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ABSTRACT 

For short to medium span bridges experiencing lower average daily traffic (ADT), 

the South Carolina Department of Transportation (SCDOT) currently utilizes both hollow 

core and solid slab precast concrete span bridge sections. The intended advantages of 

these bridge sections were that they could be built according to an accelerated bridge 

construction (ABC) schedule and have increased durability. Increasing a bridge’s 

durability has economic advantages since they require less maintenance and have a 

greater lifespan.  

Both the precast hollow core and solid slab spans have not met the SCDOT’s 

durability requirements. Deterioration of the grout key between adjacent precast members 

has led to reflective cracking in both the bridge deck and bridge wearing surface. These 

cracks allow water and other corrosive materials to infiltrate the precast beam sections, 

and lead to the corrosion of the prestressing strands and reinforcement. Corrosion of 

prestressing leads to bridge repairs as well as a diminished life-span, both costly to the 

SCDOT. 

Reflective cracking at the shear key also leads to a decreased ability for a bridge 

to share load among its adjacent members. Both hollow core and solid slab sections are 

designed to distribute load transversely across the bridge and longitudinally to the girder 

bearings. Individual girders resist only a portion of the loads on a bridge. If the shear key 

is degraded and its ability to share load lessened, a possible overload and catastrophic 

failure of a bridge member could occur.  
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These durability issues have proved to be problematic and have concerned the 

SCDOT. The SCDOT and Clemson University teamed up to conduct research in order to 

identify, modify, or develop a bridge type that was both more durable and could meet the 

schedule of ABC. The SCDOT and Clemson University settled on the northeast extreme 

tee (NEXT) beam, developed by the bridge technical committee of PCI Northeast.  

The NEXT beam section is an advantageous bridge section for many reasons, 

including its geometric diversity, ability to meet an ABC schedule, utility 

accommodations, full deck option, and a wider shear key allowing for an easier concrete 

pour or grouting.  

The NEXT beam cross section does not fall into an AASHTO LRFD category for 

simplified moment live load distribution factors. This project seeks to calculate live load 

distribution factors via live load test, and determine what, if any, category the NEXT 

section can fall under for simplified moment live load distribution factors. A future 

research project will assess the durability of the UHPC shear keys for both the NEXT D 

and solid slab span by monitoring the ability for girder sections to share load transversely 

over a period of two years. Results of this research will be given to the South Carolina 

Department of Transportation (SCDOT) so that they may be informed on how NEXT 

Beam transverse moment distribution behavior. Results on UHPC shear key performance 

and durability will also be given to the SCDOT.  
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Chapter 1:   Introduction 

Every four years, the American Society of Civil Engineers (ASCE) produces a 

report card that grades America’s infrastructure in sixteen different categories. Bridges 

are included within this report card. According to ASCE’s 2017 report, of the 614,387 

bridges in the United States, 9.1% are rated as structurally deficient (Bridges, 2017). 

Additionally, close to 40% of the nation’s bridges are reaching their design life of 50 

years. As many bridges approach the end of their design life, the report estimates that an 

additional $123 billion is needed for bridge rehabilitation projects. In the state of South 

Carolina, 964 of its 9,358 bridges are rated as structurally deficient. The Federal Highway 

Administration (FHWA) classifies a bridge as structurally deficient if “significant load 

carrying elements are found to be in poor condition due to deterioration” (Ahmad, 2011). 

When replacing these structurally deficient bridges, the state hopes that new technologies 

and materials can help build these bridges at an accelerated rate to promote safety and 

resilience so that longer design lives can be achieved.  

For many of its bridges, The South Carolina Department of Transportation 

(SCDOT) commonly utilizes cast-in-place (CIP) construction, precast solid slab, or 

precast hollow core bridges. Hollow core bridge sections are precast prestressed concrete 

rectangular slabs with tubular voids located in the middle of the section that extend the 

length of the slab. Solid slab bridges are similar in shape and geometry to hollow core 

sections, but do not have the tubular voids. Time has shown that CIP bridges are durable, 

but have a long construction time.  Hollow core flat slab bridges can be built according to 



 

 2 

an accelerated bridge construction (ABC) schedule, however, several durability issues 

have occurred.   

 For short to medium span bridges carrying lower average daily traffic (ADT), 

SCDOT commonly implements either hollow core and solid slab precast concrete span 

bridge sections. The SCDOT has discovered that both the precast hollow core and solid 

slab spans present durability issues. As shown in figure 1, deterioration of the grout key 

between adjacent precast members has led to reflective cracking in both the bridge deck 

and bridge wearing surface. These cracks allow water and corrosive materials to infiltrate 

the precast beam sections which leads to the degradation of the concrete and eventually 

corrosion of the prestressing strands. Corrosion of prestressing strands can lead to bridge 

repairs, diminished life-span, and postings.  

