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ABSTRACT 

Early detection of the deterioration and degradation in civil infrastructure is critical 

for structural engineers and infrastructure managers to develop rehabilitation and 

maintenance plans. In the field of structural health monitoring, numerous techniques have 

been developed to detect and localize damage by examining changes in measured vibration 

response. Among vibration-based damage detection techniques, model-based approach has 

been widely used as its damage detection process incorporates the geometric configuration, 

physical properties, and behavioral characteristics of the structural system.  

However, the model-based approaches depend on a model calibration procedure 

that is based only on the outputs of numerical models without explicitly taking the 

knowledge regarding the mechanistic behavior of the system into account. Moreover, due 

to the limitation of measurement degrees of freedom (DOFs), the number of identified 

vibration modes are typically far fewer than the number of model variables to be calibrated. 

Consequently, these model-based damage detection methods frequently suffer from an ill-

posed inverse-problem.  

This dissertation contributes to the field of model-based damage detection by 

implementing the Extended Constitutive Relation Error (ECRE), a method developed for 

error localization in finite element models for detecting structural damage. Implementing 

ECRE for damage detection leads to the localization of elements with high residual energy 

through the identification of discrepancies between experimental measurements and model 

predictions due to damage. The ECRE-based damage detection technique incorporates the 
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underlying physics of the problem in a tangible and visible manner, and thus leading to 

more reliable solutions in the damage detection and localization process. 

This dissertation applies the ECRE-based damage detection in the context of both 

linear and nonlinear dynamical systems. In particular, the dissertation integrates the Multi-

harmonic balance method with ECRE to accurate identify the modeling errors of locally 

nonlinear dynamical systems. This approach has a potential to be applied for damage 

detection in the nonlinear structural system, as well as to be used as a damage prognosis 

tool for the estimation of structural system's remaining useful life. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Introductory remarks 

The growing body of research in vibration-based damage identification over the 

last few decades (Mcgowan et al. 1990; Ding et al. 1994; Salawu 1997; Zou et al. 2000; 

Brownjohn et al. 2000; Chang et al. 2003; Jaishi and Ren 2006) exploits the dependency 

of vibration response features (notably modal properties such as frequencies, mode shapes, 

and modal damping) on the physical properties of the structure (mass, damping, and 

stiffness), operating on the premise that changes in these physical properties due to damage 

lead to measurable changes in vibration response. Vibration-based damage detection can 

be classified into two major categories: data-driven and model-based (Daigle and Goebel 

2013; Teughels and Roeck 2004). Data-driven approaches involve developing empirical 

models based on measurements collected through either periodic or continuous vibration 

monitoring. Model-based approaches, on the other hand, entail calibrating damage 

indicating parameters of a physics-based computer model of a healthy (baseline) system 

using experimental data on the same system in its damaged condition. A key benefit of the 

model-based approach is its ability to incorporate any available knowledge regarding the 

geometric configuration, physical properties and behavioral characteristics of the structural 

system through the integration of a computer model into the damage detection framework. 
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As a result, model-based damage detection can not only detect, but also localize, classify 

and determine the severity of damage. These benefits have motivated numerous researchers, 

including the research campaign proposed herein, to focus on the advancement of model-

based damage detection methods (Hearn and Testa 1991; Fritzen and Jennewein 1997).  

Model-based damage detection is typically implemented using finite element (FE) 

model calibration, a process initially developed for improving the accuracy of a FE model 

so that the model predicted dynamic response matches the experimentally measured 

response (Young and Frank 1969; Berman 1979).  Starting in 1990s, the concept of FE 

model calibration was implemented for damage detection by calibrating the FE model of a 

healthy structural system (baseline model) based on the measurements obtained from the 

same system in an unhealthy (i.e. damaged) condition (Fritzen and Jennewein 1997). In 

this implementation, damage was identified by comparing the changes in the physical 

parameters or stiffness related properties of the model between the calibrated and baseline 

FE models.  

Model calibration methods can be further divided into two major categories: the 

direct method and parametric method (Jaishi and Ren 2006; Weng et al. 2009). The direct 

method calibrates the individual elements of the mass, stiffness, and damping matrices so 

that the error in calibrated model predictions with respect to the measured data is 

minimized (Berman 1979; Baruch 1982; Berman and Nagy 1983; Cha and Gu 2000). 
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However, a major drawback of direct method is that, even when the resulting matrices 

reproduce the measured modal properties, these calibrated matrices do not necessarily 

maintain structural connectivity (Kabe 1985) and are not always physically meaningful 

(Mottershead and Friswell 1993). For instance, Mcgowan et al. (1990) adopted a direct 

model calibration method for locating the damaged truss member in a large space structure 

and demonstrated the dependency of the structural stiffness matrix updated using the direct 

method on the mode selection and sensor placement. Thus, multiple configurations of the 

stiffness matrix can produce similar results, highlighting the issue of non-uniqueness of the 

inverse problem that typically arises when the number of measurement points are far fewer 

than the number of model variables to be calibrated. 

Direct methods were followed by the emergence of parametric methods, which 

minimize the differences between the model predictions and experimental measurements 

by fine-tuning damage indicative physical parameters of the model. As these damage 

indicative parameters are allowed to vary with predefined distributions, parametric 

methods inherently preserve the physical meaning of imposed corrections (Piranda et al. 

1991, Teughels et al. 2002). In parametric methods, one caveat is that the selected 

calibrating parameters must be sufficiently sensitive to the changes in the selected response 

features due to the onset of damage. This led to the development of sensitivity-based model 

calibration (Center et al. 1991; Beven and Binley 1992; Doebling et al. 1998), which has 
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been widely applied for model-based damage detection (see for instance Ricles and 

Kosmatka 1992; Farhat and Hemez 1995). However, the parameters with higher sensitivity 

are not necessarily the source of the discrepancy. Furthermore, this sensitivity-based 

approach results in calibrated models that reflect the optimum compensations of errors 

caused by different sources (Hemez and Farrar 2014). Thus, both the direct and parametric 

methods of model calibration suffer from drawbacks related to non-uniqueness of 

solutions, which can be partially assuaged by increasing the number of measurement 

points. However, such efforts are often impractical as additional experimentation is 

prohibitive, costly or time consuming. An alternative remedial measure is to exploit the 

model physics to calibrate the model in a physically meaningful manner, alleviating the 

problems related to non-uniqueness or improbability of solutions.  

1.2 Motivation for research 

Model-based damage detection methods mentioned in the previous section treat 

model calibration as a black-box problem, by minimizing the difference between computer 

model predictions, 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, (e.g. the natural frequency, mode shape, modal force, mode 

shape curvature, etc.) and experimental measurements, 𝑦𝑡𝑒𝑠𝑡, while neglecting the physics 

governing the system behavior (Figure 1). Mottershead and Friswell (1993) noted that the 

inverse analysis necessary for black-box approaches is typically ill-posed, as the number 

of identified vibration modes are far fewer than the number of model variables to be 
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calibrated, owing to limited measurement degrees of freedom (DOFs). Ill-posed inverse 

problems allow compensations between parameters and typically lead to multiple plausible 

solutions (in our context, identification of multiple plausible damage scenarios), a concept 

widely referred to as non-uniqueness (Mottershead and Friswell 1993; Imregun et al. 1995; 

Janssen and Heuberger 1995; Kenigsbuch and Halevi 1998; Atamturktur et al. 2015, 

Prabhu et al. 2017).  

 

Figure 1.1. Comparison of black- and white-box approaches. 

The goal of this dissertation is to establish a white-box damage detection technique 

along with its accompanying Structural Health Monitoring (SHM) framework through the 

implementation and expansion of the Extended Constitutive Relation Error (ECRE) 

concept (Ladeveze, 1983). What distinguishes the proposed white-box approach from the 

black-box damage detection techniques developed earlier is the incorporation of the 

underlying physics of the problem in a tangible and visible manner into the inverse analysis 

Input   Output 

𝐸 = ԡ𝑦𝑡𝑒𝑠𝑡 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  ԡ 

Traditional: Black-Box Approach  

Input 𝑀𝑈ሷ + 𝐾𝑈 = 𝑓(𝑡) Output 

𝐸 = (𝛥)𝑇𝐾(𝛥) + 𝛼(𝛥𝑅)𝑇𝐾𝑅(𝛥𝑅) 

ECRE: White-Box Approach 
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process needed for identifying damage (as shown in Figure 1). Thus, the proposed white-

box damage detection technique constrains the problem and leads to a unique solution in 

the damage detection and localization process (Faverjon and Sinou 2008).   

1.3 Contributions of the dissertation   

The contributions of this dissertation are three-fold as follows:   

1. A two-step ECRE-based approach is developed for damage detection in linear 

structural systems with the consideration of error in the stiffness distribution. 

2. The two-step ECRE-based damage detection is extended by simultaneously 

considering the effect of stiffness and mass error in the calculation of damage indicator. 

3. An integrated MHB-ECRE calibration method is established to provide a reliable 

numerical model for the further application of the damage detection to nonlinear 

systems. 

1.3.1 Damage detection in linear structural systems with consideration of stiffness 

error 

A white-box ECRE-based approach for damage detection in linear structural 

systems is developed as the first pillar of the proposed SHM framework. The proposed 

damage detection method is capable of identifying the damage that alters the linear 

dynamic response and introduces nonlinear dynamic response. The response of an 

undamaged system is assumed to be linear and the introduction of damage can either 
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linearly or nonlinearly modify this response (Adams and Farrar 2002; Farrar et al. 2007). 

For instance, a crack, one of the most common types of damage, opens and closes under 

operational loading and may introduce nonlinearity to an originally linear system 

(Sundermeyer and Weaver 1995). The white-box approach proposed herein can 

straightforwardly identify such newly introduced nonlinearity or change in the linear 

response, and exploit the identified changes in the determination and localization of 

damage. 

1.3.2 Damage detection in linear systems with consideration of stiffness and mass 

error 

In the context of damage detection, the ECRE method calculates the residual energy 

between the experimental measurement and numerical model as the damage indicator. Yet, 

the residual energy only considers errors in the stiffness distribution given the inherent 

assumption that the connection damage would only lead to stiffness reduction. Structural 

damage, however, often modifies not only the stiffness, but also the mass distribution and 

damping. To account for such modifications, the ECRE-based damage detection method is 

extended in this study to account for errors in both stiffness and mass distribution. The 

uncertainties in the mass matrix are explicitly treated to ensure that the identification results 

are more robust to modeling error instead of assuming an accurately characterized mass 

matrix. 
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1.3.3 Model calibration in locally nonlinear structural systems 

As all real-world structures are inherently nonlinear, the white-box ECRE-based 

approach is extended for model calibration in nonlinear dynamic systems. While the 

ECRE-based model calibration method has been utilized for identifying damage that causes 

the change of system’s stiffness and mass, the proposed nonlinear model calibration 

approach has a potential to be further used as a damage prognosis tool that can estimate a 

structural system's remaining useful life (Farrar and Lieven 2007).  

Nonlinear model calibration techniques calibrate all the parameters that describe 

both linear and nonlinear dynamic response in a collective manner (Lenaerts et al. 2001; 

Bellizzi and Defilippi 2003; Meyer and Link 2003; Kerschen et al. 2006). The drawback 

of such an approach is that the calibration of nonlinear parameters is significantly 

dependent on the model error associated with the linear component of dynamic response. 

This occurs because the calibration is based on the features extracted from the total 

structural response, despite the existence of two types of model error in both linear and 

nonlinear components of the response that need correction. In this study, we develop a 

method for the localization and classification of model error in nonlinear structural systems 

by distinguishing model error in both linear and nonlinear dynamic components. Thereby, 

the traditional one-step nonlinear model calibration is divided into a two-step calibration 
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process, which accounts for the influence of the model error in the associated linear 

component of dynamic response that has drawn less attention. 

1.4 Dissertation organization  

This dissertation proposal is organized into three chapters as described in the 

following paragraphs. 

Chapter 2 introduces an application of the ECRE-based damage detection 

approach, which was originally developed for model error localization and model 

calibration in FE models. For a given structure in a healthy state, the ECRE approach can 

identify residual energy between experimental measurements and model predictions by 

considering both stiffness modeling errors and experimental noise. A two-step, ECRE-

based damage detection is developed and its feasibility in identifying the presence, location 

and relative severity of damage is demonstrated on a scaled, two-story steel frame for 

damage scenarios of varying types and severity. 

Chapter 3 discusses a modified ECRE-based damage detection strategy considering 

both the variation in mass and stiffness distribution. The calculation for residual energy is 

reformulated and amended to consider simultaneously the error in both stiffness and mass 

distribution, as well as experiemental noise for more reliable damage detection results. 

Moreover, the uncertainties in the mass matrix are explicitly treated to ensure that the 

identification results are more robust to modeling errors. Consequently, when the structural 
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system’s masses are considered uncertain and are included in the damage indicator to be 

identified, the number of false negatives is reduced. The accuracy and efficiency of this 

modified approach is demonstrated through the same experimental measurements on the 

scaled, two-story steel frame as conducted in Chapter 2. 

Chapter 4 discusses the MHB-ECRE based model calibration approach for locally 

nonlinear systems. The implemented strategy is based on the MHB-ECRE approach and 

relies on shaker tests conducted on the nonlinear structural system at low and high 

excitation force magnitudes. The first step is based on the low magnitude excitation test, 

under which the system behaves in a predominately linear manner, and thus the location of 

model error associated with the linear component can be identified through the utilization 

of the MHB-ECRE method. In the second step, a higher magnitude excitation is applied to 

insure the nonlinear dynamic response. The measurements from both low and high 

magnitude excitation tests are used to calibrate the model parameters associated with linear 

and nonlinear components. This strategy can be extended and applied for identifying the 

damage in a nonlinear structural system.   
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CHAPTER TWO* 

MECHANISTICALLY-INFORMED DAMAGE DETECTION USING DYNAMIC 

MEASUREMENTS: EXTENDED CONSTITUTIVE RELATION ERROR 

2.1 Introduction 

Many forms of structural failures in steel frames can be attributed to damage in 

connections, such as shear failure of bolts, excessive bearing deformation at the bolt-hole 

and edge tearing or fracture of the connection plate (Carr and Chapetti 2011; Hegenderfer 

and Atamturktur 2013). One particular damage type is the self-loosening of bolts which 

leads to the loss of the clamping force in the bolted connection (Zadoks and Yu 1997; Jiang 

et al. 2003). The loss of structural redundancy from such damage in connections can 

considerably reduce the load-carrying capacity of a steel frame system, especially when 

the damaged connection is a critical component of the load path (Prabhu et al. 2014). 

Hence, early detection of connection damage is essential for structural engineers and 

infrastructure managers to ensure timely rehabilitation and repair of steel frame structures.  

Model-based damage detection is now deemed an effective method for identifying, 

localizing and determining the severity of damage in structural systems (Wu and Li 2006; 

Jafarkhani and Masri 2011). In this approach, a numerical model, typically a finite element 

* This chapter has been accepted for publication in the Journal of Mechanical Systems and Signal

Processing as a technical paper. 



17 

 

(FE) representation, is developed based on the properties of the undamaged system and 

then updated with respect to the measurements obtained from the damaged system. 

Damage detection is based on the premise that the changes imposed on the model during 

the updating process reflect the damage in the system. Over the last three decades, a variety 

of FE model calibration schemes have been implemented for model-based damage 

detection. For instance, the earliest techniques entailed calibrating the individual terms 

within stiffness and mass matrices. Although this approach made it possible to obtain 

global matrices that reproduced the measured modal parameters identically (Baruch 1982; 

Berman and Nagy 1983), the resulting matrices were not guaranteed to maintain structural 

connectivity and the suggested changes in the model were not always related to actual 

damage (in worst cases the changes were not even physically meaningful)† (Farrar et al. 

