
Clemson University
TigerPrints

All Dissertations Dissertations

12-2017

Using App Inventor to Explore Low-Achieving
Students' Understanding of Fractions
Lorraine Ann Jacques
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Jacques, Lorraine Ann, "Using App Inventor to Explore Low-Achieving Students' Understanding of Fractions" (2017). All
Dissertations. 2061.
https://tigerprints.clemson.edu/all_dissertations/2061

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2061?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2061&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

 

 

 
USING APP INVENTOR TO EXPLORE LOW-ACHIEVING STUDENTS’ 

UNDERSTANDING OF FRACTIONS 
 

A Dissertation 
Presented to 

the Graduate School of 
Clemson University 

 
 

In Partial Fulfillment 
of  the Requirements for the Degree 

Doctor of Philosophy 
Learning Science 

 
 

by 
Lorraine Ann Jacques 

December 2017 
 

 
Accepted by: 

Dr. Danielle Herro, Committee Chair 
Dr. Nicole Bannister 

Dr. Jennie Farmer 
Dr. Brian Malloy 

 

 

 

  



ii 

 

 ABSTRACT  

A student’s understanding of fraction magnitude impacts his/her understanding of 

algebra (e.g., Booth & Newton, 2012; Siegler et al., 2012), which then influences his/her 

likelihood of graduating high school (Orihuela, 2006) or succeeding in higher education 

(Adelman & United States., 2006; Trusty & Niles, 2004). Literature suggests that 

students gain this understanding when they create and work with various representations 

of fractions (e.g., Ainsworth, Bibby, & Wood, 2002; Panaoura et al., 2009; Siegler, Fazio, 

Bailey, & Zhou, 2013), which can occur when students engage in constructivist activities 

such as developing games (Kafai, 1996, Apr). This study examines an intervention where 

low-achieving eighth-grade students develop games about fraction magnitude using App 

Inventor, a novice programming environment, to determine what representations students 

create in their games, how their understanding of fraction magnitude develops when 

making their games, and what challenges they experience other than challenges 

concerning fractions. It uses a holistic case study with embedded units to understand the 

major themes for each research question while considering the influences of individual 

backgrounds and the various kinds of games each developed. Kolb’s (1984) experiential 

learning theory, which states that ideas are formed by experiences and which occurs when 

one programs or codes a computer (Robins, Rountree, & Rountree, 2003), grounds the 

data analysis. 

The findings of this study indicate that students primarily use numeric 

representations and area models to represent fraction magnitude, which are also the most 

common representations found in textbooks (Zhang, 2012). They developed their 



iii 

 

understanding by working with area models, talking about area models, or by developing 

code to compare two fractions. The way they constructed and critiqued these 

representations map to the experiential learning cycle, showing that they engaged in 

concrete experiences with fractions, reflected on the experience, conceptualized their new 

learning, and experimented with that learning to develop their understanding of fraction 

magnitude. The challenges they experienced ranged from coding difficulties, such as 

decomposing their designs into components to code, to non-coding challenges, such as 

collaborating. Limitations of this study are discussed and implications for practice and 

future research are delineated.    



iv 

 

For Carl 

  



v 

 

ACKNOWLEDGEMENTS 

I would like to thank my advisor, Dr. Danielle Herro, for her support, patience, 

and great ideas that influenced not only this dissertation but my professional journey. You 

invited me to join the Learning Sciences community and have shown me how to 

incorporate my various interests into an exciting research trajectory. I have greatly 

appreciated your critical friendship these years.  

I would also like to acknowledge my committee members, Dr. Nicole Bannister, 

Dr. Jennie Farmer, and Dr. Brian Malloy. I chose you for my committee because of your 

high expectations and I appreciate your guidance. Special thanks belong to Dr. Bannister 

for the support you have provided me beyond this dissertation. 

Dr. Jacqueline Malloy and Dr. Phillip Wilder, thank you for being my sounding 

boards throughout this process, and for everything else. 

Daniel Alston, Jennifer Raasch, Kathy Li, Heidi Cian, and Andrea Miller, thank 

you for your friendship as we navigated doctoral studies together. 

John Keogh, my many experiences in education began with your encouraging me 

to explore non-traditional ways of teaching diverse students and to share my discoveries 

with other teachers. The opportunities you gave me then and the support you have given 

me since continue to influence my professional goals. Thank you. 

 For my parents, gratitude is insufficient. I am at this point because of you.  



vi 

 

TABLE OF CONTENTS 

TITLE PAGE ...................................................................................................................... ii 

ABSTRACT ........................................................................................................................ ii 

DEDICATION ................................................................................................................... iv 

ACKNOWLEDGEMENTS .................................................................................................v 

TABLE OF CONTENTS ................................................................................................... vi 

LIST OF TABLES AND FIGURES ................................................................................ viii 

CHAPTER 1: INTRODUCTION ........................................................................................1 

Problem Statement and Research Questions........................................................................4 

Definitions............................................................................................................................5 

Conclusion ...........................................................................................................................6 

CHAPTER 2: LITERATURE REVIEW .............................................................................9 

Secondary Mathematics Achievement in America ............................................................10 

The Importance of Understanding Fractions ..................................................................... 11 

The Effectiveness of Intervention Methods Other Than Direct Instruction ......................17 

Theoretical Framework for This Study ..............................................................................22 

The Use of Computer Programming/Coding to Learn Mathematics .................................25 

Challenges Faced by Students Learning to Code ..............................................................31 

Summary ............................................................................................................................35 

CHAPTER 3: METHODOLOGY .....................................................................................39 

Intervention Design ............................................................................................................39 

Setting and Participants......................................................................................................43 

Research Questions ............................................................................................................46 

Research Design.................................................................................................................46 

Data Collection ..................................................................................................................48 

Data Analysis .....................................................................................................................52 

The Trustworthiness of This Study ....................................................................................59 

Summary ............................................................................................................................63 

CHAPTER 4: FINDINGS .................................................................................................65 

RQ1: How Do Low-achieving Middle School Math Students Represent Fraction            

Magnitude as They Design and Develop Games About Fractions Using App 

Inventor? ................................................................................................................67 

RQ2: How Do Low-achieving Middle School Math Students Develop an Understanding 

of Fraction Magnitude When Developing Games About Fractions Using App 

Inventor? ................................................................................................................73 

RQ3: What challenges, other than with fractions, do low-achieving secondary math 

students experience in designing and developing games using App Inventor? .....96 

Summary ..........................................................................................................................128 

CHAPTER 5: DISCUSSION ...........................................................................................130 

Relationship of Prior Research to the Study’s Findings ..................................................131 

Limitations of the Study...................................................................................................138 

Implications of the Study’s Findings ...............................................................................140 

Final Reflections ..............................................................................................................146 



vii 

 

REFERENCES ................................................................................................................149 

APPENDICES .................................................................................................................165 

Appendix A: Instrument for Pre- and Posttest ...............................................................1656 

Appendix B: Scoring the Instrument ...............................................................................168 

Appendix C: Permission to Use Instrument.....................................................................169 

Appendix D: Math Games ...............................................................................................171 

Appendix E: Student Game Analysis Sheet .....................................................................172 

Appendix F: Resources for Fraction Assistance ..............................................................173 

Appendix G: Student Reference Guide for App Inventor ................................................174 

Appendix H: App Inventor Design Template ..................................................................177 

Appendix I: Coding Plan Template ..................................................................................178 

Appendix J: Strategies to Support Students Coding ........................................................179 

Appendix K: Student Log Template ................................................................................181 

Appendix L: Observation Protocol ..................................................................................182 

Appendix M: Interview Protocol .....................................................................................183 

Appendix N: Challenges Other Than with Fractions (RQ3)............................................184 

Appendix O: Directions for Sharing Projects ..................................................................186 

Appendix P: Sample Code Created for Students .............................................................187 

 

  



viii 

 

LIST OF TABLES AND FIGURES 

Figure 2.1: The experiential learning cycle. ......................................................................23 

Figure 2.2: A novice programming environment (MIT, 2017) ..........................................26 

Figure 2.3: Students as instructional technology designers (Israel et al., 2013) ................28 

Figure 3.1: Connecting a device to a project for testing. ...................................................40 

Figure 3.2: Movable desks in the classroom ......................................................................43 

Figure 3.3: Inside a student collaboration room ................................................................44 

Table 3.1: Data collection and purpose ..............................................................................49 

Table 3.2: List of possible codes from the literature for RQ1: Representing fractions .....53 

Table 3.3: Theme development for RQ2: Developing an understanding of fractions .......55 

Table 3.4: Codes and resulting themes for RQ3: Challenges other than with fractions ....57 

Table 3.5: Matrix of findings and sources for data triangulation .......................................62 

Figure 4.1: A simple quiz game using buttons for answer choices. ...................................68 

Figure 4.2: A simple quiz game using the ListPicker component......................................69 

Figure 4.3: A game where the player answers the question then gets to shoot the 

basketball. ..............................................................................................................69 

Figure 4.4: A game that does not ask questions. ................................................................70 

Figure 4.5: Area models from participants’ experiences. ..................................................71 

Figure 4.6: Representing fractions as division in the code. ...............................................72 

Figure 4.7: Examples of the questions participants created for their games. ....................73 

Figure 4.8: A participant using manipulatives to create fraction magnitude questions. ....76 

Figure 4.9: Sarah and Kala’s pizza example. .....................................................................79 

Figure 4.10: The problem, and resolution, Brandy and Ariel discussed. ...........................83 

Figure 4.11: Original game design for Justin and Daniel ..................................................84 

Figure 4.12: The instructions Justin found and copied for comparing fractions. ..............86 

Figure 4.13: Justin’s code with the erroneous division expressions. .................................88 

Figure 4.15: The experiential learning cycle. ....................................................................89 

Figure 4.16: A student’s sketch of an area model question................................................89 

Figure 4.17: Experiential learning cycle for working with area models............................90 

Table 4.1: Working with area models data mapped to the experiential learning cycle ......90 

Figure 4.18: Experiential learning cycle for talking about area models. ...........................92 

Table 4.2: Talking about area models data mapped to the experiential learning cycle ......93 

Figure 4.19: Experiential learning cycle for developing code. ..........................................94 

Figure 4.20: The lines Destini and Chris were trying to move. .......................................100 

Figure 4.21: Expressing frustration when debugging. .....................................................102 

Figure 4.22: Matthew’s code with the correct parameters for the “Heading” property. ..106 

Figure 4.23: A game with several moving components. ..................................................108 

Figure 4.24: Incorrect use of event handlers. ................................................................... 112 

Figure 4.25: Four game designs with features not addressed in the tutorials. ................. 116 

Figure 4.26: Possible events for the screen component. .................................................. 118 

Figure 5.1: Justin (background) smiling as Daniel plays the working game. ..................148 

 

  



1 

 

CHAPTER 1: INTRODUCTION 

Starting in 1969, the National Assessment of Educational Progress (NAEP) has 

measured what American students know and can do in various subjects; since 1978, the 

percent of 13-year-olds achieving a rating of “proficient” or higher in mathematics has 

never exceeded 35% (National Center for Education Statistics, 2015).  Research suggests 

that middle school students who have difficulties in mathematics, specifically in 

understanding fractions, greatly impacts their  ability to understand algebra 1 (e.g., Booth 

& Newton, 2012; Brown & Quinn, 2007; Siegler et al., 2012), which then negatively 

influences their  ability to take a math course beyond algebra 2 (Sciarra, 2010), graduate 

high school (Orihuela, 2006) or succeed in higher education (Adelman & United States., 

2006; Trusty & Niles, 2004).  

There are two dominant theories on what the connection is between understanding 

fractions and understanding introductory algebra. The first suggests that the connection is 

symbolic and procedural. Algebra frequently uses fraction notation to indicate a quotient 

(Rotman, 1991), involves algebraic fractions when solving equations (Laursen, 1978), 

and uses algorithms similar to fraction arithmetic (Kieren, 1980; Wu, 2001). The second 

and more recent theory suggests that the connection stems from one’s understanding of 

fraction magnitude. Booth and Newton (2012) found that middle school students’ 

understanding fraction magnitude, especially unit fractions (fractions with a numerator of 

one), was highly correlated with algebra readiness measures. Similarly, Mou et al. (2016) 

found that eighth and ninth grade students’ understanding of fraction magnitude predicted 

their algebra achievement, even when results were controlled for the participants’ seventh 



2 

 

grade math achievement. Other studies have found that a student’s understanding of 

fraction magnitude influences his/her ability to catch algebraic errors (Brown & Quinn, 

2006) and helps identify students with a math learning disability (Mazzocco, Myers, 

Lewis, Hanich, & Murphy, 2013). Fraction magnitude is a conceptual understanding 

which involves (a) understanding their properties, such as the principle of equivalent 

fractions, (b) understanding how the numerator and the denominator determine 

magnitude, and (c) the ability to work with and create various ways to represent fraction 

magnitude, such as ordering on a number line (Gabriel et al., 2012; Jordan et al., 2013; 

Siegler, Fazio, Bailey, & Zhou, 2013; Vamvakoussi & Vosniadou, 2004). Understanding 

fractions is not easy for young learners, and the United Stated Department of Education 

(2008) recognizes it as a difficult and pervasive problem. 

To understand a mathematical concept, students need to learn how to construct, 

interpret, and connect various representations (Duval, 2006; Even, 1998; Lesh, Post, & 

Behr, 1987; NCTM, 2000; Panaoura, Gagatsis, Deliyianni, & Elia, 2009). For fraction 

magnitude, The Common Core State Standards (NGA, 2010) suggest that these 

representations include number lines, fraction models, partitioning into equal parts, and 

as addition or multiplication of unit fractions. Many students, however, learn to represent 

fraction magnitude primarily through using area models, a specific type of fraction model 

in which the fraction is shown as a shaded portion of a two-dimensional figure (Zhang, 

2012), which poses difficulties for transferring knowledge to other representations 

(Zhang, Clements, & Ellerton, 2015). Simply providing learners with multiple 

representations, however, is not as effective as having them construct meaning with those 



3 

 

representations or construct their own representations (Ainsworth, Bibby, & Wood, 2002; 

Greeno & Hall, 1997; Rau, Aleven, & Rummel, 2015; Zhang, Clements, & Ellerton, 

2015). One way that has been proposed to allow learners to construct their own 

representations of mathematical concepts is game design (Kafai, 1995, April). When 

students are challenged to design a game about fractions, they can create and integrate 

various ways of representing fractions in their games (Kafai, Franke, Ching, & Shih, 

1998). Another way is programming; when students develop code about fractions, they 

construct their own experiences and representations of fractions in the code (Feurzeig & 

Papert, 2011; Kafai, 1995).  

Programming once required learning a formal programming language, but the 

advent of novice programming environments (NPEs) have made creating computer 

programs and apps more accessible (Peppler & Kafai, 2007). Modern NPEs utilize 

graphics and visual blocks of code so users can learn programming concepts without 

simultaneously learning syntax. They have been used to teach mathematical concepts like 

fractions (Harel & Papert, 1990; Kafai, 1995), proportional reasoning (Psycharis & 

Kynigos, 2011), and properties of infinite number sets (Kahn, Sendova, Sacristán, & 

Noss, 2011). 

This study examined an intervention that asked low-achieving middle school 

students to create games about fraction magnitude using App Inventor (MIT, 2017), a 

NPE. After a brief introduction to App Inventor and basic game design, participants 

worked in groups of two or three to design and develop a game that would teach players 

something about fraction magnitude. The participants determined what part of fraction 



4 

 

magnitude the games focused on and what representations of fractions appeared in the 

games. Participants spent two to three days designing their games and creating a coding 

plan then the remainder of this ten-day intervention creating their games in App Inventor.  

The intent of this study was to examine what representations of fractions low-

achieving students used in the games they created, how they developed an understanding 

of fraction magnitude while developing their games, and what challenges they had 

beyond working with fractions as they developed their games. The literature on 

representing fractions and the challenges students with learning disabilities have when 

learning computer science or mathematics was used to understand the representations 

participants used in their games and the challenges they experienced other than with 

fractions. To investigate how their understanding developed, this study used experiential 

learning theory (Kolb, 1984) as a lens for the interactions participants had with fractions. 

Experiential learning theory states learning occurs as a cycle of four phases: concrete 

experience, reflective observation, abstract conceptualization, and active 

experimentation. Learners enter this cycle when they encounter a challenging experience 

and progress through the phases as they think critically about this experience (Matsuo, 

2015). This study demonstrates that the way participants interacted with fractions maps to 

the experiential learning cycle to show how they developed their understanding of 

fraction magnitude during the intervention. 

Problem Statement and Research Questions 

NPEs such as App Inventor are relatively new and little evidence exists on how 

they may be used in academics. Some studies have examined the role that using NPEs for 



5 

 

game design can have in science, but very few have addressed other academic subjects 

like mathematics. Additionally, many of these studies focus on elementary school 

students instead of secondary students (e.g., Kafai, Franke, Ching, & Shih, 1998; Calder, 

2010). This study adds to the literature by exploring how NPEs and game design help 

develop and demonstrate math understanding at the secondary level and will ask the 

following research questions: 

RQ1: How do low-achieving middle school math students represent fraction 

magnitude when developing games about fractions using App Inventor? 

RQ2: How do low-achieving middle school math students develop an 

understanding of fraction magnitude when developing games about fractions 

using App Inventor? 

Because this study specifically targeted students who struggle in mathematics, it 

is also important to understand what challenges these students may have when working 

with NPEs during a math intervention. Understanding these challenges may help identify 

and explain any factors that may have limited the students’ development of fraction 

understanding (Allsopp, McHatton, & Farmer, 2010). Therefore, an additional question 

was investigated during this study:  

RQ3: What challenges, other than with fractions, do low-achieving secondary 

math students experience in designing and developing games using App Inventor? 

Definitions 

Coding vs. programming: Dictionary.com (coding, n.d.; programming, n.d.) 

defines both as the act of creating computer code. This paper will differentiate them as 



6 

 

follows: Programming is the formal act of creating computer code; coding represents the 

beginning steps of programming or programming using a tool intended for beginners 

(Prottsman, 2015). 

Fraction magnitude: The size of a fraction, determined by the fraction’s 

numerator and denominator and some object, collection, length, or position on a number 

line representing one “whole.” 

Fraction representations: Objects, language, symbols, or images (Lesh, Post, & 

Behr, 1987) used to represent fraction magnitude, including number lines, fraction 

models, spoken/written language, and real-world applications (NGA, 2010; Zhang, 

Clements, & Ellerton, 2015). For this study, representations will also include those 

expressed in the students’ code as a form of written language. 

Low-achieving middle school math students: Students in grades six through 

eight who  demonstrated low achievement in prior math classes or on state assessments 

and are enrolled in a math assistance class in addition to their grade-level math course.  

Novice programming environment (NPE): A computer coding environment that 

utilizes graphics and visual blocks of code to create programs. 

Conclusion 

Research suggests that understanding fraction magnitude can positively influence 

math achievement in secondary (e.g., Booth & Newton, 2012; Brown & Quinn, 2007; 

Siegler et al., 2012) and post-secondary education (Adelman & United States., 2006; 

Trusty & Niles, 2004). Examining how low-achieving middle school students develop 



7 

 

and demonstrate their understanding of fraction magnitude is therefore an area worthy of 

study.  

The second chapter reviews literature that demonstrates how interventions other 

than direct instruction may be an effective way to help low-achieving students develop 

their understanding and that creating games for mobile devices can support this learning. 

The review also shows that research in this area is limited, not only concerning middle 

school and/or low-achieving students’ use of NPEs to learn mathematics but also 

concerning what challenges low-achieving students face when coding.  

To investigate the use of NPEs as a tool for learning fractions, the third chapter 

describes methodology used in this study. In this chapter, the intervention is described in 

greater detail. This study used a holistic case study with embedded units to examine each 

of the research questions. The holistic approach enabled examination of the 

representations (RQ1) and development (RQ2) of fraction magnitude knowledge as well 

as the challenges faced when creating their games (RQ3), while the embedded units 

enabled the researcher to consider the influences of individual backgrounds and the 

various kinds of games each developed. Details including the role of the researcher, 

selection of participants, data collection/analysis, and trustworthiness issues are included 

in this third chapter.  

The fourth chapter details the findings of this study. It begins with a description of 

the games that participants developed and what representations of fractions they used in 

their games and game designs (RQ1). The chapter then describes how participants 

developed their understanding of fraction magnitude during the intervention (RQ2) by (a) 



8 

 

presenting the results of the pre- and posttest, (b) describing the three ways participants 

showed their developing understanding, which were working with area models, talking 

about area models, and developing code to compare fractions, and (c) mapping these 

methods to the experiential learning cycle. The chapter then presents the findings for the 

challenges participants had when creating their games other than with fractions (RQ3), 

what supports were offered to help with these challenges, and what challenges were 

common to participants who did not complete their games.  

The final chapter summarizes and discusses the findings. It begins by situating the 

findings for each research question in the relevant literature. The limitations of the study 

follow this section, including occurrences or details that could impact this study’s 

transferability and credibility. The chapter then discusses the implications this study will 

have for practitioners, especially those wanting to use NPEs in their instruction, and for 

future research. The chapter concludes with a final reflection on this study. 

  



9 

 

CHAPTER 2: LITERATURE REVIEW 

This study is grounded in literature by discussing the need for students to 

understand fractions, the effectiveness of alternative instructional techniques in 

mathematics, and the effectiveness of programming or coding to learn mathematics. This 

chapter will begin by providing a foundation for investigating fraction magnitude 

understanding with low-achieving middle school students and includes (a) a brief 

discussion concerning secondary math achievement in America, (b) the importance of 

understanding fractions for secondary math achievement, (c) what is means to understand 

fractions, and (d) a discussion of the effectiveness of math interventions that do not use 

direct instruction. Following these sections, this chapter will consider the appropriateness 

of using novice programming environments in a secondary math intervention by 

discussing (a) the theoretical framework for this study, (b) the use of programming or 

coding to learn mathematics, and (c) the challenges faced by students learning to program 

or code. 

Academic Search Premier, Computer Source, Education Full Text and ERIC were 

used to identify relevant studies. Search terms included game-based learning, novice 

programming environments, app development, computer programming, students 

designing games, education, middle school, high school, mathematics, fractions, algebra, 

problem solving, intervention, experiential learning, Scratch, and App Inventor. The 

search returned 746 articles, of which 93 were considered for this study. Other relevant 

articles were found using Google Scholar and by reviewing the references of previously 

found articles. Articles were rejected if they addressed non-academic learning such as 



10 

 

empathy, the creation of a program or tool (other than by students), working with teachers 

instead of students, cognitive strategies such as self-explanation, low-incidence 

disabilities or preschool children, using technology for non-instructional tasks such as 

data mining, editorials or literature reviews about related articles, or were not available in 

English. Five additional articles were removed as they addressed enhanced-reality 

programs, which is beyond the scope of this study. 

Secondary Mathematics Achievement in America 

Research conducted in the United States demonstrates that student achievement in 

mathematics declines during middle school. The 2011 National Assessment of 

Educational Progress (NAEP) results show that 40% of fourth-graders were proficient or 

better in mathematics (National Center for Education Statistics, 2015). In 2015, when 

these students were in eighth grade, the NAEP results showed that only 33% of eighth-

graders were proficient or better. Similar declines are apparent with eighth-graders who 

were tested in 2013 and 2011. In each of those tested years, 35% of eighth-graders were 

proficient or better in mathematics, while the scores when they were in fourth-grade 

showed 39% were proficient or better. 

Helping students achieve mathematical proficiency during their early secondary 

school years will impact the educational opportunities these students will have as young 

adults. Students who fail algebra 1 in high school are more than four times as likely to not 

graduate as those who pass (Orihuela, 2006). More than two-thirds of students who do 

graduate high school enroll in college right away (United States Department of Labor, 

2015), but one-quarter of them will not return to college after their first year and most 



11 

 

will not complete a 2- or 4-year degree (ACT, 2015). A strong predictor of college 

completion is high school math achievement: Students who take at least one math course 

beyond algebra 2 in high school are much more likely to complete a four-year college 

degree (Adelman & United States., 2006; Trusty & Niles, 2004), and math achievement 

scores and grades are the most significant variables for predicting if a high school student 

will take a math course beyond algebra 2 (Sciarra, 2010). These studies suggest that 

increasing mathematical proficiency will help students to graduate high school and 

complete college. 

The Importance of Understanding Fractions 

In order to understand high school algebra, the National Mathematics Advisory 

Panel (United States Department of Education, 2008) recommends that students have a 

strong understanding of fractions first, and research supports this recommendation. A 

longitudinal study by Siegler et al. (2012) involving 4,276 children in both the United 

Kingdom and the United States compared students’ mathematical understandings at age 

10 and 16. They found that a student’s understanding of fractions at age 10 was a better 

predictor of algebraic understanding at age 16 than other numeracy skills, general 

intellectual ability, or family background. Brown and Quinn (2007) measured 191 

students’ understandings of fractions and compared those scores to the students’ final 

algebra exam grades. They found that students who struggled in algebra also struggled 

with fractions and those that performed well in algebra also understood fractions. 

Zientek, Younes, Nimon, Mittag, and Taylor (2013) measured fraction and algebra 1 

skills in 573 K-8 preservice teachers. They determined that participants who could not 



12 

 

multiply an improper fraction by a whole number were more than five times as likely to 

solve algebra equations incorrectly as those who could, and that those who could not add 

and divide fractions or could not reduce mixed numbers, convert mixed numbers to 

improper fractions, and divide fractions were more than seven times as likely to be 

unable to solve algebra equations. In a qualitative study, Hackenberg and Lee (2015) 

found that students who had difficulties drawing pictures representing improper fractions 

also had difficulties writing algebraic equations for simple word problems involving 

multiplicative relationships.  

Research has found two possible explanations for this connection between 

fractions and algebra. One line of reasoning suggests that this connection is due to the 

prevalence of fractions and fraction notation found in algebra. Algebra frequently uses 

fraction notation to indicate a quotient (Rotman, 1991), involves algebraic fractions when 

solving equations (Laursen, 1978), and often uses similar algorithms as arithmetic with 

fractions uses (Kieren, 1980; Wu, 2001). These researchers suggest that fluency with 

fraction manipulation would simplify a student’s learning of algebra. Other researchers, 

however, have found a more abstract link between fraction understanding and algebra 

readiness. Booth and Newton (2012) studied middle school students who were registered 

to take algebra 1 the following school year. Students were measured on their 

understanding of fraction and whole number magnitude, foundational algebra knowledge 

(such as defining an equal sign), simple algebraic equation solving, and simple algebraic 

word problems. They found that understanding fraction magnitude, especially unit 

fractions (fractions with a numerator of one), was highly correlated with all three algebra 



13 

 

readiness measures. Similarly, Mou et al. (2016) compared 122 eighth and ninth grade 

students’ fraction knowledge and algebra achievement. This study also determined that 

understanding fraction magnitude strongly predicted algebra achievement, even when 

results were controlled for the participants’ seventh grade math achievement. Brown and 

Quinn (2006) performed an error analysis on a math skills instrument given to high 

school students in algebra 1. This instrument included fraction arithmetic, fraction 

magnitude, and one-step algebra equations that each included one fraction. The error 

analysis showed that students generally did not understand fraction magnitude or were 

not able to apply their understanding to determine the reasonableness of their solutions. 

For example, when asked what half of two-thirds was, over a quarter of the students gave 

an answer that was larger than two-thirds. They determined that this lack of 

understanding of fraction magnitude causes students to incorrectly apply procedures to 

fraction and algebraic equations and theorized that it is because students cannot 

determine the reasonableness of the procedure they are using.  

Three longitudinal studies examined this relationship between understanding 

fractions and math achievement and concluded that understanding fractions, especially 

fraction magnitude, impacts future math achievement. Bailey, Hoard, Nugent, and Geary 

(2012) studied students from first through seventh grade and measured them on IQ, math 

achievement, and specific mathematical tasks, including fraction concepts and skills. 

They found that scores in sixth grade on fraction concepts and skills predicted seventh 

grade math achievement but sixth grade math achievement did not predict seventh grade 

scores on fraction concepts and skills. Siegler, Thompson, and Schneider (2011) 



14 

 

presented a series of problems and tasks to sixth and eighth graders that measured 

knowledge of fraction magnitude and fraction arithmetic skills then compared those 

results to the students’ state exam scores. To determine if a general understanding of 

fractions was related to general mathematics achievement, or if specific fraction 

knowledge was, they conducted a regression analysis. The analysis showed that 

understanding fraction magnitude when controlling for fraction arithmetic skills was a 

strong predictor of state exam scores but the reverse, understanding fraction arithmetic 

when controlling for fraction magnitude understanding, was not. Mazzocco, Myers, 

Lewis, Hanich, and Murphy (2013) measured students in grades four through eight who 

were identified as typical-achievers (TA), low-achievers (LA), or as having a math 

learning disability (MLD) on their general mathematics achievement and their 

understanding of fraction magnitude. In addition to confirming that the fractions measure 

accurately identified students in each group, the researchers found that the MLD group 

showed a significant grade-level delay in understanding what the fraction “one-half” 

represents. Fraction comparisons that included one-half were significantly easier for TA 

starting in fourth grade, for LA starting in fifth, but not until grade seven for MLD. 

Further examination showed that this “one-half advantage” was a precursor to 

understanding fraction magnitude problems that did not include one-half. These three 

studies suggest that understanding fraction magnitude significantly impacts achievement 

in future math courses. 

A student’s knowledge of fractions during middle school effects his/her 

educational outcomes as young adults. These studies show that understanding fraction 



15 

 

magnitude and being comfortable with fraction notation impacts what a student will 

understand and be able to do in high school algebra. As the previous section 

demonstrated, failure in algebra may decrease a student’s chance of graduating high 

school and success may increase a student’s chance of completing college. Strengthening 

a student’s readiness for algebra by increasing their understanding of fractions should 

help them succeed in algebra 1. 

Understanding Fractions 

A full understanding of fractions involves understanding them on both a 

conceptual and a procedural level, with conceptual knowledge impacting procedural 

knowledge (Fuchs et al., 2013). Understanding fractions conceptually includes 

understanding (a) properties of rational numbers, such as the principle of equivalent 

fractions, (b) the relationship between the numerator and the denominator and how 

together they determine magnitude, and (c) various ways to represent fraction magnitude, 

such as ordering on a number line (Gabriel et al., 2012; Jordan et al., 2013; Siegler, 

Fazio, Bailey, & Zhou, 2013; Vamvakoussi & Vosniadou, 2004).  

In order to gain conceptual understanding for a mathematical topic, such as 

fraction magnitude, research suggests that students need to learn to work with and 

convert between various representations of that mathematical topic (Duval, 2006; Even, 

1998; Lesh, Post, & Behr, 1987; NCTM, 2000; Panaoura, Gagatsis, Deliyianni, & Elia, 

2009). Such representational knowledge supports complex problem solving, the transfer 

of learning to new situations, and the understanding of more difficult concepts (Greeno & 

Hall, 1997; Hiebert & Carpenter, 1992; Niemi, 1996; Puttnam, Lampert, & Peterson, 



16 

 

1990). Mathematical representations may consist of objects, language, symbols, or 

images (Lesh, Post, & Behr, 1987) and, through the middle grades, come from the 

student’s concrete experiences (NCTM, 2000, p. 68). The Common Core State Standards 

(NGA, 2010) and the National Council of Teachers of Mathematics (2000) suggest that 

students should be able to use the following representations of fraction magnitude: 

number lines, fraction models, as partitioning into equal parts, as the quotient of integers, 

and as addition or multiplication of unit fractions. The most common representations 

used in textbooks, however, are area models, a specific type of fraction model in which 

the fraction is shown as a shaded portion of a two-dimensional figure (Zhang, 2012), with 

circles being the recommended figure for these area models (Bray & Abreu-Sanchez, 

2010; Cramer & Henry, 2002) Fractions may also be represented as portions of 

perimeters, capacities, lengths of objects, collections, and real-world applications in 

addition to the representations suggested by the Common Core State Standards, however, 

many students who understand area models still have difficulty transferring their 

knowledge to these other representations (Zhang, Clements, & Ellerton, 2015).  

