e)]

= Daef(ceε, c
s
ε, φ

s
ε, φ

e
ε), y ∈ Γ, (4)

respectively, where f(ceε, c
s
ε, φ

s
ε, φ

e
ε) is defined in (2.21).
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A.1 Mass and charge transport asymptotic expansions

Substituting (2.29) and (2.30) into the mass transport equation in the electrolyte (2.19) leads to

ε−2{−∇y · [(De + ε−αλ t2+K
e/ce0)∇yc

e
0 + 2ε−αt+ Ke∇yφ

e
0)]}+

ε−1{ε1+β∂τrc
e
0 −∇x · [(De + ε−αλ t2+K

e/ce0)∇yc
e
0 + 2ε−αt+K

e∇yφ
e
0]

−∇y · [(De + ε−αλ t2+K
e/ce0)(∇xc

e
0 +∇yc

e
1) + ε−αλ t2+K

e(ce1/c
e
0)/ce0∇yc

e
0

+ 2ε−αt+K
e(∇xφ

e
0 +∇yφ

e
1)]}

ε0{∂tce0 + ε−α(∂τmec
e
0 + εβ−γ∂τmsc

e
0) + ε1+β∂τrc

e
1

−∇x · [(De + ε−αλt2+K
e/ce0)(∇xc

e
0 +∇yc

e
1) + ε−αλt2+K

e(ce1/c
e
0)/ce0∇yc

e
0

+ 2ε−αt+K
e(∇xφ

e
0 +∇yφ

e
1)]−∇y · [(De + ε−αλt2+K

e/ce0)(∇xc
e
1 +∇yc

e
2)

− ε−αλt2+Ke(ce1/c
e
0)/ce0(∇xc

e
0 +∇yc

e
1) + ε−αλt2+K

e/ce0[(ce1/c
e
0)2 − ce2/ce0]∇yc

e
0

+ 2ε−αt+K
e(∇xφ

e
1 +∇yφ

e
2)]} = O (ε) , y ∈ B, (5)

where the nonlinear term in (2.19) is expanded in a Mclaurin series

1/ce ≈ (c0 + εce1 + ε2ce2)−1 ≈ 1

c0

{
1− εc

e
1

ce0
+ ε2

[(
ce1
ce0

)2

−
(
ce2
ce0

)]}
. (6)

Similarly, the interface condition (3) can be written as

ε−1{ne · [(De + ε−αλt2+K
e/ce0)∇yc

e
0 + 2ε−αt+K

e∇yφ
e
0]}+

ε0{ne · [(De + ε−αλt2+K
e/ce0)(∇xc

e
0 +∇yc

e
1)− ε−αλt2+Ke/ce0(ce1/c

e
0)∇yc

e
0)

+ 2ε−αt+ Ke(∇xφ
e
0 +∇yφ

e
1)]− 2εβA0B0)}+

ε{ne · [(De + ε−αλt2+K
e/ce0)(∇xc

e
1 +∇yc

e
2) + 2ε−αt+K

e(∇xφ
e
1 +∇yφ

e
2)

− ε−αλt2+Ke/ce0(ce1/c
e
0)(∇xc

e
0 +∇yc

e
1) + ε−αλt2+K

e/ce0[(ce1/c
e
0)2 − (c2/c0)]∇yc

e
0

− 2εβ(A0B1 +A1B0)]} = O(ε2), y ∈ Γ, (7)
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since sinh(φs − φe − U) = sinh(φs0 − φe0 − U) + ε(φs1 − φe1)cosh(φs0 − φe0 − U) +O(ε2), where

A0 = sinh(φs0 − φe0 − U), (8a)

B0 =
√
ce0c

s
0(1− cs0), (8b)

A1 = (φs1 − φe1)cosh(φs0 − φe0 − U), (8c)

B1 =
√
ce0c

s
0(1− cs0)

[ cs1
2cs0

+
ce1
2ce0
− cs1

2(1− cs0)

]
. (8d)

Combining (2.29) and (2.30) with the charge transport equation (2) and boundary condition (4) yields

ε−2{∇y · [λt+Ke/ce0∇yc
e
0 + 2Ke∇yφ

e
0]}+

ε−1{∇x · [λt+Ke/ce0∇yc
e
0 + 2Ke∇yφ

e
0] +∇y · [λt+Ke/ce0(∇xc

e
0 +∇yc

e
1)

− λt+Ke(ce1/c
e
0)/ce0∇yc

e
0 + 2Ke(∇xφ

e
0 +∇yφ

e
1)]}+

ε0{∇x · [λt+Ke/ce0(∇xc
e
0 +∇yc

e
1)− λt+Ke(ce1/c

e
0)/ce0∇yc

e
0 + 2Ke(∇xφ

e
0 +∇yφ

e
1)

+∇y · [λt+Ke/ce0(∇xc
e
1 +∇yc

e
2)− λt+Ke(ce1/c

e
0)/ce0(∇xc

e
0 +∇yc

e
1)+

+ λt+K
e/ce0[(ce1/c

e
0)2 − ce2/ce0]∇yc

e
0 + 2Ke(∇xφ

e
1 +∇yφ

e
2)]} = O (ε) , y ∈ B (9)

subject to

ε−1{ne · [ε−αλt+Ke/ce0∇yc
e
0 + 2ε−αKe∇yφ

e
0]}

ε0{ne · [ε−αλt+Ke/ce0(∇xc
e
0 +∇yc

e
1)− ε−αλt+Ke/ce0(ce1/c

e
0)∇yc

e
0

+ 2ε−αKe(∇xφ
e
0 +∇yφ

e
1)− 2εβA0B0]}+

ε{ne · [ε−αλt+Ke/ce0(∇xc
e
1 +∇yc

e
2)− ε−αλt+Ke/c0(c1/c0)(∇xc

e
0 +∇yc

e
1)

+ ε−αλt+K
e/c0[(ce1/c

e
0)2 − ce2/ce0]∇yc

e
0 + 2ε−αKe(∇xφ

e
1 +∇yφ

e
2)

− 2εβ(A0B1 +A1B0)} = O(ε2), y ∈ Γ. (10)

where A0, A1, B0 and B1 are defined in (8). The next step compares the terms of like order of ε.
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A.2 Terms of order O (ε−2)

Collecting the leading-order terms in the mass transport equation and corresponding boundary con-

dition (5) and (7) respectively, leads to

−∇y · [(De + ε−αλ t2+K
e/ce0)∇yc

e
0 + 2ε−αt+ Ke∇yφ

e
0] = 0, y ∈ B, (11)

subject to

ne · [(De + ε−αλt2+K
e/ce0)∇yc

e
0 + 2ε−αt+K

e∇yφ
e
0)] = 0, y ∈ Γ. (12)

Similarly, at the leading order the charge transport equation is

∇y · (λt+Ke/ce0∇yc
e
0 + 2Ke∇yφ

e
0) = 0, y ∈ B, (13)

subject to

ne · (λt+Ke/ce0∇yc
e
0 + 2Ke∇yφ

e
0) = 0, y ∈ Γ. (14)

Homogeneity of (11)-(12) and (13)-(14), guarantees that ce0 and φe0 are independent of y, i.e.

ce0 = ce0(x, t, τr, τme, τms) (15)

φe0 = φe0(x, t, τr, τme, τms) (16)

A.3 Terms of order O (ε−1)

Since∇yc
e
0 ≡ 0 and ∇yφ

e
0 ≡ 0, the mass balance equation (5) at order O(ε−1) simplifies to

ε1+β∂τrc
e
0 −∇y · [(De + ε−αλ t2+K

e/ce0)(∇xc
e
0 +∇yc

e
1)

+ 2ε−αt+K
e(∇xφ

e
0 +∇yφ

e
1)] = 0, y ∈ B, (17)
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subject to the interface condition

ne · [(De + ε−αλt2+K
e/ce0)(∇xc

e
0 +∇yc

e
1)

+ 2ε−αt+K
e(∇xφ

e
0 +∇yφ

e
1)] = 2εβA0B0 y ∈ Γ. (18)

Integrating (17) over B with respect to y, while accounting for the boundary condition (18), and the period-

icity of the coefficients on the external boundary of the unit cell ∂Y yields

ε1+β∂τrec
e
0 = 2εβK?A0B0, (19)

where K? is defined by (2.34).

