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ABSTRACT 

 

 

Considered essential for countries’ development, energy demand is growing 

worldwide. Unlike conventional sources, the use of renewable energy sources has multiple 

benefits, including increased energy security, sustainable economic growth, and pollution 

reduction, in particular greenhouse gas emissions. Nevertheless, there is a considerable 

difference in the share of renewable energy sources in national energy portfolios. This 

dissertation contains a series of studies to provide an outlook on the existing renewable 

energy deployment literature and empirically identify the factors of wind energy generation 

capacity and wind energy policy diffusion in the U.S. 

The dissertation begins with a systematic literature review to identify drivers and 

barriers which could help in understanding the diverging paths of renewable energy 

deployment for countries. In the analysis, economic, environmental, and social factors are 

found to be drivers, whereas political, regulatory, technical potential and technological 

factors are not classified as either a driver or a barrier (i.e., undetermined). Each main 

category contains several subcategories, among which only national income is found to 

have a positive impact, whereas all other subcategories are considered undetermined. No 

significant barriers to the deployment of renewable energy sources are found over the 

analyzed period. 

Wind energy deployment within the states related to environmental and economic 

factors was seldom discussed in the literature. The second study of the dissertation is thus 

focused on the wind energy deployment in the United States. Wind energy is among the 

most promising clean energy sources and the United States has led the world in per capita 
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newly installed generation capacity since 2000. In the second study, using a fixed-effects 

panel data regression analysis, the significance of a number of economic and environmental 

factors are investigated for 39 states from 2000 to 2015. The results suggested that the 

increase in economic factors is related to a significant increase in the installed wind energy 

capacity, whereas, the increase in environmental factors is related to a significant decrease 

in the installed wind capacity.  

The final study explores the factors of diffusion of state- and local-level wind 

energy support policies which are considered fundamental factors of the continuum and 

development of wind power in the United States. To reveal the internal determinants of 

state’s wind energy policy diffusion, we further narrow the scope and control for the 

geographical region in the final study.  We limit our analysis to seven neighboring 

Midwestern states, which are located in the center of United States wind energy corridor. 

Using data from 2008 to 2015, the study investigates the significance of the following 

internal factors: wind power potential, per capita gross state product, unemployment rate, 

per capita value of the agriculture sector, number of establishments in agricultural sector, 

and state government control. Through the addition of interaction terms, the study also 

considers the behavioral differences in the explanatory variables under Republican and 

non-Republican state governance. Our findings suggest that the economic development 

potential and related environmental benefits were the common motivation for state- and 

local-level policy makers. Lastly, technical terms and agricultural sector presence provides 

additional motives for the state level diffusion of wind energy policies. 
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The findings of this dissertation are expected to contribute to the understanding of 

how countries and states might best stimulate and support renewable energy, and in 

particular wind energy, deployment.  
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CHAPTER ONE 

INTRODUCTION 

 

 

Since the Industrial Revolution, energy has been recognized as a cross-cutting 

contributor to the achievement of countries’ economic and social development goals [1], 

and as a result, the demand for energy has been growing worldwide [2]. Since then, fossil 

fuels remain the primary source of energy despite their multiple disadvantages, including 

being nonrenewable, being dependent on highly volatile energy prices and on supplier 

nations, and the release of air emissions. Among these disadvantages, air emissions are 

most recognized because fossil fuels are considered the largest contributors to the increase 

in greenhouse gas emissions.  

Anthropogenic increase in greenhouse gas concentrations is considered to be the 

primary source of heat retention in the Earth's atmosphere, and therefore, contributes to 

increasing changes in climate [3]. Even though there has been a growing interest in 

renewable energy sources, especially since 2005 when the Kyoto Protocol was put into 

effect and set binding targets for countries [4], the use of renewable energy sources has 

remained low compared to the use of fossil fuels worldwide [2]. According to the latest 

data available by the World Bank, renewable energy production represents 17% to 18.5% 

of the total global energy production per person for the last 20 years [2]. In addition, there 

is still a considerable difference in the share of renewable energy sources in energy 

portfolios of countries. According to the Renewable Energy Policy Network for the 21st 
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Century (REN21), the share of non-hydro renewables in the global electricity portfolio was 

only 7.9% (921 gigawatts) in 2016 [5]. In addition, 54.3% of the renewable electricity was 

produced in three leading countries, namely China (28%), the U.S. (15.7%) and Germany 

(10.6%) [5]. While Japan, India and Italy produced 14.1% of the electricity from non-

renewable sources of energy, 31.6% of the renewable electricity globally produced by the 

remaining countries [5]. At this point, there is not a clear understanding why certain 

countries may favor renewable energy over fossil fuels. 

The first objective of this dissertation is to investigate which factors are associated 

with renewable energy deployment for various countries. The literature available on the 

drivers and barriers explaining the diversity of countries’ renewable energy deployments 

presents inconsistent findings, which may be due to varying study research design (e.g. 

quantitative or qualitative), sampling variation, or other factors (e.g. data availability). This 

dearth of literature may also be due to a wide range of political, social, cultural, or 

economic factors.  Chapter Two systematically identifies and categorizes factors of 

national renewable energy deployment using a formal systematic literature review process 

and a one-sample proportion statistical analysis.  We do not limit our analysis to any 

particular country or type of renewable energy source in this study. The overarching goal 

is to aid in the understanding of countries’ renewable energy deployment decisions. The 

designated manuscripts from the literature review are explored in detail with a focus on the 

renewable energy sources referenced, the publication years, the countries presented, and 

the length of the studies to identify additional trends. The systematic review will allow 

future researchers to identify additional research gaps and priorities in investigating 
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renewable energy source deployment, and to avoid unnecessary duplication of research. 

Researchers will also be able to update this review and integrate new findings considering 

reproducible structure of the methodology. 

 Since 2000, wind energy has substantially increased its share in the global energy 

portfolio and the U.S. has led the world in per capita newly installed generation capacity 

[6]. In 2016, wind energy had the highest share among non-hydro renewable sources of 

electricity [5]. Since 2000, the literature focused on factors of renewable energy 

deployment in the United States was limited in scope. Specifically, wind energy 

deployment within the states related to environmental and economic factors was seldom 

discussed in the literature. Chapters Three and Four address several important gaps in the 

existing renewable energy deployment literature (i.e. study of variables that have not been 

considered in the current literature and an explicit definition for the renewable energy type 

studied) and focuses on the U.S. wind energy.  

In Chapter Three we investigate the significance of a number of economic and 

environmental factors of U.S. wind energy from 2000 to 2015 using a fixed-effects panel 

data regression analysis. Economic factors include gross state product, the value of the 

agricultural sector, and the unemployment rate, and environmental factors include carbon 

dioxide emissions, nitrogen oxide emissions, and water use. The findings are expected to 

contribute to the understanding of how developed nations, like the U.S., might best 

stimulate and support wind energy deployment.  

While Chapter Three focused on economic and environmental factors that cannot 

be directly changed, the literature agrees that the policy environment and enabling structure 
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of this policy environment are crucial for the successful and effective promotion, and 

resulting use of renewable energy sources [7], [8]. In Chapter Four, we use Berry and 

Berry’s dynamic model for the analysis of internal and external factors of policy diffusion. 

To control for the external factors of policy diffusion (i.e. geographical interaction), we 

focus on seven Midwestern states and investigate the internal factors related to the diffusion 

of wind energy policies. Using the data from 2008 to 2015 and a random-effects panel 

model, in Chapter Four, we empirically explore the significance of the following internal 

factors: technical (wind power potential), economic (per capita gross state product, 

unemployment rate), agricultural sector specific (per capita value of the agriculture sector, 

number of the establishments in agricultural sector) and political (state government 

control). Through the addition of interaction terms in this empirical analysis, we also 

consider the behavioral differences in the determinants of the diffusion of wind energy 

policy under Republican and non-Republican state governance. The findings of this 

empirical study are expected to provide useful guidance to policy makers on the 

significance and size of the factors influencing wind energy policy diffusion in the U.S. 

Chapter Five summarizes the findings from Chapter Two to Four and provides additional 

research suggestions and key conclusions.  
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CHAPTER TWO 

FACTORS IMPACTING DIVERGING PATHS OF RENEWABLE ENERGY: 

A REVIEW 

 

Abstract 

Considered an essential factor for countries’ development, energy demand is 

growing worldwide. Unlike conventional sources, the use of renewable energy sources has 

multiple benefits, including increased energy security, sustainable economic growth, and 

pollution reduction, in particular greenhouse gas emissions. Nevertheless, there is a 

considerable difference in the share of renewable energy sources in national energy 

portfolios. This study conducts a systematic literature review to identify drivers and 

barriers which could help understanding the diverging paths of renewable energy 

deployment for countries. Among a total of 1431 academic studies, 60 qualitative and 

quantitative studies were identified using a multistage selection process. Designated 

manuscripts were explored in detail including publication years, length of the studies, 

countries represented, and renewable energy sources referenced. Factors explaining 

countries’ renewable energy deployments were defined and organized into seven main 

categories: economic, environmental, political, regulatory, social, technical potential, and 

technological. Within these categories, economic considerations appeared most frequently 

across manuscripts, while environmental factors were least represented. These categories 

were then classified as drivers, barriers or undetermined towards renewable energy 

deployment based on a one-sample proportion statistical test. Economic, environmental, 
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and social factors were found to be drivers, whereas political, regulatory, technical 

potential and technological factors were not classified as either a driver or a barrier (i.e., 

undetermined). Each main category contains several subcategories, among which only 

national income was found to have a positive impact, whereas all other subcategories were 

considered undetermined. No significant barriers to the deployment of renewable energy 

sources were found over the analyzed period. 



8 

 

1. Introduction 

Energy is recognized as a crosscutting contributor to the achievement of countries’ 

economic and social development goals [1]. As a result, there is worldwide growth in 

energy demand (Figure 1). The latest global financial crisis in 2008 highlighted the close 

link between energy security and continuous economic growth. Unlike fossil fuels, which 

are non-renewable and considered the largest contributor to the increase in anthropogenic 

greenhouse gas concentrations [2], renewable energy sources cannot be depleted, and their 

use releases little or no additional CO2 back into the atmosphere [3]. Increasing the use of 

renewable resources contributes to the economic growth and greenhouse gas mitigation of 

countries.  

The growing threat posed by climate change to the economic, social, and 

environmental welfare of countries was first recognized in 1979 by the World Climate 

Conference, which called on governments “to foresee and prevent potential man-made 

changes in climate” [4]. The Kyoto Protocol was the first international treaty that set 

binding targets to reduce greenhouse gas emissions for participating countries.i It was 

adopted in 1997, became effective in 2005, and was signed by 89 countries (including the 

United States) by 2009 [5]. Ratified by 191 states (excluding the United States) and one 

regional economic integration organization (European Union) between 1998 and 2013 [5], 

                                                 
i The Protocol has two commitment periods. First commitment period started in 2008 and 

ended in 2012. During this period, 37 industrialized countries and the European 

Community committed to reduce GHG emissions by an average of 5% from their 1990 

levels. The second period started in 2013 and ends in 2020. During the second 

commitment period, Parties committed to reduce greenhouse gas emissions by at least 

18% below 1990 levels. The composition of Parties in the second commitment period is 

more comprehensive than the Parties of first commitment period.  
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the Kyoto Protocol is considered a “historic milestone” in the fight against the increase in 

greenhouse gas emissions [6]. Since 2005, when the Kyoto Protocol came into effect, there 

has been a growing interest in greenhouse gas mitigation strategies, including the increased 

use of renewable energy sources.  

Figure 1. Global energy demands (data from [7]) 

  

 

Despite its benefits, renewable energy consumption accounts for less than 17% of 

the total energy demand per person worldwide and this proportion has only increased by 

1.5% in 20 years (Figure 1). Of particular interest for this work is the difference in the share 

of renewable energy sources of individual countries. At this point, there is no clear 
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understanding why certain countries may favor renewable energy over traditional energy 

sources.  

The literature available on the drivers and barriers explaining the diversity of 

countries’ renewable energy deployments presents inconsistent findings. The 

inconsistencies may be due to varying study research designs (e.g., quantitative or 

qualitative), sampling variation, or other factors (e.g., data availability). To compare results 

among studies, a systematic review of the literature is required. One study was published 

on the subject in 2014 but focused on only the drivers and four types of renewable energy 

sources (wind, solar, biomass, and wave energy) in eight European countries (United 

Kingdom, Sweden, Italy, France, Germany, Netherlands, Spain, and Ireland) [8]. 

This research, by comparison, does not limit the scope to any specific renewable 

energy source or country. The objective is to identify and categorize factors as drivers and 

barriers of renewable energy source deployment using a formal systematic literature review 

process [9] and a one-sample proportion statistical analysis. The overarching goal is to aid 

in the understanding of countries’ renewable energy deployment decisions. The designated 

manuscripts from the literature review were explored in detail with a focus on the 

renewable energy sources referenced, the publication years, the countries represented, and 

the length of the studies to identify additional trends. The current systematic study will 

allow future researchers to identify additional research gaps and priorities in investigating 

renewable energy source deployment, and to avoid unnecessary duplication of research. 

Researchers will also be able to update this review and integrate new findings considering 

the reproducible structure of the methodology. 
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2. Methodology 

This literature review aims to systematically identify, select, and evaluate the 

current state of knowledge on the drivers and barriers (from here on, referenced as 

“factors”) of countries’ decision-making processes for renewable energy deployment. 

Using a multistage selection process, 60 quantitative and qualitative studies (from here on, 

referenced as “focal manuscripts”) were identified out of 1431 screened academic 

manuscripts extracted from three comprehensive databases (Science Direct, JSTOR, and 

Google Scholar).  

Systematic literature reviews are essential to answer clearly-formulated research 

questions by gathering together all available published academic work. Poor reporting of 

the literature diminishes the value of the answer to the research question for policy makers, 

future scholars, and other users. In this review, manuscripts were selected according to the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

statement, which ensures a transparent and complete reporting in the selection process of 

manuscripts for systematic literature reviews [9]. The PRISMA statement offers a practical 

process to review literature that is implemented in three phases: (i) identification, (ii) 

screening, and (iii) eligibility as summarized in Figure 2 [10]. 
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Figure 2. Flow diagram of the selection process of manuscripts identified through the 

PRISMA statement [10] 
Id
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The identification phase of the PRISMA statement process involves searching 

databases using all key search terms and applying appropriate limits of the search (e.g., 

years of search, language of search, etc.) [11]. The articles identified through sources other 

than databases (i.e., manual searches through reference lists) are also included in the review 

process in the identification phase [11]. In this study, the identification phase included a 

search of Science Direct, JSTOR, and Google Scholar databases for relevant manuscripts 

using the keyword “renewable energy” combined with each of the following keywords: 

“barrier,” “consumption,” “deployment,” “driver,” “investment,” and “supply” (e.g., 

“renewable energy” and barrier, “renewable energy” and consumption, etc.). The paired 

key search terms were entered individually into each database; the search was limited to 

studies published in the English language and after the year 2005. The focus on studies 

published after 2005 was due to CO2 emissions reporting and reduction requirements in 

order to comply with the Kyoto Protocol. The year 2005 was a turning point since the 

emission targets became binding commitments and the market-based greenhouse gas 

emission trading mechanisms of the Protocol became fully operational at that time. A total 

of 1431 manuscripts related to the factors and decisions for renewable energy deployment 

were identified in the identification phase. In addition, we identified 28 relevant 

manuscripts from the initial reference lists of these 1431 manuscripts. 

 The screening phase necessitates scanning the title and abstract of the manuscripts 

for articles that are relevant to the research question. The objective is to separate the articles 

that appear to provide an answer to the research question from those that are irrelevant 

[11]. In this study, titles and abstracts of the initially identified 1459 manuscripts (1431 
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from the databases search and 28 from the reference lists search) were screened, focusing 

on factors that contribute to the renewable energy deployment decisions of countries. A 

total of 119 manuscripts remained at the end of screening phase. 1340 manuscripts were 

excluded based upon their focus on sectorial and/or local evidence and/or on only one 

renewable energy source. The objective of this study was to review the literature that 

focuses on the nationwide decision-making processes of renewable energy deployment. 

Manuscripts focusing on the factors of renewable energy deployment decisions limited to 

a particular industry (e.g., agriculture, transportation, etc.) or specific to a particular region 

(i.e., any city, region or state) of a country were excluded due to the lack of representation 

of these studies. Similarly, manuscripts limiting their analysis to a single type of renewable 

energy source (e.g., wind, solar, etc.) were not included for the systematic literature review. 

The scope of these studies were narrow and contradicted the broad scope of the systematic 

literature review.  

The eligibility phase requires the inspection of full-text articles to be included in 

the final review [11]. In this final phase, 119 manuscripts were read fully, and 60 focal 

manuscripts were identified as relevant for the systematic literature review. Similar to the 

screening phase, manuscripts based upon sectorial and/or local evidence and that focus on 

only a specific type of renewable energy source were excluded from subsequent review. 

Results from the 60 focal manuscripts were categorized in contextually specific 

ways for the simplicity of display and interpretation of data. The renewable energy sources 

discussed in the focal manuscripts were classified into seven categories following the 

definitions of the International Energy Agency (IEA) [12]: (i) combustible renewables and 
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waste, (ii) geothermal, (iii) hydrogen, (iv) hydropower, (v) solar, (vi) tide, wave and ocean, 

and (vii) wind.  

Factors impacting the renewable energy deployment decision of countries were also 

grouped into seven categories: (i) economic, (ii) environmental, (iii) political, (iv) 

regulatory, (v) social, (vi) technical potential, and (vii) technological. Economic factors 

relate to the changes in national income, capital, labor, prices, and import-export balances. 

Environmental factors include the changes in the natural environment such as CO2 

emissions and air pollution. Political factors comprise government policy and 

governmental practices such as the existence of governmental support for financing 

renewable energy sources and a nation's electoral system family (majoritarian, combined, 

or proportional). Regulatory factors are the changes directly related to governmental policy 

including intergovernmental involvements such as EU membership and Kyoto signatory 

status. Social factors include public attitudes, opinions, and interests which can change 

over time. Technical potential factors consist of the changes related to population, land 

area, rural infrastructure, and renewable energy potential. Finally, technological factors 

embody all technical and operational factors. In addition to these seven main categories, 

the analysis included the complete set of 239 subcategories (see Appendix A for the 

complete list of main- and subcategories). The two most frequently referenced 

subcategories within each category are reported in the results. 

The categories (and subcategories) of the factors impacting the renewable energy 

deployment decision of countries were classified as either: (i) drivers, (ii) barriers, or (iii) 

undetermined. Categories in the undetermined classification may be drivers or barriers, but 
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the available information in the focal manuscripts did not lead to either of these direct 

classifications. To classify the factors, we counted the number of manuscripts that depict a 

positive (driver) or negative (barrier) relationship between each factor and the renewable 

deployment decision of countries relative to the total number of manuscripts in the category 

to obtain the proportion of drivers (or barriers) in each category. Using a one-sample 

proportion test, if the proportion of manuscripts in a renewable energy deployment 

category (or subcategory) indicating a positive factor effect was significantly larger than 

0.5, the factor was considered a driver. Likewise, using a one sample proportion test, if the 

proportion of manuscripts in a renewable energy deployment category (or subcategory) 

indicating a negative factor effect was significantly larger than 0.5, then the factor was 

considered a barrier. When a category had a low sample size (n≤5) or if the proportion was 

not judged to be significantly different from 0.5, the factor was not judged as either a driver 

or barrier and classified as “undetermined” (see Appendix B for the schematic illustration 

of one sample proportion test). All tests of significance were conducted using a significance 

level of 0.05. 

3. Results 

This systematic literature review includes 41 quantitative and 19 qualitative studies 

published after 2005. As a result of the PRISMA statement selection process, no 

manuscript relevant to the current study was published in 2005, when the Kyoto Protocol 

was put into effect, nor in 2008 when the Kyoto Protocol's first commitment period started. 

Only two manuscripts were published before 2009, one in 2006 and one in 2007. After 

2010, on average, seven manuscripts were published each year, with a maximum number 
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of 13 publications in 2014. These results indicate that countries’ decision-making processes 

on renewable energy deployment gained and retained the attention of scholars after 2008. 

The increased interest may be explained in several ways. In 2008, in addition to the start 

date of the Kyoto Protocol's first commitment period, crude oil prices also hit a historical 

record of $147 per barrel [13]. Volatile prices of traditional energy sources impacted global 

economies in a negative way and encouraged researchers to consider sustainable energy 

alternatives that were projected to have more predictable impacts on the economic growth. 

The data considered in the 60 focal manuscripts range from 1949 to 2013. Figure 3 

presents both the lengths of studies and the definition of renewable energy by manuscript. 

Even though countries’ decision making processes on renewable energy deployment 

seemingly gained the attention of scholars beginning after 2008, 25% (n=15) of the focal 

manuscripts emphasized the 31-year period from 1980 (until 2010). While the years 

between 1991 and 2007 were studied by 52% (n=31) of the focal manuscripts, the period 

from 1949 to 1969 was covered by only one manuscript that empirically covered the 61-

year period, ending in 2009. 
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Figure 3: Length of studies by year, number, and type of renewable energy source referenced [14]–[73] 
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 In the 60 focal manuscripts, 147 countries and 11 international organizations were 

represented, including the Organization for Economic Co-operation and Development 

(OECD) and the EU (Figure 4). The most frequently referenced regions were North 

America, Western Europe, Southeastern Asia, and Oceania, whereas, Africa, the Middle 

East, and Northwestern Asia were the least frequently referenced. The countries that were 

referenced in 34% (n=20) or more of the focal manuscripts (the United States, the United 

Kingdom, Turkey, France, Sweden, Spain, Netherlands, Italy, and Germany) were all 

OECD countries. In the focal manuscripts, 63% (n=92) of the 147 countries were 

represented only once, whereas 42% (n=25) of the 60 focal manuscripts included the 

United States, which was the most consistently referenced country. 

Figure 4. Countries referenced within the 60 manuscripts 

  

 

One challenge in comparing the focal studies was that each described renewable 

energy differently. The renewable energy sources discussed in the focal manuscripts were 
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classified into seven determined categories following the definitions of the IEA [12]: (i) 

combustible renewables and waste, (ii) geothermal, (iii) hydrogen, (iv) hydropower, (v) 

solar, (vi) tide, wave and ocean, and (vii) wind. Only 3% (n=2) of the focal manuscripts 

included all renewable energy source types, whereas 55% (n=33) of the manuscripts 

included five or fewer renewable energy source types in their studies. One manuscript 

strictly focused on just one type of renewable energy source: combustible renewables and 

waste. Lastly, the authors of 23% (n=14) of the focal manuscripts did not provide a specific 

description of the renewable energy sources which were considered within the original 

research. The outcomes of these 14 manuscripts were used in the current study because the 

objective is to provide an overall picture of the drivers and barriers of the renewable energy 

sources. 

The percentage distribution of the renewable energy types that were the focus of 

the focal manuscripts is presented in Figure 3. The most pervasive definition for renewable 

energy was combustible renewables and waste, referenced in 26% (n=16) of the focal 

manuscripts. Solar (22%, n=13) and wind (17%, n=10) energies were also frequently 

referenced within the focal manuscripts. The large number of manuscripts focusing on 

combustible renewables and waste compared to the other renewable energy types may be 

explained by the availability of data. The data on electricity generation from renewable 

energy sources was recorded beginning in 1980 by the United States Energy Information 

Administration (EIA). While data on combustible renewables and waste has been available 

since 1980, the data on wind and solar energies were only reported beginning in 1986 and 

1989, respectively. These three sources of energy (combustible renewables and waste, solar 



 

21 

 

and wind) were also the renewable energy types that have shown the most consistent and 

highest growth over the years based on longitudinal data provided by the EIA [74]. Among 

the focal manuscripts, hydrogen was the least referenced renewable energy source, 

appearing in only 3% (n=2) of the focal manuscripts. Hydrogen is also the only renewable 

energy source which has not been recorded by the EIA. Each of the remaining renewable 

energy sources was referenced by at least 8% (n=5) of the focal manuscripts. 

There were 489 different factors identified in the focal manuscripts that explain the 

diverging paths of countries’ decisions on renewable energy deployment. In the current 

study, we classified these factors into seven categories: (i) economic, (ii) environmental, 

(iii) political, (iv) regulatory, (v) social, (vi) technical potential, and (vii) technological. In 

addition to these seven main categories, this study defined 239 subcategories (see 

Appendix A for the complete list of main- and subcategories). The most prevalent factors 

were economic and regulatory in nature, with each being referenced more than 100 times 

in the focal manuscripts (138 and 106 times, respectively), whereas environmental factors 

were the least frequently referenced (18 times). Renewable energy technologies were 

relatively new and remain expensive [75]. Accordingly, it was not surprising that at least 

one economic variable was included in 58 (97%) of the focal manuscripts to explain the 

impact of economic factors on the renewable energy deployment decision of countries. 

Another possible explanation for this emphasis on economic factors might be associated 

with the prevalent use of secondary data by the vast majority (90%, n=54) of the papers 

considered. Excluding six (10%) of the focal studies which use survey data, all manuscripts 

utilized secondary data collected and made available from reputable sources such as the 
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IEA and the EIA. Economic growth has been the focus of scholars since the Industrial 

Revolution, whereas social and environmental pillars of sustainability gained increasing 

attention only after the Rio Declaration on Environment and Development in 1992 [76]. 

As a result, data for the economic variables were usually more accessible and frequently 

used, while data for the environmental factors were recent and limited, and therefore used 

less frequently. 

Table 1 summarizes the frequency with which the focal manuscripts emphasized 

each of the seven categories as drivers or barriers. In addition to the seven main categories, 

two primary subcategories within each factor were included in the table.  