2004). These direct methods were followed by the emergence of indirect (also known as 

parametric) methods, which focused on updating the parameters of the model and thus, 

preserved the physical meaning of imposed corrections (Piranda et al. 1991; Link and 

Floressantiago 1991; Mottershead and Friswell1993; Friswell and Mottershead 1995; 

Atamturktur et al. 2012). The parametric method, when implemented for damage detection, 

typically involved solving an optimization problem where a cost function that represents 

the discrepancy between the FE model of the undamaged system and the experimental 

                                                 
† In these applications, the objective was to improve the feedback control loop and hence accurate 

representation of the structural connectivity was not implemented.  
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measurements from its damaged counterpart was minimized by manipulating the damage-

indicative parameters. This cost function was defined through a user-selected metric, often 

based on mathematical norms, such as Euclidean distance (Teughels et al. 2004; De Smith 

2006; Bi et al. 2014) or p-norms (Lin and Gea 2013), without explicitly taking the 

knowledge regarding the mechanistic behavior of the system into account. This parametric 

approach was most commonly applied using non-destructively measured vibration modes 

(Kammer 1991; Worden and Burrows 2001). In most applications, however, the practical 

constraints on the number of measurement degrees of freedom (DOFs) limited the number 

of identified vibration modes resulting in an ill-posed inverse-problem (Friswell 2007). In 

the context of damage detection, ill-posed inverse-problems lead to multiple plausible 

solutions (i.e. more than one possible damage scenario), a concept widely referred to 

as non-uniqueness (Berman and Flannelly 1971). 

These approaches for model calibration as applied for damage detection mentioned 

are based only on the outputs of computer models (natural frequencies, mode shapes, 

modal forces, etc.). In contrast, the Extended Constitutive Relation Error (ECRE) based 

damage detection integrates the mechanistic principles (e.g. load-displacement 

relationships) underlying the behavior of the system during the comparison of model 

predictions against experiments (Ladevèze 1999; Decouvreur et al. 2008; Isasa et al. 2011; 

Charbonnel et al. 2013). In the traditional ECRE approach, the model error localization 
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procedure involves pinpointing the contributions of each element to the global error 

considering both model and experimental errors (Ladevèze and Leguillon 1983). The 

proposed ECRE-based damage detection involves calculating the residual energy in each 

element of the FE model of the undamaged structure using experimental measurements 

collected from the damaged structure. A damage indicator is then obtained by normalizing 

the residual energy to the total energy in each element of the FE model. Thus, the damage 

indicator reveals the damaged elements by pinpointing the greatest disagreement between 

the model and the experiments represented by the relative residual energy. 

Recognizing that computer models are imperfect representations of reality and 

assuming that experimental measurements are more realistic than the computer models, 

this paper presents a two-step damage detection approach, which involves determining: i) 

the residual error due to model imperfections (i.e. traditional ECRE for error localization) 

and ii) the damage in the structural system while correcting for model imperfection. The 

corrected elemental residual energy values obtained in the second step therefore reflect the 

damage state of the structure.  

This paper is organized as follows. In Section 2, the authors present the theoretical 

background for ECRE error localization, discuss the two-step ECRE-based damage 

detection procedure and demonstrate the capabilities of the proposed approach on a 

controlled, academic example. In Section 3, the practical applicability of the proposed 
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approach is demonstrated on a 1/4th scale steel frame with bolted connections considering 

multiple damage levels. Section 4 presents the two-step damage identification procedure 

applied to the steel frame system. Finally, Section 5 discusses the potential limitations of 

the described damage detection method in practical applications. The paper concludes with 

a discussion on benefits of the proposed approach and directions for future research in 

Section 6.  

2.2 Methodology  

2.2.1 Overview of ECRE method for model error localization 

Mathematical formulation of ECRE approach 

In this study, we implement ECRE in the context of structural dynamics of linear 

elastic undamped systems, for which the equation of motion can be expressed as: 

( ) ( ) ( )t t t Mx Kx f  (1) 

where M, K,   ∈  ℜ𝑁,𝑁 are the discrete mass and stiffness matrices, respectively, of 

order N that are assumed to be time-invariant, symmetric and non-negative; 𝒙ሷ , 𝒙 ∈  ℜ𝑁,1 

are respectively the acceleration and displacement vectors in the time domain; and 𝒇 ∈

 ℜ𝑁,1 is the time-dependent excitation vector representing external forces.  

The homogeneous equation of motion for the linear elastodynamic structure is 

written as:  

 (2) 
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where 𝜆𝑧, 𝒚𝒛  are the 𝑧𝑡ℎ  eigensolutions of Equation (1) with the eigenvalues 

𝜆𝑧 and associated eigenvectors 𝒚𝒛 ∈  ℜ𝑁,1 ; 𝒚𝒛 is assumed to be normalized such that 

𝒚𝒛
𝑻𝑲𝒚𝒛 = 𝜆𝑧. 

Conservative linear elastodynamic systems with stiffness errors  

In this study, the ECRE method is extended to not only quantify model error, but 

also detect the connection damage in steel frame structures, referred to herein as ECRE-

based damage detection. Connection damage is often considered to degrade the stiffness 

of the system without altering its mass distribution (Salawu 1997). Thus, the residual 

energy (i.e., the model error indicator) is calculated only considering errors in the stiffness 

distribution ‡ . The ECRE based on the 𝑧𝑡ℎ  experimentally identified eigensolution is 

defined as: 

 (3) 

where 𝐸𝑧
2 is a scalar quantity expressing the extended constitutive relation error as 

a function of the two unknown admissible vectors 𝒖𝒛  and  𝒗𝒛 ; 𝒖𝒛
𝒆 ∈  ℜ𝑛,1  is the 𝑧𝑡ℎ 

identified eigenvector on the n experimentally measured DOFs; 𝒖𝒛 can be interpreted as 

an expansion of the experimental eigenvector 𝒖𝒛
𝒆 to the 𝑁 model DOFs; 𝒗𝒛 is the static 

displacement field evaluated by the FE model due to the inertial loading 𝜆𝑧
𝑒𝑴𝒖𝒛, which 

                                                 
‡ Incorporating the mass matrix and damping matrices, the model error can be configured to account for the 

mass error and damping error (Faverjon & Sinou 2008).    
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can be solved using the equilibrium of the system as shown in Equation (4); and 𝐻 ∈  ℜn,N 

is a transformation matrix with 0 and 1 entries, which projects the analytical vector, 𝑢𝑧, 

onto the set of n measured DOFs, thus allowing the comparison of mode shapes between 

the experimental measurement and the FE model. 𝐾𝑅 is the reduced stiffness matrix of the 

FE model with n measured DOFs obtained by Guyan reduction (Guyan 1965). 𝛼  is a 

weighting factor, 0 ≤ 𝛼 ≤ 1 , with which the decision maker may incorporate the 

confidence placed on the experimental measurements. Here, a larger 𝛼  value indicates 

higher confidence in the measurements. The default value of 𝛼 is typically taken as 0.5 

(Deraemaeker et al. 2002). 

Note that there are two error terms on the right-hand side of Equation (3) defined 

over the measured DOFs: the modeling error (first term) and the mode shape expansion 

error (second term) that is introduced when the measured mode shapes are extrapolated to 

the N model DOFs (Zimmerman and Kaouk 1994). Both terms are expressed in an energy-

based error measure, with respect to the stiffness matrix of the FE model in either its global 

form, 𝑲, or reduced form, 𝑲𝑹.  

The equilibrium equation of the system is given by: 

  (4) 

where 𝜆𝑧
𝑒 is the 𝑧𝑡ℎ identified eigenvalue. The above equation can also be written 

as the force residual equation in terms of (𝒖𝒛 − 𝒗𝒛): 

e

zz z
Kv Mu
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 (5) 

where (𝒖𝒛 − 𝒗𝒛)  is the static relative displacement field resulting from the 

unbalanced forces, (𝑲 − 𝜆𝑧
𝑒𝑴)𝒖𝒛, because 𝜆𝑧

𝑒 and 𝒖𝒛 are not the eigensolutions of the FE 

model. If 𝜆𝑧
𝑒 and 𝒖𝒛 were eigensolutions of Equation (2), then (𝒖𝒛 − 𝒗𝒛) ≈ 0 and the value 

of 𝐸𝑧
2  would be close to zero, depending on the amount of experimental uncertainty. 

Otherwise, 𝐸𝑧
2 would increase with increasing model error on the calculated DOFs, mode 

shape expansion error or experimental uncetainty (i.e. measurement noise). 

In the ECRE method, the equations of interest (constitutive behavior relations, 

equations of motion, equilibrium equations, etc.) are divided into the reliable equations and 

less reliable equations. A minimization problem is then formulated to minimize the error 

in the less reliable equations under the constraint of the reliable equations. In this study, 

the measure of the error in Equation (3) is considered as the less reliable equation while 

the equilibrium equation (Equation (4) or (5)) is considered as the reliable equation. Hereby, 

the unknown displacement field, 𝒖𝒛, and the relative displacement field, (𝒖𝒛 − 𝒗𝒛), are 

obtained by solving the following minimization problem: 

Minimize                (6) 

Under the constraint  

( ) ( )e
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z z z
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where 𝒁(𝜆𝑧
𝑒) ≡ 𝑲 − 𝜆𝑧

𝑒𝑴. A saddle-point problem can then be formulated with the 

introduction of Lagrange multipliers. Assuming 𝑲  is not rank deficient, the above 

equations yield the following system of linear equations:  

 (7) 

The solution vectors 𝒖𝒛  and (𝒖𝒛 − 𝒗𝒛) are evaluated by subsitituting the results 

from experimental measurements (𝜆𝑧
𝑒 and 𝒖𝒛

𝒆) and the numerical model (𝑲, 𝑴 and 𝑲𝑹) 

into Equation (7). Constitutive error is then calculated using the relative displacement field 

between 𝒖𝒛  and 𝒗𝒛  and normalized with respect to a quantity proportional to the total 

energy. Evaluation of the global model error, 2ˆ
zE  over a set of experimental eigensolutions 

can be expressed as: 

2

( ) ( ) ( ) ( )
1ˆ

T T
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u Ku u Mu
 (8) 

The elemental residual energy,  is then formulated based on the solution to 

Equation (7). Let 𝑲𝒊 ∈  ℜ𝑁,𝑁 be the stiffness matrix of the 𝑖𝑡ℎ subdomain defined by: 

 (9) 

where 𝑲𝒋
𝒆𝒍𝒆 ∈  ℜ𝑁,𝑁 are sparse 𝑁 × 𝑁 matrices containing the assembled stiffness 

matrices of the 𝑗𝑡ℎ finite element and 𝑺𝒊 is the set of element matrices belonging to the 
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subdomain 𝑖. In the formulations, the residual energy that represents the stiffness-based 

model error for the 𝑖𝑡ℎ subdomain and the 𝑧𝑡ℎ experimental eigensolution is then given by: 

 (10) 

2.2.2 Two-step ECRE-based approach for damage detection 

The first step of the proposed two-step damage detection method involves the 

development of a FE model that represents the undamaged structure. Using this FE model 

in combination with the experimental measurements collected from the undamaged 

structure, we obtain the relative displacement vector 𝑹𝒉 =  (𝒖𝒛 − 𝒗𝒛) through Equation 

(7). This vector 𝑹𝒉 also represents the model error in the FE model of undamaged structure 

that accounts for the discrepancy between the experimentally measured mode shape vectors 

and those predicted by the FE model. 

In the second step, the relative displacement 𝑹 = (𝒖𝒛 − 𝒗𝒛)  is calculated to 

determine the deviation between mode shape vectors experimentally obtained from the 

damaged structure and those numerically obtained from the FE model of the undamaged 

structure. The relative displacement field, 𝑹𝒉 obtained in the first step, is then used to 

correct the relative displacement field in the second step, (𝑹 − 𝑹𝒉) to take into account the 

imperfections of the FE model (representing the undamaged structure). This correction 

process significantly reduces the effect of model error on the calculated damage indicators. 

As a result, the damage index is calculated as:  
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where 𝐸𝐶𝑅𝐸𝑖  is the residual energy and 𝑲𝒊  is the stiffness matrix for the 𝑖𝑡ℎ 

subdomain in the FE model of the undamaged structure. For the 𝑧𝑡ℎ identified mode, the 

residual energy ( ) is obtained using Equation (11). The damage indicator  for 

the 𝑖𝑡ℎ subdomain is then calculated as the sum of normalized residual energy for all m 

modes. The flowchart for this two-step ECRE-based damage detection procedure is shown 

in Figure 1 and 2. 

Figure 2.1. Framework of the ECRE-based damage detection method. 
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Figure 2.2. ECRE error localization and damage detection flowchart. 

 

2.2.3 Notional proof-of-concept example  

In this section, the two-step ECRE-based damage detection procedure is 

demonstrated on a controlled academic example using a FE model of a simply supported 

beam developed in ANSYS 14.0 with BEAM188 elements. The beam is discretized into 

50 elements, which are grouped into five separate segments as shown in Figure 3 (c) and 

(d). The properties of these segments are summarized in Table 1.  
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Table 1. Reference configuration of beam model 

 

 

 

 

 

 

Synthetic (i.e. simulated) experimental data, which represents the undamaged 

structure, is generated using the beam FE model with what we refer to as the original 

Young’s modulus value. Next, an imperfect model is developed by assigning an incorrect 

(i.e. underestimated) Young’s modulus value, Ee, for the fifth segment (40th-50th elements) 

as shown in Figure 3 (c).  Introducing a controlled model imperfectness was necessary for 

us to evaluate the ability of the two-step ECRE method to correctly identify damage even 

with an imperfect FE model.  Finally, another FE model is developed to represent the 

(hypothetical) damaged beam. The damage is simulated by reducing the Young’s modulus, 

Ed, in the first segment (1th-10th elements) of the initial FE beam model (Figure 3 (d)). This 

model is then used to generate synthetic experimental data representing the damaged 

structure without the consideration of experimental noise. 

Symbol Parameter Value 

L Total length 10 m 

b Width of cross section 0.2 m 

h Height of cross section 0.1 m 

ρ Density 7830 kg/m3 

E 

Ee 

Ed 

Young’s modulus 

Introduced model error 

Introduced damage 

210 GPa 

105 GPa 

105 GPa 

ν Poisson’s ratio 0.33 

Nnode Node number 51 

Ndof DOF number 300 

Ne Beam element number 50 

Nm Measured DOFs 49 
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Figure 2.3. Results from simply supported beam simulation: (a) ECRE for 

localization purpose; (b) ECRE damage detection method for the gray line is the 

result from direct application of ECRE; dashed line is the result from the proposed 

improved ECRE method; (c) simply supported beam with model error between 40th 

- 50th elements; (d) simply supported beam with damage between 1st - 10th 

elements, the gray block represents the segment with model error while the black 

block represents the damaged segment. 

Model error localization 

Modal analysis is first carried out to obtain the synthetic experimental natural 

frequencies and mode shapes from the undamaged beam (this is in lieu of experimentally 

measured quantities as this is an academic example). The first 10 bending modes are 

obtained at 10 points evenly spaced across the length of the beam. The relative 

displacement field between the imperfect FE model and synthetic experimental 

measurements from the undamaged beam are then calculated using Equation (7). Figure 3 

(a) shows the model error localization (obtained through Equation (8)), which is the total 

model error normalized with respect to the total system energy (i.e. ). 

This result illustrates the first step of the ECRE-based damage detection that is quantifying 
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the model error indicator. It can be seen in Figure 3 (a) that a higher model error is 

identified in beam elements of the fifth segment (the segment with the erroneous parameter 

value) than that in the rest of beam elements. 

Damage detection 

Using Equation (7), the relative displacement field between the FE model of the 

undamaged beam and the synthesized experimental measurements from the damaged beam 

is calculated. The solid gray line in Figure 3 (b) represents the damage detected using the 

original ECRE method without the consideration of the intrinsic model error. As shown in 

this figure, the identified residuals represent the combined effect of model errors and 

structural damage making it difficult to distinguish between the two, thus leading to false 

diagnosis of model error as damage.  