 

 

  

 

 

Reflective cracking at the shear key is an indication of decreased transverse load 

distribution. Transverse load distribution is the ability of applied loads to be shared by 

adjacent members. If shear keys are degraded, transverse load distribution is decreased, 

Reflecting Crack 

 

 

Figure 1: Section of Hollow Core Slab (Nielson et al., 2012) 
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and load carrying capacity may be decreased. This can result in bridge postings and in 

extreme cases, overload and catastrophic failure of a bridge member. 

 These durability issues have proved to be problematic and have concerned 

SCDOT. In a past project, SCDOT and Clemson University teamed up to conduct 

research in order to identify, modify, or develop a bridge type that was both more durable 

and could lead to the schedule of ABC (Deery, 2010). SCDOT and Clemson University 

selected the Northeast Extreme Tee (NEXT) beam, developed by the bridge technical 

committee of PCI Northeast for further study and deployment on an SCDOT bridge 

(Culmo and Seraderian, 2010).  

 The NEXT beam is shaped like a double tee used in building construction (figure 

2), but more robust, as shown in figure 3. The NEXT beam section was selected for many 

reasons, including geometric adaptability, ability to meet an ABC schedule, utility 

accommodations, full deck option, easier to inspect, and a full-depth wider shear key 

allowing for an easier concrete pour and greater bond between precast girder elements 

and shear key. One of the NEXT beam models (NEXT D), is precast with a full depth 

flange (8”). The NEXT D beam requires no CIP overlay and a bituminous asphalt overlay 

is optional. In other words, the NEXT D beam can carry traffic as soon as the girders are 

set, shear keys are poured, and guardrails are in-place.   
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Many states have started to use the different varieties of NEXT beam bridge girder 

systems as an alternate to CIP concrete or precast sections with great success. 

Additionally, some states have also replaced traditional shear key grout with ultra-high 

Figure 2: Typical Building Double Tee (Picture courtesy of Tekla Structures) 

 

Figure 3: NEXT D Section Cut  
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performance concrete (UHPC). UHPC has very high compressive and tensile strength, 

and is extremely durable (Graybeal, 2010). Graybeal states that for a concrete to be 

considered UHPC, it must display compressive strengths greater than or equal to 21.7 ksi, 

and tensile strengths greater than or equal to 0.72 ksi (Graybeal and Russell, 2013). 

Additionally, UHPC bonds exceptionally well to precast bridge girder elements. The 

NEXT D bridge system that SCDOT is deploying includes UHPC as a replacement for 

grout in the shear keys. South Carolina and many other states are beginning to use UHPC 

as a replacement for grout in shear keys and other structural connections. Since NEXT 

beams and UHPC shear keys are beginning to see use by SCDOT and other state DOT’s, 

research is needed to investigate the structural performance and durability of UHPC shear 

keys.  

1.1 Hanging Rock Bridge 
 

Hanging Rock Creek Bridge in Kershaw, SC, is an example of a short span low 

average daily traffic (ADT) bridge. The bridge consists of four simple spans: one 40’ 

NEXT D span, two 70’ hollow core slab spans, and one 40’ solid core slab span. Hanging 

Rock Creek is the subject of this investigation.   

A photo of the nearly completed Hanging Rock Bridge is shown in figure 4. The 

image displays four simply supported spans as well as the substructure beneath. Span 1 

(far left and facing north) is a 40 ft. long NEXT-D beam span. Spans 2 and 3 are both 70 

ft. long cored slab unit spans. Finally, span 4 is a 40 ft. long solid slab unit. The Hanging 

Rock Bridge utilizes Ductal Concrete as the UHPC shear key material. Ductal is the 

brand name of Lafarge Corporation’s version of UHPC. Additionally, spans 2 – 4 are 
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transversely post-tensioned. The UHPC is fiber-reinforced: it contains steel fibers that 

increase both the concretes strength and ductility. Ductal concrete’s strength is 6 to 8 

times greater than standard concrete strength and has a lifespan 2 to 3 times longer 

(Ductal, 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

The SCDOT chose to build a bridge with three different types of prestressed 

concrete girders so that a head-to-head comparison of the behavior of the three bridge 

types could be performed. Shear keys for the NEXT-D and solid and hollow slab spans 

are shown figures 5 and 7, respectively.  

 

Figure 4: Hanging Rock Creek Bridge 
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Figure 8: Solid Slab Shear Key Detail 

 

Figure 6: NEXT D Shear Key Detail 

Figure 7: Solid Slab Shear Key  

Figure 5: NEXT D Shear Key  
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Figures 9, 10, and 11 show the cross sections of spans 1, 2 and 3, and 4 

respectively. Facing north, NEXT D beam bridge girders are numbered 1-6 while moving 

from left to right. Facing north, hollow core and solid slab bridges, girders are numbered 

1 through 14 while moving from left to right.  