Out of seven main categories, economic, environmental and social factors were the 

only ones that were considered drivers. The impacts of political, regulatory, technical 

potential and technological factors were considered undetermined. Only one subcategory 

– national income – was found to be a driver. All remaining subcategories were found to 

have undetermined impacts due to: (i) the small number of manuscripts considering these 

factors either as drivers or barriers (i.e., air pollution, democracy, representation of green 

party, Kyoto status, public confidence in technological measures, public interest in 

renewables, land area of countries, operating experience, and R&D expenditures on 

renewables), and/or (ii) the lack of statistically significant positive or negative impacts on 

the renewable energy deployment of countries (i.e., price of non-renewables, CO2 

emissions, subsidies and renewable energy potential). None of the main categories or 

subcategories were found to be a barrier.  
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Table 1: Factors explaining the diverging paths of renewable energy decisions 

Factors Classification 

(Driver/ 

Barrier/ 

Undetermined) 

Positive  

impact 

(# of studies) 

Negative 

impact 

(# of studies) 

(i) Economic Driver 82 47 

National income Driver 27 9 

Price of non-renewables Undetermined 12 9 

(ii) Environmental Driver 11 4 

CO2 emissions Undetermined 10 4 

Air pollution Undetermined 1 0 

(iii)Political Undetermined 20 15 

Democracy Undetermined 3 1 

Representation of green party Undetermined 1 1 

(iv) Regulatory Undetermined 53 47 

Subsidies Undetermined 4 2 

Kyoto status Undetermined 3 0 

(v) Social Driver 25 14 

Public confidence in 

technological measures 
Undetermined 3 0 

Public interest on renewables Undetermined 2 0 

(vi) Technical potential Undetermined 32 44 

Land area of countries Undetermined 4 0 

Renewable energy potentials Undetermined 8 7 

(vii) Technological Undetermined 25 29 

Operating experience Undetermined 4 0 

R&D expenditures on 

renewables 
Undetermined 3 0 

 

It was expected that the renewable energy deployment levels would increase with 

better economic indicators. National income, an important indicator of a strong economy, 
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was found to be the only significant driver within this category. Similarly, renewable 

energy deployment levels would be expected to increase with the price of non-renewable 

energy sources, since renewable and non-renewable energy sources were economic 

substitutes of one another. However, the price of non-renewable energy source subcategory 

was found to be a driver in 12 studies and a barrier in nine studies, and, overall, was 

classified as a factor that has an undetermined impact on the renewable energy deployment 

of countries. 

Environmental factors tend to be drivers. Within this category, focal manuscripts 

considered only air emissions. Air pollution was studied once and CO2 emissions were 

studied 16 times. As a result of the one sample proportion test, the impact of CO2 emissions 

was found to be undetermined, due to the 29% (n=4) of the studies arguing that these 

emissions could actually have a negative impact.  

The existing literature found social considerations to be drivers for renewable 

energy deployment. However, no subcategories within this category were found to have a 

statistically significant impact on the countries’ renewable energy deployment decisions. 

Within the existing literature, none of these factors were considered more than five times, 

preventing us from calling them either drivers or barriers. 

All remaining categories and their subcategories (81%, n=17) presented in Table 1 

were found to have undetermined impacts on our research focus. For eight (38%) of the 

categories and subcategories presented in Table 1 (four main categories and four 

subcategories), there was a lack of statistical significance to conclude that these factors as 

either drivers or barriers. The remaining nine (43%) subcategories from Table 1 were 
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underrepresented in the literature because none of them were analyzed more than five times 

within the focal manuscripts. Including the subcategories from Appendix A, the proportion 

of the underrepresented factors goes up to 95% (n=227) of all subcategories (n=239) 

analyzed by the focal manuscripts.  

The underrepresentation of the factors significantly impacts the overall results. For 

instance, the only technological subcategories used more than twice in the focal studies 

were the experience of the renewable energy project investors (operating experience) and 

research and development expenditures on renewables which influence the renewable 

energy deployment of countries only in a positive way. As a result of the lack of 

representation of these factors within the existing literature, we are unable to interpret these 

factors as drivers. Underrepresentation of the majority of the factors (95% of the 

subcategories) used in the existing literature to explain the renewable energy deployment 

of countries remains an issue that deserves attention for further research. 

4. Discussion and conclusion 

This systematic literature review, which includes 60 manuscripts identified using a 

multistage selection process, contributes to the discourse on the factors (drivers and 

barriers) necessary to explain the diverging paths of renewable energy deployment for 

countries. The literature examined in this study contains three main deficiencies: (i) the 

results from this study suggest several areas of over – and underrepresentation (there is not 

an equal representation of countries represented, periods analyzed and factors focused on 

by the manuscripts), (ii) renewable energy deployment, the dependent variable, was not 
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consistently defined within the manuscripts, and (iii) the types of renewable energy sources 

considered varied between the manuscripts. 

The results from this study suggest several areas of over – and underrepresentation. 

The first over- and underrepresentation problem emerges for the country-set focused on 

within the existing literature. Out of 147 countries and 11 international organizations 

represented in the focal manuscripts, the United States, the United Kingdom, Turkey, 

France, Sweden, Spain, Netherlands, Italy, and Germany (all nine countries are OECD 

members) were referenced in 34% (n=20) or more of the manuscripts while 62% (n=92) 

of the countries were represented only once. The existing literature consists of 41 

quantitative and 19 qualitative studies among which only 17% (n=10) uses primary 

(survey) data. All remaining manuscripts (83%, n=50) use readily available secondary data, 

which is primarily available for “high income” countries. As a result of insufficient 

infrastructure and a restricted budget, low and middle-income countries have limited data 

availability. To include further information from these countries, an increased number of 

field studies focusing on characteristics of renewable energy deployment at the local and 

regional levels need to be conducted. 

The period between 1991 and 2007 is overrepresented since the majority of the 

manuscripts (52%, n=31) cover that period while there are fewer studies before 1980 and 

after 2010. There is only one study covering the years between 1949 and 1969. The 

underrepresentation of the period after 2010 may be related to the availability of the 

existing data due to the time lag required to collect and analyze data. Future studies will 

have access to more recent data and this issue should be easily to overcome, as long as data 



 

27 

 

continue to be collected. A recommendation to scholars who have already contributed or 

plan to contribute to this newly emerging branch of interdisciplinary studies would be to 

constitute an open access data source for the use of other researchers. Accessible and 

comprehensive data sets will lead to stronger research.  

The 489 factors addressed by the focal manuscripts were classified into seven main 

categories. Among these categories, economic factors were noticeably overrepresented 

(referenced 138 times), whereas environmental factors were underrepresented (referenced 

only 18 times). Likewise, it was observed that 58 (97%) of the focal manuscripts included 

at least one economic variable to explain the renewable energy deployment of countries, 

and six (10%) of the manuscripts referenced only economic considerations to explain 

countries’ renewable energy deployment decisions. However, economic factors were not 

found to be the only driver that encourages the renewable energy deployment, but factors 

from all three pillars of sustainability (economic, environmental and social). Therefore, 

environmental and social factors also deserve closer attention for future research. For 

instance, only air emissions were used within the category of environmental factors. 

Renewable energy sources have additional benefits such as a reduced water footprint and 

lower wastewater and solid waste pollution [77], which have not been considered. In order 

to overcome the underrepresentation problem of factors addressed in the literature, there is 

a need to both increase the number of environmental and social factors and focus on the 

existing - but inadequately represented– subcategories (such as air pollution and public 

confidence measures).  
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Similarly, we also observed that publication bias in favor of drivers may exist in 

the literature. This tendency may be because the renewable energy sources are currently 

viewed as tools to reduce CO2 emissions, mitigate climate change, and thus save the planet. 

As a result, authors may present interesting results that are useful for the promotion of 

renewable energy deployment and for policy-making. Focusing on barriers to renewable 

energy source deployment would remain descriptive, whereas focusing on drivers would 

be prescriptive [78], and so barriers of renewable energy deployment are underrepresented 

in the focal manuscripts. Future studies should address potential barriers along with the 

drivers of the deployment for a systematic examination of renewable energy deployment. 

Renewable energy deployment, which was selected as the dependent variable in 

our work, was not consistently defined. Out of 60 studies, 27 (45%) focused on renewable 

energy consumption, 27 (45%) on renewable energy potential, and the remaining six (10%) 

discussed either renewable energy targets, renewable energy policies of nations, or 

renewable energy deployment in general. Due to the limited number of manuscripts 

published prior to 2009, this literature review incorporates both quantitative and qualitative 

studies with five different renewable energy deployment definitions. Combining both 

quantitative and qualitative studies, we were able to consider a larger number of 

underrepresented factors, especially those specific to qualitative studies (i.e., public 

confidence to the renewables). Moreover, by including six studies using survey data, we 

were able to incorporate several measures which would not be easily available for 

researchers using secondary data (i.e., investor's experience in the field). In bringing 

together these studies, our objective was to eliminate the underrepresentation of the major 
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factors (i.e., economic and social factors). In the future, we expect that more qualitative 

studies will be added to the literature and, thus, the number of underrepresented factors 

will be decreased. In addition, combining different renewable energy deployment 

definitions allowed us to increase the level of representation of the factors affecting the 

renewable energy decisions of countries. Following the addition of further academic 

studies to the field, we suggest future researchers to investigate all five renewable energy 

deployment definitions separately (i.e., consumption, energy potential, targets, policies of 

nations, or deployment in general).  

The last challenge in comparing the focal manuscripts was the number of studies 

within each of the seven categories of renewable energy sources, as well as the number of 

renewable energy sources considered within one study. Among these categories, 

combustible renewables and waste, solar and wind were represented in 65% (n=39) of the 

studies, whereas hydrogen appeared in only 3% (n=2) of them. One manuscript focused on 

one type of renewable energy source (combustible renewables and waste), while two 

manuscripts included all seven renewable energy sources. In addition to these issues, 23% 

(n=14) of the manuscripts did not provide a specific “renewable energy” definition. The 

outcomes of these 14 manuscripts were used in the current study because the objective of 

the current study was to provide an overall picture of the drivers and barriers of the 

renewable energy deployment decisions. Nevertheless, it is important for all scholars to 

clearly describe the input included in their research. Comparisons of outcomes of studies 

that omit the specific description of inputs, such as renewable energy sources considered 

in the original research, becomes challenging.  
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Overall, the limitations of the current literature on diverging paths of renewable 

energy deployment for countries requires future research to seek to minimize the 

overrepresentation and the underrepresentation factors in such study. Moreover, the use of 

a unique dependent variable definition and clearly defined sets of renewable energy source 

types will increase the ability to understand both the drivers and barriers of renewable 

energy deployment, beyond economic extent. 
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Appendix A. Full list of factors explaining the diverging paths of renewable energy decisionsi,ii 

Factors 

Classification 

(Driver/ Barrier/ 

Undetermined) 

Positive 

impact 

(Number  

of studies) 

Negative 

impact 

(Number  

of studies) 

Undetermined 

impact 

(Number  

of studies) 

Total number 

of studies 

Economic Driver 82 47 9 138 

Capital Undetermined 1 0 0 1 

Consumer price index of energy  Undetermined 1 1 0 2 

Cost of RETs Undetermined 2 2 0 4 

Demand increase Undetermined 1 0 0 1 

Domestic credit  (% of GDP) Undetermined 1 0 0 1 

Economic effect Undetermined 1 0 0 1 

Economic growth Undetermined 3 2 0 5 

Exchange rate Undetermined 0 1 0 1 

Financial assistance Undetermined 1 0 0 1 

Financial viability of RETs Undetermined 1 3 0 4 

Foreign Direct Investment inflow level Undetermined 1 0 0 1 

Gross Capital Formation Undetermined 2 0 0 2 

Gross Fixed Capital Formation Undetermined 4 0 0 4 

Growth of non-renewables price Undetermined 0 1 0 1 

Import export balances Undetermined 2 0 2 4 

Income generation Undetermined 1 0 0 1 

                                                 
i RE: Renewable Energy; RETs: Renewable Energy Technologies, R&D: Research and Development 
ii Factors in bold are also represented in Table 1. 
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Inflation Undetermined 1 1 0 2 

Interest rates Undetermined 0 1 0 1 

Labor Undetermined 5 0 1 6 

Labor employed in natural resources 

sector (per 1000 capita) 

Undetermined 1 0 0 1 

Lack of financial institutions Undetermined 0 1 0 1 

Lack of funds Undetermined 0 2 1 3 

Local entrepreneurship Undetermined 1 0 0 1 

Market imperfections Undetermined 1 4 1 6 

Market power of renewables Undetermined 1 0 0 1 

Market power of utilities Undetermined 0 1 0 1 

Marketing  Undetermined 1 0 0 1 

National income Driver 27 9 1 37 

Price of electricity Undetermined 4 3 1 8 

Price of non-renewables Undetermined 12 10 1 23 

Private attention to renewable energy Undetermined 0 0 1 1 

Risks and costs of RETs Undetermined 0 1 0 1 

Share of industry in national income Undetermined 1 1 0 2 

Share of non-renewables in national 

income 

Undetermined 0 1 0 1 

Share of service in national income Undetermined 1 0 0 1 

Tax index Undetermined 0 1 0 1 

Trade openness Undetermined 4 0 0 4 

US Central Appalachian coal spot price 

index growth 

Undetermined 0 1 0 1 



 

 

 

3
3
 

Environmental Driver 11 4 3 18 

CO2 emissions Undetermined 10 4 2 16 

Air pollution Undetermined 1 0 0 1 

Environment Undetermined 0 0 1 1 

Political Undetermined 20 15 6 41 

Bureaucracy Undetermined 0 1 0 1 

Citizens' political ideology Undetermined 0 0 2 2 

Continuous commitment Undetermined 1 0 0 1 

Corruption Undetermined 0 0 1 1 

Degree of legal system Undetermined 1 0 0 1 

Democracy Undetermined 3 1 0 4 

Donor dependency Undetermined 0 1 0 1 

Donor push/support Undetermined 1 0 0 1 

Government effectiveness Undetermined 1 0 0 1 

House of Representative pro-

environment score 

Undetermined 2 0 0 2 

Institutional creation Undetermined 0 1 0 1 

Interest groups Undetermined 0 1 0 1 

Lack of governmental support Undetermined 0 2 0 2 

Legislative Professionalism Undetermined 1 0 0 1 

Number of legislative parties Undetermined 1 0 0 1 

Political climate Undetermined 1 0 0 1 

Political instability Undetermined 0 1 0 1 

Political involvement Undetermined 0 1 0 1 

Political election campaigns Undetermined 1 0 0 1 
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Power of interest groups (conventional 

energy sources) 

Undetermined 0 1 1 2 

Public Utilities' Governance Undetermined 0 2 0 2 

Public Utilities' Professionalism Undetermined 1 0 0 1 

Representation of green party Undetermined 1 1 1 3 

Rule of law Undetermined 1 0 0 1 

Size of the government Undetermined 0 1 0 1 

State-run electric utility Undetermined 0 1 0 1 

State's electoral family Undetermined 1 0 0 1 

Strategic planning Undetermined 1 0 0 1 

Support from political actors Undetermined 0 1 1 2 

Veto players Undetermined 0 1 0 1 

Regulatory Undetermined 53 47 6 106 

Capacity building measures Undetermined 1 0 0 1 

CEFTA membership Undetermined 1 0 0 1 

Clean Development Mechanism Undetermined 1 0 1 2 

Clean energy fund Undetermined 1 0 0 1 

Codes and standards Undetermined 1 0 0 1 

Common colony Undetermined 0 1 0 1 

Compensations (for land acquisitions) Undetermined 0 1 0 1 

Deregulation of energy markets Undetermined 1 1 0 2 

Direct investment Undetermined 1 1 0 2 

Emission cap and trade Undetermined 0 1 0 1 

Environmental Impact Directive Undetermined 0 1 0 1 

EU directives Undetermined 1 0 0 1 
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EU membership Undetermined 2 0 1 3 

Extent of regulatory restraints  Undetermined 0 1 0 1 

Feed-in tariff Undetermined 3 2 0 5 

Fiscal support Undetermined 3 4 0 7 

Funds to subnational governments Undetermined 0 1 0 1 

GHG allowances Undetermined 1 0 0 1 

Global Environment Facility (GEF) 

funding 

Undetermined 1 0 0 1 

Global promotion of RE Undetermined 1 0 0 1 

Governmental policies Undetermined 1 0 0 1 

Green certificates Undetermined 0 2 0 2 

Green power policy options Undetermined 1 0 0 1 

Guaranteed price Undetermined 0 1 0 1 

Inadequate planning capacity Undetermined 0 1 0 1 

Incompatible donor policies Undetermined 0 1 0 1 

Increased competition measures Undetermined 0 0 1 1 

Institutional influence of outside 

consultants 

Undetermined 1 1 0 2 

Institutional influence of peers Undetermined 0 2 0 2 

International development aid Undetermined 0 1 0 1 

Investment incentives Undetermined 1 0 0 1 

Kyoto status Undetermined 3 0 0 3 

Lack of co-investments  Undetermined 0 1 0 1 

Lack of market infrastructure Undetermined 0 1 0 1 

Lack of organizational capacity Undetermined 0 1 0 1 
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Lack of private sector involvement Undetermined 0 1 0 1 

Lack of regulatory measures Undetermined 0 1 0 1 

Legislation issues in connecting RE to 

national grid 

Undetermined 0 1 0 1 

Limited policy framework Undetermined 0 1 0 1 

Loans Undetermined 1 1 0 2 

Local regulatory initiatives Undetermined 1 0 0 1 

Low institutional quality Undetermined 0 1 0 1 

Mandatory requirements Undetermined 1 0 0 1 

Market based instruments Undetermined 3 0 0 3 

Negotiated agreements Undetermined 1 0 0 1 

Neighbors Undetermined 1 0 0 1 

Net metering Undetermined 0 1 0 1 

New legislation Undetermined 1 0 0 1 

Non-ecological subsidies Undetermined 0 1 0 1 

Obligations  (policy proxy) Undetermined 2 0 0 2 

Organizational professionalism Undetermined 0 0 1 1 

Policy time period Undetermined 1 0 0 1 

Price-driven policies Undetermined 1 0 0 1 

Programmatic flexibility Undetermined 1 0 0 1 

Pro-poor policies Undetermined 1 0 0 1 

Public benefit funds Undetermined 0 1 0 1 

Quantity-driven policies Undetermined 0 0 1 1 

Regional Energy Association funds Undetermined 1 0 0 1 

Regulations of interest groups Undetermined 0 0 1 1 
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Regulatory instruments Undetermined 1 0 0 1 

Regulatory quality Undetermined 1 0 0 1 

Renewable Energy Certificate imports Undetermined 0 1 0 1 

RE consumption targets Undetermined 1 0 0 1 

Renewable Portfolio Standards Undetermined 3 4 0 7 

Required green power option Undetermined 1 0 0 1 

Research and innovation policies Undetermined 0 1 0 1 

State green power purchase requirement Undetermined 0 1 0 1 

Subsidies Undetermined 4 2 0 6 

Top-down management in energy-

sector 

Undetermined 0 1 0 1 

Voluntary instruments Undetermined 0 2 0 2 

Social Driver 25 14 5 44 

Attitude toward radical technological 

innovations 

Undetermined 0 1 0 1 

Behavioral impediments Undetermined 0 1 1 2 

Cognitive capabilities Undetermined 1 0 0 1 

Community ownership Undetermined 1 0 0 1 

Confidence in market efficiency Undetermined 1 0 1 2 

Confidence in policy effectiveness Undetermined 2 0 0 2 

Confidence in technological measures Undetermined 3 0 0 3 

Cultural barriers Undetermined 0 3 0 3 

Education Undetermined 3 0 0 3 

Expectations of public from RETs Undetermined 0 0 1 1 

Gender issues Undetermined 0 1 0 1 
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GINI coefficient  Undetermined 1 0 0 1 

Instability of public support Undetermined 0 1 0 1 

Knowledge of RETs Undetermined 2 0 0 2 

Lack of knowledge on RETs Undetermined 0 1 0 1 

Lack of local engagement Undetermined 0 2 0 2 

Long memory behavior Undetermined 1 0 0 1 

Perceived importance of governmental 

support 

Undetermined 1 1 0 2 

Perceived importance of RE policies Undetermined 1 0 0 1 

Perceived risks and benefits of RETs Undetermined 1 0 0 1 

Poverty Undetermined 0 1 0 1 

Public interest on RE  Undetermined 2 0 2 4 

Public opposition  Undetermined 0 1 0 1 

Social trust Undetermined 1 0 0 1 

Stakeholder engagement Undetermined 2 0 0 2 

Unemployment rate Undetermined 2 0 0 2 

Weak local management culture Undetermined 0 1 0 1 

Technical potential Undetermined 32 44 9 85 

Area (land area of country) Undetermined 4 0 0 4 

Energy consumption (non-renewable) Undetermined 1 0 0 1 

Energy consumption (nuclear) Undetermined 0 1 0 1 

Energy consumption (RE) Undetermined 1 0 0 1 

Energy consumption (total) Undetermined 3 2 1 6 

Energy consumption growth Undetermined 0 2 0 2 

Energy dependency Undetermined 0 2 0 2 
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Energy production (coal) Undetermined 0 3 0 3 

Energy production (gas) Undetermined 0 3 0 3 

Energy production (nuclear) Undetermined 0 4 1 5 

Energy production (oil) Undetermined 0 3 0 3 

Energy production (RE) Undetermined 0 1 1 2 

Energy production (total) Undetermined 0 0 1 1 

Energy security Undetermined 1 1 1 3 

Export status Undetermined 1 0 0 1 

Food Production Index  Undetermined 0 1 0 1 

Historical/traditional factors Undetermined 1 1 0 2 

Import dependency Undetermined 3 1 0 4 

Latitude Undetermined 0 1 0 1 

Neighbor effect  Undetermined 1 0 0 1 

Non-renewable energy potential Undetermined 0 0 2 2 

Population Undetermined 3 1 2 6 

Population density Undetermined 1 2 0 3 

Population growth Undetermined 1 2 1 4 

RE potentials Undetermined 8 7 0 15 

Rural Infrastructure Undetermined 1 3 0 4 

Urbanization Undetermined 2 2 0 4 

Technological Undetermined 25 29 3 57 

Appropriate technology  Undetermined 1 0 0 1 

Carbon intensity (of existing 

technologies) 

Undetermined 0 1 0 1 



 

 

 

4
0
 

Commercial attitudes towards R&D 

investments 

Undetermined 0 0 1 1 

Construction lead time Undetermined 1 0 0 1 

Effective load carrying capability Undetermined 1 0 0 1 

Efficiency or quality concerns of RE Undetermined 0 1 0 1 

Electricity generation capacity from RE Undetermined 0 2 0 2 

Electricity consumption per capita  Undetermined 0 1 0 1 

Electricity distribution losses Undetermined 0 1 1 2 

Electricity installation Undetermined 0 0 1 1 

Energy intensity Undetermined 0 1 0 1 

Energy mix effect Undetermined 1 0 0 1 

Factor endowment in conventional 

energy sources 

Undetermined 1 0 0 1 

Grid-extension requirement Undetermined 1 0 0 1 

High pre-installed capacity based on 

conventional energy sources 

Undetermined 0 1 0 1 

Improved capacity factors Undetermined 1 0 0 1 

Inadequate data and information Undetermined 0 1 0 1 

Inappropriate distribution facilities Undetermined 0 1 0 1 

Industrialization Undetermined 0 1 0 1 

Industry installing their own power 

systems 

Undetermined 1 0 0 1 

Influence of existing technical 

experience (on conventional energy 

sources) 

Undetermined 0 2 0 2 

Investor's experience Undetermined 4 0 0 4 
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Knowledge of the RE operational 

context 

Undetermined 1 0 0 1 

Lack of back-up systems Undetermined 0 1 0 1 

Lack of consistency between RE 

projects 

Undetermined 0 1 0 1 

Lack of experience and awareness in 

RE technologies and management 

Undetermined 0 1 0 1 

Lack of research personal or trained 

manpower 

Undetermined 0 2 0 2 

Level of access to required materials Undetermined 0 1 0 1 

Level of unplanned outages Undetermined 1 0 0 1 

Limited rural infrastructure (roads etc.) Undetermined 0 1 0 1 

Long-distance transmission needs Undetermined 0 1 0 1 

Low production capacity of existing RE 

technologies 

Undetermined 0 2 0 2 

Need of increased sustainability on grid Undetermined 1 0 0 1 

Number of RE policies and measures on 

technological R&D on RE 

Undetermined 0 1 0 1 

Productive local electricity uses  Undetermined 1 0 0 1 

Proportion of RE to energy supply Undetermined 1 1 0 2 

R&D expenditures in conventional 

energy sources 

Undetermined 0 1 0 1 

R&D expenditures on RE Undetermined 3 0 0 3 

Spatial diversification Undetermined 1 0 0 1 

Technical standardization Undetermined 1 0 0 1 

Technological path dependency Undetermined 1 1 0 2 
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Technological push Undetermined 1 0 0 1 

Technological risk attitudes of investors Undetermined 0 2 0 2 

Total EPO (European Patent Office) 

fillings 

Undetermined 1 0 0 1 
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Appendix B. One Sample Proportion Testi,ii 

 
  

                                                 
i One sample proportion test conducted separately for positive and negative factor effects.  
ii n: number of manuscripts indicating both positive and negative factor effect in a renewable energy deployment 

category/subcategory p: proportion of the manuscripts indicating a positive or negative factor effect 

Classification of 
categories/subcategories as 

drivers/barriers/undetermined

One sample 
proportion testing:

H0: p=0.5

HA: p>0.5

z=
 𝑝−0.5

0.5(1−0.5)

𝑛

Level of 
significance: 0.05

Reject H0

DRIVER or BARRIER

There is sufficient evidence that the 
proportion of manuscripts in a 
renewable energy deployment 

category (or subcategory) indicate a 
positive (or negative) factor effect 

(i.e. driver (or barrier)).*

Fail to reject H0

UNDETERMINED

There is not sufficient evidence that 
the proportion of manuscripts in a 

renewable energy deployment 
category (or subcategory) indicate a 

positive (or negative) factor effect (i.e. 
driver (or barrier)). 