Simply providing learners with multiple representations, however, is not as 

effective as having them construct meaning with those representations or construct their 

own representations (Ainsworth, Bibby, & Wood, 2002; Greeno & Hall, 1997; NCTM, 

2000; Rau, Aleven, & Rummel, 2015; Zhang, Clements, & Ellerton, 2015). Activities 

such as game design allow learners to construct their own representations of 

mathematical concepts (Kafai, 1995, April). 



17 

 

The Effectiveness of Intervention Methods Other Than Direct Instruction 

To help low-achieving students to succeed in mathematics, educators often use 

direct instruction, a method recommended for students with learning disabilities in which 

the instructor demonstrates a procedure then the student copies the procedure on similar 

problems (Gersten, Chard, Jayanthi, Baker, Morphy, & Flojo, 2009). This method has 

been shown to be highly effective with elementary students and students with learning 

disabilities because it reduces the cognitive load on working memory, but older learners 

without a learning disability may not need the same instructional support (Kirschner, 

Sweller, & Clark, 2006), especially when problem-solving (Kuhn, 2007). As an 

alternative to direct instruction, some researchers have explored more constructivist 

approaches for mathematics intervention. They include having students designing an 

item, exploring problems with real-life connections and data, and encouraging students to 

reason mathematically. The following section discusses a few of those interventions. 

Having students design a real-life object has been shown to help students increase 

their skills in mathematics. Bottage and Haselbring (1999) conducted a study asking 

middle-school students with disabilities to design a cage for a pet using materials that 

were within a given budget. The students used a provided video for the information they 

required and used resources other than the teacher to learn how to perform necessary 

calculations. They then presented their designs and explained their reasoning. A related 

study asked middle-school students to design a skateboard ramp then had them build their 

ramps during a technology education class (Stephens, Bottge, & Rueda, 2009). In each 

case, the students showed improvements in computation skills afterwards, especially 



18 

 

when working with fractions. These studies were recently expanded to twenty-five 

inclusion mathematics classrooms in twenty-four middle schools (Bottge et al., 2015).  

Two-hundred forty-eight students, 29% of whom were identified by their districts as 

having a learning disability, received math instruction that was typical for their school 

while 223 students, 28% of whom were identified as having a learning disability, 

received instruction that blended video, virtual interactives, and hands-on projects. These 

projects focused on fractions, proportional reasoning, and budgeting and included the pet 

cage design and skateboard ramp building from the previous studies as well as a roll-over 

cage for a hovercraft and a model racecar track. Students in the experimental group 

showed higher gains than those in the control group on researcher-developed measures of 

fraction skills and problem solving, but both groups had similar gains on standardized 

tests for computation and problem solving. This result was consistent for both students 

with and without a learning disability.  

A 3-year longitudinal study in Texas, however, compared three high schools that 

integrated project-based learning (PBL) throughout the curriculum with two high schools 

that had not (Han, Caparo, & Caparo, 2015), with the students in the PBL schools 

experiencing at least two PBL lessons every six weeks. This study found that students in 

the PBL schools showed greater gains on the state mathematics assessment than students 

in the other schools, with the highest gains shown by students who had not met 

proficiency levels in mathematics on previous state assessments. These studies suggest 

that a project-based learning approach can effectively increase students’ math 

achievement. 



19 

 

To increase students’ abilities in problem-solving and reasoning, two studies had 

students explore real-life scenarios with authentic data. Mousoulides, Christou, and 

Sriraman (2008) investigated the effect that mathematical modeling with authentic data 

had on sixth- and eighth-graders’ mathematical achievement. Over three months, these 

students with low modeling abilities, as measured by a pretest, participated in six 

modelling activities, including determining which city to move to, developing a 

procedure for calculating how much paint it takes to paint a car, and ranking medications 

based on quantitative data, while a control group received traditional mathematics 

instruction on word problems. Problem-solving skills were measured before the 

intervention, after the intervention group completed three activities, and at the end. The 

rate of change over these three measures showed that sixth-graders increased in their 

problem-solving abilities two and a half times more than the control group and eighth-

graders increased three times more. Van Dooren, de Bock, Hessels, Janssens, and 

Verschaffel (2004) studied an intervention for eighth-graders of varying math 

achievement levels addressing non-proportional reasoning. Students in the intervention 

group participated in hands-on explorations of proportional and non-proportional 

scenarios in geometry, such as the quadratic growth of area when enlarging two-

dimensional objects, while students in the control group worked on traditional word 

problems. Post-testing showed that both groups performed similarly on proportional-

reasoning tasks, but the intervention group answered twice as many non-proportional 

reasoning items correctly as they did on the pre-test while the control group showed no 

change. Another study explored the kind of help provided by the teacher when students 



20 

 

worked on complex problems (Dekker & Elshout-Mohr, 2004). Students who partially 

understood transformations, as measured by a pretest, in both the intervention and control 

groups were given identical geometry problems to solve collaboratively, but the control 

group received explicit help with the mathematics and the intervention group received 

help on working collaboratively. The intervention group scored significantly higher than 

the control group on a post-test addressing the geometry concepts targeted during the 

experiment. 

These studies demonstrate the effectiveness of non-traditional instructional 

methods for secondary mathematics interventions, with two studies (Bottge et al., 2015; 

Han, Caparo, & Caparo, 2015) demonstrating the effectiveness of these methods on low-

achieving students. Whether students design something, work with real scenarios, or 

consider abstract ideas, allowing them the time to explore and experiment with 

mathematics can increase their skills and problem-solving abilities.  

The Challenge of Intervention Methods Other Than Direct Instruction  

Although the previous studies demonstrate that approaches other than direct 

instruction have benefits for all learners of mathematics, research has shown that direct 

instruction is highly effective for students with learning difficulties, especially those with 

learning disabilities (Gersten et al., 2009). These students often have working memory 

deficits and visual-spatial difficulties (Cai, Li, & Deng, 2013; Geary, 2013; Swanson & 

Zheng, 2013). Working memory is the system that allows one to complete complex tasks 

such as reasoning and problem-solving (Baddeley, 2010), and is often limited in students 

with learning disabilities because they have difficulties retrieving information from long-



21 

 

term memory (Swanson & Zheng, 2013), which is what reduces the cognitive load on 

working memory (Kirschner, Sweller, & Clark, 2006). Visual-spatial processing is a 

component of working memory that allows one to manipulate or recall spatial 

information (Swanson & Zheng, 2013). Deficits in working memory, including visual-

spatial processing, negatively affect one’s ability to learn mathematics (Barnes & 

Raghubar, 2014; Cai, Li, & Deng, 2013; Geary, 2013; Swanson & Zheng, 2013), 

including fraction magnitude (Jordan, Resnick, Rodrigues, Hansen, & Dyson, 2016).  

Direct instruction techniques reduce the cognitive load on working memory by 

directing the learner’s attention to the key characteristics of the problem being solved 

(Kirschner, Sweller, & Clark, 2006; Likourezos & Kalyuga, 2017) and by presenting 

information sequentially and in smaller amounts (Adams & Carnine, 2003). Direct 

instruction has been found to be effective for teaching fractions when students learn how 

to draw accurate models (Sharp & Shih-Dennis, 2017) and to make connections between 

concrete, representational, and abstract representations (Kim, Wang, & Michaels, 2015),  

Research has found that, for students with learning disabilities, the most effective 

instruction is a combination of direct instruction and strategy instruction, which is 

instruction on how to process a problem and design a potential solution process (Fuchs, 

Fuchs, Schumacher, & Seethaler, 2013; Gersten et al., 2009; Swanson, 2001). Strategy 

instruction can address mathematical problem-solving directly, which is effective when 

the strategy itself does not place extra burdens on working memory (Swanson, Orosco, & 

Lussier, 2014; Zhu, 2015). It can also address working memory directly by teaching 

students to say the important information in a problem aloud and repeatedly; although 



22 

 

this form of strategy instruction was shown to improve performance, it did not improve 

the actual working memory capacity of the participants (Peng & Fuchs, 2017; Swanson, 

Kehler, & Jerman, 2010). Either approach to strategy instruction, when used with direct 

instruction, reduces the burden on working memory by focusing the learner’s attention on 

key characteristics of the problem (Fuchs, Fuchs, Schumacher, & Seethaler, 2013; 

Gersten et al., 2009; Swanson, 2001). 

Other instructional approaches, such as constructivism, are challenging for a 

learner with working memory deficits because the pre-requisite knowledge is not readily 

available or easily retrievable from long-term memory, which can cause errors, as the 

working memory is unable to distinguish between important and irrelevant information, 

and frustration, as the working memory is unable to contain the information needed for 

problem-solving (Swanson & Zheng, 2013).  Thus, a student with learning disabilities 

would likely require additional supports to be successful when direct instruction is not 

employed (Godino, Batanero, Cañadas, & Contreras, 2017). These supports include 

allowing students to use concrete or semi-concrete supports, such as counting on fingers, 

prompting to help them articulate their thinking, explicitly demonstrating connections 

between similar problems (Moscardini, 2010; Xin, Liu, Jones, Tzur, & Si, 2016), and 

employing direct instruction techniques when providing guidance for the student (Ding & 

Li, 2014). 

Theoretical Framework for This Study 

Experiential learning theory states that ideas are formed and re-formed through 

experience (Kolb, 1984). Education has traditionally used direct instruction, an 



23 

 

instructional model where the material is explicitly taught to students (NIFDI, 2015), but 

John Dewey (1938/1998) suggests direct instruction prevents students from being active 

participants because there exists a difference between the adult-created products that form 

the basis of instruction and the experiences of the children who are trying to learn. As an 

alternative, many educators have advocated that children should learn through 

experience. John Dewey (1938/1998) describes learning through experience as the 

connection one makes between what a person does and what happens because of the 

person’s action. Sanford, Hopper, and Starr (2015) state that learning occurs when the 

learner engages in building, creating, and interacting to create their own experiences. 

David Kolb (1984) defines experiential learning as a cyclic process with four 

stages: concrete experience, reflective observation, abstract conceptualization, and active 

experimentation. During concrete experience, a learner engages in an activity. Then the 

learner reflects on that activity or experience during reflective observation. The learner 

gains knowledge or skills from the experience during the abstract conceptualization stage. 

The learner then tries out or tests their learning through active experimentation. These 

stages can also be thought of as experiencing, processing, generalizing, and applying. 

 
Figure 2.1: The experiential learning cycle. 

Concrete 
experience

(experiencing)

Reflective 
observation

(processing)

Abstract 
conceptualization

(generalizing)

Active 
experimentation

(applying)



24 

 

While most of the research on the experiential learning cycle has focused on the 

learner’s preferences within the cycle, recently there has been consideration of the cycle 

holistically as an idealized learning cycle (Kolb, Boyatzis, & Mainemelis, 2001). This 

learning cycle models what occurs in the classroom when students are given a complex 

problem (Georgio, Zahn, & Meira, 2008). The “concrete experience” and “active 

experimentation” phases of the cycle occur when one has a challenging experience, such 

as those that occur when solving a complex problem, and thinking critically about that 

experience is when “reflective observation” and “abstract conceptualization” occur 

(Matsuo, 2015). For experiential learning to be effective, however, there must be a 

manageable gap between what the learner can presently do and what the learner wants to 

do; additionally, what is to be learned needs to connect to what the learner values; the 

learner must believe that what he/she needs to learn will help achieve his/her goal  (Burns 

& Gentry, 1998).  

Experiential learning has been applied to mathematics education. It has been 

found to increase students’ mathematical skills (Stone, Alfeld, & Pearson, 2008) and 

understanding of mathematical concepts (Fest, Hiob, & Hoffkamp, 2011). Experiential 

learning environments allow students to express their concerns and beliefs about 

mathematics (Skehill, 2013), which may also impact math achievement (Wilhelm, She, & 

Morrison, 2011). Learning to program a computer (coding) allows experiential learning 

to occur because it is a process that involves regular re-examination of the problem 

(Robins, Rountree, & Rountree, 2003). For these reasons, this study uses experiential 



25 

 

learning as its theoretical framework because students created games about fractions by 

coding in a novice programming environment. 

The Use of Computer Programming/Coding to Learn Mathematics 

Seymour Papert believes that programming a computer “fosters an experimental 

approach towards solving problems” (Feurzeig & Papert, 2011, p490). “When composing 

lessons on the computer, the designer combines knowledge of the computer, knowledge 

of programming, knowledge of computer programs and routines, knowledge of the 

content, knowledge of communication, human interface, and instructional design. The 

communication between the software producers and their medium is dynamic” (Harel & 

Papert, 1990, p28). He also found that situating knowledge in internalized, mental 

environments acted similarly to those situated in external, physical environments 

(Feurzeig & Papert, 2011), allowing the abstract to become concrete (Turkle & Papert, 

1990). Additionally, Papert believed that programming encouraged students to reflect 

upon their errors. Students often view wrong answers as things to be disposed of, but 

when programming they focus on trying, fixing, and improving their work (Papert, 1980). 

When errors occur, students study them instead of ignoring them (Papert, 1980) because a 

program that does not work still does something that can be observed, reflected upon, and 

understood (Feurzeig & Papert, 2011).  

In Papert’s work with teaching students to program in Logo, he found that 

programming built a relationship between the learner and the content, making the content 

relevant to the learner (Papert, 1980). This relationship increased their willingness to 

learn the content, even if previously the content was uninteresting to the student (Harel & 



26 

 

Papert, 1990). Papert attributes this relationship-building to the creativity of software 

design; students he worked with found programming to be a tool for personal expression 

and creativity despite the formality inherent to programming (Feurzeig & Papert, 2011). 

He found that “the computer is an expressive medium that different people can make 

their own in their own way” (Turkle & Papert, 1990). 

Creating computer programs once required learning a formal programming 

language, but in the late 1960’s the Logo programming language and environment was 

developed (Feurzeig & Papert, 2011). Logo was designed to provide a conceptual 

foundation to teach mathematical and logical ways of thinking. Papert (1980) wrote of 

programming that it transformed the accessibility of knowledge from formal processes 

only into a concrete experience. Since the development of Logo, we have seen novice 

programming environments (NPEs) emerge. These NPEs utilize graphics and visual 

blocks of code to make software development accessible to more people; users can learn 

programming concepts without simultaneously learning syntax.  

 
Figure 2.2: A novice programming environment (MIT, 2017) 



27 

 

The formal syntax of programming languages makes learning through 

programming difficult because they inadvertently distract novices from creativity and 

problem-solving (Dekhane, Xu, & Tsoi, 2013). NPEs provide a natural environment for 

multimedia education because they have low barriers to artistic expression and civic 

engagement (Peppler & Kafai, 2007). In this qualitative study, Peppler and Kafai (2007) 

found students who used NPEs for multimedia education were exploring independently, 

closely analyzing text, and expressing their cultures through the games they created. 

Asking students to create games for younger students allows them to transform traditional 

methods of instruction, which they have likely experienced for themselves, into more 

contemporary forms (Prensky, 2008). Designing games and models using NPEs has also 

been shown to help students develop narrative and journalism skills (Robertson & Good, 

2005; Wolz, Stone, Pearson, Pulimood, & Switzer, 2011), visualize social studies content 

(An, 2016; Ioannidou, Repenning, Lewis, Cherry, & Rader, 2003), and explain scientific 

ideas (Baytak & Land, 2011; Ioannidou, Repenning, Lewis, Cherry, & Rader, 2003; 

Israel, Marino, Basham, & Spivak, 2013; Khalili, Sheridan, Williams, Clark, & Stegman, 

2011; Yang & Chang, 2013).  

When students design computer games for learning, they incorporate knowledge 

from three areas: (1) what they understand and have experienced with technology of any 

kind, (2) what they understand and have experienced with the educational content, and 

(3) their personal learning preferences, both general learning preferences and technology-

specific (Israel et al., 2013). They use multiple means of expression to demonstrate their 

understanding of the content (Israel et al., 2013; Khalili et al., 2011) and independently 



28 

 

find ways to fill any gaps in their understanding (An, 2016; Khalili et al., 2011; 

Savignano, Williams, & Holbrook, 2014). They try to make the content accurate in their 

games (An, 2016; Khalili et al., 2011), but even when they do not, they are able to 

identify the misconceptions they represented (An, 2016).  

 
Figure 2.3: Students as instructional technology designers (Israel et al., 2013) 

Programming a computer to learn mathematics is not a new idea; a study from the 

1970’s showed that students who developed algebra programs using the BASIC 

programming language improved their algebra skills (Tilford, 1979). Similarly, Harel and 

Papert (1990) had fourth-graders develop software using Logo. One group developed 

programs that taught something about fractions and one group simply learned how to 

program using Logo. Compared to a control group that did not learn to program, both 

groups scored higher on the state mathematics exam of basic skills. Additionally, a 

fraction skills pre- and post-test measure showed that the fraction-lesson programmers 

had almost twice the gains than the other two groups had. Papert found that children 

working with Logo provided them with a framework, vocabulary, and experience for 

discussing mathematics (Feurzeig & Papert, 2011), a culture that promoted active 

Student's 
design of 

instructional 
technology

Student's 
knowledge of and 
experience with 

technology

Student's 
knowledge of and 
experience with 
the instructional 

content
Student's learning 
preferences with 

and without 
technology



29 

 

learning of mathematics (Papert, 1987), and “a context that mobilized creativity, personal 

knowledge, and a sense of doing something more important than just getting a correct 

answer” (Harel & Papert, 1990). Yasmin Kafai (1995) conducted a similar study where 

fourth-graders developed fraction games using Logo. She also found that these students 

increased their understanding of fraction concepts and skills between the pre- and post-

test. Most notably, she found that students showed increased flexibility in translating 

between different representations of fractions. She suggested that this was because 

students could create their own representations of fractions in their programs. 

Computer programming also builds reasoning and problem-solving skills while 

supporting abstraction and conceptual understanding in mathematics (Aydin, 2005). For 

example, Kahn, Sendova, Sacristán, and Noss (2011) had students aged nine through 

thirteen work with a scripting language embedded in a graphical environment where the 

students “trained” a virtual robot to perform computational tasks to discover concepts 

concerning infinity. Students were asked questions such as “Are there more natural 

numbers than even ones?” and created programs to discover properties about infinite 

number sets. At the conclusion of the study, students could reason about infinite sets and 

support their reasoning with what they had experienced programming. Psycharis and 

Kynigos (2011) used programming to explore proportional reasoning. In a Logo-like 

environment, they asked seventh graders to write programs that would shrink or enlarge 

characters on the screen without distorting them. They found that students could then 

apply their experiences to formal proportional reasoning and were better able to 

recognize when they needed to use such reasoning.  



30 

 

Convergent cognition theory (Rich, Bly, & Leatham, 2014) suggests that the gains 

in mathematical achievement found in these studies are due to the similarities found 

between computer science and mathematics. Convergent cognition happens when new 

knowledge in one domain is built from prior knowledge in another domain and vice-

versa. This reciprocal effect happens because both domains share core attributes, but 

learners find that one is more abstract and the other is more applied. Jeanette Wing (2006) 

explains this relationship as, “Computer science inherently draws on mathematical 

thinking” (p. 35), but Rich, Bly, and Leatham (2014) suggest mathematics and computer 

science are a convergent pair because both work with variables, functions, and 

procedures, but mathematics is more abstract and computer science is more applied, 

making the relationship more reciprocal. Their research has found that students who learn 

to program show significant gains in mathematics understandings, especially when given 

enough time to explore the programming environment and when connections between the 

two subjects are shown to the learner. While this theory may account for the increase in 

mathematical skills shown in the studies described earlier in this section, other studies 

have found additional benefits for learning mathematics through programming. 

When students design math games, they can engage students in significant 

thinking about mathematics (Kafai, 1996). Students tend to begin by making quiz-style 

games so that the math content and the game narrative are separate, resulting in 

traditional representations of fractions, but will integrate various representations of 

fractions with the game narrative when challenged to create a game that doesn’t ask any 

questions (Kafai, Franke, Ching, & Shih, 1998). Another qualitative study found that 



31 

 

students engaged in spatial reasoning, problem solving, and reasoning about mathematics 

(Calder, 2010). In this study, students used Scratch, an NPE, to create games for younger 

students on math topics of their choosing. Because of the visual nature of their games, 

students could explore geometry concepts such as angles and expand their understanding 

of the coordinate system in addition to the mathematics that their game addressed. Both 

Kafai and Calder worked with late-elementary students.  

Ke (2014) investigated if creating math games using NPEs fostered mathematical 

thinking and positive attitudes towards mathematics in middle school students. Sixty-four 

students were asked to create a game using Scratch that would teach a math idea to a 

younger student. Most of the resulting games addressed integer arithmetic, which the 

students reported as being useful math to know and math they were most comfortable 

with, although students also recognized that they needed to use basic algebra and 

geometry skills to create their games. After the experience, students’ attitudes towards 

mathematics increased significantly, including in areas of self-confidence and motivation.  

Challenges Faced by Students Learning to Code 

Learning to code involves developing computational thinking skills (Wing, 2008), 

which are “the thought processes involved in expressing solutions as computational steps 

or algorithms that can be carried out by a computer” (K–12 Computer Science 

Framework, 2016, p. 68). Grover and Pea (2013) summarize these skills as: a) 

Abstractions and pattern generalizations, b) systematic processing of information, c) 

symbol systems and representations, d) algorithmic notions of flow of control, e) 

structured problem decomposition, f) iterative, recursive, and parallel thinking, g) 



32 

 

conditional logic, h) efficiency and performance constraints, and i) debugging and 

systematic error detection (p. 39 – 40).  

Coding and developing computational thinking skills has limited literature, 

however, concerning the challenges faced by students with learning difficulties (Santi & 

Baccaglini-Frank, 2015); this review only found three such studies. The first (Ratcliff & 

Anderson, 2011) explored the use of a LOGO-like environment with fourth graders with 

learning disabilities, including ADHD, visual-spatial disabilities, and learning disabilities 

affecting reading and/or math. The main challenge students in this study faced concerned 

manipulating the graphics, such as drawing a shape on the screen, because determining 

the attributes of the graphic, such as lengths or angles, was difficult for the students. 

Students in this study also found remembering what they learned the previous lesson and 

fixing a mistake in the code difficult. The second study (Santi & Baccaglini-Frank, 2015) 

was a case study about a high school student with math and reading learning disabilities, 

also using a LOGO-like environment. This study reported that the student had difficulty 

translating what he was thinking into computer code, even when encouraged to plan 

ahead using paper, employed trial-and-error strategies frequently, and had difficulty 

transferring what was learned in a previous task to a new task. The third study 

(Snodgrass, Israel, & Reese, 2016) was a comparative case study of two late-elementary 

students, both identified with learning disabilities that affected their reading, 

communication, and writing skills. The challenges reported in this study were of the adult 

actions towards the students: Teachers and aides did the tasks for the students when the 

students expressed frustration and they significantly lowered expectations for the students 



33 

 

to the point where they could not determine what, if anything, the student was learning. A 

fourth study (Israel et al., 2015) did not report what challenges students faced when 

learning to code, but did find that students from low-income households had more 

difficulties than students with learning difficulties because they had limited experience 

with computers. Instead, this study found that students with learning difficulties preferred 

coding to other instructional activities because they found it to be a safer environment for 

learning.  

Because computer science and mathematics share core attributes so that the 

learning of one affects the learning of the other (Rich, Bly, & Leatham, 2014), the 

challenges students with learning disabilities have when learning mathematics may help 

explain the challenges they have when learning to code. One such challenge may be 

working memory deficits; problems with working memory affect one’s ability to 

complete complex tasks and to ignore irrelevant information but do not affect one’s 

ability to plan, such as the planning required to complete the Towers of Hanoi puzzle 

(Swanson & Zheng, 2013). This difficulty directly and negatively affects problem-solving 

skills because the student may not be able to retrieve needed information, manipulate the 

information to solve the problem, or transfer learning from a past problem to the current 

one (Allsopp, Kyger, & Lovin, 2007; Geary, 2013; Kirschner, Sweller, & Clark, 2006; 

Lyon & Weiser, 2013; Swanson & Zheng, 2013). Transferring learning was a challenge 

identified in two of the studies concerning students with learning difficulties and coding 

(Ratcliff & Anderson, 2011; Santi & Baccaglini-Frank, 2015). Another challenge 

affecting math achievement that is related to coding is learned helplessness, which is the 



34 

 

reluctance to try something new and the reliance on others to assist, and affects not only 

the learning of mathematical content but also the use of the mathematical process skills of 

problem, solving, reasoning and proof, communication, and making connections 

(Allsopp, Kyger, & Lovin, 2007). The math process skills of problem solving, reasoning, 

and making connections are also skills used when coding (Calao, Moreno-León, Correa, 

& Robles, 2015). 

More studies have investigated effective strategies for supporting diverse learners 

than examining challenges they face.  The most commonly reported effective strategy 

was collaboration, specifically pair programming, where two people work together on a 

shared computer to complete one task (Braught, Wahls, & Eby, 2011; Carver, Henderson, 

He, Hodges, & Reese, 2007; Cao & Xu, 2005; Chang, Thorpe, & Lubke, 1984; Denner, 

Werner, Campe, & Ortiz, 2014; Israel et al., 2015; McDowell, Werner, Bullock, & 

Fernald, 2003; Nosek, 1998; Van de Grift, 2004). Pair programming is when:  

One programmer (the driver) operates the keyboard and concentrates on lower-

level details of the task at hand, such as language, syntax, and control structures. 

The other programmer (the navigator) observes and offers suggestions, but is 

primarily concerned with higher level issues, such as overall program design and 

integration. These roles are exchanged at regular intervals, and in practice both 

programmers share responsibility for all aspects of the program (Braught, Wahls, 

& Eby, 2011, p. 1). 

 

Pair programming is similar to structured cooperative learning groups, a strategy 

that allows low-achieving students improve their understanding of mathematics by 

working together using structured procedures and clear goals (Allsopp, Kyger, & Lovin, 

2007). In computer science, having peer support increased perseverance and enjoyment 

of computing tasks (Carver et al., 2007; Denner et al., 2014; Israel et al., 2015; 



35 

 

McDowell et al., 1993; Nosek, 1998; Van de Grift, 2004). Students in pair programming 

environments asked for advice, requested and gave explanations, critiqued each other’s 

approach, and summarized just completed tasks, activities that promote deeper thinking 

about a topic (Cao & Xu, 2005). The learning benefits of pair programming were 

especially significant for females and students with lower academic achievement 

(Braught, Wahls, & Eby, 2011). Other effective strategies for students with learning 

difficulties included modeling, scaffolding, having common tasks (e.g., downloading an 

image) explained and easily referenced, having the student “act out” what (s)he wants the 

computer to do, and asking probing questions (Chang, Thorpe, & Lubke, 1984; Ratcliff & 

Anderson, 2011; Snodgrass, Israel, & Reese, 2016). With the limited literature, however, 

it is difficult to know what, if any, challenges remain for students with learning 

difficulties when they code. Understanding these challenges may help identify and 

explain any factors that may have limited the students’ development of fraction 

understanding (Allsopp, McHatton, & Farmer, 2010). 

Summary 

The research shows that understanding fractions are a critical component for high 

school and college completion. Students who understand fractions, especially fraction 

magnitude and notation, are better able to understand algebra 1 (Brown & Quinn, 2007; 

Siegler et al., 2012; Zientek et al., 2013; Hackenberg & Lee, 2015), which in turn 

improves a student’s chance for high school completion (Orihuela, 2006). Additionally, 

success in algebra 1 increases the likelihood that a student will complete math courses 

beyond algebra 2 (Sciarra, 2010), which in turn increases the likelihood that the student 



36 

 

will complete college (Adelman & United States, 2006; Trusty & Niles, 2004). Studies 

have also shown that achievement in mathematics is more dependent on understanding 

fractions than it is on general mathematics ability (Siegler, Thompson, & Schneider, 

2011; Bailey, Hoard, Nugent, and Geary; 2012). Specifically, it is the conceptual 

understanding the magnitude of fractions that is highly correlated with algebra readiness 

indicators (Booth & Newton, 2012; Brown & Quinn, 2006; Mou et al., 2016). Therefore, 

addressing students’ conceptual understanding of fraction magnitude while they are in 

middle school is important for their future achievement. Research suggests that a student 

would demonstrate an understanding of fraction magnitude concepts by generating and 

working with various representations of fractions, including text, images, and symbols 

(e.g., Ainsworth, Bibby, & Wood, 2002; Lesh, Post, & Behr, 1987; Panaoura et al., 2009; 

Siegler, Fazio, Bailey, & Zhou, 2013). Activities such as game design would enable 

learners to construct their own representations of mathematical concepts (Kafai, 1995, 

April). 

Although direct instruction is a common approach for helping students who 

struggle with mathematics, it may not be as effective for secondary students who already 

have a basic understanding of the topic (Kirschner, Sweller, & Clark, 2006) or who are 

developing conceptual understanding (Kuhn, 2007). More constructivist approaches for 

older students appear to be a more viable option. Studies conducted in middle and high 

schools show that students gain mathematical skills, including skills with fractions and 

related topics, when they design and build objects (Bottge et al., 2015), experience 

project-based curricula (Han, Caparo, & Caparo, 2015), work with authentic data (Van 



37 

 

Dooren et al., 2004; Mousoulides, Christou, & Sriraman, 2008), or receive help on 

collaborating instead of mathematics when problem-solving (Dekker & Elshout-Mohr, 

2004). Having students design and develop games about mathematics could create such a 

constructivist environment. 

Programming a computer is a natural environment for experimentation and 

reflection, key components for experiential learning (Robins, Rountree, & Rountree, 

2003; Feurzeig & Papert, 2011). Experiential learning is a cyclic process of concrete 

experience, reflective observation, abstract conceptualization, and active experimentation 

(Kolb, 1984), and has been shown to increase students’ understanding of mathematics 

(Fest, Hiob, & Hoffkamp, 2011; Wilhelm, She, & Morrison, 2011). Programming also 

helps make the content relevant to the learner (Papert, 1980), which allows experiential 

learning to be more effective (Burns & Gentry, 1998).  Having students program 

mathematical processes and ideas transforms the content from abstract to concrete 

(Papert, 1980; Rich, Bly, & Leatham, 2014) and has been shown to increase students’ 

skills in several areas of mathematics, including fractions (Tilford, 1979; Harel & Papert, 

1990; Kafai, 1995; Psycharis & Kynigos, 2011).  

Because this study will involve students with learning difficulties, it anticipates 

that the students will have challenges when working with the novice programming 

environment. The literature on understanding these challenges is limited, however. 

Challenges that have been reported include difficulties coding the graphics, coding the 

computer to emulate what one has in mind, and applying problem-solving strategies 

(Ratcliff & Anderson, 2011; Santi & Baccaglini-Frank, 2015). These challenges are 



38 

 

similar to difficulties students with learning disabilities have learning mathematics 

(Allsopp, Kyger, & Lovin, 2007; Geary, 2013; Lyon & Weiser, 2013; Swanson & Zheng, 

2013) because the math process skills of problem solving, reasoning, and making 

connections apply to coding (Calao, Moreno-León, Correa, & Robles, 2015). Pair 

programming, modeling, and scaffolding techniques have been shown to reduce these 

challenges (e.g., Braught, Wahls, & Eby, 2011; Cao & Xu, 2005; Israel et al., 2015). 

