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ABSTRACT 

The crystal growth of large, defect-free and optically transparent materials has 

been an active area of research for over two centuries. A multitude of crystal growth 

techniques have been employed during this time, each submitting advantages and 

disadvantages to the solid-state community. As the heart of solid-state lasers, 

communication devices and semiconductors, synthetically grown crystals for optical and 

magnetic applications hold the key for future innovation and design. There are large 

classes of materials that display recumbent characteristics that inhibit their manipulation 

by most current solid-state techniques on the market. These refractory oxides display 

extreme melting ranges (> 2000 °C) which inhibit solubility in the melt-based solid-state 

techniques typically engineered in crystal growth laboratories. Herein, this dissertation 

employs the high-temperature and high-pressure technique to drive the solubility of select 

refractory oxides into solution several hundred degrees prior to their melting points being 

attained.  

The investigation of pentavalent and tetravalent oxides (Nb2O5, Ta2O5, TiO2, 

GeO2, and SiO2) with rare-earth oxides (La-Lu, Sc) under hydrothermal conditions has 

led to the discovery of several new compounds previously unattainable by conventional 

solid-state growth techniques. These included, but are not limited to, RENbO4 (RE = La-

Lu), La5Ti4O15(OH), Lu5Ti2O11(OH), and Ba2Lu2Si4O12F2 single crystals. The discovery of 

new classes of materials will lead to further investigations of optical properties. 

Furthermore, the ability to solubilize metal oxides, hundreds of degrees below their 
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melting point, is leading to high-quality, defect-free, bulk single-crystal growth of new 

and existing materials. As the solution chemistry of metal oxides continues to be 

investigated and explored under hydrothermal conditions, new optical and magnetic 

materials continue to emerge and display desirable traits in applied sciences.  
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CHAPTER ONE 

INTRODUCTION 

Perspective on Crystal Growth 

Crystal growers need a wide skill set from understanding the underlying physics 

of electronic transitions of materials, crystal engineering to grow large single crystals 

absent of defect, and a deep understanding of material and electrical limitations in solid-

state techniques, just to list a few. While the field of crystal growth encompasses several 

disciplines, chemistry and the chemist aspire to achieve essentially three key components. 

First, propose a new or existing material that could be beneficial for study over several 

disciplines. Secondly, design and implement new strategies and techniques for crystal 

growth of selected materials. Third, perform extensive research and studies to elucidate 

the crystal structure, phase transitions, powder composition, electronic transitions, etc., of 

the desired material. While these three components are deeply entangled and not always 

step-wise, the basis for the scientific method proposed is consistent for most crystal 

growers.  

While crystal growth is an extraordinary and meaningful skill, it is primarily an 

avenue to greater atomic level understanding revealing new and different ionic 

connectivities, electronic transitions, and possibly magnetic susceptibility. To a crystal 

grower, the pursuit of new compounds will undoubtedly lead to a deeper understanding 

on the atomic level that can be compared to current and existing research. Production of a 

new transition metal germanate, for example, will lead to the study of the crystal lattice 
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of said material. Inquiry into the crystal lattice will reveal the crystal structure and 

connectivities in the crystal lattice. The researcher will be able to distinguish the 

coordination environment and connectivities of the transition metal, germanate ion and 

oxygen ions within the lattice. Transition metal studies will reveal the oxidation state, 

electronic and molecular geometries, in addition, overall long-range periodicity of the 

crystal lattice will be revealed. The researcher will in turn learn the site symmetry and 

allowed or forbidden electronic transitions of the metal center. While this is an 

ambiguous example, its aim is to reveal that crystal growth, at its core, is the beginning of 

a cascade to further research and development. The possibility for discovery of new or 

even existing materials provides the researcher with the drive and motivation needed for 

the countless hours of forthcoming research. However, even the most well devised 

schemes and blue prints contain unforeseen road-blocks and detours. It is the challenge 

and journey of a crystal grower to utilize intuition, experience, and current and existing 

research as a road map to new discovery. The Chapters to follow are a description of the 

design, implementation, and study of new materials to better understand their function as 

a greater part of solid-state science.  

Fundamental Crystal Growth Materials 

The impact of crystal growth on current technology and culture is nothing short of 

astounding. To better understand the proposed research, a brief historical view of the 

impact of crystal growth on technological advancements will be discussed. When 

discussing fundamental solid-state materials, the importance of quartz, and primarily 

α-quartz (SiO2) cannot go untouched. It is unclear whether the supply and demand drove 
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the technological advancements of α-quartz or vice-versa, but it is clear that they are 

deeply intertwined. During WWII, the availability of naturally available quartz was low 

due to the high demand for SONAR and radio applications. This piezoelectric material 

finds abundance in Brazil.1 During WWII, U.S. efforts to divert high quantities of 

α-quartz to the states resulted in shortages for German utilization. German U-boat 

activities in specific Atlantic locations created difficulty for U.S. imports into the 

country. Because of blockades from both countries, the research and development of 

synthetic α-quartz found a technological jumpstart.2 A greater discussion will continue in 

the Hydrothermal Crystal Growth section.  

The 1950s and 60s are arguably the greatest times for technological advancements 

of the solid-state laser. Charles Townes, Arthur Schawlow, and Gordon Gould were key 

researchers in this idea of "light amplification by stimulated emission".3 While the 

earliest lasers were microwave radiation, a quick progression to visible and infrared 

lasers was realized with the ruby laser, namely the 694 nm emission of Cr: Al2O3.4 The 

current drive for higher powered (megawatt) lasers and the technology therein, is a direct 

result of this early work. The current technology employed in this research has been 

greatly influenced by the demand for further progression in this field.  

Early advancements in solid-state lasers led to investigation of materials that 

display characteristics such as improved thermal lensing, increased quantum yield, and 

reduced parasitic oscillation of radiation. More recently, the investigation of the crystal 

growth of lutetium oxide (Lu2O3) and rare-earth doped analogues has led to high quality 

hydrothermal crystal growth of a promising material with high thermal conductivity.5 
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Er3+: Lu2O3 is of special interest as a 1.5 um eye safe laser for the automotive industry. 

These few examples demonstrate how technological breakthroughs and the demand for 

new materials have aggressively motivated and driven the area of crystal growth.  

 

Current Solid-State Scintillators and Industry Demands 
 
 Before proposing new materials as suitable candidates for solid-state scintillators, 

a brief look at current industry standards and popular candidates will be examined. First, 

a brief discussion of scintillator efficiency will be addressed.  

 Inorganic scintillators play a key role in radiation detection over several scientific, 

medical, and military fields. At the essence of scintillator technology is a need to convert 

incoming X-rays or gamma rays into quantifiable intensities. Three general qualifications 

of scintiallators are fast response times (10-100 ns), high light yield (> 20,000 photons 

per absorbed particle), and high density for efficient quantum yields. In general, the 

number of photons emitted by a scintillator can be described by Equation 1.1. 

                                                          Nph =(SQ)E/βEgap                                                               (1.1)  

(Nph) represents the number of emitted photons when a quantifiable amount of energy (E) 

is absorbed, (Egap) represent the HOMO/LUMO gap of the valence and conduction bands, 

(β) is the energy required to produce an electron-hole pair, (S) is the efficiency of the 

electron-hole transport, and (Q) represents the quantum efficiency.6 From this equation, a 

few observations can be made. First, highly efficient scintillators will maximize the 

quantum efficiency (Q) while minimizing the band gap (Egap). Additionally, the electron-

hole energy will be minimized while transport efficiency is maximized. It is important to 
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note that quantum efficiency (S) is the least predictable term. Its value is heavily factored 

by crystal growth technique, impurities and lattice strain.6 With these observations in 

mind, an examination of more common inorganic scintillators and their crystal growth 

challenges is examined.  

 One example of a family of commonly sought inorganic scintillators is the rare-

earth orthovanadates, REVO4 (RE = La3+, Gd3+, Lu3+, Y3+). These optically inactive rare-

earth lanthanides make excellent hosts for doping optically active rare-earth ions such as 

Ce3+, Nd3+, Er3+, and Yb3+ into the crystal lattice. Nd3+: YVO4 has been shown to be a 

capable Q-switching laser with a frequency of 500 kHz and power capacity of 108 W.7 

The tetragonal unit cell and high absorption cross-section coupled with high 

birefringence (Δn = 0.220 at 1 µm) makes this rare-earth vanadate a competitive material 

for microlasing compared to traditional hosts, such as yttrium aluminum garnet (YAG) 

Y3Al5O12.8-9 However, with increased optical and thermal properties does come 

significant physical drawbacks. Most notably, a weak c-plane leads to physical striations 

that compromise the integrity of the material at elevated pumping temperatures.10 

 A related rare containing scintillator can be considered when examining the rare-

earth oxy-orthosilicates RE2SiO5 (RE= Lu3+, Sc3+ and Y3+). The orthosilicate is an 

attractive candidate for luminescence owing partly to smaller quantum defect, which 

results in decreased thermal loading of the laser.11 In particular, Yb3+:Y2SiO5 has been 

shown to contain a simpler 2F7/2 and 2F5/2 lasing manifold compared to cubic YAG leading 

to reduced quenching, longer lifetime and higher Yb3+ doping concentration ability. The 

presence of two non-equivalent RE3+ sites in a less than cubic space group setting leads to 
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increased crystal field strength in a quasi-three-level-laser.12 However, while Y2SiO5 and 

its analogues present an attractive material for scintillation, the crystal growth of the 

material is more complex. Traditional crystal growth techniques such as the Czochralski 

pulling method tend to contain crystals with physical defects such as metal inclusions 

from high-temperature crucibles and incongruent melting of starting materials.13 Even for 

well-known materials like the rare-earth oxy-orthosilicate, a closed-system route to high 

quality crystal growth is desirable to avoid crystal lattice defects that deter even the most 

robust lasing systems. The inspiration for hydrothermally grown rare-earth silicates is 

discussed in more detail in Chapter 3.  

A lesser known but equally important scintillator is found in the eulytine mineral-

type bismuth germanate oxide Bi4Ge3O12. While the mineral eulytine (Bi4Si3O12) was 

discovered in 1827 by Breithaupt, research and investigation into the uses of Bi4Ge3O12 as 

a scintillator were not investigated until 1975 by Nestor and Huang.14 Bi4Ge3O12 

crystallizes in non-centrosymmetric space group I4-3d with GeO4 tetrahedra and a 

distorted BiO6 octahedron.15 Bi4Ge3O12 is an intrinsic scintillator and has been 

investigated as a high-energy gamma radiation detector with limits up to 50 MeV. 

Bi4Ge3O12 has also been shown to rival NaI(Ti) in terms of full energy efficiencies while 

suffering in energy resolution at peak power. The bismuth germanate oxide is extensively 

used in high-energy physics and positron tomography; however, like many melt and 

Czochralski pulled materials, it suffers from incongruent melting, complex phase diagram 

distribution, incorporation of metal contaminants, and a heterogeneous mixture of metal 

oxides that give rise to drastically different metal oxide vapor pressures in traditional 
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solid-state techniques.16 Clearly, a simpler, closed-system solid-state technique is needed 

to grow single crystals of Bi4Ge3O12 in hopes of diminished thermal strain, reduced or 

eliminated metal contaminates from high-temperature crucibles, and higher quality single 

crystal growth. The investigation of trivalent metal germanates is also of interest as 

bismuth germanate oxide is largely accepted as an industry standard. This material 

inspired much of the rare-earth germanate chemistry described in Chapter 4.  

For many years the industry standards for inorganic scintillators were dominated 

primarily by relatively simple compounds such as NaI, CaF2, Gd2SiO5, Bi4Ge3O12, and 

BaF2, just to list a few.17 The main area of concern is that while these materials display 

excellent properties for energy resolution, stopping power, or timing resolution, none 

display excellent properties of all three at the same time.18 While NaI(Tl) has amazing 

energy resolution, it suffers in stopping power and time resolution. One could say that the 

limiting factor for the next generation scintillator is the ability to solubilize metal oxides 

in such a way that allows for high quality single crystals with limited thermal strain and 

metal contamination from the solid-state technique used to synthesize the crystals. While 

powder scintillators for beta or gamma-ray interactions have been investigated, they 

suffer because only light from the outer layer has the capability to fluoresce and reach the 

photo detector.19-20 To understand the limits of current industry standards for inorganic 

scintillators, a brief review of solid-state techniques used to grow single crystals of these 

in addition to highlighting their pros and cons will prove beneficial to the reader. 
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Conventional Solid-State Techniques 

The umbrella of single crystal growth is a wide and complex array of techniques 

and instrumentation used to attain a similar goal. A brief examination of conventional 

solid-state techniques will highlight the advantages and disadvantages of each technique.  

When discussing single crystal growth, one must first address what are surely the most 

commonly used techniques in melt-based crystal growth. Czochralski, flux and top-

seeded solution growth are the most common melt-based techniques. A brief discussion 

of each of these techniques will highlight a brief history and the limits of each technique. 

Czochralski (CZ) melt pulling was first developed in 1916 by Jan Czochralski by 

a serendipitous discovery involving an ink pen and a molten tin crucible.21 The essence of 

the CZ pulling method involved a high-temperature crucible, a target single crystal 

mounted to a rotating arm above the heated crucible melt, and a target phase melt 

composition within the crucible. The high-temperature crucible, usually iridium or 

tantalum, is heated so that the melt composition is above the highest melting point range 

of the charge material.22 The seed crystal is then lowered into the molten material and 

slowly raised and rotated. The rate of rotation and pulling varies from system to system 

and is governed by many variables such as melt composition, target crystal size, thermal 

buoyancy, melt convections, and cost effectiveness. It is a typical industrial standard to 

rotate both the crucible as well as the crystal to gain greater systematic control over 

crystal-melt interface shape, suppress impurities, and control the temperature profile over 

the melt gradient.23 Over years of research, the crystal size of CZ grown materials has 
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greatly increased and has surpassed 400 mm diameter boules with 150-200 kg melts used 

as feedstock. Indeed, CZ grown crystals have become a cornerstone for industrial crystal 

targets. 

 It is important to note however, that CZ pulling does suffer from drawbacks. The 

large thermal gradient, typically several hundred degrees, between the melt and crystal 

interface can cause surface striations, cracking, oxygen defects, and metal oxidation state 

reduction by thermally favored reducing atmospheres.24 High-temperature crucibles can 

cause metal contamination at high-temperatures, a highly unfavorable incorporation when 

considering the susceptibility of the quantum efficiency (S) to metal contaminations, as 

discussed earlier. However, even with these challenges, CZ pulling is an industry 

standard in the single crystal growth of vital systems like YAG, YLiF4, LiNbO3, LiTaO3, 

and β-BaB2O4.25-29  

Attractive alternatives to the Czochralski method are flux growth or molten 

solvent crystal growth. Unlike the Czochralski method, flux melts use a molten solvent, 

typically a low melting molybdate or alkali fluoride/chloride.30 This molten solvent 

instigates solubility of the desired feedstock components, usually a stoichiometric 

mixture of metal oxides or salts of the desired crystal phase. Crystal growth occurs in a 

high-temperature, inert metal crucible. One of the appealing lures of the flux technique is 

the ability to dissolve heterogeneous mixtures of compounds with drastically different 

melting ranges. Unlike the Czochralski method, flux growth incorporates metal oxides 

and salts that typically are incongruently melting.31 The proper choice of a molten solvent 

drives solubility of incongruently melting components, typically at temperatures lower 
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than those of the pure initial starting materials. The nature of the flux solvent allows 

simple separation of the solvent from the desired crystals once the reaction has reached 

completion. Typically, the flux solvent can be removed by washing the product with 

water or sulfuric acid. Characteristically, flux growth occurs at significantly lower 

temperatures compared to the CZ method. This allows crucibles to be used for longer 

durations without the need to replace or repair them . This improves the cost efficiency of 

the technique, in addition to increasing the longevity of furnaces used for heating. Of 

course, molten flux growth is not without its own shortcomings.32 Typically, 

incorporation of the molten flux into the crystals is a significant problem. The low 

melting range of the molten flux equates to a mobile electrolytic component able to 

incorporate into the crystal at nearly all phases of the growth sequence. Additionally, 

high-temperature crucibles can become soluble in molten fluxes equating to metal 

contamination of crystal growth at elevated temperatures.33  

 The crystal growth of the superconductor REBa2Cu3O7-γ (RE = Y, Pr) is a prime 

example of inclusion in flux growth. In these experiments, a BaCuO2-CuO mixture is 

combined in a high-temperature crucible: ThO2, Au, Pt, Y2O3, Al2O3, ZrO2, SnO2 or 

MgO. Solubility of these crucibles creates melt impurities, which in turn, create 

impurities in the crystals or melts. Specifically, examining the crystal growth of 

YBa2Cu3O7-γ (YBCO) with a ZrO2 crucible leads to two important conclusions. First, 

ZrO2 mobility is initially a result of the crucible becoming corrosive with the aid of 

molten fluxes. Zr+4 ions crystallographically cannot incorporate in the YBCO lattice, but 

they can incorporate with Ba2+ ions within the flux to precipitate BaZrO3 crystals. 
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Secondly, while BaZrO3 does not inheritably contaminate crystal growth, the presence of 

BaZrO3 changes the physical stoichiometry of Ba2+ in solution, altering the composition 

of the YBCO crystals produced.34 This specific example examines a typical complication 

of high-temperature solid-state synthesis which is incorporation or contamination by flux 

solvents or reaction crucibles. While the single crystal growth of YBCO or its analogues 

was not investigated in this research, its examination is intended to highlight a desire in 

current solid-state sciences for alternative methods of crystal growth to avoid inherent 

problems.  

The top seeded solution growth crystal growth method is a unique hybrid of CZ 

and flux growth. Essentially, the lower temperature solution flux is combined with the 

pulling technique of the CZ method. This allows for crystals to be grown at much lower 

temperatures and avoids the spontaneous nucleation that plagues simple flux growth. 

Additionally, lower reaction temperatures aid in cost effectiveness of expensive high-

temperature metal crucibles. However, while this technique attains the advantages of both 

the CZ and flux growth methods, it also suffers from both of their drawbacks. Crystal 

growth is hindered by metal contaminations from crucibles, thermal strain from large 

thermal gradients between the melt and seed interface, and flux inclusion, especially if a 

molten solvent is needed to aid in solubility of feedstock.35

Conventional solid-state techniques are a broad area of chemistry, and surely all 

could not be represented within this limited scope. The aim in this brief review is to equip 

the reader to look methodically at solid-state and aqueous techniques for the advantages 

and disadvantages of modern techniques. Herein, a detailed discussion of the 
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hydrothermal technique will elucidate the technology that allowed this current research to 

be achieved.  

 

Hydrothermal Crystal Growth 
 
 The hydrothermal method is a unique aqueous method of crystal growth, that at 

its core, aims to reproduce subterranean processes in a laboratory setting. Hydrothermal 

chemists and geochemists reproduce similar conditions that give rise to natural minerals 

found in all corners of the world.  

 The origins of the hydrothermal technique can be traced to mineralogists in the 

late 19th century as the first pressurized vessels were being engineered. Scientists like 

Morey, Niggli and Spezia paved the way for many of the fundamental techniques still 

used today.36 While modern hydrothermal techniques find origins in European countries 

during the late 19th century, one could argue the most significant advances came by 

Robert Laudise during his career at Bell Laboratories beginning in 1956.37 Besides 

creating one of the largest commercial hydrothermal productions of α-quartz, he also 

paved the way for synthetic crystals of AlPO4, ZnO and KTiO(PO4), among many others. 

The technological advances at Bell Laboratories cultivated many of the thought processes 

and designs one uses to design chemical reactions for exploratory growth and directed 

synthesis of targeted single crystals today.38-40 

 The staple of hydrothermal crystal growth is surely the high-temperature and 

high-pressure vessels, or autoclaves, designed for laboratory or industrial use. Essentially, 

a high-pressure and high-temperature autoclave provides a closed system in which heat, 
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aqueous solutions and metal salts or oxides react under high-pressure. The hydrothermal 

autoclave is a reaction vessel of various shape and design that is made typically of high-

temperature alloys to withstand the immense conditions of temperature and pressure they 

undergo. To avoid autoclave corrosion and crystal growth contamination by the dozens of 

metals represented in the alloys of modern hydrothermal autoclaves, a secondary 

enclosure, either that of a fixed or floating liner is used within the autoclave. The terms 

fixed and floating refer to an inert metal or metals that are fixed to the inner walls of the 

autoclave or allowed to freely float in water while the reaction proceeds. In modern 

hydrothermal reactions, gold, silver, and platinum are commonly used as liners as their 

inert physical characteristics allow a variety of mineralizers and feedstocks to be applied 

and investigated. Hydrothermal mineralizers are typically alkali or alkaline earth salts of 

various concentrations used to increase the solubility of metal oxides or salts of a desired 

target crystal. Mineralizers play a key role in catalyzing solubility in much the same way 

as molten flux does in flux growth. In modern growth, basic mineralizers are comprised 

of hydroxides (OH-), fluorides (F-), carbonates (CO3
2-), chlorides (Cl-) and mixtures 

therein. Acidic mineralizers can also be used in low temperature PTFE and Inconel 

autoclaves employing metal liners such as gold and platinum. Most commonly, nitrates 

(NO3
-), sulfates (SO4

2-) and acid chlorides (Cl-) are used to aid solubility of component 

feedstocks in these systems.41  

 The aid of mineralizers allows solubility of even the most intractable metal 

oxides, usually several hundred degrees below their melting point. Much like molten 

fluxes, a hydrothermal mineralizer can serve in a catalytic fashion; however, many times 
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the presence of alkali or alkaline earth salts leads to inclusion into the crystal growth that 

occurs. For example, recently reactions involving alkali fluorides and rare-earth oxides 

and fluorides revealed an opportunity to study the crystal structure of several new ternary 

alkali rare-earth fluorides. Synthetic routes to ARE2F7 and ARE3F10 (A = K, Rb, Cs), (RE 

= Y, Sm, Gd, Lu) revealed complex phase transitions dependent on the ratio of 

alkali/rare-earth ionic radii in with various mineralizers. In these systems, the mineralizer 

becomes an incorporated component of the overall final crystalline product.42 Therefore, 

simply referring to hydrothermal mineralizers as catalytic spectator ions, in general, is not 

an accurate representation of the whole technique. It must be studied on a case-by-case 

basis to note effects on single and multi-component oxide systems. In the crystal growth 

of the sesquioxide lutetium oxide, Lu2O3, the hydrothermal crystal growth is most 

efficiently executed under > 15 M KOH solutions, essentially supersaturated solutions 

that become supercritical fluids at high-temperature hydrothermal conditions (> 350 °C). 

In this situation, the mineralizer is truly a spectator ion that catalyze the solubility of 

lutetium oxide several hundred degrees before the melting point is reached. The closed 

system design of the hydrothermal technique coupled with inert metal liners and 

ampoules allows not only greater solubility of recalcitrant oxides, but also improved 

crystal growth rates and limited contamination of metals.43 

 To attain a full perspective on the hydrothermal technique, a brief explanation of 

the drawbacks will be beneficial to the reader. While melt and flux growth techniques are 

widely studied and documented, the hydrothermal growth technique has a restricted 

audience and research niche for several reasons. The most likely candidate is the initial 
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startup cost and experience needed for crystal growth. Hydrothermal autoclaves, inert 

precious metal liners, high-pressure parts and equipment create a costly initial investment 

for researchers and industry. Coupled with the years of knowledge needed to understand 

solubility profiles for various metal oxides and the need for consistent engineering and 

machining collaborations, it becomes clearer why the hydrothermal technique has found a 

limited foothold, even today. However, as the subsequent Chapters will reveal, the 

hydrothermal method is a valid solid-state technique for synthesis of a variety of 

refractory oxides. 

Allowing the Past to Mold the Future 

Above the Norlin Library at the University of Colorado is a quote that reads, " 

Who knows his own generation remains always a child." It is true that we cannot know 

where we are going without knowing where we have been. The technological advances 

over the last 30 years have manufactured a generation that is more connected than ever. 

Within the context of science and research, the ability to attain published data is the 

easiest it is ever been. With that in mind, the following Chapters were molded and shaped 

from various research attained from decades of previous work. A brief examination of 

past success will reveal the motivation for the research herein.  

Undeniably, current hydrothermal equipment and technology was sculpted by the 

pioneers of the field, such as Morey, Niggli, and Laudise. However, current research is 

consistently directed by market and industry demands. An examination of the crystal 
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growth of lutetia (Lu2O3) will give insight and direction into the next decade of research 

and development.  

 The hydrothermal crystal growth of the refractory oxide lutetium oxide, Lu2O3, 

has provided a single crystal host with desirable lasing potential. Lutetium oxide presents 

a difficult challenge to conventional solid-state crystal growth. The melting point of 

lutetium oxide exceeds 2400 °C and is therefore impervious to traditional solid-state 

techniques. High-temperature crucibles employed in flux and melt growth simply won't 

withstand treatment at these elevated temperatures. Additionally, high-temperature 

crucibles such as rhenium and tungsten are known to undergo deposition during 

reactions. The potential for Lu2O3 to become a high-density, high-power laser host is 

encouraging, especially considering Lu3+ is a good lattice match for active lasing ions 

such as Yb3+ and Er3+ for 1 µm and 1.5 µm lasing. Recently, the hydrothermal growth of 

lutetium oxide was investigated.43 The ability to grow crystals on a 5 mm scale was 

shown to be possible with high-pressure and high-temperature treatment of lutetium 

oxide powder with high concentrations (> 10 M) solutions of potassium hydroxide. 

Interestingly, this growth can occur at or below 700 °C within a high-temperature 

autoclave. The ability to solubilize lutetium oxide 1300 °C before its melting point is 

worth noting and vital to high quality crystal growth. The hydrothermal growth of Lu2O3 

inspired many of the investigations of rare-earth oxides outlined throughout this 

Dissertation.  

 In this Dissertation, the high-temperature and high-pressure crystal growth 

technique was used in tandem with soluble building blocks (SiO2, GeO2, TiO2, Nb2O5), to 
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grow single crystals of refractory oxides and examine their structural and optical 

properties. By incorporating soluble building block with refractory oxides in solution, a 

route to increase the solubility of refractory oxides was accomplished. The subsequent 

Chapters outline the various projects that were completed in pursuit of the next 

generation of scintillators.  
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CHAPTER TWO 

EXPERIMENTAL METHODS 

Introduction 

The ability to synthesize new and existing materials with interesting optical and 

magnetic properties continues to be an active area of research. Many known materials in 

use today suffer from negative effects due to the solid-state technique employed in 

synthesis. For example, materials grown from melt-based flux growth can demonstrate 

incorporation of metal contaminates from the fluxing material or the solid-state crucible 

into the crystal growth. Additionally, oxygen defects, thermal strain and incongruent 

melting can occur at or near the melting point of metal oxides. Essentially, this is the 

same list that plagues most, if not all, solid-state crystal growth techniques.  

Herein, the experimental conditions for the high-temperature and high-pressure 

hydrothermal crystal growth are described. This technique allowed for the solubility of 

many refractory metal oxides to be increased in solvothermal mineralizers while lowering 

the reaction temperature several hundred degrees below the metal point of the binary 

oxides. This Chapter describes the hydrothermal technique of growing new materials and 

the supporting techniques used to characterize their physical and optical properties. 

Synthetic Methods 

Solid-State Techniques 

To prepare feedstock for hydrothermal growth, materials were treated through 

initial solid-state reactions. Stoichiometric amounts of powdered sample were ground and 
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mixed using an agate mortar and pestle. These powders were added to an open platinum 

crucible with a ceramic cover. Heating profiles varied depending on the material being 

investigated, but they were typically treated for 1-3 days at 800-1200 °C in a Lindberg

Blue box furnace (BF51866A-1). This allowed for a homogenous powder feedstock 

synthesis which was subsequently treated under hydrothermal conditions or examined by 

powder X-ray diffraction (PXRD) to determine phase stability.  

Hydrothermal Crystal Growth 

The essential technique employed throughout the subsequent Chapters was the 

high-temperature and high-pressure crystal growth technique. High-temperature Tuttle 

autoclaves constructed of Inconel 718 material served as the reaction vessels.1 These 

reaction vessels contain a 27-mL internal volume. High-pressure adaptors, fittings, valves 

and analog pressure heads were supplied by High Pressure Parts (HPP). To heat the body 

of the autoclaves, 2” ceramic band heaters (N-76580) were supplied by Omega Heater 

company. Typically, two ceramic band heaters were affixed to the body of the autoclave 

to establish a thermal gradient for spontaneous nucleation or transport growth reactions. 

Omega 7600 thermal controllers with K-type thermocouples were utilized to drive and 

regulate the thermal regime of the band heaters. To isolate and insulate the autoclaves 

during the growth process, individual growth zones were established with concrete 

blocks. Vermiculate and/or zirconium blankets were used to insulate the autoclave 

bodies. To protect the nickel based autoclave from reacting with the feedstock and 
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hydrothermal mineralizers, and vice versa, fine silver (99.9%) ampoules were 

commissioned in each growth run, see Figure 2.1 
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Figure 2.1: Tuttle cold seal Inconel 718 autoclave featuring cap and head assembly. Fine 

silver ampoules are shown in front with 1/4” and 3/8” diameters. 

 

 

 



26 

Two different sized ampoules were utilized, namely 1/4” x 3” and 3/8” x 3” silver tubes. 

To encapsulate and seal the feedstock and mineralizer within a silver ampoule, a 

CEA model TOP-165HF inert gas welder was utilized with a tungsten electrode under 

flowing argon to weld-seal one end of the ampoule. To the open end of the ampoule, the 

feedstock and mineralizer were added in a predetermined ratio and amount. For reported 

reactions, 0.2 g of total feedstock was added in conjunction with 0.4 mL of select 

mineralizer in 1/4” ampoules. For 3/8” tubing, 0.4 g of feedstock and 0.8 mL of 

mineralizer were added. The exact ratios and molar concentrations of mineralizer are 

described in each of the following Chapters.  This combination ensured that both an ideal 

solubility was reached within the reaction and that the reactor could be readily welded. 

Once the reaction feedstock and mineralizer was loaded, the silver ampoule was crimped 

closed with needle-nose pliers and weld-sealed. In each autoclave, typically, 4-6 

ampoules were loaded for reaction durations of 1-3 weeks depending on the material 

under investigation. Deionized (D.I.) water was employed to provide  a counter-pressure 

in the autoclave and prevent the silver ampoules from bursting upon heating. The internal 

volume of the autoclave was filled to 75-90% full after addition of the ampoules. A head 

assembly consisting of a 316 SS plunger, cap, high-pressure valve and fittings was added 

and tightened to seal the autoclave for heating, Figure 2.1.  
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Characterization Techniques 

Single Crystal X-ray Diffraction 
 

To characterize new and existing hydrothermally synthesized crystals, single crystal 

X-ray diffraction (SCXRD) was employed to derive the crystal structures and to 

determine subsequent sample characterization. Single crystal structure characterization 

was directed using either a Bruker D8 Venture single crystal diffractometer with an 

Incoatec Mo Kα microfocus source and connected Photon 100 CMOS detector, or a 

Rigaku AFC8 single crystal diffractometer with a Mo Kα sealed glass tube source and 

connected Mercury CCD detector. Data was recorded at room temperature using phi and 

omega scans, and successively processed and scaled using the Apex3 (SAINT and 

SADABS) or CrystalClear (d*TREK and REQAB) software programs.2 Space group 

determinations were unequivically made based on the absence of systematic HKL 

reflections. The structures were solved by direct methods and refined to convergence by 

full-matrix least squares on F2 using the SHELXTL software program.3 All atoms were 

refined anisotropically, except for hydrogen atoms. In the case of twinned crystals, 

PLATON or cell_now was used to determine the twin law and twin contribution.4,5 

Diamond software was used to construct 3-D representations along different 

crystallographic directions.6 

 

Powder X-ray Diffraction 
 

The powder X-ray diffraction data (PXRD) was collected using a Rigaku Ultima IV 

diffractometer equipped with Cu Kα radiation (λ = 1.5406 Å) at ambient temperature. 
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Data was collected in the range of 4-70° in 2θ with a scan speed of 0.20-1.5 degrees per 

minute with a step size of 0.02°. The phase stability and purity of hydrothermally grown 

powder or single crystals were investigated using PXRD. PDXL software was used to 

collect and process collected data.7 The experimentally collected powder patterns were 

graphed and overlaid to calculated the powder patterns of hydrothermally grown single 

crystal via PCW crystallographic software. Origin 8 software was used to plot and 

overlay the experimental and calculated powder patterns of new and existing phases to 

realize the presence of minor products in the reactions.  

Infrared Spectroscopy 

Infrared spectroscopy (IR) was utilized to identify functional groups in 

hydrothermally grown crystals such as hydroxide, OH-, H2O, or lack thereof. The 

functional groups were identified via comparing their characteristic vibrational modes in 

the IR spectra with literature values. IR spectroscopy was used to support the single 

crystal and PXRD assignments made on hydrothermally grown single crystals. IR spectra 

were collected on a Manga 550 IR spectrometer under flowing nitrogen (N2) using 

OMNIC software for processing the UV-vis/ IR spectrums from 400-4000 cm-1.8 Samples 

were prepared via grinding powders or single crystals in a mortar and pestle. A KBr 

pellet was used as the background for each new data collection. A small amount of 

hydrothermal powder (4-10 mg) was mixed with KBr powder (0.2 g) and pressed into a 

optically transparent pellet using a hydraulic pellet press in the lab. KBr was dried in a 

furnace at 100 °C for 2 hours to eliminate any moisture in the blank before use.
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X-ray Luminescence Spectroscopy 
 

An initial X-ray luminescence study of EuNbO4 was conducted as part of a site 

symmetry investigation during the RE-Nb study. The EuNbO4 sample (20 mg in a 1 dram 

glass vial) was placed on the stage of an inverted fluorescence microscope (DMI 5000, 

Leica Microsystems, Germany) and subsequently excited with a mini Ag X-ray tube 

(Amptek Inc. MA, USA). The X-ray source was operated at 40 kV and 99 µA. 

Luminescence emission was collected with a 10x microscope objective and sent to a 

spectrometer (DNS 300, Delta Nu, Laramie, WY) containing a cooled CCD camera 

(iDus-20BV, Andor, South Windsor, CT). Collection of light was enhanced using a 

cylindrical lens between the microscope and spectrometer. The sample was exposed for 

3.0-5.0 s during the experiment.  

 

Photoluminescence (PL)Spectroscopy 
 

In a study of Tb3+ excitation and emission profiles, a photoluminescence 

measurement was made using a SYLGARD ® 184 Silicone Elastomer base (0.20 g) and 

was thoroughly mixed with a SYLGARD ® 184 Silicone Elastomer curing agent (0.02 g) 

in a glass vial for 5 minutes. The hydrothermal crystalline powder sample of 

Tb13(GeO4)6O7(OH) (0.04 g) was incorporated into the mixture and air bubbles were 

removed through utilization of a vacuum chamber. The mixture was then put on a glass 

cover slip to make a layer of the powdered sample incorporated ona PDMS film. 

Subsequently, the sample was cured in an oven at 100 °C for 15 minutes. The prepared 
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sample was placed inside a cuvette at a 45-degree angle to the incident beam and 

fluorescence excitation and emission were measured. A QuantaMaster 800 High Speed 

Spectrofluorometer (PTI) equipped with an 814 (PTI) photomultiplier detection system 

was used to carry out the PL measurements. 

Raman Single Crystal Scattering Spectroscopy 

Single crystal Raman measurements were conducted using an Olympus IX71 

inverted microscope with a 20x objective lens coupled to a TRIAX 552 spectrometer 

equipped with a thermoelectrically cooled CCD detector (Andor Technology, Model 

DU420A-BV) operating at -60 °C. An argon ion laser (Innova 100, Coherent) was 

employed to excite the Raman signal with 514.5 nm light in a 180° backscattering 

geometry. A PR-550 broadband polarization rotator (Newport Corp.) was utilized to 

rotate the polarization of the incident laser source. All data were processed and figures 

prepared with Spectra-Solve for Windows (Las Tek Pty. Ltd.) and Origin 8 software.  

Data were collected with a laser output power of 100 to 200 mW with a 2-minute 

integration time. 

Thermal Analysis 

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) 

provide an avenue for crystal growers to examine the thermal phase stability of single 

crystals and/or powders. This is an essential tool since materials for optical uses 

experience tremendous thermal strain when being excited by a diode or laser source. 

Additionally, TGA and DSC are excellent supporting characterization for materials that 
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may, or may not, contain water or hydroxide groups. Evaporative loss of these groups can 

be measured as weight loss and plotted as a function of temperature. A TA Instrument 

SDT Q600 (V20.9 Build 20) with concurrent DSC/TGA ability were utilized with TA 

Universal Analysis software program for data collection and analysis. Powdered samples 

were prepared via thorough grinding and placed in alumina crucibles, typically 10-25 mg 

per sample. A twin crucible was used as a standard and both the blank and sample were 

heated at a rate of 5 °C/ minute to 800 °C. The samples were held at 800 °C for 30 

minutes while the furnace reached equilibrium. Observed weight loss was collected and 

compared to theoretical weight loss based on the molecular weight of the structure. 

Origin 8 software was utilized to plot the resulting data.  

Electron Microscopy (Energy Dispersive X-ray Spectroscopy) 
 

Elemental analysis is a key factor in deriving the correct molecular formula, 

especially in new materials with exotic structural features. EDX was used to support the 

assignment and stoichiometry of new and existing structures. It is especially useful when 

deciding between elements that display similar electron density in SCXRD, such as Cs+ 

and Ba2+, and confirming or eliminating the presence of fluoride, F-, within the crystal 

structure. EDX was collected via a Hitachi TM-3000 tabletop microscope equipped with 

a SwiftED 3000 detector. Powder and single crystal samples were prepared and placed on 

a carbon disk containing carbon tape to provide the necessary adhesion. A working 

distance of 10 mm was used during data collection with an accelerating voltage of 20 kV 

in charge during the reduction mode. Semi-quantitative data was then compared to the 

stoichiometry assigned during single crystal refinement.  
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CHAPTER THREE 

HIGH-TEMPERATURE, HIGH-PRESSURE 
HYDROTHERMAL GROWTH OF RARE-EARTH AND 

TETRAVLENT METAL SILICATES 

Introduction 

The lanthanide ions of the rare-earth oxides RE2O3 (RE = La – Lu) display 

interesting optical and magnetic properties, in tandem with varying coordination 

environments across the f-block.1 For example, Nd3+ is well-known to generate 532 nm 

emission from frequency doubling of 1064 nm lasing from a Nd: YAG laser and NLO 

material KTP.2 Additionally, Yb3+ has an attractive manifold that is utilized in 970 nm 

diode-pumped Yb:YAG lasers.3 The low-lying f-orbitals in conjunction with predictable 

absorption and emission profiles make the lanthanide ions attractive in fields of applied 

science. 

To synthesize the next generation of scintillators, optical hosts, fluorescence and 

magnetic materials, the ability to solubilize these refractory rare-earth oxides must be 

achieved. The rare-earth oxides display melting points > 2000 °C which limit their access

from most traditional solid-state techniques. Additionally, the extremely high-

temperatures required to experience chemical reactivity introduces a wide array of 

oxygen defects, metal contamination from high-temperature crucibles, low-quality crystal 

growth and inhomogeneous growth. The challenge becomes to solubilize these refractory 

oxides at much lower temperatures to mitigate substantial thermal strain, which has 



34 

negative effects on the as-grown material. Additionally, a technique is required that can 

produce high-quality bulk crystals with little to no contamination from the reaction 

vessel.  

The second challenge in the synthesis and characterization of new materials is 

introducing chemical foundations, or building blocks that can be incorporated into the 

crystal growth. Crystal building blocks generally need to have three distinct 

characteristics to be useful to a chemist or materials scientist. First, a good building block 

should have a high degree of chemical flexibility. In general, this includes having 

multiple stable oxidative states, varying coordination environments, or varying 

connectivity with other building blocks. Second, these building blocks should contain a 

limited crystallographic radius to be highly adaptive into multiple structural phases. 

Lastly, reasonable chemical reactivity or solubility is necessary for new phases to be 

realized. This is not a new concept or idea, and, it is the basis of many of the known rare-

earth silicates as illustrated by Felsche.4 

The intent of this Chapter is to describe a coupling of the high-temperature and 

high-pressure hydrothermal methods in pursuit of new silicates. Silica, SiO2, under 

hydrothermal conditions, is well known and is the basis for the crystal growth of quartz.5 

However, silica is also an attractive building block for the synthesis of new refractory 

materials for a number of reasons. While SiO2 has a predictable tetrahedral tetravalent 

coordination environment, it also contains a small crystallographic radius (0.4 Å), making 

it an ideal building block. Additionally, due to the covalent character of SiO2 and its 

ability to act as Lewis acid in solution, it can adapt several chain and ring structural (ex. 
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Si4O13 and Si4O12) units. While the rare-earth and tetravalent oxides all display high 

melting points, SiO2 displays a high solubility even at low hydrothermal temperatures 

(220 °C). Coupling the hydrothermal technique with a highly predictable crystallographic 

building block(s) has allowed a number of new and interesting materials to be 

characterized for the first time. While several known compounds have also been 

synthesized, their reactivity in hydrothermal fluids has allowed for bulk growth to occur 

and structural assignments to be made.  