Combining (19) with (17) to eliminate the temporal derivative,

2εβK?A0B0 −∇y · [(De + ε−αλ t2+K
e/ce0)(∇xc

e
0 +∇yc

e
1)

+ 2ε−αt+K
e(∇xφ

e
0 +∇yφ

e
1)] = 0. (20)

Similarly, the charge balance equation (9) at O(ε−1) is

∇y · [λt+Ke/ce0(∇xc
e
0 +∇yc

e
1) + 2Ke(∇xφ

e
0 +∇yφ

e
1)] = 0, y ∈ B, (21)

subject to

ne · [ε−αλt+Ke/ce0(∇xc
e
0 +∇yc

e
1) + 2ε−αKe(∇xφ

e
0 +∇yφ

e
1)− 2εβA0B0] = 0, (22)

for y ∈ Γ. Equations (18), (20), (21) and (22) form boundary value problems for both ce1 and φe1. Following

the approach indicated [195] and [52, pp. 10, Eqs. 3.6–3.7], a solution exists in the following form:

ce1(x,y, t, τr, τme, τms) = χ1(y) · ∇xc
e
0(x, t, τr, τme, τms) + ce1(x, t, τr, τme, τms),

φe1(x,y, t, τr, τme, τms) = χ2(y) · ∇xφ
e
0(x, t, τr, τme, τms) + φ

e

1(x, t, τr, τme, τms). (23)
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Substitution of (23) into (20) and (18) leads to

2εβK?A0B0 −∇y · [(De + ε−αλ t2+K
e/ce0)(I +∇yχ1)∇xc

e
0

+ 2ε−αt+K
e(I +∇yχ2)∇xφ

e
0] = 0, y ∈ B, (24a)

subject to 〈χ1〉e = 〈χ2〉e = 0 and

ne · [(De + ε−αλt2+K
e/ce0)(I +∇yχ1)∇xc

e
0

+ 2ε−αt+K
e(I +∇yχ2)∇xφ

e
0] = 2εβA0B0 y ∈ Γ, (24b)

where I is the identity matrix, and χ1 and χ2 are periodic vector fields. Substitution of (23) into (21) and

(22) leads to

∇y · [λt+Ke/ce0(I +∇yχ1)∇xc
e
0 + 2Ke(I +∇yχ2)∇xφ

e
0] = 0, (25a)

subject to

ne · [ε−αλt+Ke/ce0(I +∇yχ1)∇xc
e
0 + 2ε−αKe(I +∇yχ2)∇xφ

e
0 − 2εβA0B0] = 0, (25b)

Equations (24) and (25) define the closure variables χ1(y) and χ2(y). The coupling of χ1(y) and χ2(y)

with ce0(x), φe0(x),A0(x) andB0(x) through the boundary value problems (24) and (25) is incompatible with

the closure variables’ general representation postulated in (23). This inconsistency is resolved by imposing

the following constraints on the exponents α and β. If we choose β > max{0,−α} and α < 0, then the term

K?A0B0 is negligible relative to the smallest term in (24) and the nonlinear migration term ε−αλt2+K
e/ce0

relative to De. Under these constraints, (24) and (25) simplify to

∇y · [De(I +∇yχ1)∇xc
e
0] = 0 y ∈ B, (26a)

ne · [De(I +∇yχ1)∇xc
e
0] = 0 y ∈ Γ, (26b)
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Equation (26) can be satisfied for all x ∈ Ω if

∇y · [De(I +∇yχ1)] = 0, y ∈ B (27a)

ne · [De(I +∇yχ1)] = 0, y ∈ Γ. (27b)

Similarly, (25) yields

∇y · [λt+Ke(I +∇yχ1)] = 0, y ∈ B (28a)

ne · [λt+Ke(I +∇yχ1)] = 0, y ∈ Γ (28b)

and

∇y · [Ke(I +∇yχ2)] = 0, y ∈ B (29a)

ne · [Ke(I +∇yχ2)] = 0, y ∈ Γ (29b)

Consistency of (27) with (28) implies

∇y · (I +∇yχ1) = 0, y ∈ B (30a)

ne · (I +∇yχ1) = 0, y ∈ Γ (30b)

In (29), the conductivity tensor Ke is a function of concentration ce and potential φe. With an order ε

approximation Ke ≈ Ke(ce0, φ
e
0). Then, (29) can be simplified to

∇y · (I +∇yχ2) = 0, y ∈ B (31a)

ne · (I +∇yχ2) = 0, y ∈ Γ (31b)

As a result, χ1(y) = χ2(y) =: χe(y). The treatment of the closure variable is consistent with the approach

employed in [196]. The closure variable χe(y) defines the cell problem and describes the behavior of the

effective diffusion and conductivity tensors. Recalling the definitions of Dae and Pee in (2.30) enables

reformulation of the conditions in terms of α and β in the form of constraints 2)–4) of §2.2.3.1. Having

identified the conditions that guarantee homogenizability, the next step is to complete the derivation of the

effective mass transport equation (2.31).
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A.4 Terms of order O (1)

Collecting the zeroth-order term in the mass balance equation (5) and first-order term in the corre-

sponding boundary condition (7), leads to

∂tc
e
0 + ε−α(∂τmec

e
0 + εβ−γ∂τmsc

e
0) + ε1+β∂τrc

e
1

−∇x · [(De + ε−αλt2+K
e/ce0)(∇xc

e
0 +∇yc

e
1) + 2ε−αt+K

e(∇xφ
e
0 +∇yφ

e
1)]

−∇y · [(De + ε−αλt2+K
e/ce0)(∇xc

e
1 +∇yc

e
2) + 2ε−αt+K

e(∇xφ
e
1 +∇yφ

e
2)

− ε−αλt2+Ke(ce1/c
e
0)/ce0(∇xc

e
0 +∇yc

e
1)] = 0 (32)

subject to

ne · [(De + ε−αλt2+K
e/ce0)(∇xc

e
1 +∇yc

e
2) + 2ε−αt+K

e(∇xφ
e
1 +∇yφ

e
2)

− ε−αλt2+Ke/ce0(ce1/c
e
0)(∇xc

e
0 +∇yc

e
1) = 2εβ(A0B1 +A1B0)] (33)

since∇yc
e
0 = 0. Integrating (32) over B with respect to y and using the boundary condition (33) leads to

∂t〈ce0〉B + ε−α(∂τme〈ce0〉B + εβ−γ∂τms〈ce0〉B) + ε1+β∂τr〈ce1〉B

− η−1∇x · [(De?? + ε−αλt2+K
e??/〈ce0〉B)∇x〈ce0〉B + 2ε−αt+K

e??∇x〈φe0〉B]

− 2εβK?(〈A0〉B〈B1〉Γ + 〈A1〉Γ〈B0〉B) = 0 (34)

where K? = |Γ|/|B|, De?? = 〈De(I +∇yχ
e)〉e, Ke?? = 〈Ke(I +∇yχ

e)〉e and

〈A1〉Γ = (〈φs1〉Γ − 〈φe1〉Γ)cosh(〈φs0〉B − 〈φe0〉B − U), (35a)

〈B1〉Γ =
√
〈ce0〉B〈cs0〉B(1− 〈cs0〉B)

[
〈cs1〉Γ
2〈cs0〉B

+
〈ce1〉Γ
2〈ce0〉B

− 〈cs1〉Γ
2(1− 〈cs0〉B)

]
. (35b)

It must be noted that

〈ce〉B = 〈ce0〉B + ε〈ce1〉B +O(ε2),

〈φe〉B = 〈φe0〉B + ε〈φe1〉B +O(ε2). (36)
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Multiplying the temporal derivative of (36) by ε yields

ε∂t〈ce〉B = ε∂t〈ce0〉B + ε1+β∂τr〈ce0〉B + ε1−α(∂τme〈ce0〉B + εβ−γ∂τms〈ce0〉B) +O(ε2) (37)

Multiplying (34) by ε, adding the result to (19), and using (37), the following equation is obtained:

ε∂t〈ce〉B =εη−1∇x · [(De?? + ε−αλt2+K
e??/〈ce0〉)∇x〈ce0〉B + 2ε−αt+K

e??∇x〈φe0〉B]

+ 2εβK?[〈A0〉B〈B0〉B + ε(〈A0〉B〈B1〉Γ + 〈A1〉Γ〈B0〉B)] (38)

Combining this result with the expansions ε〈ce〉B = ε〈ce0〉B+O(ε2) = εce0 +O(ε2) and ε〈φe〉B = ε〈φe0〉B+

O(ε2) = εφe0 + O(ε2) while recalling the definitions of Da and Pe in (2.30) and assuming 〈ψs〉Γ ≈ 〈ψs〉s

and 〈ψe〉Γ ≈ 〈ψe〉B, where ψ = {c, φ}, leads to

η∂t〈ce〉B =∇x · [(De?? + ε−αλt2+K
e??/〈ce〉)∇x〈ce〉B + 2ε−αt+K

e??∇x〈φe〉B]

+ 2ηε−1K?Daef(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s), (39)

since

f(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s) ≈ 〈A0〉B〈B0〉B + ε(〈A0〉B〈B1〉Γ + 〈A1〉Γ〈B0〉B) +O(ε2) (40)

where f(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s) is defined by (2.33).