Category/subategor
y classified as 

"undetermined"

z≤1.645 
 

z>1.645 
 

n≤5 

n>5 
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CHAPTER THREE 

ECONOMIC AND ENVIRONMENTAL FACTORS 

OF WIND ENERGY DEPLOYMENT IN THE UNITED STATES 

 

 

Abstract 

Among the most promising clean energy sources in the electricity market, wind 

energy has substantially increased its share in the global energy portfolio.  Since 2000, the 

United States has led the world in newly installed generation capacity per capita. The 

current study explores the determinants of this growth and, using a fixed-effects panel data 

regression analysis, investigates the significance of a number of economic and 

environmental factors on the wind energy deployment in the United States between 2000 

and 2015. Economic factors include gross state product, the value of agricultural sector, 

and the unemployment rate; environmental factors include carbon dioxide emissions, 

nitrogen oxide emissions, and water use. The empirical findings provide strong evidence 

that in the United States, an increase in economic factors is related to a significant increase 

in the installed wind energy capacity, whereas, the increase in environmental factors is 

related to a significant decrease in the installed wind capacity. These findings are expected 

to contribute to the understanding of how states might best stimulate and support wind 

energy deployment. 
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1. Introduction 

Wind has been supplying power to humanity for more than 3500 years [1]. Over 

the last 15 years, wind energy has substantially increased its share in the global energy 

portfolio, primarily due to its extensive availability as well as the low operating costs of 

wind turbines [2]. Since 2000, the average increase in the global wind energy generation 

capacity has been 23.2% annually [3]. For the same period, the United States (U.S.) has 

experienced the fastest growth in the global wind power industry and extended its wind 

energy generation capacity by 24.3% on average annually [4] [5].  

The objective of the current study is to more closely examine the determinants of 

the U.S. wind energy growth. Using a fixed-effects panel data regression analysis, we 

investigate the dynamic relationship between the increase in wind energy generation 

capacity and a number of economic and environmental factors in 39 U.S.i states from 2000 

to 2015. 

Among economic and environmental factors, economic considerations were often 

used in the renewable energy deployment literature of countries. Apergis and Payne (2012), 

Chang et al. (2009), Dascalu (2012), Omri and Nguyen (2014) and Sadorsky (2009) 

revealed that economic factors have a positive relationship with countries’ renewable 

energy deployment decisions [6]–[10]. National income was the most frequently studied 

economic factor. The level of national income found to be associated with an increased 

renewable energy deployment in a multitude of studies [11]–[16]. Likewise, Dascalu 

(2012) and Jenner et al. (2012) investigated the relationship between unemployment rate, 

                                                 
i Only states with existing wind generation capacity are taken into consideration. 
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which is considered another important—yet underrepresented—economic factor, and 

renewable energy deployment [7], [17]. Both scholars concluded that the increase in the 

unemployment rate was related to an increase in renewable energy deployment [7], [17]. 

Even though the existing literature of renewable energy provides a general outlook 

of the factors of wind power deployment, there is a need to include wind energy specific 

data and terms to the analysis to understand how states may best stimulate and support the 

increase in wind power generation capacities. Much of the literature in this area is focused 

on renewable energy sources in general, instead of particular renewable sources of energy, 

and the literature on the factors that are associated with wind energy deployment is limited. 

The current literature on the wind power deployment includes only a few studies 

that have investigated the relationship between economic factors and wind energy 

deployment. The quantitative analysis of Bird et al. (2005) concluded that improved 

economic conditions (e.g., higher income levels and a developing market for green power) 

were associated with an increase in the installed wind capacities in 12 United States (U.S.) 

states [18]. Ewing et al. (2007) empirically investigated the significance of economics 

(industrial production) on wind power (among other renewable and non-renewable energy 

sources) in the U.S. and revealed that between 2001 and 2005, an increased level of 

industrial production was associated with a decrease in wind energy deployment [19].  

Economic factors that will be considered in the current study include state income 

(gross state product), the unemployment rate, and the contribution of the agricultural sector 

to the national economy. Higher income levels allow countries (or states) to bear the cost 

of renewable energy technologies and regulatory policies [20]. Therefore, in the current 
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study, we expect that the gross state product per capita (as a proxy for the state income 

level) and state’s installed wind energy capacity have a positive relationship. Similarly, the 

unemployment rate is expected to be related to an increase in wind power sourced 

electricity deployment because, being an emerging industry, wind energy is expected to 

create new jobs in the United States. 

The role of agricultural income has not yet been considered in the current literature 

on the deployment of renewable energy. Wind-powered electricity generation involves a 

significant amount of land and wind farms are mainly located on agricultural lands [21]. 

Leasing their land for wind power offers a new source of income for farmers and ranchers. 

The current study, therefore, suggests that there is a relationship between the income of the 

agricultural sector and the increase in wind energy generation capacities. But there are only 

a few studies that consider the relationship between the agricultural sector and the wind 

energy deployment. Adelaja and Hailu (2008) investigated the unidirectional relationship 

between wind energy development and agricultural viability in Michigan (U.S) [21]. The 

focus of the study was the indirect threat posed by the alternatives income resources (e.g., 

lease payments) on the U.S. food security [21]. Scholars suggested that the increased 

income alternatives for land owners might negatively impact the agricultural production 

and the decreased level of agricultural production might threaten the food supply [21]. 

Their findings revealed different impact distribution in different Michigan counties and 

they suggested that cross-sectorial relationships needed to be further investigated as wind 

energy deployment becomes more land intensive [21]. Similarly, the meteorological 

impacts of wind turbines on the agricultural production was studied by Rajewski et al. 
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(2013) [22]. Their findings revealed that wind farms were expected to have positive 

impacts on croplands (e.g., affecting variables such as temperature and carbon dioxide 

(CO2) concentrations in favor of the crops) through the air turbulence that wind turbines 

create [22]. The contribution of wind energy turbines on the agricultural sector was also 

reported by a study conducted by Mills in 2016 [23]. In her study, Mills (2016) surveyed 

more than 1200 farm landowners in Michigan and concluded that wind power provides a 

steady income for farmers and ranchers and, therefore, had a significant and positive 

outcome in the agricultural sector [23]. In the current study, we expect that the wind power 

deployment increases as the income level in the agricultural sector increases due to the 

lease payments of wind turbines and positive impact of wind farms on croplands.  

Environmental concerns are suggested to be the drivers for the widespread use of 

all renewable energy sources [20]. Nevertheless, the renewable energy deployment 

literature that focused on environmental factors was limited and mainly considered CO2 

emissions [8], [15], [24]–[26]. Increased CO2 emissions were found to be associated with 

an increase in the renewable energy deployment of countries in the majority of the studies 

[6], [16], [17], [19]. Similar to the renewable energy deployment literature, the literature 

on the wind energy deployment has not often considered the environmental factors. The 

damage from wind farms to wildlife was the main focus of the investigation into the 

relationship between the environment and wind energy deployment [28], [29]. The current 

literature on renewable energy and wind energy deployment neglected other environmental 

benefits, such as a reduced water footprint and lower air emissions, such as nitrogen oxide 

(NOX) or sulfur dioxide (SO2) emissions [28]. 
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The current study includes both CO2 and NOX emissions because wind power is 

power is expected to play an important role in environmental pollution prevention. Wind 

power technologies are considered green technologies because the impact on the 

environment is minor compared to non-renewable energy options [30]. The energy 

payback time, which correspond to how long the wind power plant needs to produce energy 

to compensate for the energy required from manufacturing wind turbines and construction 

of wind farm is paid back only a few months [28]. Similarly, wind turbines do not produce 

air pollutants  (such as CO2, SO2, and NOX) during power generation as conventional 

sources of energy do [31] and the air emissions that are released during the construction 

and maintenance of wind power plants are negligible [30]. In the Wind Vision initiative, 

the U.S. Department of Energy (US–DOE) defines the contributions of wind power to the 

future electricity needs of the nations as follows: (i) reduced carbon emissions, (ii) 

improved air quality, and (iii) reduced water use [32]. 

According to the U.S. Energy Information Administration (US-EIA), natural gas, 

coal and nuclear were the largest three energy sources in the U.S. in 2016, producing 84% 

of the total electricity generated [33]. In the U.S., wind energy produced only 5.6% of the 

electricity generated in 2016 [3]. Nevertheless, the pollution created by wind energy 

turbines is noticeably lower than thermal power plants, which rely on the combustion of 

conventional sources such as natural gas and coal. Compared to the combustion of natural 

gas, CO2 emissions are expected to be reduced by 3251 short-tonnes per megawatt-hour 

(MWh) of electricity produced by wind turbines [28]. According to Kumar et al. (2016), 

the use of wind power saved 96 million metric tons of CO2 emissions in the U.S. in 2013 
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[2]. Similarly, when compared to the combustion of coal (which is the second important 

source of the U.S. electricity [34]), per MWh energy of wind-powered electricity produced, 

NOX emissions are expected to reduce by 20 short-tonnes and SO2 emissions are expected 

to reduce by 421 short-tonnes [28].  

Conventional and nuclear power plants use large amounts of water for cooling, 

cleaning and fuel processing purposes [28]. This is a potential issue because, globally, 

water supplies are under severe pressure [35]. For each MWh of electricity produced, 

natural gas powered plants consume 803 liters, coal powered plants consume 2090 liters 

and nuclear energy powered plants consume 2590 liters of water [36].  In comparison, the 

total water use for the same amount of electricity produced by wind powered plants is only 

4 liters [28]. Thus, per MWh energy of wind-powered electricity, the water use is expected 

to decrease by 799, 2086, and 2586 liters compared to the natural gas powered plants, coal 

powered plants and nuclear plants, respectively. 

Wind power technologies allows us to substitute conventional energy for a clean 

source of energy. Including the air emissions and water use, the current study investigates 

the importance of air quality and water resource management measures in wind energy 

deployment. Following the statement of the US–DOE in the Wind Vision initiative [32], 

we expect that as CO2 emissions, NOX emissions (as representative of air quality 

measuresi) and water use decrease, the installed capacity of wind energy increases. 

                                                 
i SO2 and mercury are the two other air quality measures that could be used in the current 

study. Mercury was not used as a result of limited data availability (data was available for 

only three years, 2000, 2004, 2005). For SO2, data availability was the same as NOX, but 

compared to SO2, the correlation with the installed wind power capacity was stronger for 
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Unlike economic and environmental factors, social factors have often been 

considered in the wind energy deployment literature. Mainly as a result of the visual impact 

of wind farms on the landscape, social acceptance was considered an important barrier to 

achieve states’ energy portfolios targets for wind power and frequently studied by the 

scholars [29]. Arguing that wind turbines are “a matter of public, political, and regulatory 

acceptance,” Carlman (1982) introduced the social acceptance problem of wind power to 

the literature [37]. Wolsink (1987), Bosley and Bosley (1988), and Thayer (1988) 

addressed public attitudes towards wind power deployment in the U.S. and in the 

Netherlands, and defined landscape issues as barriers [38]–[40]. 

Saidur et al. (2011) related the social acceptance problem of wind turbine 

technologies to the damage to wildlife (e.g., birds, bats, and raptors), noise, and visual 

impact, and suggested that environmental threats to the community created by the 

introduction of wind turbines should be determined by investors and negotiated with locals 

prior to the siting decisions being made [28]. Similarly, Wüstenhagen et al. (2007) stated 

that the social resistance needs to be properly addressed, and investment and siting 

decisions need to be made by a multitude of stakeholders [29]. 

Trust emerged as another important factor in the literature on wind power 

implementation. Wolsink (2007) qualitatively analyzed the public attitude towards wind 

power deployment in Europe and emphasized the importance of policy actors in the 

decision making processes for wind energy deployment [41]. Likewise, within a 

                                                 

NOX emissions. The current study uses the emission that had a higher correlation among 

the states 
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framework of multiple case studies based in the Netherlands, England and Germany, 

Breukers and Wolsink (2007) stated that the stability and reliability on the continuum of 

support systems was as important as the design of the support systems [42]. 

Combining the importance of social acceptance and support systems, Jobert et al. 

(2007) focused on five case studies in France and Germany and investigated the local 

acceptance of wind power. Their findings confirmed the significance of both local 

(territorial) factors (such as social acceptance) and institutional conditions (such as 

economic incentives and regulations) on the development of wind energy at the local-level 

[43]. 

Institutional support systems (policies and programs) were also the focus of the 

literature on wind power development in the U.S. In addition to the market conditions, Bird 

et al. (2005) also explored the significance of policy tools driving wind power development 

in 12 states and suggested that renewable portfolio standards (RPS) were among numerous 

drivers (factors that were positively related to wind energy deployment) of the development 

of wind power in the U.S. [18]. Menz and Vachon (2006) empirically investigated the 

effectiveness of different policy regimes (RPS, fuel generation disclosure rules, mandatory 

green power options, and public benefits funds) for promoting wind power in 37 states 

from 1998 to 2003, and revealed that only RPS and mandatory green power options had a 

positive influence on wind power development [44]. Maguire (2016) focused on 37 states 

and empirically investigated the relationship between state policy measures and 

commercial scale wind energy capacity. Unlike previous studies, neither RPS nor Green 
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Power Purchasing programs were found to significantly impact the increase in wind energy 

capacity for the period between 1994 and 2012 [45]. 

Based on the literature review, most of the previous work has centered on the social 

dimension, and therefore there is a need to further explore economic and environmental 

factors that could impact wind energy generation capacity deployment in the U.S. that has 

experienced the fastest growth in the global wind power industry. The main contribution 

of the current study is the inclusion of new economic and environmental factors such as 

the contribution of the agricultural sector to the national economy, NOX emissions and 

water use, to understand the deployment of U.S. wind energy using data from 39 states 

over a 16-year period. 

In sum, the current study expects that economic factors (gross state product; the 

value of agricultural sector and the percentage rate of unemployment) have a positive 

relationship, and environmental factors (CO2 emissions, NOX emission and water use) have 

a negative relationship with the installed wind energy generation capacity from 2000 to 

2015 in the U.S. 

2. Methods 

2.1. Study Period and Data Description 

The current study covers the period from 2000 to 2015. The years prior to 2000 are 

not included because there were fewer than 10 states with installed wind capacity in the 

United States and country’s wind energy production level was less than 5000 gigawatt 

hours (GWh) annually [46].  The end point of 2015 was selected because of data 

availability. 
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As a proxy for wind energy deployment, the current study uses the installed 

capacity for wind power data for all U.S. states with existing energy generation capacity. 

Based on the most recent information available from the US-EIA [46], Table 1 presents a 

list of the states with and without installed capacities in 2015. 

Table 1: States with and without installed wind energy generation capacities in 2015 

[4] 

States with Installed Wind Energy Generation Capacities in 2015* 

Alaska (AK) Massachusetts (MA) Oklahoma (OK) 

Arizona (AZ) Michigan (MI) Oregon (OR) 

California (CA) Minnesota (MN) Pennsylvania (PA) 

Colorado (CO) Missouri (MO) Rhode Island (RI) 

Delaware (DE) Montana (MT) South Dakota (SD) 

Hawaii (HI) Nebraska (NE) Tennessee (TN) 

Idaho (ID) Nevada (NV) Texas (TX) 

Illinois (IL) New Hampshire (NH) Utah (UT) 

Indiana (IN) New Jersey (NJ) Vermont (VT) 

Iowa (IA) New Mexico (NM) Washington (WA) 

Kansas (KS) New York (NY) West Virginia (WV) 

Maine (ME) North Dakota (ND) Wisconsin (WI) 

Maryland (MD) Ohio (OH) Wyoming (WY) 

States without Wind Energy Generation Capacities in 2015* 

Alabama (AL) Georgia (GA) North Carolina (NC) 

Arkansas (AR) Kentucky (KY) South Carolina (SC) 

Connecticut (CT) Louisiana (LA) Virginia (VA) 

Florida (FL) Mississippi (MS)  

*As of 12/31/2015 
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Detailed information on the variables including unit (as used in the current study), 

availability (for the time period between 2000 and 2015) and the source is provided in 

Table 2. The installed capacity for wind power data was calculated using the generator-

level nameplate capacities provided by the US-EIA [4], using only the operating and 

standby generators. Due to the limited availability of the state level water consumption data 

for the study period, water use data was calculated using the natural gas, coal and nuclear 

energy sourced electricity data from the US-EIA and the water consumption factors that 

are provided by the National Energy Technology Laboratory of the US–DOE.  With the 

exception of unemployment data, which were shown as percentages, all data were 

normalized using population statistics provided by the U.S. Census Bureau [47]–[49]; per 

capita values are used in our analysis.  

Table 2. Variable description 

Variable Unit Definition Availability Source 

windcap watts  

(W) 

Installed 

capacity for 

wind power  

2000 - 2015 “Electricity: Form EIA-

860 detailed data 

(generator-level specific 

information)” by U.S. 

Energy Information 

Administration [4]  

gsp hundred 

dollars  

($100) 

Gross state 

product 

2000 - 2015 “Annual GDP by State” 

by U.S. Department of 

Commerce - Bureau of 

Economic Analysis [50]  

agsec ten dollars  

($10) 

Net value-

added to U.S. 

economy by 

agricultural 

sector 

2000 - 2011 “Correlates of State 

Policy” by Michigan 

State University - 

Institute for Public Policy 

and Social Research [51]  

unempl per mille  

(‰) 

Unemployment 2000 - 2015 “States: Employment 

status of the civilian 

noninstitutional 

population, 1976 to 2016 
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annual average” by U.S. 

Department of Labor - 

Bureau of Labor 

Statistics [52]  

co2 

 

 

hundred 

kilograms  

(100kg) 

Carbon dioxide 

emissions 

2000 - 2014 “State Carbon Dioxide 

Emissions” by U.S. 

Energy Information 

Administration [53]  

nox kilograms  

(kg) 

Nitrogen oxide 

emissions 

2000, 2004, 

2005, 2007, 

2009, 2010, 

2012 

“Emissions & Generation 

Resource Integrated 

Database (eGRID)” by 

U.S. Environmental 

Protection Agency [54]  

wateruse thousand 

tonnes  

(1000t) 

Water 

consumption 

2000-2015 “Power Systems Life 

Cycle Analysis Tool ( 

Power LCAT )” by U.S. 

Department of Energy - 

National Energy 

Technology Laboratory 

(water consumption 

factors) [36], 

“Consumption of Fuels 

to Generate Electricity” 

by U.S. Energy 

Information 

Administration 

(electricity generation by 

energy source) [55]  

 

Missing observations were imputed based on the time trend of all available data 

regardless of study period (2000 to 2015i) using linear regression analysis.  For example, 

2015 CO2 emissions were missing for all states and data were available from 1990 to 2014.  

We therefore imputed the 2015 CO2 emissions (response) using a linear regression with 

                                                 
i For the missing data points of NOX emissions, both coal consumption- and time trend-

based imputations were calculated. Compared to coal consumption-based imputations, 

the correlation with the installed wind power capacity was stronger for time trend-based 

imputations.  Therefore, the current study uses time trend-based imputations for the 

missing data points of NOX emissions. 
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the data from 1990 to 2014 (e.g., time as the predictor).  The only exception was when the 

imputed values of NOX emissions were negative. Considering that these emission levels 

cannot be negative, the last known positive value was used whenever the imputed value 

from the linear regression analysis of NOX on time was negative.  

2.2. Empirical Model 

The objective of the current study is to analyze the relationship of economic and 

environmental factors with wind energy deployment in the U.S. states over time.  

The empirical model has the following form: 

𝑤𝑖𝑛𝑑𝑐𝑎𝑝𝑖𝑡  = 𝑏1𝑔𝑠𝑝𝑖𝑡 + 𝑏2𝑎𝑔𝑠𝑒𝑐𝑖𝑡 + 𝑏3𝑢𝑛𝑒𝑚𝑝𝑙𝑖𝑡 

+𝑏4𝑐𝑜2𝑖𝑡 + 𝑏5𝑛𝑜𝑥𝑖𝑡 + 𝑏6𝑤𝑎𝑡𝑢𝑠𝑒𝑖𝑡 + 𝑎𝑖 + 𝑢𝑖𝑡, 

where i = 1, …, N represents each state in the panel (N=39) and t = 1, …, T refers to the 

time period (T=16). windcap is installed capacity for wind power per capita; gsp is gross 

state product per capita; agsec is the net per capita value-added by the agricultural sector 

to the U.S. economy regardless of the ownership; unempl is the percentage rate of 

unemployment; co2 is the CO2 emissions per capita; nox is the NOX emissions per capita; 

and the watuse is the water consumption per capita. 𝑎𝑖 and 𝑢𝑖𝑡 denotes state-specific fixed 

effects and idiosyncratic errors, respectively. In addition to the linearity in predictors, the 

assumptions of the panel data analysis, including no perfect collinearity, strict exogeneity, 

homoskedasticity, no serial correlation and normality, were verified prior to the analysis 

(see Appendix A for the full list of assumptions as well as their definitions, test methods, 

Stata codes and results) [55]. Water use did not satisfy the strict exogeneity assumption 

(that is to say, the variable was found to be correlated with the error term in the original 
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model and called endogenous). Therefore, we considered the model both with and without 

water use to examine the relationship with installed wind power capacity per capita but 

report on the model without water use to insure unbiased coefficient estimates. The 

assumptions were retested for the model excluding water use. Two assumptions that the 

model failed to satisfy, serial correlation and homoskedasticity, were corrected using 

Hoechle’s (2007) method [56]. 

The focus of the current analysis is 39 U.S. states with non-uniform installed wind 

energy capacities. In the current study, panel data analysis allows for flexibility in 

modelling differences in behavior across individual states [57]. Statistically, data for the 

individual states also help us to minimize multicollinearity problems, which can be related 

to the use of macro level data [58]. In addition to the typical assumptions of panel data 

analysis, the current study assumes that the unobserved characteristics of the states (such 

as geographic features or historical factors) are related to the existing parameters of the 

regression. Therefore, a fixed-effects panel data model, which considers correlation exists 

between unobserved variables and the existing regressors [59], was preferred and used in 

our analysis. A significance level of 0.05 was used for all tests of significance. 

3. Results and discussion 

The descriptive statistics, including means, standard deviations, minimums and 

maximum, for the variables and for 39 states which are used for empirical analysis of the 

wind energy deployment in the U.S. are presented in Appendix B and C, respectively. The 

statistics for the installed wind energy capacity illustrate a continuous increase in the mean 

per capita values from 2000 to 2015. Over the course of 16 years, average per capita values 
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for the installed capacity of wind power increased more than 40 times. Nevertheless, the 

increase in the installed wind energy generation capacities did not follow the same path for 

all states. Table 3 presents the state-level per capita installed wind energy generation 

capacities for 39 states from 2000 to 2015 (see Appendix D for the total installed wind 

energy generation capacities of the states). An important level of disparity exists in states’ 

installed wind energy generation capacities. By 2015, there are still 15 states with per capita 

installed wind energy generation capacities lower than 100 W, whereas per capita capacity 

(/capacities) in Kansas and Oklahoma exceed 1000 W, in New York and Wyoming exceed 

2000W and in Iowa exceeds 3000W thresholds. Similarly, total levels of installed wind 

capacity is still low in many states: for 27 states, the total installed capacity for wind energy 

is still less than 2250 megawatts (MW) by 2015. For the entire study period, Texas is the 

leader and has an installed wind energy generation capacity of 17662 MW in 2015. 