 In the first study, a thorough examination into the hydrothermal chemistry of the 

BaO-RE2O3-SiO2 ternary system was developed. This work is adapted from the original 

work “Fulle, K.; Sanjeewa, L. D.; McMillen, C. W.; Kolis, J. W. Crystal Chemistry of the 

Discrete Tetrasilicate Units with Rare Earth Dimers: Ba2RE2Si4O12F2 (RE = Er-Lu) and 

Ba2RE2Si4O13 (RE = Pr-Sm) Acta Cryst. B. 2017, 73, 907-915, in agreement with 

copyright permission from IUCr journals. A copy of the copyright permission is listed in 

the Appendix.6  

 Some crystal chemistry of barium rare-earth silicates is known, including; 

Ba2RE8(SiO4)6O2, BaRE6(Si2O7)2(Si3O10), BaRE4(Si2O7)(Si3O10), and Ba2RE2Si4O13
7–10 but 

it is quite limited overall. While there is a diverse structural variety, the limits and the 

role of the rare-earth ions are not clearly developed. Additionally, the use of optically 

active Ln3+: Ba2RE2Si4O13 highlights the use of these materials as optical phosphors and 

the understanding of the structural nuances of the different rare-earth host sites.11–15 A full 

study was employed to study the role of the rare-earth ions and the solubility of rare-earth 
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oxides in mixed OH-/F- mineralizers. In this case a 6 M KF/ 1 M KOH solution provided 

ideal conditions for spontaneous nucleation to occur.  
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Experimental Methods for Barium Rare-Earth Silicates 
 
 Single crystals in this study were synthesized by a high-temperature, high-

pressure hydrothermal synthetic method. Reactions consisted of component metal oxides 

that were mixed in welded silver ampoules also containing an aqueous mineralizer, 6 M 

KF/1 M KOH. Reaction ampoules were welded shut, loaded into a Tuttle cold seal 

autoclave and heated to 650 °C for 5-10 d. The autoclave was subsequently cooled and 

the contents were filtered and washed with deionized water. Specific synthetic details of 

the rare-earth silicate families are described below, and a reaction summary is included in 

Table 3.1.  

As a representative of the general class of barium rare-earth silicates, 

Ba2Lu2Si4O12F2 will be used to describe the synthetic details of this family. Colorless 

polyhedra of Ba2Lu2Si4O12F2 were synthesized using a mixture of BaO (65 mg, 0.42 

mmol; Alfa Aesar, 99.0%), Lu2O3 (0.84 g, 0.21 mmol; HEFA Rare Earth, 99.99%) and 

SiO2 (51 mg, 0.85 mmol; Alfa Aesar, 99.99%) in a 2:1:4 molar ratio. The reaction was 

heated for 7 d at 650 °C, generating 160 MPa (23 kpsi) pressure. Crystals containing the 

other rare-earth ions (La-Yb) were grown in a similar fashion using the appropriate oxide 

components as starting materials in a similar 2:1:4 molar ratio. In the cases of the 

moderate to heavier lanthanide elements (Sm-Lu), the rare-earth tetrasilicate phase 

(Ba2RE2Si4O13 or Ba2RE2Si4O12F2) was present as a phase pure product, with only a trace 

of minor products, with the only exception being the Ba2Yb2Si4O12F2 system, which 

crystallized only as a minor product alongside BaYb2Si3O10.7 Sample growth of 

Ba2Ho2Si4O13 is show in Figure 3.7. In the cases of the lighter lanthanide elements (RE = 
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La-Nd), Ba2RE2Si4O13 was synthesized in low yield (~5%) with the majority product 

appearing as KRE9(SiO4)6O2 apatite phases, as determined by PXRD.16 In all cases, the 

products were isolated as high quality polyhedra in sizes ranging from 0.25-1.5 mm. For 

the Ba2RE2Si4O12F2 compounds, the presence of fluoride in the crystals was verified semi-

quantitatively using EDX (see Chapter 2 for details). In all cases the EDX analysis for 

heavy ions was satisfactory in terms of the elemental ratios, Figures 3.4, 3.9, and 3.12. 
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Table 3.1: Product distribution for the hydrothermal crystal growth of barium rare-earth 

silicates: BaO + RE2O3 + SiO2+ 6 M KF/1 M KOH at 650 °C for 7 days. Table reused

with permission from IUCr (http://journals.iucr.org/10.1107/S2052520617009544). 

RE+3 Products 

La3+ Ba2La2Si4O13 (P-1) + 
KLa9(SiO4)6O2 

Ce3+ Ba2Ce2Si4O13 (P-1) + 
KCe9(SiO4)6O2 

Pr3+ Ba2Pr2Si4O13 (P-1) + 
KPr9(SiO4)6O2 

Nd3+ NdF3 +BaF2 + 
KNd9(SiO4)6O2 

Sm3+ Ba2Sm2Si4O13 (C2/c) 

Eu3+ Ba2Eu2Si4O13 (C2/c) 

Gd3+ Ba2Gd2Si4O13 (C2/c) 

Tb3+ Ba2Tb2Si4O13 (C2/c) 

Dy3+ Ba2Dy2Si4O13 (C2/c) 

Ho3+ Ba2Ho2Si4O13 (C2/c) 

Er3+ Ba2Er2Si4O12F2 (P-1) 

Tm3+ Ba2Tm2Si4O12F2 (P-1) 

Yb3+ Ba2Yb2Si4O12F2 (P-1) + 
BaYb2Si3O10 

Lu3+ Ba2Lu2Si4O12F2 (P-1) 
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Crystal Structure of Ba2RE2Si4O12F2(RE=Er3+-Lu3+) 
 

A series of new barium rare-earth silicate oxy-fluoride crystals, Ba2RE2Si4O12F2 

(RE = Er3+-Lu3+) has been synthesized under hydrothermal conditions. Crystallographic 

data for this new series of compounds are listed below in Tables 3.2 and 3.3. The new 

structural type, Ba2RE2Si4O12F2, crystallizes in space group P-1 and possesses a two-

dimensional rare-earth silicate fluoride structure with Ba2+ ions residing between layers 

(Figure 3.1a, Figure 3.2). The rare-earth ions display a six-coordinate environment, 

creating distorted REO5F octahedra. These octahedra form a dimer in which a RE2O8F2 

configuration is realized, Figure 3.2b. Within the structure, a [Si4O12] unit provides the 

necessary building block for crystallization to occur. This [Si4O12] units represents a 

tetrameric arrangement that displays inversion symmetry. Several cyclosilicate 

arrangements of [Si4O12] can be found within the literature. These include, but are not 

limited to: Ba2Cu2Si4O12, K2(NbO)2Si4O12, M6Cl10Si4O12 (M = Sm3+, Gd3+-Dy3+) and 

Cs2USiO6.17–20 The [Si4O12] arrangement can exhibit a wide range of bridging Si−O−Si 

angles, sometimes approaching 180°. The [Si4O12] groups in the present structures exhibit 

Si−O−Si angles ranging from 133.6(4)° to 143.6(4)°, and most closely resemble those in 

Sr4Si4O12 with respect to the inversion symmetry and bridging angles of the [Si4O12] 

group.21 
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Table 3.2: Crystallographic data of Ba2RE2Si4O12F2 determined by single crystal X-ray 

diffraction. Table reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 

empirical formula Ba2Er2Si4O12F2 Ba2Tm2Si4O12F2 Ba2Yb2Si4O12F2 Ba2Lu2Si4O12F2 
formula weight (g/mol) 951.56 954.90 963.12 966.98 
temperature (K) 293 293 293 293 

crystal size (mm) 0.15 x 0.14 x 
0.12 

0.13 x 0.12 x 
0.09 

0.11 x 0.06 x 
0.06 0.15 x 0.14 x 0.13 

crystal system triclinic triclinic triclinic triclinic 
space group P-1 P-1 P-1 P-1
Unit cell parameters 
a, Å 5.476(4) 5.4609(4) 5.4461(3) 5.451(3) 
b, Å 7.166(6) 7.1258(5) 7.1212(3) 7.1227(18) 
c, Å 8.958(8) 8.9379(7) 8.9128(4) 8.8937(18) 
α, ° 108.138(18) 107.809(2) 107.7984(14) 107.73(3) 
β, ° 102.03(2) 101.987(2) 101.8656(14) 101.81(4) 
γ, ° 92.742(19) 92.866(2) 92.9455(14) 93.01(3) 
volume (Ǻ3) 324.3(4) 321.50(4) 319.66(3) 319.5(2) 
Z, calcd density 
(µg/m3) 1, 4.873 1, 4.932 1, 5.003 1, 5.026 

absorption coefficient 
(mm-1) 19.254 20.166 21.033 21.860 

F(000) 418 420 422 424 
Tmax, Tmin 1.0000, 0.4687 1.0000, 0.8387 1.0000, 0.8387 1.0000, 0.2726 
Θ range for data 2.46-26.71 2.46-33.22 2.46-26.49 3.03-25.24 
reflections collected 2675 8263 8268 2710 
data/restraints/paramet
ers 1168/0/101 2236/0/101 1316/0/101 1148/0/101 

goodness-of-fit on F2 1.145 1.141 1.138 1.066 
R1, wR2 (I≥ 2σ(I)) 0.0352, 0.0933 0.0224, 0.0623 0.0141, 0.0574 0.0359, 0.0983 
R1, wR2 (all data) 0.0362, 0.0944 0.0368, 0.0625 0.0143, 0.0575 0.0368, 0.0990 
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Table 3.3: Selected interatomic distances (Å) and angles (°) of the Ba2RE2Si4O12F2 series. 

Table reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 

 
 
 
 
 
 
	
 
 
 
 
 
	
 
 
 
 
 
	
 
 
 
 
 
	
 
 
 
 
 
	
 
 
 
 
 
	
 
 
 
 
 
	
 
 
 
 
 
	
 
 
 
 
 
	
 

 Ba2Er2Si4O12F2 Ba2Tm2Si4O12F2 Ba2Yb2Si4O12F2 Ba2Lu2Si4O12F2 
RE(1)O5F     
RE(1)−O(2) 2.268(7) 2.267(3) 2.255(3) 2.250(6) 
RE(1)−O(2) 2.280(7) 2.267(3) 2.260(3) 2.258(6) 
RE(1)−O(4) 2.264(7) 2.250(3) 2.236(3) 2.232(6) 
RE(1)−O(5) 2.236(7) 2.222(3) 2.216(3) 2.213(6) 
RE(1)−O(6) 2.244(7) 2.219(3) 2.208(3) 2.206(6) 
RE(1)−F(1) 2.181(6) 2.175(3) 2.160(3) 2.137(6) 
     
Si(1)O4     
Si(1)−O(1) 1.634(6) 1.630(3) 1.633(3) 1.631(6) 
Si(1)−O(2) 1.629(7) 1.625(3) 1.623(3) 1.627(6) 
Si(1)−O(3) 1.650(7) 1.642(3) 1.644(3) 1.648(7) 
Si(1)−O(4) 1.594(7) 1.595(3) 1.596(3) 1.588(7) 
     
Si(2)O4     
Si(2)−O(1) 1.626(7) 1.633(3) 1.625(3) 1.626(6) 
Si(2)−O(3) 1.643(7) 1.644(3) 1.644(3) 1.648(7) 
Si(2)−O(5) 1.609(7) 1.609(3) 1.610(3) 1.612(6) 
Si(2)−O(6) 1.606(7) 1.608(3) 1.605(3) 1.611(7) 
     
<RE−O> 2.258(7) 2.245(3) 2.235(3) 2.232(6) 
<Si−O> 1.624(7) 1.623(3) 1.622(3) 1.624(7) 
     
Si(1) −O(3) −Si(2) 135.4(4) 134.4(2) 134.3(2) 133.6(4) 
Si(1) −O(1) −Si(2) 143.6(4) 142.9(2) 142.6(1) 142.5(4) 
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Figure 3.1: Connectivity between the Lu2O7F2 dimers and Si4O12-rings in Ba2Lu2Si4O12F2. 

(a) Each Si4O12 unit connects to four Lu2O7F2 dimers to form Lu−O−Si slabs along the

ac-plane. (b) Lu2O7F2 dimer. (c) Si4O12-rings formed from Si(1)O4 and Si(2)O4 tetrahedra 

units via corner sharing. Figure reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 
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Figure 3.2: Layered Ba2Lu2Si4O12F2 structure showing the connectivity between Lu2O7F2 

dimers and Si4O12-rings. Figure reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 
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Figure 3.3: Powder diffraction patterns of hydrothermally grown Ba2RE2Si4O12F2 

crystals: a) Calculated diffraction pattern of Ba2Lu2Si4O12F2 based on single crystal 

structure analysis, b-d) As-grown Lu, Tm, and Er analogs, respectively. Figure reused 

with permission from IUCr (http://journals.iucr.org/10.1107/S2052520617009544). 
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Figure 3.4: EDX spectrum of Ba2Lu2Si4O12F2. Figure reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 
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The terminal oxygen atoms of the [Si4O12] group (O(2), O(4), O(5), and O(6)) 

display shorter Si−O bond lengths over the bridging oxygen atoms, and are shared by the 

RE2O8F2 dimers such that one tetrasilicate connects to four dimers (and one dimer 

connects to four tetrasilicates), as shown in Figure 3.1a. This connectivity establishes 

sheets that propagate in the ab-plane and are separated by Ba atoms, Figure 3.2. The 

barium atoms can be described as nine-coordinate BaO6F3 polyhedra. The fluorine atoms 

were unequivocally determined via bond valence considerations (as all oxygen atoms are 

bound to at least one silicon atom), and they display shorter bond lengths to the rare-earth 

atoms than do the oxygen atoms. The fluorine atoms are terminal on the rare-earth 

dimers, and they provide connectivity to the layers of barium atoms. As expected, the 

observed average RE−O and RE−F interatomic distances scale appropriately with the size 

of the rare-earth element. The bridging RE−O bonds of the dimer are slightly elongated 

compared to the RE−O bonds that extend to the silicate units. The bridging RE−O−RE 

bond angles between edge-shared rare-earth dimers are 104.4(3)° for Er3+, 104.70(12)° 

for Tm3+, 104.86(13)° for Yb3+, and 104.8(2)° for Lu3+. 

Bridging fluorine atoms have also been reported for connecting rare-earth and 

actinide chains in the literature of rare-earth silicate structures including tetrasilicates like 

Rb2Lu(Si4O10)F,22 Cs2Y(Si4O10)F,23 Rb2Sc(Si4O10)F,24 K2Sc(Si4O10)F,25 Rb3Sc2(Si4O10)F5,26 

and K2Th(Si4O10)F2.27 Long interactions between rare-earth and fluorine atoms are found 

in the tetrameric rare-earth units of K5La4(SiO4)4F26 and Na5Y4(SiO4)4F,28 while fluorine 

coordinates only alkali metal cations as a salt inclusion lattice in the K9RE3(Si12O32)F2 

(RE = Y3+, Eu3+, Sm3+) system.22,29 An interesting comparison can be made between the 
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Ba2RE2Si4O12F2 series here and K5Eu2(Si4O13),30 which possesses fluorine-corner-shared 

Eu2O10F dimers connected by finite [Si4O13] chains (where we note the silicate unit is also 

similar to that in the Ba2RE2Si4O13 series described below). In K5Eu2(Si4O13)F, the 

bridging rare-earth to fluorine bonds in the Eu2O10F dimer are longer than the terminal 

bonds to oxygen, and the resulting rare-earth silicate network is a three-dimensional 

framework, compared to the shorter terminal fluorine bonds and two dimensional nature 

of the RE2O8F2 dimers in the rare-earth silicate network in Ba2RE2Si4O12F2. The RE−F 

bonds point generally outward from the rare-earth silicate layer to interact weakly with 

the Ba2+ ion, and it thus seems that terminal fluorine atoms may be a structural director of 

lower dimensionality. PXRD of the as-grown powder confirmed that the Ba2RE2Si4O12F2 

family can be grown in a phase pure manner, Figure 3.3 
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Crystal Structure of Monoclinic Ba2RE2Si4O13 (RE=Sm3+-Ho3+) 
 

Interestingly, a distinct change in the synthetic chemistry occurs based on the size 

of the rare-earth element used in otherwise identical hydrothermal reactions. Compared to 

the formation of Ba2RE2Si4O12F2 for the smaller rare-earths (Er3+-Lu3+), the larger rare-

earths Sm-Ho result in the formation of the monoclinic tetrasilicate Ba2RE2Si4O13. The 

initial member of this family Ba2Gd2Si4O13 was synthesized previously using flux growth 

techniques,10 and the present study extends the series of this structure type to both larger 

and smaller lanthanides (for Ba2Gd2Si4O13, a = 12.896(3) Å, b = 5.2120(10) Å, c = 

17.549(4) Å, β = 104.08(3)°; <Gd−O = 2.388(3) Å; R1 = 0.026). Tables 3.4 and 3.5 

include the crystallographic data and selected interatomic distances and angles pertaining 

to these derivatives. It should be noted that two polymorphs are reported for the general 

Ba2RE2Si4O13 composition, as an earlier report on the structure of Ba2Nd2Si4O13 places 

that compound in the triclinic crystal system through flux growth.31 In our hands, the 

hydrothermal reactions involving the larger lanthanides, La3+-Pr3+ likewise result in 

triclinic Ba2RE2Si4O13 described below. 

  



50 

Table 3.4: Crystallographic data of the monoclinic Ba2RE2Si4O13 (RE = Sm3+-Ho3+) series 

determined by single crystal X-ray diffraction. Table reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 

empirical formula Ba2Sm2Si4O13 Ba2Eu2Si4O13 Ba2Tb2Si4O13 Ba2Dy2Si4O13 Ba2Ho2Si4O13 
formula weight 
(g/mol) 895.74 896.96 912.88 920.04 924.90 

temperature (K) 293 293 293 293 293 

crystal size (mm) 0.22 x 0.15 x 
0.15 

0.18 x 0.16 x 
0.13 

0.16 x 0.16 x 
0.06 0.25 x 0.20 x 0.18 0.15 x 0.14 x 0.13 

crystal system monoclinic monoclinic monoclinic monoclinic monoclinic 

space group C2/c (No. 15) C2/c (No. 15) C2/c (No. 15) C2/c (No. 15) C2/c (No. 15) 

a, Å 12.9961(9) 12.9545(13) 12.8568(5) 12.8478(9) 12.8127(7) 

b, Å 5.2355(7) 5.2311(8) 5.2019(2) 5.2020(6) 5.1934(5) 

c, Å 17.626(3) 17.595(5) 17.5243(7) 17.525(3) 17.514(3) 

β, ° 104.148(18) 104.23(2) 104.1469(15) 104.077(15) 103.971(12) 

volume (Ǻ3) 1162.9(3) 1155.7(4) 1136.48(8) 1136.1(3) 1130.9(2) 
Z, calcd density 
(µg/m3) 4, 5.116 4, 5.166 4, 5.335 4, 5.379 4, 5.432 

absorption 
coefficient (mm-1) 17.117 17.915 19.626 20.337 21.208 

F(000) 1584 1592 1608 1616 1624 

Tmax, Tmin 1.0000, 0.4490 1.0000, 0.3821 1.0000, 0.8387 1.0000, 0.4051 1.0000, 0.5231 

Θ range for data 3.16 – 26.73 2.39-26.73 2.46-33.12 2.40-26.73 2.40-26.72 

reflections collected 4506 4857 6944 4778 4762 
data/restraints/para
meters 1174/0/97 1196/0/97 1177/0/97 1190/0/97 1182/0/97 

goodness-of-fit on 
F2 1.177 1.111 1.194 1.162 1.130 

R1, wR2 (I≥ 2σ(I)) 0.0490, 0.1447 0.0435, 0.1149 0.0170, 0.0393 0.0431, 0.1283 0.0345, 0.1004 

R1, wR2 (all data) 0.0509, 0.1464 0.0485, 0.1191 0.0200, 0.0485 0.0446, 0.1304 0.0366, 0.1026 
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Table 3.5: Selected interatomic distances (Å) and angles (°) of the monoclinic 

Ba2RE2Si4O13 (RE=Sm3+-Ho3+) series. Table reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 

 
 Ba2Sm2Si4O13 Ba2Eu2Si4O13 Ba2Tb2Si4O13 Ba2Dy2Si4O13 Ba2Ho2Si4O13 

RE(1)O7      
RE(1)−O(1) 2.639(6) 2.631(6) 2.620(3) 2.615(5) 2.606(5) 
RE(1)−O(2) 2.309(7) 2.307(6) 2.285(3) 2.268(6) 2.261(6) 
RE(1)−O(3) 2.323(5) 2.313(5) 2.292(3) 2.274(6) 2.274(5) 
RE(1)−O(3) 2.508(6) 2.495(6) 2.470(3) 2.469(5) 2.457(5) 
RE(1)−O(4) 2.332(6) 2.317(6) 2.278(3) 2.272(6) 2.260(5) 
RE(1)−O(6) 2.357(6) 2.341(6) 2.318(4) 2.300(6) 2.295(5) 
RE(1)−O(7) 2.395(6) 2.392(6) 2.366(3) 2.351(6) 2.345(5) 
      

Si(1)O4      
Si(1)−O(1) 1.691(6) 1.695(6) 1.695(3) 1.690(6) 1.686(5) 
Si(1)−O(2) 1.624(7) 1.619(6) 1.624(4) 1.627(7) 1.620(6) 
Si(1)−O(3) 1.658(6) 1.660(6) 1.642(4) 1.650(6) 1.648(5) 
Si(1)−O(4) 1.602(6) 1.595(6) 1.596(4) 1.597(6) 1.595(5) 
      

Si(2)O4      
Si(2)−O(1) 1.683(6) 1.670(6) 1.662(3) 1.667(6) 1.677(5) 
Si(2)−O(5) 1.658(4) 1.651(4) 1.647(2) 1.652(4) 1.654(3) 
Si(2)−O(6) 1.594(7) 1.586(7) 1.589(4) 1.582(6) 1.588(6) 
Si(2)−O(7) 1.600(6) 1.600(6) 1.603(4) 1.609(6) 1.604(5) 
      
<RE−O> 2.409(7) 2.399(6) 2.376(3) 2.364(6) 2.357(6) 
<Si−O> 1.639(7) 1.634(7) 1.632(4) 1.634(7) 1.634(6) 
      
Si(1)−O(1)−
Si(2) 

124.6(4) 124.8(4) 125.0(2) 125.0(4) 124.7(3) 

Si(2)−O(5)−
Si(2) 

141.8(6) 142.6(6) 143.7(3) 144.7(6) 144.8(5) 
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The monoclinic Ba2RE2Si4O13 structure forms a three-dimensional, rare-earth 

silicate framework with barium atoms occupying channels extending along the b-axis of 

the framework (Figures 3.5a and 3.6). The structure again consists of rare-earth dimers, 

but this time the dimers are based on seven-coordinate REO7 units that share an edge to 

form the RE2O12 units (Figure 3.5b). The tetrasilicate unit in Ba2RE2Si4O13 also differs 

from that in Ba2RE2Si4O12F2, as it is present as a finite zigzag [Si4O13] chain (Figure 

3.3c). Similar chains are observed for samples in the structures of Ag10Si4O13,32 

Ag18(SiO4)2(Si4O13),33 K5Eu2Si4O13F,30 and Na4Sc2Si4O13
34 for example. Alternatively, the 

[Si4O13] tetrasilicate has also been shown to take on a branched chain, or island-like 

arrangement in the Pb21(Si7O22)(Si4O13)35 and NaBa3RE3(Si4O13)(Si2O7) (RE = Y, Nd, Sm, 

Eu, Gd) structure types,36–38 and a horseshoe-like arrangement in La6(Si4O13)(SiO4)2.39 

Each silicate unit in Ba2RE2Si4O13 shares oxygen corners with four RE2O12 dimers to 

create the framework.  

In comparison to the Ba2RE2Si4O12F2 structure type above, it is clear that the 

presence of only oxygen atoms in the dimers of Ba2RE2Si4O13, as opposed to terminal 

fluorine atoms, presents a more favorable bond valence capacity for corner sharing to 

silicon atoms, and this in turn enables extension of the rare-earth silicate network to three 

dimensions. The apparent dependence of the structure type on the size of the rare-earth 

element might be reconciled using the monoclinic Ba2RE2Si4O13 series as a starting point. 

Contraction of the average RE−O bond distances with decreasing size of the rare-earth 

elements (2.409(7) Å for Sm3+, 2.399(6) Å for Eu3+, 2.376(3) Å for Tb3+, 2.364(6) Å for 

Dy3+, and 2.357(6) Å for Ho3+) is also accompanied by a decrease in the Ba−O bond 
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distances. In particular, an already relatively short Ba(1)−O(7) interaction is reduced to 

only 2.659(5) Å in the case of the Ho3+ analog. As the system is extended to still smaller 

rare-earth elements we postulate a significant structural rearrangement is needed to 

mitigate further structural strain, particularly in the short Ba−O interaction, and the 

Ba2RE2Si4O12F2 structure type is then preferred. For comparison, the shortest bond length 

about Ba2+ in Ba2Er2Si4O12F2 is the Ba(1)−F(1) bond at 2.685(6) Å, which is more 

reasonable given the smaller size of the F- anion compared to O2-. Alternatively, it may 

also be reasonable that the RE2O12 dimer is a less-stable building block for smaller rare-

earth elements, and the RE2O8F2 dimer with lower anion coordination number about the 

rare-earth ion is preferable. PXRD of the hydrothermally-grown powder confirms this 

family can be grown in a phase pure manner with no indication of impurities, Figure 3.8. 

A sample of hydrothermally grown Ba2Ho2Si4O13 is shown in Figure 3.7. 
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Figure 3.5: Connectivity between the Ho2O12 dimers and Si4O13-chains in monoclinic 

Ba2RE2Si4O13 viewed along [010] projection. (a) Each Ho2O12 dimer connects to four 

Si4O13-chains. (b) Ho2O12 dimers in Ba2Ho2Si4O13. (c) Si4O13-chains formed from Si(1)O4 

and Si(2)O4 tetrahedra units via corner sharing. Figure reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 
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Figure 3.6: Ba2Ho2Si4O13along the [010] projection showing Si4O13 finite zigzag chains 

and Ho2O12 dimers forming a channel structure where the Ba2+-ions reside. Figure reused 

with permission from IUCr (http://journals.iucr.org/10.1107/S2052520617009544). 
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Figure 3.7: Quality of sample growth of Ba2Ho2Si4O13 single crystals. 
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Figure 3.8: Powder diffraction patterns of hydrothermally grown Ba2RE2Si4O13 crystals: 

a) Simulated PXRD of Ba2Ho2Si4O13, b-f) As-grown Ho, Dy, Tb, Eu, Sm analogs, 

respectively. Figure reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 
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Figure 3.9: EDX spectrum of Ba2Ho2Si4O13. Figure reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 
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Crystal Structure of triclinic Ba2RE2Si4O13 (RE=La3+-Nd3+) 
 

In the spirit of understanding the fundamental crystal chemistry of rare-earths 

with tetrasilicate units, the largest rare-earth ions (La3+-Nd3+) were also investigated. A 

transition to another structure type results as the rare-earth size is increased in these larger 

f-block ions, wherein a triclinic polymorph of Ba2RE2Si4O13 is obtained (Tables 3.6 and 

3.7), consistent with the Ba2Nd2Si4O13 structural type in space group P-1 (for 

Ba2Nd2Si4O13, a = 6.657(1), b = 8.924(2), c = 10.084(1), α = 86.44(1)°, β = 73.58(1)°, γ 

= 86.24(1)°, R1 = 0.067).31 Indeed, we observe this triclinic polymorph to persist for the 

remaining larger lanthanides (La3+-Nd3+), though in our particular reactions the phase is 

only obtained as a minor side product relative to the apatite phase, KRE9(SiO4)6O2.16 

Nevertheless, extension to the largest rare-earth ion La3+ establishes a range for this 

structural type, and triclinic Ba2La2Si4O13 can be used as a surrogate of this family 

(Figures 3.10 and 3.11) to make crystal chemical comparisons to the monoclinic 

polymorph. 

Unlike the Ba2RE2Si4O12F2 and monoclinic Ba2RE2Si4O13 (C2/c) structural types, 

triclinic Ba2RE2Si4O13 (P-1) contains planar sheets of rare-earth oxide polyhedra that are 

connected by finite [Si4O13] chains acting as pillars (Figure 3.10a). Within the rare-earth 

sheets eight-coordinate lanthanum oxide units are connected via oxygen edge-sharing 

(Figure 3.10b). Both unique LaO8 units form distorted square antiprisms. Within the 

present study, it appears that the transition from six-coordinate REO5F and seven-

coordinate REO7 to eight-coordinate REO8 units is driven by the size of the rare-earth, 
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and it enables the formation of an extended rare-earth oxide network in triclinic 

Ba2RE2Si4O13 as opposed to isolated dimers in Ba2RE2Si4O12F2 and monoclinic 

Ba2RE2Si4O13. Rare-earth oxide sheets are parallel to (111). Like the monoclinic 

polymorph, triclinic Ba2RE2Si4O13 possesses finite [Si4O13] chains (Figure 3.10c). These 

connect the rare-earth oxide sheets along [111], again forming a three dimensional rare-

earth silicate framework. Barium atoms reside in gaps between the rare-earth sheets and 

silicate chains (Figure 3.11), and are aligned in narrow channels that propagate along the 

c-axis. 

The smaller Si(2)−O(13)−Si(3) bond angle in the triclinc polymorph compared to 

the Si(2)−O(5)−Si(2) angle in the monoclinic polymorph gives the Si4O13 units in the 

former a more kinked appearance. This is also supported by the Si−Si−Si angles within 

the chains, consistent with the comparison of Ba2Gd2Si4O13 and Ba2Nd2Si4O13 made 

previously.10 However, in both polymorphs very little change occurs in the Si−Si−Si 

angles of the [Si4O13] chains as a function of rare-earth ion within the given structure 

type. Thus, the rare-earth ion size acts more as a broad structural director of the 

polymorphs by establishing each particular [Si4O13] chain in rather rigid geometries with 

a distinct structural variation, as opposed to imparting a gradual distortion in the [Si4O13] 

chains. 
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Table 3.6: Crystallographic data of triclinic Ba2RE2Si4O13(RE =La3+-Pr3+) determined by 

single crystal X-ray diffraction. Table reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 

empirical formula Ba2La2Si4O13 Ba2Ce2Si4O13 Ba2Pr2Si4O13 

formula weight (g/mol) 872.86 875.28 876.86 

temperature (K) 295(2) 295(2) 300(2) 

crystal size (mm) 0.09 x 0.10 x 
0.11 

0.06 x 0.06 x 
0.07 

0.06 x 0.06 x 
0.07 

crystal system triclinic triclinic triclinic 

space group P-1 P-1 P-1 

a, Å 6.7327(3) 6.7062(3) 6.6880(3) 

b, Å 8.9894(4) 8.9719(4) 8.9530(4) 

c, Å 10.2191(4) 10.1565(5) 10.1324(4) 

α, ° 86.6588(12) 86.6118(16) 86.5023(13) 

β, ° 73.5660(12) 73.5658(15) 73.5481(13) 

γ, ° 86.5873(13) 86.4609(16) 86.2929(15) 

volume (Ǻ3) 591.62(4) 584.45(5) 580.07(4) 

Z, calcd density (µg/m3) 2, 4.900 2, 4.974 2, 5.020 
absorption coefficient (mm-

1) 14.118 14.770 15.434 

F(000) 772 776 780 

Tmax, Tmin 1.000, 0.7877 1.000, 0.6802 1.000, 0.7739 

Θ range for data 2.08-26.00 2.09-26.50 2.28-25.99 

reflections collected 10742 22454 11990 

data/restraints/parameters 2309/0/190 2433/0/190 2269/0/190 

goodness-of-fit on F2 1.172 1.122 1.165 

R1, wR2 (I≥ 2σ(I)) 0.0203, 0.0501 0.0185, 0.0437 0.0205, 0.0500 

R1, wR2 (all data) 0.0216, 0.0508 0.0206, 0.0445 0.0222, 0.0507 
 
 
  



	 62 

Table 3.7: Selected interatomic distances (Å) and angles (°) of the 

Ba2RE2Si4O13RE=(La3+-Pr3+) series. Table reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 

 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	
 
 
 
 
	

 Ba2La2Si4O13 Ba2Ce2Si4O13 Ba2Pr2Si4O13 
RE(1)O8    

RE(1)−O(1) 2.492(3) 2.473(3) 2.467(3) 

RE(1)−O(2) 2.531(3) 2.522(3) 2.506(3) 
RE(1)−O(4) 2.492(3) 2.473(3) 2.463(3) 
RE(1)−O(4) 2.523(3) 2.501(3) 2.491(3) 
RE(1)−O(7) 2.718(3) 2.700(3) 2.693(3) 
RE(1)−O(7) 2.835(3) 2.855(3) 2.844(3) 
RE(1)−O(9) 2.479(3) 2.444(3) 2.431(3) 
RE(1)−O(11) 2.385(3) 2.355(3) 2.345(3) 
    

RE(2)O8    
RE(2)−O(1) 2.504(3) 2.490(3) 2.471(3) 
RE(2)−O(2) 2.455(3) 2.435(3) 2.425(3) 
RE(2)−O(3) 2.536(3) 2.514(3) 2.502(3) 
RE(2)−O(3) 2.540(3) 2.533(3) 2.522(3) 
RE(2)−O(8) 2.725(3) 2.719(3) 2.711(3) 
RE(2)−O(8) 2.753(3) 2.751(3) 2.746(3) 
RE(2)−O(10) 2.516(3) 2.482(3) 2.463(3) 
RE(2)−O(12) 2.531(3) 2.510(3) 2.493(3) 
    

Si(1)O4    
Si(1)−O(2) 1.619(3) 1.618(3) 1.617(3) 
Si(1)−O(4) 1.617(3) 1.622(3) 1.617(3) 
Si(1)−O(5) 1.677(3) 1.672(3) 1.675(3) 
Si(1)−O(7) 1.624(3) 1.619(3) 1.619(3) 
    

Si(2)O4    
Si(2)−O(5) 1.664(3) 1.669(3) 1.666(3) 
Si(2)−O(9) 1.595(3) 1.594(3) 1.588(3) 
Si(2)−O(12) 1.599(3) 1.596(3) 1.598(3) 
Si(2)−O(13) 1.645(3) 1.641(3) 1.642(3) 
    

Si(3)O4    
Si(3)−O(6) 1.670(3) 1.672(3) 1.670(3) 
Si(3)−O(10) 1.592(3) 1.591(3) 1.591(3) 
Si(3)−O(11) 1.590(3) 1.584(3) 1.586(3) 
Si(3)−O(13) 1.647(3) 1.649(3) 1.644(3) 
    

Si(4)O4    
Si(4)−O(1) 1.622(3) 1.616(3) 1.620(3) 
Si(4)−O(3) 1.629(3) 1.628(3) 1.629(3) 
Si(4)−O(6) 1.662(3) 1.660(3) 1.658(3) 
Si(4)−O(8) 1.625(3) 1.621(3) 1.619(3) 
    
<RE−O> 2.563(3) 2.547(3) 2.536(3) 
<Si−O> 1.630(3) 1.628(3) 1.627(3) 
    
Si(2)−O(13)−Si(3) 135.1(2) 135.08(18) 134.88(19) 
Si(4)−O6)−Si(3) 124.18(19) 123.66(18) 123.57(18) 
Si(2)−O(5)−Si(1) 124.30(19) 124.05918) 123.98(18) 
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Figure 3.10: a) Ba2La2Si4O13 structure highlighting the Si4O13 chains linking the sheets of 

lanthanum oxide polyhedra. b) LaO8 sheets propagating in the (111) plane through edge 

sharing of oxygen atoms. c) Silicate arrangement of the [Si4O13]-10 unit. Figure reused 

with permission from IUCr (http://journals.iucr.org/10.1107/S2052520617009544). 
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Figure 3.11: a) Ba2La2Si4O13 structure highlighting the Ba atom arrangement relative to 

the planar rare-earth oxide polyhedra in the (111) plane. b) View along [001] indicating 

prominence of Ba atoms aligned in narrow channels within the silicate framework. Figure 

reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 
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Figure 3.12: EDX spectrum of Ba2Ce2Si4O13. Figure reused with permission from IUCr 

(http://journals.iucr.org/10.1107/S2052520617009544). 
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Hydrothermal Crystal Growth of KSrRESi3O9 Single Crystals (RE = Tb-Yb) 
 
 The success and chemical knowledge attained during our investigation of the 

ternary silicate system BaO + RE2O3 + SiO2 in the presence of a mixed hydroxide/ 

fluoride mineralizer (6 M KF/1 M KOH), led to a current study involving reactions 

involving SrO + RE2O3 + SiO2. The objective was to observe the structural changes that 

result from introduction of a slightly smaller alkaline earth metal oxide under conditions 

of high-temperature and high-pressure hydrothermal growth. The hydrothermal growth 

technique has been used to synthesize several alkali metal rare-earth silicates including 

Na3RESi6O15, Na3RESi3O9 and K3RESi3O8(OH)2.40–42 While the flux growth technique has 

been widely used to synthesize a number of alkali/ alkaline earth silicates, we find that in 

our hands the hydrothermal growth technique leads to a rich area of new materials to 

examine as new possible scintillators. 7,9,43 In this section, a report of the high-temperature 

synthesis of KSrRESi3O9, which is in a new structure type, is described. There have been 

two previously reported rare-earth silicates with the general formula type ABRESi3O9: 

RbBaScSi3O9
44 and NaBaEuSi3O9

38 where A is an alkali metal ion and B is a alkaline-

earth ion. Despite the presence of a common trisilicate [Si3O9] ring as the primary 

building block, all three have different structures. A trisilicate ring is reasonably well 

known in naturally occurring mineral systems containing transition metals, such as 

wadeite (K2ZrSi3O9)45 and benitoite (BaTiSi3O9)46 as well as several synthetic systems 

prepared hydrothermally such as Cs2ThSi3O9.27
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 Synthesis and Crystallization of KSrRESi3O9 (RE = Tb-Yb) Single Crystals 

 
Single crystals in this study were synthesized by a high-temperature, high-

pressure hydrothermal synthesis method. Reactions consisted of component oxides that 

were mixed in welded silver ampoules also containing an aqueous mineralizer, 6M 

KF/1M KOH. Reaction ampoules were welded shut, loaded into a Tuttle cold seal 

autoclave and heated to 650 ˚C for 7 d. The autoclave was subsequently cooled and the 

contents were filtered and washed with DI water. Specific synthetic details of the rare-

earth silicate families are described below.  

As a representative of the general class of KSrRESi3O9, KSrTbSi3O9 will be used 

as a surrogate to describe the synthetic details of this family. Colorless hexagonal plates 

of KSrTbSi3O9 were synthesized using a mixture of SrO (Alfa Aesar 99.9%), SiO2 (Alfa 

Aesar 99.9%) and Tb4O7 (HEFA Rare-earth 99.9%) in a 3:1.5:6 molar ratio. The reaction 

was heated for 7 d at 650 °C, generating 207 MPa (30 kpsi) pressure. Crystals of this 

family containing the other rare-earth ions (Dy-Yb) were grown in a similar fashion using 

the appropriate oxide components as starting materials in a similar 3:1.5:6 molar ratio. In 

most of these cases, the rare-earth trisilicate phase was present as the majority product 

(~70%) with the rest forming the minor product of K9RE2Si12O32F2 (RE = Dy, Ho, Er, 

Tm), which crystallizes as rectangular plates. A reaction summary is included in Table 

3.10. 
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Table 3.8: Crystallographic data of KSrRESi3O9 determined by single crystal X-ray diffraction. 
 
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 

 

Empirical formula KSrTbSi3O9 KSrDySi3O9 KSrHoSi3O9 KSrErSi3O9 KSrYbSi3O9 

Formula weight 513.91 517.49 519.92 522.25 528.03 

Crystal System Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic 

Space group  P21/n (#14)  P21/n (#14)  P21/n (#14)  P21/n (#14)  P21/n (#14) 

a (Å) 6.7778(3) 6.7983(5) 6.7570(3) 6.7481(3) 6.7253(3) 

b (Å 18.1478(8) 18.1073(14) 18.0524(8) 18.0158(9) 17.9539(8) 

c (Å) 6.8426(3) 6.8067(5) 6.8205(3) 6.8103(3) 6.7841(3) 

β (deg) 102.660(1) 102.645(2) 102.597(1) 102.567(1) 102.484(1) 

V (Å3) 821.20(5) 817.57(11) 811.94(6) 808.15(6) 799.78(6) 

Z 4 4 4 4 4 

Dcalc (Mg/m3) 4.157 4.204 4.253 4.293 4.385 

Parameters 136 137 136 136 137 

µ (mm-1) 16.012 16.572 17.229 17.905 19.292 

F(000) 944 948 952 956 964 

θ range (deg) 2.24-28.35 2.25-25.99 2.26-26.50 2.26-25.99 2.27-25.98 

Indices (min) [-8, -22, -8] [-8, -22, -8] [-8, -22, -8] [-8, -22, -8] [-8, -21, -8] 

            (max) [8, 22, 8] [8, 22, 8] [8, 22, 8] [8, 22, 8] [7, 22, 8] 

Reflections 
     

   Collected 1717 1603 1691 1581 1564 

   Independent 1662 1576 1524 1547 1497 
   Observed 
[I≥2σ(I)] 0.0136 0.0197 0.0211 0.018 0.0255 

   R(int) 0.0337 0.0406 0.0509 0.0385 0.0346 

Final R (obs data)a 
     

   R1 0.0190 0.0167 0.0278 0.0237 0.0179 

   wR2 0.0489 0.0482 0.0477 0.0691 0.0458 

Final R (all data) 
     

   R1 0.0200 0.0170 0.0341 0.0269 0.0194 

   wR2 0.0494 0.0484 0.0489 0.0919 0.0478 
Goodness of fit on 
F2 1.168 1.052 1.261 1.121 1.091 
a R1 = [∑║Fo│-│Fc║/∑│Fo│;  wR2={[∑w[(Fo)2-(Fc)2]2]}1/2 
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Table 3.9: Selected interatomic distances (Å) and angles (°) of the KSrRESi3O9 series. 