This literature review identified three significant gaps in the literature. First, none 

of the studies concerning programming or coding and fractions addressed secondary 

students who were low-achievers in mathematics. The studies that addressed the learning 

of fractions involved elementary students (Harel & Papert, 1990; Kafai, 1995) and the 

studies that involved secondary students did not address fractions (Tilford, 1979; 

Psycharis & Kynigos, 2011).  Second, novice programming environments are a relatively 

new tool with little research on their potential applications in core academic subjects or 

with diverse populations. Finally, there is limited research concerning the challenges that 

students with learning difficulties face when using a coding environment (Santi & 

Baccaglini-Frank, 2015). This study aims to extend the literature by examining how 

secondary students who are low achievers in mathematics develop and demonstrate their 

understanding of fraction magnitude and what challenges they still face after research-

supported instructional techniques for coding are enacted. 

  



39 

 

CHAPTER 3: METHODOLOGY 

The goal of this study was to explore how low-achieving students develop their 

understanding of fractions when creating games about fractions. This chapter describes 

the intervention, the setting and participants, the research question and design used to 

examine the effects of the intervention, the role of the researcher, data collection and 

analysis, and the trustworthiness of the study. 

Intervention Design 

According to the literature, coding and programming each create an experiential 

learning environment (Feurzeig & Papert, 2011; Robins, Rountree, & Rountree, 2003), 

which increases students’ understanding of mathematical concepts (Fest, Hiob, & 

Hoffkamp, 2011). Since the 1970’s, research has shown that students who code 

mathematical algorithms gain a deeper understanding of the skills and concepts 

concerning the mathematics they coded (e.g., Harel & Papert, 1990; Kafai, 1995; 

Psycharis & Kynigos, 2011; Tilford, 1979). When students design games about math, 

they can work with multiple representations of the math while engaging in deep 

reasoning about the mathematical ideas (Calder, 2010; Kafai, Franke, Ching, & Shih, 

1998). With the advent of novice programming environments (NPEs), students can create 

more complex programs, such as games, without also having to learn the syntax and 

complexities of a formal programming language (Peppler & Kafai, 2007). The literature 

suggests that understanding fraction magnitude has a significant impact on a student’s 

ability to succeed in high school algebra (Brown & Quinn, 2007; Booth & Newton, 2012; 



40 

 

Mou et al., 2016); therefore, this study asked students to create games addressing fraction 

magnitude.  

This study used App Inventor (MIT, 2017) for creating the games. App Inventor is 

a free NPE that allows users to create apps for the Android operating system, which runs 

on many tablets and smartphones. Like other NPEs, App Inventor users design the user 

interface by placing components on the screen then create functionality using code blocks 

that fit like puzzle pieces. This work is done on the App Inventor website. To test the app, 

users connect their device to their project (see figure 3.1) using MIT AI2 Companion 

(MIT, 2017), a testing environment app, or they may use an emulator on their computers, 

which is available on the App Inventor website. In addition to the coding environment, 

the App Inventor website includes thirty-one sample projects with step-by-step tutorials, a 

gallery of user-created apps that includes their source code, and resources for teachers.  

 
Figure 3.1: Connecting a device to a project for testing. 

Two pre-intervention days, 90-minutes each, were used to introduce students to 

App Inventor and game design and to conduct a pretest on their knowledge of fraction 



41 

 

magnitude (see appendix A for the instrument, appendix B for the scoring protocol, and 

appendix C for permission to use the instrument). The first of these days, students took 

the pretest then spent the remainder of the class period playing various math games that 

are freely available online (see appendix D), completing an information sheet about what 

they enjoyed and did not enjoy about each game (see appendix E), and engaging in a 

researcher-led discussion about what makes a game more or less enjoyable. The games 

that they played addressed whole number mathematics and included a variety of genres: 

puzzle, action, quiz, and sandbox. This activity helped students identify elements that 

they might want to consider when making their own games, such as including math help, 

allowing players to choose their avatar, or what genre their game should be.  

The second of these days, students received an introduction to App Inventor and 

created two simple apps from its tutorials. The tutorials Paint Pot and Ball Bounce were 

chosen because they contained interactive graphics and used components students would 

likely want in their own games, such as buttons and sprites, yet could be completed in the 

time allocated. Two of the students had prior experience with App Inventor and used this 

day to re-familiarize themselves with the environment by following tutorials of their 

choice: Magic 8-ball and Mole Mash. 

The intervention itself consisted of ten sessions conducted during normal class 

time in which the students designed and created their own games about fraction 

magnitude using App Inventor. Eight of the sessions were ninety minutes in length and 

two were fifty minutes. Students were placed in groups of two or three based on having 

similar pretest scores and similar opinions on what makes a game enjoyable. Some 



42 

 

adjustments were made by the classroom teacher because the pair did not get along or the 

pair had a history of socializing rather than working, but in each group, the students’ 

pretest scores were within three points of each other. There were four groups of three 

students, nine groups of two, and one student working alone after his partner was 

removed from the class on the third day of the intervention.  

Students coded their games following the pair programming model, in which two 

students share one computer to create their game (Hanks, Fitzgerald, McCauley, 

Murphey, & Zander, 2011). Pair programming has been found to be an effective means of 

reducing the challenges faced by students learning to program or code (e.g., Braught, 

Wahls, & Eby, 2011; Cao & Xu, 2005; Israel et al., 2015). This study used pair 

programming to mitigate the effects of learning to code while learning the mathematics. 

This study also provided students with resources to help with the mathematics (see 

appendix F), a brief reference guide for App Inventor (see appendix G), and a binder to 

store and organize their materials.  

When designing their games, students used either a template specifically created 

for designing apps in App Inventor (appendix H; Herro, Gardner, & Boyer, 2015), graph 

paper, or both. When the group was satisfied with their design, they then listed the objects 

in their design and what action each does on a coding plan (appendix I). This coding plan 

was then shown to the researcher to ensure completeness. Most groups took two sessions 

to complete this process; two groups took three sessions. The remaining sessions, 

students created and coded their games. It was anticipated that students would need 

assistance creating their games, so a list of anticipated difficulties and what the teacher’s 



43 

 

or researcher’s response would be was created and shared with the classroom teacher (see 

appendix J). At the end of each session, students uploaded the day’s work to Google 

Classroom and completed a daily work log (see appendix K). On the school day after the 

conclusion of the intervention, students completed a posttest identical to the pretest to 

determine if there was any change in their understanding of fraction magnitude. 

Setting and Participants 

The setting for this study was a middle school with a focus on STEAM (Science, 

Technology, Engineering, Arts, and Mathematics) education, located in a city in 

southeastern United States. The school was designed to support student collaboration and 

transdisciplinary instruction by including movable desks in each classroom (see figure 

3.2), collaboration rooms for the students (see figure 3.3), and open or movable space for 

classes to work together. The school provides each student with a laptop and has class 

sets of Android tablets available.  

 
Figure 3.2: Movable desks in the classroom 



44 

 

 
Figure 3.3: Inside a student collaboration room 

The course in which this intervention occurred was an assistance class for eighth-

grade students who had low achievement in mathematics during prior grades; students in 

this course also attended a grade-level math course. Most of the students were 

recommended for this course by their seventh-grade math teacher due to low grades; two 

asked to take the course because they were concerned about their mathematical abilities. 

Two sections of this course, taught by the same instructor, were used in this study. The 

course met on alternate school days, usually for ninety minutes. The teacher of this 

course was a mathematics teacher and former database programmer. Although she had 

prior coding experience, she had not worked with an object-oriented programming 

language, graphics programming, or a novice programming environment prior to this 

study.  

Thirty-five students, nineteen in one section and sixteen in the other, were invited 

to participate in the study. Each student had demonstrated some understanding of fraction 

magnitude by scoring at least ten points, out of twenty-four, on the pretest. Although all 

initially agreed and had permission to participate, three later discontinued participation; 



45 

 

one for disciplinary reasons not connected to this study, one for security reasons not 

connected to this study, and one because she was self-conscious about her ability to speak 

English. Of the remaining thirty-two participants, twelve identified as female, twenty 

identified as Black, twelve identified as Caucasian, eleven received free or reduced lunch, 

and fifteen received special education services. These participants differ from the 

school’s student demographics by having a higher proportion of students identifying as 

Black and students receiving special education services, but they are representative of 

students taking low-level or remedial secondary math courses (Archbald & Farley-

Ripple, 2012). All participants except one worked in groups of two or three to create their 

apps; one participant chose to work alone after his partner was removed from the class. 

Nine participants were also selected to interview after the intervention was completed. 

These students were chosen to represent the types of games created, the demographics of 

the participants, and the degree in which their group was able to complete their game.  

All participants had engaged in the Hour of Code day (Code.org, 2017) earlier in 

the school year, but only three had prior coding experience beyond that. Two of the 

participants had taken a coding course the previous school year and worked with App 

Inventor in addition to two other novice programming environments. One of the 

participants belonged to an after-school club that used a novice programming 

environment to code functionality in robots. 

Because this study used pair programming, extended participant absences could 

have posed a threat to implementation of the intervention. Twenty-four participants 

attended every session, six missed one session, and two missed two sessions. During a 



46 

 

student’s absence, the remaining partner continued working on his or her game and 

received additional support from the teacher or another classmate. This additional support 

was to mitigate the potential of absences significantly affecting the study.  

Research Questions 

This study examined the following research questions using data collected during 

the intervention: 

RQ1: How do low-achieving middle school math students represent fraction 

magnitude when developing games about fractions using App Inventor? 

RQ2: How do low-achieving middle school math students develop an 

understanding of fraction magnitude when developing games about fractions 

using App Inventor? 

RQ3: What challenges, other than with fractions, do low-achieving secondary 

math students experience in designing and developing games using App Inventor? 

Research Design 

This study is a holistic case study with embedded units to examine each of the 

research questions. A holistic case study enables the researcher to consider the global 

nature of a project or program (Yin, 2014, p. 55) and is appropriate when the case itself is 

unique (Baxter & Jack, 2008; Rowley, 2002). It allows for a broad perspective on the 

case, such as examining a process within a software development cycle (Runeson, Höst, 

Rainer, & Regnell, 2012). Because this study explored how students develop an 

understanding of fraction magnitude (RQ2), it is examining a process. Additionally, it 

seeks to understand this development, from a broader perspective, rather than how 



47 

 

individuals each develop their understanding. Similarly, this study seeks a more global 

understanding of the challenges students face when developing their games (RQ3), rather 

than the issues that the individual students have. A holistic approach also allows for the 

general classification of the ways students represent fractions in their games (RQ1). 

Research suggests that students will use concrete experiences (NCTM, 2000, p. 68) and 

area models (Zhang, 2012) primarily in the visual portions of their games; a holistic 

approach enables the possibility of supporting that theory (Yin, 2014, p. 55). Therefore, a 

holistic approach appropriately allows this study to answer all three research questions, 

with the primary unit of analysis being the math support class in which this study took 

place. 

 A holistic approach alone, however, may create a level of abstraction that is too 

vague to be useful (Yin, 2014, p. 55). Including embedded sub-units, which would be the 

individual participants, enabled this study to consider the influences of individual 

backgrounds and the various kinds of games each develops on the overall case (Baxter & 

Jack, 2008). Baxter and Jack (2008) further suggest: 

The ability to look at sub-units that are situated within a larger case is powerful 

when you consider that data can be analyzed within the subunits separately 

(within case analysis), between the different subunits (between case analysis), or 

across all of the subunits (cross-case analysis). The ability to engage in such rich 

analysis only serves to better illuminate the case. (p. 550) 

 

The embedded sub-units allowed this study to examine the similarities and 

differences among the participants while still focusing on the three research questions 

holistically, rather than focusing on the individuals themselves (Yin, 2014, p. 55-56).  



48 

 

The holistic approach with embedded sub-units was chosen over a multiple-case 

study for two reasons. First, the embedded sub-units are in the same context, the math 

support class, which supports a holistic single-case more than a multiple-case study 

(Baxter & Jack, 2008). Second, this study is more revelatory in nature rather than looking 

for replication, which supports the use of a single-case more than multiple cases (Yin, 

2014).  

Role of the Researcher 

The role of the researcher was that of a participant-observer. This role allowed 

interaction with the participants within the classroom culture to gain a better 

understanding of the setting, participants, and their behavior (Glesne, 2011). The benefit 

of this approach is that it enabled the researcher to question participants about what they 

were doing or thinking as the event occurred rather than relying on their memory during 

the concluding interview or as written in their daily logs (Yin, 2014). The risk involved 

was that the teacher or researcher might inadvertently or intentionally influence students’ 

development of fraction understanding or how they represent fractions by offering 

mathematical help. This risk was reduced by limiting the researcher’s and teacher’s role 

in such discussions to those that encouraged collaboration with a peer or finding the 

answer they seek on their own. The researcher and teacher wore recording devices to 

ensure fidelity.  

Data Collection 

This study collected the following kinds of data: observations, interviews, student 

work, student work logs, and the games that the participants create. Table 3.1 describes 



49 

 

how each was collected and for what purpose. The student work log template can be 

found in appendix K and the observation and interview protocols can be found in 

appendices L and M respectively. 

Table 3.1 

Data collection and purpose 

Data source How collected When collected Connection to research 

question(s) 

 

Observations Field notes 

Audio recordings 

of participants 

Digital photos of 

student work 

Each class 

session 

RQ2: Reveals how the game 

development process develops 

participants’ understanding of 

fractions 

RQ3: Reveals the challenges 

participants faced when 

creating their games 

 

Student work 

and student 

work logs 

 

Students 

uploaded their 

work to Google 

Classroom and 

recorded events 

or challenges in a 

notebook after 

each session. 

 

At the end of 

the game 

development 

course; 1 per 

student group 

 

RQ1: Reveals what 

representations students 

indented to use in their games 

RQ2: Reveals how the game 

development process develops 

participants’ understanding of 

fractions 

RQ3: Reveals the challenges 

participants faced when 

creating their games 

 

Interviews Audio recording At end of the 

game 

development 

course; 9 

participants  

RQ2: Allows participants to 

explain what they learned 

about fractions and how they 

learned it 

RQ2: Allows participants to 

describe what they understand 

about fractions as a result of 

making their game. 

RQ3: Allows participants to 

discuss challenges they faced 

when developing their game 

 



50 

 

Student apps Copied to 

portable memory 

device 

At end of the 

intervention; 1 

per student 

group 

RQ1: Reveals what 

representations students used 

in their games 

RQ2: Front-end and back-end 

analysis reveals how 

participants demonstrate their 

understanding of fractions. 

The games will also be used as 

a tool during the interviews to 

give participants a focus for 

the discussion. 

 

Ratcliff and Anderson (2011) found that students learning to code would engage 

in self-talk, verbalize frustrations, and voluntarily help others. Two other studies (Cao & 

Xu, 2005; Israel et al., 2015) also found that students would collaborate, especially when 

working with a partner towards a common goal, and would also verbally summarize just-

completed tasks. The participants in this study worked in groups of two or three, 

following the pair-programming protocol, and so were expected to engage in the 

verbalizations described in these studies. For this reason, the audio recordings of 

participants were used to illuminate what they understood or found challenging with this 

project.  

Interviewing select participants individually after the intervention helped clarify 

what they learned as a result of the intervention. The interviews were conducted in a 

manner similar to photo elicitation, which is the use of photographs during a semi-

structured interview to elicit comments from the participant (Glesne, 2010, p. 82; Torre & 

Murphy, 2015). Photo elicitation helps the participant to remember and reflect on the 

experiences related to each photograph (Torre & Murphy, 2015). This technique has been 

shown to be especially effective with children as it gives them something other than the 



51 

 

interviewer to focus on (Glense, 2010, p. 82; Leonard & McKnight, 2015; Torre & 

Murphy, 2015). In this study, instead of photographs, the researcher showed each 

interviewed participant her/his game, sections of the code (s)he has written, and work 

completed on paper so the participant could reflect on the representations used in the 

game as well as the challenges faced when creating the game. Member checking occurred 

at the end of the interviews by rephrasing their responses and asking what might have 

been misunderstood or omitted. Glesne (2011) defines member checking as "sharing 

interview transcripts, analytical thoughts, and/or drafts of the final report with research 

participants to make sure you are representing them and their ideas accurately" (p. 49). 

Member checking occurred during the final interviews to reduce the interruption during 

the school year and because of the ages of the participants (Simpson & Quigley, 2016) 

and before final interpretations could be made by the researcher (Angen, 2000; Carlson, 

2010). 

Because the participants created games, a content analysis of each game was also 

conducted. This analysis is a common approach used in media studies and 

communication (Macnamara, 2005) and allowed the researcher to understand how each 

participant has communicated their understanding of fractions. Therefore, the games 

themselves served as a fourth data source. The analysis will be described further in the 

following section. 



52 

 

Data Analysis 

Coding the First Two Research Questions 

Because the first two research questions concern students’ understanding or 

representation of fraction magnitude, the observation recordings, field notes, student 

work, and interviews were first analyzed to identify where students discussed, researched, 

or worked with fractions. The initial coding was a simple separation of the fraction data, 

with “representation” identifying data that described or demonstrated a fraction 

representation, such as numeric representations used in a game, and “understanding” 

identifying when participants were interacting with representations, because students 

develop and demonstrate their understanding of mathematics when working with or 

converting between representations (Duval, 2006; Even, 1998; Lesh, Post, & Behr, 1987; 

NCTM, 2000; Panaoura, Gagatsis, Deliyianni, & Elia, 2009), and where they 

demonstrated a change in their thinking regarding (a) the properties of rational numbers, 

(b) the relationship between the numerator and the denominator, and/or (c) how to 

represent fraction magnitude (Gabriel et al., 2012; Jordan et al., 2013; Siegler, Fazio, 

Bailey, & Zhou, 2013; Vamvakoussi & Vosniadou, 2004).  

To answer the first research question, how do low-achieving middle school math 

students represent fraction magnitude as they design and develop their games, the games 

themselves were analyzed using content analysis on both the front-end (what the user 

sees) and the back-end (the code itself) and triangulated using the initial designs students 

created, discussions they had with their groups concerning fraction representation, and 

final interviews. For incomplete games, the game design was used as the primary data 



53 

 

source and triangulated with what participants did complete in their games as well as 

their discussions and interviews. A directed content analysis was used because the 

mathematics in each game could be analyzed according to existing theories (Hsieh & 

Shannon, 2005). The Common Core State Standards (NGA, 2010) and the National 

Council of Teachers of Mathematics (2000) suggest the following representations for 

fractions: numeric representations including decimals, number lines, fraction models such 

as area models or collections, as partitioning into equal parts, as the quotient of integers, 

and as addition or multiplication of unit fractions. Fractions may also be represented as 

portions of perimeters, capacities, lengths of objects, collections, and real-world 

applications (Zhang, Clements, & Ellerton, 2015). Thus, each representation participants 

used in their games and/or game designs, such as a drawing of an area model in the 

sketch of a game screen, was analyzed and coded according to these fraction 

representations from the literature (see Table 3.2). 

Table 3.2 

List of possible codes from the literature for RQ1: Representing fractions 

Code Definition Example(s) 

Numeric Fractions in the form a/b or as a decimal. ¾, 0.75 

Number line Fractions represented as a position on a 

number line.  

Area model Fractions represented as the shaded area of a 

two-dimensional figure. = ¾  

Collection Fractions represented as a portion of 

individual objects. = ¾  

Partitioning Fractions represented as the division of one 

or more objects into equal parts. = ¾ of 2 

pizzas 

Quotient Fractions represented as the division of two 

integers. 

3 ÷ 4 = ¾  



54 

 

Unit fractions Fractions represented as addition of like unit 

fractions or multiplication of a unit fraction 

and an integer. 

¼ + ¼ + ¼  

= 3 * ¼  

= ¾  

Other Fractions represented as portions of 

perimeters, capacities, lengths of objects, or 

in real-world applications (Zhang, Clements, 

& Ellerton, 2015). 

= ¾ cup 

 

To answer the second research question, table 3.3 shows that data coded as 

“understanding” was then coded to identify the representation(s) participants were using, 

since representations are a key part of developing mathematical understanding (Duval, 

2006; Even, 1998; Lesh, Post, & Behr, 1987; NCTM, 2000; Panaoura, Gagatsis, 

Deliyianni, & Elia, 2009). Then the same data was coded using process coding, which 

uses gerunds (“-ing” words) to identify human action in the data as a means of 

discovering participants’ actions and interactions in response to a problem or when trying 

to achieve a goal (Saldana, 2013, p. 96). Because data was initially coded as 

“understanding” when participants were interacting with fraction representations, the 

gerunds were chosen as codes to describe how this interaction was occurring. Two codes 

emerged during this phase: “Working” identifies identified when participants were 

creating representations, such as drawing an area model, or critiquing a representation 

another participant created, and “talking” identifies when participants were discussing 

representations that they did not create, such as one found in a book, or how a 

representation might appear for a given scenario but without creating that representation. 

These codes were then combined with the codes for the representations used in these data 

segments, which the literature suggests is how students develop and demonstrate their 

understanding (Duval, 2006; Even, 1998; Lesh, Post, & Behr, 1987; NCTM, 2000; 



55 

 

Panaoura, Gagatsis, Deliyianni, & Elia, 2009), resulting in the themes for how 

participants developed their understanding of fractions magnitude: Working with area 

models, talking about area models, and developing code to compare fractions. 

Table 3.3 

Theme development for RQ2: Developing an understanding of fractions 

Phase Code Criteria 

1: Identifying when 

students were developing 

their understanding of 

fractions. 

Understanding Data shows participants working with or 

converting between various representations of 

fractions (Duval, 2006; Even, 1998; Lesh, Post, 

& Behr, 1987; NCTM, 2000; Panaoura, 

Gagatsis, Deliyianni, & Elia, 2009). 

Data shows a change in participant’s thinking 

regarding (a) the properties of rational numbers, 

(b) the relationship between the numerator and 

the denominator, and/or (c) representing 

fraction magnitude (Gabriel et al., 2012; Jordan 

et al., 2013; Siegler, Fazio, Bailey, & Zhou, 

2013; Vamvakoussi & Vosniadou, 2004). 

 

2: Identifying the fraction 

representation used or 

referred to by the 

participant(s). 

 

Same codes as 

RQ1. 

Same criteria as RQ1. 

3: Identifying how 

participant(s) interacted 

with that representation. 

Working Participant(s) created, adjusted, or manipulated 

a representation. 

 Talking Participants discussed a representation without 

the representation being present in some form 

or without creating, adjusting, or manipulating a 

representation. 

 

4: Combining phases 2 

and 3 to describe the 

process participants used 

to develop their 

understanding. 

Working with 

area models 

Participant(s) created, adjusted, or manipulated 

and area model on paper, physically, or as a 

digital image. (Codes “working” plus “area 

model”) 

 Talking about 

area models 

Participants discussed an area model without 

the model being present (on paper, physically, 

or digitally) or discussed an area model found 



56 

 

in one of the provided resources. (Codes 

“talking” plus “area model”) 

 

 Developing 

code for 

comparing 

fractions 

Participant created or adjusted the code in the 

game that represented fractions as the division 

of integers. (Codes “working” plus “quotient”) 

 

Coding the Third Research Question 

A similar data analysis approach was used to answer the third research question. 

First, the data was analyzed to identify where students experienced challenges other than 

with the fractions. In this study, challenges are defined as difficulties affecting all 

members of a group and preventing the group from progressing with their work 

independently or later creating difficulties that impeded independent progress. Examples 

of challenges include not knowing how to develop an algorithm, which prevented the 

group from coding, or designing a complex game, which later prevented the group from 

completing their game. Difficulties that did not prevent independent work were not coded 

as challenges, such as a vocabulary term that one group member found difficult but 

another member could explain.  

Table 3.4 shows that instances of challenges were then coded using structural 

coding, which uses a content- or concept-based phrase to label or index the data, as a 

means of identifying the kinds of challenges students faced when creating their games as 

this approach allows an exploratory investigation to collect and create a topic list, which 

then can be used for more in-depth analysis (Saldana, 2013, p. 84). For codes that were 

terms used in other literature, such as decomposition or learned helplessness, the 

definitions or descriptions of those terms was compared to the data to ensure the code 



57 

 

was being used in a manner consistent with the literature. After the data were coded, the 

instances within each code were reexamined to ensure they met this study’s definition of 

a challenge and were not better described by another code. Five codes were eliminated 

during this process because further investigation showed they did not meet the definition 

of a challenge or because each instance within that code was better described by another 

code.  

Table 3.4 

Codes and resulting themes for RQ3: Challenges other than with fractions 

Code Definition Resulting Theme 

Algorithm 

development 

Participants are unable to independently create 

an appropriate algorithm or adjust a similar 

algorithm from another source. 

Prior research 

Debugging Participants are unable to independently 

identify and fix errors in their code. 

Transfer Participants are unable to independently 

recognize that their current problem is like 

another problem or to apply prior learning to 

their current problem. 

Working with 

angles 

Participants are unable to independently 

identify when angle measurements are required 

or what angle measurement would produce the 

desired result in their graphics. 

Design Participants designed games with several 

components on the screen that were difficult to 

code and/or that did not relate to one another 

from a coding perspective. 

Specific to 

coding 

Decomposition Participants are unable to independently 

separate their game design, or elements in their 

design, into the required components. 

Concepts/skills Participants are unable to independently 

understand coding concepts or skills relevant to 

App Inventor coding, such as components 

requiring code to function or choosing the 

correct component. 

Limitations Limitations in the App Inventor environment 

that impeded groups from working 

independently. 



58 

 

Vocabulary Participants are unable to independently 

understand or recognize the terms used on some 

of the coding blocks. 

Collaboration Participants are unable to work with their group 

members or follow the pair programming 

protocol without support from an adult. 

Not specific to 

coding 

Learned 

helplessness 

Participants do not attempt to problem-solve 

independently and consistently request 

assistance.  

Support Participants request additional support without 

attempting to problem-solve independently. 

Recoded - 

learned 

helplessness 

Syntax Participants are unable to correctly code 

because of difficulties with the syntax. 

Recoded – 

concepts/skills 

Organization Participants have difficulties managing time or 

resources 

Removed – did 

not meet 

definition of a 

challenge 

Software Participants have difficulties using software 

other than App Inventor 

Hardware Participants experiencing problems with a 

laptop or tablet. 

   

Within each code, the instances were organized by participants’ groups and when 

they occurred to identify instances describing the same event. These events were then 

reexamined to determine if consecutive events within a group described unique 

challenges or a continuation of an unresolved challenge; events identified as 

continuations were merged with the initial event for that challenge. The groups that 

appeared within each code was used to determine the number of groups or participants 

affected and the number of unique events within each code was used to determine the 

frequency of the code. The frequency that each code occurred was then used to determine 

dominant themes (Saldana, 2013). Challenges that were addressed in prior research were 

separated so that how they presented in this study could be discussed with the literature. 

A thematic analysis then identified the implicit topics that organized the remaining 

challenges identified by these dominant themes, which were challenges specific to coding 



59 

 

and challenges not exclusive to computer science. The result was a descriptive summary 

of the challenges students faced during the intervention that were not related to fractions.  

A sample of the data, coding, and resultant themes was reviewed by a peer researcher to 

strengthen the credibility of this process (Creswell & Miller, 2000). 

The Trustworthiness of This Study 

Impact of Using Resources for Fraction Assistance on the Intervention and Findings 

Experiential learning is similar to the inquiry process (Kolb, 1984), which also 

consists of generating a hypothesis, pursuit of possible solution paths, mentally testing 

one of the possibilities, and making a decision (Goldman, 1983). Cognitively, a person in 

an inquiry cycle gathers information before exploring possible solution paths (Zhong, 

Wang, & Chiew, 2010). It was anticipated that the online and text-based resources 

provided to the students would support this first cognitive aspect of the inquiry cycle, 

gathering information, which would in turn support experiential learning because of the 

similarities between these two processes. 

Assistance with fractions could have been provided by the researcher or other 

adult(s) in the room, but such instruction would introduce a significant threat to the 

trustworthiness of this study. The adult would understand the context in which the 

participant wants assistance because she would know the game that the participant is 

trying to develop and thus might target instruction to fit within that context. This 

instruction might then inadvertently direct or influence what representations and/or 

algorithms the participants are trying to develop. By having participants learn specific 

skills through online or text-based resources instead, the participants will need to transfer 



60 

 

what they have learned into the context of their game. It was anticipated that there would 

still be some influence on what the participants are creating, but learning in a context 

unconnected to the games would require that participants apply their learning to their 

code and/or representations of fractions, which supports deeper understanding (Spiro, 

1988). To help identify the influence these resources will have on the participants’ work 

and the impact this has on the findings of this study, participants recorded each resource 

in their daily log when they used them and the researcher recorded such use in field notes 

and recordings of the students working. Students primarily used the books provided by 

the researcher or Google images; appendix F lists the resources students used and their 

frequency. Most of the resource use occurred when students were designing their games. 

The researcher then compared the representations and algorithms used in these resources 

with the participants’ games to identify areas of similarity. Nine of the games used 

representations similar to those found in these resources, but these representations are 

also the ones most commonly used to teach fraction magnitude (Zhang, 2012). Because 

of when the resources were used, however, it is more likely that the resources influenced 

what representations students used rather than their prior knowledge.  

Although it was expected that some students would have difficulties applying the 

information from these tutorials to their algorithms (Santi & Baccaglini-Frank, 2015), the 

literature suggests that some difficulties will be mitigated because they will be working 

with a peer (e.g., Israel et al., 2015). Other recommended instructional strategies for 

coding, such as using probing questions about their algorithm and having the students 

“act out” what they wish to code (e.g., Ratcliff & Anderson, 2011), were also employed 



61 

 

and did not likely affect the outcomes of this study, as these techniques addressed coding 

knowledge rather than fraction knowledge. Recordings of these conversations between 

the researcher or teacher and the students were analyzed for fidelity to the intervention 

and no threats were identified.  

Impact of the Tutorials on Credibility and Transferability 

Credibility was addressed by considering an alternate theory (Patton, 1999), that it 

was these resources and not the game design experience that had an impact on developing 

fraction understanding. Participants’ work logs, interviews, and researcher’s observations 

were used to triangulate the data gathered from the game analysis to address this alternate 

theory. While there is evidence suggesting that the resources influenced what 

representations students used in nine of the games, the student work for each day, student 

logs, and audio recordings suggest that students used the resources as a tool for exploring 

fraction magnitude concepts, which supports the theory that students used the resources 

as a part of the inquiry cycle (Zhong, Wang, & Chiew, 2010). To support the 

transferability of the study, the resources that participants used are included in appendix F 

with frequency of use to provide a more complete description of contextual factors 

impacting the study (Anney, 2014; Shenton, 2004). 

Credibility of the Study Overall 

Case studies have been used to understand issues regarding NPEs (e.g., Kafai et 

al., 1998) and constructivist approaches to math instruction (e.g., Bottge et al., 2015). 

Therefore, a case study approach was a credible method for examining the use of NPEs in 

math instruction. The data collection and analysis methods used in this study also reflect 



62 

 

the techniques and artifacts used in these related case studies as well as using accepted 

standards for analyzing the mathematical content, such as the Common Core State 

Standards (NGA, 2010). Credibility was also supported through the use of multiple 

embedded subjects and data sources, as table 3.5 demonstrates.  

Table 3.5 

Matrix of findings and sources for data triangulation 

   Data Source 

RQ Finding # Occurrences* O W I A 

1 Numeric representation 15 X X X X 

 Area model 10 X X X X 

 Division of integers 1 X X  X 

2 Working with area 

models 

31 X X X  

 Talking about area 

models 

14 X  X  

 Developing code to 

compare fractions 

4 X   X 

3 Challenges identified 

by prior research 

86 X X X X 

 Challenges specific to 

coding 

104 X X X X 

 Challenges not specific 

to coding 

30 X  X  

Note: O = Observational data, W = Student work, I = Interview, A = Students’ apps 

* # Occurrences = the number of unique occurrences after triangulation 

Using multiple embedded subjects helped corroborate individual experiences while using 

multiple data sources helped verify details that emerge during this study (Shenton, 2004). 