Similarly, collectingO(1)−terms in the charge balance equation in the electrolyte (9) andO(ε)−terms

in the boundary condition (10) while accounting for∇yc
e
0 = 0, leads to

∇x·[λt+Ke/ce0(∇xc
e
0 +∇yc

e
1) + 2Ke(∇xφ

e
0 +∇yφ

e
1)+

∇y·[λt+Ke/ce0(∇xc
e
1 +∇yc

e
2)− λt+Ke(ce1/c

e
0)/ce0(∇xc

e
0 +∇yc

e
1)+

+ 2Ke(∇xφ
e
1 +∇yφ

e
2)] = 0, (41)

115



subject to

ne · [λt+Ke/ce0(∇xc
e
1 +∇yc

e
2)− λt+Ke/c0(c1/c0)(∇xc

e
0 +∇yc

e
1)

+ 2Ke(∇xφ
e
1 +∇yφ

e
2)] = 2εα+β(A0B1 +A1B0). (42)

Both equations (41) and its boundary condition (42) are multiplied by ε, and added to (21) and (22) re-

spectively, and the resulting equation is integrated over B while employing the newly obtained boundary

conditions. This leads to

ε1−αη−1∇x · [(λt+Ke??/〈ce0〉)∇x〈ce0〉B + 2Ke??∇x〈φe0〉B]

= 2εβK?[〈A0〉B〈B0〉B + ε(〈A0〉B〈B1〉Γ + 〈A1〉Γ〈B0〉B)] (43)

where Ke?? = 〈Ke(I + ∇yχ
e)〉e. Following a similar procedure to that outlined for the mass transport

equation, (43) can be written as

Pee∇x · [(λt+Ke??/〈ce〉)∇x〈ce〉B + 2Ke??∇x〈φe〉B]

= 2ηε−1K?Daef(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s), (44)

where f(〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s) is defined by (2.33).

Equations (39) and (44) govern the dynamics of 〈ce〉B and 〈φe〉B in the electrolyte up to errors of

order ε2.
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Appendix B Homogenization in the electrode

The same procedure outline in Appendix A is followed for the derivation of the effective mass and

charge transport equations in the electrode. The derivations are reported for completeness. After setting

cjε (x, t) = cj(x,y, t, τr, τme, τms) and φjε (x, t) = φj(x,y, t, τr, τme, τms), j = {e, s}, equation (2.28) is

combined with (2.22) and (2.23) to obtain

∂cs

∂t
+ Dae

∂cs

∂τr
+ Pee

(
∂cs

∂τme
+

Dae
Das

∂cs

∂τms

)
= DaeDa−1

s ∇x · [Ds(∇xc
s + ε−1∇yc

s)]

+ ε−1DaeDa−1
s ∇y · [Ds(∇xc

s + ε−1∇yc
s)], x ∈ Sε (45)

and

∇x · [Ks(∇xφ
s + ε−1∇yφ

s)] + ε−1∇y · [Ks(∇xφ
s + ε−1∇yφ

s)] = 0, x ∈ Sε (46)

subject to

− ns · [Ds(∇xc
s + ε−1∇yc

s)] = Dasf(ceε, c
s
ε, φ

s
ε, φ

e
ε), x ∈ Γε (47)

and

− ns · [2PesK
s(∇xφ

s + ε−1∇yφ
s)] = Dasf(ceε, c

s
ε, φ

s
ε, φ

e
ε), x ∈ Γε (48)

respectively, where f(ceε, c
s
ε, φ

s
ε, φ

e
ε) is defined in (2.21).

B.1 Mass and charge transport asymptotic expansions

Substituting (2.29) and (2.30) into the mass transport equation in the electrode (45) leads to

ε−2{−εβ−γ∇y · (Ds∇yc
s
0)}+

ε−1{ε1+β∂τrc
s
0 − εβ−γ∇x · (Ds∇yc

s
0)− εβ−γ∇y · [Ds(∇xc

s
0 +∇yc

s
1)]}

ε0{∂tcs0 + ε−α(∂τmec
s
0 + εβ−γ∂τmsc

s
0) + ε1+β∂τrc

s
1 − εβ−γ∇x · [Ds(∇xc

s
0 +∇yc

s
1)

− εβ−γ∇y · [Ds(∇xc
s
1 +∇yc

s
2)]} = O (ε) , y ∈ S, (49)
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subject to

ε−1{ns · (Ds∇yc
s
0)}+ ε0{ns · [Ds(∇xc

s
0 +∇yc

s
1)] + 2εγA0B0)}+

ε{ns · [Ds(∇xc
s
1 +∇yc

s
2)] + 2εγ(A0B1 +A1B0)]} = O(ε2), y ∈ Γ, (50)

where A0, A1, B0 and B1 are defined in (8). Similarly, the charge transport equation (46) and the boundary

condition (48) combined with (2.29) and (2.30) yield

ε−2{∇y · (Ks∇yφ
s
0)}+ ε−1{∇x · (Ks∇yφ

s
0) +∇y · [Ks(∇xφ

s
0 +∇yφ

s
1)]}+

ε0{∇x · [Ks(∇xφ
s
0 +∇yφ

s
1) +∇y · [Ks(∇xφ

s
1 +∇yφ

s
2)]} = O (ε) , y ∈ S, (51)

subject to

ε−1{ns · (ε−δKs∇yφ
s
0)}+ ε0{ns · [ε−δKs(∇xφ

s
0 +∇yφ

s
1)] + 2εγA0B0}+

ε{ns · [ε−δKs(∇xφ
s
1 +∇yφ

s
2)] + 2εγ(A0B1 +A1B0)]} = O(ε2), y ∈ Γ, (52)

B.2 Terms of order O (ε−2)

Collecting the leading-order terms in the mass transport equation and corresponding boundary con-

ditions (49) and (50) leads to

∇y · (Ds∇yc
s
0) = 0, y ∈ S, (53)

subject to the interface condition

ns · (Ds∇yc
s
0) = 0, y ∈ Γ. (54)

Similarly, at the leading order the charge balance equation (51) and the boundary condition yield

∇y · (Ks∇yφ
s
0) = 0, y ∈ S, (55)
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subject to

ns · (Ks∇yφ
s
0) = 0, y ∈ Γ. (56)

The homogeneity of equations (53)- (56) ensures that the above boundary value problems have both a trivial

solution, i.e.

cs0 = cs0(x, t, τr, τre, τrs) (57a)

φs0 = φs0(x, t, τr, τre, τrs) (57b)

B.3 Terms of order O (ε−1)

At the following order, the mass transport equation (49) can be written as

ε1+γ∂τrc
s
0 −∇y · [Ds(∇xc

s
0 +∇yc

s
1)] = 0, y ∈ S (58)

since∇yc
s
0 ≡ 0, and it is subject to the boundary condition

ns · [Ds(∇xc
s
0 +∇yc

s
1)] + 2εγA0B0 = 0, y ∈ Γ. (59)

Integrating (58) over S with respect to y, while accounting for the boundary condition (59), and the period-

icity of the coefficients on the external boundary of the unit cell ∂Y , leads to

ε1+γ∂τrc
s
0 = −2ηεγK?A0B0. (60)

Equation (60) is combined with (58) to eliminate the temporal derivative and obtain

∇y · [Ds(∇xc
s
0 +∇yc

s
1)] + 2ηεγK?A0B0 = 0. (61)

Similarly, the order O(ε−1) of the charge balance equation (51) can be simplified to

∇y · [Ks(∇xφ
s
0 +∇yφ

s
1)] = 0, y ∈ S, (62)
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subject to

ns · [ε−δKs(∇xφ
s
0 +∇yφ

s
1)] + 2εγA0B0 = 0, y ∈ Γ. (63)

Equations (61) and (62) subject to (59) and (63) form a boundary value problem for cs1 and φs1, respectively.

