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ABSTRACT 

Jujube (Ziziphus jujuba Mill.) is a desirable fruit that is widely grown in China. 

Also, it has been used as an herbal medicine and a functional food simultaneously for a 

very long time. In this study, 15 cultivars of jujube that were collected from a same farm 

in Shanxi Province, China, were analyzed in terms of their non-volatile components, 

including reducing sugars, organic acids, fatty acids, amino acids, minerals and 

antioxidants, and volatile compounds, in an effort to investigate their nutritional values, 

and the similarity between the cultivars so as to classify the cultivars based on their 

chemical composition. 

The results showed that, in generally speaking, there were significant differences 

in the chemical compositions among the cultivars (p<0.05). The content of glucose varied 

from 85.87 to 1004.95 mg/100g FW; malic acid and citric acid were main organic acids, 

of which the contents ranged from 120.15–508.67 mg/100g FW and 29.40–180.69 

mg/100g FW, respectively. Jujube fruits contained a variety of polyunsaturated fatty 

acids, including linoleic acid, linolenic acid, eicosapentaenoic acid, arachidonic acid, and 

docosahexaenoic acid. In addition, the fruits were rich of lauric acid (967.20–4035.78 

μg/kg DW), palmitic acid (685.68–1936.91 μg/kg DW), myristoleic acid (1718.96–

5862.64 μg/kg DW), oleic acid (427.87–2864.98 μg/kg DW), linoleic acid (533.34–

7330.05 μg/kg DW). Besides, iron (52.72–125.16 mg/kg DW), calcium (162.29–287.53 

mg/kg DW) and magnesium (511.77–699.77 mg/kg DW) were also determined as the 

main minerals in the fruit. By using the hierarchical cluster analysis and principal 
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component analysis, the 15 cultivars, based on the contents of reducing sugars, were 

classified into 6 groups, including group A (PZ and DB), group B (NP and LZ), group C 

(YZ, LB, XZ, HP, BJ and JB), group D (YL, JS, JD), group E (BZ) and group F (PB). 

Except the group E and group F, the other groups can be differientated from each other. 

Antioxidants including cAMP, ascorbic acid, triterpenes, and the total phenolic 

content, total flavonoid content, as well as the antioxidant capacity (i.e., FRAP, DPPH, 

ABTS, HRSA) were also analyzed in this study. According to the results, the content of 

cAMP was in a range of 66.33 to 2716.88 μg/100g FW; the content of ascorbic acid 

ranged from 317.9 to 679.6 mg/100g FW. In addition, jujube contained a low content of 

triterpenes (6.66 to 18.19 mg/100g FW). The total phenolic content was determined in a 

range from 330.74 to 571.44 mg gallic acid /100g FW, while the total flavonoids content 

varied from 43.14 to 154.09 mg rutin/100g FW. The range of antioxidant capacity such 

as DPPH, ABTS, FRAP and HRSA were determined to range from 0.603 to 1.842 mmol 

Trolox/100g FW, 2.276 to 2.786 mmol Trolox/100g FW, 1.228 to 3.823 mmol 

Trolox/100g FW, and 1.353 to 3.560 mmol Trolox/100g FW, respectively. All the 15 

cultivars were classified into five clusters based on hierarchical cluster analysis. As a 

result, the cultivars of NP, JS, YZ were categorized in the same cluster, which contained 

relatively high contents of antioxidant components and strong antioxidant capacity. 

Solid phase micro extraction method (SPME) was used to extract the volatile 

compounds of jujube, which were further identified by GC–MS. The identified volatiles 

included aldehydes, alcohols, acids, ketones and esters. Among them, hexanal (276.5 to 

1314 μg/100g FW), (E)-2-hexanal (145.1 to 1876 μg/100g FW), nonanal (188.2 to 1047 
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μg/100g FW), and n-decanoic acid (58.42 to 1268 μg/100g FW) were found to be the 

main volatile compounds in fresh jujube. Based on the contents of the volatile 

components, the jujube fruits were classified into five clusters, including cluster 1 (LB, 

HP, LZ, NP, JS, PZ, and YL), cluster 2 (BJ, DB), cluster 3 (PB, BZ, JD and XZ), cluster 

4 (JB) and cluster 5 (YZ). Cluster 1, cluster 2 and cluster 3 were found to be crossed over 

together in the two-dimension plot, which means they could not be discriminated from 

each other based on contents of volatile compounds. However, the cluster 4 and cluster 5 

could be separated very well from each other and from the other clusters. Moreover, two 

extraction methods, SDE and SPME, were compared in regards of their efficiency of 

extracting volatile compounds from the dried jujube fruits. (E)-2-Hexenal and hexanal 

were found to be the major aldehyde compounds in the SDE extract, while nonanal and 

benzaldehyde were major aldehyde compounds extracted by the SPME method. 
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 CHAPTER ONE 

INTRODUCTION 

1. Jujube fruit

Ziziphus belongs to the Rhamnaceae family that includes some species like 

Ziziphus jujuba Mill., Ziziphus lotus, Ziziphus mauritiana, Ziziphus celata, Ziziphus 

oenoplia and other species. They are widely grown in Asia, Europe, Africa, and Australia. 

Jujube fruits in China belong to the Ziziphus jujuba Mill.. They are widely 

distributed in Xinjiang, Ningxia, Shanxi, Shaanxi, Hebei, Henan, Hunan, Zhejiang, and 

Shandong provinces. Most of these districts are located in the northern part of China. In 

2009, the jujube production in Hebei province accounted for 24.22% of all the jujube 

yield in China, followed by 20.44% in Xinjiang province, 19.63% in Shandong province, 

12.31% in Shaanxi province, 11.68% in Shanxi province, and 7.75% in Henan province 

(1). Besides, based on the data from the Chinese Jujube Market Competition and 

Development (2), the yield of jujube in China were as much as 7.4 million tons in 2014. 

In addition, Chinese jujubes are also planted in California, Louisiana, Kansas, Georgia 

and other states in United States (3). Jujube trees normally have a height of 20 – 30 feet 

based on their plantation location and local environmental condition. The tree wood is 

very hard, and the leaves are 2.5 cm to 5.5 cm long, 2 cm to 4 cm wide (4). In China, 

some cultivars are planted in arid or semiarid locations, because jujube trees can survive 

with 200 mm of rain precipitation a year. Some saline – alkaline regions also can be used 

as plantation of jujube (5). Its flower blooming period is between May to July and the 

flowers are yellow with 4 – 6.4 mm in diameter (6). Flowering would last more than 30 
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days, and the ripening stage of jujube fruit is between August to October. Moreover, it is 

worthy of mention that intercropping is one of useful methods in improving the 

agricultural ecosystem, which has also been used for jujube in an effort to improve the 

comprehensive utilization of the limited cultivated land. According to the study, 

jujube/cotton system did not affect the production of jujube fruits significantly, but 

increased the productivity of cotton. Jujube/maize system could enhance the water and 

light uses (7). However, intercropping jujube with wheat inhibited the root length density 

of these two crops, resulting in the decreased yields of both crops (8). In order to clarify 

the mechanism of intercropping the jujube and its effect on other crops, more studies in 

terms of the intercrop species and methods need to be done by the researchers. 

Jujube has long history been used as a herbal medicine in ancient China, which is 

considered as a functional food due to its rich amounts of nutrients, including sugars, 

fatty acids, amino acids, minerals, vitamins, polyphenols and other antioxidants (9). Also, 

the fruit can be processed into different kinds of foods, such as dried jujube, jujube jelly, 

etc. (10). Among them, the most popular product in the market is red dates which is 

produced by natural exposure to the sunshine, or dried by the oven.  

According to USDA national nutrient database (2016), jujube fruits, based on 100 

g of fresh weight, approximately contain 77.86 g of water, 20.23 g of carbohydrates, 1.20 

g of protein, and 0.20 g of total lipids. In another report, Chinese jujube contained 64.7–

81.8% of water, and 13.2 – 22.9 % of sugar per 100 g of the fresh jujube (11). In 

comparison, Spanish jujube had a water content between 78.3% to 82.1% (12). The basic 

information of the compositions of jujube on dry basis are listed in Table 1.1 for details. 
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Jujube fruits are believed to have a lot of health benefits. The essential oil 

extracted from the seeds of jujube was reported to possess anti-inflammatory activity (13); 

the polysaccharides from jujube have hepatoprotective activity (14) and immune-

biological activity (15, 16); betulinic acid from sour jujube fruits was reported to be able 

to inhibit the breast cancer cells (17). Besides, the jujube fruits were found to have 

antioxidant (18) capacity and the bark of Ziziphus mauritiana performed anti-obesity (19) 

activity. 

2. Nutritional Compounds of Jujube

2.1 Sugars 

Carbohydrates are one of the main components in fruits. They are precursors of 

many chemicals contributing to browning colors, aromas, flavors, etc. They also play 

important roles on human health and growth, such as providing the energy and 

recognizing the cells. Carbohydrates can be separated into different groups based on their 

chemical structures, and molecular weights which include monosaccharide, 

oligosaccharide and polysaccharide. Glucose, fructose and sucrose are the major sugars 

in fruits such as papaya (20), berries, peach, apple, watermelon, and cherry, (21) etc. In 

jujube fruits, the major sugars include glucose, fructose and sucrose, as same as those in 

the aforementioned fruits. 

Carbohydrates are soluble in polar solvents such as water and 80% of methanol, 

so water is a common solvent for extraction of monosaccharide or oligosaccharide. In 

contrast, polysaccharide determination involves acid hydrolysis at high temperature (22, 

23) and enzymatic hydrolysis.
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Gas chromatography (GC) and high performance liquid chromatography (HPLC) 

are two widely used instruments for sugar measurement. GC with the flame ionization 

detector (FID) and mass spectrometer (MS) detector are usually used to determine 

monosaccharide. HPLC with the evaporated light scatting detector (ELSD) (21), 

refractive index (RI) (24) and near-infrared spectroscopy (25) can be used for direct 

detection of sugars. Other detectors like UV-Vis and fluorescence detector (FD) can be 

used after sugar derivatization. 1-Phenyl-3-methyl-5-pyrazolone (PMP) (26-30) is a 

popular chemical reagent to derivatize sugars at 70 °C, resulting in products that can be 

measured at 250 nm by the UV detector. Chemical benzamidine was also reported to be 

able to derivatize the reducing sugars that could be detected by HPLC with the 

fluorescence detector (FD) at the excitation wavelength at 288 nm and emission 

wavelength at 470 nm (31). Another method called high performance anion exchange 

chromatography-pulsed amperomeric detection (PAD) is also often used for 

measurement of sugars, such as glucose, maltose, isomaltose, maltotriose, maltotetraose 

and maltopentaose in wheat flour (32). 

Ziziphus jujuba Mill. is a good source of sugars including sucrose, fructose, 

glucose, rhamnose and sugar alcohols such as sorbitol (9, 11). The sugar content in jujube 

fruits varies significantly. It was reported the three sugars (i.e., sucrose, fructose and 

glucose) of the Z. jujuba cv. Lingwuchangzao were affected by growing stages after its 

flowering. Particularly, the fructose and glucose increased significantly in the last two 

stages (i.e., 89 days and 115 days after flowering), but the sucrose could not be detected 

until the last two stages (33). 
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2.2 Free Amino Acids 

Twenty amino acids are commonly required for syntheses of human proteins. 

However, human beings can only synthesize some of them and the rest should be 

obtained from food. Therefore, the amino acids are classified into two types: essential 

amino acids that cannot be synthesized de novo by human beings, and non-essential 

amino acids. The former includes lysine, phenylalanine, methionine, threonine, 

tryptophan, valine, histidine, leucine and isoleucine, while the latter includes alanine, 

cysteine, glutamic acid, glutamine, arginine, asparagine, proline, serine, aspartic acid, and 

tyrosine. Amino acids as nutrients have special functions for human bodies. They are 

involved in urine cycle and TCA cycle for body health and energy supply. Amino acids 

contribute to growth, body composition, immune system, antioxidant defense in lipid 

oxidation, are necessary for DNA and RNA synthesis, and regulate the cell signaling, 

etc.(34). 

In plant, amino acids also have special functions. They are the precursors of some 

volatile compounds. For instance, the amino acids can be degraded to aldehydes by 

different pathways by amino acid transaminase, amino acid decarboxylase, and aldehyde 

synthase to form many volatile compounds (35).  

Peptides are composed by different amino acids, which may possess bioactivities. 

Many antioxidant peptides were found to contain 5–16 amino acids, and their 

composition and sequence could affect the antioxidant capacity (34, 36). For 

fermentation food, composition and sequence of the amino acids in peptides can affect 

the food taste. Proline is a major amino acid which contributes to the bitter taste, other 
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amino acids including glycine, valine, leucine, phelalanine, alanine and tyrosine also 

make the peptide to be tested in bitterness (37). Some amino acids (e.g., alanine, cysteine 

and s-methyl cysteine) can protect iron materials from corrosion in acid solution such as 

1.0 M HCl solution (38). Branch amino acids (e.g., valine, leucine and isoleucine) were 

reported to be able to improve the life quality of some people who were suffered from 

liver cirrhosis (39).  

In order to analyze the amino acids by HPLC–DAD and/or FD, chemical 

derivatization is a necessary step. o-Phthalaldehyde 3-mercaptopropionic acid (40) and o-

phthaldehyde (41) are often used to derivatize the amino acids for the DAD, while 9-

fluorenylethyl chloroformate is commonly used for the FD under the excitation 

wavelength at 266 nm and the emission wavelength at 305 nm, and 6-aminoquinolyl-N-

hydroxysuccinymidyl carbamate is used for the fluorescence detector (excitation at 250 

nm, emission at 395 nm) (42, 43). According to the report of Horanni (44), 9-

fluorenylmethyloxycarbonyl chloride is also used to derivatize the amino acids in tea and 

tea products, which were detected by HPLC–UV at 262 nm. Some other chemicals such 

as ninhydrin (45), dansyl chloride (46), dabsyl chloride, 1-fluoro-2,4-dinitrobenzene, 

phenylisothiocyanate and diethyl 2 (ethoxymethylidene) propanedioate were also used as 

common derivative agents for amino acids analysis (47). Ion-exchange chromatography 

is another instrument used for amino acid detection, but it could not separate all the 

amino acids and takes longer time than the HPLC methods (48). Gas chromatography is 

another option (49), but the amino acids should be derivatized to volatile amino acid 

derivatives before they are introduced into GC for which FID (50) and MS (51, 52) are 
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often used to analyze the derivatives. NIR was also used to analyze 16 amino acids, most 

of them exhibited good calibration curves except proline, histidine and arginine in 

Chinese rice wine (53). 

Chemical profiles of free amino acids of 46 jujube fruits, including different 

jujube cultivars or the same cultivar in different regions, were determined by ultra high 

performance liquid chromatography (UHPLC) with triple quadrupole mass spectrometry 

(MS) (54). All of the aforementioned amino acids were detected except Thr in some 

samples. Lin et al. (55) used the UPLC tandem mass spectrometry to determine the free 

amino acids in jujube samples, which were derived by 4-chloro-3,5-

dinitrobenzotrifluoride. Trp and Cys-Cys were not detected in those samples. The Tyr 

was only detected in the species of Junzao and Hupingzao. Proline was the most 

abundant free amino acid in the samples. Choi (56) et al. collected jujube fruits at eight 

stages after flowering from 10 days to 115 days, and analyzed their free amino acids by 

the ion exchange chromatography. According to the results, no Met and Trp were found 

in all the stages and the most abundant amino acids was Asn which contributed to 78.3% 

in 52 days after the flowering. 

2.3 Fatty Acids 

Fatty acids have three categories based on the numbers of double bonds, which 

include saturated fatty acids, monounsaturated fatty acids (MUFA) and polyunsaturated 

fatty acids (PUFA). High intake of saturated fatty acids during breakfast with a short term 

can induce insulin resistance in bodies (57). It was reported that palmitic and stearic acids 

were the inducer. The saturated fatty acids can also activate the inflammatory signaling, 
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decrease the mitochondria function (58) and alternate the gene expression (59). PUFA 

can affect the blood pressure, and prevent cardiovascular disease. In addition, PUFA also 

have antioxidant, anti-inflammatory (60) and anticancer properties (61). The major 

sources of PUFA are vegetable oils from olive, canola, soybean, marine fish such as 

salmon, tuna, etc. (62). Linoleic and linolenic acids are essential fatty acids for human 

beings. Linolenic acid is the precursor of DHA and EPA. These omega-3-polyunsaturated 

fatty acids play an important role in human health especially for babies’ and older adults’ 

brain functions (63). For instance, they have a positive effectiveness on cognitive 

functioning (64).  

GC is a common instrument used to identify fatty acid derivatives. Long chain 

fatty acids need to be methylated before they are analyzed by GC–FID or GC–MS. 

Acetyl-chloride and methanol are the reagents used to separate positional and geometrical 

isomers of FAs (65). Zeng et al. (66) analyzed fatty acids methyl esters (FAME) by GC–

MS to test different capillary ionic liquid columns in different polarity. The authors found 

the polyunsaturated fatty acid methyl esters had higher retention time in the higher 

polarity column; saturated fatty acid methyl esters in higher polarity column needed 

lower eluted temperature. Bromke et al. (67) extracted fatty acids from plant labeled by 

13C arobidopsis. The extract without methylation was injected into a LC–MS system 

through a C18 reverse phase (RP) column at 60 °C. Compared with GC–FID, LC–MS 

had higher sensitivity and selectivity, but the ionization efficiency of the analytes can 

affect the quantification. In another study, HPLC–UV was used to identify lipids and 

FAMEs at 205 nm, with a reverse phase column with different mobile phases. Mobile 
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phase that was consisted of methanol and a mixture solution of 2-propanol and hexane 

(5:4, v:v) was used to simultaneously determine the amount of triacylglycerides, 

diacylglycerides, and monoacylglycerides, while acetonitrile was used as a mobile phase 

to analyze the FAMEs (68). Trans fatty acids in oils was determined by middle infrared 

spectroscopy, which is a very sensitive instrument with coefficient-correlation more than 

0.98 (69). Short chain volatile fatty acids, such as acetic acid, propionic acid, butyric acid, 

pentanoic acid, and hexanoic acid, can be detected by head space solid phase micro-

extraction (HS–SPME) with GC–FID (70).  

Zhao et al. (71) used HPLC–ELSD and pressurized liquid extraction to determine 

the fatty acids in Ziziphus jujuba Mill. var. spinose. The results showed that lauric acid, 

palmitoleic acid, and linoleic acid were the major compounds of fatty acids. The contents 

of these three fatty acids were 110.43 μg/mL, 126.15 μg/mL and 146.25 μg/mL, 

respectively. Different cultivars of Ziziphus jujuba Mill. in India had a lower content of 

C20 saturated fatty acid, from 0.13 mg/100g to 1.17 mg/100g, while the C20 unsaturated 

fatty acids were from 0.25 mg/100g to 2.00 mg/ 100g. Besides, C8, C10, C12 saturated 

fatty acids were the other major compounds of the fatty acids in the jujube (72). In four 

promising jujube fruits of Turkey, oleic acid and linoleic acid were the major PUFA, 

which accounted for 68.54% to 72.44% of total amounts of unsaturated fatty acids. 

Linoleic acid had the highest amount among all the fatty acids (73). 

2.4 Minerals 

Minerals are one group of food components. They are very important for the 

function of body and nutrient balance (74). Iron is important for oxygen transportation, 
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the formation of hemoglobin and myoglobin, and for the blood cells; calcium is the main 

component of human’s bones, teeth, and often serve as the enzyme activator; phosphorus 

is the critical element of ATP. In this context, it is very important for people to have 

enough minerals from daily diet (75, 76). However, some minerals can also cause some 

adverse effects. High intake of sodium is associated with cardiovascular disease, the 

inbalanced ratio of sodium to potassium is related to blood pressure (77).  

Inductively coupled plasma-optical emission spectrometry (ICP-OES) is an 

efficient instrument to determine the mineral content. It can simultaneously analyze the 

micro-minerals (e. g., manganese, zinc, iron, copper, magnesium, selenium, iodine, 

chromium) and macro-minerals (e. g., chloride, sodium, potassium, calcium, phosphorus) 

in foods (78, 79). Potassium is the most abundant mineral in some fruits such as apple, 

banana, bael, avocado, fig, cherry, apricot, etc. (80). Atomic absorption 

spectrophotometry (AAS) was also used to determine iron, phosphorus, zinc, copper, 

magnesium, manganese, and calcium in different cultivars of blackberry (81). It was 

found that potassium (129.80 mg/100g FW) was the most abundant mineral in all 

blackberry cultivars. However, lower content of potassium (51.24-90.92 mg/100g FW,), 

calcium (1.14-7.25 mg/100g FW), and phosphorus (0.7-12.21 mg/100g FW) in 

blackberry, strawberry, blueberry, raspberry, and sweet cherry that were grown in Brazil 

were reported (82). Date palm (Phoenix dactylifera L.) is a kind fruit which looks similar 

as jujube, Mohamed et al. (83) analyzed six cultivars of data palm in Sudan, and found 

that their calcium content was from 222.2 mg/100g to 293.04 mg/100g and the content of 

magnesium was from 66.3 to 120.88 mg/100g. Potassium was determined in the highest 
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amount in a range of 691.67 mg/100g to 1088.40 mg/100g. The minerals of three 

cultivars of mulberry were analyzed (84), the most abundant minerals was potassium 

with the range from 239 to 350 mg/100g FW, which is lower than that of the date, but 

higher than that in blackberry.  

Minerals in jujube fruits commonly include potassium, phosphorus, calcium, iron, 

sodium, zinc, copper, selenium, etc. San et al. analyzed four genotypes of jujube in 

Turkey, and found that potassium was in the highest content with a range from 314.67 

mg/100 g dry weight to 420.00 mg/100 g dry weight, and the content of calcium was 

from 79.33 mg/100 g dry weight to 121.33 mg/100 g dry weight (85). Ziziphus 

mauritiana in Zimbabwe was found to contain very high content of potassium, from 

1865.0 mg to 2441 mg /100g dry weight (86). Ziziphus spina-christi in Khartoum 

contained more minerals in fruit pulp than in the seeds (87). In Spain, because of the 

effect of Mediterranean soils, the content of iron in jujube was relatively low (10.2-17.6 

mg/kg dry weight), but the content of zinc (4.0-5.1 mg/kg dry weight) was higher than 

that of copper and manganese (12). In Mexico, Ziziphus sonorensis had high levels of 

copper (0.53 mg/100 g dry weight), iron (10 mg/100 g dry weight) and zinc (4.2 mg/100 

g dry weight) in their edible portion, and the seeds had similar content of copper (0.54 

mg/100 g dry weight) and zinc (4.5 mg/100 g dry weight) compared to Ziziphus jujuba 

Mill. (88). Besides, minerals of five Chinese jujubes cultivars (Z. jujuba cv. Jinsixiaozao, 

Z. jujuba cv. Yazao, Z. jujuba cv. Jianzao, Z. jujuba cv. Junzao, Z. jujuba cv. sanbianhong) 

were analyzed (9). The results showed that 100 g of fresh weight (FW) of jujube fruit 

contained the following minerals in different levels: potassium (79.2 to 458 mg), 
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phosphorus (59.5 to 110 mg), calcium (45.6 to 118 mg), manganese (24.6 to 51.2 mg), 

iron (4.68 to 7.9 mg), sodium (3.22 to 7.61 mg), zinc (0.35 to 0.63 mg), and copper (0.19 

to 0.42 mg). 

2.5 Organic Acids 

Organic acids are very important for fruit quality in terms of taste acidity, color, 

texture, and flavor (89). In many fruits, such as melon, peach (90), pomegranate (91), 

strawberry (89), malic acids and citric acids are the most common and major acids. It is 

well known that the environmental factors can significantly affect the contents of organic 

acids in fruits (92, 93). They are normally bound with metals in tissues. Some low 

molecular organic acids, such as citrate, succinate, malate, and fumarate, are involved in 

krebs cycle to provide energy for human bodies (94). Besides, some organic acids such as 

tartaric acid, ascorbic acid, and malic acid can be used as antioxidant. 

Organic acids could be monitored by HPLC-UV-Vis at 210 nm (95) or 225 nm 

(92), or detected by HPLC-MS (90), and capillary zone electrophoresis (96). Other two 

analytic techniques, i.e., NIR and MIR (mid infrared ), were also reported to detect the 

malic acids and citric acid in passion fruits (97). 

Organic acid and their salts can be used as antimicrobial agents in food products 

to preserve foods (98) so as to extend their shelf lives (99, 100). Oxalic acid was used to 

treat the vegetables rocket and baby spinach during postharvest storage for decreasing the 

yellowing of the leaves and preserving the quality (101). Banana (102) and litchi (103) 

were treated by oxalic acid, which could inhibit the browning reaction during postharvest 

storage. Besides, pork treated by fumaric acid had less foodborne pathogens (e.g., 
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Escherichia coli O157: H7, Staphylococcus aureus, Salmonella Typhimurium and 

Listeria monocytogenes) than the samples without the treatment under the same storage 

conditions. In addition, the treatment could prolong the pork shelf life up to 6 days or 4-5 

days when it was stored at 4 or 10 °C, respectively (104). 

Jujube fruits are rich of organic acids. Gao et al. (11) analyzed organic acids in 10 

jujube cultivars, including malic acid, citric acid and succinic acid. The authors found 

malic acid (294.0-740.3 mg/100g FW) was the major organic acid, while succinic acid 

could not be detected in two cultivars, i.e., Zaowangzao and Junchangyihao. In addition, 

the same group researchers analyzed the effects of different drying methods on the 

contents of organic acids. They found that the contents of malic acid and citric acid 

decreased during drying process, while the content of succinic acid in freeze drying 

samples was higher than those obtained by other methods (105). Degradation of ascorbic 

acid is often used as a marker to estimate the fruit shelf life. Its contents in Spain jujube 

fruits that were processed by different drying methods, including convective drying, 

freeze drying and vacuum microwave drying, were measured by HPLC with tunable 

absorbance detector at 250 nm wavelength. The results showed that, after drying under 

high temperature and a long time, the ascorbic acid content decreased by almost 70%, 

although its content were still more than 2000 mg/100g dry weight in all the treated 

samples (106). In the fresh Spain jujube cultivars, the content of ascorbic acid were from 

387 mg to 555 mg/100g FW, nearly equivalent to 1935 to 2775 mg/100g dry weight 

based on 80% water content (107). According to a previous report, the peach (2183 

mg/100g FW) and grape (1095 mg/100g FW) had higher malic acid than jujube fruits, 
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while melon, orange and lemon had high content of citric acid (1005 mg/100g FW, 2049 

mg/100g FW and 5149 mg/100g FW respectively) (90). 

3. Bioactivity Compounds 

Bioactive compounds in plants normally belong to the secondary metabolites, 

such as phenolic compounds, terpenes and alkaloids. These compounds protect plants 

against environmental challenges, UV light, microorganisms (108, 109), and help them to 

survive (110).  

Phenolic compounds include phenolic acids, flavonoids, lignin, tannins, etc. They 

can be separated into two groups: hydroxybenzoic acids and hydroxycinnamic acids, 

which are derived from benzoic acid and cinnamic acid, respectively (111). Their 

structures contain at least one aromatic ring with at least one hydroxyl group. Flavonoids 

contain flavanol, flavone, flavonol, flavanone, isoflavone and anthocyanidin, forming a 

large polyphenol group, which have a benzo-γ-pyrone structure. In human diet, soy 

isoflavones, flavonols and flavones are the major groups of flavonoids (112). These 

phenolic compounds possess some bioactivities, such as anticancer, antioxidants, 

chelating metal ions, reducing the risk of heart disease (113-115), etc..  

Based on previous research, phenolic acids in Ziziphus jujuba Mill. often include 

p-coumaric acid, cinnamic acid, caffeic acid, chlorogenic acid, ferulic acid, p-

hydroxybenzoic acid, protocatechuic acid, gallic acid, and vanillic acid (11, 105, 116-

118). Total phenolic content (TPC) is often determined by the Folin-Ciocalteu method, 

based on the principle that the phenolic acid can reduce the reagent, and produce a blue 

color product which can be detected at the absorbance of 765 nm wavelength.  
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Ziziphus mauritiana Lamk. is grown in India, which is another specie of Ziziphus, 

but not as same as the Ziziphus jujuba Mill. that is grown in China. The total flavonoid 

contents (TFC) of 12 commercial cultivars of Ziziphus mauritiana Lamk. were measured 

in a range of 8.36 to 21.97 mg catechin equivalent/100 g dry weight (119). Ziziphus 

jujuba Mill. cv. Changhong were collected at 72, 80, 88 days after petal fall, and their 

TFCs decreased from 0.25 to 0.18 mg/g FW (120). Siriamornpun et al. measured the 

content of total flavonoids in the pulp and seeds of green and ripe jujube of different 

cultivars, and found the TFC values in the green tissues were higher than in the ripen 

tissues (121). 

Choi et al. found procyanidin dimer B2, epicatechin, quercetin-3-robinobioside, 

quercetin-3-rutinoside, kaempferol-glucosyl-rhamnoside, quercetin-3-galactoside, in 

different stages of Korean Boen-daechu jujube (56). Zozio et al. also identified some 

flavonoids in the Ziziphus mauritiana Lamk., and obtained a similar result as Choi did. 

Some other compounds were also identified, including gallocatechin, catechin, myricitin 

dirhamnoside, myricitin rhamnoside, quercetin dirhamnoside, and other kaempherol 

derivatives (122). 

Terpenes contain at least one five carbon isoprene structure unit, according to the 

number of unit, these chemicals can be separated into different groups, including 

hemiterpene, monoterpenes, sesquiterpenes, diterpenes, sesterpenes, triterpenes, and 

tetraterpenes (109). In plants, terpenes are synthesized in cytosols and plastids by 

different pathways. Terpenes have various functions such as hormones, electron carriers, 

etc. (123). They can react with nitrate, hydroxyl radicals (124), and had anti-



16 

 

inflammatory function (125). Most terpenes are volatile compounds, which can be 

detected by gas chromatograph. For example, limonene and linalool were found in jujube 

fruit (12).  

Jujube fruits are rich of bioactive compounds. Compared with other popular fruits 

such as pomegranate, sweetsop and guava, jujube fruits have higher antioxidant capacity 

(11). Zhao et al. measured the antioxidant capacity of ethanolic extracts of seven cultivars 

of Chinese jujubes (126) by three methods, including phosphomolybdenum assay, 

superoxide radical scavenging activity, and hydroxyl radical scavenging activity. All the 

extracts showed strong antioxidant activities, though there were significant differences 

among cultivars. Phenolic compounds existed in different forms, including free, esterified, 

glycosidic and insoluble bound. Wang et al. measured the antioxidant capacity of 

different forms of phenolic compounds in different tissues of jujube (peel, pulp and seed) 

(118). In all tissues of jujube, the glycosidic and insoluble-bound phenolic acids were 

determined to have very high antioxidant activities, while the free form of phenolic acids 

in all three tissues showed the lowest antioxidant activity. 

4. Volatile Compounds 

Volatile compounds provide the major contribution to the food flavor, which can 

be detected by gas chromatography, commonly connected with flame ionization detector 

(FID) or mass spectrometry (MS) detector. The volatile compounds include low 

molecular esters, organic acids, fatty acids, alcohol, aldehydes, lactones, terpenes and 

terpenoids, etc. They are often extracted by organic solvents like hexane, pentane, 

dichloromethane, or the mixture of these solvents. Besides, many methods can be used to 
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extract the volatile compounds, such as liquid-liquid extraction (LLE), simultaneous 

distillation and extraction (SDE), solid phase micro-extraction (SPME), stir bar sorptive 

extraction (SBSE), static and dynamic headspace techniques, solid phase dynamic 

extraction, dispersive liquid-liquid micro-extraction (DLLME), etc. (127-129). 

4.1 Solvent Extraction 

Liquid-liquid extraction (LLE) is commonly used to extract target compounds 

from a liquid sample, for example, to extract volatile compounds in wine. However, this 

method has some inevitable disadvantages. It needs a high volume of solvent, which will 

cause environmental pollution and money cost; it is usually time-consuming and not 

convenient; after the extraction, the solvent needs to be evaporated to concentrate the 

volatile compounds, possibly resulting in the loss of volatile compounds (130). In order 

to improve the efficiency of liquid-liquid extraction method and overcome the 

aforementioned defects, a new method was introduced by Rezaee et al. (131) in 2006, 

which is called dispersive liquid-liquid microextraction. Sample solution was injected 

into disperser solvent and extraction solvent with a syringe, and mixed well to form a 

cloudy solution. Through the centrifuge, the dispersed fine particles would be condensed 

in the bottom which was used for GC analysis. Figure 1.1 shows the principal steps of 

dispersive liquid-liquid microextraction method (132).  

Simultaneous distillation and extraction method (SDE) is another solvent 

extraction which is normally used to extract semi-volatile compounds from fruits (133-

135), tea (136-138), meat (139, 140), etc.. An apparatus was designed by Likens and 

Nickerson in 1964 in order to analyze hop oil. Figure 1.2 shows the apparatus. The 
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samples can be aqueous solution or solid mixed with water, which were placed in the 

flask which is connected to one arm, and the organic solvent was in a flask connected to 

another arm. Volatile compounds in the steam were extracted by the solvent steam, water 

and solvent with volatile compounds condensed in the separator and returned to their own 

flasks. If the organic solvent has lower density than water, the solvent should be on the 

left, otherwise on the right. If not, the solution would return to the wrong flask and the 

extraction could not be continuous (141). This method needs less time and less volume of 

solvent than the LLE. However, same as LLE, the SDE method still needs to concentrate 

the volatile compounds before the GC analysis. Thus, the loss of volatile is inevitable too. 