Recording participants as they develop their games also helped credibility as this data 

source will capture information “in the moment” rather than relying on memory. The 

most significant threats to the credibility of this study, the researcher, teacher, or 

resources may influence participants’ understanding about fractions or design of their 

game, were addressed earlier in this chapter. 



63 

 

Transferability of the Study 

Shenton (2004) states that transferability can occur if practitioners can relate their 

situation to that described in the study. Towards that end, this study described the context 

in which it occurred in enough detail that similar contexts can be identified by interested 

parties but not so much that the participants’ identities are at risk. Transferability is also 

strengthened when similar studies are conducted in different settings (Shenton, 2004). 

This study extends the work of research conducted with NPEs and mathematics, 

especially that of Seymour Papert and Jasmine Kafai, and thus may have greater 

transferability based on those prior findings, most of which involved younger students 

and did not specifically target those who were low-achievers in math.  

Summary 

This study investigated the developing understanding of fraction magnitude of 

low-achieving middle school students as they created games about fractions using App 

Inventor, a novice programming environment. Literature suggests that students 

understand a math topic well, such as fraction magnitude, when they can create and work 

with various representations (e.g., Ainsworth, Bibby, & Wood, 2002; Lesh, Post, & Behr, 

1987; Panaoura et al., 2009; Siegler, Fazio, Bailey, & Zhou, 2013), which game 

development encourages (Kafai, 1996, Apr). Therefore, this study employed a holistic 

case study with embedded units to examine each of the research questions. The holistic 

approach enabled examination of the representation (RQ1) and development (RQ2) of 

fraction magnitude understanding as well as the challenges faced when creating their 



64 

 

games (RQ3), while the embedded units enabled the researcher to consider the influences 

of individual backgrounds and the various kinds of games each develops. 

  



65 

 

CHAPTER 4: FINDINGS 

The results of this study show that participants created three kinds of 

representations for fractions and used these representations to develop their 

understanding of fraction magnitude. All participants used numeric representations and 

most also used area models, which are the most common representations found in math 

textbooks (Zhang, 2012). The results of the pre- and posttest given to the participants 

suggest that the participants who scored less than 60% on the pretest were the ones who 

developed their understanding of fraction magnitude during the intervention; most of 

them also created more than one kind of representation in their games and had several 

instances of working with or talking about fractions in the qualitative data. Participants 

who scored higher on the pretest or who worked only with numeric representations did 

not show gains on the posttest and had few conversations or artifacts concerning 

fractions, which suggests that these participants may not have developed their 

understanding of fractions during the study. 

Experiential learning theory explains how the participants developed their 

understanding of fraction magnitude as they interacted with fractions while developing 

their games. Experiential learning theory is a cyclic process of four stages: concrete 

experience, reflective observation, abstract conceptualization, and active experimentation 

(Kolb, 1984). This cycle maps to the data showing how the participants worked with area 

models, talked about area models, and developed code for comparing fractions. to 

develop their understanding of fraction magnitude. 



66 

 

The results of this study also show that participants experienced several 

challenges other than with fractions when developing their games. As stated in the 

literature review, previous studies have found that students with learning disabilities have 

specific challenges when learning to code: algorithm development, debugging, 

transferring learning from one task to another, and working with angles in graphics 

(Chang, Thorpe, & Lubke, 1984; Ratcliff & Anderson, 2011; Santi & Baccaglini-Frank, 

2015). Each of these challenges appeared in this study and were not restricted to 

participants who had an identified learning disability. Participants in this study also 

experienced additional challenges when coding and challenges that are not specific to 

computer science activities. These additional challenges participants had coding were 

challenges concerning their game designs, decomposing their game designs into 

components to code, coding concepts and skills, limitations in the App Inventor 

environment, and some of the vocabulary used in the coding blocks. The challenges 

participants had that are not exclusive to computer science were challenges collaborating 

and learned helplessness. Understanding these challenges may help identify and explain 

any factors that may have limited the participants’ development of fraction understanding 

(Allsopp, McHatton, & Farmer, 2010).  

This chapter will begin with the findings concerning the first research question, 

“How do low-achieving middle school math students represent fraction magnitude as 

they design and develop their games,” by first describing the types of games that 

participants developed then presenting the results of the analysis of the participants’ 

games and game designs. Following this section, this chapter will address the second 



67 

 

research question, “How low-achieving middle school math students develop an 

understanding of fraction magnitude when developing games about fractions using App 

Inventor,” by first presenting the results of the pre- and posttest, followed by the themes 

and data resulting from the qualitative analysis, then connecting these findings with 

experiential learning theory. The chapter will then address the third research question, 

“What challenges, other than with fractions, do low-achieving secondary math students 

experience in designing and developing games using App Inventor,” by presenting the 

findings for the challenges identified in prior research, the challenges concerning coding, 

and the challenges not exclusive to computer science. This chapter will conclude with a 

summary of the findings. All names of participants are pseudonyms. 

RQ1: How Do Low-achieving Middle School Math Students Represent Fraction 

Magnitude as They Design and Develop Games About Fractions Using App 

Inventor? 

All fifteen games that participants developed were included to determine how 

participants represented fraction magnitude in their games. Content analysis on both the 

front-end (what the user sees) and the back-end (the code itself) was used to analyze the 

data according to existing theories on fraction representations (Hsieh & Shannon, 2005) 

and triangulated using the initial designs participants created, discussions they had with 

their groups concerning fraction representation, and the final interviews with participants. 

For incomplete games, the game design was used as the primary data source for the front-

end analysis and triangulated with what participants did complete in their games as well 

as their discussions and final interviews. This section will begin by describing the kinds 



68 

 

of games participants developed to provide context for the types of representations 

participants used in them, then it will present the findings for the first research question.  

The Types of Games Participants Developed 

Simple quiz games. Six of the fifteen games were simple quiz games; players 

answered a question about fractions and a correct answer allowed the player to answer 

another question about fractions. All of these games had hardcoded questions (question 

and answer choices were predetermined rather than randomly generated) and most of 

these games displayed the answer choices as buttons, as shown in figure 4.1, with 

players’ selections changing the appearance of the buttons to indicate right or wrong.  

 
Figure 4.1: A simple quiz game using buttons for answer choices. 

One game, Masterdoom, used a list for the answer choices. In AppInventor, using 

the ListPicker component instead of buttons causes the answer choices to show on a 

different screen and not on the screen with the question, as shown in figure 4.2. When 

asked why they decided to use the ListPicker component, Walt, one of the two boys who 

worked on this game, said, “Well, we didn’t mean to have the answers show up like that. 

But we kind of liked that [the players] had to figure [the question] out before they saw 



69 

 

their [answer] choices.” All but one of the simple quiz games was completed during the 

intervention. 

 
Figure 4.2: A simple quiz game using the ListPicker component. 

Games with quiz-like questions. Eight of the fifteen games also used quiz-like 

questions, but in these games answering a question correctly allowed the player to do 

something else, such as shoot a basketball or fight zombies. Like the simple quiz games, 

these games hardcoded the question and answer choices. Each of these games used 

buttons for the answer choices, as shown in figure 4.3. None of these games were 

completed during the intervention; possible reasons will be described in the next section. 

 
Figure 4.3: A game where the player answers the question then gets to shoot the 

basketball. 

 



70 

 

A game without questions. One game did not ask any questions. Entitled 

FractionMasters, a stick figure appears holding two randomly generated fractions in its 

hands and the object of the game is to “shoot” the larger fraction by dragging the 

crosshairs sprite to the player’s choice, as shown in figure 4.4. When the player releases 

the crosshairs, an image appears saying “boom” and another image appears on the stick 

figure’s hat indicating if the choice was correct or incorrect. Because the fractions were 

randomly generated, determining which fraction was the correct answer had to be 

calculated in the code itself. This game was completed during the intervention. 

 
Figure 4.4: A game that does not ask questions. 

Representations of Fraction Magnitude in the Games 

Representations found in the front-end analysis. Ten of the fifteen games used 

numeric representations and area models in their front-end (what the player sees), such as 

the games shown in figures 4.1 and 4.2. Eight of these games that used circles for their 

area models and one game used both circles and hexagons. Only one game used objects 

from participants’ experiences for their area models, pizza (see figure 4.5), although 

another game that used circular area models related the models to an object from his 



71 

 

experiences by naming the game Space Pies because, as he said in the final interview, 

“When fractions are like that it's like a pie, and there's like a spaceship [in the game], and 

they're in space.” An examination of the participants’ initial paper designs revealed that 

these representations were what they intended to create. These findings match the prior 

research on the representations students use to understand fraction magnitude (NCTM, 

2000, p. 68; Zhang, 2012). 

 
Figure 4.5: Area models from participants’ experiences. 

Five of the fifteen games used only numeric representations in their front-end. 

The games depicted in figures 4.3 and 4.4 are examples of games using only numeric 

representations. Three of these games involved comparing fractions, one of which was 

completed, and two asked players to match fractions with a decimal equivalent, one was 

completed and one was completed enough to be a working prototype for what the 

participants intended. Two participants who were partners chose to use fractions with 

decimal equivalents because it would relate to the players’ lives and help in 

understanding money. As one of them, Kassidy, said in her final interview:  

So three-fourths was a good example because we would talk like three-fourths as 

using quarters. And so the full would always equal one-hundred, so like one-



72 

 

hundred minus twenty-five is seventy-five, so. We decided to do small things like 

that, you know, that they could think about it. Not in like a fraction way but you 

know like if they learn it this way, then they could use it in life, too. 

 

Kassidy was also considering fractions as the division of two integers. When I asked if 

she found converting fractions to decimals easy or hard, she replied: 

I found it easy because some of it you know was just dividing or basic things like 

if it was one-half it would be point five. And so some of it was a lot, lot easier 

than the others. Example, like one of the hard ones would be four-fifths, which 

you couldn't really relate that one to money a whole lot, so you kind of had to 

think about it more. 

 

The designs that these participants sketched on paper show that they planned on using 

only numeric representations in their games, although one game used another 

representation in their code, as the back-end analysis shows. 

Representations found in the back-end analysis.  Because only one game, 

FractionMasters (figure 4.4), randomly generated the fraction scenarios instead of 

predetermining the problems, it was the only game that included fraction representations 

in the back-end (code). In this game, Justin had the game randomly generate fractions by 

randomly generating the numerators and denominators separately. Then as figure 4.6 

shows, he represented the fractions as division so the code could compare the values.  

 
Figure 4.6: Representing fractions as division in the code. 

Unlike how Kassidy thought her players would use fractions when they tried to 

identify their decimal equivalents, Justin did not initially intend to represent fractions as 

the division of two integers. Instead, he founded he needed to use this representation so 

his game could compare the numeric representation of the fractions he used in the front-



73 

 

end. Representing fractions two ways in their games, either with area models or the 

division of two integers, contributed to participants’ understanding of fractions, as the 

next section demonstrates. 

RQ2: How Do Low-achieving Middle School Math Students Develop an 

Understanding of Fraction Magnitude When Developing Games About Fractions 

Using App Inventor? 

Although only six of the fifteen games were completed during the intervention, all 

participants worked with fractions at least during the design phase of their projects, which 

happened during the first two or three days of the intervention. During this phase, 

participants discussed what they wanted the fraction portion of their games to be; for the 

quiz-like games, this often included creating the questions their game would ask (see 

figure 4.7). All but three of the student teams revisited fractions near the end of the 

intervention as they completed or tried to complete their games. Thus, most participants 

worked directly with fractions for five or six days out of the ten allowed for this project. 

 
Figure 4.7: Examples of the questions participants created for their games. 

A paired t-test on the pre- and posttest suggested that only the participants who 

scored less than 60% on the pretest developed their understanding of fraction magnitude 



74 

 

during this study. Examination of the transcripts, observational data, and student work 

supported this finding and revealed three main themes on how participants developed 

their understanding of fraction magnitude: They worked with area models, they talked 

about area models, or they developed code for comparing fractions. This section will first 

present the results of the pre- and posttest then present the findings for each of the 

qualitative themes and connect them to the four phases of Kolb’s (1984) experiential 

learning cycle: concrete experience, reflective observation, abstract conceptualization, 

and active experimentation.  

To connect the findings to the experiential learning cycle, the data within each 

theme was first examined to identify where participants entered the cycle and at what 

phase by identifying a challenging experience participants had with fractions and 

mapping it to “concrete experience” when the participant was working with fractions on 

paper or “active experimentation” when the participant was trying to verbalize an idea 

about fractions (Matsuo, 2015). This entry phase was then compared across the data to 

determine if it was consistent for that theme. Next, the data was mapped to the four 

phases of the cycle to identify where participants experienced, reflected upon, 

conceptualized, and experimented with fraction magnitude (Matsuo, 2015). Finally, the 

data for each phase was examined to create a generalized description of what occurred 

within that phase. Because the phase “abstract conceptualization” often occurs within 

one’s mind (Kolb, 1984), it was directly observed in only one instance where the 

participant was thinking aloud. Thus, the data was re-examined to identify instances 

where the participant entered the next phase, “active experimentation,” to determine if 



75 

 

“abstract conceptualization” could be inferred from the participant’s actions. When the 

participant said or did something demonstrating a change in their thinking, “abstract 

conceptualization” was determined to have occurred but not been observable (Matsuo, 

2015); otherwise, it was determined that there was no evidence for this phase.   

Results of the Pre- and Posttest 

Participants in both classes (n = 32) took the pretest one week prior to the start of 

the intervention and the posttest three days after the intervention, with scores on each test 

ranging from 10 to 20 out of a possible 24 points. A paired t-test revealed that there was 

not a significant difference between the pretest (M = 14.15, SD = 2.83) and the posttest 

(M = 14.7, SD = 2.43). Observation of the raw scores, however, suggested that there 

could be a difference between the pre- and posttest for participants who scored less than 

60% (14 points or lower) on the pretest; a paired t-test on this subset (n = 18) confirmed 

that there was a significant difference ( = .05) between the pretest (M = 11.94, SD = 

1.39) and the posttest (M = 13.67, SD = 2.2), t(17) = -2.62, p = .02. Although these 

results should not be used for generalizations because the sample size is small, they do 

suggest who in this study developed an understanding of fraction magnitude. Analysis of 

the qualitative data supports this finding because participants who scored above 60% on 

the pretest had few conversations or artifacts addressing fractions, none of which could 

be identified as a challenging experience with fractions (Matsuo, 2015). The findings in 

this section will use these eighteen participants. 



76 

 

Findings for the Three Themes 

Theme 1: Working with area models. Although math textbooks were available 

for student use, the five participants who were interviewed and who used area models in 

their games stated that they created their own questions. Examination of the student work 

and discussions revealed that all the games that used area models used questions that their 

designers created. For five of the games that used area models, this creation process 

involved participants drawing fraction magnitude representations, sometimes with the aid 

of manipulatives that the teacher made available (see figure 4.8). Working with area 

models to make their game questions developed their understanding of fraction 

magnitude. 

 
Figure 4.8: A participant using manipulatives to create fraction magnitude questions. 

In the first days of the intervention, participants looked at math textbooks for third 

graders to see what kinds of fraction magnitude questions they could ask in their games 

and created similar questions on paper. During this process, participants realized they had 

misunderstandings or knowledge gaps concerning fraction magnitude. For example, as 

Keith was looking at problems in a book, he said to his partner, “Third grade fractions, 

one half equals, what, two fourths. One half equals two fourths. One third equals what 



77 

 

over six… I don’t know, these are not even, how are these third-grade problems?” 

Sometimes encountering a difficulty led the participant to rewrite the question rather than 

work to find the answer, such as Matthew did when he talked to himself as he created his 

questions, “Let’s see, what about this one. One fourth equals blank 8? No, too hard. One 

half equals what?” These difficulties led many participants to use area models because, as 

Brian explained in the post-interview, “It's kind of like an easy way to start off by looking 

at pictures and kind of just count. You can count and get your answer.” Choosing to use 

area models did not eliminate participants’ difficulties, however. For example, Greg was 

sharing the questions he created with his partner, Katherine, when she found a problem 

with one: 

Katherine:  What’s number 4?  

Greg:   Where’s, what graph has 1/4 shaded?  

Katherine:  I just don’t know. Both graphs have 1/4 shaded. 

Greg:   No, only one does. 

Katherine:  No, both do. Count! 

[Greg counts on his area models.]  

Greg:   Oh, right. Ok, this one has two answers then. 

In most of these teams, one partner initially took responsibility for creating the 

questions. This person was not always the one who understood area models best, as the 

Greg and Katherine discussion above demonstrates, but even when the question creator 

was the better student with area models, he or she found ways to involve the other partner 

in learning, such as how Matthew involved Rhianna: 



78 

 

Matthew:  Our graph has three four shaded in minus one fourth equals what?  

Rhianna:   That’s too hard, that would be like what is that?  

Matthew:  Three fourths minus one fourths, Rhianna. Two fourths. 

Rhianna:   I don’t know what that is.  

Matthew:  Draw a graph that’s two fourths shaded in. 

By having her draw this area model, Matthew was giving Rhianna a chance to 

work with the representation, too. In another group, Walt involves John by asking him the 

questions he has prepared for their game. 

Walt:   Well, what is shaded in this picture?  

John:   Three-fourths.  

Walt:   What is shaded in this graph?  

John:   I thought we did that.  

Walt:   No, it’s different. 

John:   Oh, okay. This one has two-fourths shaded. 

Towards the end of the intervention, more partnerships showed both participants 

working with area models equally. For example, in the beginning of the intervention, 

Sarah drew the area models her team thought they would use in their game. On the last 

day of the intervention, Sarah and her partner, Kala, were telling me their game was not 

going to be finished and they explained to me what they intended their game to do: 

Kala:   Like what, okay, shade in one half of the pizza. 

Sarah:   [Draws an example.] Like one half pepperoni.  

Kala:  Like this, and one half onion and leave one quarter cheese. [Helps 

with the drawing.] 



79 

 

 

As they talked, both girls worked together to represent the fraction scenario shown in 

figure 4.9.  

 
Figure 4.9: Sarah and Kala’s pizza example. 

On the same day, Greg, Katherine, and Ian were finishing the digital images for 

their questions and critiquing them together: 

Greg:   [Looking at the image he created] Yeah, no, that’s, that’s not two 

thirds.  

 

Ian:   Yeah, it is.  

Greg:   Oh, yeah, it is. 

 Katherine: Well, I will finish this. I’m going to get one of those fraction 

circles that will help us. 

 

In his interview, Greg mentioned this cooperation when asked why their game was 

special or unique: 

Greg:  It's unique because like we kind of thought of the fractions off the 

top of our head. Kind of designed some of the pictures on Google 

Images. Like that one that you actually have right there, Katelyn 

drew that out. We decided that we were going to draw the pictures 

out so we could make them unique.  
 

Me:  So you guys drew the pictures and came up with the problems 

yourself.  
 

Greg:   [nods] 



80 

 

 

Me:   Uh, huh. [Switching to a different screen.] Who did that one?  
 

Greg:   Ian.  
 

Me:   Ian did that one? So, which one did you do? 
 

Greg:   I did the first one.  

 

By working with area models using drawings or manipulatives to create questions for 

their games, nine participants developed their understanding of fractions.  

Theme 2: Talking about area models. Four teams did not create area models on 

paper or use manipulatives, choosing instead to put the representations directly into their 

game, and yet still showed gains on the posttest. In these cases, the evidence of learning 

appeared in the transcripts, since these participants used talk to experience and reflect on 

fraction magnitude. For example, Brandy and Ariel, decided to interview each other on 

the recording device to ensure each understood what they intended for their game before 

they began making it: 

Brandy:  So, Ariel, how do you think this fraction game, called the Fraction 

Machine, is going to help the kids learn fractions? 

 

Ariel:   It's going to show them step by step how to do fractions. And it's 

going to, you know, like, it's going to help them. 

  

Brandy:  Basically, what it's going to do is it's going to, for example, 3/4, 

and there's like a little pizza and it has 3 of them are gone and it's 

only 4 slices and there's one left, so things are going to be colored 

in and show them, you know what I mean? Did I explain that 

right? Is that right?  

 

Also during the design phase, participants used talk to explain concepts they saw 

in the resources. In this example, Chris and Destini are looking at a textbook for ideas 

when Chris has a question: 



81 

 

Chris:  What the opposite of the numerator?  

 

Destini:  Oh! It’s on this picture, oh! [Points to an area model in the book.] 

It tells how many of those equal parts for the fraction stands for.  

 

Chris:  How many equal parts there are? 

 

Destini:  Yeah, look! [Points to picture.] Count them! 

 

Chris:  Oh, ok. 

 

Later in the intervention, when participants were putting the fractions in their 

games, they used talk to express difficulties and help their partner. For example, Zach and 

his partner, Keandra, used talk to help him understand how to represent an improper 

fraction with area models: 

Zach:   How is it possible to do twenty over five shaded in? Twenty over 

five? That means there is… only five are there and twenty shaded 

in. How is that?”  

 

Keandra:  You make more groups of five. 

 

Zach:  You can do that? 

 

Keandra:  Yeah, some fractions are more than one. 

 

Zach:   So it would be like five and five and five until I can shade in 

twenty, right? 

 

Keandra: Yeah. 

 

Similarly, Keith used talk to help his partner, Sarah, understand a subtraction problem by 

verbalizing a similar problem for her: 

Keith:  Do you mean, what is three fourths minus three fourths, is that too 

hard?  

 

Sarah:    Actually, I don’t know.  

Keith:   What is three fourths minus three fourths?  



82 

 

Sarah:    I don’t know. If it’s too hard for me then it’s too hard for them. 

Keith:  Three fourths minus, think, Sarah, you can have three dollars add 

four dollars, right?  

 

Sarah:    Yeah.  

Keith:   You got three dollars, you subtract three dollars, equals what?  

Sarah:    Zero.  

Keith:   Exactly. Three fourths minus three fourths? 

Sarah:    Well then, it’s not that hard. It’s just in a harder version. 

In each of these cases, the participants did not include these fraction scenarios in their 

games. Instead, they included simpler problems so they could have more of their game 

completed before the end of the intervention. 

Brandy and Ariel, who had the highest and second highest gains on the posttest, 

talked throughout the intervention but put very little on paper. Approximately half of the 

time, this talk was about the game they were making. As they were finishing their game, 

they used talk to resolve a disagreement they had about one of their problems (see figure 

4.10): 

Ariel:  Ok, three-fifths is done. 

Brandy: I don’t think that’s three-fifths. 

Ariel:  Sure it is, girl! It’s got three shaded and five not! 

Brandy: But that don’t mean three-fifths. That’s like three-eighths or 

something. 

 

Ariel:  How you mean? 

Brandy: Doesn’t the bottom number have to be, like, the whole thing? 



83 

 

Ariel:  Oh, yeah. 

Brandy: But leave three-fifths. See if anyone else picks it. 

 
Figure 4.10: The problem, and resolution, Brandy and Ariel discussed. 

Brandy and Ariel, like the other teams in this section, used talk to experience and reflect 

upon area models to develop their understanding of fractions as they developed their 

games.  

Theme 3: Developing code for comparing fractions. Justin and Daniel were the 

only coding team that did not use area models in their game, did not ask questions in their 

game, and yet completed their game during the intervention. Instead, their game idea was 

to display two fractions on stick figures and have the player “shoot” the larger fraction 

(see figure 4.11). Theirs was the only game, therefore, that developed code for working 

with fractions.  

Justin appeared young for his age, liked to please his teacher, was accustomed to 

asking for help whenever faced with a new situation, and was diagnosed with a learning 

disability. Daniel was Justin’s opposite; he was loud, argumentative with authority, and 

spent most of the classes trying to distract other students. Daniel did not participate in the 



84 

 

project often, but when he did he provided key insights or ideas. It was up to Justin, 

however, to develop those ideas. For example, figure 4.11 shows the original game idea 

that Daniel drew on the first day while Justin watched.  

 
Figure 4.11: Original game design for Justin and Daniel 

Afterwards, Daniel rarely participated, even when it was his day to code, and instead 

limited his contributions to approving or criticizing what Justin did. Thus, it was Justin 

who developed an understanding of fraction magnitude by creating and testing his code. 

As the following exchange from the second day of the intervention demonstrates, this 

responsibility was not one he accepted willingly: 

Teacher:  You know what the tricky part it’s going to be? Having your game 

figure out which fractions are bigger one so it knows whether it’s 

right or wrong. 

 

Justin:    How are we going to do that? 

Teacher:  You going to have to starting thinking about that one. I’m not 

giving that one away. 

 

Justin:    Oh, come on! 



85 

 

Justin chose to ignore his dilemma until everything else in the game was 

completed, such as choosing the images and having random fractions appear on the 

screen. Near the end of class on the seventh day of the intervention, however, the only 

thing he had left to develop was an algorithm for comparing the fractions so the game 

could tell the player if the selection was correct or not. Justin then called the teacher over 

for help. 

Justin:  So you said we had to have 2 fractions, like this. [Writes one-half 

and five-thirtieths on paper.] 

 

Teacher:   Right, so how do you know which one is bigger? 

Justin:   Well. 

Daniel:   You look at it. 

Justin:   You look at it. 

Teacher:  Well, which one is bigger? 

Justin:   That one? [indicates one-half] 

Teacher:   Why? 

Daniel:   Or five-thirty. 

Justin:  Yeah. ‘Cause like the numbers are bigger in the other one, so like 

this one [indicates five-thirtieths] is bigger than the numbers are 

there [indicates one-half].  

 

Teacher:   Is that always the case with fractions? 

Justin:   No. 

Teacher:   So, how do I know which one is a bigger? 

Justin:   I don’t know. 



86 

 

At this point, Daniel went to distract another team while Justin tried to find out how to 

compare fractions from the Internet. Figure 4.12 shows what Justin found and copied 

before the bell rang. 

 
Figure 4.12: The instructions Justin found and copied for comparing fractions. 

Justin was absent the next time that class met, so it was five calendar days before 

he revisited his notes, the ninth day of the intervention. Finding the notes confusing, he 

asked Daniel for help.  

Justin:  I had wrote down the steps that were on Google, how do you make 

the fraction… Is that the only way to do this? 

 

Daniel:  No, you can do another decimal. Change it to a decimal. 

 

Justin:  How do you change a fraction to a decimal? 

 

Daniel:  You divide them. Bottom divided by top. 

Justin proceeded to code Daniel’s suggestion. When he tested it, however, he called me 

over and was visibly agitated. Daniel was outside the classroom at this time. 

Justin:  Ms. J, it’s messed up!  

 



87 

 

Me:  Tell me. 

 

Justin:  Well, it was working but then it says this is wrong and it ain’t! 

[Shows me the screen. It has 4/9 on the left and 23/1 on the right. 

Justin had selected 23/1 as the largest, which the game marked as 

wrong.] 

 

Me:  How do you know the program’s wrong and not you? 

 

Justin:  ‘Cause this [points to the fraction on the right] is twenty-three! 

 

Me:  How’d you know that was twenty-three? 

 

Justin:  ‘Cause it’s over one. 

 

Me:   So if it’s not you, it must be your code. 

 

Justin:   [Indicates at code.] Yeah, but where? 

 

Me:   Well, where’d you deal with the fractions? 

 

Justin:  Right here. [Points to code showing the division (see figure 4.13)] 

 

Me:   So try doing exactly what your code says in this line. [Points to 

same line of code.] Use a calculator with the same fractions you 

have and see what happens.  

 

Justin:  [Calculates one divided by twenty-three.] Wait, that ain’t right. 

[Calculates twenty-three divided by one.] That’s right. 

 

Me:  What did you do? 

 

Justin:   I did twenty-three divided by one. 

 

Me:  Is that what your code did? 

 

Justin:  No. Should I change it? 

 

Me:  Probably. 

 



88 

 

 
Figure 4.13: Justin’s code with the erroneous division expressions. 

Justin corrected his code and was very pleased to have a working game. In the 

post-interview, I asked Justin about the directions he found online, which were for 

finding a common denominator. He said the directions looked familiar because of 

previous math classes, but he did not remember what the method was called and he said 

he would not have thought of it on his own. He also said he decided to use Daniel’s 

suggestion of turning the fractions into decimals because he felt it would be easier, 

although, in the interview, he said he did not know how to do that before he made his 

game. When asked what he felt he learned during the project, the first thing he said was, 

“I learned how to be better with fractions.” 

How Each Theme Connects to Experiential Learning Theory 

Participants interacted with fractions while creating their games in three ways: (a) 

working with area models, (b) talking about area models, and (c) developing code. These 

methods map to the four phases of Kolb’s (1984) experiential learning theory (see figure 

4.15): concrete experience, reflective observation, abstract conceptualization, and active 

experimentation.  

During concrete experience, a learner engages in an activity. Then the learner 

reflects on that activity during reflective observation. The learner gains knowledge from 

the experience during the abstract conceptualization stage. The learner then acts on the 

knowledge through active experimentation. This section will connect the three themes 



89 

 

from the findings of this study with the experiential learning cycle by mapping each 

theme to the cycle and describing the evidence from the findings for this mapping. 

 
Figure 4.15: The experiential learning cycle. 

Theme 1: Working with area models. Participants who worked with area 

models entered the learning cycle at “concrete experience” because they were creating 

questions on paper before they added them to their games. In this study, participants 

demonstrated they were in this phase of the cycle by sketching area models, like the 

example seen in figure 4.16.  

 
Figure 4.16: A student’s sketch of an area model question. 

The participants then shared their questions with their partners and received 

feedback. They entered the “reflective observation” phase by considering the feedback as 

it related to their area models and the “abstract conceptualization” phase as they accepted 

or rejected the feedback. These phases are not easily observed, as they typically occur 

during silent thought (Kolb, 1984), but may be inferred by a longer than usual pause in 

the conversation followed by the student entering the “active experimentation” phase 

Concrete 
experience

Reflective 
observation

Abstract 
conceptualization

Active 
experimentation



90 

 

(Matsuo, 2015), where he or she applied the acceptance or rejection of the partner’s 

feedback to the original area model. The full cycle as it applies to participants who 

worked with area models may be seen in figure 4.17. 

 
Figure 4.17: Experiential learning cycle for working with area models. 

Table 4.1 

Working with area models data mapped to the experiential learning cycle 

Phase Greg and Katherine Matthew and 

Rhianna 

Walt and John 

Concrete 

experience 

[Greg has drawn 

questions using area 

models and is sharing 

them with Katherine.] 

Greg:  Where’s, what 

graph has 1/4 shaded?  

  

Matthew: Draw a 

graph that’s two 

fourths shaded in. 

[Rhianna draws the 

area model.] 

Matthew: Now 

draw one for three 

fourths. 

[Rhianna draws the 

area model.] 

 

Walt: What is 

shaded in this 

graph?  

Reflective 

observation 

Katherine: I just don’t 

know. Both graphs 

have 1/4 shaded. 

Greg:  No, only one 

does. 

Katherine: No, both 

do. Count! 

 

Matthew: What’s 

the difference? 

John:  I thought 

we did that.  

Walt: No, it’s 

different. 

1. Concrete experience

Student creates or adjusts 
area model questions for 

their game.

2. Reflective observation

Student considers the 
feedback from his/her 

partner.

3. Abstract 
conceptualization

Student accepts or rejects 
the feedback from his/her 

partner.

4. Active 
experimentation

Student applies the new 
knowledge to the area 

model.