As outlined in the previous appendix, a solution exist in the following form:

cs1(x,y, t, τr, τme, τms) = χ3(y) · ∇xc
s
0(x, t, τr, τme, τms) + cs1(x, t, τr, τme, τms),

φs1(x,y, t, τr, τme, τms) = χ4(y) · ∇xφ
s
0(x, t, τr, τme, τms) + φ

s

1(x, t, τr, τme, τms). (64)

Substitution of (64) into (61) and (59) leads to the following cell problem for the closure variable χ3(y),

2ηεγK?A0B0 +∇y · [Ds(I +∇yχ3)∇xc
s
0] = 0, y ∈ S, (65a)

subject to 〈χ3〉s = 0 and

ns · [Ds(I +∇yχ3)∇xc
s
0] + 2εγA0B0 = 0, y ∈ Γ. (65b)

The boundary-value problem (65) couples the pore scale with the continuum scale, in the sense that the

closure variable χ3(y)—a solution of the pore-scale cell problem (65) —is influenced by the continuum

scale through its dependence on the macroscopic concentration cs0(x). This coupling is incompatible with

the general representation (64). This inconsistency is resolved by imposing the following constraint on the

exponent γ, namely γ > 0. This condition on γ ensures that χ3 is independent of cs0, and the cell problem

(65) can be simplified to

∇y · [Ds(I +∇yχ3)] = 0, y ∈ S, (66a)

ns · [Ds(I +∇yχ3)] = 0, y ∈ Γ. (66b)

Similarly, substitution of (64) into the O(ε−1)-charge balance equation (62) and its boundary condition (63)

leads to the following cell problem for the closure variable χ4(y),

∇y · [Ks(I +∇yχ4)∇xφ
s
0] = 0, y ∈ S; (67a)
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subject to 〈χ4〉s = 0 and

ns · [ε−δKs(∇yχ4 + I)]∇xφ
s
0] + εγ(A0B0) = 0, y ∈ Γ, (67b)

where χ4(y) is a Y -periodic vector field. Separation between pore- and continuum-scales requires γ+δ > 0.

Under this condition (67), simplifies to

∇y · [Ks(I +∇yχ4)] = 0, y ∈ S, (68a)

ns · [Ks(I +∇yχ4)] = 0, y ∈ Γ. (68b)

In (66) and (68), the diffusion and conductivity tensors are functions of concentration ce and potential φe.

With an order ε approximation De ≈ De(ce0, φ
e
0) and Ke ≈ Ke(ce0, φ

e
0). Then, χ4 = χ3 =: χs(y), where

χs is a solution of the closure problem

∇y · (I +∇yχ
s) = 0, y ∈ S, (69a)

ns · (I +∇yχ
s) = 0, y ∈ Γ. (69b)

B.4 Terms of order O (ε0)

At the leading order, the mass transport equation in the electrode (49)

∂tc
s
0 + ε−α(∂τmec

s
0 + εβ−γ∂τmsc

s
0) + ε1+β∂τrc

s
1 − εβ−γ∇x · [Ds(∇xc

s
0 +∇yc

s
1)]

− εβ−γ∇y · [Ds(∇xc
s
1 +∇yc

s
2)] = 0, y ∈ S, (70)

subject to

ns · [Ds(∇xc
s
1 +∇yc

s
2)] + 2εγ(A0B1 +A1B0) = 0, y ∈ Γ. (71)

Integrating (70) over S with respect to y and using the interface condition (71) leads to

∂t〈cs0〉s + ε−α(∂τme〈cs0〉s + εβ−γ∂τms〈cs0〉s) + ε1+β∂τr〈cs1〉s − εβ−γ∇x · (Ds??∇xc
s
0)

+ 2εβ−γηK?(〈A0〉B〈B1〉Γ + 〈A1〉Γ〈B0〉B) = 0, (72)
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where Ds?? = 〈Ds(I +∇yχ
s)〉s. Similarly, the leading order of the charge transport equation is

∇x · [Ks(∇xφ
s
0 +∇yφ

s
1) +∇y · [Ks(∇xφ

s
1 +∇yφ

s
2)] = 0, y ∈ S, (73)

subject to

ns · [ε−δKs(∇xφ
s
1 +∇yφ

s
2)] + 2εγ(A0B1 +A1B0) = 0, y ∈ Γ. (74)

Multiplying both (73) and (74) by ε and adding them to (58) and (59), respectively, and then integrating over

S, leads to the effective equation

ε1−δ∇x · (Ks??∇x〈φs0〉s) = εγηK?〈A0〉B〈B1〉Γ + 〈A1〉Γ〈B0〉B), (75)

where Ks?? = 〈Ks(I +∇yχ4)〉s.

Following the procedure outlined in A.4 and assuming that 〈χs〉s ≈ 〈χs〉Γ, equations (72) and

(75) lead to the macroscopic equations for mass and charge transport in the electrode (2.37) and (2.38),

respectively.
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Appendix C Development of the FHM Model and Parameter Identifi-

cation Studies

This appendix aims to serve as a user guide for the development of the FHM model that describes

mass and charge transport of lithium in the active particle and electrolyte phases of a lithium-ion cell. This

model is developed in COMSOL Multiphysics®, a software platform designed for the modeling and sim-

ulation of physics-based problems in electrical, mechanical, chemical, and electrochemical domains. The

user-friendly interface of COMSOL enables the development of different models using pre-defined and user-

defined mathematical equations. COMSOL Multiphysics® version 5.0 was used for the development of the

FHM model.

Following the development of the model, the implementation of model parameter identification

studies using a co-simulation framework involving COMSOL and MATLAB® software is presented. This is

possible due to the presence of a recently developed COMSOL feature called the MATLAB® LiveLinkTM that

establishes an interface for communication between both the software platforms. Thanks to this feature, sim-

ulation results from the COMSOL environment can be exported to Matlab for data processing and analysis.

Variables can be monitored and modified in the Matlab platform and transferred to the COMSOL interface

in a systematic manner, which yields an efficient way of optimizing the parameters involved in the study of

complex systems.

The implementation of the FHM model in 1-D Cartesian coordinates, in the direction perpendicular

to the current collectors, is presented here. In the first step, all the model parameters that are part of the

mathematical equations of the 1-D FHM model are defined in the COMSOL Model Builder under the Global

node. Both constant parameters as well as parameters that are a function of time or a time-dependent model

variable are defined here. Following this step, the 1-D geometry is defined in which the coupled non-linear

PDEs of the FHM are resolved as a function of time. The anode, separator, and cathode domains are defined

in this step. The next step is to define the model variables for the respective domains. A systematic and

organized approach to define the model variables for each domain makes it easier to identify anomalies

during simulations.

After defining the model parameters and the geometry in which the model variables must be re-

solved, the following step involves the selection of a pre-defined physics-based interface for resolving the

variables of the FHM model. This is achieved using the Add Physics feature of COMSOL. Suitable physics-

based interfaces are selected for each variable and the coefficients of the pre-defined equations are defined
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according to the mathematical formulation of the mass and charge transport equations. The final step before

the beginning of simulations is to define the mesh and solver settings for the resolution of the model variables.

A time-dependent study is conducted to evaluated the dynamic variation of the model variables as a function

of time. Following the completion of simulations, the results can be analyzed for each model variable at each

location in the domain that they were resolved. The desired results can then be exported from the COMSOL

environment in the form of a spreadsheet. Finally, the use of the MATLAB® LiveLinkTM tool to perform the

co-simulation studies is presented, and the identification procedure to optimize the parameters of the FHM

COMSOL model using the PSO technique is summarized at the end of this appendix. Additional information

about the use of the MATLAB® LiveLinkTM feature of COMSOL can be obtained from [197, 198].
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Creating a 1-D COMSOL Model

Step A1

Step A2

Step A4

Step A3

Figure 1: Sequence of steps for the creation of a 1-D COMSOL model for time-dependent studies.

The following steps must be followed to create a 1-D COMSOL model, and is depicted in Fig. 1:

1. Step A1: When a new COMSOL .mph file is opened for the very first time, the spatial domain in which

the model is developed must be defined. Under Select Space Dimension, the 1D tab must be selected.

2. Step A2: The next step is to select the physics-based interface to define the equations of the model.

Since the equations of the FHM model are PDEs, the Coefficient Form PDE interface is chosen from

the Mathematics/PDE Interfaces icon and added using the Add tab.