4.2 Solvent Selection 

The LLE method often uses the organic solvents with low boiling point, and not 

miscible with the liquid sample. Since most samples are water phase, so the non-polar 

solvents are normally chosen as the extraction solvents, including dichloromethane, 

hexane, pentane, chloroform, etc.. However, both pentane and hexane are strong non-

polar and inflammable, which can affect the extraction efficiency of volatile compounds. 

Chloroform is toxic and has a high boiling point, not good to do concentration; 

Dichloromethane is the best choice for volatile compounds extraction through liquid-

liquid extraction method as well as the SDE method, because it is not dissolved in water, 

and has a relatively lower boiling point, and a low toxicity. 

Dispersive liquid liquid method needs an extraction solvent and a disperser. The 

extraction solvent must have higher density than water, and low solubility in water. For 

disperser solvent, the miscibility in both extraction solvent and water is essential. In this 
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case, chloroform, tetrachloroethane, dichloroethane, carbon tetrachloride, 

dichloromethane and tetrachloroethylene can be used as the extraction solvent. Acetone, 

acetonitrile, 2-propanol, methanol, and ethanol are normally used as the disperser solvent 

(142). According to optimization of these solvents, chloroform was widely used as the 

extraction solvent; and acetonitrile and methanol were disperser (143, 144). 

4.3 Solvent Free Extraction 

Solid phase micro-extraction (SPME) is now frequently used for volatile 

compound analysis in environment samples, plant samples, food samples and medicine 

samples. In 1990, Pawliszyn and Arthur invented the method with obvious advantages, 

such as high selectivity, free of solvent, inexpensive, short time consuming, less 

operation steps, and no concentration needed (145). This method can be used for volatile 

analytes in soil and wastewater (146-148), fruits (149, 150), flowers (151), and leaves 

(152, 153); food analysis (154) include wine (155, 156), meat (157) and clinic application 

(158, 159) such as tests of blood, organs, urine, etc. Figure 1.3 shows the device of 

SPME. The fused silica fiber coated with adsorbent serves as the stationary phase, where 

the chemicals will be extracted (160). SPME method can be used as two types: head 

space SPME (HS-SPME) and direct immersion SPME (DI-SPME). Figure 1.4 shows the 

extraction steps of SPME method. For the HS-SPME method, the extraction fiber will be 

exposed to the gas phase to adsorb the chemicals, the fibers will not contact the sample, 

no matter it is a solid sample or liquid sample; for the DI-SPME method, the fiber will be 

immersed into the liquid sample. HS-SPME is widely used to extract volatile compounds 

from food samples 
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SPME also has some inconveniences, such as fragile fibers, and competitive 

absorption among the chemicals (161). In order to make the fiber has longer shelf life, 

stainless-steel wire was used as an alternative material of fiber, and the corresponding 

coating was also developed. Normally the coatings were polyacrylate (PA), 

divinylbenzene (DVB), polydimethylsiloxane (PDMS), carboxen (CAR), templated resin 

(TPR) and carbowax (CW). These coating materials can be used in single, or 

combination to improve their extraction efficiency. SPME technique has developed 

rapidly in recent period, and some novel coating materials have also been introduced, 

such as ionic liquids, graphene, carbon nanomaterials including single-walled carbon 

nanotubes and multi-walled carbon nanotubes, polymeric ionic liquids, molecular 

imprinted polymers, metal-organic frameworks (162-164).  

Another method called stir bar sorptive extraction (SBSE) was first introduced by 

Baltussen (165) et al. A stir bar coated with a large amount of PDMS can be used in 

aqueous phase and gas phase. Figure 1.5 shows the extraction mode of SBSE which was 

cited from Prieto (166) et al. After the extraction, the stir bar needs to be gently rinsed by 

distilled water in order to remove some interfering compounds, especially non-volatile 

compounds. Before injected into chromatography instrument, desorption is needed, 

which normally adopts either the thermal desorption or the liquid desorption. The former 

that is connected with GC is achieved by a thermal desorption unit, of which the 

temperature is from 150 °C to 300 °C for a longer desorption time compared with the 

SPME method. This desorption method is primarily used for thermal stable volatile and 
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semi-volatile chemicals (166). Liquid desorption is performed by non-polar solvent to 

rinse the volatile compounds in the vial, which can be analyzed by GC or HPLC (167).  

Stir bar sorptive extraction (SPSE) is also widely used in environmental analysis 

such as pesticides in water samples. In food analysis, SBSE is used to extract trace off-

flavor compounds. In addition, SBSE also can be used in clinic analysis, extract 

chemicals from urine, serum, plasma samples (168). Some factors could affect the 

extraction efficiency, such as stir speed, the volume of sample, the amount of adsorbent, 

polarity of sample, pH as well as ionic strength (169). This extraction method is also a 

solvent free method, and has high recovery for trace chemicals. Besides, the stir bar can 

be reused after desorption. However, compared to the SPME method, SBSE method 

needs more extraction and desorption time, and the thermal desorption unit is expensive. 

Since jujube has a special flavor, it is often used as a desirable flavoring agent in 

food industry. Wang et al. compared the effect of different extraction methods on jujube 

(Ziziphus jujube) Mill. aromas, including LLE, SDE, ultrasound-assisted solvent 

extraction (UAE) and head space solid-phase micro-extraction (HS-SPME). A total of 92 

volatile compounds were identified, of which the SDE method yielded a higher 

percentage of esters. In comparison, HS-SPME was more efficient in extraction of low 

molecular weight volatile chemicals, while LLE and UAE were more efficient in 

extraction of a wider range of polarity of the aroma compounds (170). It was reported 

that volatile compounds in four cultivars (i.e., Grande de Albatera, GAL, MSI, PSI and 

Datil, DAT) of Ziziphus jujuba Mill. in Spain included aldehydes, terpenes, esters, 

ketones and hydrocarbons (12). Most volatile compounds in jujube brandy wine were 
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identified as esters and acids (171), while z-ocimene and 1,1-dimethyl-3-methylene-2-

ethenyl-cyclohexane acetate were found in the leaves (172). 

Generally speaking, the objectives of this dissertation are: 

1) to characterize the non-volatile compounds including sugars, organic acids, 

amino acids, fatty acids, minerals, and antioxidants in 15 cultivars of 

jujube fruits (such as Ziziphus jujuba Mill. cv. Huping, Ziziphus jujuba 

Mill. cv Lizao, Ziziphus jujuba Mill. cv. Junzao, Ziziphus jujuba Mill. cv. 

Yuanling, etc.) collected in Shanxi province, China; 

2) to characterize the volatile compounds, and find out the major volatile 

compounds which can represent the characteristic aromas of jujube fruits; 

3) to classify different cultivars of the aforementioned jujube fruits, based on 

the measurements of the aforementioned chemical profiles.  

Through these studies, it is expected to help us to know the jujube fruit better in 

light of its nutrients and non-nutrient chemicals, and so as to utilize the fruit more 

efficient as a nutrient food source. 
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Table 1. 1  Basic Composition of Different Species of Jujube, % of Dry Weight 
 Ziziphus jujuba Mill. cv. (China)  Ziziphus spina-christi L. Willd 

(Sudan)  

Jinsixiaozao Yazao  Jianzao  Junzao Sanbianhong  

Carbohydrates 81.62±3.12 80.86±3.55 84.85±1.8

3 

82.17±1.94 85.63±0.96 74.31±2.52 

Lipids 0.37±0.01 1.02±0.05 0.39±0.02 0.71±0.07 0.65±0.03 2.55±0.02 

Protein 5.01±0.05 6.86±0.02 4.75±0.03 6.43±0.02 6.60±0.04 4.34±0.12 

Moisture  18.99±1.23 20.98±1.12 17.38±1.2

1 

21.09±1.39 22.52±1.43 10.53±1.02 

Ash  2.26±0.03 2.78±0.05 2.41±0.09 3.01±0.06 2.56±0.02 5.16±0.05 

Data was represented as mean value ± standard deviation (data of Ziziphus jujuba Mill. was cited from Li et al., 2007 (9); data 

of Ziziphus spina-christi L. was cited from Salih et al., 2015 (173)) 
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Figure 1. 1 The Principal Steps of Dispersive Liquid-Liquid Extraction 

Step 1, placed the liquid 

sample in a vial 

Step 2 added the disperse 

and extract solvent into the 

vial, mixed well 

Step 3 centrifuge the 

sample, then collected 

the droplet by a syringe 
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Figure 1. 2 SDE Apparatus 

(Cited from the website: https://www.fitness-vip.com/muscle-foods/simultaneous-

distillation-extraction.html) 

https://www.fitness-vip.com/muscle-foods/simultaneous-distillation-extraction.html
https://www.fitness-vip.com/muscle-foods/simultaneous-distillation-extraction.html
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Figure 1. 3 The Device for SPME 
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Figure 1. 4 Head Space Extraction by SPME Device 
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Figure 1. 5 SBSE Extraction 
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52. Jiménez-Martín, E.; Ruiz, J.; Pérez-Palacios, T.; Silva, A.; Antequera, T., Gas 

chromatography–mass spectrometry method for the determination of free amino 

acids as their dimethyl-tert-butylsilyl (TBDMS) derivatives in animal source food. 

Journal of Agricultural and Food Chemistry 2012, 60, 2456-2463. 

53. Shen, F.; Niu, X.; Yang, D.; Ying, Y.; Li, B.; Zhu, G.; Wu, J., Determination of 

amino acids in Chinese rice wine by Fourier transform near-infrared spectroscopy. 

Journal of Agricultural and Food Chemistry 2010, 58, 9809-9816. 

54. Guo, S.; Duan, J.A.; Qian, D.; Tang, Y.; Qian, Y.; Wu, D.; Su, S.; Shang, E., Rapid 

determination of amino acids in fruits of Ziziphus jujuba by hydrophilic 

interaction ultra-high-performance liquid chromatography coupled with triple-

quadrupole mass spectrometry. Journal of Agricultural and Food Chemistry 2013, 



37 

 

61, 2709-2719. 

55. Lin, Q.B.; Che, L.L.; Guo, J.; Wang, R.Z., Use of 4-chloro-3, 5-

dinitrobenzotrifluoride (CNBF) derivatization and ultrahigh-performance liquid 

chromatography tandem mass spectrometry for the determination of 20 free 

amino acids in Chinese jujube date. Food Analytical Methods 2014, 7, 571-579. 

56. Choi, S.H.; Ahn, J.B.; Kim, H.J.; Im, N.K.; Kozukue, N.; Levin, C. E.; Friedman, 

M., Changes in free amino acid, protein, and flavonoid content in jujube (Ziziphus 

jujube) fruit during eight stages of growth and antioxidative and cancer cell 

inhibitory effects by extracts. Journal of Agricultural and Food Chemistry 2012, 

60, 10245-10255. 

57. Koska, J.; Ozias, M. K.; Deer, J.; Kurtz, J.; Salbe, A. D.; Harman, S. M.; Reaven, 

P. D., A human model of dietary saturated fatty acid induced insulin resistance. 

Metabolism 2016, 65, 1621-1628. 

58. Leamy, A. K.; Egnatchik, R. A.; Young, J. D., Molecular mechanisms and the role 

of saturated fatty acids in the progression of non-alcoholic fatty liver disease. 

Progress in Lipid Research 2013, 52, 165-174. 

59. Martins, A. R.; Nachbar, R. T.; Gorjao, R.; Vinolo, M. A.; Festuccia, W. T.; 

Lambertucci, R. H.; Cury-Boaventura, M. F.; Silveira, L. R.; Curi, R.; Hirabara, S. 

M., Mechanisms underlying skeletal muscle insulin resistance induced by fatty 

acids: importance of the mitochondrial function. Lipids in Health and Disease 

2012, 11, 1. 

60. Colussi, G.; Catena, C.; Novello, M.; Bertin, N.; Sechi, L., Impact of omega-3 



38 

 

polyunsaturated fatty acids on vascular function and blood pressure: Relevance 

for cardiovascular outcomes. Nutrition, Metabolism and Cardiovascular Diseases 

2017, 27, 191-200. 

61. Bassett, J. K.; Hodge, A. M.; English, D. R.; MacInnis, R. J.; Giles, G. G., Plasma 

phospholipids fatty acids, dietary fatty acids, and breast cancer risk. Cancer 

Causes & Control 2016, 27, 759-773. 

62. Ouyang, X.X.; Zhou, T.; Li, S.; Zhang, P.; Gan, R.Y.; Li, H.B.; Najar, A.; Ganie, 

S.; Lone, A.; Lakshmanan, K., Resources and Bioactivities of Polyunsaturated 

Fatty Acids. International Journal of Modern Biology and Medicine 2016, 7, 1-11. 

63. Witte, A. V.; Kerti, L.; Hermannstädter, H. M.; Fiebach, J. B.; Schreiber, S. J.; 

Schuchardt, J. P.; Hahn, A.; Flöel, A., Long-chain omega-3 fatty acids improve 

brain function and structure in older adults. Cerebral Cortex 2013, 24, 3059-3068. 

64. Haast, R. A.; Kiliaan, A. J., Impact of fatty acids on brain circulation, structure 

and function. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA) 

2015, 92, 3-14. 

65. Ecker, J.; Scherer, M.; Schmitz, G.; Liebisch, G., A rapid GC–MS method for 

quantification of positional and geometric isomers of fatty acid methyl esters. 

Journal of Chromatography B 2012, 897, 98-104. 

66. Zeng, A. X.; Chin, S.T.; Nolvachai, Y.; Kulsing, C.; Sidisky, L. M.; Marriott, P. J., 

Characterisation of capillary ionic liquid columns for gas chromatography–mass 

spectrometry analysis of fatty acid methyl esters. Analytica Chimica Acta 2013, 

803, 166-173. 



39 

 

67. Bromke, M. A.; Hochmuth, A.; Tohge, T.; Fernie, A. R.; Giavalisco, P.; Burgos, A.; 

Willmitzer, L.; Brotman, Y., Liquid chromatography high–resolution mass 

spectrometry for fatty acid profiling. The Plant Journal 2015, 81, 529-536. 

68. Carvalho, M. S.; Mendonça, M. A.; Pinho, D. M.; Resck, I. S.; Suarez, P. A., 

Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID. 

Journal of the Brazilian Chemical Society 2012, 23, 763-769. 

69. da Costa Filho, P. A., Developing a rapid and sensitive method for determination 

of trans-fatty acids in edible oils using middle-infrared spectroscopy. Food 

Chemistry 2014, 158, 1-7. 

70. Fiorini, D.; Boarelli, M. C.; Gabbianelli, R.; Ballini, R.; Pacetti, D., A quantitative 

headspace-solid-phase microextraction-gas chromatography-flame ionization 

detector method to analyze short chain free fatty acids in rat feces. Analytical 

Biochemistry 2016, 508, 12-14. 

71. Zhao, J.; Li, S.; Yang, F.; Li, P.; Wang, Y., Simultaneous determination of saponins 

and fatty acids in Ziziphus jujuba (Suanzaoren) by high performance liquid 

chromatography-evaporative light scattering detection and pressurized liquid 

extraction. Journal of Chromatography A 2006, 1108, 188-194. 

72. Guil-Guerrero, J.; Delgado, A. D.; González, M. M.; Isasa, M. T., Fatty acids and 

carotenes in some ber (Ziziphus jujuba Mill) varieties. Plant Foods for Human 

Nutrition 2004, 59, 23-27. 

73. San, B.; Yildirim, A. N., Phenolic, alpha-tocopherol, beta-carotene and fatty acid 

composition of four promising jujube (Ziziphus jujuba Miller) selections. Journal 



40 

 

of Food Composition and Analysis 2010, 23, 706-710. 

74. Kouebou, C.; Achu, M.; Nzali, S.; Chelea, M.; Bonglaisin, J.; Kamda, A.; Djiele, 

P.; Yadang, G.; Ponka, R.; Newilah, G. N., A review of composition studies of 

Cameroon traditional dishes: Macronutrients and minerals. Food Chemistry 2013, 

140, 483-494. 

75. McGartland, C. P.; Robson, P. J.; Murray, L. J.; Cran, G. W.; Savage, M. J.; 

Watkins, D. C.; Rooney, M. M.; Boreham, C. A., Fruit and vegetable consumption 

and bone mineral density: the Northern Ireland Young Hearts Project. The 

American Journal of Clinical Nutrition 2004, 80, 1019-1023. 

76. Tucker, K. L.; Hannan, M. T.; Chen, H.; Cupples, L. A.; Wilson, P. W.; Kiel, D. P., 

Potassium, magnesium, and fruit and vegetable intakes are associated with greater 

bone mineral density in elderly men and women. The American Journal of 

Clinical Nutrition 1999, 69, 727-736. 

77. Robberecht, H.; De Bruyne, T.; Hermans, N., Biomarkers of the metabolic 

syndrome: Influence of minerals, oligo-and trace elements. Journal of Trace 

Elements in Medicine and Biology 2016. 

 http://dx.doi.org/10.1016/j.jtemb.2016.10.005 

78. Gülfen, M.; Özdemir, A., Analysis of dietary minerals in selected seeds and nuts 

by using ICP-OES and assessment based on the recommended daily intakes. 

Nutrition & Food Science 2016, 46, 282-292. 

79. Danbaba, N.; Nkama, I.; Badau, M. H., Application of response surface 

methodology (RSM) and central composite design (CCD) to optimize minerals 



41 

 

composition of rice-cowpea composite blends during extrusion cooking. 

International Journal of Food Science and Nutrition Engineering 2015, 5, 40-52. 

80. Kandasamy, P.; Shanmugapriya, C., Medicinal and Nutritional Characteristics of 

Fruits in Human Health. Journal of Medicinal Plants Studies 2015, 4, 124-131. 

81. Guedes, M. N. S.; Abreu, C. M. P. d.; Maro, L. A. C.; Pio, R.; Abreu, J. R. d.; 

Oliveira, J. O. d., Chemical characterization and mineral levels in the fruits of 

blackberry cultivars grown in a tropical climate at an elevation. Acta Scientiarum. 

Agronomy 2013, 35, 191-196. 

82. de Souza, V. R.; Pereira, P. A. P.; da Silva, T. L. T.; de Oliveira Lima, L. C.; Pio, 

R.; Queiroz, F., Determination of the bioactive compounds, antioxidant activity 

and chemical composition of Brazilian blackberry, red raspberry, strawberry, 

blueberry and sweet cherry fruits. Food Chemistry 2014, 156, 362-368. 

83. Mohamed, R.; Fageer, A. S.; Eltayeb, M. M.; Mohamed Ahmed, I. A., Chemical 

composition, antioxidant capacity, and mineral extractability of Sudanese date 

palm (Phoenix dactylifera L.) fruits. Food Science & Nutrition 2014, 2, 478-489. 

84. Jiang, Y.; Nie, W.J., Chemical properties in fruits of mulberry species from the 

Xinjiang province of China. Food Chemistry 2015, 174, 460-466. 

85. San, B.; Yildirim, A. N.; Polat, M.; Yildirim, F., Mineral composition of leaves 

and fruits of some promising Jujube (Zizyphus jujuba miller) genotypes. Asian 

Jounal of Chemistry 2009, 21, 2898-2902. 

86. Nyanga, L. K.; Gadaga, T. H.; Nout, M. J.; Smid, E. J.; Boekhout, T.; Zwietering, 

M. H., Nutritive value of masau (Ziziphus mauritiana) fruits from Zambezi Valley 



42 

 

in Zimbabwe. Food Chemistry 2013, 138, 168-172. 

87. Osman, M. A.; Asif Ahmed, M., Chemical and proximate composition of 

(Zizyphus spina-christi) nabag fruit. Nutrition & Food Science 2009, 39, 70-75. 

88. Montiel-Herrera, M.; Campista-León, S.; Camacho-Hernández, I. L.; Ríos-

Morgan, A.; Delgado-Vargas, F., Physicochemical and nutritional characteristics 

of the fruit of Zizyphus sonorensis S. Wats (Rhamnaceae). International Journal 

of Food Sciences and Nutrition 2005, 56, 587-596. 

89. de Jesús Ornelas-Paz, J.; Yahia, E. M.; Ramírez-Bustamante, N.; Pérez-Martínez, 

J. D.; del Pilar Escalante-Minakata, M.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; 

Guerrero-Prieto, V.; Ochoa-Reyes, E., Physical attributes and chemical 

composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) 

at six stages of ripening. Food Chemistry 2013, 138, 372-381. 

90. Flores, P.; Hellín, P.; Fenoll, J., Determination of organic acids in fruits and 

vegetables by liquid chromatography with tandem-mass spectrometry. Food 

Chemistry 2012, 132, 1049-1054. 

91. Gundogdu, M.; Yilmaz, H., Organic acid, phenolic profile and antioxidant 

capacities of pomegranate (Punica granatum L.) cultivars and selected genotypes. 

Scientia Horticulturae 2012, 143, 38-42. 

92. Arena, M. E.; Zuleta, A.; Dyner, L.; Constenla, D.; Ceci, L.; Curvetto, N., 

Berberis buxifolia fruit growth and ripening: evolution in carbohydrate and 

organic acid contents. Scientia Horticulturae 2013, 158, 52-58. 

93. Sweetman, C.; Sadras, V.; Hancock, R.; Soole, K.; Ford, C., Metabolic effects of 



43 

 

elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. 

Journal of Experimental Botany 2014, 65, 5975-5988. 

94. Rellán-Álvarez, R.; López-Gomollón, S.; Abadía, J.; Álvarez-Fernández, A., 

Development of a new high-performance liquid chromatography–electrospray 

ionization time-of-flight mass spectrometry method for the determination of low 

molecular mass organic acids in plant tissue extracts. Journal of Agricultural and 

Food Chemistry 2011, 59, 6864-6870. 

95. Ren, M.; Wang, X.; Tian, C.; Li, X.; Zhang, B.; Song, X.; Zhang, J., 

Characterization of Organic Acids and Phenolic Compounds of Cereal Vinegars 

and Fruit Vinegars in China. Journal of Food Processing and Preservation 2016, 

41, 1-8. 

96. Tezcan, F.; Gültekin-Özgüven, M.; Diken, T.; Özçelik, B.; Erim, F. B., 

Antioxidant activity and total phenolic, organic acid and sugar content in 

commercial pomegranate juices. Food Chemistry 2009, 115, 873-877. 

97. de Oliveira, G. A.; de Castilhos, F.; Renard, C. M.-G. C.; Bureau, S., Comparison 

of NIR and MIR spectroscopic methods for determination of individual sugars, 

organic acids and carotenoids in passion fruit. Food Research International 2014, 

60, 154-162. 

98. Ardestani, S. B.; Sahari, M. A.; Barzegar, M., Effect of Extraction and Processing 

Conditions on Organic Acids of Barberry Fruits. Journal of Food Biochemistry 

2015, 39, 554-565. 

99. Jideani, V. A.; Vogt, K., Antimicrobial packaging for extending the shelf life of 



44 

 

bread—a review. Critical Reviews in Food Science and Nutrition 2016, 56, 1313-

1324. 

100. Huang, H.; Jian, Q.; Jiang, Y.; Duan, X.; Qu, H., Enhanced chilling tolerance of 

banana fruit treated with malic acid prior to low-temperature storage. Postharvest 

Biology and Technology 2016, 111, 209-213. 

101. Cefola, M.; Pace, B., Application of oxalic acid to preserve the overall quality of 

rocket and baby spinach leaves during storage. Journal of Food Processing and 

Preservation 2015, 39, 2523-2532. 

102. Huang, H.; Zhu, Q.; Zhang, Z.; Yang, B.; Duan, X.; Jiang, Y., Effect of oxalic acid 

on antibrowning of banana (Musa spp., AAA group, cv.‘Brazil’) fruit during 

storage. Scientia Horticulturae 2013, 160, 208-212. 

103. Zheng, X.; Tian, S., Effect of oxalic acid on control of postharvest browning of 

litchi fruit. Food Chemistry 2006, 96, 519-523. 

104. Mansur, A. R.; Tango, C. N.; Kim, G.H.; Oh, D.H., Combined effects of slightly 

acidic electrolyzed water and fumaric acid on the reduction of foodborne 

pathogens and shelf life extension of fresh pork. Food Control 2015, 47, 277-284. 

105. Gao, Q.H.; Wu, C.S.; Wang, M.; Xu, B.N.; Du, L.J., Effect of drying of jujubes 

(Ziziphus jujuba Mill.) on the contents of sugars, organic acids, α-tocopherol, β-

carotene, and phenolic compounds. Journal of Agricultural and Food Chemistry 

2012, 60, 9642-9648. 

106. Wojdyło, A.; Figiel, A.; Legua, P.; Lech, K.; Carbonell-Barrachina, Á. A.; 

Hernández, F., Chemical composition, antioxidant capacity, and sensory quality of 



45 

 

dried jujube fruits as affected by cultivar and drying method. Food Chemistry 

2016, 207, 170-179. 

107. Wojdyło, A.; Carbonell-Barrachina, Á. A.; Legua, P.; Hernández, F., Phenolic 

composition, ascorbic acid content, and antioxidant capacity of Spanish jujube 

(Ziziphus jujube Mill.) fruits. Food Chemistry 2016, 201, 307-314. 

108. Yazaki, K., Transporters of secondary metabolites. Current Opinion in Plant 

Biology 2005, 8, 301-307. 

109. Kennedy, D. O.; Wightman, E. L., Herbal extracts and phytochemicals: plant 

secondary metabolites and the enhancement of human brain function. Advances in 

Nutrition: An International Review Journal 2011, 2, 32-50. 

110. Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, 

M.; Ghafoor, K.; Norulaini, N.; Omar, A., Techniques for extraction of bioactive 

compounds from plant materials: a review. Journal of Food Engineering 2013, 

117, 426-436. 

111. Heleno, S. A.; Martins, A.; Queiroz, M. J. R.; Ferreira, I. C., Bioactivity of 

phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry 

2015, 173, 501-513. 

112. Kumar, S.; Pandey, A. K., Chemistry and biological activities of flavonoids: an 

overview. The Scientific World Journal 2013, 2013. 

113. Zhang, Q.; Raheem, K. S.; Botting, N. P.; Slawin, A. M.; Kay, C. D.; O'Hagan, D., 

Flavonoid metabolism: the synthesis of phenolic glucuronides and sulfates as 

candidate metabolites for bioactivity studies of dietary flavonoids. Tetrahedron 



46 

 

2012, 68, 4194-4201. 

114. Romagnolo, D. F.; Selmin, O. I., Flavonoids and cancer prevention: a review of 

the evidence. Journal of nutrition in gerontology and geriatrics 2012, 31, 206-238. 

115. Brunetti, C.; Di Ferdinando, M.; Fini, A.; Pollastri, S.; Tattini, M., Flavonoids as 

antioxidants and developmental regulators: relative significance in plants and 

humans. International Journal of Molecular Sciences 2013, 14, 3540-3555. 

116. Gao, Q.H.; Wu, C.S.; Wang, M., The jujube (Ziziphus jujuba Mill.) fruit: a review 

of current knowledge of fruit composition and health benefits. Journal of 

Agricultural and Food Chemistry 2013, 61, 3351-3363. 

117. Du, L.J.; Gao, Q.H.; Ji, X.L.; Ma, Y.J.; Xu, F.Y.; Wang, M., Comparison of 

flavonoids, phenolic acids, and antioxidant activity of explosion-puffed and sun-

dried Jujubes (Ziziphus jujuba Mill.). Journal of Agricultural and Food Chemistry 

2013, 61, 11840-11847. 

118. Wang, B.N.; Liu, H. F.; Zheng, J. B.; Fan, M. T.; Cao, W., Distribution of phenolic 

acids in different tissues of jujube and their antioxidant activity. Journal of 

Agricultural and Food Chemistry 2011, 59, 1288-1292. 

119. Koley, T. K.; Kaur, C.; Nagal, S.; Walia, S.; Jaggi, S.; Sarika, Antioxidant activity 

and phenolic content in genotypes of Indian jujube (Zizyphus mauritiana Lamk.). 

Arabian Journal of Chemistry 2016, 9, S1044-S1052. 

120. Lu, H.; Lou, H.; Zheng, H.; Hu, Y.; Li, Y., Nondestructive evaluation of quality 

changes and the optimum time for harvesting during jujube (Zizyphus jujuba Mill. 

cv. Changhong) fruits development. Food and Bioprocess Technology 2012, 5, 



47 

 

2586-2595. 

121. Siriamornpun, S.; Weerapreeyakul, N.; Barusrux, S., Bioactive compounds and 

health implications are better for green jujube fruit than for ripe fruit. Journal of 

Functional Foods 2015, 12, 246-255. 

122. Zozio, S.; Servent, A.; Cazal, G.; Mbéguié-A-Mbéguié, D.; Ravion, S.; Pallet, D.; 

Abel, H., Changes in antioxidant activity during the ripening of jujube (Ziziphus 

mauritiana Lamk). Food Chemistry 2014, 150, 448-456. 

123. Theis, N.; Lerdau, M., The evolution of function in plant secondary metabolites. 

International Journal of Plant Sciences 2003, 164, S93-S102. 

124. Calogirou, A.; Larsen, B. R.; Kotzias, D., Gas-phase terpene oxidation products: a 

review. Atmospheric Environment 1999, 33, 1423-1439. 

125. Yadav, V. R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B. B., Targeting 

inflammatory pathways by triterpenoids for prevention and treatment of cancer. 

Toxins 2010, 2, 2428-2466. 

126. Zhao, H.X.; Zhang, H.S.; Yang, S.F., Phenolic compounds and its antioxidant 

activities in ethanolic extracts from seven cultivars of Chinese jujube. Food 

Science and Human Wellness 2014, 3, 183-190. 

127. Andujar-Ortiz, I.; Moreno-Arribas, M.; Martín-Álvarez, P.; Pozo-Bayón, M., 

Analytical performance of three commonly used extraction methods for the gas 

chromatography–mass spectrometry analysis of wine volatile compounds. Journal 

of Chromatography A 2009, 1216, 7351-7357. 

128. Sánchez-Rojas, F.; Bosch-Ojeda, C.; Cano-Pavón, J. M., A review of stir bar 



48 

 

sorptive extraction. Chromatographia 2009, 69, 79-94. 

129. Sanchez-Palomo, E.; Alanon, M. E.; Diaz-Maroto, M. C.; Gonzalez-Vinas, M. A.; 

Perez-Coello, M. S., Comparison of extraction methods for volatile compounds of 

Muscat grape juice. Talanta 2009, 79, 871-6. 

130. Aubert, C.; Baumann, S.; Arguel, H., Optimization of the analysis of flavor 

volatile compounds by liquid− liquid microextraction (LLME). Application to the 

aroma analysis of melons, peaches, grapes, strawberries, and tomatoes. Journal of 

Agricultural and Food Chemistry 2005, 53, 8881-8895. 

131. Rezaee, M.; Assadi, Y.; Milani Hosseini, M.-R.; Aghaee, E.; Ahmadi, F.; Berijani, 

S., Determination of organic compounds in water using dispersive liquid–liquid 

microextraction. Journal of Chromatography A 2006, 1116, 1-9. 

132. Herrera-Herrera, A. V.; Asensio-Ramos, M.; Hernández-Borges, J.; Rodríguez-

Delgado, M. Á., Dispersive liquid-liquid microextraction for determination of 

organic analytes. TrAC Trends in Analytical Chemistry 2010, 29, 728-751. 

133. Galvao, M. d. S.; Nunes, M. L.; CONSTANT, P. B. L.; Narain, N., Identification 

of volatile compounds in cultivars barker, collinson, fortuna and geada of avocado 

(Persea americana, Mill.) fruit. Food Science and Technology (Campinas) 2016, 

36, 439-447. 

134. Pino, J. A.; Bent, L., Odour‐active compounds in guava (Psidium guajava L. cv. 

Red Suprema). Journal of the Science of Food and Agriculture 2013, 93, 3114-

3120. 

135. Pino, J. A.; Febles, Y., Odour-active compounds in banana fruit cv. Giant 



49 

 

Cavendish. Food Chemistry 2013, 141, 795-801. 

136. Du, L.; Li, J.; Li, W.; Li, Y.; Li, T.; Xiao, D., Characterization of volatile 

compounds of pu-erh tea using solid-phase microextraction and simultaneous 

distillation–extraction coupled with gas chromatography–mass spectrometry. 

Food Research International 2014, 57, 61-70. 

137. Zhu, Y.; Lv, H.P.; Dai, W.D.; Guo, L.; Tan, J.F.; Zhang, Y.; Yu, F.L.; Shao, C.Y.; 

Peng, Q.H.; Lin, Z., Separation of aroma components in Xihu Longjing tea using 

simultaneous distillation extraction with comprehensive two-dimensional gas 

chromatography-time-of-flight mass spectrometry. Separation and Purification 

Technology 2016, 164, 146-154. 

138. Zhou, J.; Lv, S.; Jiang, D.; Wu, X.; Lian, M.; Wang, C.; Meng, Q., Analysis of 

Volatile Components of Tieguanyin and Dongding Oolong Teas by Simultaneous 

Distillation Extraction Coupled with Gas Chromatography-Mass Spectrometry. 

Asian Journal of Chemistry 2015, 27, 1899. 

139. Xie, Y.; He, Z.; Zhang, E.; Li, H., Technical note: Characterization of key volatile 

odorants in rabbit meat using gas chromatography mass spectrometry with 

simultaneous distillation extraction. World Rabbit Science 2016, 24, 313-320. 

140. Turan Aysell, M.; Filik, G.; Selli, S., Evaluation of volatile compounds in chicken 

breast meat using simultaneous distillation and extraction with odour activity 

value. Journal of Food & Nutrition Research 2014, 53. 

141. Chaintreau, A., Simultaneous distillation–extraction: from birth to maturity—

review. Flavour and Fragrance Journal 2001, 16, 136-148. 



50 

 

142. Viñas, P.; Campillo, N.; López-García, I.; Hernández-Córdoba, M., Dispersive 

liquid–liquid microextraction in food analysis. A critical review. Analytical and 

Bioanalytical Chemistry 2014, 406, 2067-2099. 