On the other hand, our proposed two-step approach accounts for the model error in 

the FE model of undamaged structure by calculating the damage indicator with the 

corrected relative displacement using Equations (11) and (12). The resulting ECRE-based 

damage detection is plotted as the dashed line in Figure 3 (b). Evident in this figure, the 

simulated damage is identified successfully on the first segment of the beam with a 

negligible elemental residual error on other elements. This indicates that the proposed 

ECRE-based damage detection can accurately detect damage even if the reference FE 

model is imperfect. 
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2.3 Application: Two-story steel frame with connection damage 

2.3.1 Steel frame laboratory specimen 

In this section, we apply the proposed ECRE-based damage detection technique to 

identify the damage of a two-story single bay steel frame made of mild steel. The test frame 

is built using 5.08 cm × 0.32 cm angles for the four columns that are each 63.50 cm in 

length. The eight beams are each 64.45 cm in length made of 5.08 cm × 0.25 cm flat stock.  

All beams and columns are connected at 60.96 cm on center using two vertically aligned 

2.54 cm spaced, grade 5, and 0.64 cm common threaded bolts. The base of each column is 

connected to a 15.24 cm × 15.24 cm × 1.27 cm steel plate using two 5.08 cm × 5.08 cm × 

0.32 cm steel angles and four 0.64 cm bolts for each column and the corresponding plate 

is secured to a 20.32 cm × 10.16 cm × 1.27 cm steel plate anchored to a concrete slab 

serving as a rigid base. All bolts are given an initial torque of 15.82 Nm. Two 60.96 cm × 

60.96 cm × 2.54 cm wood plates are mounted to mimic diaphragm action with the edge of 

the plates bolted into the four beams. The fully assembled frame is shown in Figure 4 (a). 

The details of the base connection and beam-column connection (before the wood plates 

are mounted) are shown in Figure 5.  
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Figure 2.4. (a) Assembled steel frame model with wood floor mounted to both floors; 

(b) extruded view of FE model. 

 

Figure 2.5. The details of (a) base connection; (b) the details of beam-column 

connection before the wood plates are mounted. 

2.3.2 Development of the reference FE model of undamaged frame 

The numerical model of the undamaged steel frame is developed in the FE analysis 

program ANSYS 14.0 using BEAM188 elements for all beams and columns and SHELL63 

elements for all wood plate diaphragms as shown in Figure 4 (b). Base connections of the 

steel frame are idealized as fixed connections by restraining all the translational and 

rotational DOFs in x, y and z-axes. All beam-column connections are assumed to be rigid; 
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the wood plate and steel beams are assumed to be in full contact (see Table 2 for the 

reference configuration of the steel frame model).  

Table 2. Reference configuration of steel frame model 

Symbol Parameter Value 

Ds 

Dw 

Steel density 

Wood density 

7830 kg/m3 

608 kg/m3 

Es 

Ew 

νs 

Young’s modulus of steel 

Young’s modulus of wood 

Poisson’s ratio of steel 

210 GPa 

11 GPa 

0.33 

νw Poisson’s ratio of wood 0.35 

Nnode Number of nodes 1630 

Ndof Number  of DOF 8604 

Ne Number  of Beam element 452 

Nm Measured DOFs 64 

To ensure the numerical solutions’ accuracy, a mesh-convergence study is 

completed to determine the appropriate mesh size (Roache 1994). Natural frequencies of 

the first twelve mode shapes are calculated for three mesh grids (coarse, medium and fine). 

With a correction applied to the fine grid solution, an extrapolated exact solution can then 

be obtained by using Richardson extrapolation approach. With 17 elements per 

beam/column, all modes of interest reached a relative error level below 1%, which is 

calculated between natural frequencies prediction and extrapolated exact solution. 

However, a finer mesh grids of 24 elements per beam are selected to match the 

measurement points on the FE model with the measurement points on the laboratory 

specimen. The first four identified mode shapes, shown in Figure 6, are used for the damage 

detection procedure.   
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Figure 2.6. The first four mode shapes obtained by the FE model: (a) the first mode 

shape; (b) the second mode shape; (c) the third mode shape; (d) the fourth mode 

shape (the natural frequencies are listed in Table 3). 

 

Figure 2.7. Measurement grid and hammer impact location. 
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Table 3. A comparison of the natural frequencies between the experimental 

measurement and numerical model of healthy structure. 

Mode 

number 

Numerical model 

prediction (Hz) 

Experimental 

measurement (Hz) 

% Difference 

Mode1 19.7 21.3 7.5% 

Mode2 35.1 30.3 -15.8% 

Mode3 69.1 88.1 21.6% 

Mode4 124.1 134.4 7.7% 

2.3.3 Experimental campaign 

Based upon the initial frequencies and modes shapes extracted from the FE model, 

an impact hammer test is developed with 64 uniaxial measurement points uniformly 

distributed along the four columns (at 32 locations with one measuring in the x direction 

and one measuring the y direction) (Figure 7). The data acquisition system is set to record 

in the frequency range 0-500 Hz with a measurement duration of 3.2 seconds. The 

experiment is completed in four setups by roving the accelerometer location and/or 

direction of each setup. Both the measurement grid and the locations of the hammer impact 

configuration are shown in Figure 7. 
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Figure 2.8. MAC correlation for the first four modes. 

The measured natural frequencies for the first four modes are compared with 

calculated natural frequencies as listed in Table 3. To ensure that each mode is properly 

paired, the Modal Assurance Criterion (MAC) (Allemang and Brown 1982; Allemang 

2003) between numerically generated mode shapes and experimentally measured mode 

shapes is calculated as shown in Figure 8. From the MAC plot, the first diagonal value 

(0.57) indicates a relatively low correlation between the experimental and analytical first 

mode shape, possibly due to the imprecise modeling of the contact between the steel beam 

and wood plate.  

Controlled damage was introduced to the steel frame by removing select bolts and 

angles and then the experimental campaign is repeated (Zadoks and Yu 1997; Jiang et al. 

2003). Three distinct damage states are considered as shown in Figure 9. The first damage 

state is the full damage applied at one base connection by removing all the bolts and angles. 

The second damage state has the same damage location as the first, but less severe damage 

as the two angles attached to the base plate are retained but the bolts attached to the column 

are removed. In this damage state, with the angles remaining, the translational DOFs in 

horizontal directions are partially restrained due to friction. In the third damage state, 

damage is introduced to a connection at the top level of the steel frame where four bolts 

that connect the beams to column are removed.  
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Figure 2.9. Three damage states with controlled damage introduced: (a) the removal 

of all bolts and angles at one base connection; (b) the removal of all bolts at one base 

connection; (c) the removal of all bolts at one top connection. 

The first four natural frequencies of the steel frame, before and after the damage is 

introduced, are listed in Table 4. While the natural frequencies for damage state #1 and #2 

show a significant reduction from those of the steel frame in the healthy state, the natural 

frequencies for damage state #3 (especially those that correspond to modes 2-4) show a 

negligible change as considerably less severe damage is introduced in this state.  

 

Table 4.  A comparison of the experimental measured natural frequencies for 

healthy and damage states (ωn is the measured natural frequency).  

Mode 

number 

Healthy 

state  

Damage state1  Damage state 2  Damage state 3  

 ωn (Hz) ωn (Hz) Difference  ωn (Hz) Difference ωn (Hz) Difference 

Mode1 21.3 17.8 -16.2% 18.8 -11.8% 20.3 -4.4% 

Mode2 30.3 28.1 -7.2% 29.4 -3.1% 30.6 1.0% 

Mode3 88.1 82.8 -6.0% 85.0 -3.5% 88.1 0.0% 

Mode4 134.4 122.5 -8.8% 130.3 -3.0% 134.7 0.2% 
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2.3.4 Damage detection using ECRE 

Upon obtaining natural frequencies and mode shape vectors from both the FE 

model and the experiments in the laboratory, we employed the ECRE-based damage 

detection algorithm to localize the damage for the three aforementioned damage states. The 

global stiffness and mass matrices of the undamaged frame, extracted from the FE model, 

are reduced to the measured DOFs through Guyan reduction. Next, the relative 

displacement vector is calculated from the ECRE optimization (recall Equation (6)). The 

elemental stiffness matrices (for all finite elements) are also extracted from the FE model. 

These elemental matrices are used to calculate residual energy in elements, and in turn, the 

damage indicators.  

In addition, for comparison, synthetic measurements are generated from the FE 

model for each of the damage scenarios. The synthetically measured mode shape vectors 

of the FE model are obtained at nodes identical to those of the sensor locations on the test 

structure. The length of the mode shape vector is therefore kept identical between 

experimental and synthetic measurements. The synthetic data are used to obtain a reference 

damage indicator for evaluating the effect of (i) the model error, (ii) the unavoidable 

limitations on the number of measurement points, and (iii) the experimental noise on the 

success of the proposed damage detection method.  
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2.4 Results: Two-story steel frame with connection damage 

2.4.1 Damage State #1: Removal of all bolts and angles at one base connection 

The first damage state involves the removal of all bolts and angles at one of the 

column base connections, thus turning the column base into a free support. The constitutive 

error distribution calculated using measurements collected from the scaled steel frame in 

the laboratory are shown in Figure 10 (a). In this figure, the darker region with a maximum 

damage indicator of 0.25 corresponds to the damaged base connection.  

To evaluate the degrading effects of experimental uncertainties on the damage 

indicators, constitutive errors calculated using experimental measurements are compared 

against those obtained using synthetic experiments. Here, the damage is simulated in the 

FE model by removing all constraints at the damaged base and representing the connection 

as a free support. Synthetic experimental measurements are generated based on 32 nodes 

corresponding to horizontal translational DOFs without the consideration of experimental 

noise. The constitutive errors obtained by using synthetic data are plotted in Figure 10 (b). 

Similarly, the darker region indicates the correct location of the introduced damage. 

However, this time, the maximum value for the damage indicator is 0.7, significantly 

higher than 0.25, the value obtained when laboratory experiments were used. This 

reduction in the damage indicator values can be explained in part by the measurement noise 

and in part by the fact that the FE model of the steel frame is an idealized representation of 
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reality. Although the model error correction process is applied through the two-step ECRE 

procedure to reduce the effect of model error, the differences between the synthetically 

generated and experimentally measured mode shapes  (due for instance to idealized beam-

column connections; omitted energy dissipation; and simplified representation of pre-stress 

forces at the angle brackets (Doebling et al. 1998; Aktan et al. 1994; Bezerra et al. 2008; 

Atamturktur et al. 2012; Hegenderfer and Atamturktur 2013)) may not be fully addressed. 

This comparison demonstrates the degrading effect of experimental noise as well as the 

model inaccuracy on the damage localization. The influence of experimental uncertainty 

will be further investigated in Section 5.  
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Figure 2.10. ECRE result of damage state 1 using both (a) experimental data and (b) 

synthetic data; - - dashed line indicates the actual damage location 

2.4.2 Damage State #2: Removal of all bolts at one base connection 

The damage is introduced by removing all bolts except for the two angles attached 

to the base plate at the same location as the damage state #1. The second damage state 

allows us to test the ability of ECRE-based damage detection to indicate the relative 

severity of damage. In this damage state, the maximum damage indicator of 0.07 is 

successfully located at the damaged base connection, however, false positive indications 

(i.e. damage indicators with high values at locations where there is no damage) also appear 

around the connections of the top floor as seen in Figure 11 (a). As expected, the maximum 

damage indicator value calculated for this damage state (which has less severe damage 

compared to damage state #1) is lower (0.07) than that obtained for damage state #1 (0.25). 
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This reduction is promising for the potential of the ECRE to quantitatively indicate the 

relative severity of damage. 

 

Figure 2.11. ECRE result of damage state 2 using both (a) experimental data and (b) 

synthetic data; - - dashed line indicates the actual damage location. 

The damage indicator is recalculated using synthetic measurements to evaluate the 

combined effect of experimental uncertainties and inaccuracies in FE model predictions. 

While generating the synthetic measurements (which have no experimental uncertainty), 

the base connection (with angles but without any bolts) is treated as a connection with only 

translational constraints in the x and y direction by removing the rotational constraints.  

As seen in Figure 11 (b), the constitutive errors localized by the ECRE method 

using synthetic measurements successfully identifies the actual damage location. It is 

observed that false negative indications at the upper-corner connections (recall Figure 11 

(a)) disappear. This is mainly due to the fact that synthetic, noise-free measurements that 
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generated from the FE model are used so that the effect of both model inaccuracy and 

experimental uncertainty is eliminated. Once again, compared to the results obtained for 

damage state #1, there is an evident reduction in the damage indicator values for damage 

state #2. Specifically, when synthetic data are used for both state #1 and state #2, the 

maximum value of the damage indicators is reduced from 0.7 to 0.45.  

2.4.3 Damage State #3: Removal of all bolts at one top floor connection 

The aim of this damage state is to test the performance of the ECRE-based damage 

detection method on identifying damage in the superstructure of the frame. Constitutive 

errors identified using experimental measurements are shown in Figure 12, where the true 

damaged location is correctly identified. There are, however, two false negatives with 

lower constitutive errors located at the connections of the top floor. In this damage state, 

synthetic measurements are not applied as the reference to compare with the experimental 

results because the idealized top connections of the FE model cannot be used to fully 

describe the behavior of damaged connections in the actual steel frame. 
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Figure 2.12. ECRE result of damage state 3 using experimental data; - - dashed line 

indicates the actual damage location. 

2.5 Further discussions on ECRE-based damage detection 

The success of the ECRE-based damage detection depends strongly on the quantity 

(number and placement of the sensors) as well as the quality (uncertainty of the 

measurements). This section details our evaluation of the effect of both quantity and quality 

of damage detection experiments.  

2.5.1 Quantity of experiments: Effect of the numbers of measurement points 

In this section, the influence of number of measurement points on the effectiveness 

of damage detection is evaluated, focusing on damage state #1 using synthetic 

measurements. Here, we use synthetic measurements so that the experimental uncertainty 

and model inaccuracy are not factors, and the comparison is focused on the number and 
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spatial coverage of measurement DOFs. The initial number of measurement points n is 

reduced first from 64 to 32 and then further reduced to 16. The proposed ECRE-based 

damage detection method is able to successfully identify the damage location with as few 

as 32 measurement points (1.4% of the total number of FE model DOFs).  
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Figure 2.13. The effect of the number of measured DOFs on the ECRE result plot of 

damage state 1: (a) ECRE result using synthetic data of 64 measurement points; (b) 

locations of 64 measurement points; (c) ECRE result using synthetic data of 32 

measurement points; (d) locations of 32 measurement points; (e) ECRE result using 

synthetic data of 16 measurement points; (f) locations of 16 measurement points; - - 

dashed line indicates the actual damage location. 

2.5.2 Quality of experiments: Effect of experimental uncertainty 

In this section, the influence of experimental uncertainty on the effectiveness of 

damage detection is detailed with a particular emphasis on damage state #1. The 

experimental uncertainty is represented by adding ± 5% Gaussian noise to the 

experimentally measured mode shapes as suggested in Meng et al. (2004) and Ge et al. 

(2010). A total of 100 contaminated mode shape realizations each with randomly generated 

noise are obtained. For each set of the contaminated modes shape vectors, an array of 

damage indicators is calculated, which are then averaged for all 100 realizations as shown 

in Figure 14 (a). As evidenced by Figure 14 (a), the distribution of averaged damage 

indicators on the frame is capable of localizing the damage at the base of the damaged 

column. 

 However, compared to the constitutive errors calculated by using noise-free 

synthetic measurements (shown earlier in Figure 10 (b)), the maximum damage indicator 

is observed to decrease from 0.25 to 0.15.  