3. Step A3: This step can be modified at any time before beginning the simulations, but it is a good

practice to define the model variable and provide its dimensional unit. Under Review Physics Interface,

the field name and the name of the dependent variable is defined. Then the dimensions of the variable

can be selected from the list of available options, and confirmed using the Study tab.
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4. Step A4: The last step in this phase is to select the type of study that will be performed using the model.

Among the pre-defined types of studies for the selected physics interface, click on Time Dependent and

confirm this study using the Done tab.

Defining Model Parameters and Input

Initialize 
Parameters

Model 
Builder

Geometry

Model 
Equations

Mesh 
and 

Solver

Analyze 
and 

Export 
Results

Model Parameters

1-D Geometrical Domain

Add Physics

Figure 2: An overview of different features of the COMSOL interface used for the modeling and simulation
of the FHM model.

Figure 2 presents a general overview of commonly used features in the COMSOL software platform

to develop a physics-based model. The equations of mass and charge transport of the FHM model are sum-

marized in Table 4.1. The four model variables that must be resolved as a function of time are c̄s, c̄e, φ̄s, and

φ̄e. In COMSOL, they are represented by the variables cs, ce, ps, and pe, respectively. The boundary and the

initial conditions for these variables are summarized in Table 4.5 and Table 4.6, respectively. Table 1 sum-

marizes the representation of the different model parameters in COMSOL. The effective transport properties

are determined using the approach presented in section §2.3. The pore-scale parameters Ke and De are a

function of c̄e. They are defined in COMSOL as Ke and De, respectively. They are used to define the corre-

sponding effective coefficients in the FHM model. Additional parameters are defined for the time-dependent

study. After creating the 1-D model, these parameters must be defined and initialized next.
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Table 1: Parameters of the FHM model and their corresponding representation in COMSOL.

Parameter COMSOL
Representation Parameter COMSOL

Representation

Acell A cell ηe,p eps ep

cs,n,max cs neg max Lneg L neg

cs,p,max cs pos max Lsep L sep

c̄e(t = 0) ce init Lpos L pos

Deff
e,n De(ce)×(0.192) Keff

e,n Ke(ce)×(0.192)

Deff
e,sep De(ce)×(0.244) Keff

e,sep Ke(ce)×(0.244)

Deff
e,p De(ce)×(0.254) Keff

e,p Ke(ce)×(0.254)

Deff
s,n Ds neg eff Keff

s,n (sigma neg)×(0.584)

Deff
s,p Ds pos eff Keff

s,p (sigma pos)×(0.513)

ηs,n eps n c̄s,n(t = 0) (xn init)×(cs neg max)

ηs,p eps p c̄s,p(t = 0) (xp init)×(cs pos max)

ηe,n eps en Rc R c

ηe,sep eps sep t+ t plus

U0,n Eq neg U0,p Eq pos

JLi J Li Iapp I app

The following steps must be followed to initialize model parameters and input:

1. Step B1: The first icon in the Model Builder is the Global icon. Use the right click button on Definitions

and select Parameters. Each model parameter must be defined with a numerical value and its unit. For

convenience, the intercalation current density term of the FHM model is expressed in COMSOL in the

following manner:

JLi,j =
ε−1
j K∗| ηe,j
Lj

· kj ·
√
c̄e,j · c̄s,j ·

(
1− c̄s,j

cs,max,j

)
· 2 sinh

( F

2RT

[
φ̄s,j − φ̄e,j − U0,j

])
= k?j ·

√
c̄e,j · c̄s,j ·

(
1− c̄s,j

cs,max,j

)
· 2 sinh

( F

2RT

[
φ̄s,j − φ̄e,j − U0,j

])
, (76)

where k?j [A/mol] is used to express the electrode intercalation reaction rate. In COMSOL, kn star and

kp star are used to express the anode and cathode reaction rates, respectively.

2. Step B2: The non-constant parameters of the model are the anode OCP Eq neg, the cathode OCP

Eq pos, the pore-scale electrolyte diffusion De, and the pore-scale electrolyte conductivity Ke. The

OCP of each electrode is a function of its stoichiometric coefficient. De and Ke are a function of ce.

An interpolation function is used to input the values of these parameters. Use the right click button on
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Step B1 Steps B2 and B3

Figure 3: Initialization of the constant model parameters and Ke as a function of the model variable ce.

Definitions and select Interpolation from the Functions icon.

3. Step B3: The parameters of the FHM model are initialized as shown in Fig. 3. To define Ke, a notepad

source file, Ke 296.txt, is created with two columns of data. The first column consists of a range of

ce values, and the second column consists of the corresponding Ke values. This file is uploaded into

COMSOL, and a piecewise cubic function is used to interpolate the value of Ke for different ce values.

4. Step B4: Repeat steps B2 and B3 for the other parameters. Eq neg is defined in terms of xn init, Eq pos

in terms of xp init, De in terms of ce, and I app is defined as a function of time.

Defining the Geometry

The following steps must be followed to create the 1-D geometry, and is depicted in Fig. 4:

1. Step C1: Use the right click button on Geometry 1 and select Interval. This will allow the creation of

the three domains of the 1-D model: anode, separator, and cathode.

2. Step C2: Under the Interval settings, change the number of intervals to Many. The 1-D geometry is

created by defining the coordinates of the end points of each domain. Since there are three domains,
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Anode Separator Cathode

Figure 4: Creating the 1-D geometry in which the four variables of the FHM model are resolved.

four end points must be defined in total.

3. Step C3: Corresponding to Points, provide the following input: (0, L neg, L neg + L sep, L neg +

L sep + L pos). Then click on the Build All Objects tab to generate three domains of lengths L neg,

L sep, and L pos, respectively.

Defining Model Parameters in each Domain

Domain 1 Domain 2 Domain 3

Figure 5: Defining the parameters in the anode domain of the 1-D model.

The steps to define the parameters of the FHM model for each of the three domains is presented here.

Fig. 5 depicts the model parameters that are defined in the anode domain of the 1-D model. The following

steps must be executed:
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1. Step D1: Use the right click button on Definitions that is located under the Component 1 icon. Select

the first option Variables, and rename it as Anode Variables.

2. Step D2: In the Variable settings, change the geometric entity level to Domain. Change the selection

to Manual, and select the first domain 1 that represents the anode.

3. Step D3: Under the Variable tab, the different model parameters are defined. The parameters defined in

the anode domain are: effective diffusion parameters Ds eff and De eff, effective conductivity param-

eters Ks eff and Ke eff, electrolyte volume fraction eps e, thickness L, initial active material lithium

concentration cs init, initial electrode potential ps init, and the intercalation current density J Li, which

is the COMSOL representation of the term JLi,j in the FHM model.

4. Step D4: Repeat the steps D1 to D3 for defining the model parameters in the second domain 2 for the

separator, and the third domain 3 for the cathode. The parameters defined in the cathode are the same

as the ones defined in the anode. The values of the corresponding model parameters must be entered

for the cathode domain. In the separator domain, only the electrolyte transport equations are resolved.

The parameters defined in this domain are: effective diffusion De eff, effective conductivity Ke eff,

and electrolyte volume fraction eps e. Since there are no active particles in the separator, there are no

reactions involved. Hence the value of J Li is set to zero.

Defining the FHM Model Equations

a) Model Variable cs

Figure 6 depicts the approach to define the electrode mass transport equation in the 1-D model. The

following steps must be executed:

1. Step E1: The first step is to add a physics-based interface to resolve the FHM model variables. cs

is chosen first and the electrode mass transport equation is defined initially. Click on the Physics tab

shown in Fig. 2, and select Add Physics. Select the Coefficient Form PDE interface that is located in

Mathematics/PDE Interfaces. Confirm this selection by clicking on Add to Component. This study

interface is then added to Component 1 where the geometry and model parameters were defined earlier.

This step is very similar to step A2 depicted in Fig. 1.
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Step E3

Outcome of Step E1

Step E5

Step E6

𝑥𝑥 = 0

𝑥𝑥 = 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑥𝑥 = 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠

Figure 6: Defining the electrode mass transport equation to resolve the variable cs.

2. Step E2: In the Coefficient Form PDE (cs) settings, under Domain Selection, manually select domains

1 and 3 where cs will be resolved. Define the units of the dependent variable quantity and the source

term quantity exactly as shown in step A3 of Fig. 1.