California, Iowa and Oklahoma follows Texas with wind energy generation capacities that 

exceed 5000 MW; and Colorado, Illinois, Kansas, Minnesota, North Dakota, Oregon and 

Washington have wind energy generation capacities over 2250 MW.  
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Table 3: Installed wind energy generation capacities of U.S. states between 2000 and 

2015 (per capita) [4] 

  

windcap  (W/cap) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Alaska 0 0 0 1 1 14 4 4 4 11 10 10 45 81 99 82

Arizona 0 0 0 0 0 0 0 0 0 22 44 47 80 80 80 90

California 47 46 50 55 57 57 63 64 65 72 75 99 145 147 151 147

Colorado 4 12 13 49 50 50 61 222 218 249 257 352 443 442 485 544

Delaware 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3

Hawaii 9 9 9 9 9 9 33 48 48 47 45 66 126 125 124 123

Idaho 0 0 0 0 0 1 6 6 9 11 27 48 75 75 75 75

Illinois 0 0 0 8 8 17 17 116 150 247 300 420 542 540 538 578

Indiana 0 0 0 0 0 0 0 0 43 342 439 437 501 498 560 557

Iowa 246 241 311 339 447 574 627 777 1734 2216 2332 2715 3198 3195 3467 3820

Kansas 0 41 41 42 41 96 132 131 289 357 375 443 942 1026 1024 1229

Maine 0 0 0 0 0 0 0 7 7 26 40 49 65 64 64 90

Maryland 0 0 0 0 0 0 0 0 0 0 12 21 20 20 27 32

Massachusetts 0 0 0 0 0 0 0 1 1 3 8 23 49 56 63 63

Michigan 0 0 0 0 0 0 0 0 12 14 17 38 89 117 154 154

Minnesota 62 61 67 93 102 134 161 219 282 310 378 482 529 525 559 592

Missouri 0 0 0 0 0 0 0 19 55 104 154 154 154 153 153 153

Montana 0 0 0 0 0 144 152 171 278 381 389 385 639 634 647 642

Nebraska 2 3 2 10 10 56 55 54 54 116 161 252 345 401 611 665

Nevada 0 0 0 0 0 0 0 0 0 0 0 0 15 15 15 15

New Hampshire 0 0 0 0 0 0 0 0 3 3 3 3 19 19 19 19

New Jersey 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4

New Mexico 0 0 0 11 14 21 26 26 26 31 36 38 40 40 41 54

New York 28 28 75 75 75 286 570 650 1075 1915 1888 2041 2337 2396 2367 2314

North Dakota 0 0 0 29 27 39 65 147 317 495 573 570 655 647 636 785

Ohio 0 0 0 0 1 1 1 1 1 1 1 14 40 41 37 37

Oklahoma 0 0 0 50 50 134 165 190 193 304 394 478 821 813 975 1283

Oregon 46 46 52 63 63 83 109 238 283 437 524 573 811 805 796 785

Pennsylvania 3 3 3 11 11 11 12 23 29 59 59 62 105 105 105 104

Rhode Island 0 0 0 0 0 0 0 0 0 0 1 1 1 1 6 6

South Dakota 0 3 3 56 56 56 55 54 242 396 770 946 947 936 774 977

Tennessee 0 0 0 0 5 5 5 5 5 5 5 5 4 4 4 4

Texas 0 43 50 58 57 81 117 182 300 372 389 404 467 466 520 644

Utah 0 0 0 0 0 0 0 0 7 82 80 115 114 112 110 108

Vermont 1 1 1 1 1 1 1 1 1 1 1 6 15 15 15 14

Washington 0 30 38 40 39 63 129 180 208 301 341 360 408 403 436 430

West Virginia 0 0 12 12 12 12 12 12 59 58 76 92 102 102 101 101

Wisconsin 13 30 29 29 29 29 29 29 198 243 253 340 342 342 345 346

Wyoming 12 285 282 566 560 559 550 537 1246 1972 2506 2522 2485 2459 2455 2443

0 <

500 <

≤ 3000windcap = 0 1000 < windcap ≤ 1500 2500 < windcap

windcap ≤ 3500

windcap ≤ 1000 2000 < windcap ≤ 2500 windcap ≤ 40003500 <

windcap ≤ 500 1500 < windcap ≤ 2000 3000 <
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The mean per capita values for gross state product and value-added by agricultural 

sector to the U.S. economy also present increasing trends for all 39 U.S. states for the years 

between 2000 and 2015. There is no increasing or decreasing trend in the mean 

unemployment rates between 2000 and 2015, but overall, there is a slight increase in 2015 

compared to the year 2000. The mean values as well as the standard deviation of state-level 

emissions presents a decreasing trend for both CO2 and NOX for the entire study period. 

Finally, the state-level water use does not present any increasing or decreasing trend, but 

the per capita water use on average is considerably lower in the final year of the study 

period, 2015, compared to the start year of the study period, 2000.  

The results of the fixed-effects panel data analysis are presented in Table 4. The 

results suggest statistically significant relationships for all economic and environmental 

factors with installed wind energy capacities in the states from 2000 to 2015.  An increase 

in economic factors (the gross state product per capita; the net per capita value-added by 

the agricultural sector to the U.S. economy, and the percentage rate of unemployment) is 

related to an increase in installed wind energy capacities, whereas, an increase in 

environmental factors (per capita CO2 and NOX emission levels) is related to a decrease in 

installed wind capacities.  
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Table 4. Fixed-effects panel data regression analysis coefficients, standard errors, and 

p-values 

Independent variables Coefficient Estimates Standard Errors P-values 

gsp ($100/capita) 1.868 0.548 0.002 

agsec ($10/capita) 2.636 0.452 0.000 

unempl (‰) 1.640 0.605 0.010 

co2 (100kg/capita) -1.394 0.504 0.009 

nox (kg/capita) -5.624 1.202 0.000 

Intercept -561.7 290.7 0.054 

Dependent variable: windcap (W/capita) 

 

The positive and statistically significant relationship between gross state product 

and installed wind energy generation capacity suggests that higher state income is 

associated with a greater installed wind energy capacity for 39 U.S. states from 2000 to 

2015. Higher income may be related to a wealthier economy as well as greater support for 

the cost of state’s financial incentives [20]. Correspondingly, switching from one 

technology to another, a stronger economy as well as a greater level of economic support 

may incentivize shareholders in making investment decisions for wind energy.   

The positive relationship between the unemployment levels and the installed wind 

energy capacities in the current study may suggest that higher unemployment is associated 

with higher wind energy capacity installments. Being an emerging industry, wind energy 

is expected to create new jobs in the states for both manufacturing and maintenance of 

wind turbines. Currently, wind energy provides only 5.6% of the U.S. electricity and there 

are over 53000 wind turbines and 500 wind turbine manufacturing facilities spread across 

the U.S [60]. The goal is to generate 35% of U.S. electricity by 2050 [61].  According to 
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the US–DOE, once the country achieves this goal, the sector will be able to support 600000 

direct and indirect jobs in the entire U.S. [61].   

The results also present a complementary relationship between the contribution of 

the agricultural sector to the national economy and states’ wind power capacity.  The 

agricultural sector provides the land where wind energy turbines are built and farmers 

might still use most of their farmland for activities such as farming, ranching and forestry 

[32]. Our results suggest that the greater investment levels in agricultural activities may be 

associated to the greater income levels from the wind energy installations.  

The relationship between air emission levels (CO2 and NOX) and wind energy 

deployment were found to be negative in the current analysis. Along with the descriptive 

statistics presented in Appendix B, the results suggest that the decreased levels of CO2 and 

NOX emissions are associated with an increase in the installed wind power capacity in the 

U.S. Regarding the fact that both CO2 and NOX emissions are considered byproducts of 

conventional energy sources (e.g., natural gas and coal), the statistically significant 

relationship between CO2 and NOX emissions and wind energy deployment may also 

signify the substitution of the electricity produced by conventional energy sources by the 

wind power sourced electricity from 2000 to 2015 in 39 U.S. states.  

The current study calculated state’s water consumption levels using the annual 

plant-level electricity production data of coal, natural gas and nuclear power industries 

which uses large amounts of water for cooling, cleaning and fuel processing purposes. 

Increase use of wind-powered electricity can help reducing the pressure on water supplies. 

In the current study, water use was found endogenous (that is to say, correlated with the 
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error term in the original model).  Endogeneity may occur from three important causes:  (i) 

a time-varying variable which is related to both endogenous variable (water use) and 

response variable (wind energy deployment) might have been omitted in the model [54], 

(ii) a measurement error might have occurred in data of the endogenous variable [54], or 

(iii) the relationship of endogenous variable (water use) and response variable (wind energy 

deployment) might have been bidirectional (in other words, simultaneous), or the direction 

of causality between the variables might have been anticipated reversed in the original 

model (that is, wind energy deployment might be related to the water use instead of water 

use is related to the wind energy deployment) [58]. 

4. Conclusion 

The current study investigated the significance of a number of economic and 

environmental factors on the wind energy deployment in the U.S. Using data from 39 states 

from 2000 to 2015, our analysis included factors that had not been previously studied 

within the wind energy and renewable energy deployment literature, such as the level of 

income in the agricultural sector, NOX emissions and water use.  

Our analysis could be expanded and improved in several ways. First, the current 

study excludes water use to ensure unbiased coefficient estimates for the wind energy 

deployment in the U.S. and leaves the investigation of the main reason behind the 

endogeneity of water use for further research.  The inclusion of water consumption levels 

may further contribute the understanding of the relationship between natural resource 

management, in particular water resource management, and the increased use of renewable 

sources of energy. 
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Our second suggestion would be to expand the data set through the use of other sets 

of factors, such as social and political ones. The literature on countries’ renewable energy 

deployment defines seven main categories of factors: economic, environmental, political, 

regulatory, social, technical potential, and technological.  Even though there is an important 

number of studies focusing on the social acceptance of wind power at the country level, 

there is no study that incorporates other social factors such as state demographics along 

with the economic and environmental variables for U.S. states.  Similarly, we suggest that 

future research focused on other countries or country groups may shed more light on the 

role of economic and environmental factors in the increase of wind energy generation 

capacities worldwide.  

The interaction between variables may also be taken into account in future analysis. 

Interaction is assumed to exist when the simultaneous influence of two explanatory 

variables on the dependent variable is not additive. Including interaction terms (e.g., the 

interaction between the economic and environmental) in future studies can allow for 

researchers to distinguish between the separated and simultaneous impact of the factors 

impacting wind energy deployment of the country. Particularly, the behavioral difference 

of factors on the wind energy deployment under democratic and republican state control 

represents an important area to investigate on state level wind energy deployment in the 

U.S.  

Finally, considering the state-level heterogeneity which was represented by the 

descriptive statistics of the current analysis, future scholars may use a hierarchical model 

that distinguishes the regions, income groups, deployment levels, or the start dates of the 
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wind power capacity installations to analyze the influence of factors impacting renewable 

energy deployment across the country. The current study takes only time-varying variables 

into consideration. Taking into account state-fixed effects such as geographic factors and 

historical features, future scholars may use a mixed effects regression analysis for a more 

comprehensive explanation for the wind energy deployment of individual states.   
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Appendix A. Assumptions of the fixed effects panel data analysis  

Assumption[55] Definition Test method Stata code Results 

No perfect 

collinearity 

All explanatory 

variables change over 

time and there is no 

perfect linear 

relationship among 

them.  

Variance inflation factors 

are used to test for the bias 

estimates [62].  

The Stata 

command to test 

the model for 

multicollinearity 

is vif. 

No perfect linear 

relationships among the 

explanatory variables was 

found: The computed 

variance inflation factor 

values varied between 1.06 

and 5.66 for the model 

including water use and 

between 1.44 and 5.66 for 

the model excluding water 

use. Further investigation 

would be needed if the 

computed variance 

inflation factor values were 

greater than 10 (or 

tolerances – 1/vif – were 

lower than 0.10) [62] 

Strict exogeneity  Explanatory variables of 

the model are 

uncorrelated with the 

idiosyncratic errors, 𝑢𝑖𝑡,  

for each time period.  

Davidson MacKinnon test 

is used to examine the 

exogeneity of explanatory 

variables, one at a time. 

The test procedure 

compares the results of the 

original model with an 

upgraded model including 

additional (instrumental) 

variables that are in 

potential relationship with 

The Stata 

command to 

create the 

additional 

instrumental 

variable is 

xtivreg and the 

command to 

compare the 

results of the 

The null hypothesis of 

exogeneity was failed to be 

rejected for all explanatory 

variables except water use. 

The endogenous variable 

was taken out of the model 

to satisfy strict exogeneity 

of the explanatory 

variables. 
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the existing explanatory 

variables of the original 

model [63]. 

two models is 

dmexogxt.  

Homoskedasticity The variance of the 

idiosyncratic error, 𝑢𝑖𝑡, 

remains the same 

identical for all values 

of the dependent 

variable:

 𝑉𝑎𝑟 (𝑢𝑖𝑡|𝑋𝑖𝑎𝑖) =
𝑉𝑎𝑟 (𝑢𝑖𝑡) =
𝜎𝑢

2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 = 1,… , 𝑇 

White test is used to detect 

heteroscadasticity. White 

test is a generalized case of 

Breusch Pagan test to 

detect both linear and 

nonlinear forms of 

heteroscadasticity [64]. 

The Stata 

command for the 

White test is 

imtest, white. 

The null hypothesis of 

homoskedasticity was 

rejected for both models 

(for the model with water 

use and for the model 

without water use). 

No serial 

correlation 

Conditional on all 

explanatory variables 

and unobserved 

heterogeneities, ai, the 

idiosyncratic errors, 𝑢𝑖𝑡,  

are uncorrelated over 

time: 

𝐶𝑜𝑣 (𝑢𝑖𝑡 , 𝑢𝑖𝑠|𝑋𝑖, 𝑎𝑖) = 0 

Woolridge’s test for serial 

correlation is used to 

identify the correlation 

among the idiosyncratic 

errors, 𝑢𝑖𝑡,  over time [65] 

The Stata 

command to test 

serial correlation 

is xtserial. 

The null hypothesis of no 

serial correlation among 

the idiosyncratic errors, 

𝑢𝑖𝑡, was failed to be 

rejected for both models 

(for the model with water 

use and for the model 

without water use). 

Normality 

 

The idiosyncratic error, 

𝑢𝑖𝑡, is independent and 

identically distributed as 

N (0, 𝜎𝑢
2) for each t. 

An extension of Jarque-

Bera normality test is 

proposed by Alejo et al. 

(2015) to explore skewness 

and excess kurtosis of the 

idiosyncratic error, 𝑢𝑖𝑡 

[66]. 

The Stata 

command to test 

the idiosyncratic 

error, 𝑢𝑖𝑡, for 

normality is 

xtsktest. 

No statistically significant 

skewness and excess 

kurtosis were detected for 

the idiosyncratic error, 𝑢𝑖𝑡, 

in both models (in the 

model with water use and 

in the model without water 

use).. The normality 

assumption was verified.  
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Model specification: 𝑦𝑖𝑡 = 𝛽1𝑥𝑖𝑡1 + ⋯+ 𝛽𝑘𝑥𝑖𝑡𝑘 + 𝑎𝑖 + 𝑢𝑖𝑡, 𝑖 = 1,… ,39 𝑎𝑛𝑑 𝑡 = 1,… ,16, where 𝛽𝑗 are the parameters to 

estimate, 𝑎𝑖 is the unobserved heterogeneity, and 𝑢𝑖𝑡 is the idiosyncratic error. 
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Appendix B. Summary statistics of variables i 

 

Year Mean Std. Dev. Min. Max. windcap (W/capita) 

2000 12.13 41.07 0.00 245.91 

 

2001 22.65 59.32 0.00 285.05 

2002 26.65 67.00 0.00 310.51 

2003 41.22 103.54 0.00 566.09 

2004 44.23 112.07 0.00 559.80 

2005 64.89 131.68 0.00 574.41 

2006 81.00 155.74 0.00 627.23 

2007 105.57 180.10 0.00 777.29 

2008 190.87 365.36 0.00 1734.25 

2009 287.31 534.99 0.00 2215.85 

2010 332.53 596.45 0.00 2506.41 

2011 374.87 645.04 0.00 2715.41 

2012 454.39 716.92 1.42 3198.11 

2013 459.21 718.89 1.42 3194.83 

2014 478.09 744.21 3.03 3466.84 

2015 515.80 793.13 2.98 3820.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
i In the tables, installed capacity for wind power per capita, gross state product per capita, 

the net per capita value-added by the agricultural sector to the U.S. economy, the 

percentage rate of unemployment, CO2 emissions per capita, the NOX emissions per 

capita, and the water consumption per capita are represented by windcap, gsp, agsec, 

unempl, co2, nox, and watuse respectively. 
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Year Mean Std. Dev. Min. Max. gsp ($/capita) 

2000 43544.26 7748.49 31899.00 68992.00 

 

2001 43659.54 8062.73 32263.00 71155.00 

2002 44178.59 7633.29 32506.00 67853.00 

2003 45028.64 7457.04 32396.00 67956.00 

2004 46147.44 7583.45 32862.00 69500.00 

2005 47023.05 7609.13 33628.00 67525.00 

2006 47948.72 7954.21 34009.00 67857.00 

2007 48375.41 8117.92 33892.00 67228.00 

2008 48093.69 8094.14 34679.00 69182.00 

2009 46807.05 8643.29 34564.00 72204.00 

2010 47386.77 8291.53 34621.00 69565.00 

2011 48021.08 8380.00 34270.00 70573.00 

2012 48520.13 8933.30 34090.00 73464.00 

2013 48601.03 8505.86 34795.00 69596.00 

2014 49219.51 8621.23 34949.00 70684.00 

2015 49776.87 8459.55 35455.00 67278.00 

 

 

 

Year Mean Std. Dev. Min. Max. agsec ($/capita) 

2000 547.69 731.90 25.78 3115.01 

 

2001 550.58 672.66 27.96 2679.85 

2002 422.23 489.53 29.09 2022.54 

2003 590.41 810.91 29.53 3514.55 

2004 705.20 882.27 34.96 3736.22 

2005 688.69 859.01 32.51 3490.48 

2006 527.14 602.97 24.56 2280.04 

2007 678.18 909.74 23.43 3603.86 

2008 860.99 1279.96 17.09 5171.19 

2009 687.91 1075.39 21.57 4497.81 

2010 811.41 1215.95 24.79 5417.24 

2011 1057.72 1600.34 23.91 6808.50 

2012 925.70 1387.66 14.81 5522.79 

2013 963.91 1460.73 12.37 5813.61 

2014 1002.12 1533.88 9.94 6104.42 

2015 1040.33 1607.10 7.50 6395.24 
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2000
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2013

2014

2015

Year Mean Std. Dev. Min. Max. unempl (%) 

2000 3.86 0.90 2.50 6.40 

 

2001 4.42 0.88 2.90 6.40 

2002 5.27 1.07 3.20 7.50 

2003 5.51 1.11 3.50 8.10 

2004 5.11 1.03 3.40 7.50 

2005 4.76 0.91 2.90 6.90 

2006 4.33 0.93 2.60 7.00 

2007 4.25 0.98 2.60 7.00 

2008 5.19 1.26 3.10 8.00 

2009 8.25 2.03 4.10 13.70 

2010 8.47 2.13 3.80 13.50 

2011 7.81 1.98 3.50 13.00 

2012 7.09 1.80 3.10 11.20 

2013 6.52 1.64 2.90 9.60 

2014 5.54 1.32 2.70 7.90 

2015 4.81 1.10 2.70 6.70 

 

 

 

Year Mean Std. Dev. Min. Max. co2 (t/capita) 

2000 27.12 22.65 11.16 127.99 

 

2001 26.58 22.53 10.78 128.17 

2002 26.46 22.34 10.40 124.20 

2003 26.66 22.50 10.56 127.12 

2004 26.71 22.16 10.14 125.51 

2005 26.82 22.26 10.49 123.11 

2006 26.08 22.02 9.88 122.64 

2007 26.35 22.20 10.43 124.33 

2008 25.44 21.75 9.45 122.52 

2009 23.52 20.11 9.01 113.96 

2010 23.82 20.56 8.99 115.67 

2011 23.34 20.32 8.45 113.08 

2012 22.57 20.60 8.24 115.12 

2013 22.97 20.69 8.27 117.73 

2014 22.82 20.15 8.61 112.40 

2015 22.28 20.01 7.95 111.73 

 

 

 

0 4 8

1
2

1
6

2
0

2
4

2
8

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015



 

85 

 

0 4 8
1

2
1

6
2

0
2

4
2

8
3

2

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

1
0
0

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Year Mean Std. Dev. Min. Max. nox (kg/capita) 

2000 30.40 38.70 0.80 186.19 

 

2001 28.87 37.92 0.52 186.01 

2002 27.33 36.08 0.52 178.64 

2003 25.79 34.27 0.51 171.28 

2004 25.32 35.43 0.57 185.78 

2005 24.36 34.03 0.53 177.75 

2006 21.15 29.02 0.50 149.18 

2007 22.00 30.39 0.53 153.52 

2008 18.09 25.74 0.49 134.45 

2009 14.84 23.87 0.47 123.88 

2010 14.18 21.36 0.47 112.55 

2011 13.49 21.35 0.48 112.35 

2012 11.64 17.23 0.31 85.98 

2013 10.62 18.88 0.36 97.62 

2014 9.62 17.62 0.25 90.25 

2015 8.70 16.36 0.06 82.89 

 

 

 

Year Mean Std. Dev. Min. Max. watuse (1000t/capita) 

2000 118.88 126.85 1.01 543.88 

 

2001 117.86 124.81 1.28 533.86 

2002 120.26 128.51 0.45 546.45 

2003 120.57 127.80 1.29 542.29 

2004 122.72 131.71 1.58 567.47 

2005 124.76 133.33 1.48 567.81 

2006 124.03 133.98 1.21 571.72 

2007 127.08 135.93 1.51 574.11 

2008 126.01 134.30 1.55 568.17 

2009 117.32 127.32 1.49 550.03 

2010 121.48 131.99 1.54 570.99 

2011 117.26 132.25 1.07 593.69 

2012 111.10 124.76 1.69 559.93 

2013 113.44 127.96 2.92 575.14 

2014 112.77 126.93 2.21 575.83 

2015 106.97 119.56 2.56 546.88 
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Appendix C. Summary statistics of states 

Alaska Mean Std. Dev. Min. Max. 

windcap(watt/capita) 22.96 33.93 0.00 98.68 

gsp ($/capita) 65300.63 5273.55 57184.00 73464.00 

agsec ($/capita) 25.79 12.32 7.50 47.50 

unempl (%) 7.03 0.54 6.30 7.90 

co2 (tonne/capita) 60.24 9.23 46.61 71.97 

nox (kg/capita) 17.47 4.10 10.77 23.89 

wateruse (1000tonnes/capita) 4.24 0.23 3.81 4.55 

     

Arizona Mean Std. Dev. Min. Max. 

windcap(watt/capita) 27.68 36.24 0.00 89.76 

gsp ($/capita) 40024.75 2180.80 37936.00 44168.00 

agsec ($/capita) 233.90 45.78 130.54 325.11 

unempl (%) 6.46 2.13 3.90 10.40 

co2 (tonne/capita) 15.57 1.22 13.84 17.09 

nox (kg/capita) 12.25 3.75 7.28 20.31 

wateruse (1000tonnes/capita) 183.69 10.80 168.46 198.56 

     

California Mean Std. Dev. Min. Max. 

windcap(watt/capita) 83.67 39.96 46.31 150.79 

gsp ($/capita) 52283.44 2865.36 47216.00 56851.00 

agsec ($/capita) 482.83 92.00 348.06 627.67 

unempl (%) 7.57 2.52 4.90 12.20 

co2 (tonne/capita) 10.32 0.81 9.14 11.29 

nox (kg/capita) 0.78 0.33 0.47 1.73 

wateruse (1000tonnes/capita) 167.37 15.59 141.81 190.41 

     

Colorado Mean Std. Dev. Min. Max. 

windcap(watt/capita) 215.63 189.60 3.84 543.90 

gsp ($/capita) 50864.63 1036.52 49258.00 52558.00 

agsec ($/capita) 409.06 57.82 307.40 489.94 

unempl (%) 5.59 1.79 2.80 8.70 

co2 (tonne/capita) 19.22 1.37 17.12 20.95 

nox (kg/capita) 13.50 3.15 8.55 17.97 

wateruse (1000tonnes/capita) 81.26 3.18 75.27 87.16 
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Delaware Mean Std. Dev. Min. Max. 

windcap(watt/capita) 1.17 1.57 0.00 3.30 

gsp ($/capita) 65620.50 3141.94 60557.00 71155.00 

agsec ($/capita) 345.57 77.86 197.40 523.39 

unempl (%) 5.26 1.78 3.40 8.40 

co2 (tonne/capita) 17.28 3.14 12.87 21.31 

nox (kg/capita) 9.02 6.02 0.61 17.37 

wateruse (1000tonnes/capita) 9.15 2.11 6.62 13.28 

     

Hawaii Mean Std. Dev. Min. Max. 

windcap(watt/capita) 52.57 46.73 8.82 126.17 

gsp ($/capita) 48485.19 2388.33 43778.00 51245.00 

agsec ($/capita) 296.83 26.35 261.95 339.72 

unempl (%) 4.55 1.46 2.60 7.20 

co2 (tonne/capita) 15.39 1.90 12.99 18.32 

nox (kg/capita) 15.90 3.81 10.90 23.06 

wateruse (1000tonnes/capita) 3.22 0.19 2.79 3.44 

     

Idaho Mean Std. Dev. Min. Max. 

windcap(watt/capita) 25.55 32.08 0.00 75.29 

gsp ($/capita) 35001.19 1128.41 33390.00 37080.00 

agsec ($/capita) 1642.50 317.64 1129.73 2193.26 

unempl (%) 5.63 1.82 3.10 9.00 

co2 (tonne/capita) 10.62 0.73 9.64 12.13 

nox (kg/capita) 0.51 0.08 0.41 0.80 

wateruse (1000tonnes/capita) 1.59 0.69 0.45 3.22 

     

Illinois Mean Std. Dev. Min. Max. 

windcap(watt/capita) 217.59 233.35 0.00 578.35 

gsp ($/capita) 51039.75 1518.87 48849.00 53669.00 

agsec ($/capita) 503.10 191.15 219.08 773.91 

unempl (%) 7.00 2.04 4.30 10.40 

co2 (tonne/capita) 18.29 0.63 16.91 19.33 

nox (kg/capita) 9.11 6.16 1.08 19.34 

wateruse (1000tonnes/capita) 434.14 14.48 404.89 453.10 
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Indiana Mean Std. Dev. Min. Max. 

windcap(watt/capita) 211.04 246.61 0.00 559.74 

gsp ($/capita) 42789.25 1441.11 40138.00 45118.00 

agsec ($/capita) 585.50 185.89 265.37 851.18 

unempl (%) 6.29 2.19 3.10 10.40 

co2 (tonne/capita) 34.91 3.32 30.01 39.21 

nox (kg/capita) 27.79 16.58 1.92 56.87 

wateruse (1000tonnes/capita) 237.00 26.44 176.56 268.69 

     

Iowa Mean Std. Dev. Min. Max. 

windcap(watt/capita) 1640.02 1331.69 241.07 3820.12 

gsp ($/capita) 45179.56 3345.63 38988.00 49532.00 

agsec ($/capita) 2904.49 1100.88 1495.91 4765.61 

unempl (%) 4.40 0.98 2.60 6.40 

co2 (tonne/capita) 27.11 1.12 26.01 29.57 

nox (kg/capita) 19.11 6.29 10.53 28.71 

wateruse (1000tonnes/capita) 88.02 6.00 77.81 99.87 

     

Kansas Mean Std. Dev. Min. Max. 