The procedure is repeated for the increased Gaussian noise of 15%, 25% and 35%, 

as shown in Figures 14 (b), (c) and (d), respectively. Here, an increase in the number of 
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false positive indications is evident for increasing levels of experimental uncertainty and 

in the case with the highest experimental noise of 35% as shown in Figure 14 (d), the 

proposed method can no longer identify the actual location of damage. In Figure 15, the 

inverse proportional relationship between the value of maximum damage indicators and 

the experimental uncertainty is demonstrated with more cases with experimental noise 

from 5% to 35%. The error bars in Figure 15 represent the uncertainty of the calculated 

maximum damage indicators for the different percentage of experimental noise being 

introduced. As the experimental noise increases beyond 20%, it is observed in Figure 15 

that the maximum damage indicators converge because the experimental uncertainty 

becomes the main source of residual energy. Hence, the damage indicators begin to scatter 

throughout the model making the damage location indistinguishable. This inverse 

proportional relationship and convergence effect may lead future research on creating a 

confidence factor of the proposed approach. 
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Figure 2.14. ECRE result plots of damage state 3 using four different levels of 

contaminated experimental data: (a) 5% noise added; (b) 15% noise added; (c) 25% 

noise added; (c) 35% noise added; - - dashed line indicates the actual damage 

location. 

 

Figure 2.15. The relationship between experimental uncertainty and maximum 

damage indicators. 

2.6 Conclusions 

A novel, approach for damage detection is proposed by integrating the mechanistic 

concept of ECRE into the model-based damage detection paradigm by explicitly 

considering the underlying dynamic behavior of linear elastodynamic systems. The 

concept of ECRE, when applied in FE model calibration, localizes the residual errors that 

reflect the discrepancies between experimental measurements and model predictions 

corresponding to the same structure. For the purpose of damage detection, however, a two-
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step approach is needed: the first step determines the constitutive error in the FE model of 

the undamaged system; and the second step employs these residual errors to account for 

the model’s imperfection and finally obtains the residual energy (damage indicator) 

between the FE model of the undamaged system and the experimental data of the damaged 

system. In this paper, the ECRE-based damage detection method is demonstrated on a steel 

frame with connection damage. However, the applicability of the proposed approach is not 

limited to steel structures. The presented approach can be applied to many different types 

of structure for which the experimental modal data is available. 

Another advantage of the ECRE-based damage detection method over traditional 

damage detection methods is its inherent ability to identify the damage location—unlike 

many model updating-based approaches which require an additional step after the damage 

is detected. Furthermore, as expected, the damage indicator values exhibit a proportional 

relationship with the severity of the damage given the availability of a sufficient number 

of measurement points with low enough experimental uncertainty. Hence, given the 

suitable conditions, the proposed method can also determine the relative severity of the 

damage.  

Although the two-step ECRE-based damage detection method is most promising, 

it is also strongly dependent on the sensor placement (both number and distribution) as 

well as the level of experimental uncertainty. However, with recent trends towards full-
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field surface vibration measurement techniques that utilize for instance laser Doppler 

vibrometers (Castellini et al. 2006) or high-frequency cameras (Chen et al. 2015), the future 

of vibration testing has the potential to provide the needed quality and quantity of data for 

ECRE to be successful in identifying, locating and determining the severity of damage.  
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CHAPTER THREE 

Extended Constitutive Relation Error Based Approach: The Role of Mass in 

Damage Detection 

3.1 Introduction 

As structural systems accumulate damage throughout their service life, their 

physical properties, such as stiffness, mass, and damping change, which in turn alters their 

vibration characteristics (Vandiver 1975; Kim and Bartkowicz 1993; Hemez and Farhat 

1995; Worden et al. 2009; Atamturktur et al. 2013). The last three decades have seen a vast 

number of studies focused on measurements of vibration characteristics, such as natural 

frequencies, mode shapes, and damping ratios, to detect the onset and propagation of 

damage in a variety of structural systems (Doebling et al. 1998; Zou et al. 2000; Fugate et 

al. 2001). A popular class of damage detection techniques developed in these earlier 

studies, known as model-based techniques, implement a physics-based model of the 

engineering system, which is parameterized to represent potential damage to the system. 

These predefined parameters are selected to be indicative of the presence, location and 

severity of damage (Teughels and Roeck 2004; Kopsaftopoulos and Fassois 2010; Prabhu 

and Atamturktur 2013). Model-based techniques aim to achieve this through an inverse 

analysis that is conceived to reduce the discrepancies between the experiments and model 
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predictions (Doebling et al. 1998; Teughels and Roeck 2004; Lee et al. 2005; Prabhu and 

Atamturktur 2015; Hu et al. 2017).  

As structural damage often affects the system’s stiffness properties to a much 

greater extent than it affects the mass properties (Cawley and Adams 1979; Hearn and 

Testa 1991), these model-based techniques have traditionally hypothesized that the mass 

distribution of the system either remains unchanged or changes by a known quantity 

(Hassiotis and Jeong 1995; He and Zhu 2013). Consequently, many model-based damage 

detection approaches have focused solely on changes in the system behavior due to changes 

in the structural stiffness to detect damage (Zimmerman and Kaouk. 1994; Hassiotis and 

Jeong 1995; Lee et al. 2005).  

One such model-based technique, the Extended Constitutive Relation Error 

(ECRE)-based damage detection, identifies damage using residual energy between the 

measurements obtained from the damaged physical system and the predictions of the 

numerical model of the undamaged system. The ECRE-based damage detection involves 

calculating the elemental residual energy of the undamaged structure using experimental 

measurements from the damaged structure. Then, damaged regions are localized by 

pinpointing the greatest disagreement between the model and the experiments represented 

by the calculated residual energy. While the ECRE approach has previously been applied 

to detect structural damage (Faverjon and Sinou 2009; Hu et al. 2017), it has been 

http://www.sciencedirect.com/science/article/pii/S0022460X03013191
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implemented in a way where the residual energy was calculated solely considering the 

residual elastic forces without taking the residual inertial forces into account. However, 

there are two specific cases where considering the inertial forces becomes particularly 

beneficial in model-based damage detection. The first is when the damage alters the mass 

distribution of the system (Kosmatka and Ricles 1999), as in the case of a loss of structural 

components (Ma and Pines 2003), corrosion damage in metal structures (Maaddawy et al. 

2005), and loss of non-structural material (Joukoski et al. 2009). The second case is when 

the mass distribution of the system is poorly known and hence, erroneously represented in 

the model as a result of, for instance, inappropriate simplifying assumptions (Berman 1979; 

Martin and Doyle 1996; Whalen et al. 2004) and hard-to-control variations in 

manufacturing or construction (Oberkampf et al. 2002). Considering the effect of mass 

stands to improve damage detection: in the former case, by accounting for the change in 

system’s mass due to damage; and in the latter case, by accounting for modeling errors 

even when there is no change in the system’s mass due to damage. 

In this paper, an ECRE-based damage detection method is formulated to account 

for the residual unbalanced elastic and inertia forces that result from discrepancies between 

the measured and numerically generated displacement fields. These discrepancies in the 

displacement fields can then be combined with the system’s stiffness and mass matrices to 

calculate the residual energy, which in turn allows us to pin-point the damage in the system. 



62 

 

Potential contributions to this calculated residual energy from modeling error may lead to 

false-positives in damage detection. If experimental measurements are available from the 

structure in both damaged and undamaged states, a correction step can be carried out to 

account for the potential contributions of modeling error to the calculated residual energy 

(Hu et al. 2017).  

 This paper is organized as follows. Section 2 overviews the theoretical background 

of the ECRE method considering both unbalanced elastic and inertial forces and describes 

the step-by-step procedure for the stiffness-and-mass ECRE-based damage detection 

method. In Section 3, a two-story steel frame case study structure and the development of 

its numerical model are discussed. In Section 4, the performance of the proposed approach 

is evaluated through a numerical example of a two-story steel frame with modeling error 

intentionally introduced in the mass distribution. Section 5 demonstrates the performance 

of this approach using the experimental measurements from the steel frame. The results 

obtained for damage scenarios of varying severity and location are discussed and compared 

against the stiffness-only ECRE-based damage detection. Finally, Section 6 draws the 

conclusion of this study and makes recommendations for future work. 

3.2 Methodology 

 In the constitutive relation error method, the equations of interest (constitutive 

behavior relations, equations of motion, equilibrium equations, etc.) are grouped as reliable 



63 

 

and less reliable equations. Accordingly, an optimization problem is formulated to 

minimize the error in the less reliable equations under the constraint of the reliable 

equations using unknown admissible fields (Ladeveze 1999). Similarly, available 

experimental measurements are also grouped into reliable and less reliable observations. 

For instance, if experimental modal analysis is conducted, the mode shape vectors may be 

considered less reliable quantities compared to natural frequencies especially if only a 

limited number of measurement points are available on the structure. Common groups of 

reliable and less reliable equations and quantities from the pertinent literature are listed in 

Table 1 (Deraemaeker et al. 2002; Charbonnel et al. 2013).  

Table 1. Common reliable and less reliable equations 

 Numerical Model Experimental Campaign 

Reliable Equations 

and Quantities 

Geometric Information 

Kinematic Equations 

Equilibrium Equations 

Measured Natural Frequencies 

Sensor Locations and Directions 

Excitation Force Locations and 

Directions 

Less Reliable 

Equations and 

Quantities 

Constitutive Equations Measured Mode Shapes 

3.2.1 A generalized example for the constitutive relation error method 

Let us consider a reference linear, elastic, and undamped structure within a domain 

   as shown in Figure 1. On the boundary   of the domain, an excitation force dF  is 

applied on 1  and the displacement dU  is measured on 2 . df  is the body force in the 

domain  . Here, the reliable equations can be taken as the kinematic and the equilibrium 

equations; and the less reliable equation as the constitutive relations.  
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Figure 3.1. The reference structure. 

The reliable kinematic equation can be expressed as: 

dU U                                  (1) 

where U  is the admissible field representing the measured displacement. If experimental 

uncertainty is not considered, the admissible field U would be equal to dU , 

The reliable equilibrium equation can be expressed as: 

1
1tr[ ( )]d d d dd dU f U F U U U

   
                                     (2) 

where tr[...]  is the sum of the diagonal entries of matrix [ ( )]U ;   and   are the stress 

and strain tensors, respectively;   is the density; and U  is the acceleration response of the 

structure. 

For linear materials, the stress-strain constitutive relation can be defined using 

Hooke’s law as expressed below:  

( )V  H                              (3) 
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where H  is the Hooke’s operator; V  is the admissible field representing the model 

predicted response due to unbalanced elastic force. If there is a difference in the stiffness 

distribution between the numerical model and the physical system, the model predicted 

response V  would be different than the admissible field representing the measured 

displacement U , leading to a residual error ( )U V  .  

A solution can be sought that exactly satisfies the reliable kinematic equation 

(Equation (1)) and equilibrium equation (Equation (2)), while minimizing the error in the 

constitutive relation (Equation (3)). The constitutive relation error due to unbalanced 

elastic forces can then be formulated based on the distance between the two admissible 

fields that represent the measured (U ) and the model predicted (V ) response as expressed 

below (Ladeveze 1999): 

2 tr[( )( ( ) ( )) ( ( ) ( ))]d*(U ,V ) V U V U


        H                     (4) 

where “*” is the complex conjugate. 

To account for the mass in the reference problem, one must also consider the 

constitutive relation error due to unbalanced inertial forces:  

2W                         (5) 

where   is the angular frequency of the reference structure; and W  is introduced as the 

admissible field to represent the model predicted response due to unbalanced inertial 

forces. Equation (5) enables the consideration of acceleration, 
2W , as an independent 
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variable in addition to U . If there is a difference in the mass distribution between the 

numerical model and physical system, W  would be different than measured displacement 

U leading to a residual error ( )U W . The constitutive relation error in Equation (1) and 

(5) can be combined and the constitutive relation error can be expressed based on the 

distance between admissible fields as below:  

2

2

tr[( )( ( ) ( )) ( ( ) ( ))]
2

1
+ ( ) ( )d

2

*

*

(U ,V ,W ) V U V U

U W U W




    


 

  


 

 H

            (6) 

where   is a real positive scalar between zero and one, weighting the relative confidence 

one places on the modeling of the mass and stiffness distribution of the system. The value 

of  is set to 0.5 to provide equal weighting to each error term (Deraemaeker et al. 2002). 

3.2.2 ECRE approach solely considering the unbalanced elastic forces  

In this section, the reference structure of Section 2.1 is discretized using the finite 

element (FE) method only considering the effect of the unbalanced elastic forces. For the 

𝑧𝑡ℎ mode, the reliable quantity corresponding to the equilibrium equation of the system is 

expressed by:  

e

zz z
Kv Mu                             (7) 

where K ∈  ℜ𝑁,𝑁 is the stiffness matrix of the structure and N is the total number of degrees 

of freedom (DOFs) in the FE model. ,1Nzu  is the unknown admissible field representing 

the expanded, experimentally measured mode shape vector; ,1Nzv  is the unknown 
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admissible field representing the mode shape vector predicted by the numerical model 

under the inertial forces e

z z
Mu  ;  M ∈  ℜ𝑁,𝑁 is the mass matrix of the structure; e

z  is the 

identified eigenvalue. 

  For the discretization of less reliable equation, one may rewrite the constitutive 

relation error in Equation (4) using system’s stiffness matrix along with numerically 

predicted and experimentally measured mode shape vectors. For the 𝑧𝑡ℎ mode shape, the 

constitutive relation error can then be expressed as: 

2 ( ) ( )T   
z z z z z

u v K u v                                  (8) 

Equation (8) can be interpreted as the implicit residual energy that results from unbalanced 

elastic forces causing residual displacement within the system. 

  Regarding the experimental data, the measured mode shapes, e

z
u  are often treated 

as less reliable because the number of measurement locations, n, tends to be less than the 

total DOFs, N (Kammer 1991; Chang et al. 2003). ,NnH is a transformation matrix with 

zero and one entries, which pairs the expanded mode shape vector ,1Nzu  and the 𝑧𝑡ℎ 

measured mode shape ,1ne

zu . An error term resulting from the expansion process can be 

expressed as below: 

2 ( ) ( )
1

T

ze



  



e e

z z z R z
Hu u K Hu u                           (9) 

where RK  is the stiffness matrix condensed to the n measured DOFs. Typically, the Guyan 

reduction method is implemented to condense the stiffness matrix (Guyan 1965).  is a 
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real positive scalar between zero and one, weighting the relative confidence one places in 

the experimentally measured mode shapes. If   is chosen to be close to one, the 

experimental error would be the major contributor to the total residual energy compared to 

the unbalanced elastic forces. Alternatively, if   is close to zero, the effect of experimental 

uncertainty is considered to be negligible in the calculation of the total residual energy. The 

value of  is typically set to 0.5 to assign equal weight to both residual energy caused by 

unbalanced elastic forces as well as experimental uncertainty in Equation (8) and (9) (Hu 

et al. 2017). 

When calculating the residual energy, the constitutive relation error (Equation (8)) 

and the expansion error (Equation (9)) must both be considered as they are treated as the 

less reliable equations. Hence, the residual energy for the 𝑧𝑡ℎ mode is given by: 

2 ( ) ( ) ( ) ( )
1

T T

z zE



     



e e

z z z z z z R z
u v K u v Hu u K Hu u                       (10) 

The residual energy due to the unbalanced elastic forces, given Equation (10), can 

be calculated for each structural element. The highest residual energy value 

indicates the greatest disagreement between the model and the experiments, 

and thus allowing one to identify the regions that exhibit modeling error.  
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3.2.3 ECRE approach considering unbalanced elastic and inertial forces  

If the effect of the unbalanced inertial forces are also considered, the equilibrium 

equation of the system (Equation (7)) is no longer satisfied. Instead, for the 𝑧𝑡ℎ mode, the 

reliable quantity corresponding to the equilibrium equation of the system is expressed by:  

e

zz z
Kv Mw                           (11) 

where ,1N
z

w  is the unknown admissible field representing the numerically predicted 

mode shape vector due to unbalanced inertial forces. Equation (11) can be rewritten in 

terms of zu , ( )z zu v  and ( )z zu w  : 

( ) ( ) ( )     e e

z z z z z z zK u v K M u M u w            (12) 

Integrated with expansion error term in Equation (9), the residual energy for the 

Equation (6) can be rewritten for the 𝑧𝑡ℎ experimentally measured mode shape and natural 

frequency as follows:  

2 ( ) ( ) (1 ) ( ) ( )

( ) ( )
1

T T

z

T

z

E   





      

  


e

z z z z z z z z z

e e

z z R z

u v K u v u w M u w

Hu u K Hu u
                      (13) 

where (1 ) ( ) ( )T   e

z z z z z
u w M u w  is the residual energy resulting from the 

unbalanced inertial forces.  