3. Step E3: Modify the coefficients of the default coefficient form PDE equation to represent the mass

transport equation to resolve ps. Set the value under the Diffusion Coefficient to Ds eff, the value under

the Source Term to -J Li/F, and the Damping or Mass Coefficient to 1. This is depicted in Fig. 6. All

the other coefficients are set to 0.

4. Step E4: By default, zero flux is selected at the locations x = 0 of domain 1, and x = L neg + L sep +

L pos of domain 3. These are the correct settings, so no additional modification is necessary.

5. Step E5: Under Initial Values 1, set the initial value for cs to cs init, and the value of the initial time

derivative of cs to zero.
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Outcome of Step F1

𝑥𝑥 = 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝

Step F3

Step F6

Step F7

Figure 7: Defining the electrode charge transport equation to resolve the variable ps.

6. Step E6: Use the right click button on Coefficient Form PDE (cs) and select Flux/Source 1. Set the

value under Boundary Flux/Source to (-J Li/F)×L. Following this, in the Flux/Source settings, under

Boundary Selection, manually select boundaries 2 and 3. Boundary 2 represents the location x = L neg,

which is an end point of domain 1. Boundary 3 represents the location x = L neg + L sep, which is an

end point of domain 3. These locations are highlighted by the blue dots in Fig. 6.

b) Model Variable ps

Figure 7 depicts the approach to define the electrode charge transport equation in the 1-D model.

The following steps must be executed:

1. Step F1: Repeat step E1 to add a physics-based interface to resolve the FHM model variable ps.

2. Step F2: In the Coefficient Form PDE (ps) settings, under Domain Selection, manually select domains

1 and 3 where ps will be resolved. Under the Units tab, select Electric potential (V) for the dependent
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variable quantity, and provide the units [A/m3] for the source term quantity. This is similar to step A3

that is depicted in Fig. 1.

3. Step F3: Modify the coefficients of the default coefficient form PDE equation to represent the charge

transport equation to resolve ps. Set the value under the Diffusion Coefficient to -Ks eff, and the value

under the Source Term to -J Li. This is depicted in Fig. 7. All the other coefficients are set to 0.

4. Step F4: Verify that zero flux is applied at the locations x = L neg of domain 1 and x = L neg + L sep

of domain 3. This must be applied by default.

5. Step F5: Under Initial Values 1, set the initial value for ps to ps init, and the value of the initial time

derivative of ps to zero.

6. Step F6: Use the right click button on Coefficient Form PDE (ps) and select Constraint 1. Set the value

under Constraint to ps.

7. Step F7: Use the right click button on Coefficient Form PDE (ps) and select Flux/Source 1. Set the value

under the Boundary Flux/Source to -I app(t/1[s])/A cell. Following this, in the Flux/Source settings,

under Boundary Selection, manually select boundary 4. Boundary 4 represents the location x = L neg

+ L sep + L pos, which is an end point of domain 3. This location is highlighted by the blue dot in

Fig. 7.

c) Model Variable ce

Figure 8 depicts the approach to define the electrolyte mass transport equation in the 1-D model.

The following steps must be executed:

1. Step G1: Repeat step E1 to add a physics-based interface to resolve the FHM model variable ce.

2. Step G2: In the Coefficient Form PDE (ce) settings, under Domain Selection, manually select domains

1, 2, and 3 where ce will be resolved. Provide the same values for the dependent variable quantity and

the source term quantity as done for the variable cs in step E2.

3. Step G3: Modify the coefficients of the default coefficient form PDE equation to represent the mass

transport equation to resolve ce. Set the value under the Source Term to J Li/F, the value of the Damping

or Mass Coefficient to eps e, and the value of the Conservative Flux Source to:

(-1)×
[

(De eff)*cex + (-1)×(R×T×t plus2×Ke eff/(F2×ce))×cex
]
.
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Outcome of Step G1

Step G4

𝑥𝑥 = 0
𝑥𝑥 = 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐿𝐿𝑝𝑝𝑜𝑜𝑜𝑜

Step G5

Step G3

Figure 8: Defining the electrode charge transport equation to resolve the variable ce.

The term cex in COMSOL represents the partial derivative of the variable ce with respect to x. This is

depicted in Fig. 8. All the other coefficients are set to zero. Note that the electrolyte mass and charge

transport equations are coupled because of the presence of both variables ce and pe in these model

equations.

4. Step G4: Verify that zero flux is applied at the locations x = 0 of domain 1 and x = L neg + L sep +

L pos of domain 3. This must be applied by default. These locations are highlighted by the blue dots

in Fig. 8.

5. Step G5: Under Initial Values 1, set the initial value for ce to ce init, and the value of the initial time

derivative of ce to zero.
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d) Model Variable pe

Outcome of Step H1

Step H4

𝑥𝑥 = 0
𝑥𝑥 = 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐿𝐿𝑝𝑝𝑜𝑜𝑜𝑜

Step H3

Step H5

Figure 9: Defining the electrode charge transport equation to resolve the variable pe.

Figure 9 depicts the approach to define the electrolyte charge transport equation, following the steps

listed . The following steps must be executed:

1. Step H1: Repeat step E1 to add a physics-based interface to resolve the FHM model variable pe.

2. Step H2: In the Coefficient Form PDE (pe) settings, under Domain Selection, manually select domains

1, 2, and 3 where pe will be resolved. Under the Units tab, select Electrolyte potential (V) for the

dependent variable quantity, and provide the units [A/m3] for the source term quantity.

3. Step H3: Modify the coefficients of the default coefficient form PDE equation to represent the charge

transport equation to resolve pe. Set the value under the Source Term to -J Li, and the value of the

Conservative Flux Source to:[
(Ke eff)*pex + (R×T×t plus×Ke eff/(F×ce))×cex

]
.
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The term pex in COMSOL represents the partial derivative of the variable pe with respect to x. This is

depicted in Fig. 9. All the other coefficients are set to zero.

4. Step H4: Verify that zero flux is applied at the locations x = 0 of domain 1 and x = L neg + L sep +

L pos of domain 3. This must be applied by default. These locations are highlighted by the blue dots

in Fig. 9.

5. Step H5: Under Initial Values 1, set the initial value for pe to 0, and the value of the initial time

derivative of pe to zero.

Defining the Mesh and Solver Settings

Defining the Mesh

Figure 10: Defining the mesh to resolve the FHM model variables.

Following the setup of the four model variables using the Coefficient Form PDE physics-based

study interface, the next steps involve the setup of the mesh and solver settings. The following steps must be

executed:

1. Step I1: Click on Mesh 1. In the mesh settings, under the sequence type, select Physics-controller

mesh. Under the element size, select Extremely fine. This selection and its corresponding outcome are

depicted in Fig. 10.

2. Step I2: Under the Study 1 tab, click on Step 1: Time Dependent. Under the study settings, select a

time unit of s, and provide the following range for the simulation time:

range(t init,t sample,t final)

t init represents the time at the beginning of the simulation, and is set to 0. t final represents the time

at the end of the simulation. Based on experimental data from the capacity test conducted on an 18650

NMC cell at 23◦C, it is set to 3515 s. t sample represents the time increments at which data points are
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stored during simulation, and it is set to 1. The relative tolerance is set to 0.001 and activated. The

model is considered converged when the estimated error in the iterative solver is less than 0.001 [199].

3. Step I3: Under the Time-Dependent Solver 1 tab, click on Direct. Among the different solvers, choose

the PARDISO solver. It is a direct solver based on LU decomposition, is the fastest solver among the

available options in COMSOL, and is capable of storing the solution out-of-core, thereby transfering

some of the computational burden to the hard-disk [199].

4. Step I4: The four model variables are fully coupled non-linear PDEs, and must be resolved simultane-

ously. To handle any computational issues associated with the high non-linearity of the model, click

on Fully Coupled 1 and under the Method and Termination tab, select the Automatically highly non-

linear (Newton) method. Then, set the termination technique to Tolerance and increase the maximum

number of iterations to 800. This will enable sufficient number of iterations to ensure that the model

converges based on the initially defined tolerance value. The execution of steps I2 to I4 is depicted in

Fig. 11.