91 

 

Abstract 

conceptualization 

 

[not observable] [not observable] [not observable] 

Active 

experimentation 

[Greg counts on his 

area models.]  

Greg:  Oh, right. Ok, 

this one has two 

answers then. 

Rhianna: Oh, this 

one has like one 

less. 

John:  Oh, okay. 

This one has two-

fourths shaded. 

 

Table 4.1 shows how participants working with area models map to the 

experiential learning cycle. In each case, questions posed by their partners allowed 

participants to enter the reflective observation phase because the questions challenged 

their thinking (Matsuo, 2015). The successful resolution of those challenges suggests that 

abstract conceptualization occurred because the participants each revised their thinking 

(Matsuo, 2015).  

Theme 2: Talking about area models. When a participant talked about area 

models instead of working with the models, she or he was observed to enter the learning 

cycle at the “active experimentation” phase. The participant had a prior understanding 

about fraction magnitude that she or he was trying to articulate, usually to ask a question; 

this verbalization demonstrated that the participant was acting on hers or his knowledge. 

The “concrete experience” phase then happened when the participant or, more often, the 

participant’s partner provided a scenario to consider. The participant then engaged in 

“reflective observation,” which, unlike the participants who worked with area models, 

was easier to identify because the participant usually asked clarifying questions of their 

partner concerning the scenario. “Abstract conceptualization” occurred silently, but could 

be inferred because the participant would enter another “active experimentation” phase 



92 

 

by applying hers or his new understanding to the scenario given by hers or his partner. 

The full cycle as it applies to participants who talked about area models may be seen in 

figure 4.18. 

Table 4.2 shows how the conversations participants in this study had about area 

models map to the experiential learning cycle. Zach’s and Chris’s clarifying questions 

show engagement in reflective observation because each is challenging the visualization 

his partner suggested. Brandy, however, engages in reflective observation by asking her 

partner for confirmation. Brandy and Ariel exit the experiential learning cycle at this 

point, making it unclear if they engaged in abstract conceptualization, but the others re-

enter the active experimentation phase in their dialogs by applying new knowledge, 

suggesting that abstract conceptualization occurred to revise their thinking (Matsuo, 

2015).  

 
Figure 4.18: Experiential learning cycle for talking about area models. 

  

1. Active 
experimentation

Student verbalizes about 
an area model, usually to 

ask a question.

2. Concrete experience

Student or student's 
partner provides a 

scenario to consider.

3. Reflective observation

Student visualizes the 
scenario and asks 

clarifying questions.

4. Abstract 
conceptualization

Student visualizes the 
scenario with the new 

knowledge.



93 

 

Table 4.2 

Talking about area models data mapped to the experiential learning cycle 

Phase Zach and Keandra Brandy and Ariel Destini and Chris 

Active 

experimentation 

Zach: How is it 

possible to do 

twenty over five 

shaded in? Twenty 

over five? That 

means there is… 

only five are there 

and twenty shaded 

in. How is that?” 

 

Brandy: So, Ariel, 

how do you think 

this fraction game, 

called the Fraction 

Machine, is going to 

help the kids learn 

fractions? 

Chris: What the 

opposite of the 

numerator?  

Concrete 

experience 

Keandra: You make 

more groups of five. 

Ariel: It's going to 

show them step by 

step how to do 

fractions. And it's 

going to, you know, 

like, it's going to help 

them. 

Brandy: Basically, 

what it's going to do 

is it's going to, for 

example, 3/4, and 

there's like a little 

pizza and it has 3 of 

them are gone and 

it's only 4 slices and 

there's one left, so 

things are going to 

be colored in and 

show them, you 

know what I mean? 

 

Destini: Oh! It’s on 

this picture, oh! 

[Points to an area 

model in the book.] It 

tells how many of 

those equal parts for 

the fraction stands for. 

Reflective 

observation 

Zach:  You can do 

that? 

Keandra: Yeah, 

some fractions are 

more than one. 

 

Brandy: Did I 

explain that right? Is 

that right? 

Chris: How many 

equal parts there 

are? 

Abstract 

conceptualization 

 

[not observable] [no evidence] [not observable] 



94 

 

Active 

experimentation 

Zach: So it would be 

like five and five 

and five until I can 

shade in twenty, 

right? 

 Destini: Yeah, look! 

[Points to picture.] 

Count them! 

Chris: Oh, ok. 

 

Theme 3: Developing code for comparing fractions. Seymour Papert and 

Wallace Feurzeig described programming for learning using terms similar to how Kolb 

(1984) described the experiential learning cycle when they said, “Program descriptions 

are open to reflection and discussion, and procedures that fail can be examined, analyzed, 

and repaired” (Feurzeig & Papert, 2011, p. 488). Although only one participant in this 

study, Justin, interacted with fractions in the code, his experience with his code when the 

game produced an error followed both the experiential learning cycle and what Feurzeig 

and Papert (2011) wrote. As figure 4.19 demonstrates, this cycle begins at the “concrete 

experience” phase when the program responds incorrectly to input then continues through 

the other phases as the student attempts to find, understand, and repair the error in the 

code.  

 
Figure 4.19: Experiential learning cycle for developing code. 

The following conversation between Justin and myself the error in his game was 

discovered shows how he moved from one phase to the next in the experiential learning 

1. Concrete 
experience

The program responds 
incorrectly to the 
student's input.

2. Reflective 
observation

The student examines 
the code.

3. Abstract 
conceptualization

The student determines 
what the error is.

4. Active 
experimentation

The student revises and 
tests the new code.



95 

 

cycle. Because Justin’s partner had deserted him at this point and because this was the 

first Justin had encountered a coding error, I used leading questions to help him through 

the reflective observation phase so he could transfer from what he could do at that time to 

what he wanted to accomplish, which is needed for experiential learning to be effective 

(Burns & Gentry, 1998). 

Concrete experience: 

 Justin:  Ms. J, it’s messed up!  

 Me:  Tell me. 

 Justin:  Well, it was working but then it says this is wrong and it ain’t!  

 [Justin shows me the screen. It has 4/9 on the left and 23/1 on the right. Justin 

had selected 23/1 as the largest, which the game marked as wrong.] 

Reflective observation: 

 Me:  How do you know the program’s wrong and not you? 

 Justin:  ‘Cause this [points to the fraction on the right] is twenty-three! 

 Me:  How’d you know that was twenty-three? 

 Justin:  ‘Cause it’s over one. 

 Me:   So if it’s not you, it must be your code. 

 Justin:   [Indicates at code.] Yeah, but where? 

 Me:   Well, where’d you deal with the fractions? 

 Justin:  Right here. [Points to code showing the division.] 

 Me:  So try doing exactly what your code says in this line. [Points to 

same line of code.] Use a calculator with the same fractions you 

have and see what happens.  



96 

 

Abstract conceptualization: 

 Justin: [Calculates one divided by twenty-three.] Wait, that ain’t right. 

[Calculates twenty-three divided by one.] That’s right. 

 Me:  What did you do? 

 Justin:   I did twenty-three divided by one. 

 Me:  Is that what your code did? 

 Justin:  No. Should I change it? 

 Me:  Probably. 

Active experimentation: 

 [Justin changes and tests his code.] 

Within the “reflective observation” phase, Justin engages in a smaller experiential 

learning cycle similar to that experienced by participants who talked about area models. 

My leading question, “How do you know the program’s wrong and not you?” provided 

him with a scenario which he considered then challenged with an explanation. Overall, 

however, Justin’s experience fits the experiential learning cycle because fixing the 

mathematical algorithm in his code allowed him to re-examine his initial math problem 

of comparing fractions (Robins, Rountree, & Rountree, 2003)..  

RQ3: What challenges, other than with fractions, do low-achieving secondary math 

students experience in designing and developing games using App Inventor? 

In addition to understanding how students’ understanding of fraction magnitude 

developed, this study also examined the challenges they had when working with an NPE 

during a math intervention. In this study, challenges were defined as difficulties affecting 

all members of a group and preventing the group from progressing with their work 



97 

 

independently or later creating difficulties that impeded independent progress. 

Understanding these challenges may help identify and explain any factors that may have 

limited the students’ development of fraction understanding (Allsopp, McHatton, & 

Farmer, 2010). Thus, this section will present the findings of the third research question: 

What challenges, other than with fractions, do low-achieving secondary math students 

experience in designing and developing games using App Inventor? For this research 

questions, data from all fifteen groups (thirty-two participants) will be used because all 

participants experienced challenges when making their games, with some challenges 

affecting most or all participants. 

The available literature suggested some of challenges the participants in this study 

might face when creating their games and how to assist them, so this section will begin 

with a brief summary of those challenges that presented themselves and how the 

research-supported strategies helped. The section will then present findings showing that 

participants encountered additional challenges coding as well as two challenges that are 

not exclusive to computer science activities: collaboration and learned helplessness. The 

section concludes by summarizing these challenges and identifying the challenges 

common to the groups that did not complete their games during the intervention. The 

challenges, support offered, number of participants affected, average number of times the 

challenge presented per group, and the data sources that revealed the challenge are listed 

in appendix N.  



98 

 

Challenges Identified by Prior Research 

As stated in the literature review, previous studies have found that students with 

learning disabilities have specific challenges when learning to code. Three studies 

(Chang, Thorpe, & Lubke, 1984; Ratcliff & Anderson, 2011; Santi & Baccaglini-Frank, 

2015) identified algorithm development, debugging, and transferring learning from one 

task to another as difficult for their participants; Ratcliff and Anderson (2011) also found 

that participants found working with graphics, especially angles in graphics, challenging. 

Each of these challenges appeared in this study. Although these studies specified students 

with learning disabilities as having these challenges, this study found that they also 

affected participants without identified learning disabilities.  

Algorithm development. Algorithms are, according to Wing (2008), “an 

abstraction of a step-by-step procedure for taking input and producing some desired 

output” (p. 3718). The data from the final interviews suggested that many of the 

participants in this study found algorithm development challenging; analysis of the audio 

recordings of participants and student work revealed this challenge affected eleven of the 

fifteen groups. In the interviews, each of the nine participants said that making their 

games was difficult. When asked if that difficulty was because they could not “picture 

what to do in your mind” or if they did not know what code to use, seven replied that they 

could not even picture what they needed to do. Prior research has shown that algorithm 

development is difficult for new coders and suggests helping students by helping them 

plan on paper before coding (Chang, Thorpe, & Lubke, 1984; Santi & Baccaglini-Frank, 



99 

 

2015) or encouraging them to look at other code and ask questions (Ratcliff & Anderson, 

2011).  

Because most of the algorithms participants were trying to develop were 

addressed, at least partially, in the tutorials available on the App Inventor website, 

participants were encouraged to examine the tutorials and ask questions. These thirty-one 

tutorials provide descriptions for what the example app does, step-by-step instructions for 

creating the user-interface and code, and descriptions for how each of the components in 

the app functions. This support created another challenge for the participants: Choosing 

or adjusting an appropriate algorithm from the tutorials. Keith and Sarah, for example, 

were trying to have a cannon shoot a ball along a path, which was similar to the way 

objects move in the tutorial that recreated a classic arcade game, Space Invaders, but 

were trying to use the code found in a tutorial that recreated the game Mole Mash 

because, Keith explained, “It says ‘MoveTo’ and we want the ball to move.” They did not 

recognize that the algorithm in Mole Mash moved objects differently than the way they 

wanted their ball to move. Destini and Chris were also trying to move objects along the 

screen to give the illusion of lines moving along a road (see figure 4.20). They 

implemented an algorithm from a tutorial to make the lines move but found that all of the 

lines stopped at the top of the screen. When the researcher gave them the suggestion to 

move the lines to the bottom when they reach the top, they then had difficulties 

developing that algorithm even on paper, which involved using a conditional (“if” 

statement) and detecting edges on the screen. Choosing or adjusting appropriate 

algorithms from the tutorials was a challenge for nine of the fifteen groups; developing 



100 

 

algorithms on paper was a challenge for two groups. In each case, these groups could 

create or modify an algorithm to achieve at least partial functionality in their code after 

receiving help. Four groups did not have difficulties with algorithm development. 

 
Figure 4.20: The lines Destini and Chris were trying to move. 

Debugging. The debugging process is a cycle of identifying the error, finding the 

error in the code, changing the code to hopefully fix the error, then testing to determine if 

the error is gone (Rouse, 2016). Debugging is a challenge for new coders (Chang, 

Thorpe, & Lubke, 1984; Ratcliff & Anderson, 2011; Santi & Baccaglini-Frank, 2015); 

research suggests encouraging students to “act out” the code on paper by writing down 

what happens with each line of code (Chang, Thorpe, & Lubke, 1984). Analysis of the 

observational data, specifically the audio recordings and field notes, revealed that 

identifying the error was the first challenge some participants faced, once even to the 

point of recognizing that the code had an error: 

Travone:   Did I do it right? 

Teacher:   Is it working the way you want it? 

Travone:   Nope. 

The audio recordings, code, and student work logs revealed that identifying the 

error was a common challenge for the groups who were trying to make objects move on 



101 

 

the screen. As the following exchange between Destini and Chris demonstrates, 

participants found it challenging to recognize what the object was actually doing when 

they observed it moving incorrectly: 

Destini:  Still not working.  

 

Chris:  Kind of worked, and kind stopped working. It started moving then 

disappeared, so I did see something moving then disappear. Did 

you see that, the lines split weird then went back where they 

belong?  

 

Destini:  Kind of. 

 
Recognizing that the error was a coding error was also a challenge for a few 

groups. For example: 

Katherine:  Just like the picture. It’s not doing anything.  

Greg:   That means someone set it wrong in our coding.  

Katherine:  But we didn’t do anything.  

Greg:   Is the code, we got it.  

Katherine:  That’s not the coding page, the coding page is where you would do 

the blocks.  

 

Greg:   No, this is the same thing. Yes, so, I knew we made a mistake 

and…  

Katherine:  Ms. K, I’m confused. I don’t know how to code, it’s hard.  

Greg:   Yeah, this is hard. 

Once an error was identified, specifying what the actual error was so it could be 

found in the code was the next challenge for participants. Destini and Chris, for example, 



102 

 

needed guiding questions to recognize that one of their errors was that the object moved 

in the wrong direction: 

Teacher:  Okay, did you notice which direction it moved?  

Chris:   It went that way, it was like it was moving backwards.  

Teacher:  So, it moved to the left? To the right?  

Chris:   It went right.  

Destini:  Oh! But we want to move up, right? 

For eight groups, being specific about the error was enough for them to identify 

what part of their code contained the error. Fixing the error remained a challenge, but the 

challenge was reduced after the teacher or researcher taught them a few debugging skills, 

such as using trial and error to determine what values to use or getting one object at a 

time to work correctly, in addition to having them “act out” the code on paper (Chang, 

Thorpe, & Lubke, 1984). Debugging remained a source of frustration for participants, 

however, as Tyrone, Clayton, and Ken expressed in their log one day (figure 4.21) after 

trying to identify the error that prevented their ball from moving when “flung” by the 

player; with assistance from the teacher the next session, they recognized that they had 

mistakenly set the component’s speed to zero, which prevented movement. Only three 

participants could debug their code without assistance, two of whom had prior experience 

using App Inventor.  

 
Figure 4.21: Expressing frustration when debugging. 



103 

 

Transferring learning. Transfer is an individual’s ability to apply prior 

knowledge, skills, and strategies to new scenarios (Fuchs et al., 2003). Recognizing that 

the current problem is related to a previously solved problem is one requirement for 

transfer to occur successfully (Cooper & Sweller, 1987), and has been identified as a 

challenge for students with learning disabilities when coding (Chang, Thorpe, & Lubke, 

1984; Ratcliff & Anderson, 2011; Santi & Baccaglini-Frank, 2015). The audio recordings 

and field notes revealed that ten groups did not identify that they had solved a similar 

problem without prompting by the teacher or researcher. For example, Keandra and 

Zach’s game included having the player “shoot” a basketball in a manner similar to the 

functionality found in the Ball Bounce tutorial that they had completed in the first week. 

As the following exchange demonstrates, they did not recognize the similarities between 

these tasks on their own: 

Keandra:  Okay, so we got a basketball; how do we put it on there? 

 

Me:   Seems to me that we made a game with a ball on it once, right?  

 

Zach:   What, it’s the same? 

 

Keandra:   Oh, yeah! We can use that! 

 

In Brandy and Ariel’s group, they asked the teacher for help because they did not 

realize that the code they already created for one button would be similar to the code they 

needed for another button: 

Brandy:  I need help. I just need to get... so this button, and then I do... 

Teacher:  Honey, go look at the other button you created. 'Cause aren't you 

just doing the same thing over again? 

 



104 

 

Brandy:  Yeah. 

 

Teacher:  Look at the other button. 

 

Ariel:   What other button? 

 

Teacher:  You have another button already done. You're doing the same 

thing. 

 

Brandy: Oh, right. 

 

Not recognizing the similarities between a previously solved coding task and the current 

one occurred in ten of the groups. In seven groups, participants began identifying 

similarities and transferring knowledge after prompting by the teacher or researcher. For 

the other three groups, such as Brandy and Ariel, the teacher or researcher needed to 

identify the similarities explicitly before the participants recognized how to transfer that 

previous coding task to the current problem. 

Working with angles. The “heading” property, which gives the sprite component 

its direction to move, uses angle measurements (in degrees) for its parameter. Ratcliff and 

Anderson (2011) found that students struggled with using angles when coding; analysis 

of the audio recordings and daily work revealed that participants in this study also failed 

to recognize when they needed to use angles. My conversation with Matthew when his 

partner was absent demonstrates how not recognizing this parameter as an angle and 

working with angle measurements both presented challenges: 

Matthew:  Okay I've got something there all right and we put in zero. I'm 

going to click left, it’s moving, but it moved right, didn’t it? 

 

Me:   Well, at least we know how to move things to the right. Okay, and 

you tried using a negative number, too. What did you pick? 

 

Matthew:   Minus three. 



105 

 

 

Me:   Did that change anything? 

 

Matthew: No. 

 

Me:   Okay, but in the tutorial, [a sprite is] moving down. What did they 

use? 

 

Matthew: Minus ninety. 

 

Me:   Try that. 

 

[Matthew changes the parameter and tests the code. The sprite moves down.] 

 

Me:  So negative ninety moved it down. What about positive ninety? 

 

Matthew: That moved it up. 

 

Me:  Good, we’ve already figured out 3 of your buttons not just the 

button we are working on, right? So, you’re going to want to write 

this down.  

 

Matthew:   So, zero is right, ninety moved it up, minus ninety down. 

 

Me:    Where do we see zeros and nineties in math? 

 

Matthew:  On triangles. 

 

Me:    On triangles. Why? Because what is it describing? 

 

Matthew:  The angles. 

 

Me:   The angles, and how do we measure angles? Which tools do we 

use?  

 

Matthew:  Protractor 

 

Me:   The protractor, right. So, you know what? Maybe you want to take 

a look at a picture of a protractor to see what numbers you should 

put in for left.  

 

Matthew needed a little assistance afterwards on how to read a protractor but then 

could enter the correct parameters for his game’s directional buttons, as figure 4.22 



106 

 

demonstrates. The other four groups with this difficulty had similar conversations with 

the teacher, researcher, or Matthew to activate their prior knowledge of angles and to 

understand how they applied to the “heading” property in the code. 

 
Figure 4.22: Matthew’s code with the correct parameters for the “Heading” property. 

Challenges Specific to Coding 

Although all the participants in the study had participated in the “Hour of Code” 

event (Code.org, 2017) two months prior to the intervention, only three participants had 

additional coding experience, two of whom with App Inventor. The two participants with 

prior App Inventor experience worked together and did not have challenges coding that 

they were unable to resolve independently; all the remaining participants had several 

challenges. In addition to the challenges identified in the literature and discussed earlier 

this chapter, participants had challenges concerning their game designs, decomposing 

their game designs into components to code, coding concepts and skills, limitations of the 

App Inventor environment, and challenges with some of the vocabulary and angle use in 

the coding blocks. 



107 

 

Game design issues. The eight games that combined quiz-like questions with 

other game elements, such as shooting a basketball or running a kitchen, were not 

completed during the intervention. Analysis of the artifacts, specifically the design 

sketches and coding plans, revealed that these groups designed games of a greater coding 

complexity than did the other groups; audio recordings, field notes, student work, and 

incomplete final products showed that this issue was a continuous challenge for 

participants throughout the intervention. For six of these groups, plus one group that later 

changed to a simple quiz game, the games they designed had several components on 

screen, many of which moved. In figure 4.23, for example, the object of the game was to 

survive a zombie attack by shooting them and building defenses; materials to do so could 

be purchased with currency earned from answering questions correctly. As the 

participants identified on their design sheet, this game would require several components 

to be coded: zombies, shooters, guns, building materials for the house, money, and the 

fraction questions.  

Additionally, these components have little in common with each other, so coding 

knowledge gained from one component may not transfer to another. In comparison, the 

simple quiz games typically had four components on each screen, none of which moved, 

and each screen was similarly designed so the knowledge gained from coding one screen 

directly transferred to the next. Other game designs with several components on the 

screen included running a kitchen, building a hotel, and car racing, as well as two other 

shooting games. The participants, however, were unaware of the complexity of their 

designs. As Katherine said to her partners when they completed their initial design, “It’s 



108 

 

going to be easier than I thought it was going to be.” Katherine was a member of the 

group that completely changed their design to a simple quiz game later. 

 
Figure 4.23: A game with several moving components. 

Two of the eight games that were not completed during the ten sessions had 

similar functionality: Players could shoot a basketball when they answered a fraction 

question correctly. These games had only a few more components than the simple quiz 

games, but these components had more complex functionality than the quiz games’ 

components had, even those quiz games that included animation. Specifically, the 

basketball games needed code recognizing when the player is allowed to “shoot” the ball, 

how the player “shoots” the ball, and a win condition. The complexity of these design 

elements in addition to coding the fraction questions resulted in both games being 

incomplete at the end of the intervention, although they each had most of the 

functionality completed.  

Decomposition. Decomposition involves taking a complex task, separating it into 

smaller tasks, and organizing those tasks by the order each should be completed (Wing, 



109 

 

2008). Problem decomposition in computer science also includes the defining of objects 

and methods (Barr & Stephenson, 2011, p. 117).  Decomposition was identified as a 

challenge when the data showed participants were unable to independently decompose 

their game designs into a list of components on their coding plans, created incomplete 

coding plans and were unable to identify what was missing without assistance, or needed 

to create something that is normally considered to be one object but actually requires 

three components to replicate on the screen, such as a fraction in a/b form.  

Nine groups had challenges with decomposition, which was first identified in the 

audio recordings from when participants designed their games and the first drafts of the 

coding plans participants created. The audio recordings from when participants started 

creating their games and the interview data confirmed that these participants were not 

able to identify one task to begin with even with their coding plans unless the teacher or 

researcher assisted. As one participant said, “It was just really confusing just how to start 

off, like where do I get these pictures, how do I code it? So it was kind of sort of 

overwhelming with all the blocks and all the, especially for my first time not knowing 

how to code.” That feeling of being overwhelmed was also articulated when one team 

asked the teacher for help: 

Travone:  I don’t understand really how we are going to be able to do this. 

Teacher:   Okay, like what? What's one thing? 

Travone:    Put the guns in there, making the person, just staying around him. 

Cary:   Being able to move. 

 

Travone and Cary were unable to answer with “one thing” as the teacher requested 



110 

 

because, as they later said, “There were so many things we had to do!” Guiding questions 

from the teacher or myself helped participants to identify the individual objects in their 

games, however, as the following exchange demonstrates: 

Teacher:  Okay, so settings screen, okay, player choses what level. So, now 

I'm in the game, what I'm I seeing on the screen? Give me one 

thing I'm seeing on the screen.  

 

Destini:  A car.  

 

Teacher:  A car. What does the car do?  

 

Destini:  Sitting there.  

 

Chris:  The car and then you have like the gears.  

 

Teacher:  Okay, so what’s the car going to do?  

 

Destini:  It's going to go.  

 

Teacher:  Okay, so if I could get my question right, it goes, if I don’t it just 

sits there looking pretty?  

 

Destini:  Like it starts off, it goes 5 miles per hour, if you get it right it goes 

like the 7, you get it right it goes to 15. If you get it wrong, you 

slower.  

 

Chris:  You like go back.  

 

Teacher:  Oh! Okay, so, really what’s changing is not the car itself, from the 

player perspective, but the speed of the car. So, what shows that? 

 

Destini:  There’s a little speedometer there.  

 

In later sessions, three groups encountered additional challenges with 

decomposition when they were trying to make a random fraction appear on the screen. In 

App Inventor, they discovered the “random fraction” function displayed values in decimal 

form, but they were trying to create a fraction in a/b form. In each case, these groups 



111 

 

needed help recognizing that they would have to use three separate components to 

represent the numerator, denominator, and fraction bar. Guiding questions from the 

teacher or researcher resolved this challenge. 

Coding concepts and skills. Coding was new to all but three of the participants. 

As one participant explained in the post-interview, “I never really knew how to like, what 

a code was. I always thought like a game, you didn't have to code it. Now I know there's 

stuff behind it.” Student work, audio recordings, and field notes revealed that eight 

groups encountered challenges with one or more of the following coding concepts or 

skills: the relationship between a component and its code, working with event handlers, 

choosing the correct component, and naming components meaningfully. For each 

challenge, explicit instruction given once on the concept or skill resolved the issue, which 

was not experienced by that group again during the intervention. 

The relationship between a component and its code. After following two of the 

tutorials as an introduction to coding, three of the groups did not understand the 

relationship between the visual component and the code making it function until it was 

explicitly told to them. In some cases, the participants tried coding a component they had 

not created: 

Teacher: Where is the fraction? There aren’t fractions here.  

 

Ken:   What do you mean?  

 

Teacher:  You’ve got to get it on the screen before you can make code for it. 

 

In other cases, participants created the component but did not assign any functionality to 

it: 

 

Chris:   I thought that they were going to like move?  



112 

 

 

Teacher:  But how are they going to move? You need code to make them 

move. 

 

In each case, explaining the relationship between a component and its code resolved the 

challenge. 

Working with event handlers. Another coding challenge that appeared in two of 

the groups was in understanding how to code for event handlers. Event handlers in App 

Inventor are “when” statements that contain code to follow in response to certain input, 

such as pressing a button (MIT, 2017). Each event handler may appear only once in the 

code, even when multiple actions occur in response to the event. As figure 4.24 shows, 

participants tried using event handlers multiple times in their code to distinguish between 

the different actions that were to occur; again, explicit instruction given once resolved 

this challenge. 

 
Figure 4.24: Incorrect use of event handlers. 

Choosing the correct component. Participants also found distinguishing between 

the various components that can contain images challenging. Several components in App 

Inventor can contain a static image, including one called “Image,” but if the image will 

move, like a spaceship traveling across the screen, the coder needs to use two 



113 

 

components, a “sprite” for the moving image and a “canvas” to contain the sprite. Both 

tutorials participants completed in the beginning used the canvas component and one 

used the sprite component, but participants still had difficulties recognizing when to use 

which component for images, as the following exchange demonstrates: 

Me:  Okay, now you are… that’s an actual image [component]. That thing is 

going to move, right?  

Jayla:  Yes.  

Me:  You know what you might want to do? Instead of using an image, use 

a sprite.  

Alexis:  Yeah, I saw that in the animations.   

Seven of the groups had difficulties recognizing which component to use for 

images, although most of them could use the image components after being directed to 

the correct type or a tutorial using the correct type. One group, however, changed their 

game design to a simple quiz game because, as Greg said in the post-interview, “We 

couldn't figure out how to get a block [sprite] to move.” 

Naming components meaningfully. Eight of the groups had multiple instances of 

the same component on the screen, such as multiple buttons or multiple sprites. Three of 

these groups did not rename their components and so found keeping track of which was 

to do what challenging: 

Ian:   So, then where do you want me to go first?  

Katherine:  Do the room button, if you can find it on the blocks.  

Ian:   The button, all the blocks, all the buttons have numbers beside 

them. I don’t know which one is it.  

 

 



114 

 

One of the groups did rename their components, but not in a meaningful way: 

Sarah:    We named the buttons. 

Brian:    But I don’t know which one to use.  

Keith:    We named them already: Brian, Sarah, Keith. 

Although renaming components was addressed before the intervention, it needed 

reinforcing with these four groups. 

Limitations of App Inventor. App Inventor allows users to create apps of varying 

complexity (MIT, 2017). Although it allows more functionality in the apps one can create 

than other NPEs do, the participants in this study still found three limitations that 

challenged their ability to create the games they designed: allowing collaboration on a 

project, finding relevant tutorials, and allowing dynamic memory allocation. Each of 

these challenges required that the researcher provide participants with instructions or 

sample code to bypass these limitations. 

Allowing students to collaborate on a project. The first limitation of App 

Inventor participants encountered was that it did not easily allow collaboration on a 

single project. Projects in App Inventor may only belong to one email address. Prior to 

beginning this study, the researcher and the teacher determined that participants would 

have to download their projects then upload them to the course’s cloud service to allow 

pair programming to occur and to compensate for when a partner was absent. Creating 

new email addresses for this project was considered but rejected as a possible security 

issue. Directions for how to share the projects via the cloud service were given to each 

group in their binders (see appendix O) and guided instruction was provided at the 



115 

 

beginning of the intervention to ensure all students could follow them. However, this 

“work-around” created challenges for the participants that persisted throughout the study, 

especially downloading the project from the cloud service then importing it into App 

Inventor, as the following exchange demonstrates: 

Katherine:  How did you get it, do the same thing right here on Greg’s 

computer?  

 

Greg:   Yeah, I don’t even know how we got it.  

Ian:   So all I had to do is go to ‘projects.’  

Greg:   Projects, we already have that.  

Ian:   Then go to ‘import projects from my computer. ‘ 

Greg:   Yeah, I already did that.  

Ian:   Even though, sometimes it takes, well for me it took a couple of 

tries but eventually went in. 

 

Difficulties with this process included following the sequence of steps and renaming files 

that had special characters added during download. In many cases, participants simply 

uploaded their projects at the end of class but then swapped computers, rather than 

downloading and importing, the next day to allow the other partner to code. As the audio 

recordings and field notes revealed, this challenge affected every group except the one 

participant who worked without a partner. 

Finding relevant tutorials. The second limitation of App Inventor, which audio 

recordings and the game designs showed four groups encountered, was that there were 

not tutorials demonstrating functionality that they wanted in their games. Participants 

preferred using the tutorials to learn from, rather than the apps other users had uploaded, 



116 

 

because, as Keandra explained in her interview, “Those other games just give you the 

code and don’t tell you what it does.” These game designs, as shown in figure 4.25, had 

functionality that were not addressed in any of the tutorials: looping an image on the 

screen (two games) and building (two games). For each group, the researcher created 

example code demonstrating similar functionality (see appendix P) then explained how 

the code worked to them. 

            
Figure 4.25: Four game designs with features not addressed in the tutorials. 

Allowing dynamic memory allocation. The final limitation participants 

encountered with App Inventor was that it does not allow dynamic allocation of memory. 

Two groups designed building games where part of the functionality was to create an 

object, such as a room or a brick, then place it where the user wants it on the screen. In a 

standard object-oriented programming environment, the coder would create an 

abstraction or template for the desired object then call for instances of that object to be 

created as needed; App inventor does not have this or any similar functionality (Italo, 

2017). Although the participants did not recognize that they were trying to allocate 

memory dynamically, the audio recordings and student work revealed that they were 

trying to create code that would make an object when a button was clicked. Sample code 

showing how to simulate this functionality (see appendix P) was given and explained to 



117 

 

the groups; after trying to implement the code in their own games, one group chose to 

design a simpler game. 