 The minimization problem thus becomes the minimization of 2

zE  in Equation (13) 

under the constrain of Equation (11). To solve this problem a Lagrange multiplier,  , is 

introduced. The minimization problem is formulated as shown below: 
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 

min (1 ) ( ) ( )

( )

1

T e T T

z

e

z z

T e

g


  


 

     


 

e e

z z z z z z R z z

z z z

r Kr q Mq Hu u K Hu

K

u

u Mqr Z

                  (14) 

where ( ) z z zr u v  and ( ) z z zq u w . The minimization in Equation (14) becomes a 

saddle-point problem, whose solution is defined by the stationary conditions of the function 

g with respect to the unknown vectors zu , zv , zw  and   (Deraemaeker et al. 2002). 

Through simplification of the stationary conditions, the minimization problem can be 

rewritten in the matrix form depicted below: 

(1 )
1 1

(1 ) 0 0

( ) 0

e T T

z

e e

z z

 
  

 

 

 

   
     

    
      

          
   

e

R R z
z z

z z

z

K M H K H H K u
u v

M M u w

K M Z u

                 (15) 

The second row of the matrix equations corresponds to the relation between the two 

residual displacement fields, namely ( ) ( )
1




   


z z z zu w u v . Eliminating the vector 

( )z zu w and regrouping yields the following system of equations: 

( )
1

1

( ) 0
1

e T

Tz

e e

z z


  





 



 
      

      
          

eR
z z R z

z

Z H K H
u v H K u

u
K M Z

                 (16)  

After Equation (16) is solved, the elemental residual energy is formulated based on 

the solution vectors zu , )z z(u v  and )z z(u w from Equation (16). Let 𝑲𝒊 and 𝑴𝒊 be the 

sparse 𝑁 × 𝑁 matrices containing the assembled stiffness and mass matrices of the 𝑖𝑡ℎ 

element. Then, considering both unbalanced elastic and inertial forces, we obtain the 

elemental residual energy 2

z,iE  for the 𝑖𝑡ℎ element as depicted below: 
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2

z, ( ) ( ) ( ) ( )TT

iE     e

z z z z zi iz z z zu v u v M uK v u v  (17) 

3.2.4 Formulation of elemental residual energy as damage indicator 

If experimental measurements of the structure in a damaged state are available and 

used in Equation (16), the residual displacement field ( )z zu v  accounts for the effect of 

not only the modeling error in the numerical model, but also the structural damage. Hence, 

damage detection indicators that simply use Equation (17) are prone to false negatives 

because the modeling error, if present, can lead to high elemental residual energy (a similar 

effect as structural damage). Since no model is perfect, it is necessary to take into account 

for any potential modeling errors in the mass and the stiffness distribution of the system, a 

correction step is performed before identifying damage. Accordingly, the ECRE equation 

considering stiffness and mass becomes: 

 2

z, ( ) ( ) ( )T

h d h d h h

T

di dME     e

zi iR R R R R R M R RK                                              (18) 

where dR is the vector ( )z zu v  obtained from Equation (16) using the experimental 

measurements from the structure in a damaged state. hR is the vector ( )z zu v  obtained 

from Equation (16) using the experimental measurements from the structure in an 

undamaged state and accounts for the modeling error in both mass and stiffness 

distribution. hR is then used to correct the relative displacement field dR , through the 

subtraction of ( )h dR R , to account for the imperfections of the reference FE model 

representing the undamaged structure. However, the elemental residual energy due to the 
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differences in both stiffness and mass distribution in Equation (18) only provides an 

absolute measure of modeling error in the 𝑖𝑡ℎ  element. As different modes may have 

different levels of energy, elemental residual energy itself may be a misleading indicator. 

Hence, Equation (18) is normalized with respect to a quantity proportional to the total 

system energy:   

2

z,

,

p
im

D i e
z=1 z

ME
I





 T

z z

T

z z
u Ku u Mu

 (19) 

where 
,

m

D iI  is the damage indicator for 𝑖𝑡ℎ  element that can be used to identify the 

damaged regions with reduced effect of modeling error; P  is the total number of the 

experimentally identified modes. The normalization procedure in Equation (19) facilitates 

the equally weighting of all modes, and thus alleviates the effect of inherent differences in 

the energy for different modes. 

3.3 Case study structure: steel frame  

The case study structure is a laboratory-scale, two-story, single bay steel frame 

made of mild steel with a wooden floor as shown in Figure 2(a). The test frame is built 

using 2” × 1/8” angle for the four columns that are each 48” in length. The eight beams are 

each 25-3/8” in length and made of 2” × 1/8” flat stock. `Two 24” × 24” × 1” wooden 

plates are mounted on the first and second story to mimic diaphragm action with the edges 

of the plates bolted into the four beams. All beams and columns are connected at the center 
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using two vertically aligned Grade 5, common threaded bolts spaced 1” apart. The base of 

each column is connected to a 6” × 6” × 1/2” steel plate using a 2” × 2” × 1/8” steel angle 

and four ¼” bolts for each column. The steel plate itself is secured to a larger 8’ × 4’ × 1/2” 

steel plate that serves as a rigid base anchored to concrete floor. All bolts are given an 

initial torque of 140 in-lb.  

The experimental campaign conducted on the steel frame involved an impact 

hammer vibration test with 64 uniaxial measurement points uniformly distributed along the 

four columns as shown in Figure 2(b), through which the first four modes of the steel frame 

are identified. These modal parameters, namely natural frequencies and mode shapes, are 

used for damage detection. 

The FE model of the frame is developed in ANSYS v14.0 using BEAM188 

elements for all beam and column elements and SHELL63 elements for the wooden 

diaphragms (see Figure 2(c)). BEAM188 is a 3D two-node linear element with six DOFs 

(three translational and three rotational) at each node and considers the relevant quantities 

of the user-defined cross-section (area, centroid, moments, etc.) as well as member 

orientation. The SHELL63 element also has six DOFs at each node (three translational and 

three rotational) with both bending and membrane capabilities. Base connections of the 

steel frame are modeled as fixed connections by restraining all the translational and 

rotational DOFs. All beam-column connections, as well as the connections of wood floors 
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to steel beams, are simplified as rigid connections. A linear elastic constitutive model is 

adopted as the response of the frame is anticipated to remain in the elastic range. Table 1 

lists the material properties of the steel frame FE model.  

 

Figure 3.2. (a) Steel frame model with wooden floors; (b) Sensor and hammer 

impact locations; (c) Extruded view of FE model. 
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Table 2. Nominal parameter values for the steel frame model 

Symbol Parameter Value 

Ds 

Dw 

Density of steel  

Density of wood  

0.284 lb/in3 

0.022 lb/in3 

Es 

Ew 

νs 

Young’s modulus of steel 

Young’s modulus of wood 

Poisson’s ratio of steel 

29000000 psi 

1600000 psi 

0.33 

νw Poisson’s ratio of wood 0.35 

Nnode Number of nodes 1630 

Ndof Number of DOF 8604 

Ne Number of beam elements 452 

Nm Number of measured DOFs 64 

3.4 Controlled numerical studies on the case study structure 

The aim of this section is to evaluate the ECRE-based damage detection 

methodology without the contaminating effects of model and experimental uncertainty. 

Hence, we use noise-free synthetic measurements (i.e. simulated by the FE model) of first 

four mode shape vectors of the FE model are obtained at nodes identical to those of the 

sensor locations on the test structure as shown in Figure 2(b). This upfront pairing of nodes 

eliminates the need to interpolate the mode shape vectors to make possible compare the 

model predictions and experimental measurements. In Section 4.1, error localization is 

conducted on the steel frame in its undamaged state to evaluate the effect of considering 

inertial forces in ECRE approach. In Section 4.2, using FE model that is built to have the 

modeling error in mass distribution, three ECRE-based approaches are applied to evaluate 

the effect of considering inertial forces and the effect of correction process as introduced 

in Equation (18) on the success of damage detection.  
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3.4.1 A case study with modeling error in the distribution of mass 

To compare the capabilities of ECRE-based error localizations both neglecting and 

considering the unbalanced inertial forces to identify the mass modeling error without 

consideration of structural damage. In the former treatment, ECRE error localization is 

implemented solely considering the unbalanced elastic forces, and neglects the residual 

energy term due to unbalanced inertial forces (Equation (10)). In the latter treatment, ECRE 

error localization is implemented considering both the unbalanced elastic and inertial 

forces (Equation (13)), and thus takes account of any difference in mass distribution. 

Through the comparison of these two approaches, the importance of considering the 

unbalanced inertial forces in the ECRE approach can be evaluated.  

A modeling error in the mass distribution of the steel frame is intentionally 

introduced in one of the columns on the frame’s first floor as shown in Figure 3(a) by 

reducing the column’s density by 50% (reduction to 0.142 lb/in3). Synthetic measurements 

are generated using the FE model with nominal parameter values (recall Table 2) 

representing the undamaged steel frame.  
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Figure 3.3. The FE model for (a) the undamaged steel frame with error in mass 

distribution; (b) the damaged steel frame. 

In Figure 4(a), through the implementation of K-only ECRE error localization 

method, the residual energy of the erroneous region is 2.62 × 10-4. This low value, 

combined with false negatives with high residual energy of 2.57 × 10-4 near the base 

connections make it difficult to correctly identify the location of the erroneous modeling 

parameters. On the other hand, in Figure 4(b), the introduced mass modeling error, 

calculated using M-K ECRE error localization method, is clearly identified with a residual 

energy of 3.03 × 10-4 that correctly indicates the erroneous region. Considering the effect 

of unbalanced inertial forces in the calculation of system’s residual energy has improved 

performance in localizing the erroneous region in scenarios where variation in the mass 

distribution occurs. When the K-only approach is applied, the unbalanced inertial forces 

due to the introduced modeling error is taken into account by using unbalanced elastic 
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forces, which are formulated with the system’s stiffness matrix K  and residual 

displacement field ( )z zu v  (Equation (10)). Therefore, it is expected that the calculated 

high elemental residual energy cannot be effectively pinpoint to those elements with 

modeling error. Conversely, the M-K approach considers residual energy due to 

unbalanced inertial forces in addition to unbalanced elastic forces. Because of the 

utilization of correct formulation (Equation (17)), the calculated high elemental residual 

energy can be used to localize the introduced modeling error. When ECRE method is 

applied for damage detection, since the FE model is erroneous, it is important to note that 

K-only ECRE approach without the consideration of unbalanced inertial forces could lead 

to false negative damage detection.  
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Figure 3.4. Residual energy distribution identified using: (a) K-only ECRE error 

localization approach; (b) M-K ECRE error localization approach; - - dashed line 

indicates the modeling error location. 

3.4.2 Damage detection using an FE model with mass distribution error 

This section aims to test and compare the ability of three different implementations 

of ECRE-based damage detection to localize damage. Herein, the damage type is 

considered to change both stiffness and mass properties of the system. The model is 

considered to be an imperfect representation of the mass distribution.  

The first implementation is the M-K ECRE-based damage detection approach that 

involves considering the unbalanced elastic and inertial forces. The previously discussed 

model correction approach is adopted.  The second implementation includes the M-K 

ECRE-based damage detection approach without the correction step. The comparison 

between the first two approaches enables us to evaluate the effect of the correction step on 
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the calculated indicators for damage detection. The third method applied is the K-only 

ECRE-based damage approach with the correction step introduced in Section 2. The effect 

of mass modeling error on the success of the K-only ECRE-based approach is evaluated.  

The model for the undamaged structure with introduced modeling error in mass 

distribution (Figure 3(a)) is used for damage detection. The synthetic measurements for the 

undamaged structure are generated using the FE model with the nominal parameter values 

(recall Table 2). The synthetic measurements for the damaged structure, as shown in Figure 

3(b), are generated using FE model with the reduction of Young’s modulus and density of 

one column on the ground floor to 50% of their nominal value (Young’s modulus is 

reduced to 2.45 × 107 psi; density is reduced to 0.142 lb/in3).   

Figure 5(a) shows the damage detection results using the K-only ECRE approach 

with the correction step. Although the correction step is applied to minimize the effect of 

the intrinsic stiffness modeling error in the reference model, the damaged region is 

localized with false negatives of 0.86 × 10-3 on other the columns. These false negatives 

stem from the formulation of residual energy minimization process that neglects mass-

related residual energy due to the unbalanced inertial forces. Consequently, the unbalanced 

inertial forces could lead to high elemental residual energy in the numerical model, which 

does not necessarily pinpoint the damaged region.  



81 

 

In Figure 5(b), the damage is successfully localized without false negatives using 

the M-K ECRE-based damage detection approach with the correction step. The highest 

residual energy of 1.61 × 10-3 correctly pinpoints the simulated damage region. In contrast 

to K-only ECRE approach, the proposed M-K ECRE approach with the correction step 

properly includes the mass-related residual energy in Equation (13), allowing the 

calculation of a more reliable damage indicator m

DI . Through the comparison of damage 

detection results in Figure 5(a) and (b), we note that including the effect of unbalanced 

inertial forces in the ECRE formulation was crucial to the success of ECRE-based damage 

detection in this case study example as the residual energy term due to unbalanced inertial 

forces can account for potential mass modeling error.  

When M-K ECRE approach without the correction step is applied, Figure 5(c) 

shows that the damaged region is identified with highest residual energy of 1.60 × 10-3 

using. However, false negatives of 1.30 × 10-3 are found on the column with the mass 

modeling error. Based on the comparison between Figure 5(b) and (c), we note that the 

correction step of using the corrected relative displacement field vector ( )h dR R  in 

Equation (18) can significantly reduce the effect of intrinsic modeling error on the 

calculated damage indicator and thus reducing the incidents of false negatives that creep in 

due to modeling errors.  
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Figure 3.5. ECRE damage detection results when FE model with mass modeling 

error used as reference model: (a) K-only ECRE-based damage detection approach 

with the correction step; (b) M-K ECRE-based damage detection approach with the 

correction step; and (c) M-K ECRE-based damage detection approach without the 

correction step; - - dashed line indicates the damage location. 

3.5  Damage detection on the scaled laboratory steel frame 

The proposed approach is also applied to data obtained from laboratory vibration 

experiments on the steel frame structure in both undamaged and damaged states. The FE 

model of the steel frame with nominal parameter values (recall Table 2) is applied for 

damage detection. It is expected that the reference model contains a level of modeling 

errors in both stiffness and mass distribution due to inevitable simplifications of the 

geometry and connections, as well as approximate representation of material behavior. For 

example, the base connections are modeled by constraining all DOFs rather than a semi-

rigid connection that may more faithfully represent the actual behavior (Kameshki and 

Saka 2001).  Moreover, the details in mass modeling of the connections (i.e. mass of angles 
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and bolts) are neglected, which are also likely to lead to a difference between FE model 

and physical system mass distribution. 

Three damage scenarios investigated in this study include the reduction of both the 

structural stiffness and the mass through the removal of bolts and angles. Damage case 1 

is applied to one top connection by the removal of all bolts that connect the column and 

two beams (Figure 6(a)). Damage case 2 is applied to one base connection by the removal 

of all bolts with two angle plates attached to the base plate retained (Figure 6(b)). Damage 

case 3 involves the removal of all bolts and angles at the same damage location as damage 

case 2 (Figure 6(c)). For detecting damage in these scenarios, we implement ECRE-based 

damage detection approach, with and without consideration of the effect of unbalanced 

inertial forces.  

 

Figure 3.6. Three damage cases with controlled damage introduced: (a) the removal 

of all bolts at one top connection; (b) the removal of all bolts at one base connection; 

(c) the removal of all bolts and angles at one base connection. 
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3.5.1 Damage case 1: removal of bolts from the connection of top floor 

The aim of this damage case is to test the performance of the ECRE-based damage 

detection method on identifying damage in the superstructure of the frame. Using the K-

only ECRE-based damage detection approach as shown in Figure 7(a), the maximum 

indicator of 0.05 pinpoints damaged region. However, two obvious false negative 

indications (0.03) appear on the second floor; and false negative indications with damage 

indicators (approximately 0.02) are located at the connections of the ground and first floor. 