windcap(watt/capita) 388.14 423.42 0.00 1229.46 

gsp ($/capita) 43418.81 2449.19 39745.00 46132.00 

agsec ($/capita) 1502.30 535.63 592.07 2326.29 

unempl (%) 5.15 1.02 3.60 7.10 

co2 (tonne/capita) 26.15 1.90 22.94 28.87 

nox (kg/capita) 23.11 8.33 11.89 35.43 

wateruse (1000tonnes/capita) 91.92 7.80 74.69 104.33 

     

Maine Mean Std. Dev. Min. Max. 

windcap(watt/capita) 25.77 31.34 0.00 90.33 

gsp ($/capita) 38097.69 776.02 36503.00 39288.00 

agsec ($/capita) 222.13 24.33 179.73 262.95 

unempl (%) 5.56 1.58 3.40 8.10 

co2 (tonne/capita) 15.17 2.52 11.39 18.52 

nox (kg/capita) 5.31 1.29 3.41 7.91 

wateruse (1000tonnes/capita) 6.42 2.42 2.56 12.11 
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Maryland Mean Std. Dev. Min. Max. 

windcap(watt/capita) 8.23 11.64 0.00 31.69 

gsp ($/capita) 51611.06 2884.12 45619.00 54626.00 

agsec ($/capita) 120.30 14.91 80.99 147.76 

unempl (%) 5.18 1.46 3.50 7.70 

co2 (tonne/capita) 12.73 1.92 9.87 14.93 

nox (kg/capita) 7.98 6.01 0.36 16.90 

wateruse (1000tonnes/capita) 89.82 11.32 70.69 101.04 

     

Massachusetts Mean Std. Dev. Min. Max. 

windcap(watt/capita) 16.85 25.43 0.00 63.48 

gsp ($/capita) 59458.13 2884.78 54736.00 64017.00 

agsec ($/capita) 38.55 4.98 29.07 49.83 

unempl (%) 5.63 1.50 2.70 8.30 

co2 (tonne/capita) 11.51 1.52 9.25 13.20 

nox (kg/capita) 3.18 1.97 0.38 6.45 

wateruse (1000tonnes/capita) 48.16 8.10 34.51 58.41 

     

Michigan Mean Std. Dev. Min. Max. 

windcap(watt/capita) 37.32 57.15 0.06 154.25 

gsp ($/capita) 41112.13 1671.84 36676.00 42919.00 

agsec ($/capita) 266.37 116.33 121.43 441.73 

unempl (%) 7.84 2.62 3.60 13.70 

co2 (tonne/capita) 17.56 1.33 15.55 19.52 

nox (kg/capita) 10.77 4.21 4.15 17.59 

wateruse (1000tonnes/capita) 219.52 15.34 201.09 243.17 

     

Minnesota Mean Std. Dev. Min. Max. 

windcap(watt/capita) 284.75 199.30 60.75 592.42 

gsp ($/capita) 50614.25 1888.15 47177.00 53562.00 

agsec ($/capita) 1122.12 421.66 498.78 1751.76 

unempl (%) 4.96 1.31 3.20 7.80 

co2 (tonne/capita) 18.42 1.39 16.21 20.10 

nox (kg/capita) 12.10 5.36 4.73 19.83 

wateruse (1000tonnes/capita) 98.50 8.47 81.95 110.74 
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Missouri Mean Std. Dev. Min. Max. 

windcap(watt/capita) 68.79 73.13 0.00 154.36 

gsp ($/capita) 42291.94 567.34 41346.00 43145.00 

agsec ($/capita) 578.11 163.73 274.58 802.87 

unempl (%) 6.18 1.69 3.60 9.60 

co2 (tonne/capita) 22.99 1.11 21.18 24.75 

nox (kg/capita) 16.54 8.80 2.70 29.37 

wateruse (1000tonnes/capita) 178.90 9.93 159.39 191.60 

     

Montana Mean Std. Dev. Min. Max. 

windcap(watt/capita) 278.75 257.13 0.00 647.49 

gsp ($/capita) 36374.44 2458.68 31899.00 39046.00 

agsec ($/capita) 1257.25 301.21 716.96 1645.30 

unempl (%) 5.08 1.14 3.50 7.30 

co2 (tonne/capita) 34.65 2.67 30.34 38.98 

nox (kg/capita) 23.75 15.51 1.24 46.20 

wateruse (1000tonnes/capita) 34.68 2.79 29.61 38.92 

     

Nebraska Mean Std. Dev. Min. Max. 

windcap(watt/capita) 174.88 219.29 2.05 665.43 

gsp ($/capita) 47626.38 3616.97 41761.00 52773.00 

agsec ($/capita) 3240.62 1157.21 1443.61 5301.19 

unempl (%) 3.64 0.58 2.80 4.60 

co2 (tonne/capita) 26.11 1.53 24.31 28.58 

nox (kg/capita) 23.55 4.07 15.33 30.72 

wateruse (1000tonnes/capita) 70.36 5.01 61.29 78.58 

     

Nevada Mean Std. Dev. Min. Max. 

windcap(watt/capita) 3.79 6.78 0.00 15.39 

gsp ($/capita) 47921.88 4221.98 43054.00 54797.00 

agsec ($/capita) 94.67 12.91 72.48 120.03 

unempl (%) 7.31 3.35 4.00 13.50 

co2 (tonne/capita) 16.35 3.72 10.73 22.72 

nox (kg/capita) 11.34 8.77 0.87 26.58 

wateruse (1000tonnes/capita) 38.28 8.83 28.84 53.55 
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New Hampshire Mean Std. Dev. Min. Max. 

windcap(watt/capita) 5.48 8.26 0.00 19.27 

gsp ($/capita) 47716.13 1694.58 44460.00 50162.00 

agsec ($/capita) 55.17 9.06 35.96 73.15 

unempl (%) 4.30 1.02 2.70 6.20 

co2 (tonne/capita) 13.57 1.97 10.81 16.98 

nox (kg/capita) 5.68 3.47 0.06 10.74 

wateruse (1000tonnes/capita) 34.47 3.79 28.92 40.71 

     

New Jersey Mean Std. Dev. Min. Max. 

windcap(watt/capita) 2.38 1.92 0.00 4.33 

gsp ($/capita) 55775.81 1315.93 53701.00 57860.00 

agsec ($/capita) 63.62 9.25 46.98 76.66 

unempl (%) 6.31 2.08 3.70 9.50 

co2 (tonne/capita) 13.68 1.13 11.78 15.10 

nox (kg/capita) 2.20 1.41 0.23 4.88 

wateruse (1000tonnes/capita) 114.75 4.30 104.53 119.63 

     

New Mexico Mean Std. Dev. Min. Max. 

windcap(watt/capita) 25.16 16.49 0.00 53.80 

gsp ($/capita) 40180.56 1219.44 37773.00 41558.00 

agsec ($/capita) 614.91 135.63 416.30 848.71 

unempl (%) 5.93 1.32 3.80 8.10 

co2 (tonne/capita) 28.40 2.70 24.05 31.99 

nox (kg/capita) 35.06 6.71 25.19 47.89 

wateruse (1000tonnes/capita) 61.32 5.23 49.75 67.81 

     

New York Mean Std. Dev. Min. Max. 

windcap(watt/capita) 1132.53 1001.17 28.18 2396.21 

gsp ($/capita) 59122.31 3223.58 53827.00 63390.00 

agsec ($/capita) 94.19 23.02 58.03 127.16 

unempl (%) 6.26 1.54 4.50 8.60 

co2 (tonne/capita) 9.75 1.21 7.95 11.21 

nox (kg/capita) 2.54 1.47 0.43 5.33 

wateruse (1000tonnes/capita) 175.80 8.81 162.87 191.34 
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North Dakota Mean Std. Dev. Min. Max. 

windcap(watt/capita) 311.61 299.23 0.00 785.40 

gsp ($/capita) 49868.94 12509.57 35067.00 70684.00 

agsec ($/capita) 4018.34 1312.92 2022.54 5850.40 

unempl (%) 3.28 0.41 2.70 4.10 

co2 (tonne/capita) 79.13 1.37 76.78 81.10 

nox (kg/capita) 98.58 23.71 61.65 130.50 

wateruse (1000tonnes/capita) 60.02 1.92 56.67 63.25 

     

Ohio Mean Std. Dev. Min. Max. 

windcap(watt/capita) 10.83 16.97 0.00 41.06 

gsp ($/capita) 44036.63 1512.05 41593.00 47109.00 

agsec ($/capita) 267.38 87.67 133.08 430.75 

unempl (%) 6.55 1.88 4.00 10.30 

co2 (tonne/capita) 21.90 1.66 18.86 23.70 

nox (kg/capita) 16.87 11.96 1.23 34.81 

wateruse (1000tonnes/capita) 289.93 33.80 217.39 326.47 

     

Oklahoma Mean Std. Dev. Min. Max. 

windcap(watt/capita) 365.56 399.31 0.00 1282.72 

gsp ($/capita) 39064.75 3316.77 34015.00 45042.00 

agsec ($/capita) 488.74 101.77 223.31 660.43 

unempl (%) 4.78 1.04 3.00 6.80 

co2 (tonne/capita) 28.87 1.18 27.00 30.69 

nox (kg/capita) 22.52 4.05 16.42 29.69 

wateruse (1000tonnes/capita) 92.80 6.58 79.50 103.02 

     

Oregon Mean Std. Dev. Min. Max. 

windcap(watt/capita) 357.01 314.07 45.50 810.80 

gsp ($/capita) 45116.31 4906.84 37161.00 51260.00 

agsec ($/capita) 529.64 69.20 412.45 595.11 

unempl (%) 7.39 1.89 5.10 11.30 

co2 (tonne/capita) 10.78 0.89 9.46 12.10 

nox (kg/capita) 2.85 0.70 1.16 4.18 

wateruse (1000tonnes/capita) 17.63 2.70 13.79 22.41 
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Pennsylvania Mean Std. Dev. Min. Max. 

windcap(watt/capita) 43.99 41.43 2.79 105.24 

gsp ($/capita) 45792.13 2456.04 41857.00 50540.00 

agsec ($/capita) 165.12 30.55 94.77 203.64 

unempl (%) 5.97 1.45 4.10 8.50 

co2 (tonne/capita) 20.87 1.49 18.68 22.60 

nox (kg/capita) 13.55 4.30 7.39 22.07 

wateruse (1000tonnes/capita) 440.47 21.58 391.37 472.25 

     

Rhode Island Mean Std. Dev. Min. Max. 

windcap(watt/capita) 1.07 1.91 0.00 5.69 

gsp ($/capita) 45637.06 1954.10 41395.00 48259.00 

agsec ($/capita) 33.41 4.45 25.78 40.52 

unempl (%) 7.11 2.64 4.10 11.20 

co2 (tonne/capita) 10.42 0.53 9.69 11.64 

nox (kg/capita) 1.08 0.67 0.60 2.60 

wateruse (1000tonnes/capita) 5.33 0.83 3.84 6.88 

     

South Dakota Mean Std. Dev. Min. Max. 

windcap(watt/capita) 391.97 415.21 0.00 976.55 

gsp ($/capita) 43603.13 3842.11 35601.00 47979.00 

agsec ($/capita) 4214.12 1603.84 1540.40 6808.50 

unempl (%) 3.63 0.75 2.50 5.00 

co2 (tonne/capita) 18.00 0.49 17.11 18.81 

nox (kg/capita) 17.28 5.39 8.93 24.94 

wateruse (1000tonnes/capita) 6.66 1.07 3.75 7.88 

     

Tennessee Mean Std. Dev. Min. Max. 

windcap(watt/capita) 3.51 1.91 0.31 4.87 

gsp ($/capita) 40698.25 1278.02 38631.00 42647.00 

agsec ($/capita) 162.35 29.41 94.20 219.82 

unempl (%) 6.49 1.94 3.90 10.50 

co2 (tonne/capita) 18.94 2.89 14.62 22.50 

nox (kg/capita) 13.86 10.50 1.97 31.56 

wateruse (1000tonnes/capita) 175.16 23.19 136.06 200.81 
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Texas Mean Std. Dev. Min. Max. 

windcap(watt/capita) 259.40 208.21 0.00 643.88 

gsp ($/capita) 47994.31 3234.71 44330.00 54964.00 

agsec ($/capita) 300.37 60.18 190.92 418.81 

unempl (%) 5.86 1.26 4.30 8.10 

co2 (tonne/capita) 26.02 3.21 21.25 31.29 

nox (kg/capita) 8.58 6.03 0.25 20.98 

wateruse (1000tonnes/capita) 561.77 16.16 533.86 593.69 

     

Utah Mean Std. Dev. Min. Max. 

windcap(watt/capita) 45.51 53.28 0.00 115.19 

gsp ($/capita) 41606.00 2034.78 38695.00 45293.00 

agsec ($/capita) 192.21 50.09 71.79 263.66 

unempl (%) 4.78 1.55 2.60 7.80 

co2 (tonne/capita) 25.21 2.51 21.52 29.20 

nox (kg/capita) 26.04 5.71 17.98 36.35 

wateruse (1000tonnes/capita) 76.35 4.21 69.65 85.38 

     

Vermont Mean Std. Dev. Min. Max. 

windcap(watt/capita) 4.55 6.12 0.75 14.77 

gsp ($/capita) 41150.63 2010.95 36622.00 43127.00 

agsec ($/capita) 429.04 84.91 290.90 560.08 

unempl (%) 4.33 1.03 2.80 6.60 

co2 (tonne/capita) 10.05 0.85 8.78 11.29 

nox (kg/capita) 0.78 0.29 0.31 1.61 

wateruse (1000tonnes/capita) 12.11 1.17 9.99 13.89 

     

Washington Mean Std. Dev. Min. Max. 

windcap(watt/capita) 212.90 166.75 0.00 436.31 

gsp ($/capita) 52264.06 2424.55 48408.00 55577.00 

agsec ($/capita) 531.45 98.69 399.42 695.39 

unempl (%) 6.79 1.64 4.70 10.00 

co2 (tonne/capita) 11.75 1.19 10.01 14.12 

nox (kg/capita) 2.57 1.13 0.99 5.02 

wateruse (1000tonnes/capita) 45.06 6.14 27.27 51.82 
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West Virginia Mean Std. Dev. Min. Max. 

windcap(watt/capita) 47.65 42.27 0.00 101.87 

gsp ($/capita) 34296.25 1563.93 32144.00 36817.00 

agsec ($/capita) 45.52 20.95 21.68 85.71 

unempl (%) 6.16 1.33 4.30 8.70 

co2 (tonne/capita) 57.31 6.04 48.44 65.19 

nox (kg/capita) 64.52 48.81 4.79 148.57 

wateruse (1000tonnes/capita) 172.53 19.87 142.37 194.46 

     

Wisconsin Mean Std. Dev. Min. Max. 

windcap(watt/capita) 164.08 147.45 12.59 346.27 

gsp ($/capita) 44500.50 1473.71 41911.00 46893.00 

agsec ($/capita) 637.06 173.07 377.03 906.86 

unempl (%) 5.76 1.55 3.50 8.70 

co2 (tonne/capita) 18.30 1.35 15.82 20.14 

nox (kg/capita) 9.98 6.10 0.77 20.86 

wateruse (1000tonnes/capita) 118.53 3.74 109.20 122.86 

     

Wyoming Mean Std. Dev. Min. Max. 

windcap(watt/capita) 1339.97 1009.01 11.92 2522.00 

gsp ($/capita) 60269.38 5276.42 50814.00 69182.00 

agsec ($/capita) 682.08 150.71 430.91 963.00 

unempl (%) 4.33 1.10 2.80 6.40 

co2 (tonne/capita) 120.33 5.93 111.73 128.17 

nox (kg/capita) 139.27 38.95 82.89 186.19 

wateruse (1000tonnes/capita) 90.44 2.42 85.98 97.46 
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Appendix D. Installed wind energy generation capacities of U.S. states between 2000 

and 2015 (total) [4]  

 

windcap  (MW) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Alaska 0 0 0 1 1 10 3 3 3 7 7 7 33 60 73 61

Arizona 0 0 0 0 0 0 0 0 0 63 128 138 237 237 237 267

California 7 1597 1741 1943 2037 2038 2257 2318 2371 2653 2786 3742 5493 5618 5833 5741

Colorado 17 51 59 221 227 229 289 1065 1065 1240 1296 1803 2299 2331 2594 2964

Delaware 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2

Hawaii 2 11 11 11 11 11 43 64 64 64 62 92 176 176 176 176

Idaho 0 0 0 0 0 11 75 75 117 146 352 611 967 967 967 967

Illinois 0 0 0 50 50 105 105 740 962 1596 1946 2737 3545 3550 3552 3825

Indiana 0 0 0 0 0 0 0 0 131 1037 1340 1340 1540 1540 1740 1740

Iowa 4 318 416 462 623 820 921 1170 2661 3444 3664 4302 5104 5150 5663 6314

Kansas 0 112 112 113 113 263 363 363 812 1011 1072 1272 2719 2969 2969 3574

Maine 0 0 0 0 0 0 0 42 47 170 266 326 431 431 431 613

Maryland 0 0 0 0 0 0 0 0 0 0 70 120 120 120 160 190

Massachusetts 0 0 0 0 0 0 0 2 2 5 11 31 66 75 84 84

Michigan 1 2 2 2 2 2 2 2 124 143 164 376 876 1161 1530 1530

Minnesota 1 303 338 468 518 687 829 1139 1481 1636 2009 2580 2846 2846 3048 3248

Missouri 0 0 0 0 0 0 0 57 163 309 459 459 459 459 459 459

Montana 0 0 0 0 0 135 145 165 271 375 385 384 643 643 662 662

Nebraska 3 4 3 13 13 73 73 71 71 152 212 333 455 530 812 885

Nevada 0 0 0 0 0 0 0 0 0 0 0 0 150 150 150 150

New Hampshire 0 0 0 0 0 0 0 0 24 24 24 24 171 171 171 171

New Jersey 0 0 0 0 0 0 8 8 8 8 8 8 8 8 9 9

New Mexico 0 0 0 204 264 404 494 494 496 597 700 750 778 778 812 1062

New York 0 18 48 48 48 185 370 425 707 1274 1274 1399 1641 1735 1751 1751

North Dakota 0 0 0 64 64 96 164 383 841 1329 1550 1550 1802 1802 1802 2265

Ohio 0 0 0 4 7 7 7 7 7 7 7 160 462 475 424 432

Oklahoma 0 0 0 176 176 474 594 689 708 1130 1480 1811 3133 3133 3780 5012

Oregon 0 158 183 224 224 299 399 886 1068 1665 2011 2215 3161 3161 3158 3158

Pennsylvania 0 34 34 132 132 132 150 293 361 748 748 789 1344 1344 1344 1334

Rhode Island 0 0 0 0 0 0 0 0 0 0 2 2 2 2 6 6

South Dakota 0 3 3 43 43 43 43 43 193 320 629 780 791 791 660 838

Tennessee 2 2 2 2 29 29 29 29 29 29 29 29 29 29 29 29

Texas 0 925 1085 1286 1286 1846 2738 4340 7281 9234 9808 10367 12185 12326 13998 17662

Utah 0 0 0 0 0 0 0 0 19 222 222 324 324 324 324 324

Vermont 6 6 6 6 6 6 6 6 6 6 6 46 121 121 121 121

Washington 0 180 228 244 244 394 822 1163 1366 2007 2297 2458 2811 2811 3078 3078

West Virginia 0 0 66 66 66 66 66 66 330 330 431 528 583 583 583 583

Wisconsin 23 54 53 53 53 53 53 53 365 449 469 631 636 635 638 638

Wyoming 6 141 141 285 285 287 287 287 680 1104 1415 1432 1433 1433 1433 1433

0 <

2250 <

windcap = 0 4500 < windcap ≤ 6750 11250 < windcap ≤ 13500

windcap ≤ 15750

windcap ≤ 4500 9000 < windcap ≤ 11250 15750 < windcap ≤ 18000

windcap ≤ 2250 6750 < windcap ≤ 9000 13500 <
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CHAPTER FOUR 

WIND ENERGY POLICY DIFFUSION: 

AN ANALYSIS OF THE MIDWESTERN UNITED STATES 

 

 

Abstract 

The installed wind power capacity in the United States (U.S.) has increased from 

2539 megawatts (MW) in 24 states in 2000 to 84413 MW in 41 states according to the 

most recent data. Since the electricity production from wind power first started in 1980s, 

the increase in generation capacities has been highly dependent on the adoption and 

implementation of regulatory policies and financial incentives of state and local 

governments. The objective of the current study is to examine state- and local-level 

diffusion of wind energy policies in the Midwestern U.S. from 2008 to 2015 using a 

random-effects panel data model and following the dynamic modelling of internal and 

external factors of policy diffusion. We narrow our focus to seven neighboring states, the 

states of West North Central division, to provide control for external factors (i.e. 

geographical interdependence). The internal policy diffusion factors considered in this 

study include wind power potential, per capita gross state product, unemployment rate, per 

capita value of the agriculture sector, number of establishments in the agricultural sector, 

and state government control. Through the addition of interaction terms, our analysis also 

considers the behavioral differences in these regressors under Republican and non-

Republican state governance. Our findings suggest that economic development potential is 
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a common factor of wind energy policy diffusion at both the state- and local-level. 

Additionally, technical terms and agricultural sector presence provide motives for the state-

level diffusion of wind energy policies. The findings on the significance and size of the 

impact of the internal factors are expected to provide useful guidance to shareholders (i.e. 

investors and land owners) who may benefit from an increased number of regulatory 

policies and financial incentives, and enable them to plan more efficiently. 
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1. Introduction 

Supplying over 5.5% of the utility-level electricity of the United States (U.S.) [1], 

wind power has become a “mainstream” source of energy in the U.S. [2]. With the addition 

of Connecticut in 2016 and North Carolina in the first quarter of 2017, the number of states 

with wind energy sourced electricity generation capacity has increased to 41 and the 

installed capacity for wind power has exceeded 84 gigawatts (GW) in the country [1]. 

According to the National Renewable Energy Laboratory, the technical capacity for wind 

power, in other words wind energy supply potential, in the U.S. is over 10000 GW [3]. 

This capacity can annually generate over 32 petawatt-hours (PWh) [3] which is 8.3 times 

bigger than the total electricity consumption (3.85 PWh) in the U.S. in 2016 [4]. 

Today, wind energy worldwide is considered a strong substitute for conventional 

energy sources as a secure, sustainable and environment-friendly option. Switching to wind 

and other renewables is, in part, an effort to overcome the negative externalities of the 

increasing consumption of energy around the world [5]. As for the diffusion of renewable 

energy generally, it is widely agreed upon that the policy environment and enabling 

structure is crucial for the successful and effective promotion and increased use of wind 

power [5], [6].  

In the U.S., the production of electricity from wind energy has been highly 

dependent on the structure of the policy environment since the production of wind power 

sourced electricity first began in the 1980s [7]. The Tax Act of 1980 motivated wind energy 

investors until 1986 when the tax credits were terminated [7]. Wind power investments 

accelerated again in 1999, when the extent of production tax credits, under the Relief 
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Extension Act of 1992, expanded for the wind energy sector [7]. Since 2000, there has also 

been growing support from state and local governments for increasing the number of policy 

tools used to deploy wind power across the country such as tax incentives, loan programs, 

zoning ordinances and wind permitting standards [8].  

 The current study utilizes the increasing number of wind energy policy tools as a 

proxy for diffusion and uses random-effects panel data model to provide additional depth 

to our knowledge on the factors related to wind energy policy diffusion from 2008 to 2015. 

Our focus is the seven Midwestern U.S. states, which are located in the center of the wind 

energy corridor of country (Figure 1). The states in this region include Iowa, Kansas, 

Minnesota, Missouri, Nebraska, North Dakota, and South Dakota.  

Figure 1: Total estimated technical potential for onshore wind power in the U.S. [3]  
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2. Literature Review 

Over the past several decades, public policy literature on policy diffusion across 

states and nations has been growing. This literature focuses on the breadth of policy 

diffusion, including  factors of  the policy transfer processes, agents involved, and 

structures followed (voluntary, coercive, and mix). Even though terminology and focus 

often vary, policy diffusion, policy transfer, policy convergence, or lesson-drawing, all 

relate to a mechanism in which “knowledge about policies, administrative arrangements, 

institutions, etc. in one time and/or place is used in the development of policies, 

administrative arrangements, and institutions in another time and/or place” [9], [10].  

The early studies of policy diffusion emerged as a subset of comparative politics 

beginning in the 1960s. These studies explained the diffusion process of policies primarily 

by geographical interactions and learning from early adopters [9]. For instance, a study 

conducted by Walker (1969) focused on the adoption of innovations among the U.S. states 

and considered the adoption of policies by another state as a reference point for the 

diffusion of state-level innovation policies [11].  In the 1980s, critiques emerged on the 

comprehensiveness of these early studies by stating that the objective of these  was not 

really the process but only the substance [12], thus the mechanisms of the transfer – with a 

special focus on the agents involved – became the new focus of  policy analysts. The 

identification of the rational political actors who examine the “successful” policies 

implemented elsewhere and who are involved in the adoption of the same policies within 

another political structure was the main concentration of scholars from the 1980s until the 

early 1990s [9]. In their systematic literature review, Dolowitz and Marsh (1996) identified 
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these actors in six main categories: “elected officials [8]; political parties [13]; 

bureaucrats/civil servants [14]; pressure groups [15]; policy entrepreneurs/experts; and 

supra-national institutions” [16]. 