Defining the Stopping Criteria

To ensure that there are no numerical instabilities developed due to the generation of complex val-

ues of the intercalation current density term J Li, three stopping criteria are defined in the model. Model

simulation is terminated at the time instant when the condition defining any of the three stopping criteria is

breached. These conditions are defined based on the allowable operating range of the lithium-ion cell for

which the FHM model is used to predict its voltage response. The following steps must be implemented to

setup and activate these conditions during simulations:

1. Step J1: The first stopping criteria is to ensure that lithium concentration in the anode remains positive

at all times during the simulation. A minimum value of 32
[
molm−3

]
is chosen, which is approximately

0.1% of the initial anode lithium concentration. Use the right click button on Definitions that is located

under the Component 1 icon. Move the cursor to Component Couplings and select Integration from

the available options. Rename the operator name as Positive Anode cs. Under the source selection tab,

select Boundary for the geometric entity level, and manually select boundary 2. Under the Advanced

tab, set the method to Integration, the integration order to 4, and the frame to Spatial (x, y, z). This

means that the lithium concentration dynamics is monitored at each time instant at the location x =

L neg.
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Step I2

Step I3

Step I4

Figure 11: Defining the solver settings to resolve the FHM model variables.

2. Step J2: The second stopping criteria is to ensure that lithium concentration in the cathode does not

exceed its maximum storage limit at all times during the simulation. A maximum value of
(
cs pos max

- 32
) [

molm−3
]

is chosen, which ia approximately 99.9% of the maximum cathode lithium storage

limit. Follow the same steps as step J1, but rename the operator name as Limit Cathode cs and select

boundary 3 instead of boundary 2.

3. Step J3: Since the minimum operating voltage limit of the 18650 NMC cell is 2.50 V, the final stopping

criteria is to ensure that the model-predicted cell voltage does not drop to lower than 2.50 V during

the simulation. Under the Time-Dependent Solver 1 tab, click on Direct. The equation for the model-

predicted voltage as a function of time is described in equation (4.9). Since the anode electrostatic

potential is constrained to zero, and the electrostatic potential in the cathode is the same at all locations

in domain 3, the difference between the cathode electrostatic potential and the term (I app×R c) is

monitored at each time instant. The same point defined in step J2 can be used to monitor the voltage

dynamics.
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Step J1 Step J2

Step J4

Figure 12: Defining the stopping criteria for the FHM model simulations.

4. Step J4: The final step in this process is to define the three stop conditions. Click on Stop Condition 1,

depicted earlier in Fig. 11, and define these conditions under Stop Expressions as follows:

Stopping Criteria 1 comp1.Positive Anode cs(comp1.cs) < 32

Stopping Criteria 2 comp1.Limit Cathode cs(comp1.cs) > (cs pos max-32)

Stopping Criteria 3 comp1.Limit Cathode cs(comp1.ps) - I app(t/1[s])×R c ≤ 2.50

For each of the stop expressions, set the Stop If condition to True (≥1) and activate them. Under

the Output at Stop tab, choose Steps before and after stop in order to store the solution of the model

simulations until the time instant when a stop condition was violated. Enabling the warning sign

indicates the stopping criteria that was violated and the time instant at which it occurred. The execution

of steps J1 to J4 is depicted in Fig. 12.
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Analysis and Export of Results

Step K1

Step K2

Step K3

Model-Predicted Voltage 

Figure 13: Analysis of the model-predicted voltage at the end of the simulation.

At the end of a simulation, the resolved values of the four model variables as a function of time and

their respective domain of resolution are displayed under the Results tab. The following steps describe how

to analyze the results and export data from the COMSOL environment:

1. Step K1: Use the right click button on the Results tab and select 1D Plot Group. Rename the resulting

icon as V cell. Use the right click button on V cell and select Point Graph.

2. Step K2: The model-predicted cell voltage is the difference between the cathode electrostatic potential

ps and the voltage loss at the current collectors, (I app×R c). Under Point Graph, select the data set

Study 1/Solution 1 that consists of the results from the simulations. Under time selection, choose all the

data points from beginning to end of the simulation. Then manually select the location of the cathode

current collector, x = L neg + L sep + L pos, which is boundary 4.
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Step K4

Figure 14: Exporting the FHM model-predicted voltage data from the COMSOL environment.

3. Step K3: Under the y-Axis Data, the expression for the model-predicted voltage is provided:

(ps - I app(t/1[s])×R c)

Under the plot description, type FHM Model-Predicted Cell Voltage. Finally, click on the Plot icon.

The sequence of steps J1 to J3 and the resulting plot are depicted in Fig. 13.

4. Step K4: To export the model-predicted voltage data from the COMSOL platform, start by using the

right click button on the Point Graph tab located under V cell. Select Add Plot Data to Export. The

export icon is generated along with a tab for V cell. Under this tab, provide the name of the file,

the folder directory where the file must be saved, and the format in which data is saved. Choose

the Spreadsheet data format from the available options, and click on the Export tab located at the top.

This will save the data in a .csv file format, and be opened using Microsoft® Excel® software. This

step is depicted in Fig. 14.
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Use this icon to open the 
FHM COMSOL model

Use this icon to initiate 
Matlab® Livelink®

Matlab Interface

COMSOL 
Initialization 
Parameters

Exported 
Data File
PSO Files

Experimental 
Data

Matlab Files for the Identification Study

Figure 15: Matlab interface for conducting parameter identification studies using the FHM COMSOL model.

MATLAB® LiveLinkTM for Model Parameter Identification

The parameter identification study using the co-simulation framework of COMSOL Multiphysics®

and MATLAB®, the MATLAB® LiveLinkTM is launched using the COMSOL with Matlab icon shown in

Fig. 15. This opens the MATLAB interface and initiates communication with the COMSOL interface. The

parameter identification study is conducted using the PSO algorithm. As depicted in Fig. 15, all the files

required to conduct the parameter identification study must be located in the same folder directory. The

following documents are required: a) Script files to execute the PSO algorithm, b) A MATLAB script

file FHM Setup.m to setup the problem for the identification study and a MATLAB function script file

FHM ID.m to run the COMSOL model and evaluate the cost function at the end of each iteration, c) A

.mat file containing experimentally measured current, voltage, and time information, d) Text files contain-

ing data for the initialization of certain COMSOL parameters, and e) Exported data file from the COMSOL

environment that consists of the model-predicted voltage response as a function of time.
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The objective of the identification study is to determine the most optimum values of the model

parameters that minimize the RMS error between the experimental and model-predicted voltage response as

much as possible. The 14 parameters of the FHM COMSOL model are identified in the PSO-based study

depicted in Fig. 16. Initial values, and upper and lower bounds are provided for each of these parameters,

which specify the range in which these parameters can vary during the iterations. The pso.m script file

consists of different options associated with the identification study, and some of them are modified to suit

the requirements of the current study. The swarm population size is set to 200 and the total number of

generations is set to 10. The stall limit indicates the number of successive generations with no change in the

cost function, and is used as a criteria to terminate the identification study. The values for the other options

depicted in Fig. 16 have been chosen according to [186].

Figures 17 and 18 depict the MATLAB function script file to initialize and simulate the COMSOL

model at each iteration, export the model-predicted voltage data from the COMSOL environment and analyze

them in MATLAB, evaluate the cost function, and provide the updated set of parameter values for the next

iteration. The first step involves loading the experimental data. Then the parameters of the FHM model are

initialized in MATLAB. For the very first iteration, the parameter values are selected from the Initial Position

vector. For successive iterations, the PSO algorithm provides the parameter values. The FHM COMSOL

model is then loaded and initialized through the MATLAB interface. It is not necessary to have the COMSOL

model open during identification. The simulation of the COMSOL model for all the iterations is completely

controlled from the MATLAB interface. The model.param.set feature of LiveLinkTM is used to input the

corresponding simulation time parameter values and the model parameter values for every iteration.

The model.study feature is used to simulate the COMSOL model for one complete run from the

initial to the final time of simulation that was defined earlier in the code in Fig. 17. The solver configuration

settings for every simulation run is defined using the model.sol feature of LivelinkTM and has been chosen

according to [197]. At the end of the simulation, data is exported from the COMSOL environment in a

.csv spreadsheet format using the model.result.export feature. This data is analyzed in MATLAB and the

model-predicted voltage vector as a function of time is saved in the workspace to calculate the cost function.