Conversely, using the M-K ECRE-based damage detection approach as shown in Figure 

7(b), the damaged region is more effectively localized with the maximum damage indicator 

of 0.3. One false negative indication with a lower value of 0.25 is found at the 

diagonal neighbor of the true damaged connection, while another false negative indication 

with lower value of 0.15 is observed at the connection on the first floor. Consequently, 

although it is observed that there are still two false negatives using M-K ECRE-based 

approach, the M-K ECRE-based damage detection result has shown superiority to the K-

only approach, while providing more reliable damage detection results with fewer false 

negatives.  
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Figure 3.7. ECRE damage detection result of damage case 1 with the consideration 

of residual energy due to: (a) only unbalanced elastic forces, and (b) both 

unbalanced elastic and inertial forces; - - dashed line indicates the actual damage 

location. 

3.5.2 Damage case 2: removal of bolts from the base of one column 

For the K-only ECRE-based approach, Figure 8(a) shows that the maximum 

damage indicator of 0.07 is located at the damaged base connection. However, false 

negative indications with lower values (around 0.05) are also visible around the 

connections of the second floor. For the M-K ECRE-based approach, Figure 8(b) shows 

the damaged region is successfully identified with the maximum damage indicator of 0.35. 

Only one false negative indication with a lower value of 0.2 is observed in Figure 8(b). It 

is observed that the maximum damage indicator value calculated considering both the 

unbalanced elastic and inertial forces (approximately 0.35) is higher than that obtained only 

considering the unbalanced elastic forces (approximately 0.07). Moreover, the comparison 
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of these two damage detection results in Figure 8 shows that the false negative indication 

on the top of the frame is eliminated when both the unbalanced elastic and inertial forces 

are considered for damage detection. The importance of including residual energy term due 

to the unbalanced inertial forces in the ECRE formulation is once again emphasized so that 

the damage detection method can be more robust to potential mass modeling error. 

 

Figure 3.8. ECRE result of damage case 2 with the consideration of residual energy 

due to: (a) only unbalanced elastic forces, and (b) both unbalanced elastic and 

inertial forces; - - dashed line indicates the actual damage location. 

3.5.3 Damage case 3: removal of bolts and angles from the base of one column 

Compared to damage case 2, damage case 3 involves the removal of the angle plates 

in addition to the bolts. Therefore, damage case 3 is more severe because the associated 

column is no longer constrained by the friction between these angle plates and the column 

at the connection. In Figure 9 below, we observe that the damage indicators correctly 
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identify the location of damage in both M-K and K-only ECRE-based approaches, but with 

a different max damage indicator value (0.35 with M-K ECRE-based approach compared 

to 0.25 with K-only ECRE-based approach). The distribution of the damage indicators 

calculated using K-only ECRE-based approach in Figure 9(a) is similar to the M-K ECRE-

based damage detection results in Figure 9(b). Both approaches are shown to successfully 

identify the location of damage and this result is attributed to the high severity of the 

damage case. Thus, if the damage introduced is severe enough, it will be detected even 

without consideration of the residual energy due to unbalanced inertial forces in the ECRE-

based damage detection method. 
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Figure 3.9. ECRE result of damage case 3 with the consideration of residual energy 

due to: (a) only unbalanced elastic forces, and (b) both unbalanced elastic and 

inertial forces; - - dashed line indicates the actual damage location. 

3.6 Conclusion  

Most of model based damage detection methods have been conducted focusing 

solely on the change within the stiffness matrix to detect damage and neglecting the 

influence of damage on structural mass as well as the potential modeling error in the FE 

model mass distribution. For example, in K-only ECRE-based approach, the damage 

indicator was formulated based on the minimization of residual energy considering only 

unbalanced elastic forces due to the variation in the stiffness distribution. The conclusions 

are as follows: 

1. In this paper, the M-K ECRE-based methodology is proposed by additionally 

considering the effect of the unbalanced inertial forces between numerical 
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model and physical model. Therefore, the proposed approach allows for the 

consideration of variations in both system’s mass and stiffness.  

2. The ability of the proposed M-K ECRE approach for the error localization is 

verified through a numerical study of a steel frame in an undamaged state with 

introduced mass modeling error. Compared to the K-only ECRE approach, the 

M-K ECRE approach can achieve an improved performance in localizing the 

erroneous region. 

3. The M-K ECRE-based damage detection method is advantageous as the 

proposed correction procedure can account for the effect of potential modeling 

errors, which is inevitable in numerical models. Another numerical study on the 

capability of ECRE-based approach for damage detection is conducted with an 

imperfect FE model with mass modeling error. Numerical results indicate that 

the proposed approach can effectively identify the structural damage with little 

influence of modeling error. 

4. The M-K ECRE-based approach is a more robust damage detection scheme 

which is suitable for damage patterns that alter not only the stiffness, but also 

the mass of the system. The M-K ECRE-based damage detection approach is 

illustrated using a steel frame model that is tested in the laboratory considering 

three different damage scenarios. The comparison of results of K-only and M-

http://youdao.com/w/inevitable/#keyfrom=E2Ctranslation
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K ECRE-based damage detection reveal that the latter approach can provide a 

significant improvement to the damage detection accuracy with higher damage 

indicators and fewer false negatives.  
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CHAPTER FOUR 

MODEL CALIBRATION OF LOCALLY NONLINEAR DYNAMICAL 

SYSTEMS: EXTENDED CONSTITUTIVE RELATION ERROR WITH MULTI-

HARMONIC COEFFICIENTS  

4.1 Introduction 

Local nonlinearities are pervasive in engineering applications (Shi and Atluri 1992; 

Fey et al. 1996; Wojtkiewicz and Johnson. 2011). In some cases, local nonlinearities are 

deliberately designed into the system to avoid excessively high responses or stresses (Fey 

1992) and in others, they arise from large deformations or material stress (Clough and 

Wilson 1979). Examples include nonlinear bearings (Nelson and Nataraj 1989), dry friction 

damping (Ferri and Dowell 1988), local nonlinear springs and dampers (Qu 2002), 

structural joints with an opening and closing ability (Niwa and Clough 1982), and concrete 

cracking (Atamturktur et al. 2013; Llau et al. 2015). 

In these systems, as the nonlinear effects are localized within a component of a 

larger linear system, the dynamic response tends to remain predominantly linear for small 

magnitude forces (Clough and Wilson 1979). However, when sufficiently high magnitude 

forces are applied, the dynamic behavior becomes nonlinear and is governed by the 

interaction between the linear and nonlinear components. Hence, when developing 

numerical models to represent such systems, one must pay attention to accurate modeling 
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of both the global system that exhibits the underlying linear behavior and the spatially local 

component that introduces nonlinearity. It is important to note that modeling error in the 

underlying linear behavior could degrade the prediction accuracy of the overall nonlinear 

behavior, resulting in large deviations from the measured dynamic response (Lenaerts et 

al. 2001; Kerschen et al. 2003; Kerschen et al. 2005; Hot 2012). As such, the accuracy with 

which model error in local, nonlinear components can be identified is naturally dependent 

on errors which may be associated with linear components.  

Common approaches for calibrating models of nonlinear dynamical systems can be 

grouped into two categories. The first category of approaches corrects errors in the 

representation of both the linear and nonlinear responses of the system simultaneously 

(Lenaerts et al. 2001; Meyer and Link 2003; Bellizzi and Defilippi 2003; Kerschen et al. 

2005). These approaches may face the identifiability problem due to the large number of 

confounding parameters that need to be calibrated using an inevitably finite set of available 

measurements (Lenaerts et al. 2001; Kurt et al. 2005; Jaishi and Ren 2007; Van Buren and 

Atamturktur 2012). The second category of approaches, on the other hand, corrects the 

representation of only the nonlinear response, and therefore assumes the linear system to 

be modeled accurately. This assumption in turn mandates the availability of reliable a 

priori knowledge of the linear system (Kerschen et al. 2005; Isasa et al. 2011). Hence, this 

second approach risks that during calibration of the locally nonlinear component 
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parameters errors in the linear system may be compensated for since the linear model 

accuracy is seldom guaranteed. Separately identifying the modeling errors that govern the 

system’s linear and nonlinear behavior offers a solution that can mitigate the issues related 

to identifiability faced by both of these categories of approaches (Lenaerts et al. 2001; 

Ewins et al. 2015). 

In this paper, a two-step process is presented for calibrating numerical models of 

dynamical systems with local nonlinearities. The process involves separately measuring 

the system’s predominantly linear and nonlinear dynamic response under periodic 

excitation at low and high force magnitudes, respectively. From these response 

measurements, multi-harmonic coefficients, a commonly used set of features for 

characterization of nonlinear dynamical systems (Cardona et al. 1994), are extracted. When 

coupled with the extended constitutive relation error (ECRE), the multi-harmonic 

coefficients allow the calculation of the residual energy, which reflects the discrepancy 

between the model predictions and the experimental measurements (Isasa et al. 2011; Hu 

et al. 2017). In the first step of this study, the residual energy in the predominantly linear 

behavior is calculated for each discretized finite element allowing us to identify the model 

input parameters that need calibration. These input parameters, when combined with the 

poorly known parameters associated with the local nonlinearity constitute the total set of 

calibration parameters. 
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Subsequently in the second step, the residual energy calculated under both the low 

magnitude excitation and the nonlinearity-inducing, higher magnitude excitation is 

minimized to update the calibration parameters. Thus, model parameter calibration 

becomes an optimization problem that is solved through an iterative approach combining 

the multi-harmonic balance method (MHB) and ECRE into a method henceforth referred 

to as Iterative Integrated MHB and ECRE (IIME). In this study, the performance and 

efficiency of IIME are compared against discrete, sampling-based optimal value searches 

that are commonly used for nonlinear model calibration.  

This paper is organized as follows. In Section 2, we briefly review the MHB-ECRE 

identification approach as applied to nonlinear dynamical systems. Section 3 describes the 

procedure for the two-step model calibration approach. In Section 4, the calibration 

approach is demonstrated on the finite element model of an academic example: a nonlinear 

beam with model error in both the linear and nonlinear components, using synthetically 

generated measurements. In this section, the efficacy of the proposed two-step approach is 

evaluated by comparing the obtained results against those of a one-step MHB-ECRE 

nonlinear model calibration. In Section 5, the limitations of the proposed approach when 

implemented with reduced quantity (i.e. fewer measured degrees of freedom) and quality 

(i.e. higher noise levels) of measurements is discussed. Moreover, the effect of the location 

of the excitation force and model error on the performance of the proposed method is 
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evaluated. Finally, Section 6 draws the conclusions of this paper and summarizes the 

benefits and drawback of the proposed nonlinear model calibration method compared to 

the conventional, single-step MHB-ECRE method. 

4.2 Background perspectives: nonlinear model calibration using the MHB-ECRE 

approach 

When calibrating numerical models of dynamical systems, the discrepancy between 

model predictions and experimental measurements can be calculated using response 

features in modal, time, or frequency domains (Atamturktur et al. 2012). In modal domain, 

nonlinear effects are projected into modal space in terms of nonlinear normal modes. 

Nonlinear normal modes are amplitude-dependent, however, which prevents the direct 

separation of space and time in the governing equations of motion (Vakakis 1997; 

Kerschen et al. 2009). This energy dependence complicates the analytical calculation of 

the nonlinear normal modes, and the model calibration using nonlinear normal models 

often becomes computationally demanding (Kerschen et al. 2006). The use of time domain 

response features is less computationally demanding than modal domain features as 

measurement devices directly provide the desired inputs (Masri and Caughey 1979; 

Gondhalekar et al. 2009). Nonetheless, time domain response features are large-

dimensional and highly sensitive to measurement noise (Atamturktur and Laman 2012; 
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Moaveni and Asgarieh 2012), which makes direct comparisons between the measurements 

and the model predictions in the time domain highly unreliable.   

Frequency domain response features are calculated by applying a transformation 

process on the time domain signals to separate the response into a series of harmonics 

(Meyer and Link 2003; Böswald and Link 2004). In frequency domain methods, the time 

and space in the governing equations of motion can be easily separated through 

linearization using Fourier series expansion. Thus, response features in frequency domain 

can be expressed as a function of excitation frequency and amplitude (Ferreira and Serpa 

2005). Furthermore, frequency domain features are less sensitive to noise and more 

compact compared to the time domain features (Kerschen et al. 2006; Atamturktur and 

Laman 2012). In this paper, we implement a class of frequency domain response features 

known as multi-harmonic coefficients calculated through the Multi-Harmonic Balance 

(MHB) method, chosen for their high accuracy (Ren et al. 1998) and computational 

efficiency (Huang et al. 2006). 

4.2.1 Multi-harmonic balance method 

The equation of motion of a nonlinear structure with local geometrical nonlinearity 

can be written as follows: 

          (1) 
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where ,, , N NM C K  are the mass, damping and stiffness matrices, respectively, 

and N is the number of degrees of freedom (DOF) considered. The stiffness matrix is 

assumed to be positive definite. Here, ( )tp  is the external force vector and ( )tx  is the 

displacement response vector of the N DOFs at time 𝑡. In Equation (1), a spatially localized, 

geometrical nonlinearity is represented by the cubic stiffness, NLK  (Worden and Tomlinson 

2000). 

In linear structural dynamics, the system is conveniently characterized by the 

structural modes and their associated resonant frequencies. In nonlinear dynamical 

systems, however, distinctly nonlinear features can be generated from a set of periodic 

response vectors. When a periodic excitation is applied to a nonlinear dynamical system, 

the input energy is concentrated at the excitation frequency making it relatively simple to 

generate nonlinear features through the transformation from time domain response into 

frequency domain response. This approach also yields higher signal-to-noise ratio 

compared to the response measured under random or transient excitations (Worden and 

Tomlinson 2000). Because of these benefits, solving the equation of motion of a nonlinear 

system under periodic excitation has become common practice for evaluating the dynamic 

behavior of nonlinear systems (Kerschen et al. 2006). 

Most early approaches for predicting the steady-state oscillation of a nonlinear 

system under periodic excitation were limited to approximate calculations of the 
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fundamental harmonic coefficients. These fundamental harmonic coefficients were 

assumed to have a significantly larger value compared to higher order harmonic 

coefficients (Stoker 1950; Tondl 1974). However, in the early 1980s, researchers began to 

recognize that the higher order harmonic coefficients are also essential to accurately predict 

the steady state response (Tamura et al. 1981; Leung and Fung 1989). To include the higher 

order harmonics for steady-state oscillations of a nonlinear system, Tamura et al. (1981) 

suggested the multi-harmonic balance (MHB) method. As an extension of the fundamental 

harmonic balance approach, MHB operates in the frequency domain to solve nonlinear 

equations of motion under periodic excitation using a Fourier series approximation. MHB 

has proven capability solving the periodic response of nonlinear systems more efficiently 

than time domain integration methods, such as Newmark's, central difference, and Runge-

Kutta methods (Cardona et al. 1994). 

In MHB, the periodic displacement response vector of a nonlinear system is 

expressed as a Fourier series: 

0

1

( ) ( cos sin )
n

c s

j j j j

j

t m t m t 


  x Q Q Q                            (2) 

where 0Q  is a constant; c

jQ  and s

jQ represent the jth cosine and sine multi-harmonic 

coefficients, respectively; 
jm is the harmonic of excitation frequency  ; and n is the 

number of harmonics included in the analysis. Usually, the multi-harmonic coefficients are 

obtained by directly applying a fast Fourier transform on the time history response of 
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measured DOFs. If excitation frequency is constant, Fourier series and harmonic curve 

fitting tools can also be applied for calculating the multi-harmonic coefficients (Isasa et al. 

2011).  