Two mainstream approaches have emerged in the field of policy diffusion since the 

1990s. The approach developed by Dolowitz and Marsh (2000) presents a systematic and 

comprehensive framework including types of transfer (voluntary, coercive or mix), agents 

involved (elected officials, bureaucrats, institutions, ideologies…), extent of diffusion 

(within-the-nation or cross-national), degree of diffusion (copying, emulation, mixtures or 

inspiration), constraints on diffusion (policy complexity, existing infrastructures, 

technology…) and possible failures of diffusion (incomplete transfer, inappropriate 

transfer…) [10]. The policy diffusion framework of Dolowitz and Marsh (2000) offered a 

practical tool in the area of comparative politics, especially to evaluate the diffusion of a 

specific policy type between two political structures (i.e. cities, counties, stats…). On the 

other hand, the dynamic elements of diffusion were first investigated by the empirical study 

of Berry and Berry in 1990 [16]. In their analysis, the authors included both internal 

(political, economic, and social) and external (regional influences) factors of policy 

diffusion [16]. The two aspects of policy diffusion – internal and external – have been 

considered key elements in diffusion studies that have followed. 

In the area if international policy, a policy diffusion theory was first used in 1989 

by Haas [17]. In his study, Haas investigated internal and external factors of the 

Mediterranean Action Plan and suggested that international learning was as important as 

the domestic factors in developing common environmental policies in the (Mediterranean) 
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area [17]. Following Haas’s study, a robust literature has  emerged around policy diffusion 

and related environmental policies, including environmental policy instruments (see, e.g. 

Frank et al. (2000), Tews et al. (2003), Holzinger et al. (2008)), international environmental 

policies (see, e.g. Neumayer (2002), Bernhagen (2008), Schulze and Tosun (2013)), and 

climate change policies (see, e.g. Bursh (2010), Massey et al. (2014), Biesenbender and 

Tosun (2014)) [18]–[26]. 

In recent years, internal and external elements of policy diffusion have also been 

used to explain the diffusion of renewable energy policy.  In the existing literature on the 

diffusion of renewable energy policies, external factors were consistently found to be 

significantly related to the diffusion of policies [27]–[31]. Focusing on the period between 

1997 and 2008 for 34 U.S. states, Chandler (2009) tested the significance of internal 

considerations as well as neighboring and regional impacts on the diffusion of Sustainable 

Energy Portfolio Standards. His analysis revealed that policy diffusion primarily resulted 

from external factors (that includes neighboring and regional impacts), even accounting for 

an ideological distance with previous adapters [27]. Strebel (2011) examined the diffusion 

process of sub-national energy policies in Switzerland from 1990 to 2007 and concluded 

that the internal determinants were not sufficient explanations and intergovernmental 

institutions promote diffusion only externally and under certain circumstances (e.g. relative 

advantage and observability) [28]. Stadelmann and Castro (2014) focused on revealing the 

domestic (internal) and international factors of the diffusion of four types of renewable 

energy support policies (i.e., renewable energy targets, feed-in tariffs, framework policies 

and other financial incentives) in 112 countries from 1998 to 2009 [29]. The results of their 



 

113 

 

analysis presented stronger support for the interaction among colonial peers and 

membership within the EU compared to domestic (internal) factors [29].  

Schaffer and Bernauer (2014) investigated the diffusion of feed-in tariffs and green 

certificate schemes in 26 International Energy Agency member countries between 1990 

and 2010, and examined both domestic (internal) and international (external) elements 

[31]. Their findings suggested that in addition to the external factors (European Union 

membership), internal factors (characteristics of the existing energy supply system and 

federalist structure of the political system) were significantly related to the diffusion of 

renewable energy policies as well [31]. Similarly, the findings of Nicholson-Crotty and 

Carley (2016) focused on the diffusion of renewable portfolio standards in 50 U.S. states 

from 1997 to 2009 and demonstrated that not only external factors, but also the 

implementation environment (an internal element) played an important role in the diffusion 

process of energy policy [30].  

The internal factors of policy diffusion have also been the focus of Laird and Stefes 

(2009), who analyzed the source of differences in the diffusion of renewable energy 

policies in Germany and the U.S. Their findings revealed the importance of internal – 

country-specific institutional and social – factors, as well as the path dependency of 

historical events for the diffusion of renewable energy policies within these countries [32]. 

Similarly, the wind energy sector specific study of Wiener and Koontz (2012) explained 

the diffusion of wind energy policies in 44 U.S. states with five important internal elements 

including “commitment to environmental protection and policy innovations, citizens 
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ideology, per capita wealth, energy policy network communications, and desire to be 

viewed as an environmental leader” [33].  

The current study recognizes the importance of regional influences and focuses on 

a specific region, the Midwestern section of the U.S. The area is also considered the wind 

energy corridor of the U.S. (Figure 1). In the next section, we will define wind energy 

specific characteristics of the area.  

3. State Wind Energy Profiles 

The West North Central region of the U.S. (i.e., Iowa, Kansas, Nebraska, 

Minnesota, Missouri, North Dakota, and South Dakota) is located in the center of the 

country’s wind tunnel where the best onshore wind resources are located (Figure 1). 20% 

of the nation’s wind turbines (n=12242) are located in this region of the country (Table 1). 

These wind turbines also constitute 25% of the nation’s installed wind capacity (21192 

megawatts (MW)) (Table 1). According to the latest State Fact Sheets of American Wind 

Energy Association (2017), this region includes two of the leading wind energy generation 

states.  Iowa is the leader in percentage energy generation from wind power (36.6%).  North 

Dakota is the leader in per capita wind energy generation (equivalent of 0.99 U.S. homes 

powered per capita) (Table 1).  Similarly, the benefits of the wind energy sector to the West 

North Central’s economy have been substantive. There are 56 wind manufacturing 

facilities in the West North Central region and the industry creates over 25000 jobs (Table 

2). In 2016, the total annual land lease payments were over 48 million dollars in the West 

North Central region and per state annual land lease payment amounts for the installation 
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of wind turbines was either equal to the U.S. average or above the U.S. average ($1-5 

million) (Table 2).  

Table 1. Wind energy generation characteristics in the West North Central region 

(2017) [1] 

  

Installed 

wind 

capacity 

(MW) 

Number of 

wind 

turbines 

Wind Energy Generation 

Percentage 

of in-state 

energy 

production 

Equivalent 

number of 

U.S. homes 

powered 

Per capita 

equivalent 

of U.S. 

homes 

powered 

Iowa  
6952  

(2nd) 

3965  

(3rd) 

36.6%  

(1st) 

1850000  

(2nd) 

0.5902  

(3rd) 

Kansas  
4931  

(5th) 

2741  

(5th) 

29.6%  

(3rd) 

1300000  

(5th) 

0.4472  

(5th) 

Minnesota  
3499  

(7th) 

2327  

(7th)  

17.7%  

(6th) 

983000  

(7th) 

0.1781  

(10th) 

Missouri  
659  

(24th) 

349  

(25th) 

1.4%  

(31th) 

104000  

(26th) 

0.0171  

(30th) 

Nebraska  
1328  

(18th) 

741  

(17th) 

10.1%  

(14th) 

351000  

(16th) 

0.1840  

(9th) 

North 

Dakota  

2846  

(11th) 

1536  

(11th) 

21.5%  

(5th) 

747000  

(9th) 

0.9856  

(1st) 

South 

Dakota  

977  

(19th) 

583  

(19th) 

30.3%  

(2nd) 

291000  

(19th) 

0.3362  

(6th) 

U.S. 

Average 
1680 1269 6.87% 537251 0.1132 

*State rankings in 50 states are given in parentheses when available. 

**Darkened cells indicate the values above U.S. average. 
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Table 2. Economic benefits of wind power in the West North Central region (2016) 

[1] 

  

Number of 

direct and 

indirect jobs 

supported by 

wind industry 

Number of 

wind 

manufacturing 

facilities 

Total project 

investment ($) 

Annual land 

lease 

payments ($) 

Iowa  8001 to 9000 
11  

(10th) 

13.5 billion  

(2nd) 
20-25 million 

Kansas  5001 to 6000 
5  

(16th) 

8.4 billion  

(6th) 
10-15 million 

Minnesota  3001 to 4000 
20  

(6th) 

6.8 billion  

(7th) 
10-15 million 

Missouri  1001 to 2000 
11  

(10th) 

1.4 billion  

(22th) 
1-5 million 

Nebraska  3001 to 4000 
0  

(21st) 

2.4 billion  

(17th) 
1-5 million 

North Dakota  4001 to 5000 
4  

(17th) 

5.4 billion  

(11th) 
5-10 million 

South Dakota  1001 to 2000 
5  

(16th) 

2.1 billion  

(19th) 
1-5 million 

U.S. Average 2000 to 3000 10 3.2 billion 1-5 million 

*State rankings in 50 states are given in parentheses when available. 

**Darkened cells indicate the values above U.S. average. 

 

Each state has different wind energy characteristics and different policy measures 

in place related to wind energy production. In the first quarter of 2017, Iowa produced 

36.6% of its electricity from wind energy and was the U.S. leader in the share of wind 

power in the state’s energy portfolio (Table 1). For the same time period, the state was 

ranked second in terms of installed wind power capacity (6952 MW) and wind power 
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generation (equivalent of 1850000 U.S. homes powered), and third in the number of wind 

turbines (n=3965) (Table 1). According to the Iowa Office of Energy Independence, 

oversaturated transmission lines were the biggest barrier to the additional installation of 

wind turbines in the region [34]. In 2016, Iowa was not a national leader in the number of 

wind manufacturing facilities (n=11) but across wind energy operations, construction and 

manufacturing, the wind industry employed between 8000 - 9000 jobs in the state (Table 

2). 

Kansas has the second largest technical wind energy potential in the country with 

over 952000 MW of estimated wind resources. Kansas already exceeded the expectations 

of Governor Sebelius who, in 2007, stated that the goal was to produce 20 percent of the 

state’s electricity from wind power by 2020 [35]. The state became the third largest 

producer in the nation, with 29.6% of its electricity produced from wind energy (Table 1), 

while increasing the installed wind capacity from 114 MW in 2001 [4] to 4931 MW in 

2017 (Table 1). During the first three months of 2017, Kansas was also among the top five 

states for installed wind energy capacity (1931 MW), number of wind turbines (n= 2741) 

and electricity generation from wind power (equivalent of 1300000 U.S. homes powered) 

(Table 1). In 2016, there were 5 manufacturing facilities in Kansas and the wind industry 

offered more than 5000 jobs throughout the state (Table 2).   

Ranking sixth in the nation, Minnesota produced 17.7% of its electricity from wind 

energy during the first quarter of 2017 (Table 1). For the same period, the state was also 

considered among the top seven states in the country for its installed wind capacity (3499 

MW), number of wind turbines (n=2327) and total amount of wind powered electricity 



 

118 

 

(equivalent of 983000 U.S. homes powered) (Table 1). Minnesota had the highest number 

of wind manufacturing facilities in the region (n=20) and the industry offered more than 

3000 jobs in 2016 (Table 2). The number of wind turbines, as well as the share of  in-state 

energy generated by wind power, is expected to increase after the completion of the 

CapX2020 project, which aims to improve the transmission grid infrastructure (capacity) 

in Minnesota and the surrounding region (including North Dakota, South Dakota and 

Wisconsin) [36].   

Missouri started producing electricity from wind only in 2008 and as such has the 

lowest technical potential in the region (Figure 1). In the first quarter of 2017, the installed 

wind energy capacity (659 MW), the number of wind turbines (n=349) and the electricity 

generation from wind power (equivalent of 104000 U.S. homes powered) were below the 

national averages (Table 1). Regardless, Missouri has successfully attracted investment for 

wind manufacturing due to its geographic proximity to key wind energy resources [37]. By 

2016, the state had 11 wind manufacturing facilities and was the second in the region for 

wind manufacturing (Table 2).   

Nebraska has the highest estimated technical wind energy potential in the nation, 

after Texas and Kansas (Figure 1). Nevertheless, the state’s wind energy potential remains 

mostly unused with only 741 installed wind turbines and 1328 MW of installed wind 

energy generation capacity in 2017 (Table 1). The state produced 10.1% of its electricity 

from wind in the first quarter of 2017, which is higher than the nation’s average (6.87%) 

(Table 1). According to the American Wind Energy Association, the electricity produced 

from wind power in Nebraska saved customers $1.2 billion in 2013 and this amount still 
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continues to increase [38]. Even though this sector is smaller than in neighboring states, in 

2016, the wind energy sector employed more than 3000 individuals, although there were 

no manufacturing facilities (Table 2). However, this number is expected to increase with 

the addition of new wind turbines as well as manufacturing facilities [2].   

In 2017, North Dakota is the leader in the U.S. in per capita wind power sourced 

electricity generation (Table 1). In the first quarter of 2017, per capita equivalent of U.S. 

homes powered by wind energy in North Dakota was 0.99 whereas the closest per capita 

electricity generation value for wind power was only 0.69 in Wyoming [1]. Wind energy’s 

share of in-state electricity production was 21.5%, with 1536 wind turbines and 2846 MW 

of installed wind capacity in North Dakota. The state is also known for its favorable wind 

conditions creating high capacity factors for wind energy generation. The wind capacity 

factor for North Dakota ranges from 42% to 44% [39], compared to the U.S. average which 

is below 35% in 2016 [40]. After Iowa and Kansas, North Dakota offers the highest number 

of jobs in the wind industry in this region.  In 2016, the total number of employees in the 

wind industry was more than 4000 (Table 2). By 2016, there were also four wind 

manufacturing facilities in North Dakota (Table 2), creating more than 1000 of the jobs in 

the industry [39].  

The final comparison state in the region, South Dakota, produces 30.3% of its 

electricity from wind energy and has the second highest percentage of in-state energy 

production in the nation in 2017 (Table 1). However, the state is the 19th in nation for 

installed wind capacity (977 MW), number of wind turbines (n=583) and total amount of 

the wind powered electricity generated (equivalent number of U.S. homes powered = 
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291000) (Table 1). As in the case of Minnesota, the development of wind farms is 

constrained by the overuse of transmission lines and the CapX2020 project aims to improve 

this infrastructure for the industry in e upcoming years [41]. By 2016, there were five wind 

manufacturing facilities and there were more than 1000 jobs in the wind industry in South 

Dakota (Table 2).  

This review of these wind energy characteristics provides a brief look at the scope 

and scale of production, distribution and impacts from wind energy in this region. The wind 

energy potential in the states of the West North Central region is above average (Figure 1) 

and some of these states are leveraging this potential to a much greater extent than others. 

There is increasing evidence that these types of changes in an economy occur, in part, due 

to the enabling policy, regulations, and related infrastructure that lays foundation for the 

technology to spread. Analyzing the potential for policy diffusion across the states is an 

important mechanism for understanding this process. The next section will explore the 

determinants of the diffusion of wind energy policy that the current study considers. 

4. Determinants of wind energy policy diffusion 

4.1. Technical capacity 

Literature suggests that wind energy potential of a region has a significant and 

positive relationship with the share of renewable energy in a state’s energy portfolio in 48 

U.S. states from 1990 to 2008 [42]. In addition, investment decisions of related business 

sectors are negatively influenced by the regulatory uncertainties of policy reversals or 

political uncertainty in the industry [43]. Thus, a stable and predictable policy environment 

is indispensable for the development of renewable energy source [43]. Accordingly, in the 
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current study, which focuses on the wind energy leader states of the U.S. that are located 

in the country’s wind energy corridor, we expect there to be a positive relationship between 

the technical capacity of wind energy and the diffusion of wind policies. 

4.2. Economic factors 

The literature on renewable energy and environmental issues more broadly 

suggested a positive bilateral relationship between the level of income and environmental 

expectations.  As such, we can assume that the demand for environmental goods (e.g. clean 

air and water) are positively associated with an increase in state income level [44], along 

with income per capita [45]. This relationship also holds for environmental legislation: 

Chandler (2009) suggested that per capita income is positively associated with the adoption 

of renewable portfolio standards for 34 U.S. states from 1997 to 2008 [27]. Higher income 

levels allow states to bear the cost of renewable energy technologies and regulatory policies 

[46]. Therefore, in the current study, we also expect that gross state product per capita (as 

a proxy for state income level) and the diffusion of wind energy policies have a significant 

and positive relationship.  

Likewise, unemployment was considered another important factor in the renewable 

energy literature and was found to be related to an increase in renewable energy 

deployment [47], [48]. Wind power is expected to create new jobs in states without 

resulting in any corresponding loss of jobs or environmental impacts. In addition, strong 

policy inducement plays an important role in the development of wind power [49] and the 

corresponding employment and economic spillovers. Therefore, in the current study, we 
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expect that as a state’s unemployment rate increases, there is a positive association with an 

increased number of supportive policies facilitating wind energy diffusion across the state. 

4.3. Agricultural industry presence 

This research is focused on the states of the Midwestern U.S. where the agricultural 

sector is a substantive part of these state economies. Because of this, this research expects 

the agricultural sectors presence to be significantly related to the diffusion of wind energy 

policy in the West North Central region of the U.S. In addition to the importance of the 

agricultural sector, wind-powered electricity generation involves a significant amount of 

land, and wind farms are, in part, located on agricultural land areas [50]. Additionally, 

leasing their land for wind power offers a new source of income for the agricultural industry 

[50]. The current study, therefore, expects that agricultural income is positively related to 

wind energy legislation providing supportive policy for the development of wind energy 

in the region. Similarly, an independent variable for establishments in agriculture is 

included in the current study to capture the importance of farming scale in leveraging wind 

energy production. We expect there is a positive relationship between the number of the 

farming establishments and wind energy policy diffusion.  

4.4. Political factors 

Since the 1970s, when environmental issues were seen as a unifying force of “the 

reactionary right and the revolutionary left” [51], the ideological gap between Republicans 

and Democrats on pro-environmental legislation has increasingly widened [52], [53], 

although some suggest that regardless of party affiliation, individuals in the U.S. are 

supportive of the development of alternative energies over fossil fuels [54]. Scholars have 
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frequently investigated the partisan divide among Republicans and Democrats on 

environmental attitudes and suggested a significant relationship between party affiliation 

and pro-environmental attitudes [52], [53], [55]–[59]. In the literature, Republicans and 

conservatives were found to be less environmentally aware and concerned about 

environmental issues [52], [53], [60]–[65]. This is argued to be the result of the associated 

negative consequences of pro-environmental attitudes on business and industry [56], [66]. 

However, these judgments have not always been consistent. Dell (2009) reconsidered the 

idea of “Republican moments” of Pope (1990), and claimed that the Republicans have been 

involved in pro-environmental policy-making following visible tragedies (e.g. the asbestos 

contamination in Lilly, Montana, and the nuclear accident at the Three Mile Island Nuclear 

Generating Station in Dauphin County, Pennsylvania) but did not contribute to an 

understanding of the root cause behind tragedies [67], [68]. Similarly, Coley and Hess 

(2012) investigated the differences in support for state-level green energy legislation 

between Democrats and Republicans in 22 U.S. states from 2007 to 2011, and suggested 

that Republicans supported renewable energy laws where “median household income is 

lower, environmental organizations are weaker, labor-environmental coalitions are absent, 

and the proportion of Democrats in the legislature is lower” [62].  

In the current study, state government control is represented by party control, 

meaning that either Republicans or non-Republicans (Democrats, mixed, or unicameral) 

control state government, inclusive of the governor and legislature. We expect that 

Republican governors and legislatures consider wind energy legislation a business 
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opportunity in these states, rather than a fiscal burden on the resident, and that Republican, 

state government control is positively related to the diffusion of wind energy policies.  

 4.5. Interaction terms 

The presence of a significant interaction term indicates that the effect of one 

predictor variable on the response variable is different at different values of the other 

predictor variable [69]. Thus, including interaction terms with the state government control 

dummy allows the current study to consider the behavioral differences in the main 

regressors, including wind power potential, per capita gross state product, unemployment 

rate, per capita value of the agriculture sector and number of the establishments in 

agricultural sector under Republican and non-Republican control of states. Republican 

ideology is assumed to be aligned with business interests [62], therefore we expect that (i) 

the interaction between wind power potential and Republican state control is significant 

and positively contributes to the development of the wind industry through the diffusion of 

wind energy policies. We further assume that the interaction between the economic 

variables and Republican state control are significant and positively linked to the diffusion 

of wind energy policies due to the bilateral relationship between the wealth of the states 

and creation of a new energy industry. While, finally the interaction between the 

agricultural sector presence and Republican state control is assumed to be significant and 

positively related to the state’s wind energy policy diffusion because it is a prominent 

sector in the region with existing business relations between this sector and the state 

government. Further, there are opportunities to leverage wind energy as an additional 

income source for agricultural land owners. 
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5. Methods 

5.1. Study Period and Data Description 

The current study covers the period from 2008 to 2015. The years prior to 2008 are 

not included in the study because Missouri started producing wind sourced electricity in 

2008 and therefore did not have electricity production from wind energy before 2008 [70]. 

The start year is additionally important for two primary reasons: (i) the economic recession 

following the global financial crisis in 2008 also impacted the economies of U.S. states, 

resulting in behavioral changes in state budgetary allocations and fiscal health [71], and 

(ii) the ideological gap between the Democrats and Republicans on “green energy” grew 

over the Presidency of Barack Obama [62], [72]–[74]. Except for each states’ wind energy 

characteristics that were reported in 2017 [1], no data were available after 2015.   

Detailed information on the variables including unit, definition and the source is 

provided in Table 3 (see Appendix A and Appendix B for descriptive statistics). The 

current study considers the aggregated number of effective state and city/county level wind 

energy policies yearly, for the years between 2008 and 2015, as a proxy for regional 

diffusion of wind energy policy at state- and at local-levels, respectively (Appendix C and 

Appendix D present the detailed list of state- and local-level policies, respectively). A 

thorough review of these policies allowed us to determine which policies were supportive 

of wind energy and could be argued to facilitate wind energy diffusion across the state. All 

of the policies utilized in the analysis are assumed to be proactive policies that would 

support the diffusion of wind energy.  
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Table 3. Variable description 

Variable Unit Definition Source 

statepol number Wind energy 

supporting policies and 

incentives at state-level 

"Database of State Incentives 

for Renewables & Efficiency" 

by North Carolina (N.C.) State 

University, N.C. Clean Energy 

Technology Center [75]  

localpol number Wind energy 

supporting city and 

county ordinances 

"Wind energy ordinances" by 

the U.S. Department of Energy 

– WINDExchange [76]  

windpot gigawatt  

hours 

(GWh) 

Annual wind resource 

technical potential at 80 

meters 

"U.S. Renewable Energy 

Technical Potentials: A GIS 

Based Analysis" by the U.S. 

Department of Energy, Office 

of Energy Efficiency and 

Renewable Energy, National 

Renewable Energy Laboratory 

[3]  

gsp $1000/capita Gross state product (per 

capita) 

"Annual Gross Domestic 

Product (GDP) by State" by 

the U.S. Department of 

Commerce - Bureau of 

Economic Analysis [77]  

unempl Percentage 

(%) 

Unemployment rate "States:  Employment status of 

the civilian non-institutional 

population, 1976 to 2016 

annual averages" by the U.S. 

Department of Labor - Bureau 

of Labor Statistics [78]  

valofagr $1000/capita Value added to U.S. 

economy by 

agricultural sector (per 

capita) 

"Correlates of State Policy" by 

the Michigan State University - 

Institute for Public Policy and 

Social Research [79]  

estinagr per mille 

(‰) 

  

The ratio of the number 

of establishments in the 

agricultural sector over 

total number of 

establishments for all 

sectors 

"Community Facts" by the 

U.S. Census Bureau [80]  

rstategov dummy State government 

control inclusive of 

governor and 

"Book of the States" by the 

Council of State Governments 

[81]  
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legislature (dummy: 1 if 

Republican, 0 if 

democrat, mixed, or 

unicameral) 

 

All variables, with the exception of wind energy potential which is assumed to be 

constant, vary over time (see Appendix B). The data on gross state product and value-added 

by the agricultural sector to the U.S. economy were normalized using the population 

statistics provided by the U.S. Census Bureau [82], [83]. State government control is 

represented with a dummy variable. A state government control dummy variable is equal 

to one when the state government, inclusive of the governor and legislature, is Republican, 

and is equal to zero when the state government is non-Republican (i.e., Democrat, divided, 

and other). For the study period, Republicans have had control the most (e.g., 39% or n=22 

of the state government data represents Republican control) (Table 4).   

Table 4: State government control in the West North Central (2008-2015) [81] 

 

 

5.2. Empirical Model 

The objective of the current study is to examine the relationship of a number of 

technical, economic, agricultural sector-specific and political variables with wind energy 

Iowa Kansas Minnessota Missouri Nebraska North Dakota South Dakota

2008 Democrat Divided Divided Republican Other Republican Republican

2009 Democrat Divided Divided Divided Other Republican Republican

2010 Democrat Divided Divided Divided Other Republican Republican

2011 Divided Republican Divided Divided Other Republican Republican

2012 Divided Republican Divided Divided Other Republican Republican

2013 Divided Republican Democrat Divided Other Republican Republican

2014 Divided Republican Democrat Divided Other Republican Republican

2015 Divided Republican Democrat Divided Other Republican Republican
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policy diffusion at the states level in the West North Central region of the U.S (i.e.,Iowa, 

Kansas, Nebraska, Minnesota, Missouri, North Dakota and South Dakota). Through the 

addition of interaction terms to the analysis, this study also considers the behavioral 

differences in regressors under Republican and non-Republican state governance.  