 
 

 
KSrErSi3O9 KSrTmSi3O9 KSrYbSi3O9 

K(1)O8 2.708-3.234(6) 2.714-3.223(4) 2.723-3.214(4) 

RE(1)O6 2.198-2.354(6) 2.182-2.343(4) 2.171-2.335(3) 

Sr(1)O9 2.518-3.207(6) 2.516-3.189(4) 2.512-3.180(4) 

Si(1)O4 1.602-1.665(6) 1.591-1.668(4) 1.608-1.673(4) 

Si(2)O4 1.586-1.670(6) 1.608-1.668(4) 1.590-1.663(4) 

Si(3)O4 1.583-1.683(6) 1.583-1.682(4) 1.582-1.681(4) 

RE(1)−O(1)−RE(1) 101.3(2) 101.28(15) 100.99(13) 

Si(2)−O(9)−Si(3) 125.2(4) 124.8(3) 125.2(2) 

Si(2)−O(7)−Si(1) 121.2(4) 121.4(3) 120.9(2) 

Si(1)−O(6)−Si(3) 124.9(4) 125.2(3) 125.0(2) 
 

  

  KSrTbSi3O9 KSrDySi3O9 KSrHoSi3O9 

K(1)O8 2.708-3.240(3) 2.704-3.231(4) 2.710-3.235(5) 

RE(1)O6 2.231-2.388(3) 2.207-2.373(4) 2.208-2.365(4) 

Sr(1)O9 2.535-3.237(3) 2.518-3.227(5) 2.527-3.208(5) 

Si(1)O4 1.606-1.665(3) 1.607-1.658(4) 1.607-1.665(5) 

Si(2)O4 1.588-1.664(3) 1.593-1.671(4) 1.585-1.662(5) 

Si(3)O4 1.587-1.685(3) 1.589-1.689(4) 1.583-1.683(5) 

RE(1)−O(1)−RE(1) 102.03(11) 101.54(15) 101.43(16) 

Si(2)−O(9)−Si(3) 124.83(18) 125.2(3) 125.2(3) 

Si(2)−O(7)−Si(1) 122.18(18 121.7(2) 121.5(3) 

Si(1)−O(6)−Si(3) 124.20(18) 124.6(3) 124.5(3) 
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Crystal Structure of KSrRESi3O9 (RE = Tb3+ - Yb3+) 

 
 Crystallographic data and selected interatomic distances and angles of the 

KSrRESi3O9 (RE = Tb3+-Yb3+) series of compounds are shown in Tables 3.8 and 3.9, 

respectively. The crystals reported here are a new member of the ABRESi3O9 class, in 

this case containing unique K+, Sr2+ and Ln3+ ions. Like the flux grown RbBaScSi3O9, the 

title structures are in the centrosymmetric P21/n space group, which is in contrast to 

NaBaEuSi3O9, which crystallizes in the acentric space group P212121. One interesting 

aspect of rare-earth silicates is that the rare-earth ion is often octahedrally (or near-

octahedrally) coordinated, in contrast to many other rare-earth complexes where the 

metal is in a higher and more irregularly coordinated environment. Within the new 

ABRESi3O9 (RE = Tb-Yb) class we are mainly going to focus on the Ho3+ structure as 

Ho3+ is a good prototype rare-earth ion due to its intermediate size and with an f10 

electronic configuration it may have rich spectroscopic and magnetic behavior.  

KSrRESi3O9 (RE = Tb-Yb) crystallizes in the monoclinic space group P21/n 

within a range of cell dimensions from a = 6.725-6.798(3) Å, b = 17.954-18.148(8) Å, c 

= 6.784-6.843(3) Å, β = 102.484-102.660(1)°. This new structural type appears to be 

unrelated to NaBaNdSi3O9 and NaBaEuSi3O9, which crystallize in the acentric space 

group P212121. RbBaScSi3O9 also crystallizes in P21/n but with unit cell parameters of a 

= 6.957(1) Å, b = 10.199(2) Å, c = 11.881(2) Å, β = 90.07(3)°, there is no clear 

correlation based on unit cell dimensions. Additionally, there appears to be no correlation 

to Na3RESi3O9 (RE = Y and Er), while this family crystallizes in the orthorhombic space 
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group P212121, the presence of a spiral radical silicate metachain (Si12O36)ꝏ is 

unprecedented within the known alkali alkaline-earth rare-earth silicates.38 

The structure of the KSrRESi3O9 series is an intricate three-dimensional 

framework. The principle building block is a [Si3O9] cyclosilicate ring. The Si-O bond 

distances of the tetrahedra encompassing the [Si3O9] group range from 1.651(5) to 

1.689(5) Å for the three bridging O atoms and 1.582(5) to 1.619(5) Å for the six terminal 

O atoms. Within the cyclosilicate unit, O−Si−O bond angles vary from 

100.9(3)−118.0(4)°, while NaBaEuSi3O9 and RbBaScSi3O9 contain internal angles 

ranging from 101.4(4)−117.7(4)° and 104.44(8)-131.11(1)°, respectively. Isolated [Si3O9] 

building blocks are coordinated to heavy metals K+, Sr2+ and RE3+ in a complicated 

framework, visible in Figure 3.13. Bridging O atoms within the [Si3O9] group connect to 

K+ and Sr2+ and are unbound to the [RE2O10] dimers, while terminal O atoms bind to all 

three metals. K+ displays an 8-coordinate environment with K−O bonds ranging from 

2.704(5)−3.240(5) Å. Sr2+ displays a 9-coordinate environment with Sr-O bonds ranging 

from 2.512(5)−3.237(5) Å. SrO9 polyhedra interconnect to each other through edge 

sharing of O5, O6, O8, and O9 to form finite sheets propagating along the ac-plane. KO8 

additionally interconnects through edge sharing of O4 and O7 in a zigzag chain extending 

along the a-axis, visible in Figure 3.13b. SrO9 and KO8 are linked through edge sharing 

of the O2, O3, and O8 atoms and through this connectivity K+ links to five [Si3O9] 

groups, while Sr2+ links to four, each through corner sharing of O atoms. RE3+ adopts a 6-

coordinate environment with O atoms in a nearly ideal octahedron. RE−O bonds range 

from 2.171(4)-2.388(4) Å for terminal O atoms and 2.306(4)-2.388(4) Å for bridging of 
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O1. In this structure, RE3+ forms [RE2O10] dimers that edge share through O1. Each 

[RE2O10] dimer coordinates to eight [Si3O9] groups, six through terminal O atoms and two 

through bridging O1 atoms. Dimer formation is in marked contrast to the other 

ABRESi3O9 structures, which contain isolated REO6 octahedra. Most of the other 

members of the general class of A+-B2+ rare-earth silicates also contain only isolated 

REO6 octahedra. 
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Figure 3.13: Projection of KSrHoSi3O9 structure viewed along the [001] direction. a) 

highlighting the Si3O9 trimeric units and Ho2O10 dimers. (b) Layered KO8 and SrO9 connectivity. 
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Interestingly, the three reported ABRESi3O9 structures each contain different 

alkali metal ions. Previous reports with this nominal formula contain Ba2+ as the alkaline 

earth ion. In this case the Ba2+ is irregularly six coordinate for NaBaEuSi3O9 while it is 

seven coordinate in RbBaScSi3O9 and eight coordinate in KSrHoSi3O9.38 Of the three 

Si3O9 structures, two have been prepared by high-temperature and high-pressure 

hydrothermal synthesis. RbBaScSi3O9 was prepared by Wierzbicka by a high-temperature 

molybdenum oxide (MoO3) flux in Pt crucibles at temperatures exceeding 1000 °C with 

resulting crystals on the order of 100 µm.44 Herein, we report single crystal growth of 

KSrHoSi3O9 on the order of 0.25-0.45 mm. Clearly, the hydrothermal technique provides 

unsurpassed availability to solubilize even the most recumbent metal oxides for the use in 

larger single crystal growth. From repeated PXRD experiments with the KSrRESi3O9 

system, there is a clear preferred crystallographic growth direction as seen by the (060) 

reflection in the experimental PXRD pattern shown in Figure 3.14. This fact is not 

surprising when considering the plate like habit of the hydrothermally as-grown crystals. 

The absence of hydroxide is supported by the IR spectrum of KSrHoSi3O9, as shown in 

Figure 3.15.  

It is clear from examining RbBaScSi3O9 and KSrHoSi3O9, that the latter is a new 

structural type. First, RbBaScSi3O9 displays pseudo-hexagonal symmetry when viewed 

along the [010] direction. In addition, the authors mention that the crystal habit is pseudo-

hexagonal in shape, while neither is true for KSrHoSi3O9. RbBaScSi3O9 contains isolated 

REO6 environments, while KSrHoSi3O9 contains dimer units of [Ho2O10]. Ba2+ and Rb+ 

are alternating along the [010] in the void of the Si3O9 groups for RbBaScSi3O9. As 
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mentioned earlier, KO8 and SrO9 exhibit layering of zigzag chains and sheets, 

respectively, viewed along the [001] direction for KSrHoSi3O9. No direct structural 

correlation between KSrHoSi3O9 and RbBaScSi3O9 has been found, though both contain 

isolated Si3O9 groups and appear isoformulaic. Continuation into larger rare-earth ions 

(RE = La-Gd), resulted in formation of the well-established apatite structure, 

KRE9(SiO4)6O2.16 K9RE2Si12O32F2 in P-1 is a new structural type currently being pursued 

by the group at the time of this write-up.  
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Figure 3.14: a) Simulated powder pattern of KSrHoSi3O9 from crystal data. b) 

Experimental powder pattern of ground powder from reaction producing KSrHoSi3O9. 
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Figure 3.15: IR spectrum of KSrHoSi3O9. 
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Table 3.10: Summary of product formation from high-temperature hydrothermal growth: 

SrO + RE2O3 + SiO2+ 6 M KF/1 M KOH at 650 °C for 7 days. 

 

RE+3 Products 

Tb3+ KSrTbSi3O9 (P21/n) 

Dy3+ KSrDySi3O9 (P21/n) 

K9Dy2Si12O32F2 (P-1) 

Ho3+ KSrHoSi3O9 (P21/n) 

K9Ho2Si12O32F2 (P-1) 

Er3+ KSrErSi3O9 (P21/n) 

K9Er2Si12O32F2 (P-1) 

Tm3+ KSrTmSi3O9 (P21/n) 

K9Tm2Si12O32F2 (P-1) 

Yb3+ KSrYbSi3O9 (P21/n)  
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Hydrothermal Crystal Growth of Wadeite Mineral Type A2M+4B3O9: K2TiSi3O9 
K2SnSi3O9, Rb2USi3O9, Cs2HfGe3O9, and Cs2ZrGe3O9 
 
 In the spirit of fundamental crystal growth and basic science, the hydrothermal 

growth of several wadeite structures is reported and described. A group of tetravalent 

refractory metal oxides has been investigated by high-temperature and high-pressure 

reactions to elucidate their relative solubility and chemical reactivity in concentrated 

basic hydroxide and fluoride mineralizers. Metal oxides TiO2, SnO2, UO2, HfO2, and 

ZrO2 represent a highly refractory class of oxides that are prevalent as prime candidates 

for hydrothermal crystal growth. Tetravalent oxides of UO2, HfO2 and ZrO2 have melting 

points exceeding 2500 °C, while SnO2 is known to sublime before reaching a melting 

point near 1800 °C.47 Herein, a careful examination of the limits to the wedeite structure 

type A2M+4B3O9 are discussed where A represents an alkali metal (K, Rb, Cs), M4+ 

represents a tetravalent metal oxide (Ti, Sn, Zr, U, Hf), and B represents a tetravalent 

tetrahedral metal (Si or Ge). For completion, Cs2HfGe3O9, and Cs2ZrGe3O9 were 

synthesized. While these structures are not silicate-based frameworks, they display 

similar structural and solution chemistry. A detailed synopsis of hydrothermal growth 

with rare-earth germanates will be elucidated in Chapter 3.  

 The wadeite-type structure is based on the K2ZrSi3O9 structural type.48 The 

presence of several tetravalent cations in the literature lead to the conclusion the family 

contains a high degree of flexibility to incorporate a variety of alkali and tetravalent 

metals: K2SiSi3O9,49 K2TiSi3O9,48 K2ZrSi3O9,48 K2SnSi3O9,50 Rb2ThSi3O9, and 

Cs2ThSi3O9.27 Of the known wadeite germanate structural types A2M4+Ge3O9 (A = Tl, K, 

Rb, Cs) (M4+ = Sn or Ti), all have been prepared by sintering of metal oxide powders to 
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less than satisfactory convergenace.50 To date, K2SiSi3O9 (V = 360.11 Å3) and Cs2ThSi3O9 

(V = 516.34 Å3) represent the current end limits of this family of compounds. 

Additionally, the first U4+ wadeite is reported, which could lead to interesting optical 

characterization of the S = 1 configuration.  

Experimental Method for Growth of Hydrothermal Wadeite Single Crystals 
 
 Single crystals of the wadeite structure were synthesized via the high-temperature 

and high-pressure hydrothermal method. Reactants were heated in fine silver ampoules 

(99.9% fine silver) for 7 days at 650 °C. Upon completion, the ampoules were opened, 

and single crystals were filtered and washed with DI water. Each reaction represents a 1 : 

3 stoichiometric ratio of M4+: Si4+ or M4+: Ge4+. The exact amount of metal oxides is 

described below. For K2TiSi3O9, TiO2 (46 mg, 0.577 mmol) and SiO2 (104 mg, 1.73 

mmol) powders were reacted with 0.4 mL of 10 M KOH. For K2SnSi3O9, SnO2 (68 mg, 

0.453 mmol) and SiO2 (82 mg, 1.36 mmol) powders were reacted with 10 M KOH. For 

Rb2USi3O9, UO2 (90 mg, 0.333 mmol) and SiO2 (60 mg, 0.999 mmol) were reacted. For 

Cs2HfGe3O9, HfO2 (60 mg, 0.286 mmol) and GeO2 (90 mg, 0.858 mmol) were treated 

with 0.4 mL of 6 M CsF. For Cs2ZrGe3O9, ZrO2 (42 mg, 0.343 mmol) and GeO2 (108 mg, 

1.03 mmol) were treated with 0.4 mL of 6 M CsF. For preparation of UO2 powder, 

uranium acetate (UO2(C2H3O2)2 + 2H2O) was decomposed at 500 °C for 6 hours. The 

resultant black chunky powder was ground and pressed into a pellet using a hydraulic 

pellet press. The pellet was subsequently heated again at 500 °C for 6 hours. This powder 

was treated hydrothermally with SiO2 in the presence of 0.4 mL of 6 M RbF/ 1 M RbOH 

to form Rb2USi3O9 black/dark green single crystals (0.25 mm). These crystals were 
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subsequently treated hydrothermally as seed crystals to grow larger Rb2USi3O9 crystals 

under identical reactions for possible magnetic measurements. The resultant crystals were 

characterized as Rb2USi6O15 which has been synthesized and reported by Morrison and 

co-workers.20 Additionally, the formation of yellow Rb2U2O7 created an oxidizing 

environment in which the silver ampoules were oxidized and destroyed. Due to the 

oxidizing conditions of this system, follow-up characterization was not pursued. 

However, a single crystal structure was collected and reported herein.  
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Table 3.11: Crystallographic parameters of A2M4+B3O9 determined by single crystal X-

ray diffraction. 

empirical formula K2TiSi3O9 K2SnSi3O9 Rb2USi3O9 Cs2HfGe3O9 Cs2ZrGe3O9 

formula weight (g/mol) 354.37 425.16 637.24 806.08 718.81 

temperature (K) 293 293 293 293 293 

crystal system Hexagonal Hexagonal Hexagonal Hexagonal Hexagonal 

space group P6/3m P6/3m P6/3m P6/3m P6/3m 

Unit cell parameters      

a, Å 6.7819 6.8753(10) 7.2516(10) 7.3475(8) 7.3630(3) 

c, Å 9.938(2) 10.038(2) 10.554(2) 10.6319(12) 10.6838(5) 

volume (Ǻ3) 395.86(14) 410.92(14) 480.65(13) 497.07(12) 501.61(5) 

Z, calcd density (µg/m3) 2, 2.973 2, 3.436 2, 4.403 2, 5.386 2, 4.759 

absorption coefficient 

(mm-1) 

2.618 4.591 27.347 26.633 17.090 

F(000) 348 404 560 700 636 

Tmax, Tmin 1.000-0.6637 1.000-0.6855 1.000-0.5585 1.000-0.8387 1.000-0.4357 

Θ range for data 3.46-26.70 3.46-26.70 3.46-26.70 3.20-33.16 3.12-26.50 

reflections collected 3482 3719 4660 21465 9304 

data/restraints/parameters 282/0/28 290/0/28 361/0/28 346/0/29 369/0/28 

goodness-of-fit on F2 1.156 1.181 1.156 1.198 1.043 

R1, wR2 (I≥ 2σ(I)) 0.0243, 0.0616 0.0177, 

0.0433 

0.0265, 

0.0623 

0.0096, 

0.0257 

0.0197, 

0.0477 

R1, wR2 (all data) 0.0246, 0.0618 0.0180, 

0.0436 

0.0277, 

0.0630 

0.0096, 

0.0257 

0.0199, 

0.0479 
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Table 3.12: Select bond distances (Å) and angles (°) in the wadeite family: A2M4+B3O9 

 
K2TiSi3O9 K2SnSi3O9 Rb2USi3O9 Cs2HfGe3O9 Cs2ZrGe3O9 

M-O(2) x6 1.9467(17) 2.0332(19) 2.252(4) 2.071(2) 2.082(3) 

B(1)-O(1) x2 1.5953(17) 1.597(2) 1.601(4) 1.712(2) 1.716(3) 

B(1)-O(2) 1.645(2) 1.645(3) 1.649(6) 1.758(3) 1.765(4) 

B(1)-O(2) 1.657(2) 1.656(3) 1.652(6) 1.783(3) 1.785(4) 

B(1)-O(1)-B(1) 133.70(16) 133.65(18) 133.7(4) 132.3(2) 131.7(3) 
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Figure 3.16: IR spectrum of hydrothermally grown wadeite structures. 
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Figure 3.17: (Bottom) Simulated powder pattern of K2SnSi3O9. (Top) Hydrothermally 

grown powder of K2SnSi3O9.  
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Figure 3.18: Hydrothermally grown powder of Cs2HfGe3O9 showing a mixture of 

products consisting of starting material powder (HfO2, GeO2) and wadeite Cs2HfGe3O9.  
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Figure 3.19: Hydrothermally grown powder of Cs2ZrGe3O9 showing a mixture of 

products consisting of starting material powder (ZrO2, GeO2) and wadeite Cs2ZrGe3O9. 
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Figure 3.20: Hydrothermally grown powder of K2TiSi3O9 showing a mixture of products 

consisting of starting material powder (TiO2, SiO2) and wadeite K2TiSi3O9. 
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Crystal Structure of Wadeite Mineral Type A2M4+B3O9: K2TiSi3O9 K2SnSi3O9, 
Rb2USi3O9, Cs2HfGe3O9, and Cs2ZrGe3O9 
 
 The compounds K2TiSi3O9 K2SnSi3O9, Rb2USi3O9, Cs2HfGe3O9, and Cs2ZrGe3O9 

crystallize in hexagonal space group P63/m (No. 176) and are consistent with known 

wadeite mineral types. The wadeite structure type is based on the K2ZrSi3O9 crystal 

structure.48 Of the reported crystal structures, Cs2ThSi3O9 represents the largest unit cell 

volume (516.34(15) Å3) and K2SiSi3O9 as the smallest (360.11 Å3).27 Of the reported 

structures conducted in this study, all remain within the current unit cell limits of the 

family. Even with incorporation of a larger tetrahedral tetravalent building block (GeO2), 

Cs2ZrGe3O9 is 2.9% smaller via unit cell parameters in comparison with Cs2ThSi3O9. Unit 

cell parameters and selected bond distances and angles are listed in Tables 3.11 and 

3.12.  

 To discuss the structural features of this mineral class, K2SnSi3O9 will be used as 

a surrogate example. The wadeite structure type is based on a nearly-ideal octahedra 

[MO6] with building blocks of cyclosilicate [Si3O9] or cyclogermanate [Ge3O9] and 

charge balancing alkali metals (K+, Rb+ or Cs+). The [Si3O9] building block consists of 

Si(1)-O(1)-Si(1) internal angles of 133.65(18)° and a range of 133.70(16) to 131.7(3)° for 

the reported structures with decreasing torsion angles with increasing unit cell 

parameters. The cyclosilicate is linked through O(2) to SnO6 as shown in Figure 3.21. 

Each SnO6 polyhedra coordinates six [Si3O9] units in the ab-plane (3 above and 3 below 

the plane), Figure 3.22). For SnO6 a near-ideal octahedral environment is realized with 

Sn(1)-O(2) bond distances of 2.0332(19) Å. Potassium ions coordinate oxygen atoms 

above and below the [Si3O9] unit to complete the solid-state framework and provide the 
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necessary charge balance, Figure 3.23. PXRD of the as-grown wadeite structures 

revealed that a mixture of starting material (MO2, BO2) (M = Zr, Hf, Ti) (B = Si or Ge) 

with wadeite mineral type was prevalent for all compounds, excluding K2SnSi3O9, 

Figures 3.17-3.20. For Rb2USi3O9, as described in the experimental methods, subsequent 

reactions involving Rb2USi3O9 as seed crystals resulted in formation of Rb2USi3O9 and 

Rb2U2F7 single crystals. The ability for uranium to form multiple stable oxidation states 

under hydrothermal conditions led to conditions where the silver ampoules could be 

oxidized during these reactions. For this reason, further pursuit of this material for 

supporting characterization was not pursued at this time. It is believed that changing to 

more stable platinum ampoules could lead to further reactions of this interesting U4+ 

compound.  
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Figure 3.21: SnO6 octahedra coordinating [Si3O9] units in the ab-plane via corner-sharing 

of O(2) viewed along the [001] direction. 
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Figure 3.22: SnO6 polyhedra coordination of six [Si3O9] units, three above and three 

below the ab-plane.  
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Figure 3.23: Unit cell projection of K2SnSi3O9 along [001] direction.  
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Hydrothermal Crystal Growth of K2HfSi2O7 
 
 In pursuit of refractory silicates grown under hydrothermal conditions, a new 

hafnium silicate, K2HfSi2O7, has been synthesized and characterized. The potassium 

hafnium silicate was synthesized via a stoichiometric reaction of HfO2 (96 mg, 0.454 

mmol) and SiO2 (54 mg, 0.901 mmol) in the presence of 0.4 mL of 10 M KOH at 650 °C 

for 7 days. The resulting colorless polyhedral crystals were 0.25 mm on any given edge. 

The resulting crystals gave the false appearance of rhombohedral symmetry via 

examination with SCXRD. The unit cell symmetry was reduced to monoclinic symmetry 

where a satisfactory structural solution could be found in space group P21/m. Unit cell 

parameters for K2HfSi2O7 are presented below in Table 3.13.  

 K2HfSi2O7 is based on a pyrosilicate [Si2O7] building block and is most 

structurally similar to NaBaScSi2O7.7 The unit cell parameters of NaBaScSi2O7 are a = 

6.957(1) Å, b = 5.626(1) Å, c = 8.819(2) Å with β = 109.33(3)°. The asymmetric unit of 

K2HfSi2O7 consists of K(1), K(2), Hf(1), Si(1), Si(2), O(1), O(2), O(3), O(4), O(5), and 

O(5a). O(5) and O(5a) are split atoms and each are set to 0.5 occupancy on two general 4f 

Wyckoff positions. The pyrosilicate building block [Si2O7] contains an internal Si(1)-

O(4)-Si(2) angle of 144.6(5)°, similar to that of NaBaScSi2O7. Hf(1) occupies a six-

coordinate environment with Hf(1)-O bond distances ranging from 2.050(7)-2.085(6) Å. 

The Hf(1)O6 polyhedra are isolated from one another and coordinate six [Si2O7] units via 

corner-sharing of O(1) x2, O(2), O(3), O(5) and O(5a), Figure 3.24. Si(1)O4 bond 

distances range from 1.606(7) to 1.695(10) Å and Si(2)O4 bond distances range from 

1.589(6) to 1.612(7) Å. Two [Si2O7] units and two Hf(1)O6 in the (-110) plane to form 
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distorted channels. Potassium ions reside off-center in these channels to complete the 

solid-state framework and provide the necessary charge balance, Figure 3.25. PXRD 

confirms that this phase can be grown in a phase pure manner, Figure 3.26. IR of the 

hydrothermally-grown powder shows no presence of hydroxide in the material, Figure 

3.27. 

  



	 96 

 

 

 

 

Figure 3.24: Hf(1)O6 polyhedra coordinating six [Si2O7] units in K2HfSi2O7. 
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Figure 3.25: Unit cell representation of K2HfSi2O7 viewed along the [010] direction. 
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Table 3.13: Crystallographic parameters for K2HfSi2O7. 

empirical formula K2HfSi2O7 
formula weight (g/mol) 849.74 
temperature (K) 293 
crystal system monoclinic 
space group P21/m 
Unit cell parameters  
a, Å 7.0172(4) 
b, Å 5.5193(3) 
c, Å 8.9373(5) 
β, ° 107.4460(10) 
volume (Ǻ3) 330.22(3) 
Z, calcd density (μg/m3) 1, 4.273 
absorption coefficient (mm-
1) 17.411 

F(000) 388 
Tmax, Tmin 1.000-0.6437 
Θ range for data 3.04-26.41 
reflections collected 13901 
data/restraints/parameters 743/0/71 
goodness-of-fit on F2 1.216 
R1, wR2 (I≥ 2σ(I)) 0.0214, 0.0517 
R1, wR2 (all data) 0.0214, 0.0517 
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Figure 3.26: (Bottom) Simulated powder pattern of K2HfSi2O7 in monoclinic P21/m. 

(Top) Hydrothermally-grown powder of K2HfSi2O7. 
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Conclusions for Hydrothermally Grown Silicates and Select Germanates 
 
 A number of new and existing silicates have been synthesized via high-

temperature and high-pressure hydrothermal solutions. The Ba-RE-Si exploration led to 

three primary phases: Ba2RE2Si4O12 (RE = La-Er), Ba2RE2Si4O13 (monoclinic)(RE = Ho-

Sm), and Ba2RE2Si4O13 (triclinic) (RE = Nd-La) in the presence of a mixed hydroxide 

fluoride mineralizer, 6 M KF/ 1 M KOH. In a supplementary investigation of the Sr-RE-

Si phase space, a new formation of a cyclosilicate, KSrRESi3O9 (RE = Yb-Tb) in the 

presence of the same mixed hydroxide/fluoride mineralizer 6 M KF/ 1 M KOH. In 

addition to the refractory rare-earth oxides, RE2O3 (RE = La-Lu), a number of refractory 

tetravalent metal oxides were examined under hydrothermal conditions. The oxides of 

SnO2, HfO2, UO2, ZrO2 and TiO2 all show solubility under hydrothermal conditions 

which led to the investigation of wadeite mineral type A2M+4B3O9: K2TiSi3O9 K2SnSi3O9, 

Rb2USi3O9, Cs2HfGe3O9, and Cs2ZrGe3O9. These compounds were synthesized under 

basic mineralizers of 10 M KOH, 6 M RbF/ 1 M KOH or 6 M CsF solutions. In the 

investigation of these compounds, the crystal structure of a hafnium pyrosilicate, 

K2HfSi2O7, was solved after initial attempts to resolve the crystal structure in 

rhombohedral symmetry were unsuccessful. A proper assignment of monoclinic 

symmetry in space group P21/m was in good agreement with the as-grown powder. From 

these results, and the phase spaces observed during the study, a number of conclusions 

can be drawn.  

 As initially predicted, the presence of silica, SiO2, introduces an ideal building 

block to hydrothermal solutions. Due to the basic mineralizers utilized in this study, 
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(hydroxides, fluorides, and mixtures therein), SiO2 can act as a Lewis acid and create 

diverse chemistry in the presence of refractory oxides. In this Chapter, several different 

configurations of silicate frameworks have been realized: pyrosilicate Si2O7, cyclo-

trisilicate Si3O9, cyclo-tetrasilicate Si4O12, and linear Si4O13 chains. The ability to adopt a 

number of different arrangements increases the likelihood that new and interesting 

materials can be grown. While SiO2 is considered a rigid tetravalent tetrahedral molecule, 

its relatively small crystallographic radius, coupled with high solubility in hydrothermal 

solutions, had led to an array of new and existing materials.  

 Second, the presence of a variety of basic hydrothermal mineralizers leads to 

increased solubility of refractory oxides. In this chapter, hydrothermal temperatures 

ranging from 650-700 °C were investigated. Investigation of refractory rare-earth and 

tetravalent oxides well below their reported melting points indicates an important role for 

hydrothermal mineralizers in the increased solubility of these compounds. For general 

purposes, it is noteworthy to mention that a mixed hydroxide/fluoride combination results 

in the best overall solubility. It is believed that the presence of fluoride aids in driving the 

solubility of refractory oxides into solution, while the presence of hydroxide aids in 

initializing nucleation of crystals.51 

 Lastly, the success of refractory oxides and silica under hydrothermal solutions 

will lead to an investigation involving germanium oxide, GeO2, in the subsequent 

Chapter.   
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CHAPTER FOUR 
 

HYDROTHERMAL GROWTH OF RARE-EARTH 
GERMANATES 

 
 

Introduction 
 

This Chapter centers on a unique investigation of rare-earth germanates with 

interesting oxidative states and structural properties. “Some content of this Chapter is 

used as a reprint (adapted) from permission from Fulle, K.; Sanjeewa, L. D.; McMillen, 

C. D., Wen, Y., Rajamanthrilage, A. C., Anker, J. N., Chumanov, G., Kolis, J. W. One-

Pot Hydrothermal Synthesis of TbIII
13Ge6O31(OH) and K2TbIVGe2O7: Preparation of a 

Stable Terbium( 4+) Complex. Inorg. Chem. 2017, 56, 6044-6047.1 Copyright 2017 

American Chemical Society.” A duplicate of the copyright permission is located in 

Appendix.  

The rare-earth germanates are a structurally rich class of solids that have several 

potential applications.2,3
 They can find use as hosts for luminescence or lasing, or act as 

models for long-term nuclear waste storage. They tend to be dense and have high 

refractive indices. Germanium oxide, GeO2, can be viewed as a slightly larger tetravalent 

ion (0.53 Å) compared to Si4+, which have the capability to act as a Lewis acid in the 

presence of concentrated basic hydroxide and fluoride mineralizers under hydrothermal 

conditions. Unlike silica, germanium oxide has a less predictable geometry that can adapt 

4-, 5-, and 6-coordinate geometries. The germanates most obviously stand in direct 
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comparison to the metal silicates. They have not been studied nearly as intensely as the 

metal silicates,4,5 but they do display a very rich chemistry that often is unique to 

themselves. One important structural aspect of metal germanate chemistry is that 

germanates sometimes adopt higher coordination numbers.6,7 This contrasts with silicates, 

which only adopt octahedral coordination at extremely high-pressures.8 As such, the 

octahedral metal germanates may act as surrogate models for deep earth silicate 

structures.9 

Although metal germanates have been isolated from melts and fluxes,10-13 like the 

silicates, the melts tend to be somewhat viscous, so hydrothermal growth has been 

explored as a potentially attractive alternative route to single crystals.14 The advantages of 

the hydrothermal method in metal germanate crystal growth have been discussed 

thoroughly,3 and the method is sensitive to reaction conditions and has a rich structural 

chemistry.15 Previously our group developed a convenient high-temperature hydrothermal 

route to a variety of both transition metal and rare-earth germanates.16-19 Most earlier 

work focused on reactions performed at somewhat lower temperatures (ca. 500 ˚C) and 

more modest mineralizer concentrations. In our more recent work, observations centered 

on the fact that at higher temperatures (650-700 ˚C) the chemistry changes considerably, 

while increasing the OH- mineralizer concentration to high values such as 10-20 M 

induces growth of high quality single crystals of large size. Now a systematic 

examination of the reaction of the rare-earth ions with germanates in high concentrations 

of aqueous base at high-temperatures and pressure (650-700 ˚C/200 MPa).  
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 Despite the emergence of germanate crystals Bi4Ge3O12 (BGO) and BiY1-

xRExGeO5 (RE = Eu3+) as potential scintillators and emitters some years ago, 

investigation of rare-earth (RE = La-Lu, Y) germanates has not received as much 

attention as rare-earth silicates.20,21 It should be noted however, that a number of 

interesting new alkali rare-earth germanates, including but not limited to 

NaEu3(GeO4)2(OH)2, NaREGeO4 (RE = Sm-Lu), KLa9(GeO4)6O2, Na5RE4F(GeO4)4 (RE = 

Pr, Nd), Na5Nd4Ge4O16(OH), Na2NdGeO4(OH), K2TbGe2O7, KEuGe2O6, and Na3ErSi3O9 

have been prepared recently by solid-state and hydrothermal techniques.22–31 In general, 

the differences in structural chemistry between the silicates and germanates can be 

significant, certainly different enough to justify a detailed comparative study of their 

respective chemistries.32 

 Of the reported alkaline rare-earth germanates, Ca2Gd2Ge2O9, Ca3RE2Ge3O12 (RE 

= Pr3+-Gd3+, Dy3+), CaEu2Ge3O10, CaRE2Ge4O12 (RE = Eu3+-Lu3+), MgLa2GeO6, 

Be2RE2GeO7 (RE = La3+-Er3+) and well-studied rare-earth oxy-apatites, no synthetic 

details of barium rare-earth germanate oxides or oxy-hydroxides have been reported to 

date, to our knowledge.25,33–39 The optical properties of the rare-earth germanates are of 

particular interest. For example, the 1.54 µm luminescence of Er3+ (4f11) from spin-orbit 

levels 4I13/2→4I15/2 is well sought for eye-safe emission.40 Additionally, upconversion of 

Ho3+ (4f10) in transparent glass ceramics have been linked to transitions from spin-orbit 

levels 5F5→5I8 which are viable alternatives for production of red emission (650 nm) in 

solid-state displays.41 These optically active ions have been co-doped into bismuth 

germanate glasses to allow energy transfer from Er3+ 4I13/2 state to Ho3+ 5I7 state for 
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subsequent emission of 2 µm lasing in the eye-safe region.42 Typically, these samples are 

prepared by conventional solid-state techniques in the form of powders. For detailed 

studies and optimized performance, it is often desirable to prepare the materials has high 

quality single crystals. As such, it is be desirable to undertake a systematic effort to 

develop a reliable route to single crystals of rare-earth germanates. For the most part 

metal germanate single crystals have been synthesized using either a flux growth or a 

hydrothermal method similar to the growth of rare-earth silicates. The hydrothermal 

technique is a particularly attractive method for the examination of germanates because 

amphoteric oxides tend to grow well in the presence of basic mineralizers. In a previous 

study, a systematic study of rare-earth and refractory oxide silicates has paid dividends 

and that mentality is being extended into the germanates.  

In this first section, a description of the use of a high-temperature hydrothermal 

growth method to prepare single crystals of the first in a series of several new rare-earth 

germanates is reported. The investigation centers on holmium and erbium as the initial 

rare-earth ions because of their interesting optical activity. The introduction of barium 

ions in the reaction was also included to ascertain the role of counterions in new phases. 

The presence of an innocent divalent ion performs several functions. It provides a 

divalent prototype ion that may be systematically replaced with other divalent ions of 

different size to expand the structural possibilities of this class of new phases. The ions 

can also be subsequently replaced with a more active metal such as a divalent first row 

transition metal with different magnetic and optical properties. Herein, a report of the 

hydrothermal crystal growth, crystal structure, and supporting characterization of two 
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new rare-earth germanate phases, BaREGeO4(OH) and BaRE10(GeO4)4O8 (RE=Ho3+-

Er3+), both of which display interesting new layered structure types, is given. 
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Experimental Methods for Barium Rare-Earth Germanates 
	

The title compounds BaREGeO4(OH) and BaRE10(GeO4)4O8 (RE=Ho3+-Er3+) were 

prepared through direct reaction of BaO, RE2O3 and GeO2 powders via high-temperature 

and high-pressure hydrothermal synthesis. As a typical example, BaHoGeO4(OH) and 

BaHo10(GeO4)4O8 were prepared by combining BaO (36 mg, 233 mmol; Alfa Aesar, 

99.0%), Ho2O3 (74 mg, 195 mmol; HEFA Rare Earth, 99.99%) and GeO2 (41 mg, 389 

mmol; Alfa Aesar, 99.9%) in a 3:2.5:5 ratio, respectively. The starting materials were 

reacted isothermally at 650 °C for 7 days in welded silver (99.9%) (1/4” x 2.5”) ampoules 

loaded into a Tuttle cold seal autoclave constructed from Inconel 718 material. The 

ampoules were loaded with the appropriate component oxide feedstock and weld sealed 

from both ends after addition of 0.4 mL of 6 M CsOH as a mineralizer. Upon completion 

of reaction, the silver ampoules were opened and washed with DI water. In each reaction, 

BaREGeO4(OH), BaRE10(GeO4)4O8 crystals constituted an approximate 5/95 ratio of 

products, respectively. Single crystals of BaREGeO4(OH) were produced as polyhedral 

crystals approximately 0.25-0.45 mm in size and were distinguished by SCXRD unit cell 

determinations. The compound BaRE10(GeO4)4O8 constituted the majority crystalline 

product and was identified as thick hexagonal plate crystals, with some striations on the 

surface, ranging from 0.15-0.35 mm in size, Figure 4.1. 
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Table 4.1: Crystallographic data of rare-earth germanates and germanate hydroxides 

determined by single crystal X-ray diffraction. 

empirical formula BaHo10(GeO4)4O8 BaEr10(GeO4)4O8 BaHoGeO4(OH) BaErGeO4(OH) 

formula weight 
(g/mol) 

2461.00 2484.30 455.87 458.20 

crystal system monoclinic monoclinic orthorhombic orthorhombic 

space group, Z C2/m (no.12), 2 C2/m (no.12), 2 Pbca (no.61), 8 Pbca (no.61), 8 

temperature, K 298(2) 298(2) 298(2) 298(2) 

crystal size (mm) 0.08 x 0.1 x 0.1 0.07 x 0.07 x 0.07 0.02 x 0.05 x 0.07 0.08 x 0.08 x 0.09 

a, Å 12.4972(5) 12.4533(8) 5.7175(2) 5.7100(2) 

b, Å 7.2444(3) 7.2008(5) 10.1556(5) 10.1511(5) 

c, Å 12.0170(5) 12.0034(8) 16.6189(9) 16.5766(8) 

β, ° 100.249(2) 100.183(2) --- --- 

volume, Å3 1070.60(8) 1059.43(12) 964.97(8) 960.83(7) 

calculated density 
(µg/m3) 

7.634 7.788 6.276 6.335 

absorption 
coefficient (mm-1) 

43.891 46.619 30.420 31.550 

F(000) 2092 2112 1568 1576 

Tmax, Tmin 0.2642, 1.0000 0.2191, 1.000 0.6135, 1.000 0.5321, 1.0000 

Θ range for data 3.26-30.58 3.28-28.29 4.01-26.50 4.02-26.49 

reflections collected 2443 1790 7359 8926 

data/restraints/para
meters 

2443/6/107 1790/12/107 1002/1/77 993/1/77 

final R [I> 2σ(I)] 
R1, wR2 

0.0362, 0.0785 0.0440, 0.1184 0.0213, 0.0382 0.0161, 0.0316 

final R (all data) R1, 
wR2 

0.0425, 0.0810 0.0483, 0.1216 0.0296, 0.0404 0.0195, 0.0325 

goodness-of-fit on 
F2 

1.131 1.087 1.102 1.196 

largest diff. 
peak/hole, e/ Å3 

3.831, -2.448 3.605, -2.855 0.893, -1.076 0.628, -1.073 
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Table 4.2: Bond distances for BaHoGeO4(OH) and BaErGeO4(OH). 
 