Introducing Equation (2) into the equation of motion for the nonlinear system given 

in Equation (1) results in the following expression: 
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Sequentially pre-multiplying all terms in Equation (3) by the harmonic functions

1 1(1,cos ,sin ...cos ,sin )n nm t m t m t m t     and integrating from zero to the fundamental period 

of the system, 2T 


 , the following frequency domain expression can be obtained:  

(( )) , 0+ - = ω ωQ F Q P                                       (4) 

where 0 1 2{ , ,..., }nQ Q QωQ  is the vector of harmonic coefficients with ,1N
iQ  . The 

matrix (2 1) ,(2 1)n N n N( )   is a matrix of structural system properties in the frequency 

domain and is expressed as: 
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The nonlinear force vector 3( )NLK tx  and periodic excitation force vector ( )tp  in 

Equation (3) are also transformed from nonlinear, time domain response into linearized, 

frequency domain response (see Equations (6) and (7)). It is seen that each harmonic of the 

periodic excitation yields corresponding sine and cosine functions not only for the 

excitation, P, but also for the force due to the localized nonlinearity, ( , )ωF Q . 

Nonlinear force vectors in frequency domain (2 1) ,1( , ) n N ωF Q  are then 

expressed as: 
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Periodic excitation force vectors in frequency domain (2 1) ,1n NP  are expressed 

as: 

0

1
0

1
0

0

0

( )

( ) cos

( ) sin

( )cos

( )sin

T

T

T

T

n

T

n

t dt

t m tdt

t m tdt

t m tdt

t m tdt





















 
 
 
 
 
 
 

  
 
 
 
 
 
 
 











p

p

p
P

p

p

                   (7) 



107 

 

Equation (4) can be solved using the Newton–Raphson method (Ferri 1986). The 

number of harmonics included must be considered as it increases the size of Equation (4), 

and thus, increases the computation time. Models with prohibitively large linear system 

matrices can make use of reduction techniques (e.g. Guyan reduction) to reduce 

computational cost. 

4.2.2 The integrated MHB-ECRE approach 

By integrating MHB and ECRE, we seek to minimize the constitutive error of the 

system. This constitutive error, 2
E


, accounts for the uncertainties in both the model 

predictions and the experimental measurements and is expressed as: 

2
( ) ( )

T e T e

R
E
      

   r r HQ Q HQ Q                 

(8) 

where 
(2 1) ,(2 1)n N n N   is the multi-harmonic stiffness matrix (Isasa et al, 2011) 

and is expressed as:  

0 0 0
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                (9) 

In Equation (8), Q  is the multi-harmonic coefficient vector that is expanded from 

experimentally identified, multi-harmonic coefficients to the total number of DOFs in the 

numerical model; and 
e

Q  is the experimentally identified, multi-harmonic coefficient 
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vector that is generated based on the experimentally measured time history response. In 

this study, only excitation with a constant frequency is considered; hence, e

Q  is obtained 

using a Fourier series expansion and harmonic curve fitting. In Equation (8),   
 r Q V  

is the relative multi-harmonic coefficient vector that accounts for the discrepancy between 

model predictions and experimental measurements. 
V  expresses the multi-harmonic 

coefficients obtained from model predictions. H is a transformation matrix that reduces the 

multi-harmonic coefficient matrix for all DOFs to the size of the measured DOFs.   is a 

weighting factor that accounts for the confidence level of experimental measurements 

(Deraemaeker et al. 2002). Finally, R is the (2n+1)Ne×(2n+1)Ne reduced multi-harmonic 

stiffness matrix of the numerical model obtained by model reduction, where Ne is the 

number of measured DOFs. 

To evaluate r  and Q , we solve the following minimization problem: 

Minimize cost function: 
2 ( ) ( )T e T e

RE         r r HQ Q HQ Q              (10a) 

Subjected to constraint relationship: )( ,( ) + - =   Q F Q P r                (10b) 

The constraint in Equation (10b) can be dualized using a Lagrange multiplier to form 

an unconstrained minimization problem. 
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4.3 Calibrating the models of nonlinear dynamical systems: Iterative Integrated 

MHB and ECRE (IIME) 

The two-step process presented herein is conceived to identify the residual errors 

in the underlying linear system and those in the nonlinear component. The strategy 

implemented involves measuring the dynamical system vibration response under low 

magnitude periodic excitation such that the system vibration response is predominantly 

linear. Using this low magnitude excitation (P1) data, the experimental multi-harmonic 

coefficients (
1

e

Q ) are first obtained. Next, model-predicted multi-harmonic coefficients (

1V ) are calculated and experimental multi-harmonic coefficients ( 1Q ) are expanded to 

match the degrees of freedom of the numerical model. Through the error minimization step 

of ECRE, the difference between experimental multi-harmonic coefficient and model 

predicted multi-harmonic coefficient vectors ( 1 1 VQ ) is calculated. The knowledge of 

this disagreement, combined with the stiffness matrix, allows us to calculate the elemental 

residual energy. The elements with high residual energy indicate the existence of higher 

model error (Hu et al. 2017), and thus, the model parameters associated with these elements 

are selected for calibration. This model error localization step is useful for parameter 

selection (Larsson and Abrahamsson 1999; Kim and Park 2004; Hu et al. 2017), because 

the number of parameters that need to be calibrated can often be significantly reduced in 
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this step, which in turn helps mitigate the risk of rank deficiency and ill-conditioning during 

calibration (Yu et al. 2007). 

In the second step, a higher magnitude periodic excitation is applied to obtain the 

nonlinear dynamic displacement response and the corresponding multi-harmonic 

coefficient is calculated (
2

e

Q ). Using both multi-harmonic coefficients, 1Q  and 2Q , 

linear and nonlinear model parameters are calibrated by minimizing the sum of the residual 

energy calculated for both excitation magnitudes (P1 and P2). This way the model error in 

the locally nonlinear component is accurately identified all while errors in the modeling of 

the underlying linear system are corrected. Figure 1 schematically shows the proposed 

method as divided into two steps: localization and parameter calibration. The details of 

these two steps are given below: 
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Figure 4.1. The calibration procedure for the proposed method 
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Step 1. Model error localization using low magnitude excitation, P1 

 Based on the system response to low magnitude excitation, the optimization 

problem is formulated in Equation (11) that minimizes the residual energy between the 

numerical model and the measurements. To minimize the objective function, we formulate 

a saddle-point problem with the introduction of Lagrange multipliers. Equation (11) yields 

the system of the nonlinear equations shown in Equation (12), based on which the two 

unknown multi-harmonic coefficient vectors, 1r and 1Q , that represent the predominantly 

linear dynamic response features can be solved. The relative multi-harmonic coefficient 

vector 1r , combined with elemental stiffness matrix, is then used for localizing the model 

error in the linear component. Therefore, the linear parameters that are associated with 

identified model error, LE , are selected from a large candidate set of parameters for the 

calibration in the next step.  

Minimize the cost function for force level P1:  

2
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Subjected to constraint relationship: ( , , )NL( ) + F -K =      Q Q P r                 (11b) 

Nonlinear matrix equation: 
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Step 2. Nonlinear model calibration using both low and high magnitude excitations, 

P1 and P2 

In the second step, we combine the measurements of multi-harmonic coefficients 

for both low and high magnitude excitations. The sum of the residual energy for both 

excitation magnitudes is then minimized.  

Minimize the cost function for P1 and P2: 

  

2
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Subjected to the following constraints: 

( , ), NL( ) + -K =      Q F Q P r                                                   (13b) 

2 2 2 2, )( , NL( ) + - =K   Q F Q P r          (13c) 

A new cost function gc is obtained after applying the Lagrange multipliers and is 

expressed as follows: 
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where  1  and 2 are the Lagrange multipliers for the constraint relationships for 

P1 and P2, respectively. Through the calculation of the stationary conditions of gc with 

respect to the unknowns r , Q , r , Q , LE , NLK , 1 , and 2 , the solution of 

Equation (14) is calculated using the following matrix relationship: 
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where EL are the linear structural parameters corresponding to the identified model 

error in the linear component. 

All the above objective functions are convex, thus facilitating the use of efficient 

local optimization algorithms in the calibration process. A modified Newton-Raphson 

algorithm is chosen to solve this nonlinear problem due to its desirable convergence 

characteristics (Nocedal and Wright 2006; Stevens et al. 2017) and because the parameter 

gradients are calculated numerically. In each of the Newton-Raphson iterations, the 

parameters are calibrated and the residual error term is recalculated. A new iteration 

consisting of a localization step and a correction step is performed until the prescribed 

convergence criterion is satisfied. 
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Instead of iteratively calibrating the parameters corresponding to linear and 

nonlinear behavior (i.e. using IIME), calibration can also be conducted based on a discrete 

set of inputs−henceforth referred to as Discrete Integrated MHB-ECRE (DIME). In the 

DIME approach, a sample set of values are generated for the poorly-known model input 

parameters and then used for calculation of the residual energy using Equation (13) and 

(14). As such, the minimum residual energy is expected to be achieved when the calibration 

parameters associated with the linear and nonlinear components are closest to the true 

parameter values. In DIME, a large number of instances must be calculated, which means 

the discrete approach is more computationally demanding than IIME. In the following 

section, the results obtained with the DIME approach are used as a reference to compare 

against those obtained with the proposed two-step IIME approach.  

4.4 Benchmark beam model application 

4.4.1 The description of the numerical model 

The proposed approach is demonstrated on a simulated academic example based 

on the COST action F3 project benchmark structure developed at Ecole Centrale de Lyon 

(Thouverez 2003; Worden 2003). The model consists of a main beam clamped to a thin, 

secondary beam with both ends of the structure clamped to fixed supports (see Figure 2). 

The main beam has a length of 0.7 m and a thickness of 0.014 m, whereas the secondary 

beam has a length of 0.04 m with a thickness of 5x10-4 m. Both beams have a width of 
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0.014 m and are comprised of steel with a Young’s modulus of 210 GPa and a Poisson’s 

ratio of 0.33. Table 1 lists the reference configuration of the F3 project benchmark model. 

The main beam is modeled with seven elements and the secondary beam with four elements 

as shown in Figure 2. The connection of the beams is modeled by a semi-rigid, rotational 

spring and a grounded, translational spring element with cubic stiffness such that the nodes 

are constrained to have the same translation displacement, but allowed to have different 

rotations. The value of the cubic stiffness (KNL) is set to be 6.1×109 N/m. 

Table 1. Reference configuration of the benchmark beam model 

 
Symbol Parameter Value 

L1 

L2 

Length of Main Beam 

Length of Thin Beam 

0.7 m 

0.04m 

b Width of Cross Section 0.14 m 

h1 

h2 

Height of Main Beam 

Height of Thin Beam 

0.14 m 

0.0005 m 

ρ Density 7830 kg/m3 

E Young’s modulus 210 GPa 

ν Poisson’s ratio 0.33 

Nnode Node Number 12 

Ndof DOF Number 21 

Ne Beam Element Number 11 

Nm Measured Dofs 21  
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Figure 4.2. A linear beam model with local nonlinearity under periodic excitation. 

 

Figure 4.3. The experimentally measured translational and rotational DOFs. 

Vibration response measurements are synthetically generated for 21 DOFs along 

the beam as shown in Figure 3. For the low magnitude excitation, a stepped sine force with 

a magnitude of 0.5 N and frequency of 32 Hz, selected based on the value of the 

fundamental frequency of the linear beam, is applied to the structure. For the high 

magnitude excitation, a stepped sine force with a magnitude of 5 N and frequency of 32 

Hz is applied to ensure sufficiently large deflections to observe the nonlinear dynamic 

effects. In addition, simulated measurement noise is introduced as an additive zero mean 

Gaussian white noise at a level of 5% of the maximum displacement time history response. 

The noise is added to the time history measurements before the experimental multi-

harmonic coefficients vectors are calculated. 
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The initial model is preset to have error in two distinct forms (recall Figure 2): (i) 

model error in the linear beam structure that is simulated by intentionally reducing the 

Young’s modulus for element 3 by 50% (i.e. 105 GPa); (ii) model error in the nonlinear 

spring that is simulated by intentionally altering the stiffness coefficient with cubic 

nonlinearity by 50% (i.e. 3.05×109 N/m).  

4.4.2 The conventional approach: MHB-ECRE using only high magnitude 

excitation 

This section presents the results of the conventional, one-step MHB-ECRE 

approach in which the parameter of the nonlinear translational stiffness (KNL) is calibrated 

with the presumption that the model of the underlying linear system is error-free. The effect 

of the model error in the linear beam on the results of this conventional approach is 

evaluated using both a model with and without the manually introduced reduction in the 

Young’s modulus of element 3. 

Owing to the need that the structure’s dynamic response must exhibit nonlinear 

behavior for the one-step MHB-ECRE method, synthetic response measurements are 

generated by the model under the high amplitude excitation (5 N), using which the ECRE 

values are calculated by solving Equation (11).  

Figure 4 depicts the ECRE values obtained for a range of nonlinear stiffness values 

where the correction coefficient that multiplies the nonlinear stiffness parameter (KNL) 
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varies from 0.5 to 1.5 with an interval of 0.1, essentially representing a correction of 50% 

below and above the nominal stiffness value. For this given range of nonlinear stiffness 

coefficients, the residual energy is calculated using both the ‘exact’ linear model (the solid 

curve in Figure 4) and the ‘erroneous’ linear model (i.e. one with a reduced Young’s 

modulus in element 3; the dashed curve in Figure 4). The results shown in Figure 4 indicate 

that the linear model error leads to a 30% deviation from the true value for the identified 

nonlinear stiffness parameter. This difference is due to the fact that the ECRE values are 

biased by the model error present in the linear component and thus, the minima no longer 

corresponds to the true value of the nonlinear stiffness. 

 

Figure 4.4. Nonlinear parameter identification result when the linear stiffness 

coefficient is 0.5 and 1. 
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4.3 The two-step approach: MHB-ECRE using two excitation magnitudes 

In this section, the proposed, iterative, two-step approach is used to calibrate the 

model input parameters of both the Young’s modulus of element 3 and the nonlinear 

stiffness (KNL) and verify its ability to accurately calibrate the parameters without suffering 

the confounding effects of error in both the linear and nonlinear components of the 

structure. The efficiency of this iterative approach in its search algorithm to find the optimal 

input parameters is compared to the discrete (DIME) approach which tests over a grid 

sampling of possible parameters. 

The structure is excited at node 3 using the lower amplitude periodic force (0.5N) 

to obtain the synthetic structural vibration response with negligible nonlinear effects. As 

shown in Figure 5 (a), the nonlinear effects lead to only a 1.5% shift in the fundamental 

frequency of the structural system, while no significant distortion can be observed in the 

Frequency Response Function (FRF) of the nonlinear beam model with respect to the linear 

model. Hence, the obtained dynamic response is predominantly linear. The ECRE 

calculated for all beam elements is shown in Figure 6. From the figure, element 3 (EL) is 

identified with the highest ECRE value, which is consistent with the fact that an incorrect 

Young’s modulus value is assigned for this element.  
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Figure 4.5. Comparison of FRFs at node 8 for the linear beam model with and 

without the nonlinear spring: (a) a low magnitude excitation of 0.5 N is applied; (b) 

a high magnitude excitation of 5 N is applied. 

 

Figure 4.6. The ECRE localization of model error in linear component. 

The structure is then excited at the same location using the higher amplitude 

periodic excitation (5N) to observe the synthetic nonlinear vibration. The FRF of the 

translational DOF associated with the nonlinear spring is presented in Figure 5 (b). A 
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significant distortion of 12.5% in the FRF plots is observed where the peaks shift from 32 

to 36 Hz under high magnitude excitation, confirming that a sufficiently high force is 

applied to observe the nonlinear response. 

Both IIME and DIME approaches are used to calibrate the selected model 

parameters as presented in the Figure 7. The IIME approach is applied by solving Equation 

(15) using the Newton-Raphson algorithm. The convergence threshold for the IIME 

approach is set to 10-10 for the norm of the relative solution vector between iterations. In 

Figure 7, it is noticed that the IIME approach is completed within 5 iterations. The 

calibrated linear and nonlinear model parameters are 210.21 GPa and 6.08×109 N/m, 

respectively, which represent a 0.1% and 0.4% deviation from the true values, respectively. 