In order to identify the factors of wind energy policy diffusion at the state- and 

local-level, we use random-effects panel data regression analysis and consider the 

following empirical model: 

𝑝𝑜𝑙𝑖𝑐𝑦𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑖𝑡  = 𝑏1𝑤𝑖𝑛𝑑𝑝𝑜𝑡𝑖𝑡 + 𝑏2𝑔𝑠𝑝𝑖𝑡 + 𝑏3𝑢𝑛𝑒𝑚𝑝𝑙𝑖𝑡 + 𝑏4𝑣𝑎𝑙𝑜𝑓𝑎𝑔𝑟𝑖𝑡 +

𝑏5𝑒𝑠𝑡𝑖𝑛𝑎𝑔𝑟𝑖𝑡 + 𝑏6𝑟𝑠𝑡𝑎𝑡𝑒𝑔𝑜𝑣𝑖𝑡 + 𝑏7𝑤𝑖𝑛𝑑𝑝𝑜𝑡𝑖𝑡 ∗ 𝑟𝑠𝑡𝑎𝑡𝑒𝑔𝑜𝑣𝑖𝑡 + 𝑏8𝑔𝑠𝑝𝑖𝑡 ∗

𝑟𝑠𝑡𝑎𝑡𝑒𝑔𝑜𝑣𝑖𝑡 + 𝑏9𝑢𝑛𝑒𝑚𝑝𝑙𝑖𝑡 ∗ 𝑟𝑠𝑡𝑎𝑡𝑒𝑔𝑜𝑣𝑖𝑡 + 𝑏10𝑣𝑎𝑙𝑜𝑓𝑎𝑔𝑟𝑖𝑡 ∗ 𝑟𝑠𝑡𝑎𝑡𝑒𝑔𝑜𝑣𝑖𝑡 +

𝑏11𝑒𝑠𝑡𝑖𝑛𝑎𝑔𝑟𝑖𝑡 ∗ 𝑟𝑠𝑡𝑎𝑡𝑒𝑔𝑜𝑣𝑖𝑡 + 𝑎𝑖 + 𝑢𝑖𝑡,    

where policydiffusion represents either statepol or localpol, i = 1, …, N represents each 

state in the panel (N=7) and t = 1, …, T refers to the time (T=8). b1 to b11 represents the 

coefficients that the model estimates for the explanatory factors that are presented in Table 

3 (windpot, gsp, unempl, valofagr, estinagr, and rstategov) as well as for the interactions 

of technical (windpot), economic (gsp and unempl), agricultural sector specific (valofagr 

and estinagr) factors with the state government control (rstategov). 𝑎𝑖 and 𝑢𝑖𝑡  denote state-

specific fixed effects and idiosyncratic errors, respectively. In addition to linearity in 

predictors, the assumptions of panel data analysis, include (i) no perfect collinearity, (ii) 

strict exogeneity, (iii) homoskedasticity, (iv) no serial correlation and (v) normality. These 

were verified prior to the analysis (see Appendix E for the full list of assumptions as well 

as their definitions, test methods, Stata codes and results) [84]. The only assumption that 
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the models failed to satisfy was no serial correlation, therefore models were corrected for 

serial correlation prior to the estimation.   

The focus of the current analysis is seven Midwestern U.S. states with non-uniform 

installed wind energy capacities. In the current study, panel data analysis allows for 

flexibility in modeling differences in behavior across individual states [85]. Statistically, 

data for the individual states also help to minimize multicollinearity problems, which can 

be related to the use of macro level data [86]. Public policy analysts assume that a model 

cannot consider all important characteristics of a cross-sectional unit and leaves out 

important factors which are related to the existing parameters of the model, therefore use 

fixed-effects panel data regression analysis [84]. Nevertheless, fixed-effects model is not 

suitable to estimate the coefficients for time-invariant factors because the model takes first 

order differences which removes all time invariant factors. Due to the current study’s 

assumption on the time-invariant characteristic of one of the key explanatory variables 

(windpot), random-effects panel data model was preferred and used in our study. Therefore, 

in addition to the typical assumptions of panel data analysis, the current study assumes that 

the unobserved characteristics of the states (such as geographic features or historical 

factors) are uncorrelated with existing explanatory variables of the model [87]. A 

significance level of 0.05 was used for all tests of significance. 

6. Results and discussion 

The descriptive statistics, including means, standard deviations, minimums and 

maximum, for the 7 focus states and for variables which are used for empirical analysis of 
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the wind energy policy diffusion in the Midwestern U.S. are presented in Appendix A and 

B, respectively. 

The statistics suggest that, over the study period, legislative support for wind energy 

deployment increased in the West North Central region of the U.S. The mean values for 

the number of pieces of legislation at the state and city/county level illustrate a continuous 

increase between 2008 and 2015. The average number of state-level legislative efforts 

increased from 6.14 to 9.57 and the average number at the local level increased from 2.14 

to 15.43 from 2008 to 2015. For the study period, Minnesota and Kansas (except for 2009) 

represent the states with the highest and the lowest number of state-level wind energy 

policies, respectively. Likewise, Minnesota had the highest number of city/county level 

wind energy ordinances from 2010 to 2015, whereas North Dakota and Missouri had the 

lowest number of wind energy ordinances from 2008 to 2012 and from 2013 to 2015, 

respectively.  

The entire West North Central region is considered part of the U.S. wind energy 

corridor, with an average annual wind resource technical potential of 2199163 Gwh. The 

state of Kansas has the most technical wind energy generation potential at 3101576 Gwh 

annually. 

The mean per capita values for gross state product presents an overall increasing 

trend in this region over the study period, except in 2009 and in 2015, when there was a 

slight decrease in the mean. North Dakota had the highest mean per capita gross state 

product,($60075.63), related to the Bakken Shale Oil Boom beginning in 2010 [88], 
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whereas all other states’ mean per capita gross state product varied between $42341. 25 

and $51349.63.   

The data illustrate a significant increase in unemployment levels in the region in 

2009. Compared to 2008, the mean unemployment rate increased from 4.27% to 6.29%, 

the minimum unemployment rate increased from 3.10% to 4.10% and the maximum 

unemployment rate increased from 6.10% to 9.30% in 2009. The mean unemployment rate 

in the region was back to its pre-2009 levels in 2014. For the study period, North Dakota 

had the lowest unemployment rates and Missouri had the highest average unemployment 

rates, 3.25% and 7.30% respectively.  

There is no upward or downward trend in the mean agricultural income or in the 

number of establishments in the agricultural sector between 2008 and 2015. For the study 

period, the average contribution of the agricultural sector to the national economy was the 

highest in South Dakota and the lowest in Missouri; and North Dakota and South Dakota 

had the highest share of establishments in the agricultural sector with 5.17‰ and 5.10‰, 

respectively, whereas Missouri had the lowest with 1.70‰.  

The state government control in the study region has been consistently Republican 

for North Dakota and South Dakota over the 2008 to 2015 study period, whereas non-

Republican, including Democrat and mixed legislative and governorships, have occurred 

in Iowa, Minnesota and Nebraska. Kansas and Missouri had both Republican and non-

Republican state government control over the study period.  

Table 4 and 5 present the regression results of the factors associated with wind 

energy policy diffusion in the Midwest region of the U.S. from 2008 to 2015. Two models 
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of policy diffusion are considered, one for state-level policies and another for local-level 

policies.  

Table 5. Random-effects panel data regression analysis coefficients, standard errors, 

and p-values for state-level diffusion of wind energy policy 

Independent variables Coefficient Estimates Standard Errors P-values 

windpot (1000000Gwh) -3.069 0.571 0.000* 

gsp ($1000/capita) 0.511 0.171 0.003* 

unempl (%) 1.076 0.446 0.016* 

valofagr ($1000/capita) -0.632 0.439 0.150 

estinagr (‰) 5.520 1.027 0.000* 

rstategov 20.859 13.027 0.109 

windpot * rstategov 1.933 1.202 0.108 

gsp * rstategov -0.352 0.232 0.129 

unempl * rstategov 0.377 0.910 0.679 

valofagr * rstategov 1.448 0.760 0.050* 

estinagr * rstategov -5.538 1.361 0.000* 

Intercept -30.450 9.051 0.001* 

Dependent variable: statepol (*denotes significance at 5% significance level) 

 

Table 6. Random-effects panel data regression analysis coefficients, standard errors, 

and p-values for local-level diffusion of wind energy policy 

Independent variables Coefficient Estimates Standard Errors P-values 

windpot (1000000Gwh) 1.299 1.173 0.280 

gsp ($1000/capita) 0.740 0.350 0.042* 

unempl (%) 2.353 0.917 0.009* 

valofagr ($1000/capita) 1.234 0.901 0.174 

estinagr (‰) 1.944 2.110 0.367 

rstategov 34.449 26.766 0.203 

windpot * rstategov 1.001 2.470 0.682 

gsp * rstategov -0.556 0.476 0.256 



 

133 

 

unempl * rstategov -0.425 1.870 0.818 

valofagr * rstategov -0.231 1.561 0.881 

estinagr * rstategov -3.064 2.797 0.275 

Intercept -53.795 18.597 0.005* 

Dependent variable: localpol (*denotes significance at 5% significance level) 

 

Two of the interaction terms, interaction between the value of the agricultural sector 

and Republican state government as well as the interaction between the number of the 

establishments in the agricultural sector and Republican state control, were found to be 

statistically related to a state’s wind energy policy diffusion in this region from 2008 to 

2015. In addition, wind energy potential, per capita gross state product, the unemployment 

rate, and the number of establishments in the agricultural sector were found to be 

statistically significant factors of state-level wind energy policy diffusion.  

Even though the West North Central region is in the middle of the wind energy 

corridor of the U.S., results suggest there is a negative relationship between wind potential 

and the number of policy measures at the state-level. Likewise, the state with the highest 

wind energy potential has the lowest number of state-level wind energy policy measures. 

The results  suggest that from 2008 to 2015, in this region of the country, the states with 

lower wind energy potential may consider the wind energy capacity in the region as a 

window of opportunity for green economic development and therefore, establish a more 

favorable and predictable investment plateau for the industry through wind energy 

legislation. 

As expected, economic indicators, including per capita gross state product and 

unemployment rate, are positively associated with the diffusion of wind energy policies in 
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the states regardless of the state government control. Holding all other variables constant, 

an additional $1000 increase in per capita state income is related to a 0.5 unit increase in 

the number of wind energy policies adopted by a state. Likewise, holding all other variables 

constant, an additional 1% increase in the unemployment rate is related to a 1.1 unit 

increase in state’s wind energy policy initiatives. This relationship may provide additional 

evidence of the value states see in leveraging this industry for economic development 

potential and related employment benefits. 

Agricultural sector presence was found to be a significant factor for wind energy 

policy diffusion in the region when a state was under Republican government control. From 

2008 to 2015, when the state government control was Republican, the per capita value 

added to the U.S. economy by the agricultural sector was found to be positively related to 

the number of wind energy supporting policies in the region. As previously stated, this 

region is geographically ideal for wind powered electricity production and with farmers 

and landowners able to lease their land for wind turbines, this creates a new source of 

income for farmers and ranchers in these states. Our results suggest that, under Republican 

governance, and with potential opportunities for additional sources of individual and state 

revenue, there is a potential policy window creating demand for additional legislation in 

support of wind energy legislation and policy efforts. On the other hand, in the analysis, 

the number of establishments in the agricultural sector was found to be negatively 

associated with the diffusion of wind energy policies under Republican governance. 

Assuming that the share of the land area that is used for farming or ranching purposes has 

not changed over time, a decrease in the number of establishments would result in bigger 
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land share per owner. Given the importance of this industry to these state economies, we 

assume that land owners that have more power may have stronger influence on state and 

local governances.  

In contrast, under non-Republican government control, the only agricultural sector 

specific factor which was found to be significant was the number of agricultural 

establishments. This factor is positively related to the number of state-level wind energy 

policies. Again, assuming the share of the land area that is used for farming or ranching 

purposes has not changed over time, an increase in the number of establishments would 

result in smaller land share per owner. Our results suggest a negative relationship between 

the land share per agricultural establishments and the number of wind energy policies 

adopted by non-Republican state governments. The relationship between the number of 

establishments and the diffusion of wind energy policy presents contrasting results under 

Republican and non-Republican state government control and suggests that the state level 

support to the wind energy deployment varies when the agricultural sector constitutes a 

larger or smaller share of the overall economic base of the state. The exploration of the 

reason behind the contrasting result on the relationship between the number of 

establishments and the wind energy policy diffusion will be considered in future research. 

The financial crisis in 2008 was argued to be the worst since the Great Depression 

of the 1930s. When the motivation of city and county councils is suggested to be purely 

economic, it is easier to understand the 600% increase (from 2.14 to 15.43) in the average 

number of city/county level wind energy policies during the 8 years following this 

important economic recession. Kansas has been the leader in the field with the first city 
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level ordinance adopted in 1989 by Sedgwick City Council. The state was also the leader 

in the number of effective policies in 2008 and 2009. Beginning in 2010, Minnesota 

became the new leader in the region for local wind ordinances.  From 2010 to 2015, in 

Minnesota, the number of cities and counties that adopted wind energy ordinances 

increased from 11 to 27. 

At the local level, economic variables, including gross state product per capita and 

unemployment rate, were the only factors significantly related to wind energy policy 

diffusion. The statistical insignificance of all remaining variables, including the interaction 

terms, suggests that the main motivation of city and county councils may be focused on the 

economic development potential of wind energy, and any ordinances passed are likely 

related to this effort. 

7. Conclusion 

The current study investigates the internal factors of the increase in policy support 

by state and local governments for the deployment of wind energy in seven Midwestern 

U.S. states from 2008 to 2015. Our findings suggest that the economic considerations, 

including per capita gross state product and unemployment rate, were significantly and 

positively related to the diffusion of wind energy policies both at the state- and local-level. 

No other factor was found to be significant at the local level. At the state-level, in addition 

to the economic factors, two interaction terms (the interaction between the value of the 

agricultural sector and state government control and the interaction between the number of 

establishments in the agricultural sector and state government control), the wind energy 

potential, and the number of establishments were also found to be significant. Despite our 
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expectations, wind energy potential was found to be negatively associated to the diffusion 

of wind energy policies in the focal states. The contribution of the agricultural sector to the 

national economy was found to be positively related, and the number of establishments in 

the agricultural sector was found to be negatively related to wind energy policy diffusion 

at the state-level under Republican governance. When the state governmental control was 

non-Republican, the only other variable of significance, in addition to the technical and 

economic variables, was the number of establishments in the agricultural sector which was 

positively associated to wind energy policy diffusion at the state-level. The current study 

adds to the literature by defining the relationship between the economic and agricultural 

sectors relationship with wind energy policy diffusion in the U.S. Furthermore, the current 

research design allows us to observe the behavioral change of the factors of wind energy 

policy diffusion under Republican and non-Republican state governance.  

Our analysis could be expanded and improved in several ways. First, the current 

study is limited to only eight years of data. Future scholars may focus on a longer time 

frame in order to reveal the motivations behind early wind energy adopters in the region. 

These studies can be especially helpful in understanding the policy environment without 

the existence of economic or other political pressures. 

Our next suggestion would be to include socio-demographic variables such as the 

education level of these states. A detailed analysis of the science scores of the focal states 

resulted that all seven states provide science education above U.S. average [89]. The 

variable could not be included in the current analysis as a result of the data availability. In 

addition, the West North Central region has the eighth lowest population density among 
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nine Census divisions in 2015 [89] and even though the unemployment rate in the region 

has always been lower than the U.S. average, the region is known to have increasingly 

industrialized agriculture (fewer small and family owned farms) and out-migration from 

rural areas [62]. Inclusion of relevant socio-demographic factors may provide deeper 

insight into the importance of these factors for wind energy policy diffusion in the focal 

states. 

We also suggest using a distributed (time-) lagged model in order to empirically 

investigate the role of neighboring on the diffusion of policies. Distributed lagged models 

are utilized to explain the current values of a dependent variable based on both the current 

and the previous (lagged) values of the same explanatory variable. Using specific types of 

policies (e.g., Renewable Portfolio Standards and net metering), a time-lagged model may 

improve the understanding of the diffusion process and related details (i.e., timing and 

progress of the diffusion process). 

In the current study, we consider both time-varying and time-invariant factors. 

Future studies may consider using more advanced techniques (i.e. a generalized linear 

mixed effects regression analysis) that create a hierarchical structure for the different 

technical capacities and provide for a more comprehensive explanation of the diffusion of 

wind energy policy in the region. 

A detailed analysis modelled after Dolowitz and Marsh (2000)’s policy diffusion 

framework would also extend the understanding of state’s wind energy policy diffusion 

[10]. In particular, a systematic and comprehensive  analysis of state-level policy diffusion 

will help in further investigation of the negative relationship between wind energy potential 
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and the number of wind energy policies, as well as the behavioral difference of the 

agricultural factors under Republican and non-Republican state government controls in the 

focal states. 

A second policy analysis model that we suggest future scholars to investigate is the 

political culture model of Daniel Elazar (1966) [90]. Elazar describes political culture as 

"attitudes, values, beliefs, and orientations that individuals in a society hold regarding their 

political system" and defines three political-culture types among Americans: (i) moral 

political culture, in which the society is held to be more important than the individual, (ii) 

individual political culture, in which the government is considered having a utilitarian 

orientation and is restricted from the areas which encourage private initiative, and (iii) 

traditional political culture, in which prominent social and family ties plays important role 

in governance of states. Elazar’s political culture model is still considered important to 

define the differences in governances between states and may provide further explanation 

on the similarities and differences of the paths that states follow while implementing wind 

energy policy. 

The result of the current empirical study appears to highlight the significance of 

state-level policies to enable and facilitate the development of wind energy in these states. 

These results further suggest that the economic potential of this industry is important to 

state and local governments and appears to be supported by Republican state governments. 

While this may seem ideologically inconsistent, these governments may see green wind 

energy as an important business sector, with substantive economic development potential 

for their state. 
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Appendix A. Summary statistics of states 

IOWA Mean Std. Dev. Min. Max. 

statepol 12.00 0.93 11.00 13.00 

localpol 9.38 4.50 2.00 14.00 

windpot (Gwh) 1723588.00 0.00 1723588.00 1723588.00 

gsp($/capita) 47415.25 1696.43 45195.00 50086.00 

unempl (%) 4.98 0.95 3.70 6.40 

valofagr($/capita) 3803.43 735.26 2722.53 4765.61 

estinagr (‰) 3.89 0.45 3.23 4.44 

rstategov(dummy) 0.00 0.00 0.00 0.00 

     

KANSAS Mean Std. Dev. Min. Max. 

statepol 4.63 1.06 2.00 5.00 

localpol 8.50 2.88 4.00 12.00 

windpot (Gwh) 3101576.00 0.00 3101576.00 3101576.00 

gsp($/capita) 45427.00 1001.40 43770.00 46890.00 

unempl (%) 5.61 1.12 4.20 7.10 

valofagr($/capita) 1947.95 319.76 1408.69 2326.29 

estinagr (‰) 2.64 0.09 2.56 2.82 

rstategov(dummy) 0.63 0.52 0.00 1.00 

     

MINNESOTA Mean Std. Dev. Min. Max. 

statepol 15.88 1.13 14.00 18.00 

localpol 16.38 9.07 2.00 27.00 

windpot (Gwh) 1428525.00 0.00 1428525.00 1428525.00 

gsp($/capita) 51349.63 1466.40 48884.00 53380.00 

unempl (%) 5.69 1.46 3.70 7.80 

valofagr($/capita) 1476.97 229.80 1013.83 1751.76 

estinagr (‰) 3.34 0.21 3.02 3.65 

rstategov(dummy) 0.00 0.00 0.00 0.00 

     

MISSOURI Mean Std. Dev. Min. Max. 

statepol 7.50 1.60 6.00 10.00 

localpol 5.13 2.47 1.00 8.00 

windpot (Gwh) 689519.00 0.00 689519.00 689519.00 

gsp($/capita) 42341.25 513.94 41598.00 43118.00 

unempl (%) 7.30 1.65 5.00 9.60 

valofagr($/capita) 701.48 90.56 557.20 802.87 

estinagr (‰) 1.70 0.08 1.58 1.80 

rstategov(dummy) 0.13 0.35 0.00 1.00 
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NEBRASKA Mean Std. Dev. Min. Max. 

statepol 5.75 1.39 3.00 7.00 

localpol 12.25 6.45 4.00 22.00 

windpot (Gwh) 3011253.00 0.00 3011253.00 3011253.00 

gsp($/capita) 50605.63 2032.48 47770.00 53099.00 

unempl (%) 3.88 0.63 3.00 4.60 

valofagr($/capita) 4159.68 822.40 2971.43 5301.19 

estinagr (‰) 3.43 0.11 3.22 3.59 

rstategov(dummy) 0.00 0.00 0.00 0.00 

     

NORTH DAKOTA Mean Std. Dev. Min. Max. 

statepol 5.38 0.92 4.00 6.00 

localpol 5.88 5.36 0.00 13.00 

windpot (Gwh) 2537825.00 0.00 2537825.00 2537825.00 

gsp($/capita) 60075.63 9476.71 48379.00 71056.00 

unempl (%) 3.25 0.51 2.70 4.10 

valofagr($/capita) 5191.61 462.28 4497.81 5850.40 

estinagr (‰) 5.17 0.43 4.47 5.83 

rstategov(dummy) 1.00 0.00 1.00 1.00 

     

SOUTH DAKOTA Mean Std. Dev. Min. Max. 

statepol 6.50 1.93 3.00 8.00 

localpol 7.75 3.54 2.00 12.00 

windpot (Gwh) 2901858.00 0.00 2901858.00 2901858.00 

gsp($/capita) 46608.25 986.56 45457.00 47972.00 

unempl (%) 4.04 0.79 3.10 5.00 

valofagr($/capita) 5537.79 945.71 4126.09 6808.50 

estinagr (‰) 5.10 0.43 4.59 5.65 

rstategov(dummy) 1.00 0.00 1.00 1.00 
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Appendix B. Summary statistics of variables 

statepol Mean Std. Dev. Min. Max. 

2008 6.14 1.74 2 14 

2009 7.14 1.60 4 15 

2010 8.00 1.56 5 16 

2011 8.43 1.53 5 16 

2012 8.43 1.53 5 16 

2013 8.86 1.53 5 16 

2014 9.29 1.51 5 16 

2015 9.57 1.73 5 18 

     

localpol Mean Std. Dev. Min. Max. 

2008 2.14 1.46 0 4 

2009 3.86 2.12 0 6 

2010 6.86 3.39 1 11 

2011 8.57 4.58 4 17 

2012 11.29 5.19 7 22 

2013 12.71 5.31 7 23 

2014 13.71 5.44 7 23 

2015 15.43 6.63 8 27 

     

windpot (Gwh) Mean Std. Dev. Min. Max. 

2008 2199163.43 929282.08 689519.00 3101576.00 

2009 2199163.43 929282.08 689519.00 3101576.00 

2010 2199163.43 929282.08 689519.00 3101576.00 

2011 2199163.43 929282.08 689519.00 3101576.00 

2012 2199163.43 929282.08 689519.00 3101576.00 

2013 2199163.43 929282.08 689519.00 3101576.00 

2014 2199163.43 929282.08 689519.00 3101576.00 

2015 2199163.43 929282.08 689519.00 3101576.00 

     

gsp($/capita) Mean Std. Dev. Min. Max. 

2008 46925.71 2546.30 43118.00 51234.00 

2009 46021.29 2651.89 42012.00 48884.00 

2010 47119.71 3584.40 42204.00 52185.00 

2011 48695.71 4964.84 41598.00 57066.00 

2012 50344.86 8440.93 41926.00 68105.00 

2013 50577.57 8230.32 42487.00 67651.00 

2014 51657.00 9370.83 42442.00 71056.00 

2015 51598.29 7810.59 42943.00 67305.00 
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unempl (%) Mean Std. Dev. Min. Max. 

2008 4.27 1.17 3.10 6.10 

2009 6.29 1.88 4.10 9.30 

2010 6.21 1.98 3.80 9.60 

2011 5.66 1.67 3.50 8.50 

2012 4.97 1.29 3.10 7.00 

2013 4.59 1.24 2.90 6.70 

2014 4.09 1.14 2.70 6.20 

2015 3.63 0.79 2.70 5.00 

     

valofagr($/capita) Mean Std. Dev. Min. Max. 

2008 3014.84 1727.70 722.42 5171.19 

2009 2471.09 1531.64 557.20 4497.81 

2010 2790.58 1750.10 567.59 5417.24 

2011 3725.12 2228.32 732.94 6808.50 

2012 3267.33 1877.14 712.97 5522.79 

2013 3435.30 1973.17 742.94 5813.61 

2014 3603.28 2069.25 772.91 6104.42 

2015 3771.25 2165.38 802.87 6395.24 

     

estinagr (‰) Mean Std. Dev. Min. Max. 

2008 3.41 1.22 1.62 5.29 

2009 3.52 1.38 1.58 5.83 

2010 3.52 1.28 1.63 5.36 

2011 3.48 1.19 1.70 5.14 

2012 3.76 1.35 1.78 5.51 

2013 3.85 1.35 1.80 5.65 

2014 3.63 1.19 1.71 5.11 

2015 3.71 1.26 1.76 5.58 

     

rstategov (dummy) Mean Std. Dev. Min. Max. 