BaHoGeO4(OH) BaErGeO4(OH) 
Ho(1)O7 Er(1)O7 

Ho(1)−O(1) 2.290(4) Er(1)−O(1) 2.285(3) 
Ho(1)−O(2)  2.388(4) Er(1)−O(2)  2.376(3) 
Ho(1)−O(3) 2.286(4) Er(1)−O(3) 2.274(3) 
Ho(1)−O(4) 2.262(4) Er(1)−O(4) 2.254(3) 
Ho(1)−O(4) 2.433(4) Er(1)−O(4) 2.422(3) 
Ho(1)−O(5) 2.291(4) Er(1)−O(5) 2.287(3) 
Ho(1)−O(5) 2.356(4) Er(1)−O(5) 2.338(3) 

Ba(1)O10 Ba(1)O10 
Ba(1)−O(1)  2.822(4) Ba(1)−O(1)  2.818(3) 
Ba(1)−O(1)  3.039(4) Ba(1)−O(1)  3.036(3) 
Ba(1)−O(1) 3.077(4) Ba(1)−O(1) 3.082(3) 
Ba(1)−O(2)  2.579(4) Ba(1)−O(2) 2.580(3) 
Ba(1)−O(2) 2.969(4) Ba(1)−O(2) 2.962(3) 
Ba(1)−O(2) 3.041(4) Ba(1)−O(2) 3.042(3) 
Ba(1)−O(3) 2.857(4) Ba(1)−O(3) 2.857(3) 
Ba(1)−O(3) 2.992(4) Ba(1)−O(3) 2.988(3) 
Ba(1)−O(3) 3.241(4) Ba(1)−O(3) 3.230(3) 
Ba(1)−O(5) 2.791(4) Ba(1)−O(5) 2.793(3) 

Ge(1)O4 Ge(1)O4 
Ge(1)−O(1) 1.751(4) Ge(1)−O(1) 1.748(3) 
Ge(1)−O(2) 1.754(4) Ge(1)−O(2) 1.758(3) 
Ge(1)−O(3) 1.742(4) Ge(1)−O(3) 1.749(3) 
Ge(1)−O(4) 1.771(4) Ge(1)−O(4) 1.771(3) 
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Table 4.3: Bond distances for BaHo10(GeO4)4O8 and BaEr10(GeO4)4O8, 
 

BaHo10(GeO4)4O8 BaEr10(GeO4)4O8 
Ho(1)O7 Er(1)O7 

Ho(1)−O(3) x 2 2.366(7) Er(1)−O(3) x 2 2.343(17) 
Ho(1)−O(4)  2.224(10) Er (1)−O(4)  2.184(15) 
Ho(1)−O(5) 2.196(10) Er (1)−O(5) 2.16(2) 
Ho(1)−O(6) 2.377(10) Er (1)−O(6) 2.35(2) 
Ho(1)−O(7) x 2 2.425(7) Er (1)−O(7) x 2 2.437(17) 

Ho(2)O7 Er(2)O7 
Ho(2)−O(2) x 2 2.313(6) Er(2)−O(2) x 2 2.290(15) 
Ho(2)−O(2) x 2 2.410(7) Er(2)−O(2) x 2 2.413(15) 
Ho(2)−O(4) 2.350(10) Er(2)−O(4) 2.33(2) 
Ho(2)−O(5) 2.254(9) Er(2)−O(5) 2.276(14) 
Ho(2)−O(9)  2.341(10) Er(2)−O(9)  2.35(3) 

Ho(3)O7 Er(3)O7 
Ho(3)−O(1) 2.333(6) E(1)−O(1)  2.310(12) 
Ho(3)−O(2) 2.253(6) Er(3)−O(2) 2.259(12) 
Ho(3)−O(3) 2.352(7) Er(3)−O(3) 2.328(14) 
Ho(3)−O(5) 2.187(5) Er(3)−O(5) 2.178(11) 
Ho(3)−O(6)  2.428(6) Er(3)−O(6)  2.421(13) 
Ho(3)−O(7) 2.475(7) Er(3)−O(7) 2.503(14) 
Ho(3)−O(8)  2.490(7) Er(3)−O(8)  2.472(12) 

Ho(4)O6 Er(4)O6 
Ho(4)−O(2) x 2 2.285(7) Er(4)−O(2) x 2 2.266(14) 
Ho(4)−O(4) x 2 2.220(6) Er(4)−O(4) x 2 2.231(13) 
Ho(4)−O(9) x 2 2.367(6) Er(4)−O(9) x 2 2.344(16) 

Ba(1)O8 Ba(1)O8 
Ba(1)−O(1) x 2 3.201(10) Ba(1)−O(1) x 2 3.191(17) 
Ba(1)−O(7) x 4 2.797(7) Ba(1)−O(7) x 4 2.739(13) 
Ba(1)−O(8) x 2 2.778(9) Ba(1)−O(8) x 2 2.767(17) 

Ge(1)O4 Ge(1)O4 
Ge(1)−O(1)  1.734(9) Ge(1)−O(1)  1.757(19) 
Ge(1)−O(3) x 2 1.744(7) Ge(1)−O(3) x 2 1.750(14) 
Ge(1)−O(9)  1.740(9) Ge(1)−O(9)  1.740(15) 

Ge(2)O4 Ge(2)O4 
Ge(2)−O(6)  1.751(9) Ge(2)−O(6)  1.761(15) 
Ge(2)−O(7) x 2 1.741(7) Ge(2)−O(7) x 2 1.766(12) 
Ge(2)−O(8)  1.748(9) Ge(2)−O(8)  1.760(17) 
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Table 4.4: Bond valence sum calculations for BaHoGeO4(OH) and BaErGeO4(OH). 
 

BaHoGeO4(OH) BaErGeO4(OH) 
Ho(1)O7 Σ3.10 Er(1)O7 Σ3.10 
Ho(1)−O(1) 0.486	 Er(1)−O(1) 0.476	
Ho(1)−O(2)  0.373	 Er(1)−O(2)  0.372	
Ho(1)−O(3) 0.491	 Er(1)−O(3) 0.490	
Ho(1)−O(4) 0.524	 Er(1)−O(4) 0.517	
Ho(1)−O(4) 0.330	 Er(1)−O(4) 0.328	
Ho(1)−O(5) 0.485	 Er(1)−O(5) 0.473	
Ho(1)−O(5) 0.407	 Er(1)−O(5) 0.412	
Ba(1)O10 Σ1.94 Ba(1)O10 Σ1.94 
Ba(1)−O(1)  0.237	 Ba(1)−O(1)  0.240	
Ba(1)−O(1)  0.132	 Ba(1)−O(1)  0.133	
Ba(1)−O(1) 0.119	 Ba(1)−O(1) 0.118	
Ba(1)−O(2)  0.458	 Ba(1)−O(2) 0.457	
Ba(1)−O(2) 0.160	 Ba(1)−O(2) 0.163	
Ba(1)−O(2) 0.131	 Ba(1)−O(2) 0.131	
Ba(1)−O(3) 0.216	 Ba(1)−O(3) 0.216	
Ba(1)−O(3) 0.150	 Ba(1)−O(3) 0.152	
Ba(1)−O(3) 0.077	 Ba(1)−O(3) 0.079	
Ba(1)−O(5) 0.258	 Ba(1)−O(5) 0.257	
Ge(1)O4 Σ3.93 Ge(1)O4 Σ3.91 
Ge(1)−O(1) 0.992	 Ge(1)−O(1) 1.000	
Ge(1)−O(2) 0.984	 Ge(1)−O(2) 0.973	
Ge(1)−O(3) 1.016	 Ge(1)−O(3) 0.997	
Ge(1)−O(4) 0.940	 Ge(1)−O(4	 0.940	
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Table 4.5: Bond valence sum calculations for BaHo10(GeO4)4O8 and BaEr10(GeO4)4O8. 
 

BaHo10(GeO4)4O8 BaEr10(GeO4)4O8 
Ho(1)O7 Σ3.06 Er(1)O7 Σ3.13 
Ho(1)−O(3) x 2 0.791 Er(1)−O(3) x 2 0.813	
Ho(1)−O(4)  0.581 Er (1)−O(4)  0.625	
Ho(1)−O(5) 0.627 Er (1)−O(5) 0.667	
Ho(1)−O(6) 0.384 Er (1)−O(6) 0.399	
Ho(1)−O(7) x 2 0.675 Er (1)−O(7) x 2 0.631	
Ho(2)O7 Σ2.99 Er(2)O7 Σ2.92 
Ho(2)−O(2) x 2 0.913	 Er(2)−O(2) x 2 0.938	
Ho(2)−O(2) x 2 0.703	 Er(2)−O(2) x 2 0.673	
Ho(2)−O(4) 0.413	 Er(2)−O(4) 0.421	
Ho(2)−O(5) 0.536	 Er(2)−O(5) 0.487	
Ho(2)−O(9)  0.423	 Er(2)−O(9)  0.399	
Ho(3)O7 Σ2.94 Er(3)O7 Σ2.89 
Ho(3)−O(1) 0.433	 E(1)−O(1)  0.444	
Ho(3)−O(2) 0.537	 Er(3)−O(2) 0.510	
Ho(3)−O(3) 0.411	 Er(3)−O(3) 0.423	
Ho(3)−O(5) 0.642	 Er(3)−O(5) 0.635	
Ho(3)−O(6)  0.335	 Er(3)−O(6)  0.329	
Ho(3)−O(7) 0.295	 Er(3)−O(7) 0.264	
Ho(3)−O(8)  0.283	 Er(3)−O(8)  0.287	
Ho(4)O6 Σ2.95 Er(4)O6 Σ2.91 
Ho(4)−O(2) x 2 0.985	 Er(4)−O(2) x 2 1.001	
Ho(4)−O(4) x 2 1.174	 Er(4)−O(4) x 2 1.101	
Ho(4)−O(9) x 2 0.789	 Er(4)−O(9) x 2 0.811	
Ba(1)O8 Σ1.72 Ba(1)O8 Σ1.91 
Ba(1)−O(1) x 2 0.171	 Ba(1)−O(1) x 2 0.175	
Ba(1)−O(7) x 4 1.016	 Ba(1)−O(7) x 4 1.189	
Ba(1)−O(8) x 2 0.535	 Ba(1)−O(8) x 2 0.551	
Ge(1)O4 Σ4.08 Ge(1)O4 Σ3.99 
Ge(1)−O(1)  1.039	 Ge(1)−O(1)  0.976	
Ge(1)−O(3) x 2 2.022	 Ge(1)−O(3) x 2 1.989	
Ge(1)−O(9)  1.022	 Ge(1)−O(9)  1.022	
Ge(2)O4 Σ4.03 Ge(2)O4 Σ3.84 
Ge(2)−O(6)  0.992	 Ge(2)−O(6)  0.965	
Ge(2)−O(7) x 2 2.038	 Ge(2)−O(7) x 2 1.905	
Ge(2)−O(8)  1.000	 Ge(2)−O(8)  0.968	
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Figure 4.1: Sample growth of new barium rare-earth germanate oxides and oxy-

hydroxides. a) BaHoGeO4(OH), b) BaErGeO4(OH), c) BaHo10(GeO4)4O8, and d) 

BaEr10(GeO4)4O8 single crystals. 
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Crystal Structure of BaREGeO4(OH) (RE=Ho3+-Er3+) 
 
 The BaREGeO4(OH) (RE = Ho3+-Er3+) compounds in the current study crystallize 

in the orthorhombic space group Pbca (No. 61). The two compounds are isostructural, 

with the Er3+ analog exhibiting slightly contracted cell parameters compared to Ho3+, 

Table 4.1. BaHoGeO4(OH) is used as a representative of the family with cell parameters 

of a = 5.7175(2) Å, b = 10.1556(5) Å, c = 10.6189(9) Å and V = 964.97(8) Å3. Bond 

distances for BaHoGeO4(OH) and BaErGeO4(OH) are reported in Table 4.2, with bond 

valence sums for metal oxide coordination in Table 4.4. The structure is based on seven-

coordinate HoO7, BaO10 and isolated GeO4 tetrahedra, Figure 4.2. All atoms reside on 

general crystallographic positions with 8c Wyckoff symmetry. As seen in Figure 4.2, 

infinite zigzag chains of HoO7 polyhedra run parallel to the a-axis via edge sharing of 

O(4) and O(5) atoms and are the key structural component to the framework. Each GeO4 

unit coordinates four HoO7 polyhedra via corner-sharing of O(1) and O(3), and edge-

sharing of O(2) and O(4) oxygen atoms, and each HoO7 polyhedra likewise coordinates 

four GeO4 units to form a three-dimensional framework Figure 4.3.  
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Figure 4.2: a) Isolated GeO4 units connect holmium polyhedra in the (001) plane with 

barium atoms residing between layers. b) Holmium oxide polyhedra extending along the 

[100] direction through edge sharing of oxygen atoms to form a one-dimensional rare-

earth oxide chain. 
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Figure 4.3: a) Ho(1)O7 polyhedra forming infinite chains separated by interstitial barium 

atoms and connected via edge-sharing of O(4) and O(5) oxygen atoms in the (010) plane. 

b) Each Ho(1)O7 polyhedra coordinates four GeO4 units through corner-sharing of O(1), 

O(3), O(4), and edge-sharing of O(2)/O(4) oxygen atoms, shown just off [001] direction. 
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This framework forms alternating layers of HoO7 polyhedra and GeO4 units. 

Additionally, GeO4 units orient relative to the b-axis in an alternating fashion as is visible 

in Figure 4.2. Thus, this layered framework is built up by the corner and edge-shared 

HoO7 and GeO4 polyhedra, between which the barium atoms reside to maintain charge 

balances. The HoO7 polyhedra form distorted trigonal prismatic, square-face mono-

capped geometry with Ho-O bond distances ranging from 2.262(4)—2.433(4) Å with an 

average of 2.33 Å. GeO4 tetrahedra exhibit bond distances ranging from 1.742(4)—

1.771(4) Å with an average distance of 1.75 Å. The existence of barium atoms in the 

framework creates an intricate three-dimensional network. The barium atoms exist as 

irregular polyhedra with Ba—O distances between 2.579(4)—3.241(4) Å and averaging 

2.94 Å. Bond valence sum calculations resulted in values of 1.94, 3.10, and 3.93 for Ba2+, 

Ho3+, and Ge+4, respectively, consistent with the assigned oxidation states.43,44 Oxygen 

atom O(5) is suspected as the hydroxide by bond valence sum considerations and O(5) 

being the only non-bonding germanium oxygen. Bond valence sum of the O(5) atom is 

1.15, and other oxygen atoms exhibit values of 1.79—2.11, supporting the assignment of 

OH- and O2-, respectively Table 4.4. The hydroxide group points generally toward the 

vacancy formed between germanate and holmium polyhedra. The presence of hydroxide 

is supported by IR and Raman of BaHoGeO4(OH) and BaErGeO4(OH) with single crystal 

Raman indicating a strong stretching mode at 3420 cm-1 for BaHoGeO4(OH), (Figure 4.7 

and/or Figure 4.17). Semi-quantitative elemental analysis (EDX) was used to support 

the 1:1:1 ratio of metals and supports the assignment of Ba2+ over Cs+ in the framework, 

with no evidence of a mixed metal site, (Figure 4.4). 
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 The formula of this new barium rare-earth oxy-hydroxides discussed herein are 

somewhat reminiscent of the sodium rare-earth germanate species Na2NdGeO4(OH), 

synthesized by mild hydro-flux of sodium hydroxide.27 Both structures exhibit one-

dimensional zigzag chains of rare-earth polyhedra. However, these structures are not 

isostructural as Na2NdGeO4(OH) chains interconnect via corner sharing of O(4) atoms 

forming an intricate rare-earth framework, while BaREGeO4(OH) exhibits truly isolated 

one-dimensional chains interconnected through isolated GeO4 building blocks.  
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Figure 4.4: EDX spectrum of BaHoGeO4(OH). 
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Figure 4.5. EDX spectrum of BaErGeO4(OH). 
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Figure 4.6: IR spectrum of BaErGeO4(OH) (red) and BaErGeO4(OH) (black) single 

crystals collected from 2000-500 cm-1. 
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Figure 4.7: IR spectrum of BaErGeO4(OH) (red) and BaErGeO4(OH) (black) single 

crystals collected from 4000-3000 cm-1. 
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Crystal Structure of BaRE10(GeO4)4O8 (RE=Ho3+-Er3+) 
 
 The crystal structure of BaRE10(GeO4)4O8 (RE=Ho3+-Er3+) represents the first 

barium rare-earth germanate oxide with BaO8, HoO6, HoO7, and GeO4 building blocks. 

The structures are isostructural with the Er3+ unit cell parameters being slightly 

constricted as expected, Table 4.1. BaHo10(GeO4)4O8 is used as a representative of this 

structure type with cell parameters of a = 12.4533(8) Å, b = 7.2008(5) Å, c = 12.0034(8) 

Å, β = 100.183(2) ° and V = 1059.43(12) Å3. 

The use of concentrated CsOH as a mineralizer required a systematic approach 

and support to accurately assign BaRE10(GeO4)4O8 over CsRE10(GeO4)4O7(OH). The use 

of energy dispersive X-ray spectroscopy (EDX), IR, and single-crystal Raman 

spectroscopy were employed to deduce the final structural assignment. The absence of 

cesium from EDX of single crystals of BaHo10(GeO4)4O8 and BaEr10(GeO4)4O8, in 

addition to, an absence of hydroxide stretching modes in IR and Raman spectroscopy, 

leaves no ambiguity to the reported barium rare-earth oxides, Figures 4.11, 4.12, 4.16, 

4.17. 

The structural type contains four unique crystallographic Ho3+ sites: Ho(1)O7 (4i), 

Ho(2)O7 (4i), Ho(3)O7 (8j), and Ho(4)O6 (4g) with Ho(1)/Ho(2) residing on mirror planes 

and Ho(4) inhabiting a 2-fold symmetry site. The Ho-O bond distances range from 

2.187(5)—2.490(7) Å for the four holmium polyhedra. The compound forms a complex 

framework of HoO6 and HoO7 polyhedra that form sheets propagating along the ab-plane, 

Figure 4.8a. 
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Figure 4.8: BaHo10(GeO4)4O8 view along the [010] projection. (a) Sheet-like 

arrangement of holmium oxide polyhedra extending in the ab-plane with Ba2+ ions 

occupying void between layers. (b) Isolated GeO4 units stabilize the rare-earth 

framework and encapsulate the Ba2+ ions in channels along [010] direction. 
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Figure 4.9: (a) Ho(2) and Ho(4) polyhedra forming a honeycomb-type of arrangement 

visible along the [001] direction. (b) Ho(1) and Ho(3) polyhedra creating distorted 

channels with Ba2+ ions coordinating the center to provide additional structural support 

and charge balance. 
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Within the rare-earth oxide framework, two distinct connectivities are observed. 

The first framework is built up of Ho(4) polyhedra that interconnect through edge-sharing 

of alternating O(4) and O(9) atoms in the ab-plane, Figure 4.9a. These chains 

interconnect through Ho(2) polyhedra coordinating through µ3-bridging of O(2), O(4), 

and O(9) to construct a honeycomb-type lattice, also shown in Figure 4.9a. 

Simultaneously, Ho(1) and Ho(3) polyhedra form a planar network constructed from 

edge sharing of O(1), O(3), O(7), and O(8) with µ3 bridging of O(5) and O(6), Figure 

4.9b. Ho(1) and Ho(3) polyhedra form a planar network consisting of distorted channels 

along the c-axis in which barium atoms coordinate, Figure. 4.9b. The Ho(1) and Ho(3) 

polyhedra form a cap with the Ho(2)/Ho(4) honeycomb lattice residing within this cap 

and interconnecting through µ4 bridging of O(2) and O(4) This framework of Ho3+ 

polyhedra forms a sheet that propagates in the ab-plane with barium atoms separating the 

layers Figure 4.8a and provides the necessary charge balance.  

Isolated GeO4 tetrahedra support the solid-state framework, Figure 4.10. Two 

crystallographically distinct germanium sites, Ge(1)O4 and Ge(2)O4, reside on 4i 

Wyckoff sites with mirror symmetry. The Ge-O bond distances range from 1.734(9)—

1.748(9) Å for the two germanium sites. Ge(1)O4 coordinates nine holmium polyhedra 

and resides within the holmium oxide framework, Figure 4.10a. Ge(1)O4 coordinates a 

trimeric unit of Ho(2) and Ho(4) x2 through µ4-bridging of O(9) above the tetrahedral site 

in the ab-plane. Additionally, Ge(1)O4 coordinates six holmium centers, (four Ho(3) and 

two Ho(1) atoms), through corner-shared O(1) and O(3) x2 oxygen atoms below the ab-

plane, Figure 4.10a. The Ge(1)O4 tetrahedra link the two distinct rare-earth frameworks 
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while Ge(2)O4 tetrahedra coordinate the void between layers to create distorted channels 

where barium atoms reside. The Ge(2)O4 tetrahedra coordinate two trimeric units, (two 

Ho(3) and one Ho(1) atoms), in the ab-plane through µ4 bridging of O(6) above the 

tetrahedral site and below through edge-sharing of O(7) and O(8) atoms, Figure 4.10b. 

The Ge(2)O4 tetrahedra resides between the rare-earth layers with neighboring barium 

atoms, thus strengthening the layered structure. Ge(2)O4 alternates up/down direction 

relative to the c-axis while propagating throughout the ab-plane, Figure 4.8b.  

Bond valence sum calculations resulted in values of 1.72, 3.06, 2.99, 2.94, 2.95, 

4.08, and 4.03 for Ba(1), Ho(1), Ho(2), Ho(3), Ho(4), Ge(1), and Ge(2), respectively, and 

are consistent with the assigned oxidation states. The absence of hydroxide is supported 

by IR as well as single crystal Raman which indicate no observation of potential OH- 

stretches in the region from 3600-3200 cm-1 in BaHo10(GeO4)4O8, Figure 4.17. Semi-

quantitative elemental analysis (EDX) was used to support the ratio of metals and 

supports the assignment of Ba2+ in the framework, with no evidence of Cs+ ions in the 

structure, Figures 4.11 and 4.12.  
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Figure 4.10:. Holmium polyhedra omitted for clarity. (a) Ge(1)O4 coordination 

highlighting bridging between Ho(2)/Ho(4) and Ho(1)/Ho(3) layers. (b) Ge(2)O4 

coordination between Ho(1)/Ho(3) layers just off [100] direction. 

  



	 134 

 
 

 

 

 

 

Figure 4.11: EDX spectrum of BaHo10(GeO4)4O8. 
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Figure 4.12: EDX spectrum of BaEr10(GeO4)4O8. 

  



	 136 

 
 
 
 
 
 
 
 

Figure 4.13: Simulated powder X-ray diffraction of BaErGeO4(OH) simulated in space 

group Pbca in black (Bottom). Simulated powder X-ray diffraction of BaEr10(GeO4)4O8) 

simulated in space group C2/m in blue (Middle). Hydrothermally grown powder of 

BaErGeO4(OH) and BaEr10(GeO4)4O8) shown in red (Top) revealing a mixture of phases 

with the aid of CsOH mineralizers. 
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Figure 4.14: Simulated powder X-ray diffraction of BaEr10(GeO4)4O8 simulated in space 

group C2/m in black (Bottom). Hydrothermally grown powder of BaEr10(GeO4)4O8 shown 

in blue (Middle). Hydrothermally grown powder of BaHo10(GeO4)4O8 shown in red (Top). 

No ambiguous reflections in the as-grown powder were identified. 
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Figure 4.15: IR spectrum of BaEr10(GeO4)4O8 (red) and BaHo10(GeO4)4O8 (black) single 

crystals collected from 2000-500 cm-1. 
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Figure 4.16: IR spectrum of BaEr10(GeO4)4O8 (red) and BaHo10(GeO4)4O8 (black) single 

crystals collected from 4000-3000 cm-1. 
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Figure 4.17: Single crystal Raman scattering of BaHoGeO4(OH) (blue) and 

BaHo10(GeO4)4O8 (black) from 3600-3200 cm-1. A strong hydroxide stretching mode for 

BaHoGeO4(OH) was detected at 3420 cm-1, while no hydroxide stretching modes were 

detected for BaHo10(GeO4)4O8. 
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Single Crystal Raman Characterization 
 

Let us now examine simple phonon properties of the barium rare-earth 

germanates. BaHoGeO4(OH) and BaHo10(GeO4)4O8 are examined as representatives of 

each new structural type by single-crystal Raman scattering. Factor group analysis for 

BaHoGeO4(OH) orthorhombic structure (Pbca, Z = 8), factor group 𝐷!"!", reveals that the 

normal modes are distributed among the following irreducible representations for the 

elementary unit cell: 27Ag + 27Au + 27B1g + 27B1u + 27B2g + 27B2u + 27B3g + 27B3u. Here, 

B1u, B2u and B3u can be assigned to acoustic modes, 26B1u + 26B2u + 26B3u to IR active 

modes, and 27Ag + 27B1g + 27B2g + 27B3g to Raman active modes. Since the Ge—O bonds 

are much stronger than the Ho—O bonds, and exhibit distortion away from ideal Td 

symmetry, simplification of the Raman active modes to focus on the [GeO4]4- tetrahedra 

is appropriate.  

For each free [GeO4]3- anion, nine internal Raman vibrational modes are expected 

from the general formula 3N-6. The [GeO4]4- anions in BaHoGeO4(OH) and 

BaHo10(GeO4)4O8 adopt C1 point group symmetry, and internal vibrations can be 

described by A Raman active modes. BaHoGeO4(OH) exhibits a strong Raman signal at 

785 cm-1 which has been assigned to the symmetric ʋ1 stretching modes and asymmetric 

v3 stretching modes observed for bands from 700-800 cm-1, Figure 4.19a. Bands in the 

400-500 cm-1 region have been assigned to the v4 bending internal modes of the [GeO4]4- 

building block.  

Factor group analysis of monoclinic BaHo10(GeO4)4O8 (C2/m, Z = 2), factor group 

𝐶!"! , reveals the normal modes are distributed among the following irreducible 
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representations for the elementary unit cell: 33Ag + 24Au + 24Bg + 36Bu. From these 

modes, two modes should be classified as acoustic (Au + 2Bu). The IR active modes are 

23Au + 34Bu, while 33Ag + 24Bg represent Raman active modes. Figure 4.19b reveals 

three distinct peaks from 700-810 cm-1, with an intense Raman peak at 765 cm-1. Again, 

these peaks have been assigned to symmetric ʋ1 stretching modes and asymmetric v3 

stretching modes with peaks at 400-500 cm-1 region being assigned to the v4 bending 

internal modes of the germanate. This is commensurate with known rare-earth apatite 

La8+xBa2-x(GeO4)6O2+x/2 (x= 0 and 1.2) structural types, which also display isolated 

[GeO4]4- building blocks, and scattering bands were assigned these corresponding 

modes.45,46 
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Figure 4.19: Single crystal Raman scattering of (a) BaHoGeO4(OH) and (b) 

BaHo10(GeO4)4O8. 
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Photoluminescent studies of BaHo10(GeO4)4O8 and BaEr10(GeO4)4O8 
 

Photoluminescent spectra of BaREGeO4(OH) and BaRE10(GeO4)4O8 (RE=Ho3+-

Er3+) crystals collected using 457.9 nm laser excitation are shown in Figure 4.20. The 

emission spectrum in Figure 4.20a depicts an intense peak in the green spectral range 

(between 550 – 570 nm) which is characteristic of Er3+ ions present in the 

BaEr10(GeO4)4O8 crystal. This peak can be associated with the 4S3/2 to 4I15/2 transition of 

Er3+ ions. The peaks centered at around 540 nm and 675 nm can be associated with 2H11/2 

to 4I15/2 and 4F9/2 to 4I15/2 transitions of Er3+ ions, respectively. Similar emission patterns 

were observed for Er3+ ions in silicate frameworks containing barium ions. Figure 4.20b 

shows characteristic emission peaks of Ho3+ ions present in the BaHo10(GeO4)4O8 crystal. 

The dominant peak in the red spectral region (630 – 675 nm) is associated with the 5F3 to 

5I7 transition. A similar peak pattern is observed for Ho3+ containing silicate crystals 

containing barium ions.47 
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Figure 4.20: Solid-phase photoluminescent studies of (a) BaEr10(GeO4)4O8 and (b) 
BaHo10(GeO4)4O8 crystals using 457.9 nm laser excitation. 

  



	 146 

Tb13(GeO4)6O7(OH) and K2TbGe2O7 Crystal Structures and Characterization 
 

In this section, a description of initial reactions of germanates with terbium oxide, 

Tb4O7, to generate large high quality single crystals of two new terbium germanates. The 

reaction of mixed-valent Tb(III)/Tb(IV) Tb4O7 with GeO2 in high-temperature 

hydrothermal hydroxide fluids led to two new crystals, one of which is a Tb3+ complex 

and the other is a Tb4+ complex.  

Although the Tb4+ oxidation state is known it is generally considered a very 

oxidizing ion. Thus, very few well-characterized, purely tetravalent, terbium examples 

exist due to the high oxidation potential of Tb4+. The binary fluorides TbF4 and oxides 

TbO2 are quite unstable and their synthetic and characterization difficulties are well 

described in the older literature.48-51 Most of the well characterized structures are anionic 

salts of either alkali terbium fluorides52-54 or alkali or alkaline earth oxides, predominantly 

perovskite derivatives.55-59 The high redox potential of Tb4+ is such that it appears to only 

be stabilized in solution by strong base (OH- and/or CO3
2-). In this way, it has been 

investigated as a surrogate to high potential tetravalent actinides such as Cm4+ and Bk4+.60-

61 It appears that there is no previous single crystal structural characterization of any Tb4+ 

complex with any oxyanion ligand. The work reported herein may be the first steps in 

studying high oxidation potential f-element ions in oxyanion matrices such as silicates, 

titanates or germanates. The crystal structure of select RE13(GeO4)6O7(OH) (RE = Gd, Er, 

Tm) compounds is reported for completeness of the family.  
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Experimental Methods for Terbium Germanates 
 

The compounds of the present study were prepared from the hydrothermal 

reaction of Tb4O7 with GeO2 starting materials in a 1:4 molar ratio, using 20 M KOH as a 

mineralizer at 700 °C. The resultant crystals were identified by single crystal X-ray 

diffraction (Tables 4.6, 4.7), and other supporting characterization (Figures 4.21-4.28), as 

Tb13(GeO4)6O7(OH) containing Tb3+, and K2TbGe2O7 containing Tb4+. In this case, both 

products were isolated as large, colorless crystals (~1 mm3) from the same reaction, and 

contain Tb3+ and Tb4+, respectively. The crystals were most readily distinguishable from 

one another under long wave UV light (380 nm), where crystals of Tb13(GeO4)6O7(OH) 

exhibited a strong green luminescence (535 nm) characteristic of Tb3+, while crystals of 

K2TbGe2O7 did not luminesce significantly (Fig. 4.21 and 4.28).  

Single crystals of Tb13(GeO4)6O7(OH) and K2TbGe2O7 were grown isothermally at 

700 °C for 7 days using 20 M KOH mineralizer. The feedstock consisted of Tb4O7 (129 

mg, 0.172 mmol; HEFA Rare-Earth 99.99%) and GeO2 (71 mg, 0.687 mmol; Alfa Aesar 

99.9%) in a 1:4 molar ratio, respectively. These components and 0.4 mL of the KOH 

mineralizer were loaded into a 99.9% fine silver ampule (2.5" long) that was weld sealed. 

Two independent band heaters were strapped to the outside of the autoclave to maintain 

the isothermal 700 °C system, and autogenously generating 200 MPa pressure. After the 

reaction period the autoclave was cooled to room temperature over a period of 12 hours. 

Single crystals of RE13(GeO4)6O7(OH) (RE = Gd-Yb) were grown from identical 

stoichiometric reactions in comparison to Tb13(GeO4)6O7(OH).  
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Although crystals of K2TbGe2O7 were formed in comparable size to 

Tb13(GeO4)6O7(OH), the yield of Tb13(GeO4)6O7(OH) was far greater, appearing in > 90% 

yield in multiple reactions. In general, we find hydrothermal synthesis provides 

somewhat reducing conditions, in this case leading to a lower yield of K2TbGe2O7. This 

may be improved in the future through the addition of an oxidant and the use of a 

platinum reaction vessel.  Nevertheless, the UV light was used to isolate a few single 

crystals of K2TbGe2O7 for further characterization.  The presence of both species under 

hydrothermal conditions indicates both compounds are thermodynamically stable in 

highly basic conditions. 
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Table 4.6: Crystallographic data for Tb13(GeO4)6O7(OH) and K2TbGe2O7. 
 

 Tb13(GeO4)6O7(OH) K2TbGe2O7 
FW 3014.51 494.30 
crystal system trigonal monoclinic 
crystal dimension, mm 0.05 x 0.05 x 0.04 0.06 x 0.05 x 0.04 
space group, Z R-3, 3 C2/c, 4 
T, °C 25 25 
a, Å 15.8667(6) 10.2720(4) 
b, Å 15.8667(6) 5.7273(2) 
c, Å 9.5266(4) 13.3584(6) 
β, ° --- 105.6890(10) 
V, Å3 2077.02(18) 756.61(5) 
dcalc, g cm-3 7.230 4.339 
2θ range, ° 2.26-25.99 3.17-28.30 
Tmin/Tmax 0.6483/1.0000 0.7382/1.0000 
Reflns coll./unique/obs. 5974/908/814 8694/946/915 
μ (Mo Kα), mm-1 39.218 18.233 
data/restraints/param. 908/1/79 946/0/58 
R1, wR2 (obs. data [I> 2σ(I)]) 0.0267, 0.0598 0.0148, 0.0367 
R1, wR2 (all data) 0.0323, 0.0621 0.0158/0.0370 
S 1.069 1.183 
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Table 4.7: Selected interatomic distances (Å) and angles (°) for Tb13(GeO4)6O7(OH) and 

K2TbGe2O7. 

Tb13(GeO4)6O7(OH) (I) K2TbGe2O7 (II) 
Tb(1)O7 Tb(1)O6 

Tb(1)−O(1) 2.551(7) Tb(1)−O(1) x2 2.2505(17) 
Tb(1)−O(2) 2.345(7) Tb(1)−O(3) x2 2.2691(18) 
Tb(1)−O(3) 2.211(7) Tb(1)−O(4) x2 2.3745(17) 
Tb(1)−O(4) 2.685(7) K(1)O9 
Tb(1)−O(5) 2.304(7) K(1)−O(1) 2.691(2) 
Tb(1)−O(5) 2.328(7) K(1)−O(1) 2.8499(19) 
Tb(1)−O(6) 2.3205(5) K(1)−O(1) 3.357(2) 

Tb(2)O7 K(1)−O(2) 2.7897(19) 
Tb(2)−O(1) 2.304(7) K(1)−O(3) 2.9157(19) 
Tb(2)−O(1) 2.468(7) K(1)−O(3) 2.9617(19) 
Tb(2)−O(2) 2.369(7) K(1)−O(3) 3.1360(19) 
Tb(2)−O(3) 2.211(7) K(1)−O(4) 3.102(2) 
Tb(2)−O(3) 2.254(7) K(1)−O(4) 3.2287(19) 
Tb(2)−O(4) 2.336(7) Ge(1)O4 
Tb(2)−O(4) 2.638(8) Ge(1)−O(1) 1.7324(16) 

Tb(3)O6 Ge(1)−O(2) 1.7901(13) 
Tb(3)−O(3) x6 2.339(7) Ge(1)−O(3) 1.7182(17) 

Ge(1)O4 Ge(1)−O(4) 1.7719(18) 
Ge(1)−O(1) 1.765(7)  
Ge(1)−O(2) 1.733(7) Ge(1)−O(2)−Ge(1) 121.56(14) 
Ge(1)−O(4) 1.762(7)   
Ge(1)−O(5) 1.746(7)   
    
Tb(2)−O(3)−Tb(3) 103.7(3)   
Tb(2)−O(3)−Tb(3) 102.3(3)   
Tb(1)−O(5)−Tb(1) 122.9(3)   
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Figure 4.21: Tb13(GeO4)6O7(OH) (I) (left) and K2TbGe2O7 (II) (right) crystals under UV 

(top) and white (bottom) light.  Faint luminescence from II likely results from very low 

levels of Tb3+ impurities associated with OH- deposited on the crystal surface during 

cool-down (similar to what is observed for K2ZrGe2O7) or trace substitution of Tb3+ 

impurities in the bulk.  Crystals are approximately 0.5 mm in size. 
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Crystal Structure of RE13(GeO4)6O7(OH) (RE = Gd-Yb,Y) 
 

As a surrogate of this crystal family, Tb13(GeO4)6O7(OH) will be used to describe 

the structural features and characterization. The crystal structure data for several 

isostructural rare-earth analogues is given in Table 4.8. Crystal quality and habit are 

shown in Figure 4.29 for rare-earth analogues Gd-Yb. The crystal structure of the high 

density Tb13(GeO4)6O7(OH) is similar to that of Er13Ge6O31(OH) and Gd13Ge6O31F which 

were briefly reported some years ago in the noncentrosymmetric and potentially ferroic 

space group R3.34,35 Some doubt was cast upon the original space group assignment in 

favor of the centrosymmetric space group R-3 based on the observed physical properties, 

but no additional studies have followed.36 The structure refinement of the hydrothermally 

grown crystals from our lab leaves little doubt that the correct solution is the 

centrosymmetric R-3 assignment (Table 4.6, Figure 4.24), as test refinements in R3 led 

to unsatisfactory anisotropic displacement parameters and a Flack parameter of 0.5.  

The structure is a complex three-dimensional network of terbium oxide 

([Tb(1)O7], [Tb(2)O7], and [Tb(3)O6]) polyhedra and germanate tetrahedra. The 

individual terbium polyhedra form interesting subunits that ultimately build the three-

dimensional structure.  The [Tb(2)O7] units are edge-sharing with one another through 

O(3) and O(4) atoms, forming a ring of six Tb atoms. At the center of this ring is Tb(3), 

which forms the angularly-distorted octahedral [Tb(3)O6] unit to stabilize the ring with 

connectivity to O(3) (Figure 4.22a). This arrangement is reminiscent of half-units of the 

polyoxometalate class.37 Neighboring units are connected through edge-sharing of O(1). 
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Germanium atoms coordinate all of the oxygen atoms on the cluster except O(3) (Figure 

4.27).  

The O(3) site serves as a tetrahedral vertex with terbium atoms, also bridging to a 

different structural subunit formed by [Tb(1)O7] groups.  These groups connect to one 

another to form a trimer unit through µ-3 bridging of O(6). Two staggered trimers are 

fused along the c-axis by corner sharing of O(5) (Figure 4.22b).  

The Tb(2)/Tb(3) units each containing seven Tb3+ ions are linked to each other via 

oxy bridges, forming diagonal layers connected into a framework (Figure 4.23a, 4.23b). 

Unlike the Tb(2)/Tb(3) network, the Tb(1)-containing subunits possess only six Tb3+ ions 

and are not further connected to one another. They do fill gaps in the Tb(2)/Tb(3) 

network (Figure 4.23c, 4.23d) and occur in diagonal layers stacked along the c-axis. The 

Tb(1) and Tb(2)/Tb(3) subunits occur in alternating fashion along the c-axis.  All of these 

units are decorated by [GeO4] tetrahedra (Figure 4.23e), which fill the remaining space 

and generate a complex layered three-dimensional structure. The O(6) atom was 

identified as underbonded (1.377 bvs) and geometrically capable of supporting a 

hydrogen atom assignment. The H(6) atom is half-occupied based on charge balance, 

bond valence, and geometric considerations, and contained within the Tb(1) cluster 

subunit. The presence of hydroxide is supported by IR and single crystal Raman analysis 

in which a strong hydroxyl stretching mode was observed at 3468 cm-1 (Figure 4.34, 

4.35). Also, the crystals exhibit characteristic Raman scattering in the single crystal 

Raman spectra (Figure 4.26). 
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Figure 4.22: Terbium oxide subunits in I: a) Tb(2)/Tb(3) subunit; b) Tb(1) subunit. 
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Figure 4.23: Alternating arrangement of Tb(2)/Tb(3) and Tb(1) subunits in I: a) 

Tb(2)/Tb(3) subunits viewed along a; b) the same Tb(2)/Tb(3) subunits viewed  along c; 

c) Tb(1) subunits viewed along a; d) the same Tb(1) subunits viewed along c; e) stacking 

of subunits along c, including the total unit cell contents.  
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Figure 4.24: PXRD of Tb13(GeO4)6O7(OH). (Top) Powder diffraction pattern of as-

grown Tb13(GeO4)6O7(OH). (Bottom) Simulated powder diffraction pattern of 

Tb13(GeO4)6O7(OH) in space group R-3. Hydrothermally grown powder analysis was 

performed via the bulk material. 
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Figure 4.25: EDX analysis of Tb13(GeO4)6O7(OH). 
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Figure 4.26: Single crystal Raman scattering of Tb13(GeO4)6O7(OH) from 300-1400 cm-1. 
The intensity ratio of the bands at 749 and 763 cm-1 changes as a function of the direction 

of polarization. Blue indicates polarization left while black indicates polarization up, 
indicated by direction of arrows.  
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Figure 4.27: Tb(2)/Tb(3) cluster decorated with isolated GeO4 units viewed along [001] 

direction.  
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Figure 4.28: Photoluminescence excitation and emission of Tb13(GeO4)6O7(OH). Excited 

was measured from 300-400 nm and is shown in black. Emission was measured from 

510-600 nm and is shown in green at an excitation of 380 nm. Most intense emission 

peak occurs as 542 nm consistent with the green luminescence observed in Figure 4.21. 