The detailed calibration results for each iteration are also provided in Table 2. For the 

DIME approach, a range of coefficients that multiply the nonlinear stiffness (KNL) and 

Young's modulus in the linear component (EL) is created from 50% to 150% of the true 

value with an interval of 10%. These pre-defined sets of model parameters are substituted 

into Equation (15) and a surface plot of the residual energy is shown in Figure 7. The 

detailed calibration results for each iteration are also provided in Table 2. 
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Figure 4.7. The calibration result for the linear and nonlinear parameters 

Table 2. Model calibration results using IIME approach. 

 

Iteration 

number 

Calibrated 

linear parameter 

(GPa) 

Percentage 

error 

Calibrated 

nonlinear parameter 

(N/m) 

Percentage 

error 
ECRE 

0 105 -50.00% 3.05×109 -50.00% 1.81×10-5 

1 159.18 -24.20% 4.28×109 -29.80% 3.50×10-5 

2 182.28 -13.20% 4.98×109 -18.30% 7.91×10-6 

3 223.86 6.60% 6.80×109 11.50% 4.40×10-6 

4 210.21 0.10% 5.99×109 -1.80% 5.18×10-7 

5 210.21 0.10% 6.08×109 -0.40% 4.34×10-7 

 

 

4.5 Discussions on the performance of proposed method 

In this section, the impact of measurement noise, number of response measurement 

locations, and model error location on the accuracy of the proposed method is examined. 
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The purpose of conducting these studies is to evaluate the proposed approach’s robustness 

and to understand how the method performs under a variety of realistic scenarios. All the 

calibration results presented in this section are obtained using an identical procedure as 

detailed in Section 4. 

4.5.1 Model calibration considering varying noise levels 

All practical experimental data is inevitably contaminated by noise to some degree 

(Modak et al. 2002). To assess the impact of measurement noise, in this section, the 

performance of the proposed model calibration method is evaluated in the presence of 

varying levels of noise. Accordingly, the two-step model calibration process is applied in 

the presence of zero mean Gaussian white noise with varying standard deviations of 5%, 

10%, 15%, and 20%. For each noise level, 10 random realizations of noise are generated 

to contaminate the time history data and the calibrated model parameters are obtained using 

these contaminated measurements.  

The mean and standard deviation for the calibrated stiffness coefficients for these 

ten realizations are shown in Figure 8. The solid line in Figure 8 shows that the linear 

stiffness parameter is estimated with less than 1% deviation from the true value when the 

noise level is less than 15%. With 20% noise, the calibrated linear stiffness parameter 

deviates by 5.6%. The calibrated nonlinear stiffness parameter is observed to be more 

sensitive to the measurement noise. The dashed line in Figure 8 shows that the nonlinear 
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stiffness parameter is accurately estimated with less than 1% deviation when the noise level 

is less than 10%. As the noise level increases to 15% and 20%, the calibrated nonlinear 

stiffness parameter deviates by 6.1% and 11.2%, respectively. 

 

Figure 4.8. The effect of multiple noise levels on parameter calibration results 

4.5.2 Model calibration with reduced set of measurements. 

In practical application, the number of measured response locations is limited by 

the feasible number of sensors, measurement channels available, and the inaccessibility of 

some measurement locations (Majumder and Manohar 2003). To assess the effect of such 

limitations, this section evaluates he performance of the proposed two-step model 

calibration approach by hypothetically reducing the set of measured DOFs. Three reduced 

sets of measurements are used to obtain the multi-harmonic coefficient vectors as shown 

in Figure 9. The first two measurements are with 10 (Figure 9 (a)) and 5 (Figure 9 (b)) 
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translational DOFs including the DOF at the nonlinear spring, while the last set of 

measurements is with 5 (Figure 9 (c)) translational DOFs excluding the DOF at the 

nonlinear component. Using the reduced set of measurements, the residual energy plot for 

model error localization is shown in Figure 10. 

 

 

 

Figure 4.9. Three sets of reduced DOF measurements. 
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Figure 4.10. The ECRE localization of linear model error using reduced sets of 

measurements. 

As seen in Figure 11, the calibrated values for the nonlinear stiffness coefficient 

match the true parameter values even when the number of measurements is as low as 5 

DOFs. The value of the parameter associated with the linear element with error is correctly 

calibrated with 10 measured DOFs, while an 8% deviation from the true values is present 

when only 5 DOFs are measured. When the DOF at the nonlinear spring is not included in 

the measurement, Figure 12 shows that the linear calibrated stiffness coefficient has a 

12.3% deviation from the true value, and the nonlinear calibrated stiffness coefficient has 

a 26.1% deviation from the true value. The calibration of the nonlinear stiffness coefficient 

parameter is less affected by a reduced set of measurements as long as the response 

associated with the nonlinear spring is measured. It is concluded that it is important to 
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measure the response as close to where local nonlinearity is present as possible to ensure 

the accuracy of the results of the proposed model calibration method.  

 

Figure 4.11. Calibration results with fewer measured DOFs (the nonlinear DOF is 

included). 
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Figure 4.12. Calibration results with 5 measured DOFs (not including the nonlinear 

DOF). 

4.5.3 The effect of model error location 

The objective of this section is to investigate the effect the spatial distribution of 

modeling error on the linear system on the obtained results for the calibrated model. 

Specifically, we introduced model error to 7 different elements (elements 1 to 7) of the 

main beam, simulated by reducing the Young’s modulus by 50%. The model error in the 

nonlinear component is kept the same as defined in Section 4 for the seven sets of 

calibration cases. The proposed approach is applied to calibrate the linear and nonlinear 

structural component parameters, and the calibration results are plotted in Figure 13 (a) 

and (b), respectively. As shown in the Figure 13 (a) and (b), the convergence rate to the 

true value for the linear and nonlinear stiffness parameters is similar (five iterations) for all 
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seven cases regardless of the model error location. 

 

 Effect of model error location Effect of excitation force location 

 
 
 
 
 
 

KNL 

 

 

 
 
 
 
 
 
 

EL 

  

Figure 4.13. Calibration results considering the effect of model error location and 

excitation force location. 

4.5.4 The effect of excitation force location 

In this section, the effect of the location of the excitation force, and thus the distance 

between the applied force location and nonlinear spring component on the performance of 

model calibration results is evaluated (see Figure 14). Similar to the calibration results 

(b) 

(c) 

(d) 

(a) 
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presented in Section 5.3, the unknown structural parameters mostly converge to the true 

value with the proposed calibration approach. The calibration results for all seven force 

locations are presented in Figure 13 (c) and (d). Figure 13 (c) shows that the averaged 

calibrated nonlinear stiffness coefficient relative to the true value for different locations is 

0.9992 with a standard deviation of 0.0029.  

 

Figure 4.14. Seven locations for applied excitation force. 

Compared to the calibration of the nonlinear structural parameter, the average 

calibrated linear stiffness coefficient is 1.0232, which deviates slightly from the true 

parameter value (see Figure 13 (d)). Also, a larger standard deviation of 0.0362 is observed 

relative to the nonlinear stiffness calibration. Moreover, it can be concluded from Figure 

13 (b) and (d) that the calibration of linear model parameters is affected by the location of 

the excitation force relative to the location of the model error. As the excitation force moves 

from the left end of the beam to the right end, the calibrated linear parameters deviate more 

from the true parameter value. This effect may be because as the magnitude of response 

becomes larger as the distance between force location and nonlinear spring element 
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decreases, the total response is more likely to be dominated by the nonlinear effect. Thus, 

the accuracy of the linear parameter calibration results is influenced. 

4.6 Conclusion 

This paper presents a two-step, nonlinear model calibration framework referred to 

as IIME that simultaneously corrects modeling error in both linear and nonlinear 

components based on the combined MHB-ECRE algorithm. An appealing feature of this 

approach is that modeling errors in the underlying linear model can be isolated and 

corrected, reducing their degrading effects in the model calibration of the nonlinear 

component. For this, the modeling errors in the linear system are localized by applying low 

magnitude excitation that ensures the dynamic response of the system remains 

predominantly linear. Accordingly, subsequent optimization step for parameter calibration 

is formulated to determine both the parameters associated with poorly modeled linear 

components and those associated with the nonlinear components without making any 

assumptions regarding initial linear model accuracy. 

The proposed method has been demonstrated on a numerical example (the F3 

project benchmark structure) using synthetic measurements. The results show that the 

Integrated MHB-ECRE method is capable of calibrating nonlinear models with model error 

in both linear and nonlinear components. When model error is present in both linear and 

nonlinear components, this two-step integrated MHB-ECRE calibration approach has 
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shown superiority to the conventional one-step MHB-ECRE approach, while providing 

more reliable calibration of the nonlinear component parameter with less dependency on a 

priori knowledge of the accuracy of the associated linear system. An iterative optimization 

process is developed for solving the calibration problem so that the model parameters can 

be calibrated with less computational cost and more accurate results compared to a 

discretized approach.  

Work has also been conducted to quantify the influence of measurement noise, a 

reduced set of measurements, and model error location on the proposed method. These 

studies show that the method is quite robust against introduced measurement noise, 

especially in the calibration of the linear component parameter to the true value. In addition, 

as long as the structural response is measured close to the location of the nonlinearity, the 

method has shown calibration capability with a relatively scarce set of measured data 

points. The proposed method has been evaluated for a case that entails a spatially localized 

nonlinearity, there is room for further work in testing the approach in calibrating other 

types of nonlinearity, such as nonlinear material properties. 
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CHAPTER FIVE 

CONCLUSION  

5.1 Major Contributions 

Based on a combination of the Extended Constitutive Relation Error (ECRE), a 

method developed for error localization in finite element models, and experimental modal 

testing, this dissertation has focused on developing a novel damage detection method for 

damage identification, localization, quantification and model calibration. The studies 

proposed in this dissertation can significantly improve damage detection methods that are 

based on model calibration techniques. Different than the traditional black-box model 

calibration that merely relies on the outputs of numerical models, the proposed ECRE-

based damage detection methods belong to the white-box approaches that integrate the 

knowledge regarding the underlying mechanistic behavior of the structural system. The 

major contributions achieved in this dissertation are summarized as following: 

Chapter 2 proposes a novel a two-step ECRE-based damage detection approach 

through integrating the mechanistic concept of ECRE into the model-based damage 

detection process by explicitly considering the underlying dynamic behavior of linear 

elastodynamic systems. I demonstrated and verified its feasibility in identifying the 

presence, location and relative severity of damage on a scaled, two-story steel frame for 

damage scenarios of varying type and severity.  
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Traditional model-based damage detection relies on a well-calibrated numerical 

model. The proposed approach, however, calculates the constitutive error in a numerical 

model of the undamaged system and employs these residual errors to account for the 

model’s imperfection and, finally, calculates a damage indicator using a numerical model 

of undamaged system and the experimental data of the damaged system. This results in 

significant reduction in computational costs that arise during calibration of the reference 

numerical model. Moreover, the ECRE-based damage detection method can identify the 

damage location—unlike many model calibration-based approaches which require an 

additional step after damage is detected. Additionally, given the availability of enough 

measurement points with low enough experimental uncertainty, the proposed method can 

determine the relative severity of the damage based on a proportional relationship between 

the damage indicator values and the severity of the damage. 

Chapter 3 extends the two-step, ECRE-based damage detection method by 

simultaneously considering the effect of stiffness and mass variation in the calculation of 

residual energy. There are two specific reasons for the additional consideration of mass 

change: (1) the damage results in a variation in the mass in addition to the stiffness 

reduction; (2) the numerical model has an imperfect representation of the mass distribution. 

The accuracy and efficiency of the approach is demonstrated using the experimental 

measurements from the same steel frame with damage scenarios of varying type and 
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severity. Compared to the original ECRE-based damage detection approach, a noticeable 

improvement is achieved in the damage detection accuracy, with a higher damage indicator 

and less false negatives. 

The modified ECRE-based damage detection approach has all the above-mentioned 

advantages as the original two-step, ECRE-based damage detection method in Chapter 2. 

Additionally, the proposed modified ECRE approach accounts for the mass-related 

residual energy in the constitutive relation error, allowing for the calculation of a more 

reliable damage indicator. Consequently, the modified ECRE-based damage detection 

approach achieves more effective and robust performance in localizing the damage when 

mass modeling error or mass-related damage is presented. 

Chapter 4 presents an iterative model calibration approach for dynamical systems 

with spatially localized nonlinear components. The approach implements the ECRE-based 

model calibration method using the multi-harmonic balance (MHB) method, and is 

conceived to separate the errors in the representation of the predominantly linear and 

nonlinear components through a two-step process. The first step is based on the low 

magnitude excitation test, which ensures the dynamic response of the system remains 

predominately linear and the location of model error associated with the linear component 

can be separately identified through the utilization of ECRE-MHB method. In the second 

step, a higher magnitude excitation is applied to ensure the nonlinear dynamic response. 
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The measurements from both low and high magnitude excitation tests are used to calibrate 

the parameters associated with linear components and those associated with the nonlinear 

components without making any assumptions regarding linear model accuracy.  

The proposed method has been demonstrated on an academic example using 

synthetic measurements. The Iterative Integrated MHB-ECRE calibration approach has 

shown superiority to the conventional MHB-ECRE method, while providing more reliable 

calibration of the nonlinear component parameter with less dependency on a priori 

knowledge of the accuracy of the associated linear system. An iterative calibration process 

is also developed for solving the optimization problem so that the model parameters can 

be calibrated with less computational cost and more accurate results compared to a 

discretized approach. Moreover, the influence of measurement noise, applied force 

location, a reduced set of measurements, and error location on the proposed method has 

been investigated. These studies show that the method is quite robust against introduced 

measurement noise, especially in the calibration of the linear component parameter to the 

true value. 

5.2 Limitations and recommendations for future research 

This dissertation has been focused on identification and quantification techniques 

for damage detection, and closely related model calibration topics. However, I have not 

assumed that structural health monitoring problems can be fully solved using the 
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techniques developed in this dissertation. The limitations and future work for this 

dissertation are summarized as following: 

ECRE-based damage detection scheme 

Although the two-step ECRE-based damage detection method is promising, it is 

also strongly dependent on the number and distribution of sensors, as well as the level of 

experimental uncertainty. Thus, sensor placement strategy should be carefully developed 

for the success of the damage detection approach. Future applications of ECRE-based 

damage detection method are also suggested to utilize full-field surface vibration 

measurement techniques, such as instance laser Doppler vibrometers or high-frequency 

cameras, to provide the needed quality and quantity of experimental measurements.  

The proposed approach considers the change of stiffness and mass in the 

identification of damage.  Since significant changes may occur in damping due to structural 

system damage, damping has the potential to be incorporated into the proposed damage 

detection methodology.  

Model calibration approach using integrated MHB-ECRE algorithm 

Based on the proposed integrated MHB-ECRE model calibration approach, a 

reliable locally nonlinear model can be obtained. However, the verification of the proposed 

approach is only conducted using the synthetic measurements from numerical model. 

Therefore, a practical application is needed based on experimental measurements. 
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A well-calibrated, locally nonlinear model has a potential to be used for damage 

prognosis that can estimate structural system's remaining useful life. Future research for 

integrated MHB-ECRE model calibration method may focus on developing a decision-

making tool for maintenance and service requests. While ECRE-based model calibration 

method has been applied for damage detection as described in Chapter 3 and Chapter 4, 

this nonlinear model calibration strategy can also be extended to identify the damage in a 

nonlinear structural system. However, the difficulty of this implementation is that three 

sources may lead to nonlinear dynamical behavior in the nonlinear system: 1) potential 

structural damage in linear component; 2) potential structural damage in nonlinear 

component; 3) undamaged nonlinear component. Thus, if the undamaged system is 

nonlinear, the healthy nonlinear dynamical behaviors must be distinguished from nonlinear 

behaviors due to damage. This complication must be investigated further in future research 

of damage detection for locally nonlinear systems.  
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