143. Sereshti, H.; Samadi, S.; Jalali-Heravi, M., Determination of volatile components 

of green, black, oolong and white tea by optimized ultrasound-assisted extraction-

dispersive liquid–liquid microextraction coupled with gas chromatography. 

Journal of Chromatography A 2013, 1280, 1-8. 

144. Sereshti, H.; Heidari, R.; Samadi, S., Determination of volatile components of 

saffron by optimised ultrasound-assisted extraction in tandem with dispersive 

liquid–liquid microextraction followed by gas chromatography–mass 

spectrometry. Food Chemistry 2014, 143, 499-505. 

145. Spietelun, A.; Marcinkowski, Ł.; de la Guardia, M.; Namieśnik, J., Recent 

developments and future trends in solid phase microextraction techniques towards 

green analytical chemistry. Journal of Chromatography A 2013, 1321, 1-13. 

146. Glykioti, M.-L.; Yiantzi, E.; Psillakis, E., Room temperature determination of 

earthy-musty odor compounds in water using vacuum-assisted headspace solid-

phase microextraction. Analytical Methods 2016, 8, 8065-8071. 

147. Piri-Moghadam, H.; Ahmadi, F.; Pawliszyn, J., A critical review of solid phase 

microextraction for analysis of water samples. TrAC Trends in Analytical 

Chemistry 2016, 85, 133-143. 

148. Souza-Silva, É. A.; Jiang, R.; Rodríguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, 

J., A critical review of the state of the art of solid-phase microextraction of 



51 

 

complex matrices I. Environmental analysis. TrAC Trends in Analytical Chemistry 

2015, 71, 224-235. 

149. Steingass, C. B.; Grauwet, T.; Carle, R., Influence of harvest maturity and fruit 

logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by 

headspace solid phase microextraction and gas chromatography–mass 

spectrometry (HS-SPME-GC/MS). Food Chemistry 2014, 150, 382-391. 

150. Ye, L.; Yang, C.; Li, W.; Hao, J.; Sun, M.; Zhang, J.; Zhang, Z., Evaluation of 

volatile compounds from Chinese dwarf cherry (Cerasus humilis (Bge.) Sok.) 

germplasms by headspace solid-phase microextraction and gas chromatography–

mass spectrometry. Food Chemistry 2017, 217, 389-397. 

151. Zhu, F.; Xu, J.; Ke, Y.; Huang, S.; Zeng, F.; Luan, T.; Ouyang, G., Applications of 

in vivo and in vitro solid-phase microextraction techniques in plant analysis: a 

review. Analytica Chimica Acta 2013, 794, 1-14. 

152. Torbati, S.; Movafeghi, A.; Djozan, D., Identification of Volatile Organic 

Compounds Released from the Leaves and Flowers of Artemisia austriaca Using 

the Modified Pencil Lead as a Fibre of Solid Phase Microextraction. Journal of 

Essential Oil Bearing Plants 2016, 19, 1224-1233. 

153. Fernandes, B.; Correia, A. C.; Cosme, F.; Nunes, F. M.; Jordão, A. M., Volatile 

components of vine leaves from two Portuguese grape varieties (Vitis vinifera L.), 

Touriga Nacional and Tinta Roriz, analysed by solid-phase microextraction. 

Natural Product Research 2015, 29, 37-45. 

154. Xu, C.H.; Chen, G.S.; Xiong, Z.H.; Fan, Y.X.; Wang, X.C.; Liu, Y., Applications 



52 

 

of solid-phase microextraction in food analysis. TrAC Trends in Analytical 

Chemistry 2016, 80, 12-29. 

155. Carlin, S.; Vrhovsek, U.; Franceschi, P.; Lotti, C.; Bontempo, L.; Camin, F.; 

Toubiana, D.; Zottele, F.; Toller, G.; Fait, A.; Mattivi, F., Regional features of 

northern Italian sparkling wines, identified using solid-phase micro extraction and 

comprehensive two-dimensional gas chromatography coupled with time-of-flight 

mass spectrometry. Food Chemistry 2016, 208, 68-80. 

156. Martin-Pastor, M.; Guitian, E.; Riguera, R., Joint NMR and Solid-Phase 

Microextraction–Gas Chromatography Chemometric Approach for Very Complex 

Mixtures: Grape and Zone Identification in Wines. Analytical Chemistry 2016, 88, 

6239-6246. 

157. Canellas, E.; Vera, P.; Nerín, C., Multiple headspace-solid phase microextraction 

for the determination of migrants coming from a self-stick label in fresh sausage. 

Food Chemistry 2016, 197, 24-29. 

158. Bojko, B.; Reyes-Garcés, N.; Bessonneau, V.; Goryński, K.; Mousavi, F.; Silva, E. 

A. S.; Pawliszyn, J., Solid-phase microextraction in metabolomics. TrAC Trends 

in Analytical Chemistry 2014, 61, 168-180. 

159. Souza-Silva, É. A.; Reyes-Garcés, N.; Gómez-Ríos, G. A.; Boyacı, E.; Bojko, B.; 

Pawliszyn, J., A critical review of the state of the art of solid-phase 

microextraction of complex matrices III. Bioanalytical and clinical applications. 

TrAC Trends in Analytical Chemistry 2015, 71, 249-264. 

160. Yang, X.; Peppard, T., Solid-phase microextraction for flavor analysis. Journal of 



53 

 

Agricultural and Food Chemistry 1994, 42, 1925-1930. 

161. Stashenko, E. E.; Martínez, J. R., Sampling volatile compounds from natural 

products with headspace/solid-phase micro-extraction. Journal of Biochemical 

and Biophysical Methods 2007, 70, 235-242. 

162. Aziz-Zanjani, M. O.; Mehdinia, A., A review on procedures for the preparation of 

coatings for solid phase microextraction. Microchimica Acta 2014, 181, 1169-

1190. 

163. Rocío-Bautista, P.; Pacheco-Fernández, I.; Pasán, J.; Pino, V., Are metal-organic 

frameworks able to provide a new generation of solid-phase microextraction 

coatings?–A review. Analytica Chimica Acta 2016, 939, 26-41. 

164. Xu, J.; Zheng, J.; Tian, J.; Zhu, F.; Zeng, F.; Su, C.; Ouyang, G., New materials in 

solid-phase microextraction. TrAC Trends in Analytical Chemistry 2013, 47, 68-

83. 

165. Baltussen, E.; Sandra, P.; David, F.; Cramers, C., Stir bar sorptive extraction 

(SBSE), a novel extraction technique for aqueous samples: theory and principles. 

Journal of Microcolumn Separations 1999, 11, 737-747. 

166. Prieto, A.; Basauri, O.; Rodil, R.; Usobiaga, A.; Fernández, L.; Etxebarria, N.; 

Zuloaga, O., Stir-bar sorptive extraction: a view on method optimisation, novel 

applications, limitations and potential solutions. Journal of Chromatography A 

2010, 1217, 2642-2666. 

167. David, F.; Sandra, P., Stir bar sorptive extraction for trace analysis. Journal of 

Chromatography A 2007, 1152, 54-69. 



54 

 

168. Kawaguchi, M.; Ito, R.; Saito, K.; Nakazawa, H., Novel stir bar sorptive 

extraction methods for environmental and biomedical analysis. Journal of 

Pharmaceutical and Biomedical Analysis 2006, 40, 500-508. 

169. Nogueira, J. M. F., Stir-bar sorptive extraction: 15 years making sample 

preparation more environment-friendly. TrAC Trends in Analytical Chemistry 

2015, 71, 214-223. 

170. Wang, H.; Li, P.; Sun, S.H.; Zhang, Q.D.; Su, Y.; Zong, Y.L.; Xie, J.P., 

Comparison of Liquid–Liquid Extraction, Simultaneous Distillation Extraction, 

Ultrasound-Assisted Solvent Extraction, and Headspace Solid-Phase 

Microextraction for the Determination of Volatile Compounds in Jujube Extract 

by Gas Chromatography/Mass Spectrometry. Analytical Letters 2014, 47, 654-674. 

171. Li, S. G.; Mao, Z. Y.; Wang, P.; Zhang, Y.; Sun, P. P.; Xu, Q.; Yu, J., Brewing 

Jujube Brandy with Daqu and Yeast by Solid–State Fermentation. Journal of Food 

Process Engineering 2015. 

172. Yang, L.J.; Li, X.G.; Liu, H.X., Herbivore-induced plant volatiles in the leaves of 

Ziziphus jujuba from China. Chemistry of Natural Compounds 2011, 47, 820-822. 

173. Salih, N.-E.; Yahia, E., Nutritional value and antioxidant properties of four wild 

fruits commonly consumed in Sudan. International Food Research Journal 2015, 

22. 



55 

 

CHAPTER TWO 

ANALYSES OF REDUCING SUGARS, ORGANIC ACIDS, FREE AMINO ACIDS, 

FREE FATTY ACIDS AND MINERALS IN 15 CULTIVARS OF JUJUBE (Ziziphus 

jujuba Mill.) FRUITS 

 

Abstract 

Ziziphus jujuba Mill. has a long history of being used as an edible fruit and in 

Chinese medicine. In this study, the chemical profiles in terms of reducing sugars, 

organic acids, free amino acids, free fatty acids, and minerals were analyzed from 15 

cultivars of the jujube fruit. Reducing sugars, organic acids, and free amino acids were 

measured by HPLC-UV; free fatty acids were analyzed by GC-MS; and minerals were 

detected by ICP-OES. The contents of the aforementioned components were significantly 

different among the cultivars (p<0.05). Glucose (85.87‒1004.95 mg/100g FW), malic 

acids (120.15‒508.67 mg/100g FW), citric acid (29.40‒180.67 mg/100g FW), lauric acid 

(967.20‒4035.78 μg/kg DW), palmitic acid (685.68‒1936.91 μg/kg DW), myristoleic 

acid (1718.96‒5862.64 μg/kg DW), oleic acid (427.87‒ 2864.98 μg/kg DW), linoleic acid 

(533.34‒7330.05 μg/kg DW), iron (52.72‒125.16 mg/kg DW), calcium (162.29‒287.53 

mg/kg DW) and magnesium (511.77‒699.77 mg/kg DW) were the major compounds in 

the fruits. In addition, the fruits contained some health benefiting polyunsaturated fatty 

acids such as linoleic acid, linolenic acid, eicosapentaenoic acid, arachidonic acid, and 

docosahexaenoic acid. Principal component analysis (PCA) and hierarchical cluster (HA) 

were used to classify these cultivars of jujube based on the chemical profiles mentioned 

above. According to the PCA analysis, and the induced ellipses of constant distance 

calculation in 95% confidence interval, the classification of the jujube fruits based on the 
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content of reducing sugars is more reasonable and reliable than other parameters. In this 

classification, 15 cultivars were categorized into 6 groups, which were all significantly 

different from each other except the Ziziphus jujube Mill. cv. PB and BZ. All the results 

have given us more insights of the nutritional values of these jujube fruits to facilitate the 

potential product development of jujube fruits as both functional foods and nutraceutical 

products. 
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1. Introduction 

Ziziphus jujuba Mill. is a common fruit, which has been cultivated in Asia for 

more than thousands of years. It is reported that at least 700 cultivars of the fruits have 

been found in China (1), which are distributed in different regions, including Henan, 

Shanxi, Shaanxi, Shandong, Xinjiang, Hebei, Gansu provinces, etc., in the Peoples’ 

Republic of China. These jujube fruits have been found to have quite different chemical 

profiles because of the influence of various environmental conditions in terms of 

locations, climates, soils, precipitation, etc..  

Primary metabolites such as carbohydrates, proteins, lipids, amino acids play 

important roles in growth and developments (2) of plants, animals and humans. Sugars 

and organic acids are well known to contribute to the flavor and taste of fruits. Sugars can 

be measured by different methods. For instance, Li (3) et al. used oxime-trimethylsilyl to 

derivative sugars of five cultivars and analyzed the sugar derivatives by GC-MS. Gao (4) 

et al. measured the sugars by the HPLC-RI detector. In these two studies, fructose, 

glucose and sucrose were found to be the main sugars in jujube fruits; while rhamnose 

could not be found in most cultivars. In addition, Guo et al. (5) found that the sugars in 

the jujube fruits increased as their maturity increased. However, the reports about other 

reducing sugars in jujube fruits are very limited. Besides, organic acids including malic 

acid, succinic acid, and citric acid were also analyzed. It was found that malic acid 

(294.0‒740.3 mg/100 g fresh weight) had the highest concentration among these three 

organic acids (4).  
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Free amino acids are important for human health. The contents of free amino 

acids in different foods have been reported, such as tea (6), soybean (7), apple (8), 

strawberry (9), grapes (10), rice wine (11), cereals (12), etc.. Lin (13) et al. measured 20 

free amino acids in Chinese jujubes by using the 4-chloro-3, 5-dinitrobenzotrifluoride 

derivatization technique. In Korea, amino acids in the pulp and seed of three varieties of 

jujube were analyzed. It was reported that proline and asparagine were the main amino 

acids in the jujube pulp (14). The same research group found that tryptophan and 

methionine could not be detected in any maturity stage of jujube (15). In comparison, it 

was reported that proline, aspartic and glutamic acids were the major amino acids in 

jujubes in Tunisia. Such kind of discrepancies in chemical profiles of jujubes were 

attributed to the environmental conditions. For example, it has been found that water 

deficit resulted in the decrease of asparagine in jujube (16).  

Fatty acids are classified as saturated fatty acids (SFA), monounsaturated fatty 

acids (MUFA), and polyunsaturated fatty acids (PUFA) based on the number of double 

bounds in their chemical structures. They are also a source of energy as same as 

carbohydrates and proteins. Unsaturated fatty acids are well known for their health 

benefits in light of their anticancer, anti-inflammatory, antibacterial properties, etc. (17). 

Jujube fruits contain a quite different varieties of fatty acids. It was reported that lauric 

acid, capric acid, palmitic acid, palmitoleic acid, oleic acid, and linoleic acid were the 

main fatty acids in six varieties of Spain jujubes (18). Zhao (19) et al. reported that lauric 

acid, palmitoleic acid, oleic acid and linoleic acid were the major compounds in the seed 

of Ziziphus jujuba Mill. var. spinose (a traditional Chinese medicine). In Turkey, the 
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content of fatty acids in four promising jujubes were determined. Oleic acid, linoleic acid, 

palmitic acid and palmitoleic acid were reported as the major compounds (20). In four 

ecotypes of Tunisian jujube, it was reported that the compound with the highest amount 

was oleic acid that accounted for 32.37%‒50.68% of total fatty acids, and the other two 

major compounds were the linoleic acid and palmitic acid (21). Based on all these reports, 

the major unsaturated fatty acids were suggested to be the oleic acid and linoleic acid. 

However, information of identification of different species of jujube based on the content 

of different fatty acids is very limited.  

Minerals often serve as important cofactors of enzymes and/or involve in 

biological reactions in human bodies and other biological organisms. For example, iron 

exists in hemoglobin that is used to transport oxygen; calcium is important for growth of 

bones; selenium is involved in antioxidant capacity, sodium and potassium are necessary 

for sugars absorption. Mineral deficit could cause some diseases such as anemia, but too 

much mineral absorption can also be harmful for humans. In this case, it is important to 

measure the content of minerals in human’s diet including cereals, vegetables, meats, 

seafood, fruits, etc. It was reported that Russian mulberry and black mulberry cultivated 

in Xinjiang province in China had high contents of calcium (124 mg/100g FW and 113 

mg/100g FW) and iron (11.4 mg/100g FW and 11.9 mg/100g FW) (22). In contrast, five 

cultivars of Chinese jujubes have been found to contain low concentration of copper 

(0.19‒0.42mg/100g) (3). Interestingly, it was reported that the amount of minerals, such 

as potassium, calcium, magnesium and iron, in four genotypes of jujube in Turkey, were 

higher in the leaves than in the fruits (23).  
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In this study, nutritional compounds of 15 cultivars of jujube collected from 

northern area of China were analyzed. 1-Phenyl-3-methyl-5-pyrazolone (PMP) 

derivatization was applied to identify the composition of reducing sugars; organic acids, 

particularly those that are involved in the TCA cycle, as well as lactic acid and acetic acid, 

were analyzed by HPLC; 16 free amino acids and the composition of free fatty acids were 

analyzed by HPLC-UV and GC-MS, respectively; 12 minerals including heavy metals 

were analyzed by ICP-OES.  

In general, the aim of this research was to obtain a relatively comprehensive 

chemical profiles, and identify the differences among the investigated different jujube 

cultivars, in an effort to set up the nutritional database to facilitate the potential 

development of jujube foods and relevant nutraceutical products 

2. Materials and Methods 

2.1 Jujube Sample Collection 

Fifteen cultivars of jujube samples were collected from the same farm in Shanxi 

province, China in October, 2015. The fruits were carefully picked up without any visible 

scratch of the skins and broken part, and in the similar shape and size. Then, the samples 

were transported to the lab directly frozen at -80 °C. All the fruits were peeled to remove 

the seeds to just keep the pulp for analysis. The cultivars include Ziziphus jujuba Mill. cv. 

Banzao (BZ), Ziziphus jujuba Mill. cv. Dabailing (DB), Ziziphus jujuba Mill. cv. Cang 

county Jinsixiaozao (JS), Ziziphus jujuba Mill. cv. Huping (HP), Ziziphus jujuba Mill. cv. 

Lingbao (LB), Ziziphus jujuba Mill. cv. Yuanling (YL), Ziziphus jujuba Mill. cv. Jidan 

(JD), Ziziphus jujuba Mill. cv. Lizao (LZ), Ziziphus jujuba Mill. cv. Baode Youzao (YZ), 
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Ziziphus jujuba Mill. cv. Bin county Jinzao (BJ), Ziziphus jujuba Mill. cv. Junzao (JB), 

Ziziphus jujuba Mill. cv. Pingshun Junzao (PB), Ziziphus jujuba Mill. cv. Xiangzao (XZ), 

Ziziphus jujuba Mill. cv. Pozao (PZ), Ziziphus jujuba Mill. cv. Neihuangbianhesuan (NP), 

which are summarized and listed in Table 2.1. 

2.2 Chemicals 

Chemical standards including oxalic acid, malic acid, citric acid, fumaric acid, 

succinic acid, lactic acid, tartaric acid, acetic acid, rhamnose, mannose, glucose, galactose, 

xylose, and arabinose were bought from J. T. Baker (J.T. Baker Chemicals, PA, USA); 

amino acids chemicals including aspartic acid (Asp), threonine (Thr), alanine (Ala), 

arginine (Arg), cysteine (Cys), glutamic acid (Glu), glycine (Gly), isoleucine (Ile), 

leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), serine (Ser), histidine 

(His), tyrosine (Tyr), valine (Val) were bought from Sigma-Aldrich company (Sigma, St. 

Louis, MO., USA); 1-Phenyl-3-methyl-5-pyrazolone (PMP) was purchased from the 

Sigma-Aldrich company; HPLC grade methanol and acetonitrile were bought from Fisher 

Scientific (Fisher Scientific, Pittsburgh, PA, USA). 

2.3 Reducing Sugars Analysis 

Half of one gram of a sample was placed into a 50 mL test tube, added with 10 

mL of water and shaken well. Then the tube was kept in an 80°C water bath for 1 hour 

before the samples were centrifuged at 5000 rpm for 15 minutes. The supernatant was 

collected and diluted to 25 mL. One mL of the diluted solution was taken and dried by 

purge of nitrogen gas. The dried sample was reacted with 0.5 mol/L of 1-phenyl-3-
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methyl-5-pyrazolone (PMP) and 0.3 mol/L of NaOH in a 70°C water bath for 60 minutes. 

After the sample was cooled down to room temperature, 0.3 mL of 0.3 mol/L HCl was 

added. Then, 1 mL of chloroform was added to extract the excessive amount of PMP. 

The water phase was filtered by 0.22 μm membrane prior to the HPLC analysis. 

Thermo U3000 (Thermo Scientific, USA) series HPLC-UV was used to detect the 

sugars, for which a Thermo Hypersil Gold C18 column (4.6×250 mm, 5 μm) was used to 

separate the different sugars under an isocratic condition. Mobile phase was a mixture of 

0.1 mol/L phosphate solution: acetonitrile (82:18, V:V) at pH 7.0. Flow rate was 1 

mL/min, the temperature of column was controlled as 25°C, injection volume was 15 μL, 

and the detected wavelength was 245 nm. 

2.4 Organic Acids Analysis 

An amount of 1 gram of jujube pulp sample was mixed with 30 mL of deionized 

water and extracted under ultrasonic for 30 minutes at room temperature. The solution 

was centrifuged at 5000 rpm for 10 minutes to collect the supernatant. The residue was 

re-extracted for three times using the same procedure and under the same condition. After 

four times of the extraction, the supernatants were combined together, and then 

evaporated at 65ºC. The supernatant was filtered through 0.45 μm nylon filters before the 

HPLC analysis.  

Organic acids were analyzed by the same Thermo U3000 (Thermo Scientific, 

USA) series HPLC-UV with the same aforementioned reverse phase Hypersil Gold 

column (4.6×250 mm, 5μm) and detected at 210 nm. Mobile phase was 0.5% 

NH4H2PO4 (pH 2.6), the flow rate was 0.8 mL/min. The concentration (expressed in mg 



63 

 

per 100g of fresh weight) of different compounds was calculated based on the external 

standard method. 

2.5 Free Amino Acids Analysis 

2.5.1 Sample Preparation 

An amount of 5 grams of the sample pulp of each cultivars of jujube fruits was 

placed in a 50 mL test tubes with 40 mL of 0.01 M HCl solution, which were mixed by 

vortex for 5 minutes. Then, the samples were extracted under ultrasonication for another 

5 minutes. The solution was diluted to 50 mL and kept in the dark for 2 hours. Then, the 

samples were centrifuged at 5000 rpm for 10 minutes at 4°C before 1 mL of the 

supernatant was pipetted into another test tube for derivatization.  

Derivatization process was based on the Gonzalez-Castro (24) and Zheng’s 

methods (25) with some modifications. In order to remove proteins from the sample, 1 

mL of 5% sulfosalicylic acid was added to the solution, mixed well and then kept in 

darkness for 1 hour. Then the mixture was centrifuged at 15000 rpm for 15 minutes at 

4°C. The supernatant was diluted into 2 mL before 500 μL of the diluted supernatant was 

dried at 65 °C. The dried sample was dissolved in 250 μL of a mixture of methanol: water: 

trimethylamine (2:2:1, V:V:V) and dried at 65°C in vacuum oven. The dried sample was 

dissolved in 250 μL of methanol: water: trimethylamine: PITC (7:1:1:1, V:V:V:V) and 

kept at room temperature for 20 minutes. The excess reagent was evaporated at 65°C, and 

the dried sample was dissolved in 150 μL of the mobile phase A (see the details of the 

mobile phase in section 2.5.2), and filtered by 0.45 μm Nylon membrane before the 

HPLC analysis.  
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2.5.2 Free Amino Acids Analysis by HPLC- UV-Vis 

Free amino acids were analyzed by the same aforementioned HPLC-UV system 

with the same HPLC column, for which a mixture of 0.1 mol/L sodium acetate: 

acetonitrile (93:7, V:V) was used as the mobile phase A, and a mixture of acetonitrile : 

water (80:20, V:V) was adopted as the mobile phase B. Flow rate was 1.0 mL/min, 

temperature of column was 40°C, injection volume was 10 μL, and detected wavelength 

was 254 nm. Mobile phase was set in a gradient program. At the beginning, the mobile 

phase B was 0%, after 14 minutes, mobile phase B increased to 15%, then increased to 

34 % at 29 minute, from 30 minute, mobile phase B was 100% until 37 minutes, then 

changed to 0% from 37.1 minutes to 45 minutes. 

2.6 Free Fatty Acids Analysis 

2.6.1 Preparation of Fatty Acid Methyl Esters 

Preparation and extraction of fatty acids methyl esters (FAME) was based on the 

Lepage and Roy’s report (26). One gram of the dried jujube pulp was ground and 

extracted by 10 mL chloroform-methanol mixture (2:1, V:V) for 90 minutes with 

moderate shaking. After filtration, the liquid solution was removed into a separated 

funnel. Saturated sodium chloride was added into the solution in order to separate 

methanol and chloroform. The extraction process was repeated three times. The lower 

phase of all three extractions were collected, pooled together, and evaporated for analysis. 

Derivatization was performed by an acidic catalysis method, by which 10% 

sulfuric acid-methanol solution was added into the sample, incubated in a 100 °C water 

bath for 60 minutes for the methylation reaction. The formed fatty acid methyl esters 
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were dried by mild purge of nitrogen gas. Then hexane was added to dilute the sample to 

1 mL for GC analysis. 

2.6.2 Analysis of Fatty Acid Methyl Esters by GC-MS 

Thermo GC-MS was used to analyze the fatty acid methyl esters (FAMEs). A 

Thermo TR-5 capillary column (30 m ×0.25 mm×0.25 μm) was used as the GC column, 

and the ultra-high purity (UHP) helium was the carrier gas. The flow rate was 1.2 

mL/min. Injection volume was 1 μL. The inlet temperature was 290 °C. The oven 

temperature began at 50 °C, hold for 3 minutes, and then increased to 200 °C at the rate 

of 10 °C/min and hold for another 2 minutes, then to 225 °C at the rate of 1.0 °C, the 

temperature was up to 250 °C, hold for final 5 minutes. In regards of the mass 

spectrometer, its ion source temperature was 280 °C, transfer line temperature was 280°C, 

full scan range was 40 m/z to 500 m/z. 

2.7 Minerals Analysis 

The pulps of jujube fruits were dried by the conventional oven at 65 °C. Then, 1 g 

of the dried sample was placed in the digestion tube, mixed with 10 mL HNO3 and 2 mL 

HClO4, which was kept at room temperature overnight. Then, the tube was moved into 

the digestion oven at 280 °C until the solution became clear. After that, distill water was 

added to make the final volume at 50 mL. The mineral contents in the jujube samples 

were measured by an ICP-OES (Perking Elmer, USA). The operation power of the 

instrument was 1.20 kW; plasma flow rate was 15.0 L/min; auxiliary flow rate was 1.50 

L/min; nebulizer pressure was 200 kPa. 
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2.8 Statistics 

All the data were calculated in triplicates; the evaluation of significant different 

level was performed by one-way analysis of variance (ANOVA) by JMP software. Tukey 

test was used to evaluate the significant level (p<0.05). Principal component analysis 

(PCA) and hierarchical cluster analysis (HCA) were conducted by the Metlab software. 

3. Results and Discussion 

3.1 Reducing Sugars Analysis 

Sugars are produced by photosynthesis in plant leaves, where carbon dioxide in 

the air react with water under light to form sugars. These sugars can support the plant 

growth and development of flowers, fruit, new leaves and shoot. Previous researchers 

have demonstrated that the environmental condition was a major factor to affect the sugar 

synthesis.  

In many previous studies, sucrose, fructose and glucose were reported as the 

major sugars (3-5, 27) in jujubes, but the information about other reducing sugars is 

limited. It was first reported by Honda (28) that reducing sugars could react with the PMP 

reagent to form sugar-PMP derivatives, which have strong UV absorbance. Two 

molecules of PMP were able to react with one molecule of glucose. In this study, the 

PMP derivative method was used to analyze the reducing sugars in jujube. The 

concentration of reducing sugars is listed in Table 2.1. Among the cultivars, the 

concentrations of the reducing sugars were significantly different. Mannose and xylose 

were detected only in some cultivars. In contrast, the content of rhamnose was from 1.42 

to 5.48 mg/100g FW. Even though rhamnose was detected in all the cultivars, its content 
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was lower than that in a previous report (4). In addition, galactose was not detected in the 

cultivar YL. The content of glucose was in a range from 85.87 to 1004.95 mg/100g FW, 

for which the cultivar YZ contained the lowest content of glucose while the cultivar PZ 

contained the highest amount. Arabinose was also measured in jujube, of which its 

content varied from 2.30 to 16.74 mg/100g FW. 

3.2 Organic Acids Analysis 

Organic acids contribute to the acidity of fruits and are important to the fruit 

texture and flavor. Malic acid, citric acid, and succinic acid have been found in jujube (4, 

27). In this study, oxalic acid, tartaric acid, malic acid, lactic acid, acetic acid, citric acid, 

fumaric acid and succinic acid were detected and are shown in Table 2.2. The contents of 

organic acids had significant difference in different cultivars. Particularly, lactic acid and 

succinic acid were not detected in some cultivars. The predominant organic acid is malic 

acid, its amount (120.15 to 508.67 mg/100g FW) is the highest among the organic acids 

in all cultivars. Ziziphus jujuba Mill. cv. JB contained 278.23 mg/100g FW, which was 

similar as JB (294.0 mg/100g FW) which was grown in Yulin county in China (4); 

Strawberry was reported to contain around 200 mg/100g FW of malic acid (29), which 

was similar to most cultivars of jujube fruits; grapes (1095 mg/100g FW) and peaches 

(2183 mg/100g FW) were reported to contain higher malic acid than jujube, while lemons 

(228 mg/100g FW) and oranges (131 mg/100g FW) have similar contents (30) of malic 

acid as jujube. Ziziphus jujuba Mill. cv. JS contained the lowest amount of oxalic acid 

(12.06 mg/100g FW), while the cultivar LB contained the highest amount (62.66 

mg/100g FW). The content of tartaric acid varied from 14.67 mg/100g FW to 73.71 
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mg/100g FW. However, lactic acid in the DB, LB, PZ, HP cultivars were not detected. In 

contrast, its amount in the other cultivars had significant changes from 8.41 mg/100g FW 

to 31.47 mg/100g FW. Acetic acid in the LB and JD cultivars were less than 3.00 

mg/100g FW, but the value was above 10 mg/100g FW in other cultivars. Particularly, its 

highest content (111.23 mg/100g FW) was found in the cultivar XZ. The content of citric 

acid (29.40 to 180.67 mg/kg FW) was higher than other acids in most cultivars. This 

result is similar to that reported by Gao (4) et al. Fumaric acid was detected in all 

cultivars. Its lowest content was only 0.55 mg/100g FW in JB, but the highest content 

was 162.58 mg/100g FW in PB. Succinic acid was not detected in some cultivars (i.e., 

BZ, DB, LB, HP, BJ, JS). In cultivar YL, the amount of succinic acid was only 2.27 

mg/100g FW, while it was 163.21 mg/100g FW in the cultivar NP. 

3.3 Free Amino Acids Analysis 

In this study, 16 amino acids were detected, and their data are shown in Table 2.3. 

Only Ziziphus jujuba Mill. cv. HP contained all the 16 amino acids. It was reported that 

the branch chain amino acids, including valine, leucine and isoleucine could improve the 

insulin resistance, (31, 32). It was found that there were significant differences (p<0.05) 

in amounts of branch chain amino acids in the studied 15 cultivars of jujubes. For 

example, the content of valine varied from 0.30 mg/100g FW to 3.05 mg/100g FW, but in 

the Ziziphus jujuba Mill. cv. JD, NP and XZ, it was not detected. Isoleucine was not 

detected in the LZ, NP, PB, XZ and YL cultivars, but it was found in other cultivars from 

0.40 mg/100g FW to 4.75 mg/100g FW. However, leucine was only detected in the HP 

and JB cultivars. In addition, other essential amino acids, such as histidine, lysine, 



69 

 

methionine, phenylalanine and threonine, were also analyzed in this study. Lysine and 

histidine were found in all the cultivars except two cultivars, including LZ and XZ. On 

the contrary, most cultivars did not contain methionine, phenylalanine and threonine. 

Besides, the amount of these amino acids in the cultivars were significantly different 

(p<0.05). Arginine is important for children because it is a critical factor to affect growth 

hormone in children (33). The highest content of arginine (31.90 mg/100g FW) was 

detected in the Ziziphus jujube Mill. cv. JD, while the lowest was in the Ziziphus jujuba 

Mill. cv. JS (0.32 mg/100g FW). Aspartic acid (0.51 mg/100g FW to 15.03 mg/100g FW) 

and serine (12.78 mg/100g FW to 71.04 mg/100g FW) were detected in all the cultivars. 

In a previous study, 20 amino acids were detected from four cultivars of dry jujube 

powder under different stored periods. It was reported that no tryptophan was detected 

and the content of amino acids decreased as the storage time increased (13). In Korea, 

jujube fruit in eight growth stages were collected for amino acids analysis, but neither 

tryptophan nor methionine was detected in any stages by the authors (15). 

3.4 Free Fatty Acids Analysis 

Fatty acids (FAs) can provide energy for human beings via β-oxidation. Linoleic 

acid and linolenic acid are the essential fatty acids which play an important role in fatty 

acids synthesis. Table 2.4 and Table 2.5 list the data of fatty acids in 15 cultivars of 

jujube fruits. It is obvious that lauric acid (C12:0) and palmitic acid (C16:0) were the 

major saturated fatty acids, while myristoleic acid (C14:1), oleic acid (C18:1) and linoleic 

acid (C18:2) were the major unsaturated fatty acids (UFAs) in these jujube fruits. These 

findings were as same as the results from San (20) et al. and Guil-Guerrero (18) et al.. 
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The content of lauric acid was very low in the seeds of Ziziphus jujuba Mill. var. spinose 

from previous study, while linoleic acid, oleic acid and docosanoic acid were relatively 

higher (19). 