  

300 320 340 360 380 520 540 560 580 600
	

	

W aveleng th	(nm)

P
L	
In
te
ns

ity
	(
a.
u.
)



	 161 

 
 

Table 4.8: Crystallographic data for select RE13(GeO4)6O7(OH) (RE = Gd, Er, and Tm) 

compounds.  

empirical formula Gd13(GeO4)6O7(OH) Er13(GeO4)6O7(OH) Tm13(GeO4)6O7(OH) 

formula weight 
(g/mol) 

2992.80 3122.93 3144.64 

crystal system Trigonal Trigonal Trigonal 

space group, Z R-3, 3 R-3, 3 R-3, 3 

temperature, K 298(2) 298(2) 298(2) 

crystal size (mm) 0.055 x 0.058 x 
0.068 

0.054 x 0.058 x 0.068 0.060 x 0.080 x 0.180 

a, Å 15.9541(6) 15.6777(7) 15.591(2) 

c, Å 9.5898(4) 9.4218(4) 9.3862(19) 

volume, Å3 2113.90(18) 2005.5(2) 1975.9(7) 

calculated density 
(µg/m3) 

7.053 7.757 7.928 

absorption 
coefficient (mm-1) 

36.504 47.033 50.106 

F(000) 3843 3999 4038 

Θ range for data 2.553-28.279 2.631-26.465 2.613-25.984 

reflections collected 1160 912 867 

data/restraints/para
meters 

1160/0/79 912/0/79 867/0/79 

final R [I> 2σ(I)] R1, 
wR2 

0.0384, 0.1067 0.0428, 0.0883 0.0334, 0.0798 

final R (all data) R1, 
wR2 

0.0401, 0.1090 0.0496, 0.0908 0.0362, 0.0820 

goodness-of-fit on F2 1.045 1.120 1.102 

largest diff. 
peak/hole, e/ Å3 

10.143/ -16.357 6.815/ -10.553 6.296/ -8.398 
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Figure 4.29: Hydrothermally grown crystals of RE13(GeO4)6O7(OH) structure type. From 

left to right, crystals of rare-earth ions Gd3+, Tb3+, Dy3+, Er3+, Tm3+, Y3+ and Yb3+.  
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Crystal Structure of K2TbGe2O7 
 

The compound K2TbGe2O7, is a Tb4+ pyrogermanate that is isostructural with 

K2ZrGe2O7 and structurally similar to Na2ZrGe2O7.38-40 The building blocks of K2TbGe2O7 

are the pyrogermanate [Ge2O7] unit and a six-coordinate [TbO6] unit. Each [TbO6] unit is 

coordinated by six pyrogermanate groups through O(1), O(3), and O(4) vertices, and each 

[Ge2O7] group likewise coordinates six [TbO6] units to form the 3-D framework (Figure 

4.30). The framework has a channel-like arrangement with potassium ions providing 

charge balance and alternating off-center in the channels. K2TbGe2O7 departs somewhat 

from K2ZrGe2O7 in that it exhibits a wider range of Ge-O and Tb-O bond lengths, as well 

as O-Tb-O bond angles.  

The Tb4+−O bonds in K2TbGe2O7 range from 2.2505(18)−2.3744(18) Å, which 

compares to Zr−O bonds ranging from 2.048(6)−2.113(5) Å for the analogous 

K2ZrGe2O7. The average Tb4+−O bond length in K2TbGe2O7 (2.2980(19) Å) is shorter 

than the average Tb3+−O bond length in Tb13(GeO4)6O7(OH) (Tb3+−O = 2.366(7) Å), as 

would be expected. They are however, somewhat longer than the Tb4+−O distances in the 

simple oxides (2.16 Å),29 as the oxygen atoms are drawn more toward Ge4+ by Tb-O-Ge 

bridging in K2TbGe2O7. While the O(4) site is slightly under-bonded (1.48 v.u.), the 

absence of hydroxyl group stretching modes around 3000-3600 cm-1 in the IR and single 

crystal Raman experiments (Figure 4.34 and 4.35), as well as the lack of significant UV 

luminescence, supports the primary presence of Tb4+. Furthermore, electron density 

having a suitable geometry for hydrogen atom assignment could not be identified in this 

sterically-compact structure. Test refinements where oxygen atoms were partially 
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occupied to instead model K2TbGe2O7 as a Tb3+ species via oxygen vacancy 

(K2TbGe2O6.5) were unsuccessful, as this resulted in significantly higher R values and 

non-positive definite anisotropic displacement parameters on the partially-occupied 

atoms.  Some Tb3+ impurity may indeed be present in the bulk, but would appear to occur 

at very low concentrations based on the comparatively weak UV luminescence, and since 

a suitable charge-balance mechanism could not be identified from the X-ray data. The 

PXRD pattern calculated from the single crystal structure refinement was in excellent 

agreement with the obtained experimental pattern (Figure 4.31). Semi-quantitative 

energy dispersive X-ray analysis measurements indicate a 2:1:2 ratio of K:Tb:Ge metals 

(Figure 4.32). Typical strong Ge−O stretching modes are observed at 830, 959, and 993 

cm-1 in the single crystal Raman spectra (Figure 4.33).  

The formation of the Tb4+ germanate reported here is somewhat surprising. It 

represents, to our knowledge, the first structurally characterized complex of Tb4+ with any 

oxyanion. The few previous reports are either simple fluoride or oxide salts. The 

compound shows no signs of thermal instability or tendency to decompose in ambient 

conditions. We postulate that the high oxidation state is initially stabilized in the strongly 

basic solution and is then subsequently trapped in germanate crystalline lattice. This 

raises the question of the ability of other oxyanions such as silicates, to stabilize higher 

oxidation state rare-earth and actinide cations. Given that the Tb4+ state has been 

investigated as a surrogate for tetravalent actinides, this question may take on added 

significance. 
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Figure 4.30: Channel-like arrangement of the K2TbGe2O7 structure viewed off the b-axis. 
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Figure 4.31: PXRD of K2TbGe2O7 (Top) Powder diffraction pattern of as-grown 

K2TbGe2O7. (Bottom) Simulated powder diffraction pattern of K2TbGe2O7 in space group 

C2/c. Several single crystals of K2TbGe2O7 were ground and data collected via an 

optimized algorithm for powder analysis on a Bruker D8 Venture single crystal 

diffractometer. 
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Figure 4.32: EDX analysis of K2TbGe2O7. 
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Figure 4.33: Single crystal Raman scattering of K2TbGe2O7 from 300-1400 cm-1. No 

significant changes were observed when the direction of polarization was changed. Blue 

indicates polarization left while black indicates polarization up, indicated by the direction 

of the arrows.  
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Figure 4.34: Single crystal Raman scattering of Tb13(GeO4)6O7(OH) (black) and 

K2TbGe2O7 (blue) from 3000-3750 cm-1. No presence of hydroxide for K2TbGe2O7 was 

detected. The strongest signal for the OH- stretching mode for Tb13(GeO4)6O7(OH) occurs 

at 3437 cm-1 in the Raman spectrum, consistent with the broad OH- feature in the infrared 

spectrum.  
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Figure 4.35: FTIR of the hydroxide stretching regions in Tb13(GeO4)6O7(OH) (black) and 

K2TbGe2O7 (blue) from 3700-3100 cm-1.  
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Figure 4.36: FTIR of germanate regions in Tb13(GeO4)6O7(OH) (black) and K2TbGe2O7 

(blue) from 1200-400 cm-1. 
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Hydrothermal Growth of Cs0.5RE13(GeO4)6O3.5F8.5 (RE = La-Sm) 
 
 As in extension of the rare-earth germanates into the larger rare-earth ions, the 

crystal structure of Cs0.5RE13(GeO4)6O3.5F8.5 (RE = La-Sm) has been synthesized and 

crystallographic data reported. Crystallographic data is reported below in Table 4.9 with 

select bond distances reported in Table 4.10. This family is a salt-inclusion derivative of 

the RE13(GeO4)6O7(OH) (RE = Gd-Yb) structural family reported also in this Chapter. 

Both structures contain very similar structural features that will be highlighted. Here, the 

pursuit of larger rare-earth ions causes a symmetry break from R-3 to P63/m and the 

larger rare-earth ions act as structural directors due to their larger coordination 

environments within the crystalline lattice.  

Experimental Methods for Cs0.5RE13(GeO4)6O3.5F8.5 (RE = La-Sm) 
 
 Single crystals of the family Cs0.5RE13(GeO4)6O3.5F8.5 (RE = La-Sm) were grown 

from high-temperature and high-pressure hydrothermal conditions. The crystals display a 

rod-like habit and are typically between 2-3 mm in length after a 7 day reaction. This 

family of compounds can be grown in 6 M CsF at 650 °C to produce the target 

compounds. Cs0.5La13(GeO4)6O3.5F8.5 single crystals were grown from La2O3 (92 mg, 

0.281 mmol) and GeO2 (58 mg, 0.562 mmol). Cs0.5Pr13(GeO4)6O3.5F8.5 single crystals were 

grown from Pr2O3 (92 mg, 0.279 mmol) and GeO2 (58 mg, 0.558 mmol). 

Cs0.5Nd13(GeO4)6O3.5F8.5 single crystals were grown from Nd2O3 (93 mg, 0.276 mmol) and 

GeO2 (57 mg, 0.551 mmol). Cs0.5Sm13(GeO4)6O3.5F8.5 single crystals were grown from 

Sm2O3 (94 mg, 0.270 mmol) and GeO2 (56 mg, 0.539 mmol). In each reaction a 2 : 1 

stoichiometric ratio of RE3+ to Ge4+ was utilized. In each of these reactions, interaction 
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with the fluoride mineralizer causes incorporation of the salt in the crystalline lattice. 

EDX was used to confirm the trace amount of cesium and fluoride within the crystal 

structure. 

Crystal Structure of Cs0.5RE13(GeO4)6O3.5F8.5 (RE = La-Sm) 

As a representative of this structural class, Cs0.5La13(GeO4)6O3.5F8.5 will be used to 

discuss the structural features of this structure type. Cs0.5La13(GeO4)6O3.5F8.5 crystallizes in 

hexagonal space group P63/m with unit cell parameters of a = 16.4087(8) Å and c = 

7.2738(6) Å. It contains a complex lanthanide oxy-fluoride framework, ([La(1)O6F3], 

[La(2)O7 or La(2)O6F], [La(3)O6F2], and [La(4)O3F6]), and two distinct germanate sites 

[Ge(1)O4] and [Ge(2)O4]. Lanthanum oxide bond distances range from 2.413(4)-2.966(7) 

Å and La-F bond distances range from 2.3992(4)-2.848(6) Å. Germanium oxide 

tetrahedral units are isolated and display bond distances ranging from 1.704(5)-1.767(5) 

Å. The overall unit cell rendering is shown below in Figure 4.38. The structure has three 

types of crystallographic disorder within the lattice. First, O(8)/F(8) are split on a (0,0,z) 

4e Wkycoff position in which both positions are ¼ occupied. Second, a dynamic disorder 

of F(2), F(3), and Cs(1b) is occuring. F(2) and F(3) are 9/10 occupied and are present 

when Cs(1a) is present at bond distances of 2.8064(6) and 2.9010(7) Å, respectively. 

Cs(1b) is set at a site occupancy of 1/10 and is present when F(2) and F(3) are not. The 

presence of cesium and fluoride within the crystalline lattice was confirmed using EDX, 

Table 4.11. [La(3)O6F2] polyhedra are face-sharing with one another, through O(1), O(5), 

and O(7) atoms. At the same time each [La(3)O6F2] polyhedra is also edge-sharing O(1) 

and F(2) atoms. These units form a ring-like arrangement through edge-sharing of O(4) 
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atoms to form a network of six La(3) and 3 La(1) polyhedra. At the center of this ring is 

La(4), which forms the distorted [La(4)O3F6], and stabilizes the ring with connectivity to 

O(7) and F(2), Figure 4.39. Interestingly, the rings can be seen to propagate down the c-

axis and interconnect via corner-sharing of O(2), O(6), and F(3) atoms to form 

foundational lanthanum oxy-fluoride columns, Figure 4.41. In this situation, a disordered 

Cs(1b) atom can fill the void space between rings when present in the lattice.  

The O(8)/F(8) site serves as a unique trimeric vertex with lanthanum atoms. In 

this situation, one of two conformations is adapted at any given time: La(2)O7 or 

La(2)O6F. If O(8) is present, the La(2)O7 is adapted. If F(8) is present, the La(2)O6F 

conformation is adapted. These groups connect to one another to form a trimer unit 

through µ-3 bridging of O(8)/F(8). These trimers are located at the corners of the unit cell 

and help to bridge the ring structures of La(1), La(3), and La(4) through corner-sharing of 

O(5) atoms.  

Two distinct germanate sites serve as isolated building blocks that aid in holding 

the lanthanum framework together. Here, Ge(1)O4 and Ge(2)O4 can be seen to bridge the 

two distinct lanthanum subunits. Ge(1)O4 is corner-sharing with La(1), La(2), and La(3) 

through O(4), O(5), O(6) atoms, Figure 4.42a. Ge(2)O4 is also corner-sharing with 

La(1), La(2), and La(3) polyhedra, but through O(4), Figure 4.42b.  

Interestingly, unlike the RE13(GeO4)6O7(OH) structure reported earlier, the 

Cs0.5RE13(GeO4)6O3.5F8.5 structure does not show evidence of a layered unit cell 

arrangement. The trimeric unit of La(2)O7 or La(2)O6F can be seen to propagate along the 

[001] direction in Figure 4.40. The alternating trimeric units form columns along the 
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corner of the unit cell through corner-sharing of O(3) atoms. While the two structure 

types seem to be related by their architectural framework, the presence of cesium and 

fluoride within the Cs0.5RE13(GeO4)6O3.5F8.5 aids in stabilizing the larger rare-earth ions 

which are directors of dimensionality here. The larger rare-earth ion coordination causes 

a shift to lower symmetry and creating the column-like lanthanum framework reported.  

PXRD was used to confirm the phase reported for the Cs0.5RE13(GeO4)6O3.5F8.5 

(RE = La-Sm) family in which only the presence of rare-earth tri-fluorides (REF3) was 

observed as a minor product, Figure 4.37. The absence of hydroxide within the 

crystalline lattice was confirmed by IR spectroscopy, reported in Figure 4.43. The 

pursuit to smaller rare-earth ions with 6 M CsF led to the synthesis of the structure type 

RE13(GeO4)6O7(OH) (RE = Gd-Yb), which was reported earlier in this Chapter.  
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Table 4.9: Crystallographic data for Cs0.5RE13(GeO4)6O3.5F8.5 (RE = La-Pr). 

 
empirical formula Cs0.5La13(GeO4)6O3.5F8.5 Cs0.5Pr13(GeO4)6O3.5F8.5 Cs0.5Nd13(GeO4)6O3.5F8.5 

formula weight 
(g/mol) 

2909.33 2935.33 3036.57 

crystal system Hexagonal Hexagonal Hexagonal 

space group, Z P63/m, 2 P63/m, 2 P63/m, 2 

temperature, K 298(2) 298(2) 298(2) 

crystal size (mm) 0.04 x 0.045 x 0.5 0.055 x 0.065 x 0.062 0.040 x 0.045 x 0.052 

a, Å 16.4087(8) 16.2428(7) 16.1950(6) 

c, Å 7.2738(6) 7.1293(3) 7.0747(3) 

volume, Å3 1696.1(2) 1628.92(16) 1606.94(14) 

calculated density 
(µg/m3) 

5.697 5.985 6.276 

absorption 
coefficient (mm-1) 

21.851 25.146 13.672 

F(000) 2514 2566 1318 

Θ range for data 2.482-30.559 2.508-28.318 2.515-30.532 

reflections collected 1867 85537 23016 

data/restraints/para
meters 

1867/0/113 1465/0/113 1759/0/113 

final R [I> 2σ(I)] R1, 
wR2 

0.0258, 0.0479 0.0205, 0.0441 0.0298, 0.0549 

final R (all data) R1, 
wR2 

0.0332, 0498 0.0234, 0.0450 0.0392, 0.0572 

goodness-of-fit on F2 1.092 1.125 1.143 

largest diff. 
peak/hole, e/ Å3 

1.393/1.513 2.343/ -0.993 2.271/ -1.453 
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Figure 4.37: Powder overlay of reported Cs0.5RE13(GeO4)6O3.5F8.5 (RE = La-Sm) family. 

Reflections from minor product LaF3 highlighted with (*).  
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Table 4.10: Select bond distances (Å) for reported Cs0.5RE13(GeO4)6O3.5F8.5 (RE = La-
Nd). 

 
Cs0.5La13(GeO4)6O3.5F8.5 Cs0.5Pr13(GeO4)6O3.5F8.5 Cs0.5Nd13(GeO4)6O3.5F8. 

La(1)O6F3 Pr(1) O6F3 Nd(1) O6F3 
La(1)−O(1) 2.512(5) Pr(1)−O(1) 2.476(5) Nd(1)−O(1) 2.460(6) 
La(1)−O(4) x2 2.487(3 Pr(1)−O(4) x2 2.423(3) Nd(1)−O(4) x2 2.416(4) 
La(1)−O(4) x2 2.663(3) Pr(1)−O(4) x2 2.632(3) Nd(1)−O(4) x2 2.619(4) 
La(1)−O(7) 2.481(4) Pr(1)−O(7) 2.447(4) Nd(1)−O(7) 2.424(5) 
La(1)−F(2) x2 2.679(5) Pr(1)−F(2) x2 2.649(4) Nd(1)−F(2) x2 2.634(5) 
La(1)−F(3) 2.848(6) Pr(1)−F(3) 2.865(6) Nd(1)−F(3) 2.914(7) 

La(2)O7 or La(2)O6F Pr(2)O7 or Pr(2)O6F Nd(2)O7 or Nd(2)O6F 
La(2)−O(2) 2.967(7) Pr(2)−O(2) NA Nd(2)−O(2) NA 
La(2)−O(3) x2 2.413(4) Pr(2)−O(3) x2 2.352(5) Nd(2)−O(3) x2 2.337(5) 
La(2)−O(3) x2 2.639(5) Pr(2)−O(3) x2 2.590(5) Nd(2)−O(3) x2 2.555(6) 
La(2)−O(5) 2.474(5) Pr(2)−O(5) 2.432(5) Nd(2)−O(5) 2.415(6) 
La(2)−O(8) x2 2.4877(4) Pr(2)−O(8) x2 2.4480(4) Nd(2)−O(8) x2 2.4391(5) 
La(2)−F(8) x2 2.3992(4) Pr(2)−F(8) x2 2.3616(4) Nd(2)−F(8) x2 2.3537(5) 

La(3)O6F2 Pr(3)O8 Nd(3)O8 
La(3)−O(1)  2.549(4) Pr(3)−O(1)  2.535(4) Nd(3)−O(1)  2.495(4) 
La(3)−O(2) 2.519(4) Pr(3)−O(2) 2.463(4) Nd(3)−O(2) 2.444(5) 
La(3)−O(4) 2.727(3) Pr(3)−O(4) 2.685(3) Nd(3)−O(4) 2.671(4) 
La(3)−O(5) 2.551(4) Pr(3)−O(5) 2.535(4) Nd(3)−O(5) 2.516(4) 
La(3)−O(6) 2.428(4) Pr(3)−O(6) 2.379(3) Nd(3)−O(6) 2.372(4) 
La(3)−O(7) 2.443(3) Pr(3)−O(7) 2.390(3) Nd(3)−O(7) 2.375(4) 
La(3)−F(2) 2.537(4) Pr(3)−F(2) 2.487(4) Nd(3)−F(2) 2.478(5) 
La(3)−F(3) 2.491(4) Pr(3)−F(3) 2.435(4) Nd(3)−F(3) 2.421(5) 

La(4)O3F6 Pr(4)O9 Nd(4)O9 
La(4)−O(7) x3 2.541(4) Pr(4)−O(7) x3 2.514(4) Nd(4)−O(7) x3 2.501(5) 
La(4)−F(2) x6 2.493(4) Pr(4)−F(2) x6 2.444(4) Nd(4)−F(2) x6 2.443(5) 

Ge(1)O4 Ge(1)O4 Ge(1)O4 
Ge(1)−O(1) 1.736(5) Ge(1)−O(1) 1.736(5) Ge(1)−O(1) 1.740(6) 
Ge(1)−O(2) 1.720(5) Ge(1)−O(2) 1.713(5) Ge(1)−O(2) 1.711(6) 
Ge(1)−O(3) x2 1.739(4) Ge(1)−O(3) x2 1.739(5) Ge(1)−O(3) x2 1.742(5) 

Ge(2)O4 Ge(2)O4 Ge(2)O4 
Ge(2)−O(4) x2 1.747(3) Ge(2)−O(4) x2 1.749(3) Ge(2)−O(4) x2 1.745(4) 
Ge(2)−O(5) 1.767(5) Ge(2)−O(5) 1.767(5) Ge(2)−O(5) 1.774(6) 
Ge(2)−O(6)  1.704(5) Ge(2)−O(6)  1.702(5) Ge(2)−O(6)  1.692(6) 

 

* O(8) and F(2) are 0.25 SOF 
 * F(2)/F(3) are 0.9 SOF  
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Figure 4.38: Unit cell rendering of Cs0.5La13(GeO4)6O3.5F8.5 viewed along the [001] 

direction.  
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Figure 4.39: La(1), La(3), and La(4) connectivity viewed along the [001] direction.  
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Figure 4.40: La(2) environment highlighting two distinct trimers alternating just off the 

[110] direction, forming a column within the lattice.  
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Figure 4.41: Ring structures of La(1), La(3), and La(4) forming columns along the [001] 

direction in which disordered Cs(1b) can reside when present.  
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Figure 4.42: (a) Environment of Ge(1)O4 highlighting connectivity to La(1), La(2) and 

La(3). (b) Highlighting Ge(2)O4 connectivity also to La(1), La(2), and La(3). Germanium 

polyhedra interconnect the two distinct lanthanum sub-units within the lattice.  
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Table 4.11: EDX results for hydrothermally grown germanates: Cs0.5RE13(GeO4)6O3.5F8.5 

(RE = La-Sm). 
 

Compound Experimental Results 
(atomic %) 

Ideal Stoichiometric 
Results (atomic %) 

Cs0.5La13(GeO4)6O3.5F8.5 Cs-0.2 / La-24.9 / Ge-
7.9 / O-32.3 / F-34.7 

Cs-0.01 / La-23.4 / Ge-
10.8 / O-49.5 / F-15.3 

Cs0.5Pr13(GeO4)6O3.5F8.5 Cs- 0.1/ Pr-23.5 / Ge-
10.9 / O-55 / F-10.4 

Cs-0.01 / Pr-23.4 / Ge-
10.8 / O-49.5 / F-15.3 

Cs0.5Nd13(GeO4)6O3.5F8.5 Cs-0.7 / Nd-22.4 / Ge-
8.8 / O-34 / F-16.6 

Cs-0.01 / Nd-23.4 / Ge-
10.8 / O-49.5 / F-15.3 

Cs0.5Sm13(GeO4)6O3.5F8.5 Cs-0.4 / Sm-19.4 / Ge-
15.0 / O-59.5 / F-5.7 

Cs-0.01 / Sm-23.4 / Ge-
10.8 / O-49.5 / F-15.3 
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Figure 4.43: IR plots of reported rare-earth germanates: Cs0.5RE13(GeO4)6O3.5F8.5 (RE = 

La-Sm). 
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Conclusions about Hydrothermal Rare-Earth Germanate Reactions 
 
 While the rare-earth ions have often been viewed as a monotonic chemical block, 

their structural chemistry in the presence of oxyanion building blocks such as silicates 

and germanates indicates that this is not the case. 42 In particular, the chemistry across the 

f-block ion silicates in hydrothermal aqueous fluids has consistently shown an 

unexpectedly diverse behavior, leading to the emergence of a wide range new materials 

with interesting solid-state frameworks. In Chapter 3, an investigation into the chemistry 

of barium rare-earth silicates (Ba2RE2Si4O13) (RE = La3+-Ho3+) and barium rare-earth 

silicate fluorides (Ba2RE2Si4O12F2) (RE = Er3+-Lu3+) in high-temperature and high-

pressure hydrothermal conditions to determine the effect of rare-earth size on phase 

transitions between these structures was reported. 42 In tandem, a number of other rare-

earth and refractory silicates was investigated including KSrRESi3O9 (RE = Tb-Yb) and 

wadeite mineral type A2M+4B3O9: K2TiSi3O9 K2SnSi3O9, Rb2USi3O9, Cs2HfGe3O9, and 

Cs2ZrGe3O9. In a logical extension of this work, an investigation of the chemistry of rare-

earth germanates in hydrothermal fluids, typically using aqueous bases, such CsOH as a 

mineralizer, was explored. The tetrahedral building blocks of silica and germanium oxide 

also show very different structural chemistry despite belonging to the same periodic 

group and displaying similar coordination chemistry. The structural chemistry of metal 

germanates is further complicated by the fact that, unlike silicates, germanates often 

display coordination environments other than tetrahedral (five- and six-coordinate), 

which makes the possible phase space even greater. 43  
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Interestingly, although germanates show a very rich structural chemistry in Ge-O 

frameworks, there are fewer examples of germanates directly coordinated to rare-earth 

metal centers where the germanates are not just tetrahedra or polymeric tetrahedra like 

the silicates. There are a number of interesting uranium compounds with unusual 

polygermanate building blocks beyond the conventional tetrahedra that were synthesized 

using high-temperature hydrothermal methods.44-45 These interesting compounds strongly 

suggest that rare-earth germanates with non-tetrahedral building blocks can be 

synthesized and isolated under appropriate hydrothermal conditions. A systematic 

examination of the phase space of rare-earth germanates under these typical high-

temperature hydrothermal reaction conditions with the belief that a menu of isolated 

tetrahedral germanates, various polymeric germanate clusters and of non-tetrahedral 

germanate building blocks, along with a wide variety of coordination environments of the 

rare-earth ions, would combine to provide an almost infinite possibility of new structure 

types.  

The reaction of barium oxide, select rare-earth oxides, and germanium oxide in 

hydrothermal fluids was done using a hydroxide mineralizer of 6 M CsOH. Two new 

stable products were isolated. BaREGeO4(OH) (RE = Ho, Er) single crystals formed as a 

minor hydrothermal product as good single crystals (0.25 mm). This new structure type 

displays an isolated one-dimensional chain of rare-earth polyhedra that are connected 

through edge sharing of oxygen atoms of isolated GeO4 building blocks forming sheets 

with Ba2+ ions between layers. A second product major product BaRE10(GeO4)4O8 
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(RE=Ho, Er) displays a unique sheet-like arrangement involving four unique rare-earth 

sites separated by Ba2+ ions and coordinated by isolated GeO4 units.  

Compared to recently investigated rare-earth silicates, the phase stability of the 

rare-earth germanates appears much more complex. While the SiO4 and GeO4 building 

blocks display many of the same coordination features, the hydrothermal chemistry of 

these rare-earth building blocks thus far are quite different. The IR, Raman and 

photoluminescence spectroscopy also correlated well with the observed structures The 

introduction of barium ions in the chemistry provides an additional chemical and 

structural variability. To our knowledge this is the first example of a rare-earth germanate 

containing a barium ion. These preliminary results suggest that a wide range of new rare-

earth germanates will isolated as large single crystals and their magnetic and optical 

properties can be studied.  

The results of Tb4O7 in the presence of germanium oxide (GeO2) and concentrated 

hydroxide mineralizer KOH led to the investigation of Tb13(GeO4)6O7(OH) and Tb+4 

compound, K2TbGe2O7. These compounds indicate an ability to stabilize various rare-

earth oxidation states in such a way that leads to unobserved solution chemistry to date. 

Tb13(GeO4)6O7(OH) contains a complex network of terbium oxide units having three-fold 

symmetry, and previous uncertainty about the structure type has been resolved in the 

centrosymmetric space group R-3. K2TbGe2O7 stabilizes the Tb4+ oxidation state that is 

rare for complexes other than fluorides or binary oxides. The behavior of Tb+4 is being 

studied to see if it is unique to this germanate system or if it can be extended to other 

oxyanions.  
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Pursuit of the larger rare-earth germanates led to the synthesis and crystallization 

of a new salt-inclusion rare-earth germanate oxy-fluoride, Cs0.5RE13(GeO4)6O3.5F8.5 (RE = 

La-Nd). This family of compounds has many structural rare-earth framework similarities 

to that of the RE13(GeO4)6O7(OH) compounds. Here two distinct lanthanide oxy-fluoride 

frameworks are stabilized by the presence of tetravalent germanium oxide units and the 

inclusion of CsF into the lattice. The key in the structural diversity is the stabilization of 

the rare-earth ion in various connectivities. It was found that the rare-earth ions are 

directors of dimensionality not only in silicate, but also germanate based solid-state 

frameworks presented herein.  

The results of the rare-earth germanates has shown that soluble tetravalent 

tetrahedral building blocks can be used in tandem with the high-temperature and high-

pressure technique has an avenue to new material synthesis and characterization. With 

the results and knowledge gained in this Chapter we now move onto an investigation of a 

much less soluble pentavalent building block, Nb+5. In Chapter Five an investigation into 

the use of Nb2O5 as a semi-soluble hydrothermal building block serves as a logical 

extension into the role of ionic building blocks as stabilizing participants for 

crystallization of new and existing rare-earth niobates.  
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CHAPTER FIVE 

HYDROTHERMAL GROWTH OF RARE-EARTH 
TITANATES  

 

Introduction 
 
 In this Chapter, an examination of the hydrothermal chemistry of the binary 

system RE2O3-TiO2 (RE = La – Lu) will be examined in detail. It has been shown in 

previous Chapters that tetravalent tetrahedral ions like Si4+ and Ge4+ display new phase 

chemistry in the presence of rare-earth ions under high-temperature and high-pressure 

hydrothermal conditions. The ability to form various solid-state networks while 

simultaneously increasing the solubility of refractory rare-earth oxides in solution is key 

to the formation of high-quality single crystal grown. In the RE-Si and RE-Ge Chapters, 

an examination of the various structural formations with rare-earth oxides in the presence 

of tetravalent metal oxides led to a rich systematic chemistry study of new compounds. 

The key variable in all cases is finding a soluble, stable and predictable building block in 

hydrothermal conditions that can aid in the solubility of refractory oxides, which will lead 

to single crystal growth.  

 Herein, an examination of the hydrothermal phase space of RE ions with a 

tetravalent building block is detailed. The difference in this case is that it is a d-block ions 

with empty d-orbitals Unlike tetravalent building blocks of Si4+ and Ge4+, Ti4+ readily 

adopts a 6-coordinate environment, in most cases. The Ti4+ ion is an excellent candidate 

as a hydrothermal building block for several reasons. In addition to adopting a Ti4+, 
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titanium can also adapt the reduced Ti3+ and Ti+2 oxidation states in certain environments. 

Additionally, Ti4+ can adopt a variety of coordination environments including 4, 5 and 6-

coordinate. Coupling the flexible oxidation state and coordination environments of 

titanium with its relatively small crystallographic radius (0.88 Å) makes this RE-Ti 

binary system an ideal candidate to investigate under high-pressure and high-pressure 

conditions.  

Rare-earth (RE = La-Lu, Y) titanates have a long history of study, particularly 

those exhibiting RE2Ti2O7 pyrochlore-type structures.1,2 These receive considerable 

attention due to their unusual magnetic behavior including spin frustration and spin ice 

behavior.3–12 The rare-earth titanates have also been investigated for several other 

potential properties and applications, including ionic conductivity, actinide 

immobilization and high-temperature piezoelectricity.13–21 

 The cubic (Fd-3m) pyrochlore has become the most well-known and studied 

structure type of the rare-earth titanates.1,2,16 Other polymorphs of the RE2Ti2O7 

formulation are also known, particularly those of the early rare-earths (La, Pr, Nd) with 

polar biaxial structures.19,21–26 In addition, there are rare-earth titanates, such as RETiO3,
27 

RE2TiO5 (RE = Yb, Dy, Gd, Sm, Nd, La),28–31 La4Ti3O12,32,33 and CeTi2O6,34 in the 

literature that display complex three dimensional (3-D) frameworks with uses ranging 

from photo-catalysts to ceramics for electronic circuits. 

 Due to the high melting points of the rare-earth oxides (> 2000 °C) and the 

tendency of Ti4+ oxides to become reduced at high reaction temperatures to form defect 

structures,35,36 the exploration of relatively lower reaction temperature techniques is of 
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interest. Many solid-state techniques employed in the synthesis of rare-earth titanates lead 

to formation of powder or poor single crystal quality due to oxygen defects, thermal 

strain and contaminations from crucibles at high-temperatures. The need for high quality 

single crystal is essential to study, for example, subtle but important effects such as site 

symmetry upon ordering in applied magnetic fields and complex frustrated structures. 

The chemistry of this series of rare-earth titanates is summarized and the single 

crystal structures of the new species La5Ti4O15(OH) I, Sm3TiO5(OH)3 II, Lu5Ti2O11(OH) 

III and Ce2Ti4O11 IV are described. Additionally, the role of the mineralizer was 

examined by comparing products using concentrated hydroxide fluids to those obtained 

from concentrated fluorides. The structural classes appear to be a function of the size of 

the rare-earth ion as well. The synthetic techniques employed, crystal structure and other 

analysis will be discussed. Several of the compounds have unusual structural 

relationships with some seemingly unrelated materials and these structural relationships 

are additionally discussed. 
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Hydrothermal Crystal Growth and Reagents 
 

A high-temperature (700 °C) hydrothermal technique was employed to synthesize 

new refractory rare-earth (RE) oxide and oxy-hydroxide materials. Representative 

crystals of the reported compounds are shown in Figure 5.1. In each reaction, 

approximately 0.2 g of reactants with 0.4 mL of either 20 M KOH or 30 M CsF 

mineralizer fluids were used. In the case of Ce2Ti4O11, a 6 M CsF mineralizer was used to 

achieve the best quality single crystals, hydroxide mineralizers led to powder products 

only. All the reactions were performed in 6.4 cm long silver ampoules with an outer 

diameter of 0.64 cm. The weld-sealed silver ampoules were loaded into a Tuttle cold-seal 

style autoclave and filled with distilled water at 80% of free volume to provide suitable 

counter pressure. The autoclave was heated to 700 °C for seven days at a typical pressure 

of 150 MPa. After cooling to room temperature, the crystals were retrieved by washing 

the ampoule with deionized water. In most cases the final products were large, uniform 

single crystals with sizes ranging from 0.5-1 mm, although crystals as large as several 

millimeters could be obtained in some cases. Occasionally, some additional powder 

consisting of rare-earth oxide or oxy-hydroxide accompanied the product, but was a 

minor impurity. The stoichiometric ratios and amounts used are given in detail below. 

The chemicals used in this study were used as received, without further purification: 

La2O3 (Alfa Aesar, 99.999%), Ce2O3 (CERAC, 99.9%), Pr2O3 (Alfa Aesar, 99.99%), 

Nd2O3 (Alfa Aesar, 99.99%), Sm2O3 (Alfa Aesar, 99.99%), Eu2O3 (HEFA Rare Earth, 

99.9%), Gd2O3 (HEFA Rare Earth, 99.9%), Tb4O7 (HEFA Rare Earth, 99.9%), Dy2O3 

(STREM, 99.9%), Ho2O3 (HEFA Rare Earth, 99.9%), Er2O3 (Alfa Aesar, 99.99%), 
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Tm2O3 (HEFA Rare Earth, 99.9%), Yb2O3 (HEFA Rare Earth, 99.99%), Lu2O3 (Alfa 

Aesar, 99.9%), TiO2(Alfa Aesar, 99.99%), CsF (Alfa Aesar, 99.9%), CsOH·xH2O (Alfa 

Aesar, 99.9%) and KOH (Alfa Aesar, 99.98%). 

Synthesis of La5Ti4O15OH and Er5Ti4O15OH 

The La5Ti4O15OH product was synthesized by a direct hydrothermal reaction of binary 

metal oxides La2O3 (134 mg, 0.412 mmol) and TiO2 (66 mg, 0.823 mmol) in a 1 : 2 molar 

ratio with 0.4 mL of 20 M KOH and heated as described in the Experimental Section. The 

crystals were colorless needles with an average length of 0.5 mm. In the case of the 

Er5Ti4O15OH analog, Er2O3 (106 mg, 0.276 mmol) and TiO2 (44 mg, 0.553 mmol) in a 1 : 

2 molar ratio with 0.4 mL of 20 M KOH. 

Synthesis of Lu5Ti2O11OH, Yb5Ti2O11OH and Tm5Ti2O11OH 

Lu5Ti2O11OH was synthesized by a direct hydrothermal reaction of binary metal oxides 

Lu2O3 (143 mg, 0.358 mmol) and TiO2 (57 mg, 0.717 mmol) in a 1 : 2 molar ratio with 

0.4 mL of 20 M KOH and heated as described above. The resulting crystals were 

colorless plates with an average size of 0.5 mm. In the cases of Yb5Ti2O11OH, Yb2O3 (107 

mg, 0.271 mmol) and TiO2 (43 mg, 0.541 mmol) and Tm5Ti2O11OH, Tm2O3 (106 mg, 

0.275 mmol) and TiO2 (44 mg, 0.550 mmol); single crystals were synthesized in identical 

conditions to that of the Lu analog. Resultant single crystals were colorless plates for the 

Yb analog (0.45 mm) and pale yellow plates for the Tm analog (0.4 mm).  

Synthesis of Sm3TiO5(OH) 

The product was synthesized by a direct hydrothermal reaction of binary metal oxides 

Sm2O3 (169 mg, 485 mmol) and TiO2 (31 mg, 385 mmol) in a 5 : 4 molar ratio, with 0.4 
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mL of 20 M KOH and heated as described above. The resulting crystals were yellow 

blocks with an average size of 1 mm. 

Synthesis of Ce2Ti4O11 

The product was synthesized by a direct hydrothermal reaction of binary metal oxides 

Ce2O3 (101 mg, 0.352 mmol) and TiO2 (84 mg, 1.06 mmol) in a 1 : 4 molar ratio, with a 

0.4 mL of 6 M CsF and heated as described above. The resulting crystals were dark red 

polyhedra with an average size of 0.3 mm. 

Cubic Pyrochlore (Fd-3m) Synthesis of RE2Ti2O7 (RE = Lu – Gd) Single Crystals 

Cubic pyrochlores (RE2Ti2O7) were synthesized by direct reaction of the binary metal 

oxides under hydrothermal conditions as detailed in the Experimental Section. In the case 

of Lu2Ti2O7-Er2Ti2O7, single crystals were only realized while employing 30 M CsF 

concentrations. For Gd2Ti2O7-Ho2Ti2O7 single crystals can be grown from either 20 M 

KOH or 30 M CsF mineralizer solutions. For each reaction, a stoichiometric molar ratio 

of 1 : 2 (RE : Ti) was employed to give the pyrochlore crystals (Tb4O7 was a ratio of 1 : 4 

RE : Ti). Lu2Ti2O7 single crystals were synthesized by reacting Lu2O3 (107 mg, 0.269 

mmol) and TiO2 (43 mg, 0.538 mmol) powders were reacted. For the Yb analog, Yb2O3 

(107 mg, 0.271 mmol) and TiO2 (43 mg, 0.541 mmol) powders were reacted. For the Tm 

analog, Tm2O3 (106 mg, 0.275 mmol) and TiO2 (44mg, 0.550 mmol) powders were 

reacted. For the Er analog, Er2O3 (106 mg, 0.277 mmol) and TiO2 (44 mg, 0.553 mmol) 

powders were reacted. For the Ho analog, Ho2O3 (105 mg, 0.279 mmol) and TiO2 (45 mg, 

0.558 mmol) powders were reacted. For the Dy analog, Dy2O3 (105 mg, 0.281mmol) and 

TiO2 (45 mg, 0.563 mmol) powders were reacted. For the Tb analog, Tb4O7 (105 mg, 
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0.140 mmol) and TiO2 (45 mg, 0.562 mmol) powders were reacted. For the Gd analog, 

Gd2O3 (104 mg, 0.287 mmol) and TiO2 (46 mg, 0.574 mmol) powders were reacted. 

Characteristic colors of the reported rare-earth titanates are shown in Figure 5.1.  
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Figure 5.1: High-temperature and high-pressure hydrothermal growth of (a) 

La5Ti4O15(OH) (b) Sm3TiO5(OH)3 (c) Lu5Ti2O11(OH) and (d) Ce2Ti4O11 single crystals. 
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Structure Determination and Supporting Characterization  
 

Single crystal structure characterization was conducted using a Bruker D8 

Venture single crystal diffractometer with an Incoatec Mo Kα microfocus source and 

Photon 100 CMOS detector. In the case of Lu5Ti2O11(OH), PLATON was used to 

determine the twin law. In all of the structures studied, the thermal parameters of the 

metal sites in the crystallographic refinements suggested there was no mixing of Ti4+ and 

RE3+ at their respective sites. The results of the structure refinements are presented in 

Table 5.1-5.2, and selected bond lengths and bond valence sum calculations are given in 

Tables 5.3-5.6. Phase purity was studied using powder X-ray diffraction (PXRD). The 

PXRD data were collected using a Rigaku Ultima IV diffractometer equipped with Cu 

Kα radiation (λ = 1.5406 Å) in the range of 5-65° in 2θ with a scan speed of 0.25 degrees 

per minute and a step size of 0.02°.  

 Infrared (IR) spectroscopic analysis was used to confirm the presence of the 

hydroxide groups in the structures, Figure 5.8. Additionally, the elemental compositions 

of all the reported compounds were investigated using energy dispersive X-ray analysis 

(EDX), Table 5.7. IR spectra for selected compounds and elemental analysis are reported 

in the supporting information and are in good agreement with the structures determined 

by X-ray diffraction. Thermal Gravimetric Analysis (TGA) was employed to observe the 

evolution of water from the hydroxide containing rare-earth titantates reported herein. 

Here, nitrogen was used as the flowing gas at a flow rate of 100 mL/min and, at a heating 

and cooling rate of 10 °C/min from 25-800°C.  
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Table 5.1: Crystallographic data of rare-earth titanate hydroxides and titanates 

determined by single crystal X-ray diffraction. 