2008 0.43 0.53 0 1 

2009 0.29 0.49 0 1 

2010 0.29 0.49 0 1 

2011 0.43 0.53 0 1 

2012 0.43 0.53 0 1 

2013 0.43 0.53 0 1 

2014 0.43 0.53 0 1 

2015 0.43 0.53 0 1 
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Appendix C. State-level policies and incentives for wind energy [73] 

IOWA 

 Name Category Policy/Incentive type Created Last updated 

1 Renewable Energy Equipment Exemption 
Financial 

Incentive 
Sales Tax Incentive 1/1/2000 2/10/2016 

2 
Special Assessment of Wind Energy 

Devices 

Financial 

Incentive 

Property Tax 

Incentive 
1/1/2000 11/13/2015 

3 
Property Tax Exemption for Renewable 

Energy Systems 

Financial 

Incentive 

Property Tax 

Incentive 
1/1/2000 2/10/2016 

4 Alternate Energy Revolving Loan Program 
Financial 

Incentive 
Loan Program 1/1/2000 2/5/2016 

5 Alternative Energy Law 
Regulatory 

Policy 

Renewables Portfolio 

Standard 
1/1/2000 12/9/2016 

6 Net Metering 
Regulatory 

Policy 
Net Metering 1/1/2000 6/18/2015 

7 Mandatory Utility Green Power Option 
Regulatory 

Policy 

Mandatory Utility 

Green Power Option 
9/24/2001 1/29/2016 

8 Interconnection Standards 
Regulatory 

Policy 
Interconnection 6/18/2003 9/30/2015 

9 
Energy Replacement Generation Tax 

Exemption 

Financial 

Incentive 

Corporate Tax 

Exemption 
7/10/2003 1/29/2016 

10 
Renewable Energy Production Tax Credits 

(Corporate) 

Financial 

Incentive 
Corporate Tax Credit 6/23/2005 12/9/2016 

11 
Renewable Energy Production Tax Credit 

(Personal) 

Financial 

Incentive 
Personal Tax Credit 6/27/2005 12/9/2016 

12 Small Wind Innovation Zone Program  
Regulatory 

Policy 

Wind Permitting 

Standards 
6/7/2011 1/29/2016 
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13 
Iowa Area Development Group Energy 

Bank Revolving Loan Program 

Financial 

Incentive 
Loan Program 4/26/2013 2/10/2016 

KANSAS 

 Name Category Policy/Incentive type Created Last updated 

1 Renewable Energy Property Tax Exemption 
Financial 

Incentive 

Property Tax 

Incentive 
1/1/2000 6/8/2015 

2 
Green Building Requirement for New 

Municipal Buildings 

Regulatory 

Policy 

Energy Standards for 

Public Buildings 
1/31/2008 12/18/2015 

3 Renewable Energy Goal 
Regulatory 

Policy 

Renewables Portfolio 

Standard 
5/27/2009 6/8/2015 

4 Net Metering 
Regulatory 

Policy 
Net Metering 5/29/2009 8/12/2015 

5 Interconnection Guidelines 
Regulatory 

Policy 
Interconnection 6/8/2009 8/12/2015 

MINNESOTA 

 Name Category Policy/Incentive type Created Last updated 

1 
Wind and Solar-Electric (PV) Systems 

Exemption 

Financial 

Incentive 

Property Tax 

Incentive 
1/1/2000 3/26/2015 

2 Agricultural Improvement Loan Program 
Financial 

Incentive 
Loan Program 1/1/2000 3/11/2015 

3 
Value-Added Stock Loan Participation 

Program 

Financial 

Incentive 
Loan Program 1/1/2000 2/13/2015 

4 Renewable Energy Production Incentive 
Financial 

Incentive 

Performance-Based 

Incentive 
1/1/2000 1/7/2015 

5 Net Metering 
Regulatory 

Policy 
Net Metering 1/1/2000 11/23/2015 
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6 
Solar and Wind Easements & Local Option 

Rights Laws 

Regulatory 

Policy 

Solar/Wind Access 

Policy 
1/1/2000 5/15/2015 

7 
Comprehensive Energy Savings Plan for 

State Facilities 

Regulatory 

Policy 

Energy Standards for 

Public Buildings 
1/1/2000 2/24/2015 

8 Wind Energy Sales Tax Exemption 
Financial 

Incentive 
Sales Tax Incentive 11/29/2001 12/9/2015 

9 Renewable Development Fund  
Regulatory 

Policy 
Public Benefits Fund 12/3/2001 2/13/2015 

10 Interconnection Standards 
Regulatory 

Policy 
Interconnection 6/19/2003 1/21/2016 

11 
Xcel Energy - Renewable Development 

Fund Grants 

Financial 

Incentive 
Grant Program 1/12/2004 3/5/2015 

12 Minnesota Power - Power Grant Program 
Financial 

Incentive 
Grant Program 5/26/2006 1/12/2016 

13 Renewable Energy Standard 
Regulatory 

Policy 

Renewables Portfolio 

Standard 
3/5/2007 11/19/2015 

14 
Community-Based Energy Development 

Tariff 

Regulatory 

Policy 
Other Policy 6/6/2007 12/9/2015 

15 Farm Opportunities Loan Program 
Financial 

Incentive 
Loan Program 5/26/2009 3/14/2017 

16 Fix-Up Loan 
Financial 

Incentive 
Loan Program 10/1/2010 6/1/2016 

17 
Rural Minnesota Energy Board Property 

Assessed Clean Energy (PACE) Program 

Financial 

Incentive 
PACE Financing 5/1/2015 5/1/2015 

18 PACE Program 
Financial 

Incentive 
PACE Financing 5/4/2015 5/4/2015 

19 Wind Energy Conversion Systems 
Regulatory 

Policy 

Solar/Wind Access 

Policy 
10/11/2016 10/11/2016 
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MISSOURI 

 Name Category Policy/Incentive type Created Last updated 

1 Energy Loan Program 
Financial 

Incentive 
Loan Program 1/1/2000 9/4/2015 

2 Interconnection Guidelines 
Regulatory 

Policy 
Interconnection 6/18/2003 1/11/2016 

3 Renewable Portfolio Standard 
Regulatory 

Policy 

Renewables Portfolio 

Standard 
11/4/2004 6/24/2016 

4 Net Metering 
Regulatory 

Policy 
Net Metering 6/27/2007 4/14/2015 

5 Renewable Energy Standard 
Regulatory 

Policy 

Renewables Portfolio 

Standard 
6/27/2007 5/18/2015 

6 Energy Standards for Public Buildings 
Regulatory 

Policy 

Energy Standards for 

Public Buildings 
7/23/2008 3/17/2016 

7 Clean Energy Development Boards 
Financial 

Incentive 
PACE Financing 7/12/2010 5/5/2016 

8 Missouri Clean Energy District 
Financial 

Incentive 
PACE Financing 8/27/2014 3/17/2016 

9 Set the PACE  
Financial 

Incentive 
PACE Financing 8/27/2014 1/12/2016 

10 
Green Building Policy for Municipal 

Buildings 

Regulatory 

Policy 

Energy Standards for 

Public Buildings 
11/3/2014 3/17/2016 

11 Show Me PACE 
Financial 

Incentive 
PACE Financing 5/5/2016 5/5/2016 
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NEBRASKA 

 Name Category Policy/Incentive type Created Last updated 

1 Dollar and Energy Savings Loans 
Financial 

Incentive 
Loan Program 1/1/2000 10/5/2015 

2 Solar and Wind Easements 
Regulatory 

Policy 

Solar/Wind Access 

Policy 
1/1/2000 10/5/2015 

3 
Sales and Use Tax Exemption for 

Community Renewable Energy Projects 

Financial 

Incentive 
Sales Tax Incentive 5/31/2007 8/24/2015 

4 Net Metering 
Regulatory 

Policy 
Net Metering 5/19/2009 6/23/2015 

5 Interconnection Guidelines 
Regulatory 

Policy 
Interconnection 5/19/2009 10/5/2015 

6 
Property Tax Exemption for Renewable 

Energy Generation Facilities 

Financial 

Incentive 

Property Tax 

Incentive 
8/3/2011 6/16/2015 

7 
Sales and Use Tax Exemption for 

Renewable Energy Property 

Financial 

Incentive 
Sales Tax Incentive 7/12/2013 8/26/2015 

8 Property-Assessed Clean Energy Financing 
Financial 

Incentive 
PACE Financing 4/1/2016 4/26/2016 

9 
Wind Energy Conservation System 

Requirements 

Regulatory 

Policy 

Solar/Wind 

Permitting Standards 
11/15/2016 11/15/2016 

NORTH DAKOTA 

 Name Category Policy/Incentive type Created Last updated 

1 Renewable Energy Tax Credit 
Financial 

Incentive 
Corporate Tax Credit 1/1/2000 3/21/2017 

2 Renewable Energy Property Tax Exemption 
Financial 

Incentive 

Property Tax 

Incentive 
1/1/2000 10/28/2016 
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3 Net Metering 
Regulatory 

Policy 
Net Metering 1/1/2000 5/10/2016 

4 Renewable and Recycled Energy Objective 
Regulatory 

Policy 

Renewables Portfolio 

Standard 
8/24/2007 10/28/2016 

5 Wind Easements 
Regulatory 

Policy 

Solar/Wind Access 

Policy 
2/16/2010 5/10/2016 

6 
Sales and Use Tax Exemption for Electrical 

Generating Facilities 

Financial 

Incentive 
Sales Tax Incentive 9/1/2011 10/28/2016 

SOUTH DAKOTA 

 Name Category Policy/Incentive type Created Last updated 

1 
Large Commercial Wind Exemption and 

Alternative Taxes 

Financial 

Incentive 

Property Tax 

Incentive 
3/6/2008 5/13/2015 

2 
Renewable, Recycled and Conserved 

Energy Objective 

Regulatory 

Policy 

Renewables Portfolio 

Standard 
3/21/2008 10/28/2016 

3 
High-Performance Building Requirements 

for State Buildings 

Regulatory 

Policy 

Energy Standards for 

Public Buildings 
7/18/2008 10/28/2016 

4 Interconnection Standards 
Regulatory 

Policy 
Interconnection 6/15/2009 10/27/2016 

5 
Model Ordinance for Siting of Wind-Energy 

Systems 

Regulatory 

Policy 

Solar/Wind 

Permitting Standards 
1/27/2010 10/28/2016 

6 Wind Easements 
Regulatory 

Policy 

Solar/Wind Access 

Policy 
2/15/2010 10/28/2016 

7 Renewable Energy System Exemption 
Financial 

Incentive 

Property Tax 

Incentive 
4/7/2010 4/28/2015 

8 
Renewable Energy Facility Sales and Use 

Tax Reimbursement 

Financial 

Incentive 
Sales Tax Incentive 6/26/2013 10/31/2016 
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Appendix D. Cities and counties with wind energy ordinances [74] 

IOWA 

 City/County name Year Contenti 

1 Marshall County, IA  1997 S 

2 Mason City, IA 2006 S/M 

3 Polk County, IA 2009 S/L 

4 Boone County, IA 2010 S/L 

5 Delaware County, IA 2010 S/L 

6 Dickinson County, IA 2010 S 

7 O'Brien County, IA 2010 L 

8 Plymouth County, IA  2010 S/L 

9 Tama County, IA 2010 S/L 

10 Greene County, IA 2011 S/L 

11 Poweshiek County, IA 2011 S/L 

12 Story County, IA 2013 S/L 

13 Cherokee County, IA 2014 S/L 

14 Floyd County, IA  2015 S/L 

15 Muscatine County, IA 2016 L 

16 Palo Alto County, IA  2016 S/L 

17 Guthrie Center, IA n/a S/L 

KANSAS 

 City/County name Year Content 

1 Sedgwick, KS 1989 S/L 

2 Lyon County, KS 2008 L 

3 Pottawattamie County, KS  2008 L 

4 Saline County, KS 2008 S/L 

5 Hays, KS 2009 U 

6 Pawnee County, KS  2009 L 

7 Osage County, KS  2010 L 

8 Marion County, KS 2012 L 

                                                 
i The content of the ordinances includes small (S), midsize (M), large (L), mounted (MO), micro 

(MI) (midsize and unspecified (U) size wind energy projects. 
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9 Pratt County, KS 2012 L 

10 Sumner County, KS 2012 L 

11 Barton County, KS 2013 S/L 

12 Merriam, KS 2015 S 

13 Harper County, KS 2016 L 

14 Kingman, KS  2016 S 

15 Miami County, KS  2016 L 

16 Topeka, KS n/a S/L 

MINNESOTA 

 City/County name Year Content 

1 Chippewa County, MN 2005 S/L 

2 Minneapolis, MN 2007 S/MO 

3 Brainerd, MN 2009 S/L 

4 Clay County, MN 2009 S/L 

5 Mower County, MN 2009 S/L 

6 Rockville, MN 2009 S/L 

7 Murray County, MN 2010 S/L 

8 Norman County, MN 2010 S/L 

9 Stevens County, MN 2010 S 

10 Wabasha, MN 2010 S/L 

11 Watertown, MN 2010 S/MO 

12 Clearwater County, MN 2011 S/L 

13 Fairmont, MN  2011 U 

14 Lyon County, MN 2011 S/L 

15 Maplewood, MN 2011 S 

16 Otter Tail County, MN 2011 S/L 

17 Renville County, MN 2011 S/L 

18 City of Mahtomedi, MN  2012 S 

19 Fillmore County, MN 2012 S/L 

20 Hibbing, MN 2012 S/L 

21 Otsego County, MN 2012 S 

22 Washington County, MN 2012 S 

23 Plymouth, MN  2013 S 

24 Freeborn County, MN 2015 S/L 
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25 Goodhue County, MN  2015 S/L 

26 Martin County, MN 2015 S/L 

27 Orono, MN 2015 S 

28 Cottonwood County, MN 2016 S/L 

29 Pipestone County, MN  2016 S/L 

30 Wright County, MN  2016 S/L 

MISSOURI 

 City/County name Year Content 

1 Palmyra, MO 2007 S,L 

2 Blue Springs, MO 2009 S 

3 Gladstone, MO 2009 S 

4 Raymore, MO 2010 S,L 

5 Clayton, MO 2012 S 

6 Columbia, MO 2012 S,L 

7 O'Fallon, MO 2012 S 

8 Clay County, MO 2015 S,L 

9 Kansas City, MO 2016 S 

10 Warrensburg, MO 2016 S,L 

NEBRASKA 

 City/County name Year Content 

1 Cedar County 2000 S, L 

2 Madison 2003 S, L 

3 Dakota County 2006 S 

4 Gretna 2008 S, L 

5 Saunders County 2009 S, M 

6 Gothenburg 2010 S 

7 Grand Island 2010 MI, S, L 

8 Nance County 2010 S, L 

9 Saline County 2010 S, L 

10 Lancaster County 2011 L 

11 Cherry County 2012 S, L 

12 Lincoln County 2012 S, L 

13 Red Willow County 2012 S, L 
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14 Fillmore County 2013 S, L 

15 Polk County 2013 S, L 

16 Thayer County 2013 S, L 

17 Custer County, NE 2014 S, L 

18 Holt County 2014 S, L 

19 Keith County 2014 S, L 

20 Frontier County 2015 S, L 

21 Nebraska City 2015 S, L 

22 Scottsbluff 2015 S 

23 Cass County 2016 S, L 

24 Colfax County 2016 S, L 

25 Gage County 2016 S, L 

26 Knox County 2016 S, L 

27 La Vista 2016 S 

28 Imperial n/a S, L 

29 Sarpy County n/a S 

NORTH DAKOTA 

 City/County name Year Content 

1 Hebron 2010 S 

2 Apple Creek Township 2011 S 

3 Burleigh County 2011 S, M, L 

4 Valley City 2011 S 

5 Bowman County 2012 L 

6 Golden Valley County 2012 L 

7 Stark County 2012 L 

8 Bismarck 2013 S 

9 McLean County 2013 L 

10 Morton County 2013 M, L 

11 Stutsman 2013 L 

12 Grant County 2015 L 

13 Williams County 2015 L 

14 McKenzie County 2016 L 

15 Divide County 2017 L 

16 Fargo 2017 S 
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SOUTH DAKOTA 

 City/County name Year Content 

1 Brookings 2001 L 

2 Deuel County 2008 S, L 

3 Aberdeen 2009 S, L 

4 Union County 2009 S 

5 Brown County 2010 S, L 

6 Clay County 2010 S, L 

7 Lawrence 2010 S, L 

8 Madison 2012 S 

9 Pennington County 2012 S, L 

10 Lake County 2014 S, L 

11 Minnehaha County 2014 S, L 

12 Moody County 2014 S 

13 Watertown 2017 S, L 
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Appendix E. Assumptions of the random-effects panel data analysis  

Assumption [84] Definition Test method Stata code Results 

No perfect 

collinearity 

All explanatory 

variables change over 

time and there is no 

perfect linear 

relationship among 

them.  

Variance inflation factors 

are used to test for the bias 

estimates [91]. 

The Stata 

command to test 

the model for 

multicollinearity 

is vif. 

No perfect linear 

relationships among the 

explanatory variables was 

found: The computed 

variance inflation factor 

values varied between 1.87 

and 5.15. Further 

investigation would be 

needed if the computed 

variance inflation factor 

values were greater than 10 

(or tolerances – 1/vif – 

were lower than 0.10) [91]. 

Strict exogeneity  Explanatory variables of 

the model are 

uncorrelated with the 

idiosyncratic errors, 𝑢𝑖𝑡,  

for each time period.  

Davidson MacKinnon test 

is used to examine the 

exogeneity of explanatory 

variables, one at a time. 

The test procedure 

compares the results of the 

original model with an 

upgraded model including 

additional (instrumental) 

variables that are in 

potential relationship with 

the existing explanatory 

variables of the original 

model [92].  

The Stata 

command to 

create the 

additional 

instrumental 

variable is 

xtivreg and the 

command to 

compare the 

results of the 

two models is 

dmexogxt.  

The null hypothesis of 

exogeneity was satisfied 

for all main explanatory 

variables. 
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Homoskedasticity The variance of the 

idiosyncratic error, 𝑢𝑖𝑡, 

remains the same 

identical for all values 

of the dependent 

variable:

 𝑉𝑎𝑟 (𝑢𝑖𝑡|𝑋𝑖𝑎𝑖) =
𝑉𝑎𝑟 (𝑢𝑖𝑡) =
𝜎𝑢

2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 = 1,… , 𝑇 

White test is used to detect 

heteroscadasticity. White 

test is a generalized case of 

Breusch Pagan test to 

detect both linear and 

nonlinear forms of 

heteroscadasticity [93]. 

The Stata 

command for the 

White test is 

imtest, white. 

The null hypothesis of 

homoskedasticity was 

failed to be rejected for 

both models. 

No serial 

correlation 

Conditional on all 

explanatory variables 

and unobserved 

heterogeneities, ai, the 

idiosyncratic errors, 𝑢𝑖𝑡,  

are uncorrelated over 

time: 

𝐶𝑜𝑣 (𝑢𝑖𝑡 , 𝑢𝑖𝑠|𝑋𝑖, 𝑎𝑖) = 0 

Woolridge’s test for serial 

correlation is used to 

identify the correlation 

among the idiosyncratic 

errors, 𝑢𝑖𝑡,  over time  [84]. 

The Stata 

command to test 

serial correlation 

is xtserial. 

The null hypothesis of no 

serial correlation among 

the idiosyncratic errors, 

𝑢𝑖𝑡, was rejected for both 

models, therefore the 

current study corrects the 

model for serial 

correlation. 

Normality 

 

The idiosyncratic error, 

𝑢𝑖𝑡, is independent and 

identically distributed as 

N (0, 𝜎𝑢
2) for each t. 

An extension of Jarque-

Bera normality test is 

proposed by Alejo et al 

(2015) to explore skewness 

and excess kurtosis of the 

idiosyncratic error, 𝑢𝑖𝑡 

[94]. 

The Stata 

command to test 

the idiosyncratic 

error, 𝑢𝑖𝑡, for 

normality is 

xtsktest. 

No statistically significant 

skewness and excess 

kurtosis were detected for 

the idiosyncratic error, 𝑢𝑖𝑡, 

in both models. 

Model specification: 𝑦𝑖𝑡 = 𝛽1𝑥𝑖𝑡1 + ⋯+ 𝛽𝑘𝑥𝑖𝑡𝑘 + 𝑎𝑖 + 𝑢𝑖𝑡, 𝑖 = 1,… ,7 𝑎𝑛𝑑 𝑡 = 1,… ,8, where 𝛽𝑗 are the parameters to 

estimate, 𝑎𝑖 is the unobserved heterogeneity, and 𝑢𝑖𝑡 is the idiosyncratic error. 
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CHAPTER FIVE 

CONCLUSION 

 

In this dissertation, we provided an outlook on the current state of knowledge on 

the diverging paths of renewable energy for countries and empirically investigated the 

factors of wind energy deployment and policy in the United States (U.S.).  

Chapter Two contributed to the existing literature on renewable energy by 

providing a systematic review for the factors of renewable energy deployment of countries. 

The review included 60 studies, which, in total, considered 489 factors. These factors were 

classified into seven main categories (economic, environmental, political, regulatory, 

social, technical potential, and technological) and 239 subcategories. The categories and 

subcategories were, then, classified as either: (i) drivers, (ii) barriers, or (iii) undetermined. 

Out of seven main categories that we defined in Chapter Two, economic, environmental 

and social factors were the only ones that were considered drivers. The impacts of political, 

regulatory, technical potential and technological factors were considered undetermined. 

Only one subcategory, national income, was found to be a driver. All remaining 

subcategories were found to have undetermined impacts due to: (i) the small number of 

manuscripts considering these factors either as drivers or barriers, and/or (ii) the lack of 

statistically significant positive or negative impacts on the renewable energy deployment 

of countries. None of the main categories or subcategories were found to be a barrier. 

In Chapter Three, we suggested further investigation of three important deficiencies 

that the current literature on the renewable energy deployment presents. The first 
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deficiency was the over – and underrepresentation of several areas including the factors 

considered, countries represented, and periods analyzed by the manuscripts. We suggested 

equal representation of these areas in the future studies. The second deficiency that we 

noted was the inconsistent definition of renewable energy deployment, the dependent 

variable, within the manuscripts. Our suggestion was the use a consistent definition of 

renewable energy deployment in future studies. The last deficiency that we noted in the 

current renewable energy deployment literature was the variation of the types of renewable 

energy sources considered among the manuscripts. We suggested future scholars clearly 

describe the input that they include in their studies.  

Chapter Three focused on the most promising renewable energy source (wind) in 

the market [1] and empirically investigated the significance of a number of economic and 

environmental factors of the deployment of U.S. wind energy using data from 39 states 

over a 16-year period (2000-2015). Economic factors included gross state product, the 

value of agricultural sector, and the unemployment rate. All economic factors were found 

to be significantly and positively related to the deployment of wind energy in the U.S. 

Environmental factors included carbon dioxide (CO2) emissions, nitrogen oxide (NOX) 

emissions, and water use. CO2 and NOX emissions were found to be significant and 

negatively associated to the U.S. wind energy deployment. This study adds to the literature 

by including previously neglected factors, such as the contribution of the agricultural sector 

to the national economy and NOX emissions to understand the deployment of U.S. wind 

energy. 



 

172 

 

Our suggestions for further investigation of the U.S. wind energy deployment 

included: (i) the use of other factors, such as social and political factors; (ii) the inclusion 

of interaction variables (i.e., the interaction between the economic and environmental 

factors); and (iii) the consideration of other statistical methods (i.e., a generalized linear 

mixed model). 

Chapter Four focused on the factor of wind energy policy diffusion. The existing 

literature suggested that the diffusion of state- and local-level wind policies are positively 

associated to the deployment of wind energy. We designed our empirical analysis after 

Berry and Berry’s internal and external factors of policy diffusion model (1996) and 

focused on seven neighboring Midwestern states, which are located in the middle of the 

U.S. Wind Energy Corridor, to control for the external factors. The list of internal factors 

that were considered in the random-effects panel data regression analysis from 2008 to 

2015 included wind power potential, per capita gross state product, unemployment rate, 

per capita value of the agriculture sector, number of the establishments in agricultural 

sector and state government control. Through the addition of interaction terms, we also 

explored the behavioral differences in these regressors under Republican and non-

Republican state governance. The interaction between the value of the agricultural sector 

and Republican state government as well as the interaction between the number of the 

establishments in the agricultural sector and Republican state control, were found to be 

statistically related to states’ wind energy policy diffusion from 2008 to 2015. In addition, 

wind energy potential, per capita gross state product, the unemployment rate, and the 

number of establishments in the agricultural sector were found to be statistically significant 
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factors of state-level wind energy policy diffusion. At the local level, economic variables, 

including gross state product per capita and unemployment rate, were the only factors 

significantly related to wind energy policy diffusion. 

We suggested that the analysis of wind energy policy diffusion in the U.S. could be 

expanded and improved in several ways through:  (i) the use of a longer time period and 

other factors, such as socio-demographic ones; (ii) consideration of other statistical 

methods (i.e., a distributed lagged model or a generalized linear mixed model); and (iii) 

consideration of other political analysis methods (i.e., policy diffusion framework and 

political culture model).  

Overall, this dissertation provided an outlook on the existing renewable energy 

deployment literature and empirically identifies the factors of wind energy generation 

capacity and wind energy policy diffusion in the U.S. This dissertation added to the existing 

literature in several ways. First, this dissertation provided a systematic picture of the current 

state of knowledge on the factors of renewable energy deployment of countries. Second, 

the significance of previously neglected factors of renewable energy and wind energy 

deployment (i.e. NOX emissions, water use, and agricultural sector presence) were 

considered by two empirical studies in this dissertation. Third, this dissertation investigated 

the significance of state government control along with economic, agricultural sector 

specific and technical factors on the diffusion of wind energy policy at both state and local 

level. Finally, this dissertation provided a reproducible structure of the methodology and 

detailed definition of the data sources to allow future researchers to update these studies 

and integrate new findings to the literature.  
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We suggest that the findings of this dissertation can be extended in two important 

ways. First, the significance of the factors that this dissertation considers, including 

economic, environmental, technical, agricultural sector specific and political factors, can 

be further investigated for other countries. Future scholars can compare the findings of 

these investigations with the findings from the studies in this dissertation, and may lead to 

a further understanding of these factors’ global significances. 

We also suggest that social and moral elements are important factors of renewable, 

and in particular wind, energy deployment because these elements contribute to the social 

acceptance of renewable energy sources. The wind energy deployment literature highlights 

social acceptance but the number of studies that incorporates cultural and moral elements 

remains limited. Similarly, there is no study in the current wind energy policy diffusion 

literature that considers the contribution of cultural and moral motives to the increased 

levels of legislative support to wind energy. In addition to the factors considered in this 

dissertation, the inclusion of cultural and moral elements in future research will help in 

further understanding the difference in wind energy or wind energy policy deployment of 

states/countries.   
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