Table 2.6 shows the percentage of individual unsaturated fatty acids in total 

unsaturated fatty acids in these 15 cultivars. Myristoleic acid (C14:1) was the main 

unsaturated fatty acid, from 31.81% to 46.62% of the total amount of unsaturated fatty 

acids. Ziziphus jujuba Mill. cv. DB, JB, LB, and PZ contained more oleic acid (C18:1) 

than other cultivars, which were in a range from 10.78% to 24.60%. In other cultivars, 

although oleic acid was lower than 10%, they were still higher than many other fatty 

acids, such as linolenic acid, arachidonic acid, and docosahexaenoic acid, in the same 

cultivar. Besides, these 15 cultivars of Jujube fruits contained a variety of 

polyunsaturated fatty acids (PUFAs), including linoleic acid (C18:2), linolenic acid 

(C18:3), eicosapentaenoic acid (C20:5), arachidonic acid (C20:4), docosahexaenoic acid 

(C22:6) and others. For instance, Ziziphus jujuba Mill. cv. BJ, BZ, HP, JD, JS, LZ, NP, 

PB, XZ, YL, YZ contained linoleic acid (C18:2) from 10.13 % to 51.44% of the total 

amount of unsaturated fatty acids, while Ziziphus jujuba Mill. cv. DB, JB, LB, and PZ 

had less than 10%. Although PUFAs in jujube fruits had, in most cases, less than 5% of 

the total amount of UFAs, these PUFAs are commonly considered to be health benefiting, 

e.g., for the brain development.  

3.5 Minerals Analysis 

Contents of minerals of 16 jujube cultivars are shown in Table 2.7. The data 

indicated that calcium, magnesium, and aluminum were the major minerals in these 
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jujube fruits. Lead was only detected in Ziziphus jujuba Mill. cv. BZ, DB, HP, LB, LZ, 

NP, and PB, of which the content was in a range from 0.23 to 1.30 mg/kg DW. The 

contents of nickel (2.19 to 2.95 mg/kg DW), aluminum (137.59 to 167.48mg/kg DW), 

boron (15.93 to 35.87 mg/kg DW), titanium (1.90 to 3.09 mg/kg DW), and chromium 

(3.66 to 9.91 mg/kg DW) were not significantly different among most cultivars (p<0.05). 

The detected content of boron in our cultivars was less than that in the jujubes which 

were planted in Turkey, ranging from 4.63 to 6.53 mg/100g (23).  

Iron is an essential mineral for humans. The iron content in these jujube cultivars 

was from 52.72 to 125.16 mg/kg DW. Most cultivars contained similar amount of iron as 

other five cultivars of jujube fruits grown in Jinan in China (3). However, Ziziphus jujuba 

Mill. cv. BZ, PZ, YL contained more iron (85.64 to 125.16 mg/kg DW) than those five 

cultivars of jujube (4.68 to 7.90 mg/100g DW). The content of iron in cultivars JS (64.02 

mg/kg) and JB (83.82 mg/kg) in this study was higher than that in the same cultivars 

(4.68 and 7.90 mg/100g DW) reported in a previous study (3). Nevertheless, the content 

of iron in all the cultivars in this study was higher than the amount of iron (0.67 to 1.43 

mg/100g DW) in Turkey cultivars (23). Yet, the average content of iron (131.9 μg/g) of 

jujube fruit which was grown in Xinjiang province (34) was higher than jujube in Shanxi 

province in this study. This difference is generally attributed to the different climate and 

soil conditions.  

Copper is a co-factor of many antioxidants. In this study, the content of copper 

was determined in a range of 3.81 to 8.12 mg/kg DW. This value was higher than the 
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amount in the Li’s report (0.19 to 0.42 mg/100g), but similar as that in the jujubes planted 

in Bayikuleng region (4.62 to 8.28 μg/g) in Xinjiang province (34). 

Zinc is important for many enzymatic reactions. Ziziphus jujuba Mill. cv. LB 

contained the lowest content of zinc (11.15 mg/ kg DW), while Ziziphus jujuba Mill. cv. 

JD had the highest value (17.58 mg/kg). The content of zinc in the cultivars in this study 

was higher than that in the Li’s report (0.35 mg/100g to 0.63 mg/100g) (3) and San’s 

report (0.53mg/100g to 1.27 mg/100g) (23). However, our result was in agreement with 

the value of zinc in jujubes which were grown in the Xinjiang province (34) 

Calcium is well known to be essential for growth of human bones and teeth. 

Table 2.7 shows that the lowest content of calcium was 162.29 mg/kg DW found in the 

Ziziphus jujuba Mill. cv. YL, while the highest content was 301.81 mg/kg DW in the 

Ziziphus jujuba Mill. cv. DB. However, its content in all the cultivars was found to be 

lower than that in both Li’ report (45.6 to 118 mg/100g) (3) and San’s report (79.33 to 

121.33 mg/100g) (23).  

Based on the data shown in Table 2.7, magnesium was obviously a primary 

mineral because its content was significantly higher than that of all the other minerals. 

Ziziphus jujuba Mill. cv. HP had the lowest content (511.77 mg/kg DW), and Ziziphus 

jujuba Mill. cv. DB contained the highest content (699.77 mg/kg DW). The value was 

also higher than that of jujube (15.77 to 20.77 mg/100g) found in Turkey (23).  

The content of manganese of jujube in this study varied from 4.79 to 10.68 mg/kg 

DW. All of them were higher than the jujube fruits in Turkey (0.10 mg/100g to 0.2 

mg/100g), and similar with the jujube in the Xinjiang province in China (34). 
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Overall, the contents of minerals in different cultivars were significantly different, 

but regarding the same mineral, most of the cultivars did not have significant difference. 

The possible reason of this is that all of the cultivars were grown and collected from the 

same farm so the environmental factors including climate and soil did not affect the 

mineral absorbance a lot. In this context, these differences are considered to be caused, in 

a large degree, by the genotype of jujube, which needs more investigations. 

3.6 PCA and HCA analysis 

Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were 

used to classify the cultivars into different subgroups, and explore the significant 

difference among the groups. All the ellipses of the constant distance were calculated 

with 95% confidence interval. The classifications of HCA were based on the distance 

equals to 39. Figure 2.1 was the dendrogram of all the cultivars based on the contents of 

reducing sugars. According to the mean values of the components, the studied jujube 

cultivars were categorized into six groups. Ziziphus jujuba Mill. cv. BZ, PZ, DB, NP 

were in the same group; Ziziphus jujuba Mill. cv. HP, JD, JS, BJ, PB were in the same 

group; Ziziphus jujuba Mill. cv. YZ, LB were clustered together and Ziziphus jujuba Mill. 

cv. XZ and JB were clustered together into another group; the rest two cultivars YL and 

LZ were separated in two different groups. Figure 2.2 was the score plot of principal 

component analysis for reducing sugars. After reducing the variable dimensions, first two 

PCs (i.e., PC 1 and PC 2) can explain 85.6% of total data variability. As shown in the 

Figure 2.2, there was no overlap among the ellipses, which means the clusters have 
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significant difference among them, except the Group E and F that had crossed parts in 

their sections.  

Different contents of organic acids in different cultivars result in another type of 

categories based on the HCA (Figure 2.3). As a result, Ziziphus jujuba Mill. cv. LB, HP, 

PZ, DB were clustered in the first group. The second group contains Ziziphus jujuba Mill. 

cv. PB and JS; Ziziphus jujuba Mill. cv. BJ, JB, YZ are in the third group; Ziziphus jujuba 

Mill. cv. NP and JD are connected in the same group which is named as the forth group; 

Ziziphus jujuba Mill. cv. BZ, and XZ, as well as LZ, are in the fifth group; and Ziziphus 

jujuba Mill. cv. JB was categorized in a single group by itself. In addition, the PCA of the 

organic acids in the 15 cultivars of jujube fruits is plotted in Figure 2.4, where its PC1 

and PC2 can only explain 55.6% of all data variance. Group A including the Ziziphus 

jujuba Mill. cv. DB, PZ, LB, HP is significantly different from the other groups; Group D 

which contains the YL, BZ, and JD cultivars is significantly different the Group B which 

is consisted of the XZ and LZ cultivars. However, both of them are overlapped with the 

Group C (Ziziphus jujuba Mill. cv. PB, JS, BJ). Group E contains two cultivars (i.e., NP 

and YZ), it has no overlapping with other groups except the Group D. Moreover, the 

Group F has no crossed section with any other groups. 

Figure 2.5 shows the classification of all the cultivars based on their amounts of 

free amino acids. The dendrogram of the HCA suggests only the Ziziphus jujuba Mill. cv. 

LZ only in the first group; Ziziphus jujuba Mill. cv. PZ, XZ, LB, DB and NP are 

classified in the second group; the third group includes the Ziziphus jujuba Mill. cv. YL 

and BZ; Ziziphus jujuba Mill. cv. JB and HP are categorized in the fourth group; Ziziphus 
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jujuba Mill. cv. PB is placed in the group five; Ziziphus jujuba Mill. cv. YZ, JD, BJ, JS 

are connected in the sixth group. According to the corresponding PCA that is plotted in 

Figure 2.6, PC1 and PC2 can only explain 50.5% of data variance. As shown in Figure 

2.6, the Group E (Ziziphus jujuba Mill. cv. NP) is not connected with all the other groups; 

Group F (Ziziphus jujuba Mill. cv. JS) and Group D (Ziziphus jujuba Mill. cv. BZ and YL) 

are almost embraced in the Group A, so these two groups have no significant differences 

with the Group A. In addition, both Group B and Group C also have a partial crossed 

sections with the Group A, although the Group B and Group C are separated and have 

significant difference.  

Similarly, fifteen cultivars of jujube were classified into six groups according to 

the mean values of their concentrations of different fatty acids. This result is shown in 

Figure 2.7. After the PCA (Figure 2.8), group D (Ziziphus jujuba Mill. cv. PB) is only 

overlapped with the group A (Ziziphus jujuba Mill. cv. PZ, JB and JS), the latter is also, 

in a very small degree, overlapped with group E (Ziziphus jujuba Mill. cv. JD, BJ, LZ). 

However, the group C, E and F have severe overlapping regions among them, which 

means these three groups do not have significant difference. Group B is overlapped with 

group E and group C, but not the others.  

According to the mean values of minerals, all the cultivars were classified into 6 

different groups. As shown in Figure 2.9, the first group includes the Ziziphus jujuba 

Mill. cv. YL, NP, and LZ; the second group contains the Ziziphus jujuba Mill. cv. BJ, JS, 

and PB; the third group contains the Ziziphus jujuba Mill. cv. PZ and JB; the Ziziphus 

jujuba Mill. cv. BZ is in the fourth group by itself; the Ziziphus jujuba Mill. cv. XZ, HP, 
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and LB are classified in the fifth group; the last group contains the Ziziphus jujuba Mill. 

cv. DB, JD and YZ.  

PC1 and PC 2 in the Figure 2.10 can explain 47.2% of mineral variances. Based 

on this PCA, the Group F (Ziziphus jujuba Mill. cv. JD, YZ) has obvious overlapping 

regions with the Group A (Ziziphus jujuba Mill. cv. NP, LZ, YL), Group B (Ziziphus 

jujuba Mill. cv. BJ, PB, JS, BJ) and Group D (Ziziphus jujuba Mill. cv. BZ, JB, PZ), 

which means the Group F does not have a significant difference with these three groups. 

Group D also has crossed sections with the Group E (Ziziphus jujuba Mill. cv. DB), 

Group C (Ziziphus jujuba Mill. cv. HP, XZ, LB) and Group F. However, the Group E, 

Group F and Group C were completely separated, indicating they have a significant 

difference. Similarly, Group B and Group D are considered to be significantly different. 

Considering the results of PCA and HCA of the reducing sugars, organic acids, 

free amino acids, fatty acids and minerals, it is clear that different jujube cultivars can be 

categorized into different clusters. However, only PCA analysis of reducing sugars might 

be more reliable since it could explain more than 80% of data variance, while the others 

could not. If all of these components are statistically analyzed together, the classification 

is changed again, which are shown in Figure 2.11 and Figure 2.12. The latter shows that 

the Group C (including the PB and NP cultivars), Group D (including the YZ, BJ, JS, and 

JD), and Group E (PZ, DB and LZ) are overlapped together, so these three groups do not 

have a significant difference. Group A (HP and LB) only has a very small overlapping 

with the Group B (BZ, JB, and XZ), but has no overlapping with the other groups. Group 
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F only crossed with Group D. Unfortunately, PC 1 and PC 2 in Figure 2.12 can only 

explain 31.3% of data variance based on all the chemical profiles in this chapter.  

In summary, except the reducing sugars, the PC1 and PC2 values in the 

aforementioned PCA analyses based on the other compounds could not represent more 

than 80% of total data variance, which has significantly affected the quality and 

reliability of the classifications. In this case, the classified subgroups from the PCA and 

HCA based on the concentrations of organic acids, free amino acids, fatty acids and 

minerals might not be accurate and convincing enough because the information of 

variables was not sufficient. Nevertheless, the classification according to the reducing 

sugars was more reliable in comparison with other components. 

4. Conclusion 

In this study, reducing sugars, organic acids, free amino acids, fatty acids and 

minerals of 15 cultivars of jujube fruits were analyzed. Among the cultivars, the contents 

of reducing sugars, organic acids, and free amino acids were significantly different 

(p<0.05). The components of fatty acids and minerals did not show the significant 

differences among some cultivars. Based on the data, only Ziziphus jujube Mill. cv. HP 

contained all the free amino acids. According to the PCA, only principal components of 

reducing sugars can explain more than 80% of data variance if two-dimensional plot is 

used, while the other components such as organic acids, minerals, free amino acids and 

free fatty acids could not, which means the classification of the jujube fruits based on the 

PCA of reducing sugars might be more reliable compared to the other food components. 

Nevertheless, the obtained comprehensive data of the components in the jujube fruits 
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have provided us some insights of the nutritional values of the jujube. In addition, it is a 

useful attempt to classify different jujube cultivars by PCA and HCA based on the 

measured data of jujube components, although it seems that only the reducing sugars 

might be the more reliable variable for classification in an effort to improve the 

processing quality, and avoid adulteration. Finally, these systematical analyses of jujube 

fruits can help us for better utilization of the jujube as a functional food. 
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Table 2. 1 Contents of Reducing Sugars in 15 Cultivars of Jujube Fruits, mg/100g FW 
Name of Ziziphus jujuba 

Mill. cultivars  

Abbreviation  Rhamnose  Mannose  Glucose Galactose  Xylose  Arabinose  

Bin county Jinzao  BJ 1.68±0.13 efg n.d. 232.96±6.67 fg 1.32±0.05 efg n.d. 3.28±0.07 g 

Banzao  BZ 2.06±0.11 def n.d. 303.64±7.55 e 2.59±0.08 d n.d. 5.96±0.16 d 

Dabailing  DB 4.88±0.17 b n.d. 752.93±17.32 b 4.08±0.15 b n.d. 6.94±0.15 c 

Hupingzao  HP 2.20±0.08 de n.d. 268.16±4.36 ef 0.99±0.07 gh n.d. 3.16±0.06 g 

Junzao  JB 2.08±0.04 def 0.60±0.05 c 286.35±6.85 e 1.14±0.06 fgh 26.66±1.29 

c 

3.29±0.08 g 

Beijingjidanzao  JD 1.97±0.13 defg n.d. 200.56±7.04 gh 1.61±0.03 e n.d. 2.86±0.04 

gh 

Cang county Jinsixiaozao  JS 1.63±0.11 efg n.d. 172.66±6.00 h 1.29±0.03 efg n.d. 4.19±0.10 f 

Lingbaozao  LB 1.58±0.10 fg 0.42±0.09 c 195.77±5.11 gh 1.02±0.04 gh 36.27±1.66 

a 

2.84±0.05 

gh 

Lizao  LZ 5.48±0.08 a 1.32±0.11 a 739.94±10.11 b 3.50±0.10 c n.d. 16.76±0.29 

a 

Neihuangbianhesuan  NP 4.29±0.14 c 1.06±0.05 b 641.64±12.63 c 2.76±0.06 d n.d. 8.34±0.23 b 

Pingshun Junzao  PB 2.35±0.07 d n.d. 359.79±5.03 d 1.54±0.05 ef n.d. 4.96±0.12 e 

Pozao  PZ 4.29±0.15 c n.d. 1004.95±20.04 a 5.05±0.16 a n.d. 6.10±0.15 d 

Xiangzao  XZ 2.06±0.10 def 0.47±0.06 c 205.43±4.61 gh 1.19±0.07 fg 32.51±1.20 

b 

3.21±0.08 g 

Yuanlingzao  YL 1.95±0.11 defg n.d. 187.16±1.79 gh n.d. n.d. 2.98±0.08 

gh 

Baode Youzao  YZ 1.42±0.09 g n.d. 85.87±3.22 i 0.78±0.02 h 28.29±1.01 

c 

2.30±0.06 h 

Data are presented in mean value ± standard error, (n=3) 

Different letters followed the data in the same column means significant difference (p<0.05) 

n.d. means not detected 
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Table 2. 2 Contents of Organic acids in 15 Cultivars of Jujube Fruits, mg/100g FW 
 oxalic acid tartaric acid malic acid lactic acid acetic acid citric acid fumaric acid succinic acid 

BJ 19.26±0.68 h 25.59±0.64 h 222.05±1.07 ef 21.35±0.59 d 11.02±0.15 i 121.37±1.73 d 121.41±1.70 c n.d. 

BZ 21.04±0.15 h 42.12±0.90 e 258.18±2.67 d 15.01±0.39 e 36.79±1.10 e 67.78±0.51 g 1.48±0.03 h n.d. 

DB 50.26±0.60 c 36.26±0.44 f 177.45±2.63 g n.d. 54.72±0.79 c 100.54±1.46 e 1.40±0.02 h n.d. 

HP 50.30±1.80 c 36.76±1.60 f 253.97±3.27 d n.d. 15.16±0.27 hi 180.67±3.10 a 1.01±0.02 h n.d. 

JB 30.41±0.72 ef 41.55±0.51 e 278.72±2.59 c 25.00±0.41 b 180.22±1.90 a 159.91±1.75 b 0.55±0.01 h 80.71±1.04 c 

JD 30.26±0.41 ef 38.80±0.36 ef 230.85±2.04 e 11.80±0.14 f 2.93±0.03 j 51.47±0.75 h 52.26±0.71 f 35.78±0.38 f 

JS 12.06±0.81 i 41.29±1.08 e 232.68±2.85 e 14.72±0.37 e 26.00±0.84 g 88.22±1.13 f 88.24±1.13 d n.d. 

LB 62.66±1.21 a 56.08±0.66 c 120.15±1.90 i n.d. 2.74±0.01 j 69.10±1.07 g 2.30±0.05 h n.d. 

LZ 26.91±0.55 fg 17.36±0.53 i 188.32±2.11 g 15.46±0.41 e 40.30±0.63 e 42.88±1.11 i 0.85±0.01 h 95.30±1.04 b 

NP 36.63±1.03 d 60.73±1.12 b 508.67±4.31 a 8.41±0.16 g 31.46±0.45 f 129.01±1.42 cd 129.75±1.23 b 163.21±1.83 a 

PB 25.35±0.31 g 73.71±1.38 a 218.95±1.52 ef 23.89±0.34 bc 29.20±0.35 fg 161.14±2.06 b 162.58±0.99 a 57.72±0.30 d 

PZ 543.66±8.23 b 14.67±0.54 i 161.60±2.27 h n.d. 16.76±0.24 h 130.59±1.98 c 1.277±0.02 h 7.06±0.15 g 

XZ 28.95±0.51 fg 31.83±0.85 g 156.62±1.84 h 22.48±0.48 cd 111.23±1.46 b 29.40±0.58 j 1.30±0.04 h 43.69±0.52 e 

YL 32.88±0.89 e 46.78±0.96 d 206.56±2.55 f 31.47±0.64 a 16.13±0.45 h 34.23±0.41 j 34.23±0.41 g 2.27±0.03 h 

YZ 32.57±0.46 e 48.53±0.89 d 463.58±5.33 b 8.72±0.16 g 49.26±1.01 d 63.41±1.28 g 64.18±1.26 e 57.92±0.85 d 

Data are presented in mean value ± standard error, (n=3) 

Different letters followed the data in the same column means significant difference (p<0.05) 

n.d. means not detected 
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Table 2. 3 Contents of Free Amino Acids in 15 Cultivars of Jujube Fruits, mg/100g FW 
 BJ BZ DB HP JB JD JS LB LZ NP PB PZ XZ YL YZ 

Asp 4.83±0

.15 de 

2.05±0.

17 gh 

4.17±0.

17 ef 

3.81±0.

14 ef 

6.42±0.

10 c 

3.77±0

.11 ef 

3.34±0.

10 f 

3.05±0.

16 fg 

1.34±0.

08 hi 

15.03±

0.71 a 

12.16±

0.26 b 

6.76±0

.19 c 

0.51±0

.04 i 

1.77±0.

09 h 

5.70±0.

14 cd 
Thr 2.01±0

.05 b 

n.d. n.d. 25.36±0

.38 a 

n.d. n.d. 0.99±0.

12 c 

n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Ser 21.94±

0.33 

fgh 

22.59±

1.12 fg 

12.7±0.

85 j 

16.74±0

.52 hij 

46.6±1.

19 c 

28.1±0

.83 de 

18.0±0.

38 ghi 

21.98±

0.41 fg 

23.81±

0.98 ef 

71.04±

2.44 a 

58.00±

1.34 b 

30.48±

0.57 d 

14.20±

0.29 ij 

15.04±

0.24 ij 

41.85±

0.98 c 

Glu 21.96±

0.47 d 

18.38±

0.74 e 

4.59±0.

29 g 

23.06±0

.51 d 

23.73±

0.53 d 

28.38±

0.35 bc 

n.d. 18.47±

0.71 e 

13.02±

0.53 f 

52.54±

1.16 a 

30.99±

0.83 b 

22.30±

0.36 d 

10.61±

0.31 f 

18.49±

0.34 e 

27.84±

0.70 c 
Gly 1.08±0

.06 cd 

1.52±0.

08 b 

0.99±0.

05 d 

1.04±0.

15 d 

1.44±0.

04 bc 

2.19±0

.08 a 

1.19±0.

05 bcd 

0.82±0.

04 d 

n.d. n.d. 2.08±0

.13 a 

1.10±0

.09 cd 

0.19±0

.08 e 

1.17±0.

05 bcd 

1.17±0.

07 bcd 
Ala 3.98±0

.14 d 

4.72±0.

28 bcd 

4.10±0.

17 cd 

4.43±0.

13 bcd 

3.19±0.

11 e 

6.80±0

.21 a 

4.14±0.

13 cd 

4.76±0.

12 bc 

n.d. n.d. 7.08±0

.18 a 

4.11±0

.11 cd 

4.17±0

.10 cd 

4.27±0.

07 cd 

5.04±0.

15 b 
Cys 4.71±0

.11 e 

3.11±0.

19 f 

2.10±0.

09 gh 

2.79±0.

08 fg 

1.16±0.

04 i 

9.51±0

.32 a 

6.21±0.

24 d 

2.09±0.

13 gh 

n.d. 2.81±0

.06 fg 

8.44±0

.19 b 

2.73±0

.04 fg 

1.74±0

.06 hi 

5.84±0.

14 d 

7.35±0.

17 c 
Val 0.74±0

.04 ef 

1.71±0.

09 c 

0.30±0.

01 gh 

2.95±0.

09 a 

1.99±0.

07 c 

n.d. 1.16±0.

08 d 

0.41±0.

01 g 

1.80±0.

09 c 

n.d. 0.53±0

.04 fg 

0.98±0

.07 de 

n.d. 2.34±0.

05 b 

3.05±0.

11 a 
Met n.d. n.d. 0.14±0.

04 de 

1.18±0.

05 b 

0.79±0.

04 c 

n.d. n.d. 0.34±0.

04 d 

3.15±0.

14 a 

n.d. n.d. n.d. n.d. n.d. n.d. 

Ile 3.71±0

.08 b 

1.29±0.

09 d 

0.91±0.

05 de 

2.36±0.

12 c 

1.03±0.

05 d 

4.55±0

.12 a 

4.75±0.

15 a 

0.62±0.

03 ef 

n.d. n.d. n.d. 0.40±0

.04 f 

n.d. n.d. 2.51±0.

10 c 
Leu n.d. n.d. n.d. 1.46±0.

06 b 

2.21±0.

05 a 

n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Tyr n.d. 1.81±0.

10 b 

n.d. 2.98±0.

08 a 

3.07±0.

12 a 

n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Phe n.d. n.d. n.d. 11.53±0

.32 a 

0 n.d. n.d. n.d. 9.60±0.

41 b 

8.41±0

.17 c 

n.d. n.d. n.d. n.d. n.d. 

Lys 0.82±0

.04 d 

1.81±0.

10 b 

0.12±0.

02 f 

3.26±0.

09 a 

1.45±0.

05 c 

0.82±0

.02 d 

0.53±0.

03 e 

0.11±0.

01 f 

n.d. 1.76±0

.05 b 

0.80±0

.03 d 

0.11±0

.02 f 

n.d. 1.84±0.

04 b 

1.82±0.

06 b 
His 2.33±0

.07 cd 

2.58±0.

15 c 

1.10±0.

04 gh 

2.68±0.

09 c 

1.97±0.

09 def 

4.45±0

.11 a 

1.80±0.

03 ef 

0.73±0.

04 h 

n.d. 2.16±0

.06 de 

1.89±0

.04 ef 

1.12±0

.05 g 

n.d. 3.23±0.

05 b 

1.66±0.

06 f 
Arg 11.91±

0.43 e 

4.35±0.

21 g 

12.11±

0.44 de 

14.19±0

.41 cd 

1.88±0.

07 hi 

31.90±

1.13 a 

0.32±0.

02 i 

8.31±0.

25 f 

15.86±

0.61 bc 

n.d. 3.68±0

.13 gh 

1.17±0

.05 i 

4.54±0

.13 g 

7.77±0.

23 f 

17.09±

0.40 b 

Data are presented in mean value ± standard error, (n=3) 

Different letters followed the data in the same row means significant difference (p<0.05); n.d. means not detected 
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Table 2. 4 Contents of Saturated Fatty Acids in 15 Cultivars of Jujube Fruits, μg/kg DW 
 BJ BZ DB HP JB JD JS LB LZ NP PB PZ XZ YL YZ 

C10
m:0n 

138.20±

1.31 f 

134.68

±6.79 f 

254.17

±8.58 e 

148.34

±11.12 

f 

729.38±

19.27 c 

399.35±

11.50 d 

952.88±

47.21 a 

247.40

±11.11 

e 

105.01

±4.02 f 

928.76±

14.93 a 

241.21±

3.94 e 

841.41±

16.70 b 

273.53

±17.15 

e 

771.65

±10.49 

bc 

245.13±

6.78 e 

C12

:0 

1209.73

±104.23 

ef 

1453.6

3±39.3

6 def 

1740.4

9±71.2

2 cd 

967.20

±22.37 

f 

3735.65

±50.33 

a 

2074.80

±70.00 

c 

3972.41

±37.47 a 

1181.7

9±53.2

6 ef 

1529.7

1±30.9

3 de 

2788.26

±314.84 

b 

4035.78

±27.05 

a 

3143.07

±94.61 

b 

2758.2

6±45.6

5 b 

2798.4

3±22.7

1 b 

1629.23

±50.12 

cde 

C14

:0 

718.17±

35.79 

de 

772.37

±3.39 

cde 

757.14

±20.07 

cde 

482.31

±5.36 f 

1233.65

±63.74 

b 

632.84±

27.51 e 

1167.82

±29.99 b 

716.33

±5.93 

de 

885.67

±17.22 

c 

850.32±

28.70 

cd 

1138.66

±30.56 

b 

1475.22

±37.49 

a 

668.11

±10.38 

e 

771.65

±14.12 

cde 

637.95±

20.26 e 

C15

:0 

114.16±

3.93 

cde 

196.85

±19.83 

b 

58.57±

4.14 g 

74.79±

1.82 fg 

217.89±

3.88 b 

72.85±4

.27 fg 

146.78±

3.54 c 

107.86

±8.57 

def 

74.87±

2.33 fg 

66.92±5

.61 g 

77.88±1

.06 efg 

260.17±

7.99 a 

134.41

±9.00 

cd 

65.72±

1.08 g 

87.69±4

.07 efg 

C16

:0 

1266.95

±24.42 

cd 

848.88

±15.38 

gh 

685.68

±9.17 i 

1048.1

5±29.8

1 f 

984.31±

25.79 

fg 

1936.91

±31.87 

a 

1077.59

±46.87 

ef 

855.69

±22.64 

gh 

1216.9

1±20.7

4 de 

1848.51

±41.44 

ab 

1772.05

±21.44 

b 

1402.95

±21.05 

c 

1350.8

1±15.9

1 cd 

823.10

±35.09 

hj 

934.88±

46.13 

fgh 

C17

:0 

175.68±

16.77 b 

10.80±

0.37 f 

108.18

±1.46 d 

157.85

±4.29 

bc 

209.55±

2.05 a 

137.24±

9.71 cd 

178.16±

5.01 b 

125.77

±6.82 d 

109.95

±7.81 d 

127.63±

2.38 cd 

12.48±0

.98 f 

13.99±0

.88 f 

11.47±

0.50 f 

54.07±

1.39 e 

12.31±0

.89 f 

C18

:0 

267.24±

11.27 f 

965.72

±4.74 a 

221.67

±3.67 f 

272.26

±1.54 f 

618.79±

8.44 d 

794.80±

20.96 c 

270.69±

17.49 f 

216.86

±15.85 

f 

569.07

±15.30 

de 

542.67±

19.22 

de 

890.92±

31.41 

ab 

863.45±

20.38 

bc 

532.21

±12.86 

e 

278.74

±5.06 f 

828.20±

17.26 bc 

C20

:0 

240.20±

20.76 

bcdefg 

221.24

±13.71 

efg 

273.81

±5.09 

abcde 

199.36

±9.12 g 

237.97±

4.21 

cdefg 

306.34±

2.25 a 

308.04±

7.20 a 

226.51

±13.85 

defg 

291.79

±11.75 

abc 

265.63±

20.22 

abcdef 

263.58±

10.78 

abcdef 

297.94±

5.63 ab 

208.23

±9.75 

fg 

230.97

±6.45 

defg 

283.08±

6.40 

abcd 

C21

:0 

127.61±

3.03 bc 

96.24±

0.80 d 

122.29

±9.60 

bc 

98.18±

1.14 d 

118.09±

0.45 c 

147.12±

1.62 a 

127.58±

2.63 bc 

121.18

±0.47 

bc 

144.04

±1.93 a 

118.81±

1.37 bc 

124.03±

2.80 bc 

134.23±

0.79 ab 

116.85

±3.12 c 

118.37

±0.70 

bc 

115.89±

1.85 c 

C22

:0 

605.44±

6.37 bc 

464.39

±3.76 f 

124.64

±12.55 

g 

456.59

±5.44 f 

563.70±

3.21 de 

707.76±

6.52 a 

624.71±

1.52 b 

61.99±

1.81 h 

91.04±

3.35 h 

566.54±

4.76 de 

580.44±

6.06 cd 

622.05±

7.30 b 

544.82

±5.57 e 

566.93

±0.91 

de 

567.18±

8.06 de 

C23

:0 

633.99±

1.53 

bcd 

481.02

±1.48 

gh 

637.50

±22.61 

bcd 

431.73

±11.17 

h 

521.49±

10.89 

fg 

719.35±

9.11 a 

653.45±

14.66 bc 

605.62

±5.79 

cde 

669.89

±28.97 

ab 

596.63±

1.87 

cde 

608.05±

8.93 

bcde 

622.60±

10.74 

bcde 

562.30

±1.79 

ef 

587.93

±6.19 

de 

586.16±

9.02 de 

C24

:0 

696.36±

17.67 

cde 

804.73

±38.01 

bc 

450.06

±1.08 

hi  

491.74

±11.51 

gh 

1059.59

±57.84 

a 

612.03±

10.83 

efg 

780.46±

6.48 bcd 

355.77

±7.33 

ij 

533.49

±11.65 

fgh 

467.96±

18.73 hi 

840.06±

26.45 b 

831.33±

22.77 b 

542.11

±9.25 

fgh 

293.96

±21.92 

j 

660.51±

39.73de

f 
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 BJ BZ DB HP JB JD JS LB LZ NP PB PZ XZ YL YZ 

Tot

al 

SF

A 

6193.72

±170.27 

6450.5

6±50.6

4 

5434.2

±65.96 

4828.4

947.15 

10230.0

6±51.20 

8541.39

±163.20 

10260.5

8±150.1

4 

4822.7

6±52.8

5 

6221.4

5±69.0

4 

9168.64

±403.87 

10585.4

2±82.48 

10508.4

±184.72 

7703.1

2±56.7

4 

7361.5

2±8.38 

6588.22

±123.57 

Data are presented in mean value ± standard error, m is the number of carbons, n is the number of double bounds 

Different letters followed the data in the same row means significant difference (p<0.05) 
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Table 2. 5 Contents of Unsaturated Fatty Acids in 15 Cultivars of Jujube Fruits, μg/kg DW 
 BJ BZ DB HP JB JD JS LB LZ NP PB PZ XZ YL YZ 

C1

4:

1 

3581.12

±121.93 

f 

2978.9

7±46.7

7 g 

3934.5

3±57.9

6 ef 

2572.2

8±21.6

5 g 

5219.02

±114.04 

bc 

4335.6

1±109.

52 de 

5862.64

±107.44 

a 

4014.9

9±85.4

7 ef 

3577.4

9±119.

66 f 

4737.74

±100.92 

cd 

5620.77

±84.74 

ab 

5449.5

6±68.2

4 ab 

1718.9

6±79.2

6 h 

3645.1

4±154.