 

 La5Ti4O15(OH) 
(I) 

Sm3TiO5(OH)3 
(II) 

Lu5Ti2O11(OH) 
(III) 

Ce2Ti4O11 
(IV) 

formula weight (g/mol) 1143.16 629.97 1163.62 647.84 

crystal system orthorhombic monoclinic monoclinic monoclinic 

space group, Z Pnnm (no. 58), 4 P21/m (no. 11), 2 C2/m (no. 12), 2 C2/c (no. 15), 4 

Temperature (K) 298(2) 298(2) 298(2) 297(2) 

Crystal size (mm) 0.27 x 0.04 x 0.03 0.04 x 0.05 x0.05 0.05 x 0.06 x 0.06 0.05 x 0.06 x 0.06 

a, Å 30.5152(12) 5.6066(2) 12.1252(9) 13.6875(7) 

b, Å 5.5832(2) 10.4622(4) 5.8243(4) 5.0955(3) 

c, Å 7.7590(3) 6.1258(2) 7.0407(5) 12.8592(7) 

β, ° ---- 104.7390(10) 106.939(3) 108.964(2) 

volume (Å3) 1321.92(9) 347.50(2) 475.65(6) 848.18(8) 

Dcalc (g/cm3) 5.744 6.021 8.125 5.073 

abs. coeff. (mm-1) 18.140 26.085 53.027 14.147 

F(000) 2008 550 992 1168 

Tmax, Tmin 1.0000, 0.6321 1.000, 0.7912 1.0000, 0.7013 1.0000, 0.7998 

Θ range for data 2.709-26.498 3.439-28.309 3.024-26.498 3.147-26.490 

Reflections collected 8894 8323 2796 7614 

data/restraints/paramet
ers 1452/0/129 914/2/69 552/48/58 874/0/78 

final R [I> 2σ(I)] R1, 
wR2 0.0195, 0.0464 0.0148, 0.0314 0.0317, 0.0790 0.0180, 0.0476 

final R (all data) R1, 
wR2 0.0203/0.0468 0.0158, 0.0318 0.0372, 0.0821 0.0203, 0.0747 

goodness-of-fit on F2 1.177 1.031 1.125 1.176 

largest diff. pk/hl, e/ Å3 1.124/-2.480 1.144/-1.041 1.739/-4.194 0.846/-1.135 
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Table 5.2: Crystallographic data for hydrothermally grown Er5Ti4O15(OH). 
 
 

empirical formula Er5Ti4O15(OH) 
(V) 

formula weight (g/mol) 1284.91 

crystal system orthorhombic 

space group, Z Pnnm (no. 58), 4 

temperature, K 273(2) 

crystal size (mm) 0.12 x 0.08 x 0.02 

a, Å 29.7954(13) 

b, Å 5.3286(2) 

c, Å 7.4498(3) 

volume, Å3 1182.79(8) 

calculated density 
(µg/m3) 

7.216 

absorption coefficient 
(mm-1) 

37.694 

F(000) 2228 

Tmax, Tmin 1.0000, 0.4169 

Θ range for data 2.734-33.355 

reflections collected 2349 

data/restraints/paramete
rs 

2349/0/132 

final R [I> 2σ(I)] R1, 
wR2 

0.0244/0.0553 

final R (all data) R1, 
wR2 

0.0297/0.0566 

goodness-of-fit on F2 1.140 

largest diff. peak/hole, e/ 
Å3 

2.241/-2.155 
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Table 5.3: Bond distances (Å) of La5Ti4O15(OH) (I) and Er5Ti4O15(OH) (V). 
 

La5Ti4O15(OH) (I) Er5Ti4O15(OH) (V) 
La(1)O8 Er(1)O8 

La(1)−O(1) x 2 2.631(3) Er(1)−O(1) x 2 2.418(4) 
La(1)−O(4) x 2 2.567(3) Er(1)−O(4) x 2 2.470(4) 
La(1)−O(5) x 2 2.500(3) Er(1)−O(5) x 2 2.353(4) 
La(1)−O(6) 2.517(3) Er(1)−O(6) 2.296(5) 
La(1)−O(7) 2.586(4) Er(1)−O(7) 2.342(5) 

La(2)O7 Er(2)O7 
La(2)−O(2) x 2 2.360(4) Er(2)−O(2) x 2 2.185(5) 
La(2)−O(3) 2.567(4) Er(2)−O(3) 2.308(5) 
La(2)−O(4) x 2 2.471(3) Er(2)−O(4) x 2 2.297(4) 
La(2)−O(5) x 2 2.503(3) Er(2)−O(5) x 2 2.443(4) 

La(3)O8 Er(3)O8 
La(3)−O(2) x 2 2.366(3) Er(3)−O(2) x 2 2.234(3) 
La(3)−O(4) x 2 2.603(3) Er(3)−O(4) x 2 2.494(4) 
La(3)−O(5) x 2  2.605(3) Er(3)−O(5) x 2  2.463(4) 
La(3)−O(6) x 2 2.531(3) Er(3)−O(6) x 2 2.380(3) 

La(4)O9 Er(4)O8 
La(4)−O(1) x 2 2.652(3) Er(4)−O(1) x 2 2.444(4) 
La(4)−O(7) 2.528(4) Er(4)−O(7) 2.301(5) 
La(4)−O(8) x 2 2.567(3) Er(4)−O(8) x 2 2.433(4) 
La(4)−O(9) 2.811(4) Er(4)−O(9) NA 
La(4)−O(10) x 2 2.504(3) Er(4)−O(10) x 2 2.293(4) 
La(4)−O(11) 2.457(4) Er(4)−O(11) 2.234(5) 

La(5)O9 Er(5)O8 
La(5)−O(3) 2.703(3) Er(5)−O(3) NA 
La(5)−O(8) x 2 2.404(3) Er(5)−O(8) x 2 2.244(4) 
La(5)−O(9) 2.533(4) Er(5)−O(9) 2.291(5) 
La(5)−O(10) x 2 2.711(3) Er(5)−O(10) x 2 2.242(4) 
La(5)−O(10) x 2 2.758(3) Er(5)−O(10) x 2 2.643(4) 
La(5)−O(11) 2.512(4) Er(5)−O(11) 2.253(5) 

Ti(1)O6 Ti(1)O6 
Ti(1)−O(1)  2.267(3) Ti(1)−O(1)  2.235(4) 
Ti(1)−O(3) 1.9794(13) Ti(1)−O(3) 1.9081(19) 
Ti(1)−O(4) 1.803(3) Ti(1)−O(4) 1.801(4) 
Ti(1)−O(5) 1.866(3) Ti(1)−O(5) 1.858(4) 
Ti(1)−O(7) 2.107(3) Ti(1)−O(7) 2.0142(17) 
Ti(1)−O(8) 2.027(3) Ti(1)−O(8) 2.043(4) 

Ti(2)O6 Ti(2)O6 
Ti(2)−O(1)  1.827(3) Ti(2)−O(1)  1.823(4) 
Ti(2)−O(8) 1.920(3) Ti(2)−O(8) 1.920(4) 
Ti(2)−O(9) 1.968(3) Ti(2)−O(9) 1.9118(15) 
Ti(2)−O(10) 1.978(3) Ti(2)−O(10) 1.9975(19) 
Ti(2)−O(10) 2.184(3) Ti(2)−O(10) 2.234(3) 
Ti(2)−O(11) 1.998(3) Ti(2)−O(11) 1.9975(19) 
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Table 5.4: Bond distances (Å) of Sm3TiO5(OH)3 (II), Lu5Ti2O11(OH) (III), and Ce2Ti4O11 
(IV). 

 
 
 
 
	
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 
 
	
 
 
 
 
 
	
 
 
 
 
 
 
	
 
 
 
 

Sm3TiO5(OH)3 (II) Lu5Ti2O11(OH) (III) Ce2Ti4O11 (IV) 
Sm(1)O8 Lu(1)O7 Ce(1)O8 

Sm(1)−O(1) x 2 2.403(3) Lu(1)−O(1) x 2 2.227(10) Ce(1)−O(1) 2.382(4) 
Sm(1)−O(2) x 2 2.431(3) Lu(1)−O(1) x 2 2.326(11) Ce(1)−O(2) 2.408(4) 
Sm(1)−O(3) x 2 2.558(3) Lu(1)−O(2) x 2 2.335(12) Ce(1)−O(3) 2.412(4) 
Sm(1)−O(4) 2.431(5) Lu(1)−O(4) 2.289(15) Ce(1)−O(3) 2.439(4) 
Sm(1)−O(5) 2.447(4) Lu(2)O7 Ce(1)−O(4) 2.450(4) 

Sm(2)O7 Lu(2)−O(1) x 2 2.258(11) Ce(1)−O(5) 2.675(4) 
Sm(2)−O(1) 2.375(3) Lu(2)−O(2) x 2 2.278(12) Ce(1)−O(1) 2.725(4) 
Sm(2)−O(1) 2.444(3) Lu(2)−O(2) x 2 2.333(12) Ti(1)O6 
Sm(2)−O(2) 2.296(3) Lu(2)−O(4) 2.343(15) Ti(1)−O(1) 1.961(4) 
Sm(2)−O(2) 2.358(3) Lu(3)O6 Ti(1)−O(2) 2.039(4) 
Sm(2)−O(3) 2.339(3) Lu(3)−O(2) x 4 2.275(11) Ti(1)−O(4) 1.879(4) 
Sm(2)−O(3) 2.492(3) Lu(3)−O(3) x 2 2.223(15) Ti(1)−O(4) 1.932(4) 
Sm(2)−O(5) 2.531(2) Lu(4)O6 Ti(1)−O(5) 1.928(4) 
 Lu(4)−O(2) x 4 2.237(12) Ti(1)−O(6) 2.139(3) 

Ti(1)O5 Lu(4)−O(2) x 2 2.151(14) Ti(2)O6 
Ti(1)−O(1) x 2 1.945(3)   Ti(2)−O(1) 1.918(4) 
Ti(1)−O(2) x 2 1.926(3) Ti(1)O6 Ti(2)−O(2) 1.862(4) 
Ti(1)−O(4)  1.764(5) Ti(1)−O(1) x 2 1.917(9) Ti(2)−O(3) 1.750(4) 
 Ti(1)−O(3) x 2 1.908(10) Ti(2)−O(5) 2.021(4) 
 Ti(1)−O(4) x 2 2.041(10) Ti(2)−O(5) 2.385(4) 
  Ti(2)−O(6) 2.068(4) 
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Table 5.5: Bond Valence Calculations of Hydrothermally Grown La5Ti4O15(OH) (I) and 

Er5Ti4O15(OH) (V). 

La5Ti4O15(OH) (I) Er5Ti4O15(OH) (V) 
La(1)O8 Er(1)O8 

La(1)−O(1) x 2 0.578 Er(1)−O(1) x 2 0.616 
La(1)−O(4) x 2 0.688 Er(1)−O(4) x 2 0.544 
La(1)−O(5) x 2 0.824 Er(1)−O(5) x 2 0.746 
La(1)−O(6) 0.394 Er(1)−O(6) 0.435 
La(1)−O(7) 0.327 Er(1)−O(7) 0.384 
ΣLa(1) 2.811 ΣEr(1) 2.734 

La(2)O7 Er(2)O7 
La(2)−O(2) x 2 1.204 Er(2)−O(2) x 2 1.174 
La(2)−O(3) 0.344 ErLa(2)−O(3) 0.421 
La(2)−O(4) x 2 0.892 Er(2)−O(4) x 2 0.864 
La(2)−O(5) x 2 0.818 Er(2)−O(5) x 2 0.586 
ΣLa(2) 3.256 ΣEr(2) 3.048 

La(3)O8 Er(3)O8 
La(3)−O(2) x 2 1.184 Er(3)−O(2) x 2 1.028 
La(3)−O(4) x 2 0.624 Er(3)−O(4) x 2 0.510 
La(3)−O(5) x 2  0.620 Er(3)−O(5) x 2  0.544 
La(3)−O(6) x 2 0.758 Er(3)−O(6) x 2 0.694 
ΣLa(3) 3.186 ΣEr(3) 2.785 

La(4)O9 Er(4)O9 
La(4)−O(1) x 2 0.546 Er(4)−O(1) x 2 0.584 
La(4)−O(7) 0.382 Er(4)−O(7) 0.429 
La(4)−O(8) x 2 0.688 Er(4)−O(8) x 2 0.600 
La(4)−O(9) 0.178 Er(4)−O(9) NA 
La(4)−O(10) x 2 0.816 Er(4)−O(10) x 2 0.878 
La(4)−O(11) 0.463 Er(4)−O(11) 0.514 
ΣLa(4) 3.072 ΣEr(4) 3.004 

La(5)O9 Er(5)O9 
La(5)−O(3) 0.238 Er(5)−O(3) NA 
La(5)−O(8) x 2 1.068 Er(5)−O(8) x 2 1.002 
La(5)−O(9) 0.377 Er(5)−O(9) 0.441 
La(5)−O(10) x 2 0.466 Er(5)−O(10) x 2 1.006 
La(5)−O(10) x 2 0.410 Er(5)−O(10) x 2 0.340 
La(5)−O(11) 0.399 Er(5)−O(11) 0.489 
ΣLa(5) 2.959 ΣEr(5) 3.278 

Ti(1)O6 Ti(1)O6 
Ti(1)−O(1)  0.295 Ti(1)−O(1)  0.321 
Ti(1)−O(3) 0.641 Ti(1)−O(3) 0.778 
Ti(1)−O(4) 1.033 Ti(1)−O(4) 1.039 
Ti(1)−O(5) 0.871 Ti(1)−O(5) 0.890 
Ti(1)−O(7) 0.454 Ti(1)−O(7) 0.584 
Ti(1)−O(8) 0.564 Ti(1)−O(8) 0.540 
ΣTi(1) 3.858 ΣTi(1) 4.151 

Ti(2)O6 Ti(2)O6 
Ti(2)−O(1)  0.968 Ti(2)−O(1)  0.979 
Ti(2)−O(8) 0.753 Ti(2)−O(8) 0.753 
Ti(2)−O(9) 0.661 Ti(2)−O(9) 0.770 
Ti(2)−O(10) 0.644 Ti(2)−O(10) 0.611 
Ti(2)−O(10) 0.369 Ti(2)−O(10) 0.322 
Ti(2)−O(11) 0.610 Ti(2)−O(11) 0.611 
ΣTi(2) 4.005 ΣTi(2) 4.045 
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Table 5.6: Bond Valence Calculations of Hydrothermally Grown Sm3TiO5(OH)3 (II), 

Lu5Ti2O11(OH) (III), and Ce2Ti4O11 (IV). 

Sm3TiO5(OH)3
 (II) Lu5Ti2O11(OH) (III Ce2Ti4O11 (IV) 

Sm(1)O8 Lu(1)O7 Ce(1)O7 
Sm(1)−O(1) x 2 0.854 Lu(1)−O(1) x 2 1.002 Ce(1)−O(1) 0.536 
Sm(1)−O(2) x 2 0.792 Lu(1)−O(1) x 2 0.766 Ce(1)−O(2) 0.499 
Sm(1)−O(3) x 2 0.562 Lu(1)−O(2) x 2 0.748 Ce(1)−O(3) 0.494 
Sm(1)−O(4) 0.396 Lu(1)−O(4) 0.423 Ce(1)−O(3) 0.459 
Sm(1)−O(5) 0.379 ΣLu(1) 2.939 Ce(1)−O(4) 0.446 
ΣSm(1) 2.981 Lu(2)O7 Ce(1)−O(5) 0.243 

Sm(2)O7 Lu(2)−O(1) x 2 0.920 Ce(1)−O(1) 0.212 
Sm(2)−O(1) 0.460 Lu(2)−O(2) x 2 0.872 ΣCe(1) 2.888 
Sm(2)−O(1) 0.382 Lu(2)−O(2) x 2 0.752 Ti(1)O6 
Sm(2)−O(2) 0.570 Lu(2)−O(4) 0.366 Ti(1)−O(1) 0.674 
Sm(2)−O(2) 0.482 ΣLu(2) 2.911 Ti(1)−O(2) 0.546 
Sm(2)−O(3) 0.507 Lu(3)O6 Ti(1)−O(4) 0.841 
Sm(2)−O(3) 0.336 Lu(3)−O(2) x 4 1.760 Ti(1)−O(4) 0.729 
Sm(2)−O(5) 0.302 Lu(3)−O(3) x 2 1.012 Ti(1)−O(5) 0.737 
ΣSm(2) 3.040 ΣLu(3) 2.771 Ti(1)−O(6) 0.417 

Ti(1)O5 Lu(4)O6 ΣTi(1) 3.943 
Ti(1)−O(1) x 2 1.408 Lu(4)−O(2) x 4 1.948 Ti(2)O6 
Ti(1)−O(2) x 2 1.482 Lu(4)−O(2) x 2 1.230 Ti(2)−O(1) 0.757 
Ti(1)−O(4)  1.148 ΣLu(4) 3.179 Ti(2)−O(2) 0.881 
ΣTi(1) 4.037 Ti(1)O6 Ti(2)−O(3) 1.192 
 Ti(1)−O(1) x 2 1.518 Ti(2)−O(5) 0.573 
 Ti(1)−O(3) x 2 1.556 Ti(2)−O(5) 0.214 
 Ti(1)−O(4) x 2 1.086 Ti(2)−O(6) 0.505 
 ΣTi(1) 4.159 ΣTi(2) 4.122 
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Synthesis and Phase Distribution 
 

The title compounds were synthesized by employing a high-temperature 

hydrothermal method with 20 M KOH and 30 M CsF as mineralizers. In general, the 

stability of rare earth oxyhydroxide and trihydroxide species, REO(OH) and RE(OH)3, in 

lower temperature (< 600˚C) hydrothermal conditions require that hydrothermal reactions 

be performed at higher temperature regimes (> 600˚C) to avoid formation of these solids 

as the dominant thermodynamic products regardless of mineralizer choice. The product 

distribution across the rare-earth oxide series in the present high-temperature study is 

displayed in Scheme 5.1. A wide variety of structures result, depending both upon the 

mineralizer identity and the size of the rare-earth cation. It is important to mention that, 

during the reactions, we maintained the stoichiometry between rare-earth oxide and the 

TiO2 to 1:2 for all reactions. However, in some cases stoichiometric reactions of the 

precursors were subsequently used to prepare the target compounds in a higher yield after 

the preliminary reactions. The 20 M KOH reaction series has a very complicated phase 

distribution. The first compound isolated, La5Ti4O15(OH), I, represents a new structure 

type. However, this phase did not persist across the other lanthanide ions to form other 

derivatives of La5Ti4O15(OH), apart from Er5Ti4O15(OH).  Reactions of Pr2O3 and Nd2O3 

with TiO2 resulted Pr2Ti2O7 and Nd2Ti2O7 which crystalize in the polar monoclinic space 

group P21.26,52 In a similar fashion, reactions from Gd2O3 to Ho2O3 produced cubic 

pyrochlore-type RE2Ti2O7 structures.1,2 In the case of Sm, yellow crystals of 

Sm3TiO5(OH)3, II, were formed (~ 2 mm, Figure 5.1) and found to be isostructural with 

the RE3MO5(OH)3 (M = V+4, Ge+4) structure type (see structure discussion of 
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Sm3TiO5(OH)3). As a separate series, the reactions from Tm2O3 to Lu2O3 with TiO2 

generally formed crystals of the RE2Ti2O11(OH) structure type, which shares similar 

structural features with rare-earth molybdates, ruthenates and rhenates (RE5X2O12, X = 

Mo, Ru, Re) reported in the literature.53–57,67,68 Moreover, synthesis of the RE5Ti2O11(OH) 

(RE = Tm-Lu) series was accomplished in good yield in all cases, producing thick 

colorless crystals with well-defined edges. Additionally, separate hydrothermal reactions 

investigating the mineralizer effects on the RE5Ti2O11(OH) system revealed a direct 

correlation between the mineralizer choice and the quality of crystal produced. For 

example, better quality crystals of RE5Ti2O11(OH) (RE = Tm-Lu) were isolated using 

CsOH compared to KOH. Phase formation of Tm5Ti2O11(OH) and Yb5Ti2O11(OH) were 

confirmed using PXRD (Figure 5.14), and no ambiguous reflections from additional 

phases were observed.  

The observation that the reaction of Ce2O3 and TiO2 in 20 M KOH did not 

produce any rare-earth titanate crystals led us to explore other mineralizer systems.  

These high-temperature hydrothermal reactions between rare-earth oxides and TiO2 with 

concentrated fluoride solutions also showed an interesting phase distribution, Scheme 

5.1. Herein, the ability of 30 M CsF to mineralize both the rare-earth oxide and titanium 

oxide starting materials was confirmed in the reactive chemistry. The use of 30 M CsF 

with the same 1:2 stoichiometric ratio between RE2O3 (RE = Gd-Lu) and TiO2 resulted 

primarily in cubic pyrochlore RE2Ti2O7 structures with average crystal size of ~ 0.5. The 

formation of monoclinic RE2Ti2O7 pyrochlores in space group P21 were also observed 
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with larger rare-earth oxide cations such as La, Pr and Nd which is somewhat similar to 

the reaction chemistry of 20 M KOH.  

Interestingly, the reaction between Ce2O3 and TiO2 with 30 M CsF resulted in the 

formation of Ce2Ti4O11, IV, which is isostructural with Nd2Ti4O11 crystals grown by 

chemical transport at high-temperature (1000 °C) with the aid of chlorine gas as a 

transport catalyst.58 Further, compound IV can be also grown using various 

concentrations of CsF ranging from 6 M with higher concentrations producing the best 

quality crystals with higher yield. Powders of cerium titanate adopting the brannerite-type 

structure (CeTi2O6) are of interest in catalysis, but a very limited number of well-

characterized single crystals are reported for cerium titanates in general.59,60 Other cerium 

titanate powders were prepared by ceramic methods and characterized by powder 

diffraction, while Ce2TiO5, Ce2TiO7 and Ce4Ti9O24 types represent, to our knowledge, the 

only single crystal growth and structure characterization reported in the literature.61  

Changing the rare-earth oxide to Sm2O3 and Eu2O3 in CsF mineralizer, did not 

produced any oxide materials, but rather resulted in the formation of rare-earth fluoride 

compounds, CsRE2F7.61 Therefore, it confirms that, highly concentrated fluoride solutions 

are an effective route to obtain refractory oxide materials that do not contain hydroxide 

groups. This complements the studies with extremely high concentrated hydroxide that 

were very useful in obtaining a variety of new structure types. The versatility of the 

hydrothermal technique to support interchangeable mineralizer schemes thus makes it a 

valuable tool for the preparation of high quality single crystals of targeted materials (such 

as the pyrochlores) as well as engaging in exploratory chemistry.  
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Scheme 5.1: Product distribution (a-h) of the hydrothermal reaction (650-700 °C) over 

the mineralizers of 20 M KOH and 30 M CsF: (a) RE5Ti4O15(OH); (b) REO(OH); (c) 

RE2Ti2O7-P21; (d) RE3TiO5(OH)3; (e) RE2Ti2O7-cubic pyrochlore; (f) RE5Ti2O11(OH); (g) 

RE2Ti4O11; (h) CsRE2F7. 
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Crystal Structure of RE5Ti4O15(OH) (RE= La and Er), I 
 

La5Ti4O15(OH) and Er5Ti4O15(OH) are isostructural and crystallize in 

orthorhombic crystal system in space group Pnnm (no.58). The structure of 

La5Ti4O15(OH) will be discussed in detail from here (Table 5.1), with crystallographic 

data for Er5Ti4O15(OH) summarized in (Table 5.2). The unit cell parameters of 

La5Ti4O15(OH) are a = 30.516(4) Å, b = 5.5837(7) Å , c = 7.7593(10) Å, V = 1322.1(3) 

Å3 and Z = 4. Selected bond lengths and bond valence sum calculations are given in 

Tables 5.3-5.6, respectively. The crystal structure of La5Ti4O15(OH) can be best 

described as a complex three-dimensional framework consisting of seven distinct metal 

sites (five La3+ sites and two Ti+4 sites), and represents a new structure type, Figure 5.2. 

The structural framework consists of La(1)O8, La(2)O7, La(3)O8, La(4)O9 and La(5)O9 

coordination environments with La−O bond distances ranging from 2.360(4) to 2.811(4) 

Å, and averaging 2.553(4) Å. The LaOn polyhedra form a three-dimensional (3D) 

framework built from two unique two-dimensional (2D) La‒O‒La slabs in the bc plane 

(Figure 5.3). The two unique Ti4+ sites both adopt an octahedral geometry (TiO6) and 

form their own Ti‒O‒Ti sublattice of thick 2D slabs (Figure 5.4). The Ti‒O‒Ti 

sublattice is embedded inside the 3D La‒O‒La framework to form a very complex and 

dense structure. The Ti‒O bond distances range from 1.803(3) to 2.267(3) Å for Ti(1)O6 

and 1.827(3) to 2.184(3) Å for Ti(2)O6 suggesting a highly distorted octahedral 

environment in both TiO6 units. The TiO6 octahedra also exhibit angular distortion with 

trans-O-Ti-O angles of 164.21(17)° to 174.99(12)° and cis-O-Ti-O angles of 80.12(12)° 

to 102.72(13)°.  



	 216 

 

 

 

Figure 5.2: Crystal structure of La5Ti4O15(OH) viewing along the b-axis. (a) Partial 

polyhedral view showing the complex nature of the 3D La‒O‒Ti lattice; (b) Polyhedral 

view of the 3D La‒O‒La lattice, where orange and blue colored polyhedra distinguish the 

two different 2D La‒O‒La slabs in the bc plane, and alternating along the a-axis; (c) 

Construction of the Ti‒O‒Ti sublattice within the La5Ti4O15(OH) unit cell. 
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The nature of the 3D La‒O‒La lattice is worth further comment. As shown in 

Figure 5.2b, two La‒O‒La substructures are highlighted using orange (La‒O‒La slab 1) 

and blue (La‒O‒La slab 2) polyhedra and these substructures interconnect with each 

other along the a-axis to form the 3D La‒O‒La lattice which is the longest axis in the 

unit cell (30.516(4) Å). The first sublattice (orange color polyhedra in Figure 5.2b is 

formed by La(1)O8, La(2)O9 and La(3)O9 polyhedra. Here, the La(3)O8 polyhedra form 

edge sharing chains along the c-axis, that are bracketed by the La(1)O8 and La(2)O7 

polyhedra also through edge-sharing (Figure 5.3). Meanwhile, slab 2 is formed by 

La(4)O9 and La(5)O9 polyhedra connected in alternating, edge-sharing fashion as shown 

in Figure 5.3. The overall La‒O‒La framework is established by corner and edge sharing 

oxygen atoms joining the slabs along the a-axis. The O(6) oxygen atom was found to be 

under-bonded based on its bond valence sum, as it possesses only three bonds to 

lanthanum atoms. Electron density in an appropriate geometry for a hydrogen atom 

attached to O(6) was identified from the difference electron density map, and assigned as 

such to satisfy the bond valence of O(6) and provide charge neutrality in the structure. 

The hydrogen atom occupies a small gap in the center of slab 1 of the lanthanum oxide 

framework.  

The structural complexity of this material is also reflected in the titanium 

environments, Figure 5.4. Two distinct titanium environments generate a four-

octahedron thick (along a) slab arrangement extending along the bc-plane with the 

thickness seen in the ac-plane in Figure 5.2c and 5.6. The thick layer is formed by 

corner sharing Ti(1)O6 and Ti(2)O6 octahedra, defined by intersecting chains of 
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Ti(1)−O(1)−Ti(2)−O(10)−Ti(2)−O(8)−Ti(1) connectivity in the ab-plane, and 

Ti(1)−O(3)−Ti(1), Ti(1)−O(7)−Ti(1), Ti(2)−O(9)−Ti(2), and Ti(2)−O(11)−Ti(2) 

connectivity along c Figure 5.4. The complex La‒O‒Ti framework is formed through a 

number of edge- and corner-sharing interactions where the Ti‒O‒Ti and La‒O‒La 

sublattices are interpenetrating, Figure 5.5. A phase pure crystallization product can be 

grown under hydrothermal conditions as shown in Figure 5.7. The presence of hydroxide 

was confirmed in the single crystal Raman spectrum as shown in Figure 5.8, with other 

products in this Chapter.  
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Figure 5.3: Partial structure of two La‒O‒La sublattices. Sublattice 1 is formed by 

La(1)O8, La(2)O9 and La(3)O9 polyhedra and sublattice 2 is formed by La(4)O9 and 

La(5)O9. These two sublattices interconnect along the a-axis to form overall 3D La‒O‒La 

lattice. 
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Figure 5.4: (a) basic building unit in the Ti‒O‒Ti lattice along the c-axis and it 

represents the thickness of the lattice; (b) shows the connectivity between the Ti(1)O6 and 

Ti(2)O6 units within the Ti‒O‒Ti lattice. 
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Figure 5.5: Shows the connectivity between LaOn polyhedral and TiO6-octahedra in 

La5Ti4O15(OH). 
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Figure 5.6: Ti‒O‒Ti lattice in La5Ti4O15(OH). (a) A polyhedral view of the Ti‒O‒Ti 

lattice showing the thickness of the lattice along the a-axis and lattice continue to grow 

along the b- and c-axis. 
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Figure 5.7: PXRD pattern of La5Ti4O15(OH). (Bottom) Simulated powder pattern of 

La5Ti4O15(OH); (Top) observed PXRD of La5Ti4O15(OH). 
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Figure 5.8: Single crystal Raman plots of Ce2Ti4O11, La5Ti4O15(OH), Lu5Ti2O11(OH), and 

Sm3TiO5(OH)3 compounds from bottom to top, respectively.  
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Table 5.7: EDX of reported rare-earth titanates with experimental and expected RE:Ti 

ratios.  

 

 RE/Ti EDX 

ratio (%) 

Exp. 

ratio 

Ideal 

ratio 

La5Ti4O15(OH) 22.1/23.5 0.94:1 1.25:1 

Er5Ti4O15(OH) 18.6/16.5 1.13:1 1.25:1 

Ce2Ti4O11 9.8/20.7 0.47:1 0.5:1 

Sm3TiO5(OH)3 34.3/11.7 2.93:1 3:1 

Tm5Ti2O11(OH) 22.8/9.7 2.35:1 2.5:1 

Yb5Ti2O11(OH) 27/12 2.25:1 2.5:1 

Lu5Ti2O11(OH) 29.7/10.8 2.75:1 2.5:1 
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Crystal Structure of Sm3TiO5(OH)3, II 
 

Compound II crystallizes in the monoclinic crystal system in space group P21/m, 

with unit cell parameters of a = 5.6066(2) Å, b = 10.4622(4) Å, c = 6.1258(2) Å and β = 

104.7390(10)°, V = 347.50(2) Å3 and Z = 2. Sm3TiO5(OH)3 is a titanyl structure type that 

is a structural analog of other RE3MO5(OH)3 (M = V4+, Ge4+) compounds based on 

tetravalent building blocks.62–65 The structure of Sm3TiO5(OH)3 is comprised of two 

crystallographically distinct SmOn polyhedra (Sm(1)O8 and Sm(2)O7) and one Ti(1)O5 

group, forming a 3D framework (Figures 5.10-5.12). The Sm(1)O8 and Sm(2)O7 units 

form an interesting 3D rare-earth sublattice, where chains of alternating Sm(1)O8 and 

Sm(2)O7 units connected by edge-sharing propagate along the b-axis, and are 

interconnected to neighboring chains also by oxygen edge-sharing to form the Sm‒O‒Sm 

sublattice.  All oxygen atoms except O(4) are µ3 oxo-bridging oxygen atoms within the 

rare-earth framework, creating numerous triangular lanthanide interactions. Of these 

oxygen atoms, O(3) and O(5) do not bridge to the TiO5 units, and instead support the 

hydrogen atoms of the structure.  The O(5)-H(5)---O(4) interaction exhibits a favorable 

distance and geometry for hydrogen bonding, while the O(3)-H(3) group appears to be a 

terminal hydroxide ligand. The hydrogen atom assignments to O(3) and O(5) 

significantly improves their bond valence. The Sm−O bond distances range from 

2.296(3) to 2.555(3) Å, consistent with the analogous germanates and vanadates of this 

same structure type.62–65 

The TiO5 group exhibits a square pyramidal geometry (Figure 5.10) with Ti−O 

bond lengths of 1.763(5) Å to the apical O(4) atom and 1.925(3) to 1.944(3) Å to the 



	 227 

basal O(1) and O(2) atoms. The base of the pyramid exhibits some angular distortion, 

with cis-O-Ti-O angles of 81.62(17) ° to 86.82(12)°. The apical Ti−O(4) bond in 

compound II exhibits some titanyl character, and is slightly elongated relative to the 

titanyl bonds of 1.698(3) Å in Li2TiOSiO4, probably due to the additional bridging nature 

of O(4) to Sm3+ (Sm(1)) in the present structure.66,67 As expected, the Ti−O(4) bond is 

slightly longer than that of the vanadyl bond in Y3VO5(OH)3 (1.697(5) Ǻ), Table 5.8. 

Despite the similarity of the Ti-O and Ge-O apical bond lengths in the structural analogs 

(Table 5.8), there is a much greater difference in apical vs. basal bond length for the 

respective MO5 units in Sm3TiO5(OH)3 compared to Sm3GeO5(OH)3, also supporting the 

concept of a titanyl bond. The corresponding rare-earth vanadates, however, exhibit a 

greater degree of M=O character using this metric. Although O(4) only possesses bonds 

to Ti(1) and Sm(1), it maintains a reasonable bond valence of 1.544 (Table 5.6) given the 

titanyl character of the Ti-O(4) bond. The role of O(4) as a hydrogen bond acceptor as 

described above further stabilizes this site. The TiO5 units are isolated relative to one 

another, but are integrated into the overall 3D framework by Ti-O-Sm bridging. This 

occurs by corner-sharing of the apical oxygen atoms and edge-and corner-sharing of the 

basal oxygen atoms of the TiO5 units by Sm atoms. Sm3TiO5(OH)3 can be grown as a 

hydrothermally pure product as represented by the PXRD pattern of as-grown material 

and simulated powder pattern, Figure 5.13. The presence of hydroxide was confirmed in 

the single crystal Raman spectrum of the as-grown material, shown in Figure 5.8. DSC 

of as-grown material of Sm3TiO5(OH)3 is assumed to undergo continues loss of water, as 
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shown in Figure 5.14. The single crystals of Sm3TiO5(OH)3 display a brilliant yellow 

color (Figure 5.1), indicative of samarium ions in a crystalline lattice.   
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Figure 5.10: Extended structure of Sm3TiO5(OH)3 viewed along [001]. 
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Figure 5.11: (a) Sm‒O‒Sm lattice of Sm3TiO5(OH)3 along ab-plane which display the 

propagation of Sm‒O‒Sm lattice along the a- and b-axis; (b) partial structure of Sm‒O‒

Sm wavy chains in the Sm3TiO5(OH)3 and forms a triangular unit made from one Sm(1) 

and two Sm(2) centers. 
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Figure 5.12: Connectivity between Sm(1)O8, Sm(2)O7 and Ti(1)O5 units in 

Sm3TiO5(OH)3.  
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Table 5.8: Summary of M=O bond distances for RE3MO5(OH)3 (M = V+4, Ge+4, Ti+4). 
 

Structure Type 
(RE3MO5(OH)3) 

M=O bond 
distance Å 

Average basal 
oxygen distance 

Å 

Δ (basal avg. 
-M=O) Å 

Reference 

La3VO5(OH)3 1.673(12) 1.931 0.258 62 
Dy3VO5(OH)3 1.670(2) 1.920 0.250 62 
Y3VO5(OH)3 1.697(5) 1.919 0.222 62 

Sm3TiO5(OH)3 1.764(4) 1.936 0.172 this work 
Sm3GeO5(OH)3 1.768(20) 1.863 0.095 65 
Dy3GeO5(OH)3 1.779(16) 1.860 0.081 64 

Y3GeO5(OH0.5F0.5)3 1.794(28) 1.846 0.052 63 
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Figure 5.13: PXRD pattern of Sm3TiO5(OH)3. (Bottom) Simulated powder pattern of 

Sm3TiO5(OH)3. (Top) Hydrothermally grown Sm3TiO5(OH)3 powder. Reflections from 

impurities Sm(OH)3 00-006-0117 and SmO(OH) 00-013-0168 (*) indicated above. 
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Figure 5.14: Decomposition of Sm3TiO5(OH)3 occurs via continuous water loss from the 

OH- groups upon heating in air from 23-283 °C(1.43% expected mass loss, 1.40% 

observed mass loss). 

  



	 235 

Crystal Structure of RE5Ti2O11(OH) (RE = Tm‒Lu), III 
 

The crystal structure of RE5Ti2O11(OH) (RE = Tm‒Lu) type III, is monoclinic 

with C2/m (no. 12) space group symmetry and a = 12.1252(9) Å, b = 5.8243(4) Å, c = 

7.0407(5) Å, β = 106.939(3) ° and V = 475.65(6) Å3. Selected bond lengths and angles 

are summarized in Table 5.4. Like the previous compounds, Lu5Ti2O11(OH) also 

possesses a complex 3-D framework. The rare-earth ions form their own 3D framework 

of by edge-shared oxygen atoms. An interesting feature of this rare-earth framework are 

periodic channels that are occupied by Ti4+‒O‒Ti4+ chains propagating along the b-axis. 

The chains have alternating short (2.799(8) Å) and long (3.026(8) Å) interatomic 

distances between Ti4+ ions, Figure 5.15.  

This structure type is analogous with a series of rare-earth containing rhenates and 

ruthenates, RE5M2O12 (M = Re, Mo, Ru)53–56 summarized in Table 5.9. These compounds 

have been studied due to their interesting magnetic and electric properties.68 Crystals of 

these compounds are often twinned and disordered, and III also displays these tendencies 

due to the plate morphology of the crystals. The alternating shorter and longer M−M 

interatomic distances in the RE5M2O12 structures are attributed to the formation of M−M 

bonds along the M−O−M chains, enabled by the presence of unpaired electrons in the 

extended d orbitals in 4d or 5d transition metals (rhenium and ruthenium) leading to 

metal-metal bond formation. However, the appearance of shorter Ti···Ti distance in 

compound III cannot be justified using the same concept as in the case of RE5M2O12 

compounds. Having said that, compound III is completely colorless (Figure 5.1) which 

confirms the presence of Ti4+ since any Ti3+ present in the lattice would be expected to be 
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strongly chromophoric. Moreover, lutetium has no reasonable oxidation state other than 

the empty shell Lu3+, so these factors combine to rule out any electronic effects to cause 

the shorter titanium distances. Therefore, we can conclude that the alternating distances 

in III are only caused due to packing effects of the LuOn polyhedra within the unit cell.  

Furthermore, Lu5Ti2O11(OH) exhibits a smaller difference in short versus long M-M 

distances compared to the Ru and Re analogs, where the attractive effects of M-M bond 

formation are pronounced.  (See Table 5.9) 

The overall Lu‒O‒Lu lattice is similar to the previously reported RE5M2O12 

structures.69 Charge balance in the RE5M2O12 series is accomplished by mixed-valent 

M4+/M5+ at the transition metal sites (M = Re, Mo, Ru). In III, the presence of the OH 

stretching vibration in the infrared spectrum (Figure 5.8) and the water clear appearance 

of the crystals suggests charge balance should be accomplished according to the formula 

Lu5Ti2O11(OH) rather than any unexpected lower valence of Ti or RE.  This formula is 

consistent with the mass loss observed by TGA in the region of 120-180 °C due to 

decomposition of the OH group, Figure 5.17. The O(2) atom was assigned as the OH 

group, on the basis of its lower bond valence sum, and its location within the framework 

capable of sterically supporting the hydrogen atom in ¼ occupancy on the general 

position. Single crystals of RE5Ti2O11(OH) (RE = Tm‒Lu) were grown under 

hydrothermal conditions, as previously described, and phase purity was confirmed 

through PXRD measurements, Figure 5.16. Single crystal Raman scattering was used to 

confirm the presence of hydroxide, Figure 5.8.  
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Figure 5.15: Lu5Ti2O11(OH) viewed along [001] direction revealing infinite titanium 

oxide chains propagating along the [010] direction; (b) one dimensional chains of Ti-O-

Ti along the b-axis. 
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Figure 5.16: PXRD pattern of Lu5Ti2O11(OH). (Black) Simulated powder pattern of 

Lu5Ti2O11(OH); (Blue) Hydrothermally grown Lu5Ti2O11(OH) powder, (Red) 

Hydrothermally grown Yb5Ti2O11(OH) powder, (Green) Hydrothermally grown 

Tm5Ti2O11(OH) powder.  
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Figure 5.17: Decomposition of Lu5Ti2O11(OH) occurs via water loss from the OH- groups 

upon heating in air from 23-128 °C( 0.77% expected mass loss, 0.71% observed mass 

loss). 
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Table 5.9: Summary of M‒M bond distances for RE5M2O12 (M = Ru, Re) and 

RE5Ti2O11(OH) compounds. 

Structure 
Type 

(RE5M2O12) 

M‒M bond 
distance 

(short) (Å) 

M‒M bond 
distance 

(long) (Å) 

Reference 

Pr5Ru2O12 2.8038(11) 3.1450(11) 53 

Eu5Ru2O12 2.780(2) 3.091(2) 53 

Gd5Ru2O12 2.774(3) 3.084(3) 53 

Tb5Ru2O12 2.7765(11) 3.0649(11) 53 

Y5Re2O12 2.4466(5) 3.2138(5) 54 

Tm5Re2O12 2.455(1) 3.219(1) 55 

Ho5Re2O12 2.436(2) 3.201(2) 56 

Lu5Ti2O11(OH) 2.799(8) 3.026(8) this work 
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Crystal Structure of Ce2Ti4O11, IV 
 

Compound IV, Ce2Ti4O11, crystallizes in the monoclinic space group C2/c with 

unit cell parameters of a = 13.6875(7) Å, b = 5.0955(3) Å, c = 12.8592(7) Å, β = 

108.964(2)˚ and V = 848.18(8) Å3 with Z = 4. The complex 3-D framework features three 

distinct metal sites, each residing on a general position. Viewed along the b-axis (Figure 

5.18), the structure can be described as a framework of corrugated layers featuring sheets 

of cerium and titanium oxides condensed through common oxygen atoms. Each 2D layer 

propagates along the bc-plane, as viewed in Figure 5.18b and 5.18c. The cerium oxide 

sheet is built of one unique Ce atom that is edge- and corner-sharing with neighboring 

symmetry related Ce sites. Cerium is in an eight-coordinate environment with Ce−O 

bond lengths ranging from 2.382(4) to 2.725(4) Å. Two unique titanium atoms, Ti(1) and 

Ti(2) comprise the titanium oxide layer. The Ti(1) atom adopts a distorted octahedral 

environment with Ti(1)−O bond distances ranging from 1.879(4) to 2.139(3) Å. The 

Ti(2) site has a distorted octahedral geometry with an approximate titanyl configuration. 