Difficulties with vocabulary. The vocabulary terms used in the coding blocks 

challenged seven of the groups, with audio recordings, field notes, and student work 

showing two terms being especially difficult for them. Although twenty-two participants 

had difficulties with a vocabulary term at some point during the intervention, it was 

identified as a challenge only when all members of the group did not understand or 

misunderstood a term and could not progress until the teacher or researcher intervened. In 

the other instances where vocabulary was a difficulty, another member of the group 

explained the term; since progress was not impeded, these instances were not identified 

as a challenge. 

The first term that posed a noticeable challenge, “initialize,” was needed by three 

groups to have something happen when a screen first appears. In each case, the groups 

knew they needed an event listed under the screen component (see figure 4.26), but either 

asked for assistance when they saw the choices or tried using some of the other events 

because, as one student explained, “I knew some of the words in them.” For example, 

Destini was trying to have lines move along the screen as soon as the game began, but did 

not know which event to use: 

Me:  Okay, so we want them to start moving right away, correct? Right 

when the screen first shows up? When the screen first shows up… 

what does that mean? Which one [event] do you think that is? 

 

Destini: I tried this one [“OtherScreenClosed”] and this one 

[“ScreenOrientation Changed”]. 

 



118 

 

Teacher:  Huh. What does “initialize” mean? 

 

Destini: I don’t remember. 

 
Figure 4.26: Possible events for the screen component. 

The second vocabulary term which was a challenge for five of the groups was 

“heading.” These groups saw the term used in several of the tutorials, but when asked if 

they knew what it meant, one student replied, “It’s the top of a Word doc, right?” Unlike 

“initialize,” not knowing this term did not stop participants from using the code block 

because they saw its use in the tutorials, although they did have difficulty using the block 

correctly. For both “initialize” and “heading,” the teacher or researcher provided 

participants with their meaning and how these terms are used in the code. In addition to 

these terms, “logic” and the division symbol (“/”) was also a difficulty for individual 

participants, but in each case the participant’s partner explained the term. 



119 

 

Challenges Not Exclusive to Computer Science 

Collaboration. Collaboration in a learning activity is “students working together 

in small groups towards a common goal” (Kuo, Hwang, Chen, & Chen, 2012, p. 320) and 

can allow low-achieving students improve their understanding of mathematics when they 

work together using structured procedures (Allsopp, Kyger, & Lovin, 2007). Pair 

programming, a structured procedure for students learning to code by working together, 

was used in this study and has been found to encourage collaboration (Braught, Wahls, & 

Eby, 2011; Cao & Xu, 2005; Denner, Werner, Campe, & Ortiz, 2014). Additionally, 

Ratcliff and Anderson (2011) found that students with learning disabilities collaborated 

on their own when learning to code. In this study, however, audio recordings, field notes, 

and interview data showed collaboration was a challenge for nine of the groups even 

when the pair programming structure was enforced and when participants were 

encouraged to work together and seek peer support, an additional strategy for helping 

diverse learners learn to code (Israel, Pearson, Tapia, Wherfel, & Reese, 2015).  

All of the groups collaborated well when designing their games, but on the first 

day of coding, the non-coding partner, who was supposed to be telling the coding partner 

what to do, was not included in the coding partner’s thought processes in all but three 

groups. The coding partner in each group was also the more dominant partner on this first 

day. When the coding partner had difficulties, (s)he would ask the teacher or researcher 

for assistance rather than the non-coding partner. These adults responded by re-enforcing 

pair programming and including both partners, such as when the teacher responded to one 

group, “You know what he is saying yet? You know what he is trying to do? So right off 



120 

 

the bat, I see the first problem: Your partner doesn’t even know what you are trying to 

do.” In some cases, this lack of collaboration was because the group misunderstood pair 

programming: 

Teacher:  Where is your computer? How can you be looking up stuff for him 

if your computer is not out? 

 

Tyrone:   I got it, it was just one person that’s coding. 

 

Teacher:  One coding, but the other two should be looking up different things 

and saying this is how you do it. 

 

On the second day of coding, when the partners switched roles, I observed in my field 

notes: 

Today was the first time the non-dominant person coded. There was definitely 

resistance, both by that person and by the dominant partner. Sometimes because 

the less dominant didn’t want to do the work (Matthew), sometimes because the 

more dominant didn’t trust the other (Brandy). It didn’t take long, however, for 

them to figure out how to work together. Often, I saw the dominant person lead 

the other into starting to code and I saw that person gain confidence. 

 

This increase in collaboration did not happen easily, however. In this exchange, 

for example, Daniel wants the teacher’s help because he does not have confidence in his 

partner: 

Daniel:   Okay, now what do I do? 

Teacher:   Now Justin, help Daniel figure out the next step. 

Daniel:   Show me how to put it in here. 

Teacher:   Justin is going to do that because he has the tutorial out. 

Daniel:   Or he obviously doesn’t know how to do it.  

In other cases, such as with Cary when he returned from an absence, the less dominant 

partner was reluctant to code because (s)he lacked confidence: 



121 

 

Cary:   I don’t know, I don’t know what coding is, no, I’ll be honest with 

you, I don’t know what coding is. 

 

Teacher:  You don’t have to worry about it, you really don’t have to worry 

about it, you’re still the one who’s coding. 

 

Cary:    What is coding? 

 

Teacher:  Making a program work, but Travone is going to show you what 

he figured out last time and he’s the one who’s telling you what to 

do and he’s very good at that. He did an excellent job helping out 

another group last time. 

 

Although collaboration improved for some groups after the second day, eight 

groups continued to find collaboration challenging. In a few instances, the lack of 

collaboration was a minor interruption, like when Greg annoyed Katherine by echoing 

everything she said for five minutes, but for five of these groups, this lack of 

collaboration contributed to their not completing their games. As Destini explained in her 

interview why she was unhappy with the progress they made: 

Destini:  Well, if we worked better, then [the game] would have turned out 

like we wanted it, but it's not, it's not all that great.  

 

Me:   What do you mean if you worked better?  

 

Destini:  If we like put more effort in and actually like cooperated, I guess, 

then it would have been likely better, but it didn't turn out how we 

wanted. 

 

In seven groups, at least one member participated so little that the other 

member(s) of the group stopped collaborating with them. As Kassidy explained in her 

interview when asked why she completed the game on her own, “I worked with Chalise 

before and she's really smart, but like if she doesn't get something she doesn't want to try 

as hard. So I guess this was just one of those things where like she didn't know a lot and 



122 

 

she just didn't want to try.” All but one of the groups with three members had a member 

who stopped participating after the design phase, even when the teacher or researcher 

suggested meaningful ways for that person to contribute. 

Learned helplessness. Most groups asked the teacher or researcher for help once 

per session in the beginning of the intervention, every-other session, on average, after the 

third session, and engaged in conversations concerning coding or fractions when no adult 

was near. These groups initially expressed their lack of confidence in coding but gained 

confidence with reassurance and encouragement to try various approaches (Israel et al., 

2015). Four groups, however, asked for assistance at least twice per session once they 

began coding, which remained consistent throughout the intervention, and rarely, if ever, 

discussed coding or fractions unless someone else was helping them. Allsopp, Kyger, and 

Lovin (2007) describe these behaviors as learned helplessness and further explain, 

“Students who experience continuous failure in mathematics expect to fail; resulting both 

in reticence to try something new and reliance on others to help them” (p. 46).  They 

further explain, “Students with learned helplessness often resist trying new strategies in 

problem solving situations” (p. 50) and affect not only the learning of mathematical 

content but also the use of the mathematical process skills of problem, solving, reasoning 

and proof, communication, and making connections. The math process skills of problem 

solving, reasoning, and making connections are also skills used when coding (Calao, 

Moreno-León, Correa, & Robles, 2015). This code was used when the audio recordings 

and field notes showed instances of participants expressing reluctance to solve the 

problem they had identified, such as stating “I give up” after realizing they needed to use 



123 

 

a component they had not used before, followed by the group asking for assistance rather 

than seeking a solution independently; groups that decreased this behavior after the third 

session were then removed from this code’s data because their initial behavior likely 

indicated a lack of confidence in coding rather than learned helplessness. 

The participants in these four groups regularly made statements to the teacher or 

researcher that expressed defeat, such as “I don’t want to do this no more” and “I give 

up.” The conversations that these groups had preceding such statements to the teacher or 

researcher revealed that one member of the group would share a problem or frustration 

with the others, but then another member of the group would respond with a statement 

that encouraged the rest of the group to quit. For example, Katherine was attempting to 

get an object to move on the screen when she asked her group for help: 

Katherine:  I told you, so for all the work that I do today, I need help. 

Greg:   We need Jesus. 

Ian:   Yes.  

After Greg’s and Ian’s responses, Katherine stopped working and the group engaged in a 

conversation about a social event until the teacher walked near and they asked for help.  

Allsopp, Kyger, and Lovin (2007) suggest helping students overcome learned 

helplessness by decomposing tasks into smaller ones and monitoring their progress (p. 

50). During the intervention, the teacher or researcher applied these strategies by 

identifying one task for the group to work on, monitoring their progress, then identifying 

the next task. For example, after Amy, Kala, and Sarah had completed the visual part of 

their game, they immediately asked the researcher for help: 



124 

 

Amy:    I’m confused because this don’t make no sense.  

Me:    Okay, what part are you working on? 

Amy:    A majority of things to work, but we don’t know. 

Sarah:    How to get it. 

Me:  Okay, well, I would start with the buttons. Let’s do one together. 

When they completed coding their buttons, they again asked for help and again the 

researcher suggested a task from their coding plan. This pattern continued throughout the 

intervention and was sufficient for two of the groups to make progress on their games. 

Justin and Daniel also benefited from the teacher or researcher identifying smaller 

tasks for them to complete, but they often stopped halfway through the task to ask for 

additional assistance. An additional strategy, to encourage and reassure students’ attempts 

(Israel et al., 2015), helped them, as the following exchange demonstrates: 

Justin:   Ma’am, we need some help. I don’t know how to get it, we almost 

got it over his hand. 

 

Teacher:   Oh! My goodness, you’re almost there! Okay, how did you get it 

so close? 

Daniel:   We kept using bigger numbers. 

Teacher:  That was a good idea. Why did you stop trying that? 

Justin:   I don’t know. It didn’t seem to work. 

Teacher:  But it almost worked, so maybe just keep trying it? 

Justin:   Okay. 

One group would not try to code unless someone explicitly helped them, even 

after the above strategies were attempted. Their game design contained several 



125 

 

components, but most of these components had the same functionality, so completing one 

component successfully would provide them with a template for completing many of the 

others. By the eighth session, however, they only had code for one of these components 

completed, and that was done with the researcher. During this session, another student 

had completed his game and volunteered to help others. He worked with this group for 

approximately thirty minutes when the teacher suggested he help another group for a 

while: 

Teacher:   All right, are you okay for a while without Brian? 

Katherine:   No. 

Greg:    No, we can't do it. 

Greg, Katherine, and Ian continued to work only when someone sat with them helping for 

the remainder of the sessions, which happened more often as others completed their 

games. When asked in the post-interview why he felt he needed this level of support, 

Greg replied, “I thought it was too complicated to like code something to ... but when 

people came over and did step by step with me and showed me how to do this, that 

wasn’t too bad.”  

Summary of Challenges 

The thirty-two participants in this study each experienced one or more challenges 

when making their games beyond the challenge of working with fractions. Most of these 

challenges directly concern coding: algorithm development, debugging, working with 

angles, complexities in the game design, decomposition, coding concepts and skills, 

vocabulary used in the coding blocks, and limitations found in App Inventor. Three of the 



126 

 

challenges, however, are not exclusive to coding or computer science: transferring 

learning from one task to another, collaboration, and learned helplessness. For all but one 

challenge, complexities in the game design, the researcher or teacher provided supports 

which helped most participants continue progress on their games. These challenges, how 

many participants experienced them, and the supports provided are listed in appendix N. 

Four of these challenges have also been identified in the literature, with three 

studies (Chang, Thorpe, & Lubke, 1984; Ratcliff & Anderson, 2011; Santi & Baccaglini-

Frank, 2015) identifying algorithm development, debugging, and transferring learning 

from one task to another as difficult for their participants and Ratcliff and Anderson 

(2011) also identifying graphics, especially angles in graphics, as a challenge. These 

challenges affected twenty-nine of the participants in this study, with debugging 

challenging each of the twenty-nine, algorithm development affecting twenty-three 

participants, transferring learning affecting twenty-three participants, and working with 

angle measurements affecting eleven participants. The literature suggested ways to 

support students with these challenges, but with each challenge additional supports were 

needed.  

All participants also experienced challenges that were specific to coding their 

games. The primary challenge, identified before the intervention began, was that App 

Inventor does not support collaborative development. Thirty-one participants needed to 

download and share their projects through another environment, Google Classroom, so 

more than one student could work on the game directly; the one unaffected participant 

was working alone after his partner left the study. App Inventor had other limitations that 



127 

 

affected participants’ coding efforts. The researcher created sample code for the affected 

groups and explicit instruction on how the code works; difficulties after this instruction 

were classified as “transfer” or “algorithm development” challenges.  

Twenty-four participants encountered four additional challenges specific to 

coding other than challenges associated with App Inventor. These challenges were: (1) 

designing games with complex features or functionalities (21 participants), (2) 

decomposing their designs or elements in their designs into smaller tasks (19 

participants), (3) understanding coding concepts or skills (18 participants), and (4) 

understanding the vocabulary in the coding blocks (15 participants). Guiding questions 

and explicit instruction was sufficient support for three of these challenges, but no 

support was provided to address participants with complex game designs. The researcher 

determined that encouraging participants to simplify their designs could influence their 

work with fractions, which would threaten the trustworthiness of this study, and instead 

chose to encourage these participants to create a prototype, a version of their game with 

some of the features functional.  

Two challenges, collaboration and learned helplessness, are not exclusive to 

coding or computer science yet affected twenty-one participants. Encouragement and 

splitting tasks into smaller parts helped all nine participants who demonstrated learned 

helplessness, but collaboration remained a challenge for fifteen participants throughout 

the study. Additional encouragement and re-enforcing the pair-programming protocol was 

attempted but only helped six participants collaborate effectively.  



128 

 

Nine of the fifteen games were not completed during the intervention and one 

group dramatically changed their game design to a simple quiz game during the 

intervention. Two challenges were common to each of these groups: complex game 

design and collaboration challenges. Four of these groups produced a mostly-functional 

prototype, which included some of their fraction problems and at least half of their 

additional features, by the end of the intervention. Three of these four groups, each with 

two participants, had resolved their collaboration challenges. Of the six completed games, 

three groups had unresolved collaboration challenges; each was a group of two 

participants and completed their games after one participant decided to work without the 

other’s assistance. 

Summary 

Participants created three kinds of representations for fractions and used these 

representations to develop their understanding of fraction magnitude. All participants 

used numeric representations and most also used area models, which are the most 

common representations found in math textbooks (Zhang, 2012). The ways participants 

interacted with their fraction representations developed their understanding of fraction 

magnitude and maps to the experiential learning cycle (Kolb, 1984). Thus, experiential 

learning theory explains how participants developed their understanding of fraction 

magnitude, which occurred when participants worked with area models, talked about area 

models, and developed code for comparing fractions. 

Participants also experienced several challenges other than with fractions when 

developing their games. Some of these challenges have been identified in previous 



129 

 

studies concerning students with learning disabilities and coding: algorithm development, 

debugging, transferring learning from one task to another, and working with angles in 

graphics (Chang, Thorpe, & Lubke, 1984; Ratcliff & Anderson, 2011; Santi & 

Baccaglini-Frank, 2015). In this study, these challenges were not restricted to participants 

who had an identified learning disability. Participants in this study also experienced 

additional challenges when coding and challenges that are not specific to computer 

science activities. These additional challenges participants had coding were challenges 

concerning their game designs, decomposing their game designs into components to 

code, coding concepts and skills, limitations in the App Inventor environment, and some 

of the vocabulary used in the coding blocks. The challenges participants had that are not 

exclusive to computer science were challenges collaborating and learned helplessness. 

These challenges may help explain why only six games were completed during the 

intervention and may help identify factors that may have limited the participants’ 

development of fraction understanding (Allsopp, McHatton, & Farmer, 2010).  

  

 

  



130 

 

CHAPTER 5: DISCUSSION 

This study asked low-achieving eighth-grade students to create games about 

fraction magnitude using an NPE, App Inventor, to address gaps in their understanding. 

The research is based on the work of Seymour Papert (Feurzeig & Papert, 2011; Harel & 

Papert, 1990) and Yasmin Kafai (1995) and extends their work by using a different NPE 

and by working with older students who have demonstrated low achievement in 

mathematics. It asked what representations of fractions the participants used in their 

games, how they developed their understanding of fraction magnitude, and what 

challenges they experienced other than with fractions.  

The findings suggest that participants with a minimal understanding of fraction 

magnitude, as measured by the pretest, developed their understanding of fraction 

magnitude during the intervention. These participants also included two representations 

in their games, one numeric in the form a/b and one non-numeric. Most of the non-

numeric representations were area models, which participants worked with or talked 

about during the intervention. One participant, however, represented fractions in his code 

as the division of two integers; he demonstrated his developing understanding when he 

encountered an error in his code. Each of these ways of interacting with fractions mapped 

to the experiential learning cycle, demonstrating that participants engaged in a concrete 

experience with fractions, reflected on what they observed, conceptualized their 

understanding, and experimented with their new understanding (Kolb, 1984; Matsuo, 

2015). Participants also experienced several challenges when creating their games. Many 

of these challenges have been identified in prior research concerning students with 



131 

 

learning disabilities and computer science or mathematics education, but in this study, the 

challenges were found to affect participants with and without identified learning 

disabilities.  

This chapter will begin by situating the findings for each research questions with 

the relevant literature. It will then describe the limitations of this study and the 

implications for practitioners and researchers. The chapter concludes with a final 

reflection. 

Relationship of Prior Research to the Study’s Findings 

The purpose of this study was to examine what representations of fractions low-

achieving students use in the games they create, how they develop an understanding of 

fraction magnitude while developing their games, and what challenges they have beyond 

working with fractions as they develop their games. This study adds to the literature on 

the use of NPEs by extending prior research to the secondary school level and by 

working with low-achieving students. This section will situate the findings of this study 

into the existing body of research.  

RQ1: Representing Fraction Magnitude in Games  

Ten of the fifteen games used area models, a specific type of fraction model in 

which the fraction is shown as a shaded portion of a two-dimensional figure. Area models 

are the most common non-numeric representation of fractions in textbooks (Zhang, 2012) 

and in teaching (Zhang, Clements, & Ellerton, 2015), so the participants in this study 

would likely have been more familiar with area models than other representations and 

thus would have chosen them to represent fractions in their games. Students in 



132 

 

elementary and middle school grades also tend to represent mathematics using objects 

from their concrete experiences (NCTM, 2000, p. 68), but only one of these games used a 

real-world object, pizza, as an area model. The remaining nine games used basic 

geometric figures for their area models; eight used circles and one used both circles and 

hexagons. Basic geometric figures are the most common form of area models in 

textbooks (Zhang, 2012), with circles being the recommended figure for teaching 

fractions (Bray & Abreu-Sanchez, 2010; Cramer & Henry, 2002), which again suggests 

that the students in this study would have seen or used circle area models more than other 

representations in their previous math instruction. 

One game represented fractions as the division of two integers. This 

representation is one that the Common Core State Standards (NGA, 2010) and the 

National Council of Teachers of Mathematics (2000) recommend students should be able 

to use to represent fraction magnitude. The remaining four games only used numeric 

representations of fractions. Although these can be valid representations for fraction 

magnitude (Lesh, Post, & Behr, 1987) and may have been effective learning experience 

for these students because they constructed the representations themselves (Ainsworth, 

Bibby, & Wood, 2002; Greeno & Hall, 1997; NCTM, 2000; Rau, Aleven, & Rummel, 

2015; Zhang, Clements, & Ellerton, 2015), their learning may have been limited because 

they did not convert between various representations like the other participants did 

(Duval, 2006; Even, 1998; Lesh, Post, & Behr, 1987; NCTM, 2000; Panaoura, Gagatsis, 

Deliyianni, & Elia, 2009). Only one of these seven participants who only used numeric 

representations showed gains on the posttest. 



133 

 

RQ2: Developing an Understanding of Fraction Magnitude 

Participants developed their understanding of fraction magnitude when creating 

their games by working with area models, talking about area models, and developing 

code for comparing fractions. The data showed several instances where students changed 

their thinking regarding the properties of rational numbers, the relationship between the 

numerator and the denominator, or how to represent fraction magnitude, which the 

literature suggests shows a development of understanding (Gabriel et al., 2012; Jordan et 

al., 2013; Siegler, Fazio, Bailey, & Zhou, 2013; Vamvakoussi & Vosniadou, 2004). In 

each case, students constructed a way to represent fractions (verbally, representatively, or 

physically); the research suggests that students interacting with representations is 

required to develop their understanding (Duval, 2006; Even, 1998; Lesh, Post, & Behr, 

1987; NCTM, 2000; Panaoura, Gagatsis, Deliyianni, & Elia, 2009) and is especially 

effective when they create their own representations (Ainsworth, Bibby, & Wood, 2002; 

Greeno & Hall, 1997; NCTM, 2000; Rau, Aleven, & Rummel, 2015; Zhang, Clements, & 

Ellerton, 2015). The participants in this study who demonstrated that they developed their 

understanding of fraction magnitude, as evidenced in the qualitative and quantitative 

data, created area models or developed code to represent fractions as the division of two 

integers and converted between these representations and numeric representations of 

fractions. 

Asking participants to develop a game about fraction magnitude using an NPE 

created a catalyst for experiential learning because learning to code or program fosters an 

experiential learning environment (Feurzeig & Papert, 2011; Robins, Rountree, & 



134 

 

Rountree, 2003), as does providing students with a problem case to work (Georgio, Zahn, 

& Meira, 2008). Experiential learning theory explains how participants developed their 

understanding of fraction magnitude because they created and interacted with fraction 

representations while designing and developing their games (Sanford, Hopper, & Starr, 

2015), and the ways they did so map to the four phases of the experiential learning cycle: 

concrete experience, reflective observation, abstract conceptualization, and active 

experimentation (Kolb, 1984; Matsuo, 2015).  

When participants created their area models or verbally posed a question or 

scenario about area models to their partners, they demonstrated that these were 

challenging experiences for them because the creations, questions, and scenarios exposed 

their misconceptions about fraction magnitude (Matsuo, 2015). These challenging 

experiences map to the “concrete experience” and “active experimentation” phases of the 

experiential learning cycle (Matsuo, 2015). Receiving and considering the feedback from 

their partners maps to the “reflective observation” and “abstract conceptualization” 

phases because “feedback provides the basis for a continuous process of goal-directed 

action and evaluation of the consequences of that action” (Kolb, 1984, p. 22) and 

encouraged participants to think critically about their experience (Matsuo, 2015). 

Developing code for comparing fractions, the third way participants developed 

their understanding of fraction magnitude, also maps to the experiential learning cycle. 

Working with code, either creating new code or fixing existing code, maps to the 

“concrete experience” phase because transferring knowledge into code creates a concrete 

experience for the person coding (Turkle & Papert, 1990). Fixing an error in the code 



135 

 

then maps to the remainder of the cycle because a program that does not work still does 

something that can be observed, reflected upon, and understood (Feurzeig & Papert, 

2011). Like the others who worked with or talked about area models, the participant who 

developed code for comparing fractions encountered challenging experiences when his 

game did not work as intended and when he tried fixing his code and thought critically 

about his experiences as he tried to determine the cause of the error and a possible 

solution, which are evidence for how his interaction with fractions maps to the 

experiential learning cycle (Matsuo, 2015). 

RQ3: Challenges Experienced When Designing and Developing Games 

Three studies (Chang, Thorpe, & Lubke, 1984; Ratcliff & Anderson, 2011; Santi 

& Baccaglini-Frank, 2015) identified algorithm development, debugging, and 

transferring learning from one task to another as difficult for students with learning 

disabilities when they learn to code; Ratcliff and Anderson (2011) also found working 

with graphics, especially angles in graphics, challenging for them. This study confirmed 

these findings and furthermore found that these challenges affected participants with and 

without identified learning disabilities. The supports identified in these studies were also 

found to be effective supports for helping participants through these challenges. 

Two studies (Israel et al., 2015; Ratcliff & Anderson, 2011) found that students 

would work together on their own to overcome coding difficulties. This study did not find 

evidence of participants voluntarily helping their peers, although in three instances a 

participant willingly helped another when the teacher or researcher invited her or him to 

do so. Other studies (e.g., Braught, Wahls, & Eby, 2011; Denner, Werner, Campe, & 



136 

 

Ortiz, 2014; Van de Grift, 2004) suggested implementing a pair programming protocol so 

students would have shared but equal responsibilities coding and would therefore support 

each other’s learning. This study used the pair programming protocol because, in addition 

to the benefits written about it, structured procedures for working together can allow low-

achieving students to improve their understanding of mathematics (Allsopp, Kyger, & 

Lovin, 2007). Nine of the fifteen groups in this study, however, had challenges that 

affected their ability to work independently rooted in their inability to work together even 

when encouraged to collaborate (Israel et al., 2015) and when the protocol was re-

enforced (Braught, Wahls, & Eby, 2011). 

Participants experienced other challenges when developing their games that were 

not identified in the literature. Some of these challenges can be attributed to the 

participants’ inexperience when coding, such as not understanding computer science 

concepts, skills, or vocabulary, or to limitations of the NPE, App Inventor. The remainder, 

however, have connections with the literature concerning students with learning 

disabilities. One issue identified in this literature that helps explain participants’ 

challenges, working memory deficits, is a common issue for students with learning 

disabilities (Cai, Li, & Deng, 2013; Geary, 2013; Swanson & Zheng, 2013), negatively 

impacts problem-solving skills (Allsopp, Kyger, & Lovin, 2007; Baddeley, 2010; Geary, 

2013; Kirschner, Sweller, & Clark, 2006; Lyon & Weiser, 2013; Swanson & Zheng, 

2013) and is related to reasoning ability (Baddeley, 2010; Kyllonen & Christal, 1990). 

The computational thinking skill of decomposition is a part of problem solving (Selby & 

Woollard, 2013) and thus would be affected by working memory deficits because 



137 

 

decomposition asks the individual to identify the key characteristics of the problem and 

disassemble it into smaller components (Grover & Pea, 2013), both are skills that 

interventions for students with working memory deficits address (Adams & Carnine, 

2003; Kirschner, Sweller, & Clark, 2006; Likourezos & Kalyuga, 2017). Working 

memory deficits may explain why decomposition was a challenge experienced by 

participants in this study as well as possibly explaining the challenges previous studies 

identified that are related to problem solving, such as algorithm development and transfer. 

Another challenge identified in this study as well as by Ratcliff and Anderson (2011), 

working with angles, may also be related to working memory deficits because working 

with angles requires visual-spatial reasoning (Hegarty & Kozhevnikov, 1999), which is a 

component of working memory (Swanson & Zheng, 2013). 

Allsopp, Kyger, & Lovin (2007) also identify learned helplessness as a behavior 

common to students with learning difficulties that affects problem solving, reasoning, and 

making connections in mathematics. This study identified four groups that had at least 

one participant displaying behaviors consistent with learned helplessness to such a degree 

as it prevented the group from working without assistance. Decomposing tasks into 

smaller ones and monitoring their progress, strategies identified by Allsopp, Kyger, and 

Lovin (2007) to help students exhibiting this behavior, supported the groups experiencing 

this challenge. 

Participants required additional supports when experiencing challenges, which is 

common for students with learning disabilities when using approaches other than direct 

instruction (Godino, Batanero, Cañadas, & Contreras, 2017). Appendix N shows the 



138 

 

supports provided for each challenge. Supporting debugging, decomposition, and 

transferring knowledge challenges occurred by prompting students to help them articulate 

their thinking and explicitly demonstrating connections between similar problems, which 

are suggested strategies for supporting students with learning disabilities when direct 

instruction is not used (Moscardini, 2010; Xin, Liu, Jones, Tzur, & Si, 2016).  

Limitations of the Study 

There were two items regarding the participants in this study which may limit its 

transferability. First, fifteen participants were identified as having a learning disability, 

but information about their disabilities was not available to this researcher, and these 

participants were in thirteen of the fifteen groups. Because of this, distinguishing how 

participants with learning disabilities, or participants with specific learning disabilities, 

represented fractions, developed their understanding of fractions, and experienced 

challenges when creating their games could not be distinguished from participants 

without identified disabilities. Thus, the findings of this study only apply to its intended 

population, secondary students with low-achievement in mathematics. Second, 

participants’ test scores and grades from the previous year were also not available to this 

researcher, which not only limited the description of the participants but also prevented 

the research from understanding their previous understanding of fraction magnitude. 

The credibility of the findings for the first research question, how students 

represented fractions, could be questioned because of the impact that the resources 

available to the participants may have had on their representations. Nine of the games 

used area models, which are the most common non-numeric representation found in math 



139 

 

textbooks (Zhang, 2012). An examination of the textbooks made available to the 

participants showed that area models were the predominant non-numeric representation 

they used. The data shows that all groups referred to the provided textbooks when 

designing their games, and although the data did not reveal any direct evidence 

suggesting the influence of these books (e.g., a participant stating “Let’s do it like this.”), 

when they used the books increases the likelihood that the representations in the books 

influenced their thinking. 

The pre- and posttest used in this study ensured that all participants had at least a 

basic understanding of fraction magnitude and identified who likely developed their 

understanding of fraction magnitude during the intervention. Although quantitative 

methods were used to analyze this data, the sample size is too small to generalize the 

results to a population outside of this study.  

The use of multiple data sources, member checking during the interviews, and 

peer review of the findings were used to minimize confirmatory bias of the researcher 

(Rabin & Schrag, 1999; Shenton, 2004). Still, the researcher’s experiences and 

epistemological beliefs influenced the data collection and analysis (Shenton, 2004; 

Whittemore, Chanse, & Mandle, 2001). For the third research question especially, this 

researcher’s prior experience in computer science and computer science education 

influenced the codes used to identify the challenges participants experienced. Prior 

research was used to ensure that these codes were consistent with the literature, but since 

not all of them could relate to the literature, this researcher used her experiences to 

identify and define the remaining challenges.  



140 

 

Implications of the Study’s Findings 

Implications for Practitioners 

With increasing demand to bring computer science education to all K-12 learners 

(Krueger, 2017), finding ways to integrate these concepts and skills with existing 

curricula could help more schools include computer science education in their already 

packed schedules (Mehta, 2013; Sniegowski, 2017). This integration would especially 

help low-achieving students who cannot take as many electives as their peers because 

they are enrolled in additional math or reading classes (Williams, 2014), such as the 

participants in this study, and thus would not have equal opportunities to learn computer 

science. This study demonstrated one possible way to integrate computer science with a 

core subject area, mathematics, to provide opportunities in computer science to low-

achieving students. 

This study also presents practitioners with a viable intervention for middle school 

students struggling in mathematics. Kirschner, Sweller, and Clark (2006) suggest that 

direct instruction benefits learners who do not have enough knowledge stored in their 

long-term memory, but Deanna Kuhn (2007) suggests that constructivist approaches to 

instruction are more effective than direct instruction when teaching problem-solving and 

conceptual understanding, especially to older students;  other studies have since found 

that constructivist approaches are effective for all learners at the secondary level to gain 

mathematical understanding (e.g., Bottge et al., 2015; Han, Caparo, & Caparo, 2015). In 

this study, participants who scored lowest on the pretest demonstrated a developing 

understanding of fraction magnitude during the intervention, suggesting that having 



141 

 

students create games about fractions, a constructivist approach to instruction, would be 

an effective activity to help low-achieving secondary students improve their 

mathematical understanding, at least with fraction magnitude. 