47 f 

4587.18

±98.68 

d 

C1

5:

1 

107.01±

8.32  cd 

94.15±

2.32 d 

139.88

±5.86 

bc 

115.33

±10.03 

bcd 

144.83±

6.86 bc 

119.67

±1.72 

bcd 

129.88±

9.46 bcd 

115.95

±5.20 

bcd 

152.01

±14.52 

bc 

154.97±

8.39 b 

562.76±

10.44 a 

151.03

±13.14 

bc 

148.64

±5.54 

bc 

122.31

±11.51 

bcd 

108.72±

6.43 cd 

C1

6:

1 

200.86±

9.76 g 

157.62

±3.14 g 

423.89

±15.55 

de 

193.83

±7.43 

g 

453.92±

16.75 

de 

555.45

±15.99 

cd 

1163.22

±67.04 

a 

343.66

±5.05 

ef 

272.35

±3.29 

fg 

679.64±

19.27 c 

664.64±

10.10 c 

937.46

±28.25 

b 

200.36

±8.00 

g 

1235.1

7±48.8

5 a 

350.77±

21.61 ef 

C1

7:

1 

154.51±

10.72 

def 

178.50

±3.85 

bcde 

152.94

±1.55 

def 

143.62

±8.45 

ef 

218.85±

13.80 

ab 

178.86

±9.03 

bcde 

163.22±

3.20 

cdef 

130.16

±2.79 f 

160.39

±10.04 

def 

140.08±

0.89 ef 

205.63±

17.34 

abc 

187.02

±8.69 

abcd 

227.40

±3.41 

a 

143.31

±12.73 

ef 

182.56±

2.71 

bcde 

C1

8:

1 

608.87±

21.31 ef 

505.15

±2.22 

ef 

2039.2

8±69.6

4 c 

424.87

±4.09 f 

2864.98

±42.15 

a 

705.69

±23.21 

e 

704.60±

33.32 e 

1085.1

4±41.2

0 d 

622.22

±5.11 

ef 

586.25±

12.20 ef 

1176.07

±100.01 

d 

2552.9

4±33.6

9 b 

582.50

±16.27 

ef 

578.48

±27.54 

ef 

660.51±

27.53 e 

C1

8:

2 

4742.77

±74.08 

d 

6158.1

5±65.9

7 b 

631.55

±23.65 

i 

1512.0

4±62.2

7 h 

597.24±

37.53 

4013.6

6±99.0

6 e 

7330.05

±65.43 

a 

533.34

±21.81 

i 

2133.9

8±76.1

9 g 

4659.92

±54.61 

d 

2137.68

±49.71 

g 

720.06

±15.07 

i 

547.46

±8.84 i 

2471.1

9±94.2

1 f 

5272.31

±48.02 

c 

C1

8:

3 

149.36±

2.62 abc 

110.20

±1.51 e 

157.15

±3.72 

ab 

114.04

±3.00 

e 

143.63±

4.09 

bcd 

167.80

±1.13 a 

145.98±

3.04 bcd 

136.01

±1.42 

cd 

168.11

±2.95 a 

135.41±

3.92 cd 

146.15±

8.57 bcd 

141.13

±5.76 

bcd 

128.84

±0.87 

de 

136.74

±0.95 

cd 

135.90±

1.85 cd 

C2

0:

1 

224.89±

7.15 abc 

170.35

±4.55 d 

231.55

±3.90 

ab 

168.49

±7.16 

d 

177.60±

9.31 cd 

259.51

±2.52 a 

258.62±

6.05 a 

199.85

±11.10 

bcd 

249.34

±14.53 

a 

224.12±

16.17 

abc 

222.54±

8.88 abc 

250.74

±4.61 a 

179.11

±9.34 

cd 

191.08

±9.81 

bcd 

231.80±

10.37 ab 

C2

0:

2 

82.11±0

.75 fg 

98.62±

4.96 

def 

645.24

±1.57 

a 

61.74±

4.45 g 

116.17±

0.23 cd 

113.82

±3.96 d 

215.52±

2.64 b 

101.44

±4.69 

def 

114.28

±9.08 d 

86.64±2

.75 ef 

108.55±

4.27 d 

137.29

±3.74 c 

106.82

±2.81 

de 

116.43

±0.82 

cd 

109.86±

5.54 d 

C2

0:

3 

50.93±2

.50 e 

165.61

±4.49 a 

55.24±

1.96 e 

51.45±

0.74 e 

118.94±

5.37 c 

57.24±

2.35 e 

52.33±1

.50 e 

58.24±

3.15 e 

53.02±

0.57 e 

49.29±2

.26 e 

98.69±2

.82 d 

92.80±

3.24 d 

103.07

±5.07 

cd 

49.34±

4.10 e 

137.95±

6.24 b 

C2

0:

4 

210.58±

2.06 cde 

151.84

±1.51 h 

221.82

±2.62 

bc 

157.77

±1.13 

h 

187.73±

0.45 fg 

234.80

±2.35 

ab 

215.52±

6.06 cd 

201.42

±4.54 

def 

237.68

±1.11 

fg 

190.92±

1.37 fg 

198.51±

2.43 efg 

220.23

±2.73 c 

186.76

±1.79 

g 

191.60

±1.38 

fg 

191.28±

3.69 fg 

C2

0:

5 

231.05±

4.83 bc 

242.27

±14.19 

b 

148.69

±10.10 

d 

131.13

±3.18 

de 

299.97±

1.2.35 a 

204.87

±9.82 

bc 

252.30±

2.50 ab 

209.13

±1.34 

bc 

133.60

±3.74 

de 

141.63±

12.58 de 

212.51±

17.46 bc 

210.79

±6.99 

bc 

299.75

±13.57 

a 

90.28±

5.33 e 

177.94±

19.58 cd 
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 BJ BZ DB HP JB JD JS LB LZ NP PB PZ XZ YL YZ 

C2

2:

1 

69.82±3

.03 defg 

52.57±

1.11 gh 

90.48±

3.62 bc 

51.02±

1.87 h 

69.50±0

.89 defg 

70.50±

1.16 

def 

105.75±

8.11 b 

579.92

±0.93 a 

90.34±

3.38 bc 

81.97±2

.74 cd 

68.68±5

.12 

defgh 

90.86±

2.13 bc 

60.92±

3.28 

efgh 

77.16±

3.96 

cde 

58.27±1

.64 fgh 

C2

2:

2 

571.67±

9.08 cd 

421.00

3±2.22 

g 

652.38

±9.34 

ab 

475.03

±3.51 

fg 

570.92±

4.01 cd 

669.92

±11.72 

ab 

651.15±

16.00 ab 

556.35

±4.58 

cde 

689.85

±23.29 

a 

567.57±

20.07 cd 

608.04±

36.99 bc 

668.44

±8.92 

ab 

448.42

±9.815 

efg 

532.28

±7.10 

def 

541.03±

15.99 

cdef 

C2

4:

1 

51.27±2

.98 c 

137.04

±7.32 b 

117.26

±6.29 

b 

51.35±

1.93 c 

109.14±

8.09 b 

53.33±

2.34 c 

134.48±

7.17 b 

119.86

±6.35 b 

70.21±

3.40 c 

52.92±2

.37 c 

69.88±3

.48 c 

129.44

±7.34 b 

54.75±

1.62 c 

45.67±

4.81 c 

225.13±

7.75 a 

C2

2:

6 

223.17±

3.57 def 

347.59

±16.24 

ab 

183.92

±8.80 

efg 

124.89

±2.55 

gh 

352.25±

16.66 

ab 

165.20

±5.67 

fg 

291.38±

6.52 bc 

223.80

±7.78 

def 

130.75

±10.06 

gh 

156.16±

10.64 g 

269.91±

7.06 cd 

262.66

±11.86 

cd 

370.09

±13.51 

a 

80.84±

2.28 h 

247.18±

31.73 

cde 

To

tal 

UF

A 

11260.0

1±153.8

8 

11969.

69±23.

34 

9825.8

0±57.2

4 

6348.8

7±49.4

9 

11644.7

0±116.6

3 

11905.

94±76.

80 

17677.0

5±209.5

9 

8612.6

1±168.

65 

8855.6

4±210.

95 

12645.2

4±160.4

8 

12371.0

2±189.9

3 

12202.

45±76.

82 

5403.8

7±42.4

0 

9707.7

7±108.

70 

13218.3

9±139.8

8 

Data are presented in mean value ± standard error (n=3), 

Different letters in the row means significant difference (p<0.05) 
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Table 2. 6 Percentage of Major Unsaturated Fatty Acids in Total Amount of Unsaturated Fatty Acids, % 
 C14:1 C18:1 C18:2 C18:3 C20:4 C20:5 C22:2 C22:6 

BJ 31.79±0.78 5.41±0.22 42.12±0.48 1.33±0.01 1.87±0.03 5.08±0.05 5.08±0.05 1.98±0.01 

BZ 24.89±0.45 4.22±0.02 51.44±0.58 0.92±0.01 1.27±0.01 3.52±0.02 3.51±0.02 2.90±0.13 

DB 40.04±0.57 20.75±0.71 6.42±0.20 1.60±0.04 2.25±0.03 6.64±0.13 6.64±0.13 1.87±0.08 

HP 40.52±0.41 6.69±0.03 23.81±0.87 1.79±0.03 2.48±0.04 7.48±0.09 7.48±0.09 1.97±0.03 

JB 44.81±0.61 24.60±0.11 5.12±0.31 1.23±0.04 1.61±0.01 4.90±0.02 4.90±0.02 3.02±0.16 

JD 36.41±0.80 5.92±0.16 33.71±0.89 1.41±0.02 1.97±0.03 5.62±0.13 5.62±0.13 1.38±0.04 

JS 33.16±0.26 3.99±0.19 41.47±0.12 0.83±0.03 1.21±0.04 3.68±0.10 3.68±0.10 1.65±0.06 

LB 46.62±0.21 12.59±0.25 6.18±0.14 1.58±0.04 2.34±0.10 6.46±0.13 6.46±0.13 2.59±0.07 

LZ 40.38±0.53 7.03±0.15 24.08±0.29 1.90±0.06 2.68±0.05 7.78±0.15 7.78±0.15 1.47±0.09 

NP 37.46±0.42 4.63±0.04 36.86±0.64 1.07±0.05 1.51±0.03 4.49±0.08 4.48±0.08 1.23±0.08 

PB 45.43±0.08 9.49±0.65 17.30±0.66 1.17±0.05 1.60±0.01 4.91±0.25 4.91±0.25 2.18±0.06 

PZ 44.66±0.38 20.92±0.24 5.89±0.08 1.16±0.05 1.80±0.03 5.47±0.06 5.47±0.06 2.15±0.09 

XZ 31.79±1.22 10.78±0.38 10.13±0.24 2.38±0.03 3.45±0.03 9.03±0.18 9.04±0.18 6.85±0.20 

YL 37.53±1.25 5.95±0.22 25.48±1.10 1.41±0.01 1.97±0.02 5.48±0.02 5.48±0.02 0.83±0.03 

YZ 34.70±0.70 4.99±0.19 39.88±0.24 1.03±0.02 1.44±0.04 4.09±0.10 4.09±0.10 1.86±0.23 

Data are presented in mean value ± standard error, (n=3) 
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Table 2. 7 Contents of Minerals in 15 Cultivars of Jujube Fruits, mg/kg DW 
 Mn Fe Ni Cu Zn Al B Pb Ca Mg Ti Cr 

BJ 5.08±0.17 

h 

69.16±4.16 

cde 

2.45±0.0

8 ab 

7.08±0.3

4 ab 

15.51±1.7

3 abcd 

164.79±8.3

2 ab 

25.92±1.4

1 bcd 

n.d. 287.53±10.7

7 ab 

623.43±20.7

5 b 

2.45±0.0

1 abcd 

3.85±0.0

7 e 

BZ 8.33±0.11 

b 

125.16±5.2

6 a 

2.57±0.2

1 ab 

6.05±0.0

5 bcde 

16.07±0.2

3 abc 

144.75±1.4

5 def 

16.32±0.2

7 ef 

1.30±0.1

1 a 

192.63±6.52 

ghi 

597.47±15.5

0 bc 

2.09±0.0

4 cd 

5.85±0.5

5 bc 

DB 10.68±0.1

5 a 

72.25±1.08 

bcde 

2.95±0.3

4 a 

4.80±0.3

9 efg 

17.13±0.0

7 ab 

137.59±1.1

9 f 

23.38±0.8

9 cde 

0.54±0.0

2 c 

301.81±4.13 

a 

699.77±9.42 

a 

1.95±0.0

2 d 

4.63±0.2

1 bcde 

HP 5.17±0.26 

gh 

67.04±0.94 

cde 

2.31±0.1

2 ab 

4.86±0.0

4 efg 

13.44±0.2

2 bcde 

140.99±4.2

6 ef 

20.89±1.0

2 def 

0.91±0.0

1 b 

197.19±2.84 

gh 

511.77±4.15 

d 

2.27±0.2

9 bcd 

5.80±0.3

1 bcd 

JB 7.66±0.14 

bcd 

83.82±2.97 

bcd 

2.41±0.0

4 ab 

5.36±0.0

8 def 

16.21±1.1

3 ab 

144.87±3.8

6 def 

20.80±0.5

7 def 

n.d. 179.82±5.72 

hi 

614.03±14.3

4 b 

2.14±0.1

1 cd 

6.48±0.3

7 b 

JD 7.23±0.08 

cde 

62.28±0.55 

de 

2.19±0.0

3 b 

6.03±0.0

5 bcde 

17.58±0.4

5 a 

148.27±2.5

3 bcdef 

25.24±2.7

5 bcd 

n.d. 249.71±8.94 

cde 

647.22±11.3

3 ab 

2.05±0.0

6 cd 

3.84±0.1

4 e 

JS 4.79±0.12 

h 

64.02±3.29 

cde 

2.35±0.1

4 ab 

4.38±0.1

3 fg 

12.31±0.2

2 de 

167.48±4.0

6 a 

22.69±3.4

9 cdef 

n.d. 277.78±4.99 

abc 

614.45±13.0

7 b 

2.66±0.2

8 abc 

3.94±0.0

1 de 

LB 6.88±0.53 

de 

63.41±3.98 

de 

2.33±0.0

4 ab 

3.81±0.1

2 g 

11.15±0.1

8 e 

145.50±2.5

0 cdef 

20.49±0.3

1 def 

1.25±0.0

6 a 

219.38±3.62 

efg 

534.24±11.1

5 cd 

2.17±0.0

7 cd 

4.11±0.4

8 cde 

LZ 8.26±0.24 

bc 

73.85±6.31 

bcde 

2.50±0.0

7 ab 

6.59±0.0

7 bcd 

16.08±1.0

4 abc 

148.14±1.1

9 bcdef 

31.08±0.8

7 ab 

1.05±0.0

9 ab 

216.43±4.27 

fg 

624.51±3.35 

b 

2.51±0.1

4 abcd 

5.30±0.4

0 bcde 

NP 7.58±0.18 

bcd 

63.46±0.17 

cde 

2.43±0.1

3 ab 

6.74±0.4

8 bc 

15.54±0.7

7 abcd 

161.99±1.5

8 abc 

28.54±1.8

1 abc 

0.82±0.1

2 b 

236.04±6.33 

def 

697.16±26.2

0 a 

2.82±0.0

6 ab 

4.00±0.1

0 cde 

PB 7.12±0.14 

de 

65.46±3.05 

cde 

2.49±0.1

2 ab 

6.56±0.4

8 bcd 

16.10±0.5

2 abc 

157.96±3.3

3 abcd 

23.68±0.6

2 cde 

0.23±0.0

5 d 

261.87±1.19 

bcd 

585.94±8.39 

bc 

2.91±0.0

9 ab 

3.82±0.0

6 e 

PZ 6.21±0.10 

efg 

94.24±11.0

6 b 

2.36±0.1

7 ab 

4.72±0.0

5 efg 

13.60±0.2

6 bcde 

142.39±1.5

9 def 

21.09±0.8

9 def 

n.d. 283.83±4.84 

ab 

634.57±13.8

7 ab 

2.04±0.0

8 cd 

9.91±0.9

4 a 

XZ 5.80±0.15 

fgh 

76.88±2.38 

bcd 

2.38±0.0

5 ab 

5.55±0.0

9 cdef 

12.40±0.0

7 cde 

145.17±1.1

1 cdef 

15.93±0.4

0 f 

n.d. 214.27±5.24 

fg 

541.37±14.3

7 cd 

1.90±0.0

6 d 

5.36±0.1

2 bcde 

YL 6.93±0.03 

de 

85.64±2.29 

bc 

2.34±0.0

2 ab 

8.12±0.3

0 a 

13.72±0.8

3 bcde 

156.35±1.6

0 abcde 

35.87±0.4

4 a 

n.d. 162.29±7.22 

i 

588.85±5.38 

bc 

3.09±0.0

4 a 

4.71±0.3

1 bcde 

YZ 6.43±0.05 

ef 

52.72±2.76 

e 

2.34±0.1

2 ab 

6.01±0.3

4 bcde 

16.18±0.6

2 ab 

145.65±1.1

5 cdef 

22.55±0.5

6 cdef 

n.d. 266.61±5.01 

bcd 

632.60±4.34 

ab 

2.07±0.0

1 cd 

3.66±0.0

5 e 

Data are presented in mean value ± standard error, (n=3) 

Different letters followed the data in the same column means significant difference (p<0.05); n.d. means not detected 
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Figure 2. 1 Dendrogram of 15 Cultivars of Jujube Fruits Based on Reducing Sugars Analysis (Lines in the Same Color Mean 

the Cultivars were in the Same Cluster) 
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Figure 2. 2 PCA of Reducing Sugars in 15 Cultivars of Jujube Fruits 
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Figure 2. 3 Dendrogram of 15 Cultivars of Jujube Fruits Based on Organic Acids Analysis (Lines in the Same Color Mean the 

Cultivars were in the Same Cluster) 
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Figure 2. 4 PCA of Organic Acids in 15 Cultivars of Jujube Fruits 
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Figure 2. 5 Dendrogram of 15 Cultivars of Jujube Fruits Based o Amino Acids Analysis (Lines in the Same Color Mean the 

Cultivars were in the Same Cluster) 
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Figure 2. 6 PCA of Free Amino Acids in 15 Cultivars of Jujube Fruits 
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Figure 2. 7 Dendrogram of 15 Cultivars of Jujube Fruits Based on Free Fatty Acids Analysis (Lines in the Same Color Mean 

the Cultivars were in the Same Cluster) 
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Figure 2. 8 PCA of Free Fatty Acids in 15 Cultivars of Jujube Fruits 
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Figure 2. 9 Dendrogram of 15 Cultivars of Jujube Fruits Based on Minerals Analysis (Lines in the Same Color Mean the 

Cultivars were in the Same Cluster) 
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Figure 2. 10 PCA of Minerals in 15 Cultivars of Jujube Fruits 
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Figure 2. 11 Dendrogram of 15 Cultivars of Jujube Based on the Contents of Reducing Sugars, Organic Acids, Free Amino 

Acids, Free Fatty Acids and Minerals (Lines in the Same Color Mean the Cultivars were in the Same Cluster) 
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Figure 2. 12 PCA of All the Components Analyzed in Chapter Two 
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CHAPTER THREE 

ANTIOXIDANT COMPONENTS AND ANTIOXIDANT ACTIVITIES OF 15 

CULTIVARS OF JUJUBE (Ziziphus jujuba Mill.) 

 

Abstract 

Jujube fruits are considered as a promising antioxidant source due to their rich 

amounts of inherent antioxidant components. In this study, cAMP, ascorbic acid, 

triterpenes, total phenolic compounds content and total flavonoids content in jujube fruits 

were measured. The results showed that the content of cAMP varied from 66.33 to 

2716.88 μg/100g FW; the content of ascorbic acid were from 317.9 to 679.6 mg/100g FW; 

the content of triterpenes was from 6.66 to 18.19 mg/100g FW; total phenolic content was 

from 330.74 to 571.44 mg gallic acid/100g FW; the range of total flavonoids content was 

from 43.14 to 154.09 mg rutin/100g FW. In addition, the antioxidant activities of jujubes 

were analyzed, resulting in the antioxidant capacity such as DPPH, ABTS, FRAP and 

HRSA in a range from 0.603 to 1.842 mmol Trolox/100g FW, 2.276 to 2.786 mmol 

Trolox/100g FW, 1.228 to 3.823 mmol Trolox/100g FW, 1.353 to 3.560 mmol 

Trolox/100g FW, respectively. Based on the contents of their antioxidant components and 

antioxidant activities, hierarchical cluster analysis and principal component analysis were 

used to classify the 15 cultivars of jujube, which were categorized into five major clusters. 

Particularly, the cultivar NP, JS, YZ that were in the same cluster contained relatively 

high contents of antioxidant components and stronger antioxidant capacity. 
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1. Introduction 

Antioxidants is ‘any substances that, when present at low concentrations 

compared to those of an oxidizable substrate, significantly delay or prevent the oxidation 

of the substrates’ (1). Antioxidants are commonly used to avoid and/or delay the 

oxidation of lipids, that can maintain the quality of products and expand the shelf life (2). 

Also, they play an important role in avoiding diseases which are caused by oxidative 

damage, such as cancer, cardiovascular, rheumatoid arthritis, Alzheimer’s disease (3). 

Natural antioxidants in food include vitamin C, vitamin E, β-carotene, some free amino 

acids, flavonoids, phenolic compounds, etc. (4, 5). There are many methods to measure 

the antioxidant capacities, including oxygen radical absorbance capacity, total radical-

trapping antioxidant parameter, total oxidant scavenging capacity, chemiluminescence, 

photochemiluminescence, croton or β-carotene bleaching by LOO*, low density 

lipoprotein oxidation, ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-

picrylhydrazyl (DPPH) assay, thiobarbituric acid reactive substance assay, Folin-

Ciocalteu assay, phycoerythyrin assay, etc. (6, 7). 

Phenolic compounds are secondary metabolites, and widely distributed in plants. 

In our diet, vegetables, fruits, cereals and some beverages such as tea and juice are the 

major source of polyphenols (8). These phenolic compounds have antioxidant capacities, 

such as serving as free radical scavengers, superoxide radical scavengers, and hydrogen 

donators (9).  

Ascorbic acid is an essential vitamin for human beings, which is often obtained 

from our diets, particularly from fruits and their products. It is an enzyme co-factor in 
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hydroxylation reactions, for instance, it is involved in synthesis of collagen. It also 

contributes to protect membranes against lipid oxidation. The major pathway in plant to 

produce ascorbic acid is known as D-mannose/L-galactose pathway, where L-GalL 

dehydrogenase (GLDH) in the final step converts L-galactono-lactone into L-ascorbate 

(10). As an antioxidant, ascorbic acid is found to scavenge superoxide, peroxyl radical, 

hydrogen peroxide, and hydroxyl radical (4).  

Jujube fruits have a lot of health benefits, mainly due to its rich amounts of 

antioxidants, including ascorbic acid, cAMP, phenolic compounds, triterpenes, 

polysaccharides, tocopherol, and carotene. Compared with other common fruits such as 

pomegranate, sweetsop and guava, jujube fruits were reported to have higher antioxidant 

capacity (11). Total phenolic content (TPC), total flavonoid content (TFC) and other 

antioxidant activities in different jujube species have been reported (12-16).  Wojdylo (17) 

et al. measured antioxidant capacities of dried jujube, which were dried by different 

methods, including convective drying, vacuum-microwave drying, freeze drying, and 

combined convective and vacuum-microwave together. The results showed that the 

sample processed by the freezing drying contained the highest vitamin C content from 

2160 mg/100g DW to 3558 mg/100g DW, as well as the highest value of DPPH and 

ABTS. Drying methods including air drying, sun drying and microwave drying, 

decreased the content of antioxidants, but sample under air drying at 50°C was reported 

to be able to maintain cAMP in a relatively high level. Zhao et al. (18) reported the 

antioxidant capacity of ethanolic extracts of seven cultivars of Chinese jujubes by three 

antioxidant methods, including phosphomolybdenum assay, superoxide radical 
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scavenging activity, and hydroxyl radical scavenging activity. All the extracts showed 

strong antioxidant activities, while there were significant differences among the cultivars. 

On the other hand, it was found that, in different maturity stages of the jujube fruit, TPC 

and TFC were decreased with the increased maturity, as well as the antioxidant capacity 

(19).  

In this chapter, 15 cultivars of jujube that were collected from the same farm in 

Shanxi Province, China, were measured in terms of their antioxidants and the antioxidant 

capacity. These cultivars of jujube are most widely planted in the northern area of China, 

such as Shanxi, Henan, Hebei Provinces, etc., and sold in the national market. Also, 

hierarchal cluster analysis (HCA) and principal component analysis (PCA) are applied to 

classify the jujube cultivars in an effort to help us to know the similarity of different 

cultivars, and help customers to choose proper health benefiting jujube products. 

2. Materials and Methods 

2.1 Sample Collection 

Different cultivars of the jujube fruits were collected from a farm in Shanxi 

Province, China, in October 2015. The samples were transported to the lab and directly 

frozen at -80 °C, after the hand-pick. The cultivars include Ziziphus jujuba Mill. cv. 

Banzao (BZ), Ziziphus jujuba Mill. cv. Dabailing (DB), Ziziphus jujuba Mill. cv. Cang 

county Jinsixiaozao (JS), Ziziphus jujuba Mill. cv. Huping (HP), Ziziphus jujuba Mill. cv. 

Lingbao (LB), Ziziphus jujuba Mill. cv. Yuanling (YL), Ziziphus jujuba Mill. cv. Jidan 

(JD), Ziziphus jujuba Mill. cv. Lizao (LZ), Ziziphus jujuba Mill. cv. Baode Youzao (YZ), 

Ziziphus jujuba Mill. cv. Bin county Jinzao (BJ), Ziziphus jujuba Mill. cv. Junzao (JB), 
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Ziziphus jujuba Mill. cv. Pingshun Junzao (PB), Ziziphus jujuba Mill. cv. Xiangzao (XZ), 

Ziziphus jujuba Mill. cv. Pozao (PZ), Ziziphus jujuba Mill. cv. Neihuangbianhesuan (NP) 

(see Table 2.1). 

2.2 Chemicals 

Gallic acid, ursolic acid, ascorbic acid, trolox, Folin-Ciocalteu phenol reagent, 

vanillin, cyclic AMP, rutin, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis (3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferrous chloride, and 2,4,6-tris (2-

pyridyl)-s-triazine were purchased from Sigma-Aldrich Company (Sigma, St. Louis, MO., 

USA). Aluminum chloride, sodium nitrate, sodium hydroxide, sodium carbonate, 

perchloric acid, 2,6-dichlorophenol indophenol, acetic acid, and potassium persulphate 

were purchased from Fisher Scientific (Fisher Scientific, Pittsburgh, PA, USA); HPLC 

grade methanol were bought from Fisher Scientific (Fisher Scientific, Pittsburgh, PA, 

USA).  

2.3 Analysis of Cyclic Adenosine Monophosphate (cAMP) 

Jujube fruits were under freeze drying at first, and then ground into powder. One 

gram of the sample mixed with 20 mL of distilled water was put into a flask under ultra-

sonication for 30 minutes. After filtration, the filtrate was diluted by distilled water to the 

final volume at 25 mL. The concentration of standard cAMP solution was prepared in 

water from 1 to 15 μg/mL. The extracts and the standard solutions were filtered through 

0.45 μm filter membranes before the HPLC injection. Thermo Scientific U3000 series 

HPLC system with UV-Vis detector was used for the cAMP analysis. A Golden Hypersil 
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C18 column (4.6×250 mm, 5 μm) was used for the chemical separation. Mobile phase A 

was 20 mmol KH2PO4 in water, and mobile phase B was methanol. Isocratic mobile 

phase in a concentration (A:B, 80:20 ) was used at a flow rate of 1 mL/min, injection 

volume was 15 μL. The concentration of cAMP was calculated according to the external 

standard curve and expressed as μg/100g fresh weight. 

2.4 Determination of Ascorbic Acid Content 

Titration method was used to determine the content of ascorbic acid, based on the 

reduction of 2, 6-dichlorophenol indophenol dye. The procedures were based on the 

Rekha’s method with a little modification (20). Three grams of fresh sample was 

homogenized with 25 mL of 4% oxalic acid solution in a 50 mL volumetric flask. After 

filtration, the same oxalic acid solution was added up to 50 mL. Standard ascorbic acid 

was dissolved in 4% oxalic acid solution to prepare its concentration at 0.5 mg/mL. Five 

mL of the extracts or the standard ascorbic acid was titrated by 0.01 M 2,6-

dichlorophenol indophenol until the endpoint was turned into pink, while the 4% oxalic 

acid solution was used as the blank. The concentration of ascorbic acid was expressed as 

mg/100g fresh weight. 

2.5 Determination of Triterpenes Content 

The content of triterpenes in jujube fruits was measured by the vanillin-perchloric 

acid method. One gram of the freeze dried sample was steeped in 28 mL of 80% ethanol 

solution for 20 minutes before it was ultra-sonicated at 60 °C for 22min. Then, it was 

extracted three times by 80% of ethanol, and filtered. The filtrate was combined together 



112 

 

and adjusted to the final volume at 100 mL. Furthermore, an aliquot of 0.3 mL of the 

above diluted filtrate was dried by nitrogen, re-dissolved in a mixture which contained 

0.2 mL of the freshly prepared 0.5 % vanillin-acetic acid solution and 0.8 mL of 70% of 

perchloric acid in 60 °C water bath for 15 minutes. After being cooled down to room 

temperature, the absorbance was measured at 550 nm. Ursolic acid was used as the 

standard to prepare an external standard curve, of which the concentrations were made in 

7 levels from 0.004 mg/mL to 0.040 mg/mL. The triterpenes content was expressed as mg 

ursolic acid equivalent /100g fresh weight. 

2.6 Sample Preparation for Determination of Phenolic Compounds Contents 

Five grams of the fresh sample were mixed with 50 mL of 80% methanol solution, 

under ultra-sonication for 2 hours, then centrifuged at 5000 rpm at 4 °C for 15 minutes. 

The residue was re-extracted by 80% of methanol for three times, followed by the 

collection of all the supernatant together, which were evaporated at 45 °C under vacuum, 

then diluted with 5 mL of methanol. All the extractions were kept in the dark and stored 

at -20 °C. 

2.7 Determination of Total Phenolic Content 

Folin-Ciocalteu method was used for the determination of total phenolic content 

(TPC) (21). At first, an aliquot of 100 μL of the sample extracts was diluted with 5.9 mL 

of distilled water, then 500 μL of the Folin-Ciocalteu reagent was added into the extract 

before 1.5 mL of 20% sodium carbonate solution was added. The mixture was kept in 

darkness at room temperature for 2 hours, then measured at 760 nm. Methanol was used 
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as the blank, and gallic acid was used as a standard to construct an external standard 

curve within the concentration range from 100 mg/L and 1000 mg/L. The total phenolic 

content was expressed as mg gallic acid equivalent/100g fresh weight. 

2.8 Determination of Total Flavonoids Content 

Total flavonoids content (TFC) was measured at 510 nm by a colorimetric method. 

The mixture of 1 mL of the extracted solution and 4 mL of distilled water was mixed well, 

then 3 mL of 5% NaNO2 was added. Five minutes later, 0.3 mL of 10% AlCl3 was added 

in the mixture. After another one minute, 2 mL of 1 M NaOH was added. Rutin was used 

as the standard, methanol was used as the blank. The TFC was expressed as mg rutin 

equivalent /100g fresh weight. 

2.9 Determination of Antioxidant Capacity 

2.9.1 Free radical scavenging capacity by DPPH assay 

Sample solution in a volume of 0.1 mL was mixed with 3.9 mL of 6×10-5 mol/L 

DPPH solution, kept in the dark at room temperature for 30 min. Its absorbance was 

measured at 515 nm. The scavenger capacity of DPPH was calculated based on the 

following equation: 

% scavenging capacity = 100 × (A0-A)/A0: 

Where A0 is the absorbance of the blank solution, and A is the absorbance of the 

solution with sample.  

Trolox was used as the standard. The scavenging capacity was expressed as mmol 

Trolox equivalent /100g fresh weight.   
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2.9.2 Free radical scavenging capacity by ABTS assay 

ABTS assay was conducted with a modified procedure as described in a previous 

study (22). In this study, 7 mM of the ABTS+• solution was mixed with 140 mM of 

potassium persulphate, kept in the dark for 12-16 hours, then diluted by ethanol to make 

the absorbance at 734 nm at 0.70 ± 0.02. An aliquot of 40 μL of the sample solution was 

placed into a test tube, then added with 4.0 mL of the diluted ABTS+• solution, mixed 

well, then kept in the dark at room temperature for 10 minutes. The scavenging capacity 

was calculated by the following equation:  

% scavenging = 100 × (A0-A)/A0: 

Where A0 is the absorbance of blank solution, and A is the absorbance of solution with 

sample. The results were expressed as mmol Trolox equivalent / 100 g fresh weight. 

2.9.3 Ferric reducing antioxidant power (FRAP) assay  

FRAP assay was performed according to a previous study reported by Benzie and 

Strain (23). Extract of the sample for phenolic compounds was diluted to a suitable 

concentration, when 0.1 mL of diluted extracts was mixed with 3.0 mL of the FRAP 

reagent which contained 10 mM TPTZ in 40 mM HCl, 0.3 M acetic acid buffer (pH 3.6) 

and 20 mM/L FeCl3 solution (1:10:1, V:V:V). The reagent was freshly prepared. The 

mixture was kept in water bath at 37 °C for 4 min. The absorbance was measured at 593 

nm. Trolox was used as the standard, and the results were expressed as mmol Trolox 

equivalent / 100 g fresh weight. 

2.9.4 Hydroxyl radical scavenging activity (HRSA) 



115 

 

Two milliliters of the diluted sample was placed in the test tube, then 0.6 mL of 

FeSO4 solution (8mM/L) was added before 0.5 mL of H2O2 solution (20 mM/L) was 

added. The mixture was vigorously shaken before 1.0 mL of salicylic acid (3mM/L) was 

added. The mixture was kept in 37 °C water bath for 30 minutes, then centrifuged at 

10000 rpm for 10 minutes. Scavenging rate was calculated based on the following 

equation: 

Scavenging %= [1-(A1-A2)/A0] ×100 

Where A0 is the absorbance without the sample, A1 is the absorbance with the 

sample, and A2 is the absorbance without the salicylic acid. 

Trolox was used as standard equivalent, and the final result was expressed as 

mmol Trolox /100g FW. 