For certain values of the model parameters, the predicted voltage can either reach the lower cut-off

value of 2.50 V before the final time of simulation, or have a value greater than 2.50 V after the final time

of simulation. A penalty function is added to the calculated RMS error in these cases. This ensures that the

PSO algorithm optimizes the parameter values such that the model-predicted voltage reaches lower cut-off

voltage at time instant (t = t final). At the end of the parameter identification study, a state.mat MATLAB file
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is generated which contains the optimized values of the identified parameters of the FHM model. The results

of the parameter identification studies presented in this dissertation are summarized in sections §4.5 and §4.6

of Chapter 4.

close all; 
clear all; 
clc; 
warning off; 

%% PSO Identification Setup 

tic 

% Params ->  L_neg  L_sep  L_pos     R_c  A_cell  xn_init  xp_init 
Initial_position1  = [50e-6  25e-6  40e-6  0.026  0.1008  0.790  0.34]; 
Lower_bound1  = [45e-6  20e-6  35e-6  0.025  0.1016  0.760  0.32]; 
Upper_bound1  = [55e-6  28e-6  45e-6  0.030  0.1280  0.800  0.36]; 

% Params ->  cs_neg_max  cs_pos_max  eps_n  eps_p  eps_en  eps_sep  eps_ep 
Initial_position2  = [28000  48000  0.58  0.58  0.30  0.40  0.30]; 
Lower_bound2  = [26000  45000  0.54  0.54  0.28  0.36  0.28]; 
Upper_bound2  = [31500  51000  0.64  0.62  0.40  0.45  0.40]; 

Initial_position  = [Initial_position1 Initial_position2]; 
Lower_bound  = [Lower_bound1  Lower_bound2]; 
Upper_bound  = [Upper_bound1  Upper_bound2]; 

% Options 
options  = pso; 
options.PopulationSize  = 200; 
options.PlotFcns  = @psoplotbestf; 
options.Display  = 'iter'; 
options.Vectorized  = 'off'; 
options.TolFun  = 0.5e-6; 
options.Generations  = 10; 
options.StallGenLimit  = 10; 
options.InitialPopulation  = Initial_position; 
options.CognitiveAttraction = 0.3; 
options.SocialAttraction  = 3.6; 
options.BoundaryMethod  = 'absorb'; 

% Problem 
problem = struct; 
problem.fitnessfcn  = @FHM_ID; 
problem.nvars  = 14; 
problem.lb  = Lower_bound; 
problem.ub  = Upper_bound; 
problem.options  = options; 

% Optimization 
[x,fval,exitflag,output] = pso(problem); 

toc

Figure 16: MATLAB code to setup the PSO algorithm for parameter identification.
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function [ RMS ] = FHM_ID( x ) 
  
% Load Experimental Data 
  
load CTID_1C_296K.mat; 
V_exp = voltage_296K_1C; % Experimentally measured voltage 
time_exp = time_296K_1C; 
  
% Identification Parameters 
  
L_neg                = x(1); 
L_sep                = x(2); 
L_pos                = x(3); 
R_c                   = x(4); 
A_cell               = x(5); 
xn_init               = x(6); 
xp_init               = x(7); 
cs_neg_max     = x(8); 
cs_pos_max     = x(9); 
eps_n               = x(10); 
eps_p               = x(11); 
eps_en             = x(12); 
eps_sep           = x(13); 
eps_ep             = x(14);   
  
% Load FHM Comsol Model 
  
model = mphload('FHM_NMC_T23.mph'); 
  
t_init = 0; 
t_sample = 1; 
t_final = time_exp(end); 
  
model.param.set('t_init', [num2str(t_init)  '[s]']); 
model.param.set('t_final', [num2str(t_final)  '[s]']); 
model.param.set('t_sample', [num2str(t_sample)  '[s]']); 
  
% Load Parameters 
  
model.param.set('L_neg', [num2str(L_neg)  '[m]']); 
model.param.set('L_sep', [num2str(L_sep)  '[m]']); 
model.param.set('L_pos', [num2str(L_pos)  '[m]']); 
model.param.set('R_c', [num2str(R_c)  '[ohm]']); 
model.param.set('A_cell', [num2str(A_cell)  '[m^2]']); 
model.param.set('xn_init', [num2str(xn_init)  '[m/m]']); 
model.param.set('xp_init', [num2str(xp_init) '[m/m]']); 
model.param.set('cs_neg_max', [num2str(cs_neg_max)  '[mol/m^3]']); 
model.param.set('cs_pos_max', [num2str(cs_pos_max)  '[mol/m^3]']); 
model.param.set('eps_n', [num2str(eps_n)  '[m/m]']); 
model.param.set('eps_p', [num2str(eps_p)  '[m/m]']); 
model.param.set('eps_en', [num2str(eps_en)  '[m/m]']); 
model.param.set('eps_sep', [num2str(eps_sep)  '[m/m]']); 
model.param.set('eps_ep', [num2str(eps_ep)  '[m/m]']); 
  

Figure 17: The first part of the MATLAB function code where the FHM COMSOL model and its parameters
are defined and initialized.
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% Run FHM Model 
  
model.study('std1').run; 
  
% Solver Configuration Settings 
  
model.sol('sol1').feature('v1').set('initmethod', 'sol'); 
model.sol('sol1').feature('v1').set('initsol', 'sol'); 
model.sol('sol1').feature('v1').set('notsolmethod', 'sol'); 
model.sol('sol1').feature('v1').set('notsol', 'sol'); 
  
% Data Extraction from COMSOL 
  
model.result.export('plot1').run; 
  
filename1 = ['data1_FHM.csv']; 
alldata1 = csvread(filename1,8,0); 
  
time_sim = alldata1(:,1); 
V_sim = alldata1(:,2); % Model-predicted voltage 
  
% RMS Error Calculation 
  
V_meas = interp1(time_exp,V_exp,time_sim,'linear'); 
error_V = nansum((V_meas-V_sim).^2); 
rms_1 = sum(sqrt(1/(length(time_sim))*error_V)); 
  
if V_sim(end)<= 2.50 
    err_v = 0; 
else 
    err_v = 1000; 
end 
  
RMS = rms_1 + err_v; 
  
end 
 

 Figure 18: The second part of the MATLAB function code where the FHM COMSOL model is run and the
model-predicted response is analyzed to determine the cost function at the end of the iteration.
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vol. 1001, p. 48109, 2010.

[98] J. Marcicki, F. Todeschini, S. Onori, and M. Canova, “Nonlinear parameter estimation for capacity fade

in lithium-ion cells based on a reduced-order electrochemical model,” in American Control Conference

(ACC), 2012, pp. 572–577, IEEE, 2012.

[99] S. J. Moura, J. C. Forman, J. L. Stein, and H. K. Fathy, “Control of film growth in lithium ion battery

packs via switches,” in 2009 ASME Dynamic Systems and Control Conference, 2009.

[100] S. J. Moura, J. C. Forman, S. Bashash, J. L. Stein, and H. K. Fathy, “Optimal control of film growth

in lithium-ion battery packs via relay switches,” IEEE Transactions on Industrial Electronics, vol. 58,

no. 8, pp. 3555–3566, 2011.

[101] A. A. Franco, “Multiscale modelling and numerical simulation of rechargeable lithium ion batteries:

concepts, methods and challenges,” RSC Adv., vol. 3, pp. 13027–13058, 2013.

[102] P. W. Northrop, M. Pathak, D. Rife, S. De, S. Santhanagopalan, and V. R. Subramanian, “Efficient

simulation and model reformulation of two-dimensional electrochemical thermal behavior of lithium-

ion batteries,” J. Electrochem. Soc., vol. 162, no. 6, pp. A940–A951, 2015.

[103] L. Terborg, S. Weber, F. Blaske, S. Passerini, M. Winter, U. Karst, and S. Nowak, “Investigation of

thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte,” J. Power

Sources, vol. 242, pp. 832–837, 2013.

[104] B. Stiaszny, J. C. Ziegler, E. E. Krauß, J. P. Schmidt, and E. Ivers-Tiffée, “Electrochemical characteri-

zation and post-mortem analysis of aged LiMn 2O 4–Li (Ni 0.5 Mn 0.3 Co 0.2) o 2/graphite lithium

ion batteries. Part i: Cycle aging,” J. Power Sources, vol. 251, pp. 439–450, 2014.

[105] B. Stiaszny, J. C. Ziegler, E. E. Krauß, M. Zhang, J. P. Schmidt, and E. Ivers-Tiffée, “Electrochemical

characterization and post-mortem analysis of aged LiMn 2O 4–NMC/graphite lithium ion batteries

part II: Calendar aging,” J. Power Sources, vol. 258, pp. 61–75, 2014.

156
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