The third implication for practitioners concerns the challenges participants in this 

study faced when creating their games. The literature is limited concerning the challenges 

faced by students with learning difficulties as they learn to code (Santi & Baccaglini-

Frank, 2015), which could present problems as schools try to implement the new K-12 

Computer Science Framework (2016) because teachers would be unable to prepare for 

the difficulties their learners might encounter. This study confirmed what challenges have 

been identified in the literature (Chang, Thorpe, & Lubke, 1984; Ratcliff & Anderson, 

2011; Snodgrass, Israel, & Reese, 2016), identified other challenges that participants had 

when coding, and described the supports used during the intervention to help participants 

through these challenges. Such knowledge could support practitioners as they teach 

computer science to a diverse student population. 

Implications for Research 

This study extends the work of Seymour Papert (Feurzeig & Papert, 2011; Harel 

& Papert, 1990; Papert, 1987) and Yasmin Kafai (Kafai, 1995; Kafai, Franke, Ching, & 

Shih, 1998), who worked with elementary students, by demonstrating that coding to learn 

fractions is a viable intervention for secondary students with low achievement in 

mathematics to develop their understanding of fraction magnitude. This study 

demonstrates that participants changed their thinking regarding fraction magnitude and 

constructed representations of fractions, which the literature suggests shows a 



142 

 

development of understanding (e.g., Ainsworth, Bibby, & Wood, 2002; NCTM, 2000; 

Siegler, Fazio, Bailey, & Zhou, 2013; Zhang, Clements, & Ellerton, 2015).  

This study also extends the literature regarding students with learning disabilities 

by demonstrating that four of the challenges (decomposition, algorithm development, 

transfer of knowledge, and working with angles) students experienced when creating 

their games are like those experienced by students with learning disabilities in other 

educational settings. These challenges relate to problem solving or visual-spatial 

reasoning (Grover & Pea, 2013; Selby & Woollard, 2013), which are negatively affected 

by working memory deficits (Baddeley, 2010), a common characteristic of students with 

learning disabilities (Cai, Li, & Deng, 2013; Geary, 2013; Swanson & Zheng, 2013), and 

impact one’s ability to learn mathematics (Barnes & Raghubar, 2014; Cai, Li, & Deng, 

2013; Geary, 2013; Swanson & Zheng, 2013). Another challenge that presented in this 

study, learned helplessness, is also a challenge experienced by students with learning 

difficulties and affects their problem-solving, reasoning, and making connections 

(Allsopp, Kyger, & Lovin, 2007), skills used when coding (Calder, 2010).  

Future Research 

The nation currently faces a shortage of computer science teachers (Maio, 2016; 

United States Department of Education, 2017), so realizing the vision of computer 

science education across all grades and with all learners may require preparing current 

and prospective non-computer science educators to include it in their instruction (K-12 

Computer Science Framework, 2016). If teachers are going to use this instruction, further 



143 

 

research will be needed to understand how best to train and support them in this work 

(Grover & Pea, 2013). 

Additional research is also needed to understand how English-language learners 

develop their understanding of fraction magnitude when developing games about 

fractions using an NPE. Although there was a student identified as an English-language 

learner in one of the classes for this study, she chose to not participate in the research. 

Her behaviors during the intervention, however, suggest that there are specific challenges 

and supports needed to help this population participate in computer science activities and 

develop an understanding of fraction magnitude using a non-traditional approach such as 

this study’s intervention. 

Because only participants who earned less than 60% of the possible points on the 

pretest demonstrated they developed an understanding of fraction magnitude during this 

study, further research may help identify why the remaining participants did not. The 

findings of this study suggest that their use of only numeric representations of fractions 

contributed to this lack of development, but it is also likely that a ceiling effect occurred 

with the instrument used for the pretest or that their developing understanding was not 

detected in the qualitative analysis. Continuing research on this intervention would 

identify if and how students with a stronger understanding of fraction magnitude continue 

to develop in their understanding. 

Another one of the findings of this study, the impact collaboration challenges had 

on participants’ completing their games, is an area for further research. Prior research 

suggested that students would work together to overcome coding difficulties (Israel et al., 



144 

 

2015; Ratcliff & Anderson, 2011) and, to support such collaboration, the pair 

programming protocol (Braught, Wahls, & Eby, 2011) was used during the intervention. 

The findings of this study suggest that this support was insufficient; further research may 

help identify what support would increase collaboration during the intervention.  

Finally, further research can study the effectiveness of having low-achieving 

secondary students create computer games to learn mathematics. Although a body of 

research exists suggesting coding is a viable tool for learning mathematics (e.g., Calder, 

2010; Harel & Papert, 1990; Kafai, 1996), analyzing the effectiveness of this approach 

has been limited. Is an intervention such as the one used in this study an effective 

approach for learning fraction magnitude? Are there constraints or conditions on the 

effectiveness of this approach, such as the age of the student or their prior experience 

coding? And finally, how does this approach compare to other methods for teaching 

fractions to low-achieving students?  

Post-Mortem 

 I believe that, overall, this intervention was successful in helping low-achieving 

middle school students develop a better understanding of fraction magnitude, but there 

are a few things I would do differently to maintain student motivation throughout the 

intervention and, possibly, improve the benefits to students. While motivation was not 

generally an issue with this project, participants demonstrated less on-task behavior 

during the middle of the intervention (sessions 4 through 7 out of 10). During these 

sessions, several participants commented on how they had until the end of the month to 

complete their games, and these comments were said without a feeling of urgency, which 



145 

 

suggests that they felt no need to work diligently during these sessions. To help maintain 

student motivation, I would include benchmarks with due dates. For example, the design 

and coding plan would need to be finished by the end of session 2, all components would 

need to be placed on the front-end by the end of session 4, and then benchmarks for 

completing and testing sections of the code would be determined on a game-by-game 

basis so each group would have a checklist of deliverables specific to their game. These 

benchmarks would help students feel a sense of urgency to complete tasks, since the due 

dates would be near, and may minimize some of the challenges they experienced by 

providing a more organized structure to their game development process.  

 In this study, not every group created multiple representations of fractions in their 

games, which is what research suggests is the best practice for developing an 

understanding of fraction magnitude (e.g., Ainsworth, Bibby, & Wood, 2002; Panaoura et 

al., 2009; Siegler, Fazio, Bailey, & Zhou, 2013). The predominance of simple quiz games 

and games with quiz-like questions likely contributed to this limitation, since quiz-like 

questions can be created using only numeric representations. When students are 

challenged to design a game about fractions that does not ask questions, however, they 

will create and integrate various ways of representing fractions in their games (Kafai, 

Franke, Ching, & Shih, 1998). Justin’s game is a good example of this: He did not intend 

to use multiple representations, but the only way he could make his code compare the 

numeric representations displayed on the front-end of his game was to represent them as 

the division of integers in his code. Therefore, the other modification I would do to the 

intervention would be to have participants create games that did not ask questions. This 



146 

 

change may need to be preceded by having them create a simpler app so they may 

develop coding skills and confidence before they develop this more challenging game, 

but it would likely ensure that students work with multiple representations of fractions, 

which would increase the benefits for the students.  

Final Reflections 

The reason this study specified low-achieving middle school students and their 

fraction understanding is because research suggests students who have difficulties in 

mathematics in middle school, specifically in understanding fraction magnitude, will 

have difficulties understanding algebra 1 (e.g., Booth & Newton, 2012; Brown & Quinn, 

2007; Siegler et al., 2012), be less likely to take a math course beyond algebra 2 (Sciarra, 

2010), and be less likely to graduate high school (Orihuela, 2006) or succeed in higher 

education (Adelman & United States., 2006; Trusty & Niles, 2004). Fraction magnitude 

is a conceptual understanding which involves (a) understanding their properties, such as 

the principle of equivalent fractions, (b) understanding how the numerator and the 

denominator determine magnitude, and (c) the ability to work with and create various 

ways to represent fraction magnitude, such as ordering on a number line (Gabriel et al., 

2012; Jordan et al., 2013; Siegler, Fazio, Bailey, & Zhou, 2013; Vamvakoussi & 

Vosniadou, 2004). To understand fraction magnitude, students need to learn to work with 

and convert between various representations (Duval, 2006; Even, 1998; Lesh, Post, & 

Behr, 1987; NCTM, 2000; Panaoura, Gagatsis, Deliyianni, & Elia, 2009). Asking 

students to construct their own representations is the most effective way for them to gain 

this understanding (Ainsworth, Bibby, & Wood, 2002; Greeno & Hall, 1997; Rau, 



147 

 

Aleven, & Rummel, 2015; Zhang, Clements, & Ellerton, 2015) and was the primary aim 

of this intervention. 

Using App Inventor and game design as a means of getting students to construct 

their own representations of fractions are methods supported in the literature, but this 

researcher also hoped that students would find game design and/or coding to be a 

motivating experience. A student who experiences difficulties with secondary 

mathematics has likely experienced difficulties since learning fractions in elementary 

school (Booth & Newton, 2012); such long-term difficulty decreases motivation 

(Nicholls, 1979). Coding can increase students’ willingness to learn a topic even if they 

found that topic uninteresting beforehand (Harel & Papert, 1990). Although data on 

motivation was not deliberately included in this study, observational and interview data 

suggest that creating games about fractions did motivate participants, at least in the 

beginning. The challenge of learning to code, however, caused some participants to lose 

motivation. As Kassidy said of her partner:  

I worked with Chalise before, like she's in my math class and she's really smart, 

but like if she doesn't get something, she like doesn't want to try as hard. So I 

guess this [coding] was just one of those things where like she didn't know a lot 

about it and that she just didn't want to try. 

 

For other participants, the challenges they experience became a source of pride. In 

the final interviews, participants regularly cited one of their coding challenges as what 

they were most proud of in their games. Brian mentioned learning how to change screens 

when a button was clicked, Destini discussed getting her image sprites to move correctly, 

Matthew recounted how he learned the “heading” block used angle measurements, and 

both Kassidy and Justin shared how fixing the errors in their games were what they were 



148 

 

most proud of. Justin’s pride was also evident when he shared his newly-working game 

with Daniel (see figure 5.1). Justin was one of the participants who displayed learned 

helplessness behaviors, so to see him smiling and sharing his working game and to hear 

him say he was proud of how he fixed his code’s error was an additional benefit for this 

researcher.  

 
Figure 5.1: Justin (background) smiling as Daniel plays the working game. 

Creating games using App Inventor to develop an understanding of fraction 

magnitude is a viable intervention for low-achieving eighth grade students, as the 

findings of this study demonstrated. Further research will determine the effectiveness of 

the intervention, the issues concerning student populations not represented in this study, 

and what preparations teachers will need to use this or similar interventions in their 

classrooms. Importantly, the findings of this study may inform researchers and 

practitioners wanting to work with NPEs and low-achieving students, especially in 

mathematics, because it adds to the literature on NPEs, using fraction representations, 

and developing an understanding of fraction magnitude.  



149 

 

References 

ACT. (2015). 2015 Retention/Completion summary tables. Research and Policy Issues: 

College student retention and graduation rates from 2000 to 2015. Retrieved from 

http://www.act.org/research/policymakers/reports/graduation.html.  

 

Adams, G., & Carnine, D. (2003). Direct instruction. Handbook of learning disabilities, 

403-416.Baddeley, A. (2010). Working memory. Current Biology, 20(4), R136-R140. 

doi:10.1016/j.cub.2009.12.014 

 

Adelman, C. & United States. (2006). The toolbox revisited: Paths to degree completion 

from high school through college. Washington, D. C.: Office of Vocational and Adult 

Education, U.S. Dept. of Education. Retrieved from 

http://catalog.hathitrust.org/Record/005568101; 

http://hdl.handle.net/2027/mdp.39015069291808  

 

Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple 

representational systems in learning primary mathematics. Journal of the Learning 

Sciences, 11, 25–61. 

 

Allsopp, D. H., McHatton, P. A., & Farmer, J. L. (2010). Technology, mathematics 

PS/RTI and students with LD: What do we know, what have we tried, and what can 

we do to improve outcomes not and in the future? Learning Disability 

Quarterly, 33(4). 

 

Allsopp, D. H., Kyger, M., & Lovin, L. (2007). Teaching Mathematics Meaningfully: 

Solutions for Reaching Struggling Learners. Baltimore, MD: Paul H. Brookes 

Publishing Co. 

 

An, Y. (2016). A case study of educational computer game design by middle school 

students. Educational Technology Research and Development, 64(4), 555-571. 

doi:10.1007/s11423-016-9428-7 

 

Angen, M. J. (2000). Evaluating interpretive inquiry: Reviewing the validity debate and 

opening the dialogue. Qualitative Health Research, 10(3), 378-395.  
 

Anney, V. (2014). Ensuring the quality of the findings of qualitative research: Looking at 

trustworthiness criteria. Journal of Emerging Trends in Educational Research and 

Policy Studies, 5(2). 

 

Archbald, D. & Farley-Ripple, E. (2012). Predictors of Placement in Lower Level Versus 

Higher Level High School Mathematics. The High School Journal, 96(1), 33-51. 

 



150 

 

Aydin, E. (2005). The use of computers in mathematics education: A paradigm shift from 

“computer aided instruction” towards “student programming.” The Turkish Online 

Journal of Educational Technology, 4(2). 

 

Bailey, D. H., Hoard, M., Nugent, L., & Geary, D. (2012). Competence with fractions 

predicts gains in mathematics achievement. Journal of Experimental Child 

Psychology, 113, 447-455. 

 

Barnes, M. A., & Raghubar, K. P. (2014). Mathematics development and difficulties: The 

role of visual–spatial perception and other cognitive skills. Pediatric Blood & 

Cancer, 61(10), 1729-1733. doi:10.1002/pbc.24909 

 

Baxter, P. & Jack, S. (2008). Qualitative case study methodology: Study design and 

implementation for novice researchers. The Qualitative Report, 13(4). 

 

Baytak, A. & Land, S. (2011). An investigation of the artifacts and process of 

constructing computers games about environmental science in a fifth grade 

classroom. Educational Technology Research & Development, 59(6), 765-782. 

doi:10.1007/s11423-010-9184-z 

 

Booth, J. L. & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper's 

doorman? Contemporary Educational Psychology, 37(4), 247-253.  

 

Bottge, B. A. & Hasselbring, T. S. (1999). Teaching mathematics to adolescents with 

disabilities in a multimedia environment. Intervention in School & Clinic, 35(2), 

113-116. doi:10.1177/105345129903500208 

 

Bottge, B., Toland, M., Gassaway, L., Butler, M., Choo, S., Griffen, A., & Ma, X. (2015). 

Impact of enhanced anchored instruction in inclusive math classrooms. 

Exceptional Children, 81(2). 

 

Braught, G., Wahls, T., & Eby, L. M. (2011). The case for pair programming in the 

computer science classroom. ACM Transactions on Computing Education, 11(1), 

article 2. 

 

Bray, W. S. & Abreu-Sanchez, L. (2010). Using Number Sense to Compare 

Fractions. Teaching Children Mathematics, 17(2), 90-97. 

 

Brown, G. & Quinn, R. J. (2006). Algebra Students' Difficulty with Fractions: An Error 

Analysis. Australian Mathematics Teacher, 62(4), 28-40.  

 

Brown, G. & Quinn, R. J. (2007). Investigating the relationship between fraction 

proficiency and success in Algebra. Australian Mathematics Teacher, 63(4), 8-15. 

 



151 

 

Burns, A. & Gentry, J. (1998). Motivating students to engage in experiential learning: A 

tension-to-learn theory. Simulation & Gaming, 29(2), 133.  

 

Cai, D., Li, Q. W., & Deng, C. P. (2013). Cognitive processing characteristics of 6th to 

8th grade chinese students with mathematics learning disability: Relationships 

among working memory, PASS processes, and processing speed. Learning and 

Individual Differences, 27, 120. doi:10.1016/j.lindif.2013.07.008 

 

Calao, L. A., Moreno-León, J., Correa, H. E., & Robles, G. (2015). Developing 

mathematical thinking with scratch. In Design for Teaching and Learning in a 

Networked World (pp. 17-27). Cham: Springer. DOI: 10.1007/978-3-319-24258-3 2 

 

Calder, N. (2010). Using Scratch: An integrated problem-solving approach to 

mathematical thinking. Australian Primary Mathematics Classroom, 15(4), 9-14.  

 

Carlson, J. A. (2010). Avoiding traps in member checking. The Qualitative Report, 15(5), 

1102. 

 

Carver, J. C., Henderson, L., He, L., Hodges, J., & Reese, D. (2007, July). Increased 

retention of early computer science and software engineering students using pair 

programming. In 20th Conference on Software Engineering Education & Training 

(CSEET'07) (pp. 115-122). IEEE. 

 

Cao, L. & Xu, P. (2005). Activity patterns of pair programming. In HICSS ’05: 

Proceedings of the 38th Annual Hawaii International Conference on System Sciences 

(HICSS’05), 88a. Los Alamitos, CA: IEEE Computer Society. 

 

Chang, B., Thorpe, H., & Lubke, M. (1984). LD students tackle the LOGO language: 

Strategies and implications. Journal of Learning Disabilities, 17(5), 303-304. 

 

Code.org (2017). Hour of Code. Retrieved August 26, 2017 from 

https://hourofcode.com/us 

 

coding. (n.d.). Dictionary.com Unabridged. Retrieved October 20, 2016 from 

Dictionary.com website http://www.dictionary.com/browse/coding 

 

Cooper, G. & Sweller, J. (1987). Effects of schema acquisition and rule automation on 

mathematical problem-solving transfer. Journal of Educational Psychology, 79(4), 

347-362. doi:10.1037/0022-0663.79.4.347 

 

Cramer, K. & Henry, A. (2002). Using manipulative models to build number sense for 

addition and fractions. In B. Litwiller (Ed.), Making Sense of Fractions, Ratios, and 

Proportions (pp. 41–48). Reston, VA: The National Council of Teachers of 

Mathematics. 



152 

 

 

Creswell, J. W. & Miller, D. L. (2000). Determining Validity in Qualitative 

Inquiry. Theory Into Practice, 39(3), 124. 

 

Dekhane, S., Xu, X., & Tsoi, M. Y. (2013). Mobile app development to increase student 

engagement and problem solving skills. Journal of Information Systems 

Education, 24(4), 299. 

 

Dekker, R. & Elshout-Mohr, M. (2004). Teacher interventions aimed at mathematical 

level raising during collaborative learning. Educational Studies in Mathematics, 

56(1), 39-65. doi:10.1023/B:EDUC.0000028402.10122.ff 

 

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair Programming: Under what 

conditions is it advantageous for middle school students? Journal of Research on 

Technology in Education (Routledge), 46(3), 277-296. 

 

Dewey, J. (1938/1998). Experience and education: The 60th anniversary edition. 

Indianapolis, IN: Kappa Delta Pi Press. 

 

Ding, M., & Li, X. (2014). Facilitating and direct guidance in student-centered 

classrooms: Addressing “lines or pieces” difficulty. Mathematics Education 

Research Journal, 26(2), 353-376. doi:10.1007/s13394-013-0095-2 

 

Duval, R. (2006). A cognitive analysis of problems of comprehension in learning of 

mathematics. Educational Studies in Mathematics, 61, 103–131. 

 

Even, R. (1998). Factors involved in linking representations of functions. The Journal of 

Mathematical Behavior, 17(1), 105–121. 

 

Fest, A., Hiob, M., & Hoffkamp, A. (2011). An interactive learning activity for the 

formation of the concept of function based on representational transfer. Electronic 

Journal of Mathematics & Technology, 5(2), 169-176.  

 

Feurzeig, W. & Papert, S., with a preface by Bob Lawler (2011). Programming-languages 

as a conceptual framework for teaching mathematics. Interactive Learning 

Environments, 19(5), 487-501. DOI: 10.1080/10494820903520040 

 

Fuchs, L. S., Fuchs, D., Prentice, K., Burch, M., Hamlett, C. L., Owen, R., Hosp, M., & 

Jancek, D. (2003). Explicitly teaching for transfer: Effects on third-grade students' 

mathematical problem solving. Journal of Educational Psychology, 95(2), 293-

305. doi:10.1037/0022-0663.95.2.293 

 

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., 

Jordan, N., Siegler, R., Gersten, R. & Changas, P. (2013). Improving at-risk 



153 

 

learners’ understanding of fractions. Journal of Educational Psychology, 105(3), 

683-700.  

 

Gabriel, F., Coche, F., Szucs, D., Carette, V., Rey, B., & Content, A. (2012). Developing 

children’s understanding of fractions: An intervention study. Mind, Brain, and 

Education, 6(3), 137-146. 

 

Geary, D. (2013). Learning disabilities in mathematics: Recent advances. In H. L. 

Swanson, K. Harris and S. Graham (Eds.), Handbook of Learning Disabilities, 

second edition (pp. 239 – 255). New York, NY: The Guilford Press. 

 

Georgio, I., Zahn, C., & Meira, B. J. (2008). A systematic framework for case-based 

classroom experiential learning. Systems Research and Behavioral Science, 25. DOI: 

10.1002/sres.858 

 

Gersten, R., Chard, D., Jayanthi, M., Baker, S., Morphy, P., & Flojo, J. (2009). 

Mathematics instruction for students with learning disabilities: A meta-analysis of 

instructional components. Review of Educational Research, 79(3), 1202-1242. 

 

Glesne, C. (2011). Becoming Qualitative Researchers: An Introduction (4th ed.). Boston, 

MA: Pearson Education, Inc. 

 

Godino, J. D., Batanero, C., Cañadas, G. R., & Contreras, J. M. (2017). Linking inquiry 

and transmission in teaching and learning mathematics and experimental 

sciences. Acta Scientiae, 18(4). 

 

Goldman, A. I. (1983). Epistemology and the theory of problem solving. Synthese, 55(1), 

21-48. 

 

Greeno, J. G. & Hall, R. P. (1997). Practicing representation: Learning with and about 

representational forms. Phi Delta Kappan, 78, 361–367. 

 

Grover, S. & Pea, R. (2013). Computational Thinking in K—12: A Review of the State of 

the Field. Educational Researcher, 42(1), 38-43. 

 

Hackenberg, A. & Lee, M. (2015). Relationships between students’ fractional knowledge 

and equation writing. Journal for Research in Mathematics Education, 46(2), 196-

243. 

 

Han, S., Caparo, R., & Caparo, M. (2015). How science, technology, engineering, and 

mathematics (STEM) project-based learning (PBL) affects high, middle, and low 

achievers differently: The impact of student factors on achievement. International 

Journal of Science and Mathematics Education, 13. 

 



154 

 

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair 

programming in education: A literature review. Computer Science Education, 

21(2), 135-173. DOI: 10.1080/08993408.2011.579808 

 

Harel, I. & Papert, S. (1990). Software design as a learning environment. Interactive 

Learning Environments, 1, 1-32. 

 

Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and 

mathematical problem solving. Journal of Educational Psychology, 91(4), 684. 

 

Herro, D., McCune-Gardner, C., & Boyer, D., (2015). Perceptions of coding with MIT 

App Inventor: Pathways for their future. Journal for Computing Teachers, winter 

2015, p. 30.  

 

Hiebert, J. & Carpenter, T. (1992). Learning and teaching with understanding. In D. A. 

Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 

65–97). New York: Macmillan. 

 

Hsieh, H. & Shannon, S. (2005). Three approaches to qualitative content analysis. 

Qualitative Health Research, 15(9).  

 

Ioannidou, A., Repenning, A., Lewis, C., Cherry, G., & Rader, C. (2003). Making 

constructionism work in the classroom. International Journal of Computers for 

Mathematical Learning, 8(1), 63-108. doi:10.1023/A:1025617704695 

 

Israel, M., Marino, M. T., Basham, J. D., & Spivak, W. (2013). Fifth graders as app 

designers: How diverse learners conceptualize educational apps. Journal of Research 

on Technology in Education, 46(1), 53. doi:10.1080/15391523.2013.10782613 

 

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all 

learners in school-wide computational thinking: A cross-case qualitative 

analysis. Computers & Education, 82, 263-279.  
 

Italo (2017, February 28). Instantiate dynamic number of image objects. Message posted 

to 

https://groups.google.com/forum/#!msg/mitappinventortest/cB_Ws1KObA4/TnVEu

FTWAAAJ;context-place=forum/mitappinventortest 

 

Jordan, C. L., Hansen, N., Fuchs, L., Siegler, R., Micklos, D., & Gersten, R. (2013). 

Developmental predictors of conceptual and procedural knowledge of fractions. 

Journal of Experimental Child Psychology, 116, 45–58. 

 



155 

 

Jordan, N. C., Resnick, I., Rodrigues, J., Hansen, N., & Dyson, N. (2016). Delaware 

longitudinal study of fraction learning: Implications for helping children with 

mathematics difficulties. Journal of Learning Disabilities. doi: 0022219416662033. 
 
K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org. 

 

Kafai, Y. (1995). Minds in Play: Computer Game Design as a Context for Children’s 

Learning. New Jersey: Lawrence Erlbaum Associates. 

 

Kafai, Y. (1995, April). Making game artifacts to facilitate rich and meaningful learning. 

Paper presented at the annual meeting of the American Educational Research 

Association annual conference, San Francisco, CA.  

 

Kafai, Y. (1996). Software by kids for kids. Communications of the ACM, 39(4), 38-39.  

 

Kafai, Y., Franke, M. L., Ching, C. C., & Shih, J. C. (1998). Game design as an 

interactive learning environment for fostering students' and teachers' mathematical 

inquiry. International Journal of Computers for Mathematical Learning, 3(2), 149-

184. doi:10.1023/A:1009777905226 

 

Kahn, K., Sendova, E., Sacristán, A. I., & Noss, R. (2011). Young students exploring 

cardinality by constructing infinite processes. Technology, Knowledge and 

Learning, 16(1), 3-34. 

 

Ke, F. (2014). An implementation of design-based learning through creating educational 

computer games: A case study on mathematics learning during design and 

computing. Computers & Education, 73, 26-39. 
 

Khalili, N., Sheridan, K., Williams, A., Clark, K., & Stegman, M. (2011). Students 

designing video games about immunology: Insights for science 

learning. Computers in the Schools,28(3), 228. 

doi:10.1080/07380569.2011.594988 

 

Kieren, T. E. (1980). The rational number construct: Its elements and mechanisms. In T. 

E. Kieren (Ed.), Recent Research on Number Learning (pp. 125–149). Columbus: 

Ohio State University. 

 

Kim, S. A., Wang, P., & Michaels, C. A. (2015). Using explicit C-R-A instruction to teach 

fraction word problem solving to low-performing Asian-English learners. Reading 

& Writing Quarterly, 31(3), 253-278. doi:10.1080/10573569.2015.1030999 

 

Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction 

does not work: An analysis of the failure of constructivist discovery, problem-



156 

 

based, experiential, and inquiry-based teaching. Educational Psychologist, 41, 

75–86. 

 

Kolb, D. A. (1984). The process of experiential learning. Experiential learning: 

Experience as the source of learning and development (pp. 20-38). Englewood 

Cliffs, NJ: Prentice Hall. 

 

Kolb, D. A., Boyatzis, R. E., & Mainemelis, C. (2001). Experiential learning theory: 

Previous research and new directions. Perspectives on Thinking, Learning, and 

Cognitive Styles, 1, 227-247.  

 

Krueger, N. (2017, September 20). How can school leaders leverage computer science 

resources? [Blog post]. Retrieved September 20, 2017, from 

https://www.iste.org/explore/articleDetail?articleid=1056&category=Computer-

Science&article  

 

Kuhn, D. (2007). Is direct instruction an answer to the right question? Educational 

Psychologist, 42(2), 109-113. 

 

Kuo, F.-R., Hwang, G.-J., Chen, S.-C., & Chen, S. Y. (2012). A Cognitive Apprenticeship 

Approach to Facilitating Web-based Collaborative Problem Solving. Educational 

Technology & Society, 15(4), 319–331.  

 

Kyllonen, P. C. & Christal, R. E. (1990). Reasoning ability is (little more than) working-

memory capacity?!. Intelligence, 14(4), 389-433. 

 

Laursen, K. W. (1978). Errors in first-year algebra. Mathematics Teacher, 71(3), 194–195. 

 

Leonard, M. & McKnight, M. (2015). Look and tell: Using photo-elicitation methods 

with teenagers. Children's Geographies, 13(6), 629-14. 

doi:10.1080/14733285.2014.887812 

 

Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among 

representations in mathematics learning and problem solving. In C. Janvier (Ed.), 

Problems of representation in the teaching and learning of mathematics (pp. 33–40). 

Hillsdale, NJ: Lawrence Erlbaum Associates. 

 

Likourezos, V., & Kalyuga, S. (2017). Instruction-first and problem-solving-first 

approaches: Alternative pathways to learning complex tasks. Instructional 

Science, 45(2), 195-219. doi:10.1007/s11251-016-9399-4 

 

Lyon, G. R. and Weiser, B. (2013). The state of science in learning disabilities: Research 

impact on the field from 2001 to 2011. In H. L. Swanson, K. Harris and S. Graham 



157 

 

(Eds.), Handbook of Learning Disabilities, second edition (pp. 118 – 154). New 

York, NY: The Guilford Press. 

 

Macnamara, J. R. (2005). Media content analysis: Its uses, benefits and best practice 

methodology. Asia-Pacific Public Relations Journal, 6(1), 1. 
 

Maio, P. (2016, August 23). New computer science course’s challenge is finding qualified 

teachers to teach it. EdSource. Retrieved September 23, 2017, from 

https://edsource.org/2016/new-computer-science-courses-challenge-is-finding-

qualified-teachers-to-teach-it/568081  

 

[MIT] Massachusetts Institute of Technology. (2017). App Inventor. Retrieved April 12, 

2017, from http://App Inventor.mit.edu/explore/  

 

Matsuo, M. (2015). A framework for facilitating experiential learning. Human Resource 

Development Review, 14(4), 442-461. doi:10.1177/1534484315598087 
 
Mazzocco, M., Myers, G., Lewis, K., Hanich, L. & Murphy, M. (2013). Limited 

knowledge of fraction representations differentiates middle school students with 

mathematics learning disability (dyscalculia) versus low mathematics achievement. 

Journal of Experimental Child Psychology, 115, 371-387. 

 

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2003). The impact of pair 

programming on student performance, perception and persistence. In Proceedings of 

the International Conference on Software Engineering (ICSE 2003), 602–607. 

Washington, DC: IEEE Computer Society. 

 

Mehta, H. (2013, February 21). Schools encouraged to teach computer science, coding. 

[Blog post]. Faronics Blog. Retrieved September 23, 2017, from 

http://www.faronics.com/news/blog/schools-encouraged-to-teach-kids-computer-

science-coding/  

 

Moscardini, L. (2010). "I like it instead of maths": How pupils with moderate learning 

difficulties in scottish primary special schools intuitively solved mathematical word 

problems.British Journal of Special Education, 37(3), 130. 

 

Mou, Y., Li, Y., Hoard, M. K., Nugent, L. D., Chu, F. W., Rouder, J. N., & Geary, D. C. 

(2016). Developmental foundations of children’s fraction magnitude 

knowledge. Cognitive Development, 39, 141-153. 

 

Mousoulides, N. G., Christou, C., & Sriraman, B. (2008). A modeling perspective on the 

teaching and learning of mathematical problem solving. Mathematical Thinking and 

Learning: An International Journal, 10(3), 293-304.  

 



158 

 

National Center for Education Statistics. (2015). The Nation's Report Card. Retrieved 

July 15, 2016, from http://nces.ed.gov/nationsreportcard/.   

 

[NCTM] National Council of Teachers of Mathematics. (2000). Principles and standards 

for school mathematics. Reston, VA: Author. 