 

2.10 Statistics 

All the data were analyzed in triplicate (n=3). The one-way ANOVA data analysis 

was conducted by JMP Pro 12.2.0 software. Significant difference level was compared by 

the Tukey’s test (p<0.05). Principal component analysis (PCA) and hierarchical cluster 

analysis (HCA) were performed by JMP Pro 12.2.0 software.  

3. Results and Discussion 

3.1 cAMP Content Analysis 

cAMP is also named 3’,5’-cyclic adenosine monophosphate. As a second 

messenger, it is very important in intracellular signal transfer (24). In this study, the 

content of cAMP in 15 cultivars of jujube were measured, which is listed in Table 3.1. 
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The contents of cAMP among the aforementioned 15 jujube cultivars varied from 66.33 

μg/100g FW to 2716.88 μg/100g FW, which had significant differences (p<0.05). The 

cultivars including BJ, HP, and YL contained less than 100 μg/100g FW of cAMP, and 

cultivar JS, LZ, PB and NP contained more than 1000 μg/100g FW of cAMP. The 

amount of cAMP in other cultivars were from 226.71 to 998.63 per 100 g FW. 

Particularly, the cultivar NP possessed the highest amount of cAMP, although its amount 

in this study was much lower than that (17.38 to 193.93 μg/g FW) in the report by Kou et 

al. (25). 

3.2 Ascorbic Acid Analysis 

Ascorbic acid in jujube was measured by the titration method. As shown in Table 

3.1, the contents in different cultivars had significant difference (p<0.05). The ascorbic 

acid content ranged from 317.9 mg/100g FW to 679.6 mg/100g FW. Particularly, Z. 

jujuba Mill. cv. PZ contained the highest amount of ascorbic acid, while its content in BJ, 

DB, JS, JD, YL, YZ and NP were more than 500 mg/100g FW and its content in BZ, JB, 

LZ, PB and XZ were less than 400 mg/g FW.  

L-galactose pathway is a major pathway involved in the ascorbic acid synthesis in 

plants. In addition, GDP-D-mannose pyrophosphorylase, GDP-mannose 3’,5’-epimerase, 

GDP-L-galactose phosphorylase, and L-galactono-1,4-lactone dehydrogenase play 

important roles in accumulation of ascorbic acid in development stages (26, 27). 

Although no experiments in regards of these enzymes were conducted in this study, the 

difference of the ascorbic acid content in different cultivars might result from the 

different activities of these enzymes in different cultivars.  
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Compared to the other reported studies, the result of ascorbic acid in this study 

(317.9 mg/100g FW to 679.6 mg/100g FW) was in agreement with Kou’s report (1.671 

mg/g FW to 4.247 mg/g FW) (25) and Gao’s (225.1 mg/100g to 387.9 mg/100g) (11). An 

Indian jujube that is named Ziziphus mauritiana Lamk. contained less ascorbic acid 

content (19.54 mg/100g to 99.49 mg/100g) than the jujubes in this study (22). In addition, 

the ascorbic acid content in four cultivars of Spanish jujube was analyzed by HPLC, 

which revealed that their contents were in a range from 387 mg/100g FW to 555 mg/100 

FW, very close to the data shown in this study (17).  

The content of ascorbic acid can be affected by the maturity and ripening stages. 

Based on a previous study in Iran, jujubes in a full maturity (red) had the highest content 

of ascorbic acid (637.56 mg/100g FW) while jujubes in fully ripe (dehydrated brown) 

stage only had 223.85 mg/100g FW (28). During the postharvest period, the content of 

ascorbic acid decreased when the storage time increased, even though some treatments, 

such as nitric oxide fumigation or 1-methylcyclopropene, can reduce the loss, but these 

treatments (and chemicals) could not stop the decrease of ascorbic acid in jujubes (29, 30). 

In this study, it was also found that the ascorbic acid content had positive correlations 

with the antioxidant capacity: DPPH (r=0.7648, p<0.01), FRAP (r=0.6420, p<0.01), 

HRSA (r=0.5266, p<0.01), and had a negative correlation with ABTS (r=-0.1324). 

(Table 3.3) 

3.3 Total Triterpenes Content Analysis 

Triterpenes are the second metabolites, of which the functions are protecting the 

plants from the invasive attacks by insects and/or microbials, as well as for the healthy 
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growth of the plants. Based on previous reports, triterpenic acids were found in jujube 

fruits, including ursolic acid, ursonic acid, betulinic acid, pleanonic acid, ceanothic acid, 

etc. (31). In this study, content of triterpenes in different cultivars were measured, which 

are shown in Table 3.1. Among the15 cultivars, Ziziphus jujuba Mill. cv. XZ contained 

the highest content of triterpenes in 18.19 mg ursolic equivalent /100g FW. On the 

contrary, the cultivar HP contained the lowest content in 6.66 mg ursolic equivalent /100g 

FW. According to the Tukey’s test, there was no significant difference in terms of the 

content of triterpenes among the cultivars BJ, BZ, JB, LB, NP, YZ, PB, PZ and YL 

(p<0.05). In addition, as shown in Table 3.3, the content of triterpenes presented a 

negative correlation with the antioxidant capacities except the ABTS scavenging activity 

(r=0.5446, p<0.01).  

3.4 Total Phenolic Contents and Total Flavonoid Content Analysis 

Total phenolic contents (TPC) were measured by the Folin-Ciocalteu method, of 

which the principle relies on the phenolic compounds to donate the electrons to 

phosphotungstic acid complexes in base condition to form a blue color complexes (32). 

Meanwhile, flavonoids as a subgroup of phenolic compounds were determined by the 

aluminum chloride method.   

The results of the TPC and TFC are listed in Table 3.2. Among the cultivars, the 

results of TPC in different cultivars were significantly different (p<0.05). LZ contained 

the lowest TPC as 330.74 mg GAE/ 100g FW, and YZ had the highest TPC as 571.44 mg 

GAE/ 100g FW. The range of TFC were in a range from 154.09 mg RE/ 100g FW (NP) 

to 43.14 mg RE/ 100g FW (JB). The TFC value in five cultivars, including JB, BZ, HP, 
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JD and LB, were less than 100 mg RE/ 100g FW, and more than 100 mg RE/ 100g FW in 

other cultivars. These results were agreed with a previous report from Gao (11), who 

reported that the TPC was from 275.6 mg GAE/ 100g FW to 541.8 mg GAE/ 100g FW, 

and TFC was from 62.0 mg RE/100g FW to 284.9 mg RE/100g FW in fresh jujube fruits. 

Compared to the Kou’s study which reported that the TPC was from 0.558 mg GAE/100g 

FW to 2.520 mg GAE/100g FW, and the value of TFC varied from 0.47 mg RE/ 100g 

FW to 2.00 mg RE/ 100g FW (25), our study showed close values of the TFC but higher 

value of TPC. Li et al. detected the TPCs in five cultivars (e.g., Ziziphus jujuba Mill. cv. 

Jinsixiaozao, Yazao, Jianzao, Junzao and Sanbianhong) of jujube, and obtained higher 

content of TPC (5.18 mg GAE/ g to 8.53 mg GAE/ g) (15) compared to the results in this 

study (330.74 mg GAE/100g FW to 571.44 mg GAE/100g FW). In addition, the TPC of 

12 Indian cultivars of Ziziphus mauritiana Lamk. were reported in a range from 172.08 

mg GAE/100g to 328.65 mg GAE/ 100g, which were lower than the contents in this 

study (22).  

Moreover, further studies on the correlation of TPC and TFC with the antioxidant 

capacity revealed that the TPC had positive correlations with the values of DPPH, FRAP, 

HRSA, of which the correlation coefficients were 0.5118, 0.4523, 0.7149 respectively; 

but a low correlation with ABTS (r=0.2113). In comparison, the TFC presented positive 

correlations with DPPH (r=0.5971, p<0.01), FRAP (r=0.4523, p<0.01), and a low 

correlation with HRSA (r=0.1749), as well as almost no correlation with ABTS (r=-

0.0509). (Table 3.3) 

3.5 Determination of Antioxidant Capacity 
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Antioxidant capacity were determined by four methods, including the DPPH, 

ABTS, HRSA and FRAP assays. The former three involved in measurements of the free 

radical scavenging capacity, while the last one measured the reducing power. Trolox was 

used as an equivalent standard chemical in all the methods. Except the ABTS analysis, 

the other results have shown significant differences among the cultivars (p<0.05). In the 

DPPH analysis, YZ (1.84 mmol TE/100g FW) possessed the strongest scavenging 

capacity, while JB (0.603 mmol TE/100g FW) had the weakest capacity. Besides, 6 

cultivars of jujube, including BZ, JB, LB, PB, XZ, and YL, showed less than 1 mmol 

TE/100g FW in the DPPH capacity, while other cultivars had the values in agreement 

with that in the Kou’s report (25). Twelve cultivars of Indian jujube (Ziziphus mauritiana 

Lamk.) were also reported with similar DPPH scavenging capacity in a range from 14.18 

to 39.64 μmol TE/g, but some cultivars such as Gola, Seb, ZG-3 and Elaichi had higher 

values (22). The DPPH scavenging capacity of Jujube which were picked up from Yulin 

in China were almost twice (1.35 to 3.81 mmol Trolox / 100g FW) than the results in this 

study (11).  

Data of ABTS capacity are shown in Table 3.2. Among most cultivars such as BJ, 

BZ, DB, HP, JB, JD, JS, LB, NP, PZ and YZ, there was no significant difference in their 

ABTS capacity (p<0.05). In regards of the ABTS capacity of all the cultivars in Table 

3.2, its value was between 2.276 mmol Trolox/ 100g FW to 2.786 mmol Trolox /100g 

FW. Particularly, the cultivar XZ showed the highest ABTS capacity, while the cultivar 

YL had the lowest value in this study. Compared with the previous study, the results 

obtained from this study were higher than that in other cultivars of jujube fruits (0.959 
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mmol Trolox/ 100g FW to 1.951 mmol Trolox /100g FW) (25) which are grown in the 

same province, but lower than that in other jujubes (1.74 mmol Trolox /100g FW to 7.75 

mmol Trolox /100g FW) (11) in Shaanxi province. On the other hand, according to 

another previous study, antioxidant capacity can be affected by different ripening stages 

(33). For example, pear jujube, which was investigated by Wu et al., which showed that 

its ABTS capacity approached to the highest value in its green stage, and gradually 

decreased along with the fruit ripening until half of the fruit was red, when its ABTS 

capacity became stable (33). 

FRAP is another common method that is often used to measure the antioxidant 

power, which can be measured at 593 nm in light of the color changes involving in the 

formation of a blue color complex in low pH condition (23). As shown in Table 3.2, the 

capacity of FRAP was in a range from 1.228 mmol Trolox/100g FW to 3.823 mmol 

Trolox/ 100g FW. In comparison, Wojdylo et al. measured four cultivars of Spanish 

jujube, which showed their FRAP values were from 17.66 mmol Trolox /100g DW to 

34.31 mmol Trolox /100g DW (34). The pulp of three cultivars of jujube including 

Dongzao, Muzao and Hamidazao were used as samples to measure the FRAP capacity, 

resulting in 982.31, 382.15, and 252.94 mg ascorbic acid/ 100g DW respectively (35). In 

the FRAP assay, ferrous phosphate can be used as another standard equivalent besides the 

trolox and ascorbic acid, by which the FRAP value of Ziziphus mauritiana which was 

grown in Bangladesh was determined to be 6336.71 μmol Fe (II)/g (33). On the other 

hand, this antioxidant capacity was also found to be affected by drying methods such as 

convective drying, vacuum microwave drying and freeze drying. Particularly, the latter 
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was found to be able to keep the highest antioxidant capacity, while the former method 

led jujube having the lowest FRAP value among these methods (17).  

Hydroxyl radical scavenging activity (HRSA) is related to metal ions transition. 

In this study, this antioxidant capacity was observed to have a significant difference 

among the aforementioned cultivars (p<0.05). The cultivar XZ exhibited the smallest 

value of HRSA with 1.353 mmol Trolox/ 100g FW, while the cultivar YZ had the highest 

value of HRSA at 3.560 mmol Trolox /100g FW. Zhao et al. compared the HRSA of 

seven cultivars including Ziziphus jujuba Mill. cv. Pozao, Jinsizao, Junzao, Xiaozao, 

Yuzao, Goutou and Banzao, and found that the extract from the cultivar Goutou could 

inhibit 45.9% of hydroxyl radicals, but the cultivar Ban could only inhibit 10.7% of 

hydroxyl radical (18). 

3.6 Hierarchical Cluster Analysis (HCA) and Principle Component Analysis (PCA) 

Hierarchical cluster analysis was conducted by the Ward method, by which the 

result is shown in a dendrogram to indicate the distance between clusters (Figure 3.1), 

which is often used to indicate the similarity of objects in biological studies. The cultivars 

in the same cluster are more similar to each other, or have similar physio-chemical 

properties than the other cultivars outside this cluster. The scree plot on the left side of 

the dendrogram in Figure 3.1 presents the points for the joint of each cluster. According 

to the natural break where the distance jumps up suddenly (or it is called the cutting 

point), the jujube cultivars are classified into five clusters. Cluster 1 includes the cultivars 

BZ, JB, LB and XZ; cluster 2 includes the cultivars DB, PZ and BJ; cluster 3 includes the 

cultivars HP, JD and YL; cluster 4 includes the cultivars LZ and PB; and cluster 5 
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includes the cultivars NP, JS and YZ. Based on the color map, cultivars in cluster 1 had 

relatively lower amount of cAMP, ascorbic acid, TPC, TFC, and the weaker antioxidant 

capacity including DPPH, FRAP and HRSA, except triterpenes and ABTS, which made 

these cultivars clustered together. In comparison, most cultivars in the cluster 2 contained 

middle levels of contents of antioxidant components and antioxidant capacity. The 

cultivars in the cluster 3 contained very low content of cAMP, and other values in middle 

levels in terms of their contents (gray color). The cultivars in the cluster 4 had relatively 

higher amount of cAMP but relatively lower amount of other measurements. Finally, the 

cultivars in the cluster 5 had relatively stronger antioxidant capacity in DPPH, FRAP and 

HRSA. 

Principal component analysis (PCA) was also conducted to reveal the correlations 

between the cultivars. Figure 3.2 A shows the eigenvalues of the principal components. 

When the eigenvalues of PCs are larger than 1, they are considered as the main principal 

components, in this context, the first three principal components (PC1, PC2, and PC3) are 

considered the main PCs. However, because the cumulative percentage of these three PCs 

was still less than 80% of total data variance, in this case, two dimensional plot (PC1 and 

PC2) was chosen, where the PC1 and PC2 explained 64.0% of total data variance. In 

addition, according to the loading matrix (Table 3.4), PC1 was determined to include 

ascorbic acid, DPPH and FRAP, and PC2 included triterpenes and ABTS. In Figure 3.2 

B, cultivars of cluster 1 are located in the II quadrant because of the positive effect of 

contents of triterpenes and ABTS capacity, while the cultivars of cluster 2, 3 and 4 cannot 

be separated very well based on the scores of PC1 and PC2 because all of them are 
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around the central of the coordinate system. The cultivars in cluster 5 are located in I and 

IV quadrant, because their values in terms of TPC, HRSA, DPPH, FRAP and ascorbic 

acid content in the loading plot had positive effects. Figure 3.2 C shows the loading plot 

of the variance. Longer arrow of the variance means this PCA can explain more 

information of that variance. In this study, much information of TFC and cAMP has been 

lost because the PC1 and PC2 only explained 64.0% of total data variance.  

Figure 3.3 represents the bivariate fit of score of PC1 by score of PC2, which is 

performed under p=0.95. The density ellipse indicates how the score plot of PC1 and PC2 

is distributed; in this study, it was grouped by hierarchical cluster analysis which is 

shown in Figure 3.1. The ellipses of cluster1, cluster 3, and cluster 5 have no 

intersections that means these clusters are discriminated from each other by the PCA 

method. In contrast, the cluster 2, cluster 3, and cluster 4, as same as the score plot shown 

in Figure 3.2 B of the PCA method, they could not be distinguished from each other, 

because of their overlapping ellipses. As shown in the Figure 3.2 B, there were no 

evidence to demonstrate that cluster 1 and cluster 4, cluster 2 and cluster 5 had the 

intersection, but based on the ellipses shown in Figure 3.3, these clusters are crossed 

together, indicating that the cluster 1 (BZ, JB, LB, XZ) and cluster 4 (LZ and PB) as the 

same as the cluster 2 (DB, PZ and BJ) and cluster 5 (NP, JS and YZ) cannot be 

distinguished from each other. As aforementioned, cluster 1, cluster 3 (HP, JD and YL) 

and cluster 5 were discriminated from each other; moreover, the cluster 2 (DB, PZ and 

BJ), cluster 4 (LZ and PB), and cluster 3 did not have significant differences. In addition, 
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cluster 1 and cluster 2, as well as the cluster 4 and cluster 5, can be discriminated from 

each other. 

4. Conclusion 

Overall, in this study, the cultivar NP contained the highest content of cAMP 

(2716.88 μg/100g FW), the cultivar XZ had the highest amount of triterpenes (18.19 μg 

UE/100g FW), and the cultivar PB possessed the highest content of ascorbic acid (679.6 

mg/100g FW). In addition, the cultivar YZ contained the highest TPC (571.44 mg 

GAE/100g FW) and DPPH capacity (1.842 mmol Trolox/100g FW), while the cultivar 

NP contained the highest content of flavonoids (154.09 mg RE/100g FW) and HRSA 

capacity (3.523 mmol Trolox /100g FW); the strongest ABTS and FRAP capacities were 

shown in the cultivar XZ (2.786 mmol Trolox/100g FW) and JS (3.823 mmol 

Trolox/100g FW), respectively. 

According to the hierarchical cluster analysis and principal component analysis, 

these 15 cultivars of jujube could be classified into five clusters. The cluster 1 includes 

the cultivars BZ, JB, LB and XZ, cluster 3 includes the cultivars HP, JD and YL, and the 

cluster 5 includes the cultivars NP, JS and YZ. These three clusters were discriminated 

from each other. However, the cluster 2 (DB, PZ, BJ), cluster 3 and cluster 4 (LZ and PB) 

could not be discriminated from each other based on the density ellipse.  

In summary, these 15 cultivars of jujube possessed high antioxidant capacities, 

which indicates that they can be a natural source of antioxidants for potential applications 

in food and pharmaceutical products. Especially for the cultivar NP, JS, and YZ, these 
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three cultivars contained much higher contents of antioxidant components (cAMP, 

ascorbic acid and triterpenes) and stronger antioxidant capacity than the other cultivars. 
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Table 3. 1 Contents of Antioxidant Components in 15 Cultivars of Jujube Fruits 

 

cAMP 

μg/100g FW 

triterpenes  

mg UE1/100g FW 

ascorbic acid  

mg/100g FW 

BJ 66.33±1.90 k 11.94±0.22 bcd 575.8±25.4 ab 

BZ 593.75±49.25 f 15.46±0.67 ab 317.9±6.9 e 

DB 645.13±0.63 ef 10.16±0.06 cde 544.9±13.1 abc 

HP 79.25±1.57 jk 6.66±0.33 e 455.8±89.8 bcde 

JB 402.50±0.82 g 14.46±0.18 ab 321.2±24.7 e 

JD 226.71±5.85 hi 9.97±0.41 cde 568.2±1.9 ab 

JS 1479.81±1.27 b 8.54±0.70 de 587.9±4.4 ab 

LB 163.75±7.50 ij 15.18±0.24 ab 409.4±4.6 cde 

LZ 1115.00±16.55 c 9.49±0.18 cde 384.3±24.8 de 

NP 2716.88±14.37 a 13.15±0.40 bc 541.1±25.4 abc 

PB 1116.50±6.48 c 12.37±0.82 bc 341.6±18.3 e 

PZ 998.63±8.05 d 12.32±0.21 bc 679.6±10.5 a 

XZ 249.00±15.76 h 18.19±0.34 a 356.4±5.4 e 

YL 73.63±6.19 k 14.71±2.31 ab 517.5±3.4 bcd 

YZ 721.75±23.80 e 12.57±0.30 bc 573.5±6.7 ab 

Data were expressed as mean value ± standard error; UE1 represented ursolic acid 

equivalent; Different letters in the same column followed the value means significant 

difference (p<0.05). 
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Table 3. 2 Antioxidant Capacity in 15 Cultivars of Jujube Fruits 
 mg equivalent1 / 100 g FW mmol Trolox / 100g FW 

 TPC  TFC  DPPH ABTS  FRAP HRSA  

BJ 392.03±7.73 def 152.98±0.37 a 1.541±0.009 c 2.529±0.068 abcd 2.651±0.112 bc 2.394±0.109 cd 

BZ 357.86±9.64 ef 72.78±0.42 g 0.700±0.011 gh 2.714±0.034 ab 1.383±0.261 de 1.934±0.108 def 

DB 392.26±13.45 def 151.60±0.73 a 1.092±0.024 d 2.555±0.048 abcd 1.975±0.303 cde 1.489±0.175 fg 

HP 393.93±6.70 de 87.32±0.14 f 1.054±0.011 de 2.455±0.011 bcd 1.564±0.029 de 2.584±0.031 bc 

JB 350.61±20.62 ef 43.14±0.74 h 0.603±0.012 h 2.604±0.036 abc 1.494±0.142 de 1.673±0.039 efg 

JD 451.53±13.59 bcd 88.67±0.71 f 1.114±0.022 d 2.465±0.043 bcd 2.137±0.116 bcde 2.446±0.018 c 

JS 452.64±2.20 bcd 121.06±0.14 c 1.687±0.037 b 2.464±0.047 bcd 3.823±0.307 a 2.493±0.174 c 

LB 437.06±17.32 cd 71.77±1.21 g 0.660±0.010 h 2.725±0.026 ab 1.228±0.156 e 1.667±0.013 efg 

LZ 330.74±1.10 f 119.34±0.74 c 1.145±0.019 d 2.312±0.007 cd 1.992±0.178 cde 1.952±0.057 de 

NP 503.00±18.43 b 154.09±0.24 a 1.742±0.019 ab 2.689±0.041 ab 2.728±0.047 bc 3.523±0.009 a 

PB 402.18±17.02 ef 104.91±0.24 de 0.798±0.019 fg 2.363±0.152 cd 1.357±0.099 de 1.607±0.056 efg 

PZ 370.56±10.70 ef 124.20±0.49 c 1.550±0.018 c 2.496±0.018 abcd 2.298±0.115 bcd 2.217±0.030 cd 
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 mg equivalent1 / 100 g FW mmol Trolox / 100g FW 

 TPC  TFC  DPPH ABTS  FRAP HRSA  

XZ 411.91±8.70 de 136.86±2.80 b 0.835±0.008 f 2.786±0.052 a 1.573±0.291 de 1.353±0.127 g 

YL 489.64±7.18 bc 106.99±0.75 d 0.981±0.002 e 2.276±0.051 d 1.789±0.047 cde 3.029±0.079 b 

YZ 571.44±5.08 a 101.07±0.74 e 1.842±0.041 a 2.695±0.089 ab 3.068±0.229 ab 3.560±0.024 a 

Data were expressed as mean value± standard error; 

Equivalent 1: for TPC, the equivalent represented gallic acid; for TFC, the equivalent represented rutin; 

Different letters followed the value in the same column means significant difference (p<0.05). 
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Table 3. 3 Pearson Correlation of cAMP, Triterpenes, Ascorbic acid, TPC, TFC, DPPH, ABTS, FRAP and HRSA 
 cAMP triterpenes ascorbic acid TPC TFC DPPH ABTS FRAP HRSA 

cAMP 1.0000         

triterpenes -0.1267 1.0000        

ascorbic acid 0.1758 -0.3516* 1.0000       

TPC 0.2010 0.0853 0.4101** 1.0000      

TFC 0.4041** -0.1233 0.4806** 0.1521 1.0000     

DPPH 0.5150** -0.3729* 0.7648** 0.5118** 0.5971** 1.0000    

ABTS 0.0527 0.5446** -0.1324 0.2113 -0.0509 -0.0260 1.0000   

FRAP 0.4470** -0.3338* 0.6420** 0.4523** 0.4548** 0.8504** 0.0113 1.0000  

HRSA 0.3494* -0.1966 0.5266** 0.7149** 0.1749 0.7079** -0.0582 0.5710** 1.0000 

*, P<0.05; **, P<0.01 
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Table 3. 4 Loading Matrix for Different Variables of Principal Component Analysis 

 Prina 1 Prin 2 Prin 3 Prin 4 Prin 5 Prin 6 Prin 7 Prin 8 Prin 9 

cAMP 0.5477 0.0099 0.5065 -0.6242 0.0423 0.0761 0.1409 -0.1271 0.0167 

Tripterpenes -0.3906 0.7788 0.1413 0.1362 0.3074 0.3135 -0.0936 -0.0008 -0.0268 

Ascorbic acid 0.7984 -0.1356 -0.1060 0.4283 -0.0487 0.2079 0.2834 -0.1459 0.0464 

TPC 0.6160 0.5148 -0.4366 -0.0346 0.2095 -0.2501 -0.0499 -0.2329 -0.0210 

TFC 0.5963 -0.0749 0.6080 0.3277 0.3256 -0.2077 -0.0416 0.0902 0.0524 

DPPH 0.9632 -0.0035 0.0715 0.0461 -0.0872 0.0325 -0.0078 0.1087 -0.2108 

ABTS -0.0804 0.8432 0.2087 0.1170 -0.4238 -0.1448 0.1334 0.0786 0.0272 

FRAP 0.8670 0.0139 0.0618 0.0238 -0.2903 0.1240 -0.3672 -0.0598 0.0756 

HRSA 0.7758 0.1865 -0.4342 -0.2276 0.1473 0.0543 0.0672 0.2948 0.0832 

Prina represented principal component 
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                                                                                      A                                                                                        B 

 

Figure 3. 1 Hierarchical Cluster of Antioxidant Components and Antioxidant Capacity of 15 Cultivars of Jujube Fruits (A, 

dengraogram with color map, B, legend of color map, color from blue to gray to red, that means the value was from lowest to 

medium to the larges, the units of the value were the same as Table 3.1 and Table 3.2), color map from top to the bottom were 

represent the value of cAMP, triterpenes, ascorbic acid, TPC, TFC, DPPH, ABTS, FRAP, and HRSA in sequence. 
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              A                                                 B                                                                                    C 

 

Figure 3. 2 Principal Component Analysis of 15 Cultivars of Jujube [A, eigenvalues of principal components; B, score plot of 

first two principal components (the same color in the score plot means they were in the same cluster, which were cataloged by 

HCA); C, loading plot of different variances], legend of cultivars in B: different marks represented different cultivars; legend 

of cluster in B: different color means different cluster. 
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Figure 3. 3 BivariateFit of Score of Principal Component 2 (Prin 2) by Score of Principal 

Component 1 (Prin 1), legend of cultivars: different marks represented different cultivars; 

legend of cluster: different color means different cluster. Density ellipses were shown in 

cluster grouped, p=0.95. 
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CHAPTER FOUR 

CHARACTERIZATION OF VOLATILE COMPOUNDS IN JUJUBE FRUIT AND 

CLASSIFICATION OF 15 CHINESE JUJUBE CULTIVARS 

 

Abstract 

Ziziphus jujuba Mill. is also called jujube or Chinese date, which is commonly 

used for making flavoring ingredients due to its unique flavor. In this study, solid phase 

micro extraction (SPME) method was used to extract volatile compounds from fresh 

jujube, with the aid of GC-MS for further chemical separation and identification. 

According to the result, 33 volatile compounds, including aldehydes, alcohols, acids, 

ketones and esters, were identified. Among them, hexanal (276.5 to 1314 μg/100g FW), 

(E)-2-hexanal, (145.1 to 1876 μg/100g FW), nonanal (188.2 to 1047 μg/100g FW), and n-

decanoic acid (58.42 to 1268 μg/100g FW) were found to be the major volatile 

compounds in fresh jujube fruit. In comparison, volatile compounds extracted from dried 

jujube fruits by both SDE and SPME methods were also investigated. It was found that 

(E)-2-hexenal and hexanal were the major aldehyde in the SDE extract, while nonanal 

and benzaldehyde were the major aldehyde compounds extracted by SPME. 

Classification of 15 Chinese jujube cultivars, based on the type and amounts of their 

volatile compounds, were conducted by hierarchical cluster analysis and principal 

component analysis, which helped categorizing the jujubes into five clusters, including 

cluster 1 (LB, HP, LZ, NP, JS, PZ, and YL), cluster 2 (BJ, DB), cluster 3 (PB, BZ, JD 

and XZ), cluster 4 (JB) and cluster 5 (YZ). Cluster 1, cluster 2 and cluster 3 that crossed 
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over together could not be discriminated from each other, but cluster 4 and cluster 5 

could be separated very well from each other. 
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1. Introduction 

Jujube (Ziziphus jujuba Mill.) is a very popular fruit which is mainly grown in the 

north part of China. It is also used as a traditional medicine because of its rich amount of 

antioxidants such as vitamin C, polyphenols, terpenes (1-4) etc. Besides its nutritional 

values, jujube is also widely used as a unique food additive in food industry due to its 

desirable aromas.  

Volatile compounds provide the major contributions to a food flavor, which often 

include low molecular esters, organic acids, fatty acids, alcohols, aldehydes, lactones and 

terpenes, etc. Many factors can affect the type and amount of volatile compounds in fruits, 

such as temperature of storage condition in the postharvest stage (5). For instance, the 

concentration of hexanal was decreased at 5 °C compared with that at 20 °C (6). Galindo 

et al. analyzed the effect of crop load on the volatile compounds of jujube fruits, and 

found that, after the reduction of crop load, the concentration of trans-2-hexenal or 

benzaldehyde increased, while the concentration of hexanal, heptanal, and nonanal 

decreased (7).  

Extraction is an essential step for volatile compound analysis. Liquid-liquid 

extraction (LLE), solid phase micro-extraction (SPME), and simultaneous distillation and 

extraction (SDE) are three common methods for volatile extraction (8-10). LLE is usually 

used for aqueous samples, which often requires a large volume of organic solvent, 

resulting in some inevitable disadvantages such as high cost, hazardous risk, etc. (11). In 

1990, solid phase micro-extraction was developed by Pawliszyn (12), who used it for 

analysis of chemicals in contaminated water. Later, application of SPME was rapidly 
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spread, and it has been widely used in food analysis. This method is simple and rapid, and 

is a solvent free method (13), which is suitable to analyze samples in gasous, solid or 

aqueous status. The principle of SPME relies on the diffusion of analytes from the sample 

matrix into the extraction phase (solid phase) to reach an equilibrium between the two 

phases (14). Technically, fused silica fiber or stainless wires with different types of 

polymer coatings are inserted into the liquid/gas sample or exposed to the head space to 

extract volatile compounds. After the phase equilibrium, the volatile compounds are 

desorbed by thermal process (15). Simultaneous distillation-extraction (SDE) was 

introduced in 1964. Compared to the LLE, SDE does not require a large volume of 

organic solvent due to its recycling extraction step. The steams (i.e., water steam in 

sample flask and solvent steam) are continually recycled. When they meet together, the 

volatile compounds are extracted from the water steam by the solvent steam. Due to high 

temperature used in this method, oxidation, degradation and loss of some volatile 

compounds might occur, which could affect the results. Regardless of the above 

disadvantages, SDE is still widely used for quantification analysis of volatile compounds 

because it has very high recovery of the analytes, particularly to those with less volatility 

(16).   

Identification of volatile compounds is usually performed by gas chromatography 

(GC), which is also widely used in different areas such as environmental science (17), 

food analysis (18, 19), and clinic study (20), etc.. In many cases, mass spectrometry (MS) 

is often connected to GC to identify the chemicals because of its high sensitivity and high 

resolution (21). In this study, Trace 1300 gas chromatography from Thermo Scientific 
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with Tri plus RSH auto sampler was used. This instrument can automatically complete 

sample incubation, extraction, and fiber cleaning under the controlled temperature and 

time for incubation and extraction. This programmed procedure can improve the 

precision of the instrument and increase the repeatability (22).  

Jujube has a unique desirable flavor, which make it often being used as a 

flavoring ingredient in food industry. Wang et al. studied the effects of different 

extraction methods on jujube aromas, including LLE, SDE, ultrasound-assisted solvent 

extraction (UAE) and head space solid-phase micro-extraction (HS-SPME). They found 

that LLE and UAE could extract similar compounds, but the volatile compounds 

extracted by SDE, HS-SPME, and LLE these three methods were very different (23).  

The volatile compounds of the Spain jujube were reported to include aldehydes, 

terpenes, esters, ketones and hydrocarbons (24). Regarding the volatile compounds in 

jujube brandy wine and jujube leaves, the former were mainly composed of esters and 

acids (25), while the latter contained some the major components, such as z-ocimene and 

1,1-dimethyl-3-methylene-2-ethenyl-cyclohexane acetate (26). 

In general, the SPME method was adopted to extract the volatile compounds from the 

jujube fruits. Subsequently, the PCA was used to classify the 15 cultivars of jujube. In 

more detail, the specific aims of this study were to: 1) extract and identify the main 

volatile chemicals in the jujube fruit; 2) investigate the similarity between the aroma 

profiles of different jujube cultivars; 3) compare the effect of two extraction methods, i.e., 

SPME and SDE, on volatile chemicals. 

2. Materials and Methods 
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2.1 Sample Collection 

All the jujube fruits samples were collected from a farm in Shanxi province, 

China, in October 2015. The fruits were carefully picked up to avoid any broken part, and 

be kept in the same shape. After picking up the fresh jujube fruits from the trees, the 

samples were transported to the lab and directly frozen at -80 °C. The investigated jujube 

cultivars include Ziziphus jujuba Mill. cv. Banzao (BZ), Ziziphus jujuba Mill. cv. 