Four equatorial bonds to oxygen range from 1.862(4) to 2.068(4) Å, while the opposing 

axial bonds to oxygen are 1.750(4) Å to O(3) and 2.385(4) Å to O(5) across the 

170.13(17)° bond angle. The two TiO6 octahedra possess a complex connectivity to form 

the layer, as shown in Figure 5.18. Two Ti(1)O6 octahedra form a dimer by edge-sharing 

O(4) atoms, while two Ti(2)O6 octahedra form their own dimer through an interesting 

face sharing connectivity by sharing two O(5) and one O(6) atoms, Figure 5.19. The 

respective dimer units share edges with one another, placing O(6) as a common vertex 

between four Ti atoms as a µ4-oxo bridging atom. The face sharing nature of the two 
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Ti(2)O6 octahedra, brings the two Ti(2) centers into a fairly close proximity of 2.869(2) 

Å. This structure type was previously reported for Nd2Ti4O11,58 but represents a one of 

few examples of structurally characterized cerium titanates other than CeTi2O6.34 A mixed 

crystalline product of Ce2Ti4O11 and Ce(OH)3 was found to result under hydrothermal 

conditions (Figure 5.20). These two crystalline products are easily separated by crystal 

habit. Single crystals of Ce2Ti4O11 grow as dark-red polyhedral crystals (Figure 5.1), 

while Ce(OH)3 grows as large flat plats that are also dark-red in color. No presence of 

hydroxide groups was detected in the as-grown powder, as shown in the IR spectrum in 

Figure 5.8.  

  



	 243 

 

 

 

 

 

 

Figure 5.18: (a) Ce2Ti4O11 viewed along [010] direction highlighting slabs of alternating 

rare-earth and titanium oxide polyhedral; (b) and (c) The 2D Ce‒O‒Ce and Ti‒O‒Ti 

lattices along a-axis, respectively. 
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Figure 5.19: Detail drawing of 2D Ti‒O‒Ti lattice showing the complex connectivity 

between Ti(1)O6 and Ti(2)O6 octahedra. 
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Figure 5.20: PXRD pattern of Ce2Ti4O11. (Bottom) Simulated powder pattern of 

Ce2Ti4O11; (Top) Hydrothermally grown Ce2Ti4O11. Reflections from impurities Ce(OH)3 

(*) 00-054-1268 and Ti2O3 (+) 01-071-0150 indicated above. 
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Crystal Structure of Dy2Ti2O7  
 
 As mentioned earlier, there is a great interest recently in the ideal cubic (Fd-3m) 

pyrochlores, RE2Ti2O7. For completeness, a brief description of this structure type and its 

hydrothermal growth will be discussed. As shown in Scheme 5.1, a number of ideal 

pyrochlores RE2Ti2O7 (RE = Gd – Lu) can be grown under hydrothermal conditions in 

either 30 M CsF or 20 M KOH. In both cases, a consistent battle in solution is the 

formation of oxy-hydroxide species, REO(OH). In most cases, the cubic pyrochlore is a 

minor product at high-temperatures (700-750 °C). Nevertheless, in the course of this 

work a number of cubic pyrochlores were identified. One recurring problem among many 

rare-earth pyrochlores is the tendency for the rare-earth ion to disorder over the 

tetravalent B-site as a result of the high-temperature crystal growth methods. Thus it is of 

interest to identify relatively low temperature growth methods that provide access to high 

quality singe crystals of the cubic pyrochlores. Single crystal data was collected on some 

but not all structures, but their unit cell parameters were identified using SCXRD initial 

scans. As a representative of this class of compounds, Dy2Ti2O7 will be examined.  

 Dy2Ti2O7 crystallizes in cubic space group Fd-3m and unit cell parameters for this 

system are reported in Table 5.10. A representative drawing for this structure is shown in 

Figure 5.21. In this structure, the rare-earth site is 8-coordinate and displays Dy(1)-O 

bond distances ranging from 2.1990(3)-2.4885(7)°. Each Dy(1)O8 polyhedra coordinates 

six Ti(2)O6 atoms through edge-sharing of O(1), Figure 5.22. While the cubic (Fd-3m) 

structure is considered “ideal”, reported structures in the literature contain two distinct 

metal sites, each with mixed RE/Ti. Reported structures consistently have the 16d 
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Wyckoff site with around 3-4 % Ti+4 by SOF.10,12
 This is consistent with our structure of 

Dy2Ti2O7 in which the thermal parameters improve by substituting 2.8 % Ti into the Dy 

site. Therefore, in order to charge compensate the structure, a Dy substitution into the Ti 

16c Wycoff site must take place or an oxygen defect can be created by disordering one of 

the oxygen sites. In the literature, both types of defect pyrochlore can be observed. In this 

situation, it was determined that an oxygen defect was in better crystallographic 

agreement, than a Ti substitution into the Dy site. The Ti(2)O6 site displays bond 

distances of 1.9722(4) Å, consistent with that of literature values. The most interesting 

aspect of this structure type is a spin-frustration within the magnetic lattice.11 Figure 5.23 

is used to explain this occurence in which an examination of the triangular lattice of Dy 

atoms creates a situation in which at least one of the triangular corners is stuck in a 

frustrated spin situation. As an example of the crystal growth of the RE2Ti2O7 

pyrochlores, Gd2Ti2O7 is shown in Figure 5.24 as a representative example.  
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Table 5.10: Crystallographic data for Dy2Ti2O7. 

 
empirical formula Dy2Ti2O7 

formula weight (g/mol) 1284.91 

crystal system cubic 

space group Fd-3m 

temperature, K 273(2) 

crystal size (mm) 0.12 x 0.08 x 0.06 

a, Å 10.1566(12) 

volume, Å3 1047.72 

calculated density (µg/m3) 6.876 

absorption coefficient (mm-1) 35.40 

F(000) 1965 

Tmax, Tmin 1.0000, 0.4169 

Θ range for data 2.734-33.355 

reflections collected 2352 

data/restraints/parameters 72/0/12 

final R [I> 2σ(I)] R1, wR2 0.0244/0.0553 

final R (all data) R1, wR2 0.0254/0.0566 

goodness-of-fit on F2 1.140 

largest diff. peak/hole, e/ Å3 1.1469/-0.650 
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Figure 5.21: Unit cell representation of Dy2Ti2O7 along the [001] direction. 
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Figure 5.22: Dy(1)O8 coordination of Ti(2)O6 polyhedra through edge-sharing of O(1) 

atoms viewed along the body-diagonal of the unit cell. 
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Figure 5.23: Frustrated triangular lattice representation in Dy2Ti2O7.  
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Figure 5.24: Representative hydrothermal crystal growth of Gd2Ti2O7.  
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Conclusions 
 

Systematic exploration of the RE2O3-TiO2 (RE=La-Lu) system by high-

temperature, high-pressure hydrothermal synthesis in two different mineralizers reveals a 

rich chemistry and a variety of new structure types across the f-block. Previously, a 

demonstration that the rare-earth oxides could be solubilized and reacted with other 

tetravalent oxides such as silicates and germanates in high-temperature hydrothermal 

fluids was accomplished. As part of this continuing effort, investigation of the reactions 

of rare-earth oxides with titanium oxide to determine if rare-earth titanates can be formed 

and if so, what form do the final products take, was undertaken. Previously, it was 

determined that reactions involving very refractory oxides often provide the best results 

when concentrated fluoride is employed as mineralizer as opposed to concentrated 

hydroxide. As part of this investigation, contrasted results from both types of mineralizer 

were examined. In almost all cases, the formation of high quality single crystals of 

various rare-earth titanates was observed. The identity of various structure types across 

the f-block ions can be attributed to three essential factors: temperature, rare-earth ionic 

radius and mineralizer.  

In general, the stability of rare-earth oxyhydroxide species, REO(OH) and 

RE(OH)3, in lower temperature (< 600˚C) hydrothermal conditions require that 

hydrothermal reactions be performed at higher temperature regimes (>600˚C) to avoid 

formation of these solids as the dominant thermodynamic products regardless of 

mineralizer choice. To obtain a rational comparison, all reactions were performed using 

the same reaction conditions of temperature, pressure, time and relative stoichiometry. 
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The only difference throughout was the choice of either 20 M KOH or 30 M CsF 

mineralizer for each reaction. 

In most cases the final product is in the form of high quality single crystals and 

mostly contains both the rare-earth and titanium. The Ti+4 ions can adopt a variety of 

coordination environments depending on mineralizer and associated rare-earth. The 

flexibility of Ti+4 to adopt either stable octahedral (6-coordinate) or square pyramidal (5-

coordinate) titanyl coordination environments is an additional factor that leads to the 

variety of structural types. In all cases, observation of the color of the crystals was 

determined by the characteristic color of the rare-earth ion, indicating no evidence of 

titanium to adopt a reduced defect habit. 

 It was determined that there is a general tendency of concentrated hydroxide 

mineralizers lead to formation of a series of rare-earth titanate oxy-hydroxides with very 

complex structures and isolation of three such complex structures, I, II and III, was 

found. A primary director of dimensionality is the ionic radius of the rare-earth ion, 

which leads to stabilization of the larger f-block (La3+-Nd+3) ions by higher oxygen 

coordination numbers. This led to isolation of high quality single crystal of 

RE5Ti4O15(OH) (RE = La3+, Er3+). In the case of intermediate sized rare-earth ions the 

RE3TiO5(OH)3 (RE = Sm3+) For the smallest rare-earth ions the RE5Ti2O11(OH) (RE = 

Tm3+-Lu3+) formulation is observed. This RE5Ti2O11(OH) structure has similarities to the 

anhydrous RE5M2O12 (M = Re, Mo, Ru) structure, while the RE3TiO5(OH)3 type is like 

some isoelectronic RE3MO5(OH)3(M = V4+, Ge4+) structures. The RE5Ti4O15(OH) family 

represents a completely new structural type. In the case of Nd and Pr, the known polar 
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RE2Ti2O7 phase is isolated, while for Gd - Ho ions the well-known cubic pyrochlore 

phases are produced. It is not yet clear to us why the chemistry is so complex and rare-

earth specific across the lanthanides and this is under further investigation. 

In marked contrast to the MOH mineralizers, the use of highly concentrated 30 M 

cesium fluoride did not result in formation of any observable oxy-hydroxide species. 

When concentrated fluoride mineralizer is used, in all cases only anhydrous rare-earth 

titanium oxides are isolated except for Sm and Eu. These most commonly include 

polymorphs of the RE2Ti2O7 pyrochlore structure, either the uniaxial monoclinic P21 

phase for the larger rare-earths, or the more traditional cubic (Fd-3m) form for the 

smaller rare-earths. The traditional outlier Ce3+ is the only unusual species forming the 

unusual species Ce2Ti4O11, also an anhydrous oxide.  

Interestingly, in comparison to the RE-Si and RE-Ge structures reported earlier, 

the RE-Ti study has led to a completely new array of structure types. The main difference 

being that in our hands, Ti+4 readily adopts 5 or 6 coordinate environments in 

hydrothermal fluids. This is highly encouraging as this ability to incorporate various 

building blocks with varying geometries will surely lead to further studies of other metal 

oxide building blocks.  

It can be concluded that the high-temperature hydrothermal technique allows for 

exploration of new oxides at temperatures (~700 °C) much lower than that of 

conventional solid-state techniques. The ability to solubilize refractory rare-earth oxides 

in this temperature regime allows large, high quality single crystals to be grown for 

detailed structural investigation as well as for possible applications such as complex 
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magnetic materials, nuclear waste storage, scintillator hosts and a variety of other uses. 

oxides such as the corresponding rare-earth tantalates, to be investigated. The conclusions 

reached here are highly encouraging. A natural progression of thinking has led to the 

investigation of rare-earth niobates as Nb+5 also has variable geometries (4- or 6-

coordinate), while displaying a fairly stable oxidative state of +5. It is expected that the 

presence of Nb+5 will lead to new and existing compounds with increased solubility under 

hydrothermal conditions.  
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CHAPTER SIX 

HYDROTHERMAL CHEMISTRY AND GROWTH OF 
FERGUSONITE-TYPE RENbO4 (RE=La-Lu, Y) SINGLE 

CRYSTALS AND NEW NIOBATE HYDROXIDES 

 

Introduction 
 

This Chapter involves a unique investigation into the refractory nature of two 

classes of high melting metal oxides: RE2O3 and Nb2O5 (RE = La-Lu). “The content of 

this Chapter is used as a reprint (adapted) from permission from Fulle, K.; McMillen, C. 

D.; Sanjeewa, L. D.; Kolis, J. W. Hydrothermal Chemistry and Growth of Fergusonite 

type RENbO4 (RE=La-Lu, Y) Single Crystals and New Niobate Hydroxides. Cryst. 

Growth and Des. 2016, 16, 4910−4917. Copyright 2016 American Chemical Society.” A 

duplicate of the copyright permission is located in Appendix.  

Many rare-earth containing materials, such as the rare-earth orthovanadates, 

REVO4 (RE = Y, Gd, Lu), display excellent properties as laser hosts and as birefringent 

materials.1 In particular, YVO4 is an excellent laser host for trivalent rare earth ions like 

Nd3+ in that the laser crystal Nd:YVO4 has much greater absorption and emission cross 

sections compared to the industry standard YAG.2 It also has a very broad absorption 

band for pumping.3 These factors make it a desirable host for microlaser and miniature 

laser applications.4 In addition, the YVO4 lattice is uniaxial tetragonal (4/mmm) and the 

material has a very high birefringence (D and the material has a very high birefringence 

(aser and miniature laser applications.rd YAG. is located in Appendix. mal Chemistry 

and Growth of Fergusonite type RENbOne by Solution Comb5 It has a low thermal 
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conductivity, fairly high isotropic thermal expansion coefficients, and most importantly 

its structure contains a weak c-plane, giving the crystals a large tendency to display 

cleavage along that plane. Also, the growth of YVO4 single crystals is complicated by the 

fact that the pentavalent vanadium ions are susceptible to reduction at high-temperature.6 

Thus during typical melt growth great care must be taken to prevent the formation of V4+ 

defect centers in the crystals, as these can have a significant effect on optical quality. 

In contrast to the well-examined YVO4 crystal and its rare-earth analogs GdVO4 

and LuVO4,7,8 the heavier congeners RENbO4 have received much less study. 

Nevertheless they have considerable potential as useful materials, maximizing their own 

positive qualities while minimizing the shortcomings of YVO4. For example, pentavalent 

niobium should be more stable than V5+ and thus have a decreased tendency to induce 

oxygen defects. The rare-earth niobates also display several attractive optical and 

luminescent properties.9 Furthermore, the different lattice structure of the niobates may 

help minimize physical detriments, such as c-plane weakness in YVO4, making it a robust 

new laser host. The heavier elements may also change the absorption coefficients and 

thermal conductivity, and lead to a denser unit cell that could serve as useful new 

scintillation hosts for gamma ray detection.  

In this Chapter, the use of Nb+5 as a structural building block is examined in a 

number of different mineralizers. Pentavalent niobium has a medium crystallographic 

radius (0.78 Å) and can adopt a variety of coordination environments from 4-coordinated 

to 8-coordinate. Additionally, niobium oxide has been shown to display physiochemical 

properties and can display Lewis and Bronsted acidities in certain basic environments. 
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This high level of flexibility makes niobium oxide (Nb2O5) an excellent candidate to react 

with the rare-earth ions (RE = La-Lu) to investigate new and existing materials. Herein, 

an examination of the RENbO4 family is used as a surrogate to the REVO4 family as an 

extension of the well-known crystal growth. The crystal growth of the family RENbO4 

was accomplished over several years and a breakthrough of this crystal growth occurred 

when implementation of a 30 M KOH mineralizer was used at high hydrothermal 

temperatures (700 °C).  

Interestingly, the structural aspects of RENbO4 are considerably more subtle and 

complex than those of YVO4. Unlike the REVO4 series, which forms in the 

straightforward tetragonal zircon structure type, the RENbO4 phase has a more 

complicated structural profile. The parent material is the natural mineral fergusonite, 

YNbO4, which is plagued by twinning issues that originally led to the assignation of the 

material as the tetragonal phase analogous to the scheelite structure. Subsequent work 

demonstrated that the room temperature phase is an I-centered or C-centered monoclinic 

structure.10,11 Furthermore, the monoclinic phase was originally thought to have an 

acentric ferroic structure, but this was subsequently shown to be a centrosymmetric 2/m 

structure type.12-16 Recently, Bayliss and coworkers noted that the similarity of the a and c 

lattice parameters in the I-centered monoclinic setting often leads to incorrect structural 

descriptions, underscoring the importance of detailed study by single crystal X-ray 

diffraction.15 The tetragonal scheelite phase is stable at high-temperature but upon 

cooling it reverts to the monoclinic fergusonite phase near 550˚C.18-21 However the 

situation is even subtler than that, since the phase change induces a series of complex 



	 266 

micro domains that result in considerable twinning. This often precludes high quality 

structural refinements, or causes significant areas of electron density to remain present in 

the difference electron density maps.  Since these micro-domains are of a ferroelastic 

nature they received a great deal of detailed study at the nanoscopic regime.22-25 

Given the appeal of the RENbO4 material as a potential optical host, the growth of 

the rare-earth niobates as high quality single crystals is of interest. The materials can be 

grown readily by melt techniques such as Czochralski pulling, but because they are 

grown at temperatures near 1800˚C and then cooled from the high-temperature melt 

through the phase transition, they inevitably result in twinned products as they cool to 

room temperature.26 Powders of NdNbO4 have been prepared through ball milling to form 

microwave dielectric materials,27 and a variety of orthoniobates have been synthesized by 

miniature pedestal growth under conditions nearing 1300 °C.28 While these techniques 

are well known, they have not yet proven effective for growth of bulk single crystals of 

suitable quality. Most recently, Liu and co-workers have synthesized GdNbO4 on a scale 

up to 100 µm using a hydroflux, but the resulting GdNbO4 could be considered to be 

more like microcystalline material than bulk single crystals.29 

The hydrothermal technique offers a comparatively low temperature alternative 

for oxide crystal growth that can be used to both solubilize the refractory starting 

materials and enable prolonged crystal growth, provided that limitations such as the 

inability to observe the reactions in situ and the reactivity of the aqueous mineralizer 

species can be managed.30 The ability to grow bulk single crystals of YVO4 and its doped 

analogs using a high-temperature hydrothermal method suggests that the technique may 
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also be suitable for growth of the rare-earth niobates.31,32 Of particular significance is the 

fact that the hydrothermal growth could occur near the phase transition of the monoclinic 

material and thus preclude the formation of the tetragonal phase to minimize or eliminate 

the twinning problems associated with higher temperature growth methods. This paper 

describes an effort to investigate the hydrothermal growth of rare-earth orthoniobates and 

grow high quality bulk single crystals of the fergusonite material. Single crystal X-ray 

diffraction of the resultant crystals demonstrates good quality structural solutions with 

minimal twinning or disorder across the entire rare-earth series. Preparation of 

lanthanide-doped RENbO4 crystals was also performed to prepare for subsequent 

investigations of the physical and optical properties of these bulk single crystals for 

application as potential laser hosts.  Along with a new growth protocol of this class of 

single crystals we also isolated several new metal niobates as part of the chemical 

investigations, and these are characterized as well.  

In previous Chapters, thorough systematic investigations of rare-earth silicates, 

rare-earth germanates, and rare-earth titanates have led to very rich chemistry. The 

natural progression of this mentality has led to the investigation of rare-earth niobates as 

this Chapter entails a systematic investigation of Nb+5 with rare-earth ions in 

hydrothermal solutions.  
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Experimental Methods 
 

Single crystals of RENbO4 and doped Ln:RENbO4 (RE= La+3, Nd3+, Eu+3, Gd+3, 

Lu+3 and Y+3; Ln = Er3+ and Yb3+) were grown under hydrothermal conditions using 

feedstock of the host component oxides and dopant oxides. All reagents were used 

directly from the commercial vendor: Y2O3 (HEFA Rare Earth, 99.9%), Lu2O3 (HEFA 

Rare Earth, 99.99%), Yb2O3 (HEFA Rare Earth, 99.99%), Er2O3 (Alfa Aesar, 99.99%), 

Gd2O3 (HEFA Rare Earth, 99.9%), Eu2O3 (HEFA Rare Earth, 99.9%), Nd2O3 (Alfa Aesar, 

99.99%), La2O3 (Alfa Aesar, 99.999%), Nb2O5 (Alfa Aesar, 99.999%), KOH pellets (Alfa 

Aesar, 99.98%).  

For the growth of RENbO4, stoichiometric reactions of rare-earth and pentavalent 

oxide components, RE2O3 + Nb2O5, in a 1:1 ratio were used. In a typical reaction, 

component binary oxides of the desired fergusonite phase were loaded into a fine silver 

ampoule (3/8" x 3"), in equimolar stoichiometries to create a total of 400 mg of solid 

oxides with 0.8 mL of DI water and suitable solid KOH to generate a 30 molar solution at 

hydrothermal temperatures. Ampoules were weld-sealed and loaded into a 718 Inconel 

autoclave with a 75% fill of DI water to serve as the desired counter-pressure. The 

autoclave was affixed with ceramic band heaters and heated to a constant temperature of 

700 °C for 10 days. This temperature typically results in an internal pressure of 1.5-2 

kbar. For growth of lanthanide-doped RENbO4, a direct component substitution was used 

to achieve the desired nominal doping. In these studies, the host and dopant oxide 
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powders were combined in a desired molar ratio, (for example, a 10% Er2O3/Gd2O3 

powder combined with Nb2O5 generates a ratio of Er0.1Gd0.9NbO4).  

 During the various synthetic studies of rare-earth orthoniobates, several new 

hydroxide niobate crystals were isolated as minor products during reactions performed at 

lower temperatures (550˚C). In reactions involving Y3+ and Lu3+, K3YNb2O7(OH)2 and 

K3LuNb2O7(OH)2 crystals result as additional minor products from the reactions 

described above. These colorless crystals were identified and separated based on their 

hexagonal rod-like habit, in contrast to the plate-like crystals of the orthoniobates.   

Pyrochlore niobate hydroxides of CsNb2O5(OH) and CsNb2O5(OH)0.5F0.5 were also 

isolated when CsOH was used as a mineralizer. Alternatively, crystals of CsNb2O5(OH) 

can be synthesized directly using 400 mg of Nb2O5 and 0.8 mL of 3-6 M CsOH at 550 °C. 

Similarly the hydroxide-fluoride species, CsNb2O5(OH)0.5F0.5, was crystallized when 

substituting 5 M CsF as the mineralizer at 550 °C. These aforementioned cesium-

containing hydroxides and hydroxide-fluorides grow as colorless polyhedral crystals on 

the order of 0.25-0.45 mm, occurring alongside unreacted Nb2O5.  
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Crystal Growth of Fergusonite-type RENbO4 (RE=La-Lu, Y).  
 
 The direct stoichiometric reaction of various RE2O3 powders and Nb2O5 was 

studied under hydrothermal conditions (500-700 °C) using several different alkali 

hydroxide mineralizer solutions in an effort to optimize the yield and size of the target 

RENbO4 phase.  Initial reactions performed at 500-600 °C resulted in the formation of 

RENbO4 powder along with minor amount of additional crystalline phases. Typically 

these minor phases consisted of more complex structures containing hydroxylated 

species. In the case of CsOH mineralizers at lower temperatures, CsNb2O5(OH) was 

formed, while  KNbO3 and K3RENb2O7(OH)2 were formed in the case of KOH 

mineralizers.  By increasing the KOH concentration above 15 M, and increasing the 

reaction temperature 700 °C, both the yield and the size of the target RENbO4 crystals 

was improved, while the hydroxide containing phases were suppressed. The fergusonite 

crystals generally form in a plate-like habit for the smaller rare-earth ions (Gd-Lu), with 

the largest crystals obtained using 30 M KOH at 700 °C.  The larger, lighter rare-earths 

(La-Nd) were also generally plate-like, but occasionally developed greater thicknesses to 

appear as more three-dimensional polyhedra. Typical crystals obtained from this high-

temperature hydrothermal growth are shown in Figure 6.1. In general under these 

conditions the larger rare-earth ions appear to form somewhat larger and higher quality 

crystals. Single crystals up to 3 mm in diameter have been grown for LaNbO4, PrNbO4, 

NdNbO4, EuNbO4 and GdNbO4, while crystals of YNbO4 and LuNbO4 have so far been 

limited to 0.5 mm in diameter.  Appreciable thicknesses up to 1 mm have been obtained 

in all cases. 
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There are several common structure types exhibited by ABO4 compounds, revealing a 

diverse chemistry, and often demonstrating complex structural transitions based on 

temperature and pressure.36,37 Based on the powder diffraction patterns in Figure 6.2 as 

well as our own single crystal X-ray diffraction studies (Tables 6.1 and 6.2), the 

RENbO4 crystals grown in the present study all conform to the fergusonite-type structure 

(space group C2/c (or often reported in its non-standard setting I2/a)), regardless of size 

of the rare-earth. The fergusonite structure is a three-dimensional framework consisting 

of irregular NbO6 and REO8 units (Tables 6.3 and 6.4). Niobium occupies a 4e Wyckoff 

position having two-fold symmetry, and forms shorter bonds to four oxygen atoms over a 

narrow range of distances (average Nb-O distances of 1.846(5) and 1.927(5) Ǻ across the 

RENbO4 family) and longer bonds to two other oxygen atoms (average Nb-O distance of 

2.455(5) Ǻ) to form the distorted NbO6 unit. It is only in these two longer bonds that the 

NbO6 unit shows significant variation as a function of the rare-earth ion, ranging from 

2.406(5) to 2.540(3) Å between the Lu and La derivatives. The NbO6 units form a one-

dimensional zigzag chain propagating by edge-shared oxygen atoms along the c-axis. 

Each shared edge consists of one longer Nb1-O2 bond and one shorter Nb1-O2 bond. If 

only the shorter Nb1-O1 and Nb1-O2 bonds are considered, the niobate unit is an isolated 

distorted tetrahedron. The rare-earth atoms also occupy a 4e site and are 8-coordinate 

with oxygen in a square antiprismatic geometry.  

The La-O bonds range from 2.468(3) to 2.551(3) Å, while the Lu-O bonds range 

from 2.277(5) to 2.374(5) Å, with the other rare-earths studied intermediate to these. The 

interatomic distances and angles derived from the hydrothermally-grown crystals (Tables 
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6.1-6.3) compare favorably with those derived from crystals and powders prepared by 

other techniques in the literature.13,15 The framework formed by edge-sharing REO8 units 

can be considered to encapsulate the propagating chains of NbO6 units to form a three-

dimensional framework. The fergusonite structural arrangement is shown in Figure 6.3. 
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Figure 6.1: GdNbO4 (left) and LaNbO4 (right) single crystals grown under hydrothermal 

conditions. 
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Figure 6.2: Powder diffraction patterns of selected RENbO4 compounds: a) Simulated 

powder pattern of LaNbO4 based on the crystal structure of hydrothermally grown 

crystals. b-e) experimental PXRD patterns of hydrothermally grown LaNbO4, GdNbO4, 

YNbO4 and LuNbO4, respectively. 
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Table 6.1: Crystallographic data of RENbO4 (RE = Y, La, Nd) determined by single 

crystal X-ray diffraction. 

empirical 
formula YNbO4 LaNbO4 NdNbO4 

formula 
weight 
(g/mol) 

245.82 295.82 301.15 

temperature 
(K) 300(2)  300(2)  300(2)  

crystal 
system monoclinic  monoclinic  monoclinic  

space group C2/c, (no.15) C2/c, (no.15) C2/c, (no.15) 

unit cell 
dimensions 
(Ǻ,°) 

a = 7.0516(7) 
b = 10.9560(11) 
c = 5.0760(9) 
β = 131.370(3) 

a = 7.3576(15) 
b = 11.538(2) 
c = 5.2128(10) 
β = 130.900(3) 

a = 7.2156(14) 
b = 11.295(2) 
c = 5.1511(10) 
β = 130.860(3) 

volume (Ǻ3) 294.29(7) 334.49(16) 317.53(15) 

Z, calcd 
density 
(Μg/m3) 

4, 5.548 4, 5.874 4, 6.299 

absorption 
coefficient 
(mm-1) 

23.324 15.857 19.601 

F(000) 448 520 532 

crystal size 
(mm) 

0.08 x 0.06 x 
0.03 

0.11 x 0.08 x 
0.06 

0.16 x 0.10 x 
0.08 

Tmax, Tmin 1.0000, 0.6692 1.0000, 0.7145 1.0000, 0.5652 

Θ range for 
data 3.72-26.48 3.53-25.24 3.61-25.24 

reflections 
collected/ 
unique/ 
observed 

754/306/304 1414/ 308/297 1306/290/277 

data/ 
restraints/ 
parameters 

306/0/30 308/0/30 290/0/30 

goodness-of-
fit on F2 1.180 1.172 1.162 

R1, wR2  
(I≥ 2σ(I)) 0.0255, 0.0800 0.0162, 0.0405 0.0276, 0.0701 

R1, wR2  
(all data) 0.0255, 0.0801 0.0166, 0.0408 0.0378, 0.0849 

extinction 
coefficient 0.051(4) 0.0114(6) 0.071(6) 
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Table 6.2: Crystallographic data of RENbO4 (RE = Eu, Gd, Lu) determined by single 

crystal X-ray diffraction. 

empirical 
formula EuNbO4 GdNbO4 LuNbO4 

formula 
weight 
(g/mol) 

308.87 314.16 331.88 

temperature 
(K) 300(2)  300(2)  300(2)  

crystal 
system monoclinic  monoclinic  monoclinic  

space group C2/c, (no.15) C2/c, (no.15) C2/c, (no.15) 

unit cell 
dimensions 
(Ǻ,°) 

a = 7.1328(6) 
b = 11.1385(10) 
c = 5.1180(4) 
β = 131.032(2) 

a = 7.1166(8) 
b = 11.0914(11) 
c = 5.1071(10) 
β = 131.131(3) 

a = 6.9805(6) 
b = 10.8271(8) 
c = 5.0406(4) 
β = 131.676(3) 

volume (Ǻ3) 306.73(5) 303.64(8) 284.54(4) 

Z, calcd 
density 
(Μg/m3) 

4, 6.689 4, 6.872 4, 7.747 

absorption 
coefficient 
(mm-1) 

23.813 25.241 38.321 

F(000) 544 548 576 

crystal size 
(mm) 

0.20 x 0.10 x 
0.05 

0.10 x 0.08 x 
0.07 

0.04 x 0.02 x 
0.02 

Tmax, Tmin 1.0000, 0.8899 1.0000, 0.7499 1.0000, 0.7062 

Θ range for 
data 3.66-33.18 3.67-30.52 3.76-26.47 

reflections 
collected/ 
unique/ 
observed 

2564/586/542 1135/458/451 1139/297/287 

data/ 
restraints/ 
parameters 

586/0/30 458/0/30 297/0/30 

goodness-of-
fit on F2 1.173 1.181 1.176 

R1, wR2  
(I≥ 2σ(I)) 0.0198, 0.0616 0.0212, 0.0630 0.0178, 0.0489 

R1, wR2  
(all data) 0.0227, 0.0628 0.0214, 0.0630 0.0189, 0.0495 

extinction 
coefficient 0.0385(17) 0.088(4) 0.0051(4) 
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Table 6.3: Selected interatomic distances (Å) and angles (°) in hydrothermally-grown 

fergusonite RENbO4 (RE = Y, La, Nd, Eu, Gd, Lu) 

 
 
 
 
 
 
 
 

 
  

 YNbO4 LaNbO4 NdNbO4 EuNbO4 GdNbO4 LuNbO4 

       
Nb1−O2 (x2) 1.847(5) 1.844(3) 1.848(9) 1.845(4) 1.844(4) 1.845(5) 
Nb1−O1 (x2) 1.928(5) 1.915(3) 1.931(9) 1.929(4) 1.929(4) 1.929(5) 
Nb1−O1 (x2) 2.424(5) 2.541(3) 2.470(9) 2.443(4) 2.448(4) 2.406(5) 
       
RE1−O2 (x2) 2.318(5) 2.468(3) 2.393(9) 2.365(4) 2.351(4) 2.277(5) 
RE1−O1 (x2) 2.328(5) 2.492(3) 2.419(9) 2.381(4) 2.367(4) 2.285(5) 
RE1−O2 (x2) 2.375(5) 2.525(3) 2.474(8) 2.424(4) 2.415(4) 2.341(5) 
RE1−O1 (x2) 2.414(5) 2.551(3) 2.500(8) 2.457(4) 2.443(4) 2.374(5) 
       
O2−Nb1−O2 103.8(3) 102.7(2) 102.7(5) 102.8(3) 103.4(3) 104.9(3) 

O2−Nb1−O1 (x2) 110.03(19
) 109.84(14) 109.5(4) 110.22(19) 109.84(18) 110.1(2) 

O2−Nb1−O1 (x2) 100.2(2) 101.28(14) 100.9(4) 100.2(2) 100.44(18) 100.1(2) 
O1−Nb1−O1 130.1(3) 129.27(19) 130.5(5) 130.5(3) 130.3(3) 129.6(3) 
O2−Nb1−O1 (x2) 77.18(19) 77.48(12) 77.6(3) 77.58(17) 77.25(16) 76.7(2) 

O2−Nb1−O1 (x2) 173.46(18
) 174.49(12) 174.3(3) 173.57(17) 173.64(16) 173.10(19) 

O1−Nb1−O1 (x2) 73.48(12) 73.62(9) 73.9(2) 73.80(11) 73.52(11) 73.14(13) 
O1−Nb1−O1 (x2) 75.94(18) 75.40(14) 75.8(4) 75.87(18) 76.08(17) 75.9(2) 
O1−Nb1−O1 102.6(2) 102.87(15) 102.7(4) 102.8(2) 102.8(2) 102.6(2) 
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Table 6.4: Bond valence analysis in hydrothermally-grown fergusonite RENbO4 (RE = 

Y, La, Nd, Eu, Gd, Lu) 

 

 
 
 
 
 

 YNbO4 LaNbO4 NdNbO4 EuNbO4 GdNbO4 LuNbO4 
       

Nb1−O2 (x2) 1.189 1.199 1.186 1.195 1.199 1.195 

Nb1−O1 (x2) 0.995 0.989 0.947 0.953 0.953 0.953 

Nb1−O1 (x2) 0.250 0.182 0.221 0.237 0.234 0.262 

ΣNb 4.868 4.740 4.708 4.770 4.772 4.820 
       

RE1−O2 (x2) 0.446 0.449 0.459 0.455 0.470 0.440 

RE1−O1 (x2) 0.434 0.421 0.428 0.436 0.450 0.431 

RE1−O2 (x2) 0.382 0.385 0.369 0.388 0.395 0.370 

RE1−O1 (x2) 0.343 0.359 0.344 0.355 0.366 0.339 

ΣRE 3.210 3.228 3.200 3.268 3.362 3.160 
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Figure 6.3: Fergusonite structure type of the rare-earth niobates:  a) the framework of 

edge-sharing REO8 units encapsulating chains of NbO6 units viewed along [001]; b) 

propagation of the NbO6 units along [001] through shared O2 edges. 
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Materials based on Eu3+ are particularly interesting for study due to their potential 

as red-emitting phosphors and the sensitivity of Eu3+ toward local site symmetry.  As 

such, the emission behavior of EuNbO4 was studied to complement the structure 

determination and demonstrate the potential of RENbO4 crystals as optical materials.  X-

ray luminescence studies resulted in the characteristic emission for Eu3+ (Figure 6.4), and 

indicated no reduction of the europium ions to a divalent state.  The orange-red emission 

of the EuNbO4 crystals exhibits several bands in the range of 590-700 nm from the f-f 

transitions.  In particular, the 5D0→7F2 emission occurring at 615 nm is much more 

intense than the 5D0→7F1 at 590 nm.  This is indicative of a lack of a center of symmetry 

at the Eu3+ sites, and consistent with the assigned 4e crystallographic site having only 2-

fold rotational symmetry.38 This simple emission behavior is promising for targeting 

intense emissions in the region of 600-630 nm. 

To help understand the scope and versatility of the hydrothermal crystal growth of 

the fergusonite structure type, the X-ray diffraction studies targeted specific RENbO4 

compositions that represent a wide range of sizes of rare-earth ions.  In particular, this 

included the optically inactive rare-earths (Y, La, Gd, Lu) that are useful as hosts for 

those rare-earth ions that can serve as spectroscopic or scintillator dopants.  The 

persistence of the fergusonite structure type across the entire size range of rare-earths is 

suggestive that nearly any combination of rare-earth host and dopant ions is plausible, 

offering great flexibility in the design of new optical materials.  This could be particularly 

interesting in  

 



	 281 

 

 

 

Figure 6.4: Room temperature emission spectrum of EuNbO4, resulting from X-ray 

excitation. 
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Figure 6.5: Infrared spectra of representative hydrothermally-grown fergusonite-type 

crystals YNbO4 and EuNbO4.  The absence of the characteristic OH- band in the 3000-

3500 cm-1 region supports the absence of OH- in the as-grown crystals. 
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the case of LuNbO4.  Since laser ions such as Er3+ and Yb3+ have nearly the same mass as 

Lu3+, those crystals may be particularly efficient in their thermal management for 

cryogenic  

or high power laser applications. In addition, the density of the materials increases 

significantly across the lanthanide series, and LuNbO4 possesses the highest density 

among the fergusonite orthoniobates (~7.75 g/cm3). This is a significant density value, 

which could lead to excellent performance as scintillator host.  The absence of OH- 

groups in the crystals was verified by infrared spectroscopy, Figure 6.5). 

Interestingly, the fergusonite structure type is considered a low temperature phase, 

exhibiting a phase transition to the tetragonal scheelite structure type above 500 °C, with 

the apparent gradual onset of the scheelite phase starting from slightly above 500 to 

800˚C.18 In most previous structural studies the fergusonite material was prepared at 

much higher temperatures by a melt or flux technique. These preparation temperatures 

are well above the phase transition point, inevitably resulting in twin formation from 

multiple ferroelastic domains induced as the material cools through the phase transition. 

Since the crystals in the present study were grown near the phase transition regime, we 

surmise that the hydrothermal conditions facilitate the growth of the C2/c fergusonite-

type phase as bulk crystals with much larger single crystalline domains.23-25 Indeed this 

proved to be the case as the previously reported twinned crystals had domains on the 

order of tens or hundreds of nanometers, while the crystals grown in this study showed no 

evidence of significant twin domains over the order of tens to hundreds of microns in the 

single crystal diffraction studies. Reflection profiles from single crystal diffraction were 
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Gaussian and symmetrical (Figure 6.6), and exhibited narrow peak widths consistent 

with low mosaicity (FWHM values generally in the range of 0.25-0.45 degrees for a 0.1 

degree scan width in 2-theta).  Apparent domains of 0.5-1 mm are visible in the changing 

orientation of growth striations on the surfaces of very large crystals.  Some examples are 

shown in Figure 6.7, and correspond to a domain rotation about the crystallographic b-

axis.  Domains well beyond the nanoscale are observed in the hydrothermally-grown 

fergusonite crystals. 

 

Synthesis and Structures of New Niobate Hydroxides.  

In the course of the hydrothermal synthesis of the rare-earth orthoniobates, several new 

alkali niobate hydroxides have also been discovered and crystallographically 

characterized (Tables 6.5 and 6.6). The work was motivated by an interest in growing 

the various rare-earth niobate fergusonite phases at lower reaction temperatures (ca. 500-

550˚C) in an attempt to further minimize twinning domains. During these studies a 

number of hydrothermal conditions and mineralizers were investigated. In particular, we 

isolated a number of new hydroxide-containing minor phases as a function of the nature 

of mineralizer in the growth reactions at these lower temperatures. Sensitivity of the 

hydrothermal reactions toward the nature of the mineralizers resulted in the incorporation 

of the alkali metal ions to stabilize these new phases, which occur presumably as side 

products to the RENbO4 phases.  Two general structure types were encountered 

depending on whether the reaction utilized KOH or CsOH mineralizers. In the case of 

potassium mineralizers a new K3RENb2O7(OH)2 (RE = Y, Lu) phase was observed. When 
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cesium-based mineralizers were used CsNb2O5(OH) was isolated regardless of rare-earth 

employed. In the latter instance, if a mixture of CsF/CsOH mineralizer was used, it also 

resulted in a mixture of OH- and F- ions in the of CsNb2O5(OH) lattice.  In all cases these 

materials are relatively minor impurities and can be eliminated from the final product 

profile by performing the growth reactions at slightly higher temperatures. In general, we  

find that that this type of behavior is typical of hydrothermal growth of many refractory 

oxides. At some lower temperatures some oxy-hydroxide phase(s) can be observed. 