 

[NGA] National Governors Association Center for Best Practices, & Council of Chief 

State School Officers. (2010). Common Core State Standards. Washington D.C.: 

National Governors Association Center for Best Practices, Council of Chief State 

School Officers. 

 

Nicholls, J. G. (1979). Quality and equality in intellectual development: The role of 

motivation in education. American Psychologist, Retrieved from 

http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ218804 

 

Niemi, D. (1996). Assessing conceptual understanding in mathematics: Representations, 

problem solutions, justifications, and explanations. The Journal of Educational 

Research, 89(6), 351-363. 
 

[NIFDI] National Institute for Direct Instruction (2015). DI vs. di: The term “direct 

instruction.” Retrieved September 21, 2017, from https://www.nifdi.org/what-is-

di/di-vs-di.  

 

Nosek, J.T. (1998). The case for collaborative programming. Communications of the 

ACM, 41, 105–108. 

 

Orihuela, Y. R. (2006). Algebra I and other predictors of high school dropout (Order No. 

3249717). Available from ProQuest Dissertations & Theses Global. (304924276). 

Retrieved from 

http://search.proquest.com.libproxy.clemson.edu/docview/304924276?accountid=61

67 

 

Panaoura, A., Gagatsis, A., Deliyianni, E., & Elia, I. (2009) The structure of students’ 

beliefs about the use of representations and their performance on the learning of 

fractions. Educational Psychology, 29(6), 713-728. 

 

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: 

Basic Books. 

 

Papert, S. (1987). Computer criticism vs. technocentric thinking. Educational Researcher, 

16(1), 22-30. 

 

Patton, M. (1999). Enhancing the quality and credibility of qualitative analysis. Health 

Services Research, 34(5). 



159 

 

 

Peng, P., & Fuchs, D. (2017). A randomized control trial of working memory training 

with and without strategy instruction: Effects on young children’s working memory 

and comprehension. Journal of Learning Disabilities, 50(1), 62-80. 

doi:10.1177/0022219415594609 

 

Peppler, K. A. & Kafai, Y. B. (2007). From SuperGoo to scratch: Exploring creative 

digital media production in informal learning. Learning, Media & Technology, 32(2), 

149-166. doi:10.1080/17439880701343337 

 

Prensky, M. (2008). Students as designers and creators of educational computer games: 

Who else? British Journal of Educational Technology, 39(6), 1004-1019. 

 

programming. (n.d.). Dictionary.com Unabridged. Retrieved October 20, 2016 from 

Dictionary.com website http://www.dictionary.com/browse/programming 

 

Prottsman, K. (2015, April 12). Coding vs. programming – Battle of the terms! The 

Huffington Post. Retrieved October 20, 2016 from 

http://www.huffingtonpost.com/kiki-prottsman/coding-vs-programming-

bat_b_7042816.html 

 

Psycharis, G. & Kynigod, C. (2011). Normalising geometrical figures: Dynamic 

manipulation and construction of meanings for ratio and proportion. Research in 

Mathematics Education, 11(2), 149-166. 

 

Putnam, P. T., Lampert, M.,& Peterson, P. L. (1990). Alternative perspectives on knowing 

mathematics in elementary schools. In C. B. Cazden (Ed.), Review of research in 

education (Vol. 16, pp. 57–150). Washington, DC: American Educational Research 

Association. 

 

Rabin, M. & Schrag, J. L. (1999). First impressions matter: A model of confirmatory 

bias. The Quarterly Journal of Economics, 114(1), 37-82. 

 

Ratcliff, C. & Anderson, S. (2011). Reviving the turtle: Exploring the use of LOGO with 

students with mild disabilities. Computers in the Schools, 28, 241-255. 

 

Rau, M., Aleven, V., & Rummel, N. (2015). Successful learning with multiple graphical 

representations and self-explanation prompts. Journal of Educational Psychology, 

107(1), 30-46. 

 

Rich, P., Bly, N., & Leatham, K. (2014). Beyond cognitive increase: Investigating the 

influence of computer programming on perception and application of 

mathematical skills. Journal of Computers in Mathematics and Science Teaching, 

33(1), 103-128. 



160 

 

 

Robertson, J. & Good, J. (2005). Children's narrative development through computer 

game authoring. TechTrends: Linking Research & Practice to Improve Learning, 

49(5), 43-59.  

 

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A 

review and discussion. Computer Science Education, 13(2), 137-172.  

 

Rotman, J. W. (1991). Arithmetic: Prerequisite to Algebra? Lansing, MI: Annual 

Convention of the American Mathematical Association of Two-Year Colleges.  

 

Rouse, M. (2016). Debugging. TechTarget: Search Software Quality. Retrieved August 

26, 2017, from http://searchsoftwarequality.techtarget.com/definition/debugging 

 

Rowley, J. (2002). Using case studies in research. Management research news, 25(1), 16-

27. 

 

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Chapter 3: Design of the case 

study. Case Study Research in Software Engineering: Guidelines and Examples. 

Hoboken, NJ: John Wiley & Sons. 
 
Saldana, J. (2013). The Coding Manual for Qualitative Researchers (2nd ed.). Sage 

Publications. 

 

Sanford, K. J., Hopper, T. F., & Starr, L. (2015). Transforming teacher education 

thinking: Complexity and relational ways of knowing. Complicity: An International 

Journal of Complexity & Education, 12(2), 26-48. 

 

Santi, G. & Baccaglini-Frank, A. (2015). Forms of generalization in students 

experiencing mathematical learning difficulties. PNA, 9(3), 217-243. 

 

Savignano, M., Williams, M. K., & Holbrook, J. (2014). Yes, your students can create 

games that land in the apple app store. Learning & Leading with Technology, 41(5), 

26. 

 

Sciarra, D. T. (2010). Predictive factors in intensive math course-taking in high 

school.13, 196+.  

 

Selby, C. & Woollard, J. (2013). Computational thinking: The developing definition. In 

Proceedings of the 45th ACM Technical Symposium on Computer Science 

Education, SIGCSE 2014. ACM. 

 

Shenton, A. (2004). Strategies for ensuring trustworthiness in qualitative research 

projects. Education for Information, 22. 



161 

 

 

Sharp, E., & Shih-Dennis, M. (2017). Model drawing strategy for fraction word problem 

solving of fourth-grade students with learning disabilities. Remedial and Special 

Education, 38(3), 181-192. doi:10.1177/0741932516678823 

 

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., 

Susperreguy, M. & Chen, M. (2012). Early predictors of high school mathematics 

achievement. Psychological Science, 23, 691–697. 

doi:10.1177/0956797612440101 

 

Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: the new frontier 

for theories of numerical development. Trends In Cognitive Sciences, 17(1), 13-19 

 

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole 

number and fractions development. Cognitive Psychology, 62, 273–296. 

 

Simpson, A. & Quigley, C. F. (2016). Member checking process with adolescent students: 

Not just reading a transcript. The Qualitative Report, 377+. 

 

Skehill, K. (2013). Making sense of math: Changing perspectives on math through 

experiential learning. Education Canada, 53(5), 21. 

 
Sniegowski, S. (2017, February 27). Will this school year be when you learn to code? 

[Blog post]. National Consortium of Secondary STEM Schools. Retrieved 

September 23, 2017, from http://ncsss.org/publications/ncsss-blog/item/22-will-

this-school-year-be-when-you-learn-to-code  

 
Snodgrass, M. R., Israel, M., & Reese, G. C. (2016). Instructional supports for students 

with disabilities in K-5 computing: Findings from a cross-case 

analysis. Computers & Education, 100, 1-17.  
 

Spangler, D. (2011). Strategies for Teaching Fractions. Thousand Oaks, CA: Corwin. 36-

88.  

 

Spiro, R. J. (1988). Cognitive flexibility theory: Advanced knowledge acquisition in ill-

structured domains. Technical Report No. 441. 
 

Stephens, A. C., Bottge, B. A., & Rueda, E. (2009). Ramping up on fractions. 

Mathematics Teaching in the Middle School, 14(9), 520-526.  

 

Stone, J. R., Alfeld, C., & Pearson, D. (2008). Rigor and relevance: Enhancing high 

school students' math skills through career and technical education. American 

Educational Research Journal, 45(3), 767-795. doi:10.3102/0002831208317460 

 



162 

 

Swanson, H. L., Kehler, P., & Jerman, O. (2010). Working memory, strategy knowledge, 

and strategy instruction in children with reading disabilities. Journal of Learning 

Disabilities, 43(1), 24-47. doi:10.1177/0022219409338743 

 

Swanson, H. L., Orosco, M. J., & Lussier, C. M. (2014). The effects of mathematics 

strategy instruction for children with serious problem-solving 

difficulties. Exceptional Children, 80(2), 149-168. 

doi:10.1177/001440291408000202 

 

Swanson, H. L. & Zheng, X. (2013). Memory difficulties in children and adults with 

learning disabilities. In H. L. Swanson, K. Harris and S. Graham (Eds.), Handbook 

of Learning Disabilities, second edition (pp. 214 – 238). New York, NY: The 

Guilford Press. 

 

Tilford, M. P. (1979). Achievement in algebra II using computer programming. SIGCUE 

Outlook, 13(2), 9-14.  

 

Torre, D. & Murphy, J. (2015) A different lens: Changing perspectives using Photo 

Elicitation Interviews. Education Policy Analysis Archives, 23(111), 

http://dx.doi.org/10.14507/epaa.v23.2051 

 

Trusty, J., & Niles, S. G. (2004). Realized potential or lost talent: High school variables 

and bachelor's degree completion. The Career Development Quarterly, 53(1), 2-15. 

doi:10.1002/j.2161-0045.2004.tb00651.x 

 

Turkle, S. & Papert, S. (1990). Epistemological pluralism: Styles and voices within the 

computer culture. Signs, 16(1), 128-157. 

 

United States Department of Education. (2008). Foundations of success: The final report 

of the National Mathematics Advisory Panel. Washington, DC: Author. 
 

United States Department of Education (2017). Teacher Shortage Areas: Nationwide 

Listing 1990-1991 through 2017-2018. Washington, DC: Author. 

 

United States Department of Labor, Bureau of Labor Statistics. (2015). College 

enrollment and work activity of 2014 high school graduates [Press release]. 

Retrieved from http://www.bls.gov/news.release/hsgec.nr0.htm. 

 

Vamvakoussi, X. & Vosniadou, S. (2004). Understanding the structure of the set of 

rational numbers: A conceptual change approach. Learning and Instruction, 14, 453–

467. 

 



163 

 

Van de Grift, T. (2004). Coupling pair programming and writing: Learning about 

students’ perceptions and processes. In Proceedings of the Thirty-fifth SIGCSE 

Technical Symposium on Computer Science Education, 2-6. New York, NY: ACM. 

 

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2004). 

Remedying secondary school students’ illusion of linearity: A teaching experiment 

aiming at conceptual change. Learning & Instruction, 14(5), 485-501. 

doi:10.1016/j.learninstruc.2004.06.019 

 

Wilhelm, J., She, X., & Morrison, D. C. (2011). Differences in math and science 

understanding between NSF GK-12 participant groups: A year long study. Journal of 

STEM Education: Innovations & Research, 12(1), 55-68. Retrieved from 

http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=67407996 

 
Williams, S. (2014). Brokering instructional improvement through response to 

intervention. Journal of School Public Relations, 35(2), 271-297. 

 

Wing, J. M. (2006). Computational thinking. New York: ACM. 

doi:10.1145/1118178.1118215 

 

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and Engineering 

Sciences, 366(1881), 3717-3725. doi:10.1098/rsta.2008.0118 

 

Whittemore, R., Chase, S. K., & Mandle, C. L. (2001). Validity in qualitative research. 

Qualitative Health Research, 11(4), 522-537. doi:10.1177/104973201129119299 

 

Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., & Switzer, M. (2011). Computational 

thinking and expository writing in the middle school. ACM Transactions on 

Computing Education, 11(2).   

 

Wu, H. (2001). How to prepare students for algebra. American Educator, 25(2), 10–17. 

 

Xin, Y. P., Liu, J., Jones, S. R., Tzur, R., & Si, L. (2016). A preliminary discourse analysis 

of constructivist-oriented mathematics instruction for a student with learning 

disabilities. The Journal of Educational Research, 109(4), 436-447. 

doi:10.1080/00220671.2014.979910 

 

Yang, Y. C. & Chang, C. (2013). Empowering students through digital game authorship: 

Enhancing concentration, critical thinking, and academic achievement. Computers & 

Education, 68, 334-344. doi:10.1016/j.compedu.2013.05.023 

 

Yin, R. (2014). Case Study Research: Design and Methods (5th ed.). Sage Publications. 

 



164 

 

Zhang, X. (2012). Enriching fifth-graders’ concept images and understandings of unit 

fractions. Illinois State University, IL: Unpublished PhD dissertation. 

 

Zhang, X., Clements, M. A., & Ellerton, N. (2015). Conceptual mis(understandings) of 

fractions: From area models to multiple embodiments. Mathematics Education 

Research Journal, 27, 233-261. 

 

Zientek, L. R., Younes, R., Nimon, K., Mittag, K. C., & Taylor, S. (2013). Fractions as a 

Foundation for Algebra within a Sample of Prospective Teachers. Research in the 

Schools, 20(1), 76-95. 

 

Zhong, N., Wang, Y., & Chiew, V. (2010). On the cognitive process of human problem 

solving. Cognitive Systems Research, 11, 81-92. 

 

Zhu, N. (2015). Cognitive strategy instruction for mathematical word problem-solving of 

students with mathematics disabilities in china. International Journal of 

Disability, Development and Education, 62(6), 608-627. 

doi:10.1080/1034912X.2015.1077935 

 

 

  



165 

 

APPENDICES  



166 

 

Appendix A: Instrument for Pre- and Posttest (Spangler, 2011) 

 



167 

 

 

8
. 

 
 
 
 
 
 
 
 
 

 
9. 

 
 

 
 
 

 
 

10. 
 

 
 
 
 
 

 
 

11. 
 
 
 
 
 
 
 

 
12. 

 

 

 

  



168 

 

Appendix B: Scoring the Instrument 

Answer choices and their types of errors 

Question Choice A Choice B Choice C Choice D 

1 Careless Part/Whole Correct Part/Whole 

2 Careless Correct Part/Whole Part/Whole 

3 Correct Part/Whole Part/Whole Part/Whole 

4 Number Line Correct Part/Whole Number Line 

5 Careless Part/Whole Part/Whole Correct 

6 Careless Part/Whole Part/Whole Correct 

7 Arithmetic Correct Part/Whole Part/Whole 

8 Careless Part/Whole Careless Correct 

9 Representation Arithmetic Correct Representation 

10 Arithmetic Representation Representation Correct 

11 Part/Whole Careless Correct Representation 

12 Representation Representation Correct Representation 

 

Scoring 

Error Type Points Description Example 

Correct 2 Student answered the 

question correctly. 

 

Careless 2 Student may have misread 

the problem. 

Student chose the fraction that 

represented the shaded portion 

when the question asked for the 

unshaded portion. 

Number Line 1 Student did not read the 

number line correctly but, 

based on how he/she did 

interpret the line, chose a 

viable fraction. 

Student counted the tick marks 

on the line and used that value 

as the denominator. 

Arithmetic 1 Student did not do the 

required arithmetic 

correctly or read the 

inequality wrong. 

Student simplified a fraction 

wrong. 

Part/Whole 0 Student does not recognize 

a fraction as representing a 

part of a whole. 

Student chose an answer with 

the numerator and denominator 

reversed. 

Representation 0 Student was unable to 

create a representation of a 

fraction or use benchmark 

fractions to answer the 

question. 

Student could not accurately 

compare two fractions with 

different denominators. 

 

  



169 

 

Appendix C: Permission to Use Instrument

 

seeking permission to republish  

4 messages 

 

Lorraine Jacques <lorraij@g.clemson.edu> Tue, Jan 24, 2017 at 9:57 AM To: info@corwin.com 

Good morning, 

I am a PhD candidate at Clemson University who would like to use an assessment from one of your books 

in my dissertation. Please inform me what I should do to obtain permission. 

The assessment in question is "Fraction Concepts" from the following: 
Spangler, D. (2011). Strategies for Teaching Fractions. Thousand Oaks, CA: Corwin. 3688.  
Please note that I intend to use a shortened version of this item, but will not make changes to any of the 

wording or images. 

Thank you for your help, 

Lorraine Jacques 
PhD Candidate, Learning Sciences 
Eugene T. Moore 

College of Education 

Clemson University 

 

permissions (US) <permissions@sagepub.com> Wed, Jan 25, 2017 at 2:42 PM 
To: "lorraij@g.clemson.edu" <lorraij@g.clemson.edu> 

Dear Lorraine Jacques, 

Thank you for your request. In order to proceed, you will need to tell us how much material 

you are requesting to use. Are you requesting to use multiple pages from the book (36‐88) 

or are you requesting to use one page or excerpt. 

If you are requesting to use pages 36‐88, please clarify how you will be using that much 

material. Once we you provide clarification, we can further review your request.  

Best regards, 

Michelle Binur 

Lorraine Jacques <lorraij@g.clemson.edu> 



170 

 

Contract Administrator 
SAGE Publishing 
2455 Teller Road 
Thousand Oaks, CA 91320 
USA 
www.sagepublishing.com 
Los Angeles | London | New Delhi 
Singapore | Washington DC | Melbourne 

 

Lorraine Jacques <lorraij@g.clemson.edu> Wed, Jan 25, 2017 at 3:05 PM To: "permissions (US)" 

<permissions@sagepub.com> Good afternoon, 

I plan on using the diagnostic test from pages 3638, minus a few questions, which I have attached here 

for your review. I will be referencing the remainder of that chapter (up to page 88) in my dissertation 

when I explain how I assess students' understanding of fraction concepts before and after an 

intervention addressing fraction magnitude. Specifically, I will be using the error analysis descriptions in 

that chapter to identify students' needs.  

Please let me know if you would like more detailed information or anything further from me. And thank you 

for your time! 

Lorraine 

[Quoted text hidden] 

 

permissions (US) <permissions@sagepub.com> Thu, Jan 26, 2017 at 2:09 PM 
To: Lorraine Jacques <lorraij@g.clemson.edu> 

Dear Lorraine, 

Thank you for that information. You can consider this email as permission to use the 

material as detailed below in your upcoming dissertation.  Please note that this permission 

does not cover any 3rd party material that may be found within the work. You must properly 

credit the original source, Strategies for Teaching Fractions. Please contact us for any 

further usage of the material.  

  

Best regards, 

Michelle Binur  

fraction 



171 

 

Appendix D: Math Games 

Name Location Topic Genre 

Sum 

Shapes 

 

http://www.mathplayground.com/sum_shapes.html Addition Puzzle 

Factor 

Fracture 

 

http://www.funbrain.com/brain/games/factor-

fracture/index.html#game 

Factoring Action 

Theme 

Hotel 

 

http://www.hoodamath.com/games/themehotel.html Money Sandbox 

Mather-

piece 

 

http://mrnussbaum.com/matherpiece/ Arithmetic Quiz 

Black 

Order of 

Operations 

 

http://www.xpmath.com/forums/arcade.php? 

do=play&gameid=100 

Arithmetic Quiz 

Place 

Value 

Game 

 

http://education.jlab.org/placevalue/gamepage.html Place 

Value 

Puzzle 

Integers in 

Space 

 

http://www.mathwarehouse.com/games/our-

games/arithmetic-games/integers-in-space/ 

Ordering Action 

Connect 

10 

 

http://www.mindgames.com/game/Connect+10 Addition Puzzle 

Math 

Tower 

Defense 

http://www.mathnook.com/math/mathtowerdefense

.html 

Arithmetic Action 

 

 

  



172 

 

Appendix E: Student Game Analysis Sheet 

Name: 

Game What parts of this game 

did you like? 

What parts of this game 

did you not like? 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

  

 

 

 

 

  

 

 

 

 

  

 

 

 

 

  

 

 

 

 

  

 

  



173 

 

Appendix F: Resources for Fraction Assistance 

Resource provided to students How often used 

Cavanagh, M. (2006). Math to Know: A Mathematics Handbook. 

Wilmington, MA: Great Source Education Group. 

 

7 

Charles, R., Caldwell, J., Cavanagh, M., Copley, J., Crown, W., 

Fennell, F., Murphy, S., Sammons, K., Schielack, J., & Tate, W. 

(2012). enVision Math: Common Core, Grade 3. Upper Saddle 

River, NJ: Pearson Education, Inc. 

 

3 

Treff, A. & Jacobs, D. (2003). Basic Math Skills. Circle Pines, MN: 

AGS Publishing. 

 

3 

University of Chicago Mathematics Project (2012). Everyday 

Mathematics: Student Reference Book. Chicago, IL: McGraw-Hill 

Education. 

 

5 

Khan Academy (https://www.khanacademy.org/math/arithmetic-

home/arithmetic/fraction-arithmetic) 

 

0 

PurpleMath (https://www.purplemath.com/modules/index.htm) 

 

1 

Help with Fractions (http://www.helpwithfractions.com/) 

 

1 

Math Goodies 

(http://www.mathgoodies.com/lessons/toc_unit14.html) 

 

0 

Review of Fraction Concepts 

(https://www.youtube.com/watch?v=7Wrde6iFVcA) 

 

0 

Math Is Fun (https://www.mathsisfun.com/fractions.html) 

 

1 

Fraction circles (manipulative) 3 

  

Resources students found independently How often used 

Google search for “fractions” 8 

 

Google search for “comparing fractions” 1 

 

 

  



174 

 

Appendix G: Student Reference Guide for App Inventor 

 

Cheat Sheet for Making Your Game! 

The Designer Screen 

This screen is where you will create the “look” of your app. 

 

The Blocks Screen 

This screen is where you will create your code. 

 



175 

 

A Few Common Code Blocks for Games 

Clicking buttons:  Flinging an image:  Bouncing off the edge: 

    

Moving (dragging) an image:           Reacting to collisions: 

 

Random choice from a list: (in the List section)    Random number: (in the Math section) 

   

More Items Help 

http://ai2.appinventor.mit.edu/reference/components/ 

 

Each item will show two things: properties and events.  

Properties are the way the item looks. You can change those in the Design screen or in 
the code.  

Events are what the item does. You only use those in the code. 

  

http://ai2.appinventor.mit.edu/reference/components/


176 

 

Fractions and Other Math Help 

Remember: If you look at any of these or any other math website, list it in you log! 

• Khan Academy (https://www.khanacademy.org/math/arithmetic-home/arithmetic/fraction-arithmetic) 

• PurpleMath (https://www.purplemath.com/modules/index.htm) 

• Help with Fractions (http://www.helpwithfractions.com/) 

• Math Goodies (http://www.mathgoodies.com/lessons/toc_unit14.html) 

• Review of Fraction Concepts (https://www.youtube.com/watch?v=7Wrde6iFVcA) 

• Math Is Fun (https://www.mathsisfun.com/fractions.html)  

There are also books in the room that can help you! 

  

https://www.khanacademy.org/math/arithmetic-home/arithmetic/fraction-arithmetic
https://www.purplemath.com/modules/index.htm
http://www.helpwithfractions.com/
http://www.mathgoodies.com/lessons/toc_unit14.html
https://www.youtube.com/watch?v=7Wrde6iFVcA
https://www.mathsisfun.com/fractions.html


177 

 

Appendix H: App Inventor Design Template (Herro, McCune-Gardner, & Boyer, 2015) 

 



178 

 

Appendix I: Coding Plan Template 

Partners: _______________________________________ 

Object Action Date 

Completed 

Notes 

“Start” Button Starts the game 

when pressed 

  

 

 

   

 

 

   

 

 

   

 

 

   

 

 

   

 

 

   

 

 

   

 

 

   

 

 

   

 

 

   

“Win” text 

 

Appears when the 

player wins 

  

“Lose” text 

 

Appears when the 

player loses 

  

 

  



179 

 

Appendix J: Strategies to Support Students Coding 

Issue Teacher Action 

Students need help working with 

fractions. 

Direct students to the resource list for 

fraction help. 

Students need help transferring their 

fraction knowledge to their game’s code. 

Have students “act out” what they would 

like the computer to do (Chang, Thorpe, 

& Lubke, 1984; Ratcliff & Anderson, 

2011). 

Help students plan on paper before coding 

(Chang, Thorpe, & Lubke, 1984; Santi & 

Baccaglini-Frank, 2015). 

Students need help with math other than 

fractions (i.e., coordinates). 

Teachers will help students with the math. 

Students lack confidence in coding. Encourage students to try different things. 

Reassure them that they will not break 

anything (Israel et al., 2015). 

Students need help developing an 

algorithm for a part of their game. 

Help students plan on paper before coding 

(Chang, Thorpe, & Lubke, 1984; Santi & 

Baccaglini-Frank, 2015). 

Encourage students to look at other 

classmates’ code and ask questions 

(Ratcliff & Anderson, 2011). 

Partners have trouble collaborating 

equitably. 

Re-enforce the pair programming 

protocol: One partner decides what to do 

and the other finds and places the code to 

do the task (Braught, Wahls, & Eby, 

2011). 

Students need help with App Inventor. Teachers will help the student as needed.  

Students know they want an object to do 

something, but do not know where to 

start. 

Teachers will help the students find 

similar actions in the tutorials and/or in 

the App Inventor library. Teachers will 

help the student transfer this knowledge to 

their own games (Snodgrass, Israel, & 

Reese, 2016). 

Students are trying to code the entire 

game at once. 

Students will be encouraged to code the 

action for one object at a time then test the 

code to see that the object behaves as 

intended. 

Students are having difficulties debugging 

their code. 

Students will be encouraged to “follow” 

the code on paper by writing down what 

happens with each line of code; teachers 

will likely need to demonstrate or assist 



180 

 

students with this process a few times 

(Chang, Thorpe, & Lubke, 1984). 

Students have working memory and 

visual-spatial deficits that are causing 

difficulties in coding the graphics. 

Provide students with materials (e.g., 

graph paper) to model the graphics coding 

goals and stands to hold the models and 

reduce working memory strain. 



181 

 

Appendix K: Student Log Template 

Name: ___________________________________  Date: __________________ 

1) Take a picture or a screen shot of everything you worked on today – paper design, your 

app, your code. Put those pictures in a folder. 

 

2) List any books, websites, or things you used to learn something about fractions. (If you 

did not use any today, say “none.”) 

 

 

 

 

 

3) Did you make any changes to your game design? If so, why?  

 

 

 

 

 

 

4) What will you work on next time? (note to self) 

  



182 

 

Appendix L: Observation Protocol 

Observer: _________________________     Date: _____________  

Time Who Involved Observation/Quote Notes 

 

 

 

   

    

    

 

 

 

 

 

 

 

 

 

 

 

 

   

 

  



183 

 

Appendix M: Interview Protocol 

I. Display the game that the subject created.  

a. Tell me what’s special or cool about your game. 

b. How will your game help someone understand fractions? 

c. Why did you decide to do it this way? 

 

II. Display the App Inventor code that the subject created. 

a. Tell me about writing this code. 

b. What part are you most proud of? <Allow subject to show as well as tell.> 

c. <Bring up the section of code directly concerning fractions. If more than 

one section does this, do one at a time.>  

i. How did you learn to do this? 

ii. Was it hard or easy to do? Why? 

1. Was it hard to picture what you needed to do or could you 

picture it but couldn’t find the code you needed? 

 

III. Display the game again. 

a. What would you say about your game to convince someone to download 

it? 

b. Does it do everything you hoped it would do? <If not, ask for details.> 

c. What did you learn from doing this project? <If nothing about fractions is 

mentioned, follow with “What did you learn about fractions from doing 

this project?”> 

d. What challenges did you experience when making your game? 

e. What was the best thing about doing this project? 

f. What was the worst thing about doing this project? 

g. Overall, how did this project compare with the other things you do in 

school? 

 

Is there anything else you would like to tell me about your experience in this project? 

  



184 

 

Appendix N: Challenges Other Than with Fractions (RQ3) 

Challenge Support offered # Affected* 

Avg. # 

Occurrences** Data Sources 

Algorithm 

development 

Helped students to plan on 

paper before coding (Chang, 

Thorpe, & Lubke, 1984; 

Santi & Baccaglini-Frank, 

2015) or encouraged them 

to look at other code and 

ask questions (Ratcliff & 

Anderson, 2011). 

 

23 1.6 Audio 

recordings, 

student work, 

interviews 

Debugging Encouraged and helped 

students to “act out” the 

code on paper by writing 

down what happened with 

each line of code (Chang, 

Thorpe, & Lubke, 1984). 

 

29 1.7 Audio 

recordings, 

field notes, 

code for the 

games, student 

work logs 

Transfer Prompted students to 

remember they had solved a 

similar problem. 

 

23 1.3 Audio 

recordings, 

field notes 

Angles in 

graphics 

Activated prior knowledge 

of angles.  

 

11 1 Audio 

recordings, 

student work 

Design No support offered. Affected 

participants either changed 

their game design or did not 

complete their games. 

21 This challenge 

affected most 

of the work 

participants 

did during 

each coding 

session. 

 

Game designs, 

coding plans, 

audio 

recordings, 

student work, 

field notes, 

games at end 

of study 

Decompositio

n 

Asked students to identify 

components in their designs 

on a coding plan. 

 

19 2.3 Audio 

recordings, 

coding plans, 

interviews 

Coding 

concepts or 

skills 

Explicit instruction on the 

concept or skill. 

18 2.5 Student work, 

audio 

recordings, 

field notes 

 

App Inventor 

limitations 

Provided students with 

directions or sample code to 

31 2.9 Audio 

recordings, 

field notes, 



185 

 

compensate for each 

limitation. 

 

game designs, 

student work 

Coding 

vocabulary 

Defined the vocabulary and 

explained its use in coding. 

15 1.1 Audio 

recordings, 

field notes, 

student work 

 

Collaboration Encouraged students to 

work together and seek peer 

support (Israel, Pearson, 

Tapia, Wherfel, & Reese, 

2015); re-enforced the pair-

programming protocol 

(Braught, Wahls, & Eby, 

2011). 

 

21 6.3 Audio 

recordings, 

field notes, 

interviews 

Learned 

helplessness 

Decomposed tasks into 

smaller ones and monitored 

their progress (Allsopp, 

Kyger, & Lovin, 2007). 

 

9*** 17 Audio 

recordings, 

field notes, 

student work 

* # Affected = Total # of participants in the groups experiencing challenge 

** Avg. # Occurrences = Average number of times challenge presented per group during 

the study (data from the interviews were not used in this calculation) 

*** This number does not reflect the number of participants displaying learned 

helplessness behaviors but the number of participants affected by at least one 

member of their group displaying such behaviors. 

  



186 

 

Appendix O: Directions for Sharing Projects 

At the End of EVERY Class 

1) Go to “Projects” then “My Projects” 

2) Select the checkbox next to your app 

3) Go to “Projects” then “Export selected project (.aia) to my computer” 

4) Put the downloaded file in our Google Drive folder  

 

If Your Partner is Absent and You Need the Code 

1) Go to your shared Google Drive folder and download the newest copy of your 

code to your computer 

2) In App Inventor, go to “Projects” then “My Projects” 

3) Go to “Projects” then “Import project (.aia) from my computer” 

4) Choose the .aia file you just downloaded (it should be in your Downloads folder) 

and hit OK. 

 



187 

 

Appendix P: Sample Code Created for Students 

Scrolling a Sprite 

 

Creating Objects from a List 

 

  

 


	Clemson University
	TigerPrints
	12-2017

	Using App Inventor to Explore Low-Achieving Students' Understanding of Fractions
	Lorraine Ann Jacques
	Recommended Citation


	tmp.1516908448.pdf.9jtsx