Dabailing (DB), Ziziphus jujuba Mill. cv. Cang county Jinsixiaozao (JS), Ziziphus jujuba 

Mill. cv. Huping (HP), Ziziphus jujuba Mill. cv. Lingbao (LB), Ziziphus jujuba Mill. cv. 

Yuanling (YL), Ziziphus jujuba Mill. cv. Jidan (JD), Ziziphus jujuba Mill. cv. Lizao (LZ), 

Ziziphus jujuba Mill. cv. Baode Youzao (YZ), Ziziphus jujuba Mill. cv. Bin county Jinzao 

(BJ), Ziziphus jujuba Mill. cv. Junzao (JB), Ziziphus jujuba Mill. cv. Pingshun Junzao 

(PB), Ziziphus jujuba Mill. cv. Xiangzao (XZ), Ziziphus jujuba Mill. cv. Pozao (PZ), 

Ziziphus jujuba Mill. cv. Neihuangbianhesuan (NP). 

2.2 Chemicals 

A mixture of alkane standard (C8-C20) and the internal standard, 6-methyl-5-

hepten-2-ol, were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

2.3 Sample Preparation 

All the fresh jujube samples were carefully peeled to remove the seed. The pulp 

was cut into small pieces in the same size for subsequent volatile compound extraction by 

the HS-SPME method. Moreover, the dried jujube fruit of the cultivar LZ was used to 
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compare the effect of SDE and SPME on extraction of volatile compounds from jujube 

fruits. 

2.4 Optimization of the SPME method 

Jujube sample NP was used to optimize the SPME method. In this study, the 

mixed coating fiber DVB/CAR/PDMS (50/30 μm) which was purchased from Supleco 

(Aldrich, Bellefonte, PA, USA) was used for the volatile extraction. The extraction 

condition included the following parameters: incubation temperature (40, 60, 80, 100 °C), 

incubation time (15, 30, 45 and 60 minutes), and extraction time (5, 15, 25, 35 minutes), 

which were tested to optimize the extraction condition. Based on the optimization result, 

the extraction condition was incubated at 80 °C for 30 minutes and extracted by 25 

minutes for all the samples. 

2.5 SDE method 

Likens and Nickerson apparatus was applied in the SDE method. An amount of 

150 grams of the LZ jujube musts added with 40 μL of 230 ppm internal standard, were 

mixed with 500 mL pure water in a 1000 mL flask which was placed above a heater at 

100 °C. An amount of 50 mL of dichloromethane was placed in another flask which was 

heated at 62 °C. The extraction process lasted for 3 h. The extract was dehydrated by 

anhydrous sodium sulfate, then condensed to 0.5 mL by nitrogen purge. 

2.6 GC-MS Method to Identify Volatile Compounds 

Trace 1300 Gas Chromatograph with Tri plus RSH auto-sampler was connected 

to an ISQ single quadrupole mass spectrometry (Thermo Scientific, USA) for chemical 
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separation and identification. Thermo TR-5 capillary column (30 m × 0.25 mm × 0.25 μm) 

was used to separate the volatile compounds. Helium was used as the carrier gas, of 

which the flow rate was 1 mL/min. Injection port was in a splitless mode at 250 °C. 

Temperature program began from the initial temperature at 40 °C, hold for 2 min, then 

increased to 180 °C at the rate of 5 °C/min, hold for 5 min, then ramped to 240 °C at the 

rate of 10 °C/min hold for 10 min. The MS detector adopted an electronic ionization (EI) 

mode, of which the electron impact energy was 70 eV, ion source temperature was 

280 °C, MS transfer line temperature was 280 °C. The scan mode was at the range of 40 

– 700 m/z. In order to identify each chemical, two methods were used. First, the mass 

spectra of temporarily identified volatile compounds were compared with those in the 

NIST library (version 2.0); second, the retention index (RI) of those temporarily 

identified volatile compounds were compared with those of the references. RI were 

determined with aid of a series of alkanes (C8-C20) (Sigma-Aldrich, St. Louis, MO). RI 

was calculated by the following equation: 

 

t is the retention time of a detected compound; 

tn is the retention time of an alkane standard which was eluted before the sample, 

n is the number of carbons of that standard; 

tN is the retention time of an alkane standard which was eluted after the sample, N 

is the number of carbons of the standard. 
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Quantification of the compounds were calculated based on the peak area of the 

sample and internal standard (6-methyl-5-hepten-2-ol). All the samples were run in 

triplicate. 

2.7 Statistics 

The data was expressed as mean value ± standard error, which were conducted by 

one-way variance analysis (ANOVA). Significant level was obtained by the Tukey test 

(p<0.05) by JMP software. Principle component analysis (PCA) and hierarchical cluster 

analysis (HCA) were also operated by the JMP software. 

3. Results and Discussion 

3.1 Optimization of SMPE Method 

In this study, the volatile compounds were divided into the following chemical 

classes including acid, aldehyde, ketone, ester, and alcohol according to their chemical 

structures. In order to find out the optimized conditions for volatile chemical extraction, 

the total peak areas of different compounds groups and the summation total peak areas of 

the chemical groups were compared so as to determine the highest level of chemical 

absorption by the SPME. 

3.1.1 Effect of Temperature on Extraction Efficiency 

Temperature is an important factor which can affect the efficiency of sampling 

from matrix to the SPME fiber. The diffusion of volatile compounds from the matrix to 

the head space could be dynamically achieved by heating because the volatile compounds 

need energy to overcome some barriers in the matrix (27). Generally speaking, the less 
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volatility the more energy they needed. Figure 4.1 shows that the highest values of the 

total peak areas of all the volatile compounds, the chemical groups of acids and esters 

were achieved at 100 °C, while the highest values of peak areas of the aldehydes and 

ketones were achieved at 80 °C; the highest value of peak areas of the alcohols was at 

60 °C, when 2,3-butanediol contributed about 92% of all the alcohol peak area. On the 

other hand, since the aldehydes are the major volatile compounds in the jujube fruit, 

80 °C were chosen as the optimized temperature. 

3.1.2 Effect of Incubation Time on Extraction Efficiency 

In order to have sufficient volatile compounds vaporized from the matrix into the 

head space of the vial, the incubation time is another important factor which can affect 

the extraction efficiency. As shown in Figure 4.2, the total peak area of detected 

chemicals approaches to its highest value at 30 minutes of incubation, which means the 

most analytes were evaporated from solid sample into the gas phase, and adsorbed by the 

fiber. In regards of the total peak areas of different groups of the volatile compounds, 

such as aldehydes, acids, esters and ketones, the total peak areas of the aldehydes, acids, 

esters and the summation of these chemical groups were all at their highest values at 30 

minutes, though the total peak areas of ketones and alcohols were obtained at different 

time. Since ketones and alcohols only accounted for less than 5% of volatile compounds 

in jujube, the incubation time for 30 minutes was selected as the optimized parameter. 

3.1.3 Effect of Extraction Time on Extraction Efficiency 
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Under the fixed conditions of other parameters (80 °C for incubation temperature 

and 30 minutes for incubation time), when the SPME was exposed in the head space after 

25 minutes, it was found that SPME could absorb the most amount of the volatile 

chemicals, particularly for the aldehydes, acids and ketones. Figure 4.3 shows the 

comparison results of the SPME absorption at different extraction times. As a result, 25 

minutes was chosen as the optimized condition for the SPME extraction. 

3.2 Identification and Quantification of Volatile Compounds by GC-MS Method 

Volatile compounds that were identified by GC-MS are listed in Table 4.1. Total 

33 chemicals, including 18 aldehydes, 2 alcohols, 3 ketones, 5 acids and 5 esters, were 

detected, but not all of them were detected in all the cultivars. Except the cultivar HP that 

contained all the 6 detected esters, other cultivars only contained a few of them. 

Aldehyde and acids were the major volatile compounds in jujube fruits, which together 

accounted for more than 95% (see Table 4.2) of the volatile compounds in most cultivars. 

Alcohol and ketones were identified in most cultivars, but their combined contents only 

accounted for a small percentage. 

Aldehydes consisted of the largest group of the volatile compounds in jujube 

fruits. According the comparison of their mass spectra and retention index with those in 

the NIST library and standards, 18 aldehydes were identified, including (E)-2-pentenal, 

hexanal, (E)-2-hexenal, heptanal, (Z)-2-heptenal, benzaldehyde, 2-phentyl furan, octanal, 

benzeneacetaldehyde, (E)-2-octenal, nonanal, (E)-2-nonenal, decanal, (E)-2-decenal, 10-

undecenal, undecanal, 2-undecenal and dodecanal (Table 4.1). According to Table 4.2, 

hexanal, (E)-2-hexenal, nonanal, and decanal were the major aldehydes in the jujube 
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fruits. This result is in agreement with the report by Hernandez et al. (24). The 

concentrations of the aldehydes were in significant difference (p<0.05). Concentration of 

hexanal was in a range from 276.5 to 1314 μg/100g FW; concentration of (E)-2-hexenal 

varied from 145.1 to 1876 μg/100g FW; nonanal was another major aldehyde, its amount 

was from 188.2 to 1047 μg/100g FW; the content of decanal was not as much as the other 

three aldehydes mentioned above, but its content was still higher than the other remaining 

aldehydes detected in jujube, of which the amount was from 73.77 to 246.1 μg/100g FW. 

Benzeneacetaldehyde was not detected in the cultivars of BJ, DB, HP, JD, LZ and NP. 

10-Undecenal was not detected in HP, JB, JS, LB, PZ and YL. Similarly, 2-undecenal 

was found in the HP, JB, LB and YL, dodecanal was not detected in JB, LB and YL, and 

2-pentenal was detected in all the cultivars except JB. Except major aldehydes including 

hexanal, (E)-2-hexenal, nonanal and decanal, the content of the other aldehydes in most 

cultivars was less than 100 μg/100g FW (see Table 4.3). 

Only two alcohols in fresh jujube fruit were identified, they are 1-octen-3-ol and 

benzyl alcohol (Table 4.1). The former was identified in all cultivars except LB, and the 

content of this alcohol was in a range from 2.60 to 16.33 μg/100g FW. The latter was not 

identified in the cultivars of BZ, XZ, YL and YZ. Its content in other cultivars varied 

from 2.47 to 95.38 μg/100g FW (Table 4.3).  

Ketones were not the major compounds in the jujube fruits. Only three ketones 

were identified, they were 2-nonanone, 2-undecanone and 6,10-dimethyl, 5,9-

undecadien-2-one. As shown in the Table 4.3, 2-nonanone and 6,10-dimethyl-5,9-

undecadien-2-one were found in all cultivars, which ranged from 3.93 to 98.71 μg/100g 
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FW and 12.12 to 277.5 μg/100g FW, respectively. 2-Undecanone was identified in all the 

cultivars except YZ, with a range from 3.94 to 80.16 μg/100g FW. 

Five short chain organic acids were identified in jujube fruits (Table 4.1), 

including hexanoic acid, octanoic acid, nonanoic acid, n-decanoic acid, and dodecanoic 

acid. Among them, octanoic acid was detected in all cultivars except BJ, DB and XZ, 

nonanoic acid was not detected in BJ, DB, HP, JB, LB and YZ (Table 4.3), and their 

contents were lower than that of the other acids. n-Decanoic acid and dodecanoic acid 

were identified as the major acids in all the cultivars. The content of n-decanoic acid 

ranged from 58.42 (YZ) to 1268 (YL) μg/100g FW. In comparison, the content of 

dodecanoic acid in the two cultivars, i.e., YL and JD, had a relatively higher amount in 

1319 and 693 μg/100g FW, respectively, but its content in the other cultivars was lower 

than that of n-decanoic acid in the jujube fruits. 

 Esters were thought to be the most important aroma compounds in jujube brandy 

wine (28), which contributed a major portion in 81.7 % of all the volatile compounds (29). 

However, esters only accounted for a small portion in the fresh jujube fruit. As shown in 

Table 4.1, hexanoic acid methyl ester, hexanoic acid ethyl ester, benzoic acid ethyl ester, 

octanoic acid ethyl ester, and dodecanoic acid methyl ester were identified, but they were 

only found in a few cultivars (Table 4.3), and their contents were very low too, except 

the cultivar HP and JB, in which the percentage of total esters in all volatile compounds 

were 15.64 % and 17.50%, respectively (Table 4.2)   

3.3 Hierarchical Cluster Analysis and Principal Component Analysis  
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In multivariate statistics, principal component analysis (PCA) and hierarchical 

cluster analysis (HCA) are unsupervised methods, which do not request the prior 

information (30). These two methods were used in this study to determine the similarity 

of the cultivars based on the contents of the identified volatile chemicals, so as to classify 

the jujube cultivars based on their geographic origins. 

The HCA method was calculated based on ward’s method. As profiled in Figure 

4.4 and Figure 4.5, 15 cultivars were classified into five groups. Cluster 1 that includes 

the cultivars LB, HP, LZ, NP, PZ, JS, and YL contains relatively lower contents of 

volatile compounds. Cluster 2 includes BJ and DB, which had a higher concentration of 

aldehydes than cluster 1. Cluster 3 includes PB, BZ, JD and XZ, which contain similar 

contents of aldehydes, ketones, alcohols and esters as cluster 2, but higher content of 

acids than cluster 2. Cluster 4 only has the cultivar JB because it had very low contents of 

some aldehydes but higher contents of esters; similarly, cluster 5 only has the cultivar YZ 

because of its low contents of aldehydes, acids and esters. 

PCA was used to decrease the dimension of data variance, which was calculated 

based on the correlation of contents of volatile compounds in this study. According to the 

eigenvalue shown in the Figure 4.6 A, there were eight eigenvalues large than 1, which 

suggested to use these eight principal components for further data analysis after the 

reduced dimension. However, two dimensions (or top two principal components, i.e., 

PC1 and PC2) were used in order to simplify the statistical analysis and obtain a planner 

score plot of PCs. According to Figure 4.6 B, PC1 and PC2 together can explain 42.7 % 

of total data variance that means some information of the volatile compounds have been 
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missed during the statistical re-modeling. As shown in the loading plot (Figure 4.6 C), 

the shorter the arrow, the more information has been lost in PCA. In this context, alcohols 

(benzyl alcohol and 1-octen-3-ol) and esters were the major groups of the volatile 

compounds that have lost the most information. In Figure 4.6 B, clusters 1, 2, 3 were 

close to each other, which cannot be distinguished from each other according to score 

plot in this PCA. However, based on the same PCA, the cluster 4 and cluster 5 were 

separated very well. In more details shown in the biplot (Figure 4.7), benzoic acid ethyl 

ester, octanoic acid ethyl ester and 2-undecanone are positively related to the cluster 4 

(JB); (E)-2-decenal  and (E)-2-nonenal  are positively related to the cluster 5 (YZ); 10-

undecenal, hexanal and 2-pentenal are positively related to the cluster 3; 2-pentenal is 

positively related to the cluster 2; octanal, octanoic acid and benzeneacetaldehyde are 

positively related to the cluster 1. These correlations are the base for the classification of 

different cultivars into different clusters. 

Figure 4.8 explains how the clusters are close to each other. The density ellipse of 

each cluster was calculated under the 95% confidence interval. Obviously, the clusters 1, 

2 and 3 are crossed over together so that they cannot be discriminated from each other. 

However, the cluster 4 and cluster 5 are separated far way, demonstrating they are 

significantly different from other three clusters. Therefore, only cultivar JB in the cluster 

4 and YZ in the cluster 5 can be distinguished from other 13 cultivars based on the 

volatile compounds analysis.  

3.4 Comparison of SDE and SPME on Chemical Extraction 
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Table 4.4 lists the major compounds which were extracted by SDE and SPME 

from the dried jujube fruits. The SDE method has extracted more efficiently the large 

molecular compounds, or less volatile chemicals, such as pyrazines (no pyryzine in 

SPME method), and a less percentage of aldehyde chemicals than SPME method; By the 

SDE method, the major aldehydes in the extract were (E)-2-hexenal and hexanal, while 

nonanal and benzaldehyde were found to be the major aldehydes in SPME method. 

Besides, even these two methods have extracted similar volatile compounds, the amount 

of the extracted volatile chemicals were quite different. SDE method could not extract 

octanoic acid, nonanoic acid, n-decanoic acid and dodecanoic acid, except hexanoic acid. 

4. Conclusion 

Overall, based on the SPME method, a total of 33 compounds were identified by 

the GC-MS, including aldehydes, alcohols, esters, acids and ketones. The contents of 

alcohols and esters were very low in jujube fruit, as well as ketones. The major volatile 

compounds of fresh jujube fruits were found to be aldehydes and acids, including hexanal, 

(E)-2-hexenal, nonanal, and n-decanoic acid that were the major volatile compounds 

based on their contents. In addition, based on the HCA and PCA, the 15 jujube cultivars 

could be classified into five clusters, cluster 1, cluster 2 and cluster 3 were not 

discriminated, while cluster 4 and cluster 5 could be discriminated from each other, also 

from the other three clusters. The comparison of the extraction efficiency of SDE and 

SPME showed that aldehydes were the most major compounds in both methods, except 

that the SDE method extract higher amount of alcohols, ketones and pyrazines than 
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SPME method, while the SPME method extracted higher amount of acids than SDE 

method. 

Moreover, based on the HCA and PCA, the different cultivars of jujube fruits 

planted in the same place could not be differentiated well based on amount and class of 

the identified volatile compounds, this might be ascribed to the elimination of the effect 

of environmental factors. Therefore, classification of the samples from different locations 

based on other environmental factors such as soil, climate, etc., should be considered for 

further study. 



158 

 

 

 

Table 4. 1 Volatile Compounds in 15 Cultivars of Jujube Fruit Extracted by SPME, and the Identification by GC-MS 
Retention 

time (min) 

 

 

Chemical name 

 

RI  

Sensory descriptors 

 
EX  Reference 

 a b c 

4.48 (E)-2-Pentenal  <800   754  

5.45 Hexanal 803  802 803 800 fatty, green 

6.88 (E)-2-Hexenal  860  855 855 860 apple, green, sweet 

8.23 Heptanal 905  902 906 904 oily, woody, nutty 

8.95 Hexanoic acid, methyl ester 931  927  932  

9.91 (Z)-2-Heptenal  962    964  

10.05 Benzaldehyde 967  960 981 966 almond, cherry, sweet 

10.69 1-Octen-3-ol 986  979  986  

10.99 Furan, 2-pentyl- 994    993  

11.26 Hexanoic acid, ethyl ester 1002  998  1002 Floral, fruity, apple peel, pear 

11.34 Octanal 1005  999 1009 1004 honey, fruity, citrus 

11.62 Hexanoic acid 1015    1014  

12.53 Benzyl Alcohol 1046  1032  1042  

12.66 Benzeneacetaldehyde 1050  1042  1049 Hawthorne, honey, sweet 

13.06 (E)-2-Octenal  1063   1067 1064 spicy, berbaceous 

14.10 2-Nonanone 1095  1090  1096  

14.47 Nonanal 1107  1101 1113 1102 lemon, oily 

16.13 (E)-2-Nonenal  1164  1162  1162  

16.54 Benzoic acid, ethyl ester 1177    1171 Ripen fruit 

16.93 Octanoic acid 1190    1192 oily 

17.23 Octanoic acid, ethyl ester 1199    1197 sweet, floral, fruity, pear 

17.46 Decanal 1208  1202 1218 1208 wax, floral, citrus 

19.07 (E)-2-Decenal  1266  1264 1277 1252 oil, floral, citrus 

19.65 Nonanoic acid 1285  1271  1280  
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Retention 

time (min) 

 

 

Chemical name 

 

RI  

Sensory descriptors 

 
EX  Reference 

 a b c 

19.95 2-Undecanone 1295  1294  1294  

20.01 10-Undecenal 1297  1300  1297  

20.31 Undecanal 1309  1307  1308 orange, fatty, rose, waxy 

21.86 2-Undecenal 1368   1368  

22.25 n-Decanoic acid 1382    1387 Fatty, citrus 

23.01 Dodecanal 1411  1409  1412  

24.16 5,9-Undecadien-2-one, 6,10-

dimethyl 

1457    1452  

25.90 Dodecanoic acid, methyl ester 1527    1527  

27.02 Dodecanoic acid 1574  1567  1576  

RI, represented the retention index; EX, represented the experiment, by which the RI were calculated in this study; Reference a, 

the RI were calculated based on DB-5 column; Reference b was cited from Hernandez et al., 2015; Reference c was cited from 

NIST (National Institute of Standards and Technology Standard Reference Database, Gaithersburg, USA); sensory descriptors 

were cited from Hernandez et al., 2015, Shu et al., 2014 and Andreu-Sevilla et al., 2013 (31) 

 



160 

 

 

Table 4. 2 Percentage of Major Volatile Compounds and Different Chemical Groups in Total Volatile Compounds, % 
 

Cultiv

ars 

Major volatile compounds Different groups of volatile compounds 

Hexanal (E)-2-

Hexenal  

Nonanal n-Decanoic 

acid 

Dodecanoic 

acid 

Aldehydes  Alcohols  Ketones Acids  Esters  

BJ 24.35±0.4

7 

28.22±0.31 11.76±0.4

2 

6.17±0.13 2.59±0.04 86.77±0.17 1.78±0.0

9 

0.48±0.0

3 

10.93±0.17 0.04±0.0

0 

BZ  14.03±0.1

0 

28.67±1.29 8.73±0.22 20.05±1.91 4.21±0.06 68.37±1.74 0.13±0.0

1 

1.64±0.0

8 

29.59±1.81 0.27±0.0

1 

DB  15.48±0.5

1 

28.23±0.26 8.94±0.30 7.18±0.31 3.96±0.19 77.82±0.47 2.14±0.0

7 

1.10±0.0

3 

14.98±0.36 3.95±0.1

9 

HP 12.21±0.2

3 

24.29±0.34 6.16±0.13 7.99±0.40 0.96±0.05 63.85±0.42 1.22±0.0

4 

3.86±0.0

4 

15.42±0.53 15.64±0.

76 

JB 1.23±0.04 2.91±0.04 11.14±0.2

2 

13.54±0.48 21.08±0.23 39.23±0.51 1.05±0.0

5 

5.41±0.2

3 

36.55±0.55 17.50±0.

04 

JD  16.35±0.1

3 

15.55±0.34 13.03±0.3

4 

17.13±0.45 13.92±0.17 64.39±0.40 0.23±0.0

1 

1.69±0.0

3 

33.61±0.41 0.07±0.0

0 

JS 15.86±0.2

3 

16.10±0.34 8.01±0.21 31.16±0.63 4.28±0.23 59.37±0.38 1.05±0.0

1 

1.42±0.0

6 

38.09±0.43 0.07±0.0

0 

LB 14.67±0.4

3 

38.50±0.08 10.48±0.2

7 

6.99±0.09 2.86±0.03 79.61±0.17 0.51±0.0

4 

3.23±0.2

0 

15.34±0.21 1.31±0.0

3 

LZ 17.92±0.5

9 

23.40±0.46 8.77±0.75 13.85±0.30 4.22±0.31 72.60±0.47 0.97±0.0

5 

1.96±0.0

6 

24.29±0.41 0.17±0.0

0 

NP 13.16±0.2

6 

19.07±0.27 10.20±0.4

1 

25.30±0.58 2.84±0.07 62.45±0.45 2.01±0.0

4 

2.38±0.0

5 

32.91±0.51 0.24±0.0

1 

PB 14.53±0.2

6 

33.53±0.35 4.92±0.08 14.32±0.06 2.50±0.22 74.48±0.37 0.69±0.0

3 

2.25±0.0

7 

22.00±0.31 0.58±0.0

3 

PZ 13.74±0.2

1 

26.39±0.23 12.51±0.1

7 

22.34±0.21 3.98±0.13 68.97±0.27 0.23±0.0

0 

0.79±0.0

1 

29.88±0.26 0.12±0.0

1 

XZ 12.49±0.4

4 

41.92±0.45 7.39±0.06 12.49±0.35 0.38±0.02 79.91±0.28 0.20±0.0

1 

1.77±0.0

2 

17.86±0.29 0.26±0.0

1 

YL 6.32±0.20 11.09±0.31 4.76±0.18 26.43±0.86 27.44±1.30 35.82±0.88 0.12±0.0

0 

2.99±0.0

9 

60.56±0.99 0.49±0.0

2 

YZ 10.16±0.7

9 

9.67±0.67 39.29±1.1

3 

2.14±0.08 0.31±0.01 82.63±0.09 0.58±0.0

2 

10.76±0.

12 

5.34±0.05 0.68±0.0

5 

Data were represented as mean value ± standard error 
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Table 4. 3 Concentration of Volatile Compounds in Jujube Fruits, μg/100g FW 
 BJ BZ  DB  HP JB JD  JS LB LZ NP PB PZ XZ YL YZ 

Aldehydes                

(E)-2-Pentenal  22.66±1.9

0 b 

27.71

±
0.42 a 

14.12

±
0.91 

de 

11.77

±
0.48 

defg 

n.d. 15.38

±
1.39 

cd 

13.43

±0.92 

def 

14.19

±0.80 

de 

15.79

±
0.71 

cd 

9.27

±
0.40 

fg 

27.79

±0.66 

a 

10.67

±
0.69 

efg 

18.74

±
0.41 

bc 

8.47

±
0.09 

g 

4.03

±
0.25 

h 

Hexanal 1314±28 

a 

830.7

±
21.3 b 

763.1

±
20.5 b 

372.7

±
11.3 

ef 

61.25

±
3.02 

h 

814.6

±
12.0 b 

562.0

±10.2 

d 

575.5

±21.8 

d 

541.6

±
15.0 d 

431.1

±
12.2 e 

675.5

±20.1 

c 

438.7

±
10.9 e 

558.8

±
18.1 d 

303.3

±5.3 

fg 

276.5

±
15.8 

g 

(E)-2-Hexenal  1524±12 

c 

1694

±53 

b 

1392

±27 

d 

741.8

±
15.6 

efg 

145.1

±
2.37 i 

774.7

±
20.8 

ef 

570.4

±9.7 

h 

1510

±33 

cd 

707.5

±
16.8 

fg 

624.6

±
14.2 

gh 

1557

±19 c 

842.6

±
11.4 e 

1876

±30 

a 

531.9

±
13.1 

h 

263.5

±
14.9 i 

Heptanal 77.57±
1.91 b 

67.74

±
1.63 

bc 

64.07

±
2.94 

bcd 

39.13

±
2.12 

defg 

67.39

±
2.20 

bc 

64.45

±
3.74 

bcd 

44.09

±1.48 

cdefg 

57.82

±2.33 

bcdef 

30.60

±
3.13 g 

31.68

±
0.63 

fg 

60.36

±
16.78 

bcde 

37.55

±
0.95 

efg 

131.9

±5.6 

a 

36.11

±
1.40 

efg 

27.00

±
2.51 

g 

(Z)-2-Heptenal  53.34±
4.83 cde 

87.21

±
2.81 b 

63.82

±
2.78 c 

45.43

±
1.88 

def 

25.15

±
1.35 

g 

114.3

±6.7 

a 

62.15

±3.61 

cd 

37.33

±0.46 

efg 

50.18

±
2.35 

cde 

29.47

±
1.51 

fg 

94.92

±6.47 

b 

30.04

±
1.25 

fg 

58.11

±
1.16 

cd 

27.85

±
0.50 

g 

26.59

±
3.34 

g 

Benzaldehyde 342.5±
12.4 b 

106.1

±5.2 

cde 

455.7

±8.4 

a 

190.1

±8.6 

c 

512.0

±
13.5 

a 

48.58

±
0.44 

def 

84.11

±3.04 

def 

57.88

±2.96 

def 

177.6

±
61.1 c 

136.4

±4.7 

cd 

109.5

±4.7 

cde 

10.24

±
0.36 f 

68.51

±
3.01 

def 

44.87

±
0.96 

ef 

13.47

±
0.60 f 

Furan, 2-pentyl- 56.52±
5.05 de 

116.8

±1.5 

b 

65.74

±
1.06 d 

40.04

±
3.96 f 

20.25

±
1.00 

g 

84.56

±
2.07 c 

53.65

±2.10 

e 

59.28

±1.80 

de 

56.95

±
1.26 

de 

38.42

±
1.81 f 

164.0

±3.2 a 

28.78

±
1.41 

fg 

67.09

±
0.70 d 

25.18

±
0.35 

g 

59.66

±
1.07 

de 

Octanal 356.9±
10.3 a 

104.1

±1.8 

d 

108.2

±4.1 

d 

37.49

±
1.19 f 

134.5

±4.1 

c 

173.1

±3.6 

b 

110.1

±4.8 

d 

122.5

±2.4 

cd 

70.36

±
2.40 e 

136.6

±6.1 

c 

n.d. 182.7

±3.4 

b 

63.92

±
2.31 e 

172.4

±3.0 

b 

22.25

±
1.63 f 

Benzeneacetaldehyd

e 

n.d. 10.89

±

n.d. n.d. 32.13

±

3.96

±

n.d. 7.39±
0.12 d 

n.d. n.d. 15.72

±0.31 

4.48

±

8.79

±

5.30

±

4.67

±
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 BJ BZ  DB  HP JB JD  JS LB LZ NP PB PZ XZ YL YZ 

0.43 c 1.27 

a 

0.36 e b 0.16 e 0.38 d 0.06 e 0.23 e 

(E)-2-Octenal  87.08±
6.78 de 

111.2

±3.7 

bc 

124.3

±2.3 

ab 

103.4

±3.5 

cd 

81.27

±
3.17 

e 

115.9

±5.2 

abc 

80.21

±2.85 

e 

57.14

±1.45 

f 

80.49

±
1.65 e 

56.85

±
2.05 f 

131.4

±5.38 

a 

41.35

±
3.01 f 

53.73

±
1.24 f 

57.55

±
2.61 f 

49.09

±
0.79 f 

Nonanal 635.0±
21.3 b 

516.6

±
16.5 

cd 

440.9

±
17.0 

de 

188.2

±6.5 

i 

555.7

±
16.6 

bc 

649.2

±
16.1 b 

284.3

±15.9 

gh 

411.1

±13.7 

ef 

264.1

±
16.4 

ghi 

333.8

±
10.3 

fg 

228.3

±3.7 

hi 

399.6

±8.5 

ef 

330.8

±2.7 

fg 

228.0

±3.4 

hi 

1047

±50 

a 

(E)-2-Nonenal  47.79±
3.71 bcd 

50.16

±
0.57 

bcd 

71.98

±
2.24 

bc 

42.26

±
2.50 

cd 

77.24

±
2.00 

bc 

83.73

±
1.18 b 

44.50

±1.22 

cd 

35.41

±1.06 

d 

41.34

±
2.38 

cd 

27.13

±
0.78 d 

61.72

±
15.98 

bcd 

26.92

±
0.68 d 

50.74

±
1.94 

bcd 

41.18

±
0.99 

cd 

201.6

±
20.5 a 

Decanal 131.5±4.4 

cde 

210.3

±3.8 

b 

215.6

±
11.7 

ab 

100.6

±3.2 

ef 

192.8

±6.5 

b 

192.2

±2.9 

b 

151.4

±12.6 

c 

150.3

±4.9 

c 

110.8

±2.9 

de 

139.2

±2.9 

cd 

246.1

±9.6 a 

121.2

±5.1 

cde 

200.3

±9.0 

b 

143.3

±2.6 

cd 

73.77

±
4.33 f 

(E)-2-Decenal  6.57±0.71 

b 

11.14

±
0.43 b 

8.83

±
0.19 b 

11.17

±
0.33 b 

13.95

±
1.58 

b 

12.76

±
1.60 b 

5.71±
0.38 b 

7.31±
0.32 b 

6.42

±
0.16 b 

6.65

±
0.32 b 

13.08

±0.77 

b 

4.36

±
0.28 b 

6.06

±
0.24 b 

9.31

±
0.24 

b 

64.58

±
6.71 a 

10-Undecenal 4.24±0.35 

d 

24.64

±
2.09 a 

4.33

±
0.22 

n.d. n.d. 7.40

±
0.22 

bcd 

n.d. n.d. 5.16

±
0.22 

cd 

4.87

±
0.17 

cd 

8.57±
0.67 bc 

n.d. 26.53

±
1.62 a 

n.d. 11.12

±
0.43 

b 

Undecanal 15.55±
1.24 g 

50.51

±
4.28 b 

27.93

±
1.63 

ef 

16.53

±
0.33 g 

37.98

±
0.72 

cd 

27.97

±
3.12 

ef 

26.12

±0.54 

f 

19.68

±1.82 

fg 

21.62

±
0.53 

fg 

28.92

±
2.09 

def 

36.33

±1.41 

de 

15.04

±
1.00 g 

46.82

±
1.04 

bc 

82.86

±
0.85 a 

81.03

±
1.34 a 

2-Undecenal 4.67±0.51 

d 

7.47

±
0.24 c 

7.67

±
0.56 c 

n.d. n.d. 11.38

±
0.42 b 

4.13±
0.10 d 

n.d. 4.70

±
0.03 d 

3.87

±
0.14 

de 

8.39±
0.59 c 

1.85

±
0.07 

ef 

3.44

±
0.19 

de 

n.d. 27.45

±
1.06 a 

Dodecanal 5.21±0.85 

g 

15.93

±
0.12 b 

9.70

±
0.59 

de 

8.49

±
0.21 

ef 

n.d. 13.65

±
0.88 

bc 

8.74±
0.69 

de 

n.d. 11.42

±
0.97 

cd 

5.80

±
0.18 

fg 

21.51

±1.08 

a 

5.68

±
0.31 

fg 

5.60

±
0.21 

fg 

n.d. 4.07

±
0.25 

g 
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Alcohols                

1-Octen-3-ol 10.34±
0.15 c 

7.59

±
0.48 

de 

10.02

±
0.63 c 

16.33

±
0.59 b 

14.05

±
0.70 

b 

3.78

±
0.22 

gh 

2.60±
0.20 h 

n.d. 4.05

±
0.02 

gh 

6.50

±
0.16 

def 

27.50

±0.86 

a 

4.83

±
0.13 

fgh 

8.76

±
0.29 

cd 

5.95

±
0.12 

efg 

15.80

±
0.77 

b 

Benzyl alcohol 85.66±
5.24 a 

n.d. 95.38

±
3.80 a 

21.09

±
1.29 e 

38.22

±
4.03 

c 

7.52

±
0.22 f 

34.66

±1.18 

cd 

19.91

±2.17 

e 

25.24

±
1.01 

de 

59.48

±
1.62 b 

4.41±
0.14 f 

2.47

±
0.16 f 

n.d. n.d. n.d. 