These are often interesting and complex structures, but can often be eliminated by growth 

at some higher temperature.  
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Figure 6.6: Representative rocking curve profiles from single crystal X-ray diffraction 

reflections of GdNbO4. 
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Figure 6.7: EuNbO4 crystals having multiple domains as indicated by directional 

variations in surface striations. 
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The alkali rare-earth niobate hydroxides are a relatively limited class of 

compounds.  To our knowledge, the only other reported single crystal structure in this 

class that exhibits a unique alkali metal site and a coordinated hydroxide group is 

K3(Sc0.875Nb0.125)Nb2O7(OH)1.75, reported previously by our group.39 In that structure, some 

of the niobium ions were substitutionally disordered with scandium ions, and the blue 

color of the crystals was indicative of some reduction of Nb5+ to Nb3+ (compensated by a 

partial vacancy of the OH site). The compounds K3YNb2O7(OH)2 and K3LuNb2O7(OH)2 

are isostructural with that potassium scandium niobate hydroxide, but extend our 

understanding of the structure type in several ways.  Notably, crystals in the present study 

are colorless, indicating all of the niobium ions are in the pentavalent state, and thus the 

OH site in the structure requires no vacancy compensation. We also do not observe any 

apparent substitution of Nb at the rare-earth site, which was previously deduced from the 

anisotropic displacement parameters of the scandium site in that compound.  This is 

likely attributed to the larger size of Lu3+ and Y3+ relative to Sc3+ that reduces the 

tendency for substitutional disorder with the smaller Nb3+ or Nb5+ ions.  

The general framework of rare-earth octahedra and distorted niobium octahedra 

remains the same for the Sc, Lu, and Y analogs. The structure of the yttrium analog is 

briefly described here as the representative example (Tables 6.7 and 6.8) for selected 

interatomic distances and angles, and bond valence sums, respectively).  The 

coordination about niobium can be described as a NbO4(OH)2 octahedron, and the 

niobium atom possesses 3m site symmetry. The hydrogen atom attached to O1 was 
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identified from the difference electron density map, confirmed by bond valence 

calculations, and set to 2/3 occupancy to achieve charge balance.  The NbO4(OH)2 

octahedra form a Nb2O7(OH)2 dimer through face-sharing of atom O1 (Figure 6.8). The 

Nb-O1 bonds are somewhat elongated (2.194(7) Å) compared to Nb-O2 (1.867(5) Ǻ). A 

similar distortion and bridging arrangement, though without the hydrogen atom, is 

observed in the Nb2O9 dimer of Mg4Nb2O9, which possesses trigonal symmetry (space 

group P-3c1) and somewhat similar unit cell parameters (a = 5.1612(7) Å, c = 14.028(1) 

Å).40 Potassium atoms fill the gaps in the resulting framework of yttrium and niobium 

octahedra, and are 12-coordinate with oxygen at both unique potassium sites.   
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Table 6.5: Crystallographic Data of Niobate Hydroxide Compounds 
 

empirical formula K3YNb2O7(OH)2  K3LuNb2O7(OH)2 

formula weight (g/mol) 538.05 624.11 

crystal system hexagonal  hexagonal 

space group P63/mmc 
(no.194) P63/mmc (no.194) 

unit cell dimensions (Ǻ) 
a = 5.9770(12) 

c = 14.901(2) 

a = 5.9494(12) 

c = 14.8348(19) 

volume (Ǻ3) 461.01(15) 454.74(14) 

Z, calcd density (Mg/m3) 2, 3.876 2, 4.558 

absorption coefficient 
(mm-1) 10.066 14.648 

F(000) 504 568 

crystal size (mm) 0.17 x 0.20x 
0.25 0.16 x 0.20 x 0.22 

Tmax, Tmin 0.8508, 1.0000 0.5167, 1.0000 

Θ range for data 2.73-25.17 2.75-25.19 

reflections collected/ 
unique/observed 3669/191/187 3547/190/190 

data/restraints/parameters 191/0/22 190/0/22 

goodness-of-fit on F2 1.146 1.181 

R1, wR2 (I≥ 2σ(I)) 0.0303, 0.0761 0.0337, 0.0678 

R1, wR2 (all data) 0.0309, 0.0765 0.0337, 0.0678 

extinction coefficient 0.0050(15) 0.0028(11) 
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Table 6.6: Crystallographic Data of Niobate Hydroxide Compounds 
 

empirical formula CsNb2O5(OH) CsNb2O5(OH)0.5F0.5 

formula weight (g/mol) 415.74 416.73 

crystal system cubic cubic 

space group Fd-3m (no.227)  Fd-3m (no.227) 

unit cell dimensions (Ǻ) a = 10.5869(14) a = 10.5519(12) 

volume (Ǻ3) 1186.6(2) 1174.9(2) 

Z, calcd density (Mg/m3) 8, 4.654 8, 4.712 

absorption coefficient 
(mm-1) 9.867 9.972 

F(000) 1488 1488 

crystal size (mm) 0.20 x 0.22 x 0.25 0.22 x 0.22 x 0.25 

Tmax, Tmin 0.9401, 1.0000 0.6522, 1.0000 

Θ range for data 3.33-25.12 3.34-25.21 

reflections collected/ 
unique/observed 2032/70/68 2228/70/70 

data/restraints/parameters 70/0/9 70/0/9 

goodness-of-fit on F2 1.139 1.192 

R1, wR2 (I≥ 2σ(I)) 0.0336, 0.0741 0.0363, 0.0950 

R1, wR2 (all data) 0.0343, 0.0745 0.0363, 0.0950 

extinction coefficient 0.0029(5) 0.0045(8) 
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Table 6.7: Selected interatomic distances (Å) and angles (°) in hydrothermally-grown  
 

.K3RENb2O7(OH)2 (RE = Y, Lu) 
 

 K3YNb2O7(OH)2 K3LuNb2O7(OH)2 

   
Nb1−O2 (x3) 1.867(5) 1.868(7) 
Nb1−O1 (x3) 2.194(7) 2.189(9) 
   
RE1−O2 (x6) 2.213(5) 2.190(7) 
   
K1−O2 (x6) 2.990(6) 2.976(9) 
K1−O1 (x3) 3.050(7) 3.049(9) 
K1−O2 (x3) 3.121(5) 3.091(7) 
   
O2−Nb1−O2 (x3) 100.3(2) 100.4(3) 
O2−Nb1−O1 (x6) 91.17(17) 91.2(2) 
O2−Nb1−O1 (x3) 162.0(2) 161.7(3) 
O1−Nb1−O1 (x3) 74.6(3) 74.3(4) 
   
O2−RE1−O2 (x3) 180.00 180.00 
O2−RE1−O2 (x6) 90.72(19) 90.6(3) 
O2−RE1−O2 (x6) 89.28(19) 89.4(3) 
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Table 6.8: Bond valence analysis of hydrothermally-grown K3RENb2O7(OH)2 (RE = Y, 

Lu) 

 K3YNb2O7(OH)2 K3LuNb2O7(OH)2 
	 	 	

Nb1−O2 (x3) 1.126 1.123 
Nb1−O1 (x3) 0.465 0.472 
ΣNb 4.746 4.785 
   
RE1−O2 (x6) 0.592 0.557 
ΣRE 3.552 3.342 
   
K1−O2 (x6) 0.098 0.102 
K1−O1 (x3) 0.084 0.084 
K1−O2 (x3) 0.069 0.075 
ΣK 1.047 1.089 
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Table 6.9: Selected interatomic distances (Å) and angles (°) in hydrothermally-grown 

CsNb2O5(OH,F) 

 CsNb2O5(OH) CsNb2O5(OH)0.5F0.5 
   

Nb1−O1/F1 (x6) 1.987(2) 1.9806(18) 
   

Cs1−O1/F1 (x6) 3.302(7) 3.291(5) 

Cs1−O1/F1 (x6) 3.8000(13) 3.7874(10) 
   

O1/F1−Nb1−O1/F1 (x3) 180.00 180.00 

O1/F1−Nb1−O1/F1 (x6) 90.2(3) 90.2(2) 

O1/F1−Nb1−O1/F1 (x6) 89.8(3) 89.8(2) 
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Table 6.10: Bond valence analysis of hydrothermally-grown CsNb2O5(OH,F) 
 

 CsNb2O5(OH) CsNb2O5(OH)0.5F0.5 

   
Nb1−O1/F1 (x6) 0.814 0.829 
ΣNb 4.884 4.974 
   
Cs1−O1/F1 (x6) 0.091 0.094 
Cs1−O1/F1 (x6) 0.024 0.025 
ΣCs 0.69 0.714 
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Figure 6.8: Structure of K3YNb2O7(OH)2: a) projection along [001] showing the corner 

sharing yttrium niobate framework; b) projection along [100] featuring the Nb2O7(OH)2 

dimer (hydrogen atoms omitted for clarity). 
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The compounds CsNb2O5(OH) and CsNb2O5(OH,F) are based on the pyrochlore 

structure type including the general formulas of A2B2O6 and A2B2O7 in the cubic space 

group Fd-3m.41,42 The standard pyrochlore structure is based on the niobate mineral 

(Na,Ca)2Nb2O6(OH,F), where the Na/Ca atoms occupy a 16d Wyckoff site.  Alternative 

niobate and tantalate pyrochlores, often described as defect- or β-pyrochlores are also 

well known, and often obtained from low temperature hydrothermal or soft fluoride 

crystal growth.43 In these cases, an alkali metal occupies the 8b site instead of the 16d 

site.  This necessarily results in an anion vacancy at an 8b site occupied in the standard 

pyrochlore to maintain charge balance.  A number of such phases like CsNb2O5F and 

NH4Nb2O5(OH,F) are known to adopt this arrangement,43 and indeed this includes 

CsNb2O5(OH) and CsNb2O5(OH,F) herein.  In our cases, the anion site of the defect 

pyrochlore is 5/6 occupied by O and 1/6 occupied by OH, or a mixture of OH/F.  We note 

that the lattice parameter for CsNb2O5(OH) (10.5869(14) Å) is slightly larger than that 

derived from powder diffraction for CsNb2O5F (10.538(4) Å 43), and the lattice parameter 

of CsNb2O5(OH,F) is intermediate of these two values (10.5519(12) Å), consistent with 

the expected trend based on the anion sizes. 

The presence of some fluoride substitution was supported by EDX (Figure 6.10) 

for CsNb2O5(OH,F).  The presence of hydroxide in both structures was verified by 

infrared spectroscopy (Figure 6.11). Channels are formed by a three-dimensional 

framework of corner sharing NbO6 octahedra (Nb-O = 1.987(2) Å; Tables 6.9 and 6.10). 

Cesium ions are off-center in the channels (Figure 6.9) and staggered along their length, 

maintaining fairly long contacts with oxygen (Cs-O = 3.302(7) and 3.800(13) Å).  
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Niobate pyrochlores have been shown to be useful as solid electrolyte fuel cells with an 

emphasis on ionic conductivity, a characteristic enabled by cation migration through the 

pyrochlore channels.44 Decomposition of CsNb2O5(OH) occurs via water loss from the 

OH groups upon heating in air from 225-325 °C(Figure 6.12; 2.2% expected mass loss, 

2.3% observed mass loss).45 
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Figure 6.9: Pyrochlore structure type of CsNb2O5(OH) and CsNb2O5(OH,F) along the 

[101] projection.  Channels are formed by a framework of corner-sharing niobium oxide 

octahedra.  Disordered hydrogen atoms are omitted for clarity. 
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Figure 6.10: EDX spectrum of CsNb2O5(OH,F). 
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Figure 6.11: Infrared spectra of CsNb2O5(OH) and CsNb2O5(OH,F). 
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Figure 6.12: TGA of CsNb2O5(OH). 
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Conclusions 
 

In this study, a demonstration that the rare-earth niobates, RENbO4 (RE = Y, La-

Lu), can be grown as large high quality single crystals using a high-temperature 

hydrothermal technique was accomplished. The approach is a straightforward extension 

of our method of growing the more common YVO4 crystals for potential optical 

applications. The crystals all grow in the fergusonite phase in space group C2/c, which is 

a low temperature phase of this composition. A tetragonal phase is known to occur when 

grown at high-temperatures (> 800˚C) and converts to this monoclinic phase upon 

cooling. This phase transformation is not a simple one and leads to the formation of 

ferroelastic twinning domains during the phase transition. Since the hydrothermal 

technique enables growth at much lower temperatures (< 700˚C) than the classical melt 

methods for these refractory niobates, large single crystals were grown near or below the 

phase transition temperature in this study. This enabled the growth of single domain 

crystals of all the rare-earth analogs of RENbO4. At somewhat lower growth temperatures 

a series of hydroxy-niobates were also isolated and characterized. Similar species have 

been observed in the past from subcritical hydrothermal (200˚C) reactions, although not 

as large well-formed crystals as described herein. These species appear to be stabilized by 

the lower temperatures, as higher growth temperatures convert all starting material into 

quantitative amounts of the pure fergusonite phase. The preparation of lanthanide doped 

single crystals of the fergusonite phase was also achieved, and the study of their optical 

properties is ongoing.  The RENbO4 crystals based on the heaviest rare-earths also 

possess quite high densities, making them potential hosts for scintillation detectors.  
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Here, the niobium oxide serves as an excellent building block to initiate and 

sustain crystal growth of rare-earth niobates (RENbO4) and produce new hydroxide side 

products. While the Nb ion is always in the Nb+5 state in this study, it displays a great 

degree of flexibility within the crystal lattice. The refractory nature of niobium oxide 

(Nb2O5) with the rare-earth ions is not surprising. The ability to encapsulate two 

refractory oxides and drive their crystal growth at temperatures more than 1000 °C below 

their melting points by the hydrothermal technique creates more evidence and continues 

to validate this technique in comparison to conventional solid-state techniques. Given the 

success of this project and the success with rare-earth titanates, exploration into 

refractory oxides of uranium and thorium with titanium oxide will be explored in Chapter 

7. Each success gives continued confidence that the hydrothermal crystal growth with 

soluble building blocks will continue to lead to rich chemistry now and moving forward.  

As mentioned in the introduction, previous investigations into rare-earth silicates, 

rare-earth germanates and rare-earth titanates has led to this current investigation of rare-

earth niobates. The hydrothermal fluid in tandem with unique building blocks continues 

to lead to new and rich chemistry studies and the way we think about the solubility of 

these refractory oxides.  
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CHAPTER SEVEN 

HYDROTHERMAL GROWTH OF ThTi2O6 AND UTi2O6 

 

Introduction 
 
 The synthesis and characterization of two polymorphs of the MTi2O6 (M = Th4+, 

U4+) structure type are presented and discussed. As an extension of the titanate work 

presented in Chapter Six, an investigation from trivalent rare-earth ions into two 

refractory tetravalent actinide oxides via the high-temperature and high-pressure 

hydrothermal method were examined. Thorium oxide (ThO2) and uranium (IV) oxide 

(UO2) represent two refractory oxides that display minimal solubility via conventional 

solid-state techniques. The high melting points, > 2,800˚C, of these two metal oxides 

make it incredibly difficult to explore their reactivity using conventional means.  

 Recently, our group has shown that ThO2 can be solubilized via the hydrothermal 

technique to nucleate and transport crystals of ThO2 in hydrothermal mineralizers of 

cesium fluoride, CsF.1 Using this knowledge, in addition to the knowledge gained in the 

growth of other refractory oxides, the binary systems of ThO2-TiO2 and UO2-TiO2 were 

examined. For this investigation, experience from the refractory oxides of the wadeite-

mineral type were combined with knowledge of rare-earth titanates. The belief being that 

new refractory oxides could be synthesized if the mineralizer type and temperature 

regime were optimized. The knowledge that ThO2, UO2 and TiO2 are soluble in 

hydrothermal fluids paved the way for this initial investigation. A brief background on 
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ThTi2O6 and UTi2O6 will give additional merit to the difficulty in the growth of these two 

oxides.  

 Thorium titanate, ThTi2O6 has been reported in two polymorphic states. In the 

first case, ThTi2O6 exists as the thorutite mineral family, which is isostructural with the 

uranium analog known as brannerite.1,2 Thorutite was initially described by two Russian 

scientists, Gotman and Khapaev, in 1958 from an unspecified location.3 In the initial 

investigation, ThTi2O6 was found to contain up to 4 wt.% of rare-earth ions (RE = Ce, La 

or Nd). This polymorph was first reported synthetically by Ruh and Wadsley in 1966 and 

was synthesized via sintering of binary powder of ThO2 and TiO2 at 1610 °C under 

vacuum and further treated in air at 1000 °C to yield a single crystal which was studied.3 

The unit cell parameter of thorutite-type ThTi2O6 consists of a = 9.822(5) Å, b = 3.824(2) 

Å, and c = 7.036(5) Å with β = 118.84(5) °, consistent with that of other brannerite-type 

minerals, UTi2O6 and CeTi2O6 in space group C2/m.5 A second examination of this 

composition was performed by Mitchell and Chakhmouradian in which sintered powder 

of ThTi2O6 (C2/m) was synthesized and a solid solution series was explored with 

perovskite-type laporite, NaLREETi2O6 (RE = La-Nd), in which Th4+ uptake was 

examined as a route to actinide immobilization.4 The monoclinic C2/c setting of ThTi2O6 

has been reported by Zunic’ and Loye and have been synthesized via melt techniques.6,7 

The unit cell parameters reported by Loye and co-workers consists of a = 10.808(2) Å, b 

= 8.580(2) Å, and c = 5.196(2) Å with β = 115.25(8)°.6 Both titanate structures are built 

on layers of edge-sharing TiO6 coordinated by either six- or eight-coordinated thorium 
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atoms. In the thorutite form (C2/m) thorium polyhedra adopt a 6-coordinate environment 

and in the second form (C2/c), thorium titanate adopts an 8-coordinate environment.4  

 Uranium titanate, UTi2O6, appears to only adopt the brannerite form C2/m form as 

no reports of the C2/c setting can be found. The first crystal structure of this compound 

reported by single crystal diffraction was by Szymanksi and Scott in 1982.8 Interestingly, 

the authors point out that ThTi2O6 in C2/c was incorrectly referred to as a brannerite 

mineral by Ruh and Wadsley in 1966. In that study, a cryolite-fusion technique was 

employed in their powder and single crystal synthesis of UTi2O6. A second report of 

UTi2O6 is described by Vance and co-workers in which the limits of Ca2+ and Gd3+ 

substitution into the U4+ site was investigated.  

 In all cases, no large bulk crystal growth of ThTi2O6 or UTi2O6 were described. 

For uses in actinide remediation and immobilization, crystal growth of sufficient size is 

necessary to examine incorporation of ions and stability of the natural product. In the 

case of ThTi2O6, it is difficult to pinpoint a phase director as the hydrothermal crystal 

growth of ThTi2O6 at high-pressure and high-temperature clearly indicates that Mitchell 

and Chakhmouradian’s statement that, “ThTi2O6 does not crystallize at high-pressure…” 

was incorrect.4 Herein, a report of the crystal growth of thorium titanate ThTi2O6 (C2/c) 

and uranium titanate (C2/m) are described for the first time via high-pressure and high-

temperature hydrothermal synthesis.  

 Interestingly, according to Ruh and Wadsley, brannerite UTi2O6 is not related to 

the columbite structure type, (Fe2+Nb2O6), which adopts an orthorhombic symmetry in 

Pbcn.5 However, it does appear that brannerite UTi2O6 is a defect form of rutile, TiO2, 
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with sheets sliced along the (101) direction correlating to the sheets of octahedra found in 

the unit cell of UTi2O6 along the b-axis.5 For thorutite, ThTi2O6, besides forming anatase-

like chains of the titanium oxide polyhedra in the structure, there appears to be no direct 

correlation to other AB2O6 structures like orthorhombic columbite.7  
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Experimental Methods 
 
 Single crystals of ThTi2O6 and UTi2O6 were grown from stoichiometric reactions 

of binary oxides under high-temperature and high-pressure hydrothermal reactions. In the 

case of ThTi2O6, ThO2 (93 mg, 0.354 mmol) was reacted with TiO2 (57 mg, 0.708 mmol) 

at 750 °C for 7 days with 0.4 mL of 6 M CsF mineralizer. No presence of impurities was 

detected in the as-grown material by PXRD, Figure 7.6. In the case of UTi2O6, UO2 (94 

mg, 0.349 mmol) was reacted with TiO2 (56 mg, 0.698 mmol) at 750 °C for 7 days with 

0.4 mL of 6 M CsF mineralizer. No presence of impurities was detected in the as-grown 

material by PXRD, Figure 7.7. For preparation of UO2 powder, uranium acetate 

(UO2(C2H3O2)2 + 2H2O) was decomposed at 500 °C for 6 hours. The resultant black 

chunky powder was ground and pressed into a pellet using a hydraulic pellet press. The 

pellet was subsequently heated at 500 °C for 6 hours. This powder was subsequently 

treated with TiO2 as described above.  

 

Crystal Structure of ThTi2O6 
 
 The crystal structure of hydrothermally grown thorium titanate, ThTi2O6, is 

described. The unit cell parameters are given below in Table 7.1. ThTi2O6 (C2/c) is based 

on two unique metal sites, Th(1)O8 and Ti(1)O6, and three unique oxygen sites. Bond 

distances for ThTi2O6 are reported in Table 7.2. Bond valence sum calculations were 

performed and are in good agreement with the oxidation states reported in the titanate 

structures, Table 7.3. Sample crystal growth for ThTi2O6 is shown below in Figure 7.1b. 



	 314 

The hydrothermally grown crystals grow as nice 3-D polyhedra habits and can be grown 

up to several millimeters in size with the aid of concentrated CsF mineralizers.  

The full unit cell representation is shown in Figure 7.2. Th(1) is 8-coordinate and 

displays Th(1)-O bond distances ranging from 2.368(4)-2.658(4) Å. Thorium oxide 

polyhedra form a one-dimensional zigzag chain extending in the [001] direction through 

edge-sharing of O(1) atoms, Figure 7.3a. These chains form solid-state pillars within the 

framework and aid in stabilizing the crystal lattice. Within the lattice, Ti(1)O6 can be seen 

forming layers in the (100) plane. Each Ti(1)O6 polyhedra is edge-sharing of O(1) and 

O(3) atoms to form a continues titanate sheet, Figure 7.3b. Each Th(1)O8 polyhedra 

coordinates twelve Ti(1)O6 polyhedra through edge-sharing of O(1), corner-sharing of 

O(1), corner-sharing of O(2), edge-sharing of O(1)/O(2), or corner-sharing of O(3) 

atoms. Ti(1)-O bond lengths range from 1.864(4)-2.014(4) Å and are in good agreement 

with expected Ti(1)O6 environments. ThTi2O6 can be grown as a phase pure product 

under hydrothermal conditions indicated by the PXRD of the as-grown and simulated 

material, Figure 7.6.  

 

Crystal Structure of UTi2O6 
 

The crystal structure of hydrothermally grown uranium titanate, UTi2O6, is 

described. The unit cell parameters are given below in Table 7.1. UTi2O6 (C2/m) is based 

on two unique metal sites, U(1)O8 and Ti(1)O6, and three unique oxygen sites. Bond 

distances for UTi2O6 are reported in Table 7.2. Bond valence sum calculations were 

performed and are in good agreement with the oxidation states reported in the titanate 
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structures, Table 7.3. Sample crystal growth for UTi2O6 is shown below in Figure 7.1a. 

The hydrothermally grown crystals grow as well-formed rods and can be grown up to 3-5 

millimeters in size with the aid of concentrated CsF mineralizers. The crystals show a 

characteristic green color (U4+) which appears black in the bulk material.  

The full unit cell representation is shown in Figure 7.4. U(1) can be described as 

6 + 2-coordinate and displays U(1)-O bond distances ranging from 2.264(5)-2.264(5) Å 

with two long bonds to O(1) at 2.836(5) Å. Uranium oxide polyhedra form a one-

dimensional chain extending in the [010] direction through edge-sharing of O(2) atoms, 

Figure 7.5a. These chains form solid-state pillars within the framework and aid in 

stabilizing the crystal lattice. Within the lattice, Ti(1)O6 can be seen forming layers in the 

(001) plane. Each Ti(1)O6 polyhedra is edge-sharing of O(1) and O(3) atoms to form a 

continues titanate ladder arrangement, Figure 7.5b. Each U(1)O8 polyhedra coordinates 

four Ti(1)O6 polyhedra through edge-sharing of O(2)and corner-sharing of O(3) atoms. 

Ti(1)-O bond lengths range from 1.850(6)-2.105(5) Å and are in good agreement with 

expected Ti(1)O6 environments. UTi2O6 can be grown as a phase pure product under 

hydrothermal conditions indicated by the PXRD of the as-grown and simulated material, 

Figure 7.7. 
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Table 7.1: Crystallographic data for ThTi2O6 and UTi2O6. 
 

 
 
 
 
	
 
 
 
	
 
 
 
	
 
 
 
	
 
 
 
	
 
 
 
	
 

 
 
	
 
 
 
	
 
 
 
	
 
 
 
	
 
 
 
	
 
 
 
	
 
 
 
	
 
 
 
	
 
 
 

empirical 
formula 

ThTi2O6 UTi2O6 

formula weight 
(g/mol) 

423.84 429.83 

crystal system Monoclinic Monoclinic 

space group, Z C2/c, 4 C2/m, 2 

temperature, K 298(2) 298(2) 

crystal size (mm) 0.06 x 0.06 x 0.07 0.05 x 0.05 x0.06 

a, Å 10.8202(6) 9.8245(7) 

b, Å 8.5891(4) 3.7726(2) 

c, Å 5.2020(3) 6.9388(5) 

β, ° 115.2951(17 118.970(3) 

volume, Å3 437.10(4) 225.00(3) 

calculated 
density (µg/m3) 

6.441 6.344 

absorption 
coefficient (mm-

1) 

37.442 39.302 

F(000) 728 368 

Tmax, Tmin 1.0000, 0.3552 1.0000, 0.7542 

Θ range for data 3.156-30.594 3.356-25.998 

reflections 
collected 

10471 1188 

data/restraints/p
arameters 

675/0/42 259/0/30 

final R [I> 2σ(I)] 
R1, wR2 

0.0177, 0.0420 0.0143, 0.0368,  

final R (all data) 
R1, wR2 

0.0182, 0.0421 0.0143, 0.0368 

goodness-of-fit 
on F2 

1.179 1.048 

largest diff. 
peak/hole, e/ Å3 

1.313, -2.521 1.252, -1.154 
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Table 7.2: Bond distances (Å) for ThTi2O6 and UTi2O6. 
 

ThTi2O6 UTi2O6 
Th(1)O8 U(1)O8 

Th(1)-O(1) x2 2.368(4) U(1)-O(1) x2 2.836(5) 
Th(1)-O(1) x2 2.658(4) U(1)-O(2) x4 2.298(3) 
Th(1)-O(2) x2 2.326(4) U(1)-O(3) x2 2.264(5) 
Th(1)-O(3) x2 2.467(4) Ti(1)O6 

Ti(1)O6 Ti(1)-O(1) x2 1.9455(13) 
Ti(1)-O(1) 2.001(4) Ti(1)-O(1) 2.105(5) 
Ti(1)-O(1) 2.007(4) Ti(1)-O(2) 1.874(5) 
Ti(1)-O(2) 1.864(4) Ti(1)-O(3) 1.850(6) 
Ti(1)-O(2) 2.014(4) Ti(1)-O(3) 2.055(5) 
Ti(1)-O(3) 1.928(4)  
Ti(1)-O(3) 1.946(4)  
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Table 7.3: Bond Valence Sum Calculations for ThTi2O6 and UTi2O6. 

 
ThTi2O6 UTi2O6 
Th(1)O8 U(1)O8 

Th(1)-O(1) x2 1.162 U(1)-O(1) x2 0.283 
Th(1)-O(1) x2 0.531 U(1)-O(2) x4 2.420 
Th(1)-O(2) x2 1.301 U(1)-O(3) x2 1.326 
Th(1)-O(3) x2 0.889 ΣU(1) 4.03 
ΣTh(1) 3.88 Ti(1)O6 

Ti(1)O6 Ti(1)-O(1) x2 1.401 
Ti(1)-O(1) 0.605 Ti(1)-O(1) 0.457 
Ti(1)-O(1) 0.595 Ti(1)-O(2) 0.853 
Ti(1)-O(2) 0.876 Ti(1)-O(3) 0.910 
Ti(1)-O(2) 0.584 Ti(1)-O(3) 0.523 
Ti(1)-O(3) 0.737 ΣTi(1) 4.15 
Ti(1)-O(3) 0.702  
ΣTi(1) 4.09  
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Figure 7.1: Sample crystal growth and habit for (a) UTi2O6 and (b) ThTi2O6 crystals. 

  



	 320 

 

 

 

 

 

 

Figure 7.2: Full unit cell representation of ThTi2O6 highlighting chains of thorium oxide 

and layers titanium oxide extending in the bc-plane.  
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Figure 7.3: (a) Th(1) chain extending along the [001] direction through edge-sharing of 

O(1) atoms. (b) Titanium oxide sheet highlighting edge-sharing of O(1) and O(3) atoms 

in the (100) plane.  
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Figure 7.4: Full unit cell representation of UTi2O6 highlighting chains of uranium oxide 

and layers titanium oxide extending in [010] direction.  
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Figure 7.5: (a) U(1) chain extending along the [010] direction through edge-sharing of 

O(2) atoms. (b) Titanium oxide sheet highlighting edge-sharing of O(1) and O(3) atoms 

in the (001) plane.  
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Figure 7.6: Simulated and experimental powder patter of ThTi2O6 showing no indication 

of impurities in the hydrothermally-grown powder.  
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Figure 7.7: Simulated and experimental powder patter of UTi2O6 showing no indication 

of impurities in the hydrothermally-grown powder.  
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Conclusions 
 
 In this Chapter, it has been demonstrated that two highly refractory oxides can be 

grown from the high-temperature and high-pressure hydrothermal technique. The first 

examples of bulk crystal growth of ThTi2O6 and UTi2O6 have been shown. To grow 

single crystals of these two compounds, component oxides of ThO2 and UO2 were 

combined in a stoichiometric fashion in the presence of TiO2 to examine the phase space 

of products under hydrothermal conditions. It was found that cesium fluoride, CsF, gives 

the best conditions for crystal growth of the reported compounds. The use of potassium 

containing mineralizers, KF, KOH and K2CO3, resulted in potassium titanate formation. 

 It appears from the results reported here, in tandem with previous Chapters, that 

concentrated fluoride mineralizers provide an excellent avenue into the solubility and 

growth of highly refractory oxides. While the melting points of ThO2 and UO2 exceed 

2500 °C, we have shown that exploratory chemistry can be accomplished under 

hydrothermal thermal regimes nearly 2000 °C lower. 

 It should be noted that the two compounds reported in this Chapter represent the 

two most refractory compounds reported in this dissertation. Additionally, the ability to 

stabilize U4+ under highly basic mineralizer is encouraging for future research in which 

the spin state, S = 1, can be examined in other systems like hafnates and zirconates. 

While U6+ products such as Cs2U2O7 were also synthesized in this project, the ability to 

maintain a certain level of chemical control over heavy metals that are susceptible to 

multiple oxidation states is encouraging moving forward.  
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CHAPTER EIGHT 
 

CONCLUSIONS 

 
 

 A demonstration of the high-temperature and high-pressure hydrothermal 

technique as a route to crystal growth of new and existing refractory oxides has been 

achieved. Crystal growth is an interesting field to explore due to the ability of the crystal 

grower to gain experience over many disciples including: solid-state synthesis, analytical 

and physical chemistry, characterization, optical and magnetic spectroscopy, just to list a 

few. The exposure and interaction with many disciplines and experts in these fields 

facilitates a crystal grower that has a wide understanding of materials.  

 In this dissertation, focus on the solubility and crystal-growth of highly refractory 

oxides have been achieved. Refractory oxides are a general class of materials that display 

melting points generally in the range of 2000 °C or higher. There are very few solid-state 

techniques that can achieve solubility or crystal growth of oxides in this range due to the 

inherit oxygen-defects, poor crystal quality, and inclusion of metal contaminants of these 

techniques. Therefore, very little crystal growth and basic material synthesis has been 

accomplished and explored with refractory oxides. Generally, these materials have high 

densities, high thermal electric and laser damage thresholds that make them ideal 

candidates for applications in scintillators, lasers, and actinide remediation, just to list a 

few.  
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 Throughout this dissertation, several points of discussion have continued to be 

highlighted. As a general course of action, the hypothesis that the hydrothermal technique 

could be used in tandem with soluble tetravalent and pentavalent metal oxides in highly 

basic fluoride and hydroxide mineralizers to drive solubility of refractory oxides into 

solution has been discussed. It was found that oxides of SiO2, GeO2, TiO2, and Nb2O5 can 

display Lewis acid-type of properties in the presence of highly basic mineralizers of 

hydroxide and fluoride alkali metals. These soluble oxides were used as small-to-medium 

sized building blocks which would go into solution first at much lower temperatures and 

aid in the solubility of more refractory oxides as higher thermal regimes were reached 

and maintained over serval days or weeks.  

 In Chapter Three, an examination of rare-earth and select tetravalent metal 

refractory oxides in the presence of soluble building blocks of silicates and select 

germanates was discussed. Several structural classes were discussed including: 

Ba2RE2Si4O13, Ba2RE2Si4O12F2, KSrRESi3O9, and wadeite-mineral type A2MB3O9. In each 

of these studies, it was determined that the silicate or germanate building block (SiO2 or 

GeO2) in junction with highly basic hydrothermal alkali mineralizers (AF or AOH), 

provide an excellent environment in which refractory oxides of rare-earth (RE = La-Lu) 

or tetravalent (Sn, U, Hf, Zr) ions can be stabilized in solution and subsequently 

nucleated to yield high-quality, low defect single crystals that can be used to explore 

physical and optical measurements. For Ba2RE2Si4O13 and Ba2RE2Si4O12F2 it was 

determined that the role of BaO in solution plays a crucial role in stabilizing the 

crystalline structure and providing additional hydroxide (OH-) when BaO reacts with 
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water to yield Ba(OH)2 within the hydrothermal silver ampoule. Using the knowledge 

and experience in the silicate Chapter, an exploration of rare-earth oxides with 

germanium oxide (GeO2) was undertaken.  

 In Chapter Four, an extensive examination of the role of the germanium ion 

(Ge4+) as a hydrothermal building block in the presence of rare-earth oxides (La-Lu) was 

investigated. Initially, it was assumed this slightly larger tetravalent tetrahedral building 

block would display many of the same structural types that were realized in the silicate 

system. To our surprise and enjoyment, the germanates and silicates display very 

different solution chemistry that led to the high-quality single crystal growth of several 

new rare-earth germanates. These structures types include: RE13(GeO4)6O7(OH), 

K2Tb(IV)Ge2O7, BaRE10(GeO4)4O8, BaREGeO4(OH), and Cs0.5RE13(GeO4)6O3.5F8.5(OH). 

Interestingly, the slight increase in ionic size for Ge4+ over Si4+ led to the discovery and 

investigation of completely different structure types. Additionally, the discovery of a 

stable Tb(IV) polygermanate, K2TbGe2O7 is currently opening many avenues of 

discovery for rare-earth ions that can mimic oxidation states of actinide ions like Bk4+ and 

U4+. In each of these studies, the key to new materials being realized in control of the 

thermal regime, hydrothermal mineralizer, and solubility of the refractory oxide of choice 

using a preconceived building block to aid in solubility at high-temperatures. The results 

of this study led to an investigation involving Ti4+ as a stable building block and natural 

extension of tetravalent ions of Si4+ and Ge4+.  

As the role of hydrothermal building blocks in hydrothermal fluids continues to 

be understood, an interesting investigation into the RE-Ti system was investigated using 
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either concentrated hydroxide (20 M KOH/ 20 M CsOH) or concentrated fluoride (30 M 

CsF). In this study, many new structure types were realized, these include: 

Lu5Ti4O15(OH), Lu5Ti2O11(OH), Sm3TiO5(OH)3 and Ce2Ti4O11 species. These compounds 

were synthesized under high-temperature thermal protocols from 700-750 °C. In general, 

it was noted that highly basic hydroxide mineralizers give rise to hydroxide rare-earth 

titanates. For the fluoride mineralizer CsF, a general note that pure rare-earth oxide can 

be synthesized. It is incredible to think that two metal oxides that have melting points 

over 1800 °C can become solubilized at 700 °C in highly basic mineralizers. Each new 

structure and data point continues to point to the fact that the hydrothermal technique 

provides unrivaled performance in bulk crystal growth. The results of the rare-earth 

titanate study led to the conclusion that higher oxidation building blocks could possibly 

be used, if they adopt octahedral symmetry. Thus, an investigation into the rare-earth 

niobates was a natural extension of this research given success with rare-earth vanadates 

by Dr. Kimani in previous years.  

 In Chapter 6, the exploratory of rare-earth niobates and new niobate hydroxides 

was realized. This was an especially difficult project early on due mainly to the 

recumbent metal oxides utilized throughout the study. Eventually, a breakthrough in 

crystal growth occurred when the thermal regime and hydroxide mineralizer 

concentration was taken up to 700 °C and 30 M KOH. These extremely basic conditions 

provided an adequate environment in which Nb2O5 could be solubilized in tandem with 

the rare-earth oxides (La-Lu). In this system the fergusonite structure type, RENbO4, was 

found to crystallize across the entire f-block and displays a flexible framework that can 
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accommodate a variety of f-block ion sizes. Additionally, in the identification of an 

appropriate hydrothermal mineralizer, several niobate hydroxide structures were 

synthesized as minor products. These products include: CsNb2O5(OH), CsNb2O5(OH/F), 

K3LuNb2O7(OH)2. Again, the role of the building block, Nb+5, plays a crucial role in 

being a soluble participant in establishing the solid-state framework which can nucleate 

under highly-basic conditions. With the knowledge gained during his systematic study, a 

binary study of U4+-Ti4+ and Th4+-Ti4+ was undertaken. It has been shown that both UO2 

and ThO2 can be solubilized under hydrothermal conditions in this thesis. Additionally, 

the rich chemistry from the rare-earth titanate study concluded that Ti4+ can adapt 5 or 6-

coordinate geometry under hydrothermal conditions. Thus, to synthesize truly refractory 

oxide crystals that are unattainable by conventional solid-state techniques, ThTi2O6 and 

UTi2O6 were explored.  

 In Chapter 7, the bulk crystal growth of ThTi2O6 and UTi2O6 was explored for the 

first time. These two compounds represent the two most refractory oxides that have been 

discussed in this dissertation. These materials were synthesized under 6 M CsF at 750 °C 

under several weeks. The ability to solubilize and perform solution chemistry is amazing 

when one considers that ThO2 and UO2 display melting points exceeding 2800 °C. 

Additionally, the ability to chemically control U4+ and prevent oxidation to U6+ is leading 

to new chemistry in the lab. Uranium, especially U4+, will be a very interesting system to 

investigate in terms of its S = 1 magnetic properties.  

 To further these projects, it is worthwhile to speculate on additional reaction and 

projects that should be carried out be future grad students in the hydrothermal context. 
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With each project presented in this thesis, a continuous pursuit of highly refractory oxides 

has been undertaken. Thus, a natural progression would be to look systematically at 

systems such as Hf4+-Ta, Zr+4-Ta, Sn+4-Ta, and U+4-Ta. It has been shown in this thesis 

that each of these tetravalent refractory oxides is at least somewhat soluble under 

hydrothermal conditions. Additionally, Ta+5, in the form of Ta2O5 would be an excellent 

extension of known rare-earth niobate knowledge. To this end, Ta+5 should adopt 

octahedral symmetry, but the larger size in comparison to Nb+5 could lead to 

investigations of new materials that are highly refractory. For this study, the formation of 

CsTaO5OH and CsTaO5F will need to be avoided as these side products will surely 

present themselves as was the case for the rare-earth niobate study. However, the use of 

KF and RbOH should not form the defect-pyrochlore structure as the structure type is 

heavily dependent on the size of the alkali metal present.  

 In addition to this project, it has been suggested that materials Th2Ta2O9 and 

U2Ta2O9 could be synthesized under hydrothermal conditions. Th2Ta2O9 has been 

reported once by Schmidt and Gruehn under chemical transport with the aid of Cl2 or 

NH4Cl as transporting agents.1 This compound has been reported to crystallize in space 

group C2221 to an R1=9.1%. It is this researcher’s belief that this is a twinned primitive or 

monoclinic unit cell giving the appearance of c-centering. Additionally, the high density 

of this reported material, 9.68 g/cm3, makes it a very attractive candidate for bulk 

crystallization using the high-temperature and high-pressure hydrothermal technique. 

Most likely this compound will need to be synthesized using a mixture of 6 M CsF/ 1 M 

CsOH, to drive crystal formation. If CsTaO5OH and CsTaO5F single crystal are found, 
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synthesis using 6 M KF/ 1 M KOH or 6 M RbOH/ 1M RbOH should prove to be a useful 

mineralizer. This system should be explored in temperature regimes from 650-750 °C due 

to the limited solubility of ThO2 and UO2 in even the best mineralizer choices. If U+4 is 

unstable in this project, it would be wise to use platinum tubing to protect the autoclave 

from damage and allow the researcher to add reducing agents, like hydrazine, to maintain 

a tetravalent uranium state. This has proven helpful in recent years when exploring metal 

oxides with various stable oxidation states in hydrothermal conditions.  

 In conclusion, many systems have been explored by hydrothermal synthesis. In all 

cases, the role of the hydrothermal mineralizer, building block oxide, thermal profile, and 

nature of refractory oxides drive the results reported. Surely in the coming months and 

years, new high-density refractory oxides will be synthesized using these results as a 

platform for new materials science. With the continued emergence of new high-

temperature alloys and materials, the high-temperature hydrothermal technique will 

continue to push the limits of what is possible in solution chemistry thus leading the way 

for new materials to be investigated.  
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