Acids                

Hexanoic acid 116.8±
5.42 ef 

222.6

±
20.1 a 

189.5

±5.7 

abc 

155.4

±5.1 

cd 

n.d. 94.09

±
1.77 

fg 

54.51

±1.61 

h 

197.1

±6.6 

ab 

151.2

±3.2 

de 

74.84

±
2.95 

gh 

189.4

±5.3 

abc 

56.41

±
2.15 h 

205.5

±7.1 

ab 

172.4

±3.0 

bcd 

57.93

±
5.23 

h 

Octanoic Acid n.d. 83.88

±
5.15 c 

n.d. 42.03

±
3.54 

de 

99.38

±
1.84 

b 

19.34

±
2.51 f 

35.80

±2.40 

e 

18.25

±1.32 

f 

29.39

±
2.17 

ef 

79.17

±
2.87 c 

42.75

±1.93 

de 

52.09

±
1.99 d 

n.d. 136.4

±5.1 

a 

21.12

±
1.36 f 

Nonanoic acid n.d. 9.46

±
1.16 c 

n.d. n.d. n.d. 14.83

±
1.53 b 

3.81±
0.14 ef 

n.d. 7.50

±
0.13 

cd 

1.89

±
0.04 

fg 

8.95±
0.19 c 

5.35

±
0.17 

de 

17.58

±
0.42 a 

12.81

±
0.25 

b 

n.d. 

n-Decanoic acid 333.5±8.3 

e 

1189

±129 

a 

354.2

±
13.9 

de 

244.2

±
16.3 

ef 

674.6

±
12.9 

bc 

852.7

±
17.4 b 

1106

±56 a 

274.4

±9.2 

e 

419.6

±
20.4 

de 

828.1

±
17.2 b 

665.3

±8.7 

bc 

713.3

±
11.4 

bc 

558.9

±
14.4 

cd 

1268

±50 

a 

58.42

±
1.50 f 

Dodecanoic acid 139.9±1.8 

defg 

249.4

±1.9 

d 

195.1

±7.2 

de 

29.39

±
2.03 

fgh 

1048

±24 

b 

693.3

±7.4 

c 

151.4

±4.0 

def 

112.2

±2.6 

efgh 

127.3

±7.7 

defgh 

93.20

±
1.58 

efgh 

115.7

±9.2 

efgh 

126.9

±5.2 

defgh 

17.00

±
0.57 

gh 

1319

±89 

a 

8.52

±
0.04 

h 

Esters                 

Hexanoic acid, 

methyl ester 

n.d. 5.26

±
0.10 a 

n.d. 2.67

±
0.04 c 

n.d. n.d. n.d. 5.43±
0.25 a 

1.96

±
0.05 d 

n.d. 3.66±
0.17 b 

n.d. 2.50

±
0.19 c 

2.83

±
0.09 c 

n.d. 

Hexanoic acid, ethyl 

ester 

n.d. n.d. n.d. 37.35

±
1.30 a 

n.d. n.d. n.d. 16.49

±1.14 

b 

n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
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Benzoic acid, ethyl 

ester 
2.02±0.08 

c 

n.d. n.d. 424.2

±
23.8 b 

822.9

±
21.2 

a 

n.d. n.d. 8.74±
0.81 c 

n.d. n.d. 17.70

±0.96 

c 

3.85

±
0.20 c 

n.d. n.d. 18.67

±
1.33 c 

Octanoic acid, ethyl 

ester 

n.d. n.d. n.d. 10.59

±
0.66 c 

31.02

±
2.47 

a 

n.d. n.d. 14.37

±1.03 

b 

n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Dodecanoic acid, 

methyl ester 

n.d. 10.60

±
0.87 d 

195.1

±7.2 

a 

2.34

±
0.17 

de 

31.26

±
1.54 

b 

3.46

±
0.19 

de 

2.57±
0.06 

de 

6.42±
0.34 

de 

3.24

±
0.17 

de 

7.88

±
0.57 

de 

5.75±
0.20 de 

n.d. 9.33

±
0.13 

de 

20.88

±
0.46 c 

n.d. 

Ketones                

2-Nonanone 3.93±0.08 

i 

14.62

±
0.32 

fgh 

8.61

±
0.37 

hi 

57.11

±
1.61 c 

98.71

±
3.91 

a 

10.66

±
0.19 

ghi 

8.66±
0.12 hi 

87.99

±2.59 

b 

10.17

±
0.34 

ghi 

11.22

±
0.38 

gh 

32.99

±0.88 

d 

7.51

±
0.24 

hi 

21.89

±
1.33 e 

21.06

±
0.21 

ef 

16.57

±
0.54 

efg 

2-Undecanone 3.94±0.32 

ij 

15.65

±
1.01 

ef 

6.38

±
0.11 

hi 

24.37

±
1.78 d 

80.16

±
2.65 

a 

13.86

±
1.22 

fg 

13.16

±0.56 

fg 

21.55

±1.62 

de 

7.85

±
0.25 

ghi 

9.99

±
1.05 

fgh 

14.24

±0.35 

f 

5.74

±
0.27 

hij 

33.74

±
0.37 c 

62.03

±
1.74 

b 

n.d. 

5,9-Undecadien-2-

one, 6,10-dimethyl- 
18.09±
1.28 hi 

66.92

±
3.24 c 

39.38

±
1.57 

efg 

36.34

±
2.27 

fgh 

91.47

±
10.49 

b 

59.58

±
1.15 

cde 

28.32

±1.15 

ghi 

16.99

±1.71 

hi 

41.30

±
0.46 

defg 

56.80

±
1.55 

cdef 

57.41

±1.56 

cde 

12.12

±
0.33 i 

23.79

±
1.32 

ghi 

60.64

±
0.77 

cd 

277.5

±
10.1 a 

Data were represented by mean value ± standard error; 

n.d. means not detected; 

The same letters in the same row followed the data means no significant difference, (p<0.05) 
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Table 4. 4 Comparison of SDE and SPME, % of Major Volatile Compounds in Total Volatiles (percentage of volatile 

compounds < 1% were not included) 
SDE SPME 

Chemical name % SD Chemical name % SD 

Hexanal 9.50 0.17 n.d.   

(E)-2-Hexenal 13.38 0.23 (E)-2-Hexenal  1.16 0.04 

(E)-2-Heptenal 1.09 0.02 (Z)-2-Heptenal  0.61 0.00 

Octanal 1.70 0.03 Octanal 7.66 0.08 

Nonanal 1.30 0.02 Nonanal 28.54 0.16 

(E)-2-Octenal 4.23 0.08 (E)-2-Octenal,  2.13 0.05 

Decanal n.d.  Decanal 2.59 0.04 

Benzaldehyde 1.28 0.02 Benzaldehyde 17.13 0.20 

n.d.   Furfural 1.85 0.10 

n.d.   Heptanal 4.09 0.14 

1-Penten-3-ol 6.74 0.13 n.d.   

Hexanol 4.09 0.08 n.d.   

Benzyl alcohol 10.87 0.11 Benzyl alcohol 2.13 0.09 

Phenylethyl alcohol 1.39 0.023 n.d.   

      

2,3-Butanedione 13.31 0.27 2-Butanone, 3-hydroxy- 2.24 0.07 

n.d.   2-Undecanone 2.89 0.08 

      

hexanoic acid 3.68 0.07 Hexanoic acid 4.89 0.12 

n.d.   Octanoic acid 3.06 0.20 

n.d.   Nonanoic acid 1.41 0.05 

n.d.   n-Decanoic acid 3.99 0.13 

n.d.   Dodecanoic acid 1.66 0.09 
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SDE SPME 

Chemical name % SD Chemical name % SD 

ethyl hexanoate 2.48 0.04 n.d.   

2-methypyrazine 1.90 0.04 n.d.   

2,5-dimethylpyrazine 4.75 0.09 n.d.   

2,6-dimethylpyrazine 9.49 0.16 n.d.   

2-ethylpyrazine 2.76 0.06 n.d.   

trimethylpyrazine 1.80 0.03 n.d.   

SD means standard deviation; n.d. means not detected 
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Figure 4. 1 Optimization of Incubation Temperature, Fixed Incubation Time for 30 min, 

Extraction Time for 25 min 
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Figure 4. 2 Optimization of Incubation Time, Fixed Incubation Temperature at 80 °C, 

Extraction Time for 25 min 
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Figure 4. 3 Optimization of Extraction Time, Fixed Incubation Temperature at 80 °C, 

Incubation Time for 30 min 
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Figure 4. 4 Hierarchical Cluster of Volatile Compounds Analysis of 15 Cultivars of Jujube Fruits 
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Figure 4. 5  Color Map of Concentrations of Different Volatile Compounds in Jujube Fruit (Color from blue to gray to red 

means value of concentration varied from lowest to medium to highest) 
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            A                                                  B                                                                                   C 

 
Figure 4. 6 Principal Component Analysis of 15 Cultivars of Jujube [A, eigenvalues of principal components; B, score plot of 

first two principal components (the same color in the score plot means they were in the same cluster, which were cataloged by 

HCA); C, loading plot of different variances], legend of cultivars in B: different marks represented different cultivars, the 

colors of the mark were meaningless; legend of cluster in B: different color means different cluster. 
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Figure 4. 7 Biplot of Principal Component Analysis 

 



174 

 

 
Figure 4. 8 Bivariate Fit of Principal Component 2 by Principal Component 1, legend of 

cultivars: different marks represented different cultivars, the colors of the mark were 

meaningless; legend of cluster: different color means different cluster. Density ellipses 

were shown in cluster grouping, p=0.95 
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CHAPTER FIVE 

SUMMARY 

In this study, jujube was analyzed in regards of its basic composition in terms of 

the reducing sugars, organic acids, free amino acids, fatty acids and minerals. Its 

bioactive compounds such as ascorbic acid, triterpenes, cAMP and antioxidant capacity 

were also analyzed. The volatile compounds in jujube were detected by GC-MS. As a 

result, it was found that most of the analytes in different jujubes existed in significant 

difference (p<0.05). However, the fatty acids and minerals did not show the significant 

differences among some cultivars. The antioxidant capacity such as DPPH, FRAP and 

HRSA were highly correlated with the total phenolic content and the content of ascorbic 

acid; ABTS was highly correlated with total content of triterpenes. Volatile compounds 

extracted by the SPME method included six major chemical groups, including aldehydes, 

acids, alcohols, esters and ketones. Among them, the aldehydes and acids were the major 

group, which accounted for more than 95% of total amount of the identified volatile 

compounds. 

In order to classify the cultivars, principal components analysis and hierarchical 

cluster analysis were used. It was found that principal component analysis based on the 

contents of reducing sugars were more reliable than PCA based on the other analytes 

because this PC can explain more than 80% of data variance if a two-dimensional plot is 

used. In particularly, the discrimination of different cultivars based on volatile 

compounds analysis was not well, most cultivars did not show the significant difference. 

Overall, these comprehensive data including reducing sugars, organic acids, free 
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amino acids, free fatty acids, minerals, antioxidants, antioxidant capacity and the volatile 

compounds in jujube can provide more information about nutritional values of jujube 

fruits, to improve the quality of processing products which related to jujube. The 

classification based on different analytes can help us to choose proper cultivars of jujube 

for better utilization.  

Because of jujube fruits were collected from the same place, the environmental 

factors such as the soil, sunlight, rainfalls were ignored, the classification only based on 

the cultivars. In future, the genotype of different cultivars can be analyzed to confirm the 

classification; and the samples from different location should be analyzed, try to find if 

the environmental factors can affect the contents of compounds and the classification 

effectively. 
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Appendix A 

Water Contents in Different Cultivars of Jujube Fruits 

 

Table A. 1 Water Contents in 15 Cultivars of Jujube, % 
Sample BJ BZ DB HP JB JD JS LB LZ NP PB PZ XZ YL YZ 

Water 

content 

76.7±

2.2 

68.3±

1.2 

77.6±

0.8 

68.9±

0.9 

74.1±

0.3 

79.5±

2.5 

76.8±

0.3 

75.1±

0.4 

79.3±

0.5 

74.3±

0.5 

75.0±

1.0 

77.4±

0.6 

73.3±

1.4 

74.6±

0.6 

74.0±

0.2 

Data represent as mean value ± standard error 
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Appendix B 

Contents of Minerals and Fatty Acids in Different Cultivars of Jujube per 100g FW 

 

Table B. 1 Contents of Minerals in 15 Cultivars of Jujube, mg/100g FW 
 Mn Fe Cu Zn Ca Mg Ni Al B Pb Ti Cr 

BJ 0.118± 

0.007 gh 

1.61± 

0.10 defg 

0.165± 

0.008 bcd 

0.361± 

0.040 bcd 

6.70± 

0.44 ab 

14.53± 

0.48 def 

0.057± 

0.002 bcd 

3.84± 

0.19 cd 

0.604± 

0.032 bcd 

n.a. 0.057± 

0.001 bcdef 

0.089± 

0.002 d 

BZ 0.264± 

0.006 a 

3.97± 

0.17 a 

0.192± 

0.002 ab 

0.510± 

0.007 a 

6.10± 

0.21 bcd 

18.94± 

0.49 a 

0.081± 

0.007 a 

4.59± 

0.05 a 

0.517± 

0.009 cde 

0.041± 

0.003 a 

0.066± 

0.001 abcd 

0.185± 

0.017 ab 

DB 0.239± 

0.006 a 

1.61± 

0.02 defg 

0.107± 

0.008 fg 

0.384± 

0.001 bc 

6.76± 

0.09 ab 

15.68± 

0.21 cd 

0.066± 

0.008 abc 

3.08± 

0.02 f 

0.524± 

0.019 cde 

0.012± 

0.001 d 

0.043± 

0.004 f 

0.104± 

0.005 cd 

HP 0.161± 

0.014 def 

2.08 

±0.03 

bcde 

0.151± 

0.002 cde 

0.418± 

0.006 b 

6.13± 

0.08 bcd 

15.92± 

0.13 cd 

0.072± 

0.004 ab 

4.38± 

0.13 ab 

0.650± 

0.032 bc 

0.028± 

0.001 bc 

0.071± 

0.009 abc 

0.180± 

0.009 ab 

JB 0.198± 

0.006 b 

2.17± 

0.07 bc 

0.139± 

0.002 def 

0.420± 

0.029 ab 

4.65± 

0.15 fg 

15.90± 

0.37 cd 

0.062± 

0.001 bcd 

3.75± 

0.10 cd 

0.539± 

0.015 cde 

n.a. 0.055± 

0.003 cdef 

0.168± 

0.010 b 

JD 0.148± 

0.003 ef 

1.28± 

0.01 g 

0.123± 

0.001 efg 

0.360± 

0.009 bcd 

5.11± 

0.18 ef 

13.27± 

0.23 ef 

0.045± 

0.005 d 

3.04± 

0.05 f 

0.517± 

0.056 cde 

n.a. 0.042± 

0.001 f 

0.079± 

0.002 d 

JS 0.111± 

0.005 h 

1.48± 

0.08 g 

0.102± 

0.003 g 

0.285± 

0.005 d 

6.44± 

0.12 abc 

14.25± 

0.30 def 

0.054± 

0.003 bcd 

3.89± 

0.09 cd 

0.526± 

0.081 cde 

n.a. 0.062± 

0.006 abcde 

0.091± 

0.001 d 

LB 0.171± 

0.023 cde 

1.58± 

0.10 efg 

0.095± 

0.003 g 

0.277± 

0.004 d 

5.46± 

0.09 de 

13.30± 

0.28 ef 

0.058± 

0.001 bcd 

3.62± 

0.06 de 

0.510± 

0.007 cde 

0.031± 

0.001 b 

0.054± 

0.002 cdef 

0.102± 

0.011 cd 
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 Mn Fe Cu Zn Ca Mg Ni Al B Pb Ti Cr 

LZ 0.171± 

0.009 cde 

1.53 

±0.13 fg 

0.136± 

0.001 def 

0.333 

±0.021 

 bcd 

4.48± 

0.08 fg 

12.93± 

0.07 f 

0.052± 

0.001 cd 

3.07± 

0.02 f 

0.634± 

0.018 bcd 

0.022± 

0.002 c 

0.052± 

0.003 def 

0.110± 

0.008 cd 

NP 0.194± 

0.008 bc 

1.63± 

0.04 defg 

0.173± 

0.012 abc 

0.399± 

0.019 b 

6.07± 

0.16 bcd 

17.92± 

0.67 ab 

0.062± 

0.003 bcd 

4.16± 

0.04 bc 

0.733± 

0.046 b 

0.021± 

0.003 c 

0.072± 

0.002 ab 

0.103± 

0.003 cd 

PB 0.178± 

0.006 bcd 

1.64± 

0.07  

cdefg 

0.164± 

0.012 bcd 

0.402± 

0.013 b 

6.55± 

0.03 ab 

14.64± 

0.21 edf 

0.063± 

0.002 bcd 

3.95± 

0.08 cd 

0.592± 

0.015  

bcde 

0.005± 

0.001 de 

0.073± 

0.002 ab 

0.095± 

0.001 cd 

PZ 0.140± 

0.004 fg 

2.13± 

0.25 bcd 

0.106± 

0.001 fg 

0.307± 

0.006 cd 

6.41± 

0.11 abc 

14.34± 

0.31 def 

0.053± 

0.004 cd 

3.22± 

0.05 ef 

0.476± 

0.021 de 

n.a. 0.046± 

0.001 ef 

0.224± 

0.021 a 

XZ 0.155± 

0.007 def 

2.05± 

0.06  

bcdef 

0.148± 

0.002 cde 

0.331± 

0.002 bcd 

5.72± 

0.14 cde 

14.45± 

0.38 def 

0.064± 

0.001 bc 

3.88± 

0.03 cd 

0.425± 

0.011 e 

n.a. 0.051± 

0.002 def 

0.143± 

0.003 bc 

YL 0.176± 

0.001 bcd 

2.17± 

0.05 b 

0.206± 

0.008 a 

0.348± 

0.021 bcd 

4.12± 

0.18 g 

14.96± 

0.14 cde 

0.060± 

0.001 bcd 

3.97± 

0.04 bcd 

0.911± 

0.010 a 

n.a. 0.078± 

0.001 a 

0.120± 

0.008 cd 

YZ 0.167± 

0.002 de 

1.37± 

0.07 g 

0.156± 

0.009 cde 

0.420± 

0.016 ab 

6.93± 

0.13 a 

16.45± 

0.11 bc 

0.061± 

0.005 bcd 

3.78± 

0.03 cd 

0.586± 

0.014 bcde 

n.a. 0.053± 

0.003 cdef 

0.095± 

0.001 d 

Data represent as mean value ± standard error,  

Different letters followed the data in the same column means significant difference (p<0.05) 

n.d. means not detected 
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Table B. 2 Contents of Saturated Fatty Acids in 15 Cultivars of Jujube, μg/100g FW 

 

C10:0 C12:0 C14:0 C15:0 C16:0 C17:0 C18:0 C20:0 C21:0 C22:0 C23:0 C24:0 

BJ 

3.22± 

0.04 gh 

28.19± 

2.43 e 

16.73± 

0.83 gh 

2.66± 

0.09 bc 

29.52± 

0.57 de 

4.09± 

0.39 b 

6.23± 

0.26 ij 

5.59± 

0.48 c 

2.97± 

0.07 ab 

14.11± 

0.15 a 

14.77± 

0.04 abcd 

16.23± 

0.41 cde 

BZ 

4.27± 

0.22 fg 

46.08± 

1.25 c 

24.48± 

0.11 de 

6.24± 

0.63 a 

26.91± 

0.49 ef 

0.34± 

0.01 g 

30.61± 

0.15 a 

7.01± 

0.43 abc 

3.05± 

0.02 ab 

14.72± 

0.12 a 

15.25± 

0.05 ab 

25.51± 

1.21 a 

DB 

5.69± 

0.19 def 

38.99± 

1.59 cde 

16.96± 

0.45 gh 

1.31± 

0.09 d 

15.36± 

0.21 i 

2.42± 

0.01 de 

4.96± 

0.08 j 

6.13± 

0.11 abc 

2.74± 

0.21 b 

2.79± 

0.28 b 

14.28± 

0.51 abcd 

10.08± 

0.02 hij 

HP 

4.61± 

0.35 feg 

30.08± 

0.69 de 

14.99± 

0.17 hi 

2.32± 

0.06 cd 

32.59± 

0.93 cd 

4.91± 

0.13 a 

8.47± 

0.05 h 

6.20± 

0.28 abc 

3.05± 

0.03 ab 

14.20± 

0.17 a 

13.43± 

0.35 d 

15.29± 

0.36 def 

JB 

18.89± 

0.50 b 

96.75± 

1.30 a 

31.95± 

1.65 ab 

5.64± 

0.10 a 

25.49± 

0.67 f 

5.43± 

0.05 a 

16.03± 

0.22 de 

6.16± 

0.11 abc 

3.06± 

0.01 ab 

14.60± 

0.08 a 

13.51± 

0.28 cd 

27.44± 

1.50 a 

JD 

8.19± 

0.24 c 

42.53± 

1.44 cd 

12.97± 

0.56 i 

1.49± 

0.09 d 

39.71± 

0.65 b 

2.81± 

0.19 cde 

16.29± 

0.43 d 

6.28± 

0.05 abc 

3.01± 

0.03 ab 

14.51± 

0.13 a 

14.75± 

0.19 abcd 

12.55± 

0.22 fgh 

JS 

22.11± 

1.10 a 

92.16± 

0.87 a 

27.09± 

0.70 cd 

3.40± 

0.08 b 

25.00± 

1.08 fg 

4.13± 

0.11 b 

6.28± 

0.40 ij 

7.15± 

0.17 ab 

2.96± 

0.06 ab 

14.49± 

0.03 a 

15.16± 

0.34 ab 

18.11± 

0.15 bcd 

LB 

6.16± 

0.28 cdef 

29.43± 

1.33 e 

17.84± 

0.14 gh 

2.69± 

0.21 bc 

21.31± 

0.56 gh 

3.13± 

0.17 cd 

5.39± 

0.39 ij 

5.64± 

0.34 c 

3.02± 

0.01 ab 

1.54± 

0.04 c 

15.08± 

0.14 ab 

8.85± 

0.18 ij 

LZ 

2.17± 

0.08 h 

31.66± 

0.64 de 

18.33± 

0.35 fgh 

1.55± 

0.05 d 

25.19± 

0.43 f 

2.28± 

0.16 e 

11.78± 

0.32 g 

6.04± 

0.24 abc 

2.98± 

0.04 ab 

1.88± 

0.07 c 

13.87± 

0.60 bcd 

11.04± 

0.24 ghi 

NP 

23.87± 

0.38 a 

71.66± 

8.09 b 

21.58± 

0.74 ef 

1.72± 

0.14 cd 

47.51± 

1.06 a 

3.28± 

0.06 c 

13.95± 

0.49 f 

6.83± 

0.52 abc 

3.05± 

0.03 ab 

14.56± 

0.12 a 

15.33± 

0.05 a 

12.03± 

0.48 fghi 

PB 

6.03± 

0.10 def 

100.89±

0.68 a 

28.47± 

0.76 bc 

1.94± 

0.03 cd 

44.30± 

0.54 a 

0.31± 

0.02 g 

22.27± 

0.79 b 

6.59± 

0.27 abc 

3.10± 

0.07 ab 

14.51± 

0.15 a 

15.20± 

0.22 ab 

21.00± 

0.66 b 

PZ 

19.02± 

0.38 b 

71.03± 

2.13 b 

33.34± 

0.85 a 

5.89± 

0.18 a 

31.71± 

0.48 d 

0.32± 

0.01 g 

19.51± 

0.46 c 

6.73± 

0.13 abc 

3.03± 

0.02 ab 

14.05± 

0.16 a 

14.07± 

0.24 abcd 

18.78± 

0.51 bc 

XZ 

7.30± 

0.49 cd 

73.65± 

1.22 b 

17.84± 

0.28 gh 

3.59± 

0.24 b 

36.07± 

0.42 bc 

0.30± 

0.01 g 

14.21± 

0.34 ef 

5.56± 

0.26 c 

3.11± 

0.08 a 

14.55± 

0.15 a 

15.01± 

0.05 ab 

14.47± 

0.25 efg 

YL 

19.60± 

0.26 b 

71.08± 

0.58 b 

19.60± 

0.36 fg 

1.67± 

0.03 cd 

20.91± 

0.89 h 

1.37± 

0.04 f 

7.08± 

0.13 hi 

5.87± 

0.16 bc 

3.01± 

0.02 ab 

14.40± 

0.02 a 

14.93± 

0.16 abc 

7.46± 

0.55 j 

YZ 

6.37± 

0.18 cde 

42.36± 

1.30 cd 

16.59± 

0.53 gh 

2.28± 

0.11 cd 

24.31± 

1.19 fgh 

0.32± 

0.02 g 

21.53± 

0.45 b 

7.36± 

0.17 a 

3.01± 

0.05 ab 

14.75± 

0.21 a 

15.24± 

0.23 ab 

17.17± 

1.03 cde 

Data represent as mean value ± standard error, Different letters followed the data in the same column means significant 

difference (p<0.05) 



187 

 

 

Table B. 3  Contents of Unsaturated Fatty Acids in 15 Cultivars of Jujube, μg/100g FW 
 BJ BZ DB HP JB JD JS LB LZ NP PB PZ XZ YL YZ 

C1

4:1 

83.44±

2.84 

efg 

94.43±

1.48 de 

88.13

±1.30 

def 

79.99

±0.67 

fg 

135.17

±2.95 

ab 

88.88

±3.89 

def 

136.01

±2.49 a 

99.97

±2.13 

d 

74.05

±2.48 

g 

121.76

±2.59 c 

140.51

±2.12 a 

123.16

±1.54 

bc 

45.89

±2.12 

h 

92.59

±3.92 

de 

119.26

±2.57 c 

C1

5:1 

2.49±0

.19 de 

2.98±0

.07 

bcde 

3.13±

0.13 

bcde 

3.59±

0.31 

bcd 

3.75±0

.18 bc 

2.45±

0.04 e 

3.01±0

.22 

bcde 

2.89±

0.13 

bcde 

3.15±

0.30 

bcde 

3.98±0

.21 b 

14.07±

0.26 a 

3.41±0

.29 

bcde 

3.97±

0.14 b 

3.11±

0.29 

bcde 

2.83±0

.17 cde 

C1

6:1 

4.68±0

.23 h 

4.99±0

.10 h 

9.50±

0.35 e 

6.03±

0.23 

fgh 

11.75±

0.43 e 

11.39

±0.32 

e 

26.98±

1.55 b 

8.64±

0.19 

efg 

5.64±

0.07 

gh 

17.47±

0.49 d 

16.62±

0.25 d 

21.19±

0.64 c 

5.34±

0.21 h 

31.37

±1.24 

a 

9.12±0

.56 ef 

C1

7:1 

3.60±0

.25 ef 

5.66±0

.12 ab 

3.42±

0.03 

ef 

4.47±

0.26 

cde 

5.67±0

.21 ab 

3.67±

0.19 

ef 

3.79±0

.07 def 

3.24±

0.07 f 

3.32±

0.21 f 

3.60±0

.02 ef 

5.14±0

.43 abc 

4.22±0

.20 

cdef 

6.07±

0.09 a 

3.64±

0.32 

ef 

4.75±0

.07 bcd 

C1

8:1 

14.19±

0.50 e 

16.01±

0.07 e 

45.68

±1.56 

c 

13.21

±0.13 

e 

74.20±

1.09 a 

14.47

±0.47 

e 

16.35±

0.77 e 

27.02

±1.03 

d 

12.88

±0.11 

e 

15.07±

0.31 e 

29.40±

2.50 d 

57.69±

0.76 b 

15.55

±0.43 

e 

14.69

±0.69 

e 

17.17±

0.72 e 

C2

0:1 

5.24±0

.17 ab 

5.40±0

.14 ab 

5.19±

0.09 

ab 

5.24±

0.22 

ab 

4.60±0

.24 b 

5.32±

0.05 

ab 

5.99±0

.14 a 

4.98±

0.28 

ab 

5.16±

0.30 

ab 

5.75±0

.41 ab 

5.56±0

.22 ab 

5.67±0

.10 ab 

4.78±

0.25 b 

4.85±

0.25 

ab 

6.03±0

.27 a 

C2

2:1 

1.63±0

.07 def 

1.67±0

.03 def 

2.03±

0.08 

bcd 

1.59±

0.06 

ef 

1.80±0

.02 

cdef 

1.44±

0.02 f 

2.45±0

.19 b 

14.44

±0.02 

a 

1.87±

0.07 

cdef 

2.11±0

.07 bc 

1.72±0

.13 

cdef 

2.05±0

.05 bcd 

1.63±

0.09 

def 

1.96±

0.10 

cde 

1.51±0

.04 f 

C2

4:1 

1.19±0

.07 d 

4.34±0

.23 b 

2.62±

0.14 c 

1.60±

0.06 d 

2.82±0

.21 c 

1.09±

0.05 d 

3.12±0

.17 c 

2.98±

0.15 c 

1.45±

0.07 d 

1.36±0

.06 d 

1.75±0

.09 d 

2.92±0

.16 c 

1.46±

0.04 d 

1.16±

0.12 d 

5.85±0

.20 a 

C1

8:2 

110.51

±1.73 e 

195.21

±2.09 a 

14.15

±0.53 

j 

47.02

±1.94 

hi 

15.47±

0.97 j 

82.28

±2.03 

f 

170.07

±1.52 

b 

13.28

±0.54 

j 

44.17

±1.58 

i 

119.76

±1.40 

d 

53.44±

1.24 h 

16.27±

0.34 j 

14.62

±0.24 

j 

62.78

±2.39 

g 

137.08

±1.25 c 

C1

8:3 

3.48±0

.06 ab 

3.49±0

.04 ab 

3.52±

0.08 

ab 

3.54±

0.09 

ab 

3.72±0

.10 a 

3.43±

0.02 

ab 

3.39±0

.07 ab 

3.38±

0.03 

ab 

3.48±

0.06 

ab 

3.48±1

.10 ab 

3.65±0

.21 ab 

3.18±0

.13 b 

3.44±

0.02 

ab 

3.47±

0.02 

ab 

3.53±0

.05 ab 

C2

0:2 

1.91±0

.02 g 

3.13±0

.16 c 

14.45

±0.03 

a 

1.92±

0.14 g 

3.01±0

.01 cd 

2.33±

0.08 

efg 

5.00±0

.06 b 

2.53±

0.12 

def 

2.37±

0.19 

efg 

2.23±0

.07 fg 

2.71±0

.11 

cdef 

3.10±0

.08 c 

2.85±

0.08 

cde 

2.96±

0.02 

cd 

2.86±0

.14 cde 
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 BJ BZ DB HP JB JD JS LB LZ NP PB PZ XZ YL YZ 

C2

0:3 

1.19±0

.06 fg 

5.25±0

.14 a 

1.24±

0.04 

fg 

1.60±

0.02 f 

3.08±0

.14 c 

1.17±

0.05 

fg 

1.21±0

.03 fg 

1.45±

0.08 

fg 

1.10±

0.01 g 

1.27±0

.06 fg 

2.47±0

.07 de 

2.10±0

.07 e 

2.75±

0.14 

cd 

1.25±

0.10 

fg 

3.59±0

.16 b 

C2

0:4 

4.91±0

.05 a 

4.81±0

.05 a 

4.97±

0.06 a 

4.91±

0.04 a 

4.86±0

.01 a 

4.81±

0.05 a 

5.00±0

.14 a 

5.02±

0.11 a 

4.92±

0.02 a 

4.91±0

.04 a 

4.96±0

.06 a 

4.98±0

.06 a 

4.99±

0.05 a 

4.87±

0.04 a 

4.97±0

.10 a 

C2

0:5 

5.38±0

.11 bc 

7.68±0

.45 a 

3.33±

0.27 

def 

4.08±

0.10 

cde 

7.77±0

.32 a 

4.20±

0.20 

cde 

5.85±0

.06 b 

5.21±

0.03 

bc 

2.77±

0.08 

ef 

3.64±0

.32 def 

5.31±0

.44 bc 

4.76±0

.16 bcd 

8.00±

0.36 a 

2.29±

0.14 f 

4.63±0

.51 bcd 

C2

2:2 

13.32±

0.21 bc 

13.35±

0.07 bc 

14.61

±0.21 

abc 

14.77

±0.11 

abc 

14.78±

0.10 

abc 

13.73

±0.24 

abc 

15.11±

0.37 ab 

13.85

±0.11 

abc 

14.28

±0.48 

abc 

14.59±

0.30 

abc 

15.20±

0.92 a 

15.11±

0.20 ab 

13.04

±0.26 

c 

13.52

±0.18 

abc 

14.07±

0.42 

abc 

C2

2:6 

5.20±0

.08 cd 

11.02±

0.51 a 

4.12±

0.20 

de 

3.88±

0.08 

de 

9.12±0

.43 b 

3.39±

0.12 

ef 

6.76±0

.15 c 

5.57±

0.19 

cd 

2.71±

0.21 

ef 

4.01±0

.27 de 

6.75±0

.18 c 

5.94±0

.27 c 

9.88±

0.36 

ab 

2.05±

0.06 f 

6.43±0

.83 c 

Data represent as mean value ± standard error,  

Different letters followed the data in the same row means significant difference (p<0.05) 
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