 

 

Figure 11: Section Cut through Solid Slab Unit (Span 4) 

 

Figure 10: Section Cut through Hollow Core Slab Units (Spans 2 and 3) 

Figure 9: Cut through NEXT D Beam (Span 1) 
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1.2 Load Distribution Factors 
 

AASHTO LRFD uses distribution factors to account for transverse load sharing in 

many categories of bridges. The NEXT beam cross section does not neatly fall into an 

AASHTO LRFD category for calculating simplified moment live load distribution factors 

(DFM). It is a hybrid between type (i) and type (k) when referencing AASHTO LRFD 

(AASHTO LRFD 2010). Type (i) and (k) are shown in Figures 12 and 13 respectively. A 

Precast Concrete Institute (PCI) technical committee has recommended that engineers 

calculating DFM for bridges containing NEXT D beams can treat the bridge as type (k) 

(Guidelines, 2012). This project seeks to evaluate the accuracy of this recommendation 

via live load testing. Additionally, the durability of the shear key will be monitored over a 

period of two years. Durability monitoring will be a focus of subsequent thesis projects; 

the current thesis focuses on DFM. The purpose and scope are described in detail in the 

next section.  

 

Figure 12: Type (i) Girder (Double T Beam Bridge Section) [AASHTO LRFD] 
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1.3 Purpose and Scope 
 

 The purpose of this entire project is threefold: 1) evaluate the transverse load 

sharing characteristics of the NEXT D beams via UHPC connection and determine the 

live load moment distribution factors, 2) to monitor and compare the health of the UHPC 

shear keys in both the NEXT-D beams and solid core slab over a two-year period, and 3) 

to perform material tests on UHPC samples. This thesis will focus on the initial live load 

test of Hanging Rock Creek Bridge and the UHPC specimen tests performed in the 

Clemson University laboratory. Two more live load tests (at 12 and 24 months from date 

of bridge opening) are scheduled and will be discussed in a thesis at a later date.  

Truck weights and configurations for the live load tests were selected to generate 

the maximum bridge girder response. Bridge girder strains and deflections were recorded 

during the live load tests of the bridge spans containing NEXT D beams and solid core 

slab. Cube, split cylinder, and pull-off tests all were performed to obtain metrics of the 

UHPC found in Hanging Rock Bridge shear keys.  Cube strength tests determined the 

compressive strength of the UHPC, split cylinder determined the tensile strength of the 

UHPC, and the pull-off test measured the bond strength between the precast concrete and 

UHPC. The results from this project are used to present recommendations for engineers 

Figure 13: Type (k) Girder (Bulb T Beam Bridge Section) [AASHTO LRFD] 
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designing NEXT beam bridges, specifically live load distribution factors for moment and 

if UHPC shear keys are more durable than normal strength grout or concrete.  

1.4 Objectives 
 

 The entirety of this research project set out to answer the four objectives below. 

This thesis will focus on objectives #1 and #4. The objectives are as follows: 

1. How is load shared transversely between NEXT-D beams? What is the calculated 

DFM? How conservative is type (k) category, recommended by the PCI technical 

committee? 

2. Does the transverse load behavior of NEXT-D beams and solid core units change 

over the next two years as the bridge ages? 

3. How durable are the UHPC shear keys? Does the UHPC bond well to the precast? 

Is there a difference between the NEXT-D beam shear key (full-depth) and solid 

slab shear key (partial depth)? Are there any changes that would improve the joint 

detail? 

4. What are the material properties of the UHPC? Specifically, what are the 

compressive, tensile, and bond strengths? 

1.5 Organization 
 

 This Master’s thesis is composed of five chapters. A literature review of NEXT 

beams, nondestructive bridge testing, and UHPC use in bridges is presented in chapter 2. 

Chapter 3 aims to present the setup and experimental procedure of the UHPC material 

tests and live load test. Results of the live load test are presented in chapter 4. Finally, 
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chapter 5 presents conclusions and recommendations based on the results found in 

chapter 4. 
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Chapter 2:   Literature Review 

2.1 NEXT Beam Background 
 

The NEXT beam is an alternative to the typical box-beam girder used by many 

state DOT’s in short to medium span bridges. The NEXT beam addresses many of the 

shortcomings of box beam girders including: accommodating utilities, construction 

challenges, and difficulty grouting shear keys. There are three variations of the NEXT 

beam, and they include NEXT D, NEXT E, and NEXT F (Seraderian, 2016). The NEXT 

D has full flange thickness (8”) with the top serving as a road surface. An optional 

asphalt overlay may be added. The NEXT E has half flange thickness (4”) and receives a 

4” CIP concrete overlay. The NEXT F beam has a partial flange thickness, which serves 

as formwork for an 8” CIP concrete overlay. Hanging Rock Creek Bridge span 1 is a 

NEXT D bridge system. The geometry of the Hanging Rock Creek Bridge NEXT D 

section cut is shown in figure 14. 

 

 

 

Figure 14: NEXT D Beam Section Cut 
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The idea for the NEXT beam came about in 2006 at the Rotondo Precast plant in 

Rehoboth, Massachusetts (Culmo and Seraderian, 2010). The Rotondo plant had 

developed a precast section that was used for high-level railroad platforms show in figure 

15. The high-level railroad platform section exhibited many favorable characteristics for 

short and medium bridge span lengths. After some dimensional parameters were set by 

PCI, the NEXT beam was born. 

 

 

 

 

 

 

 

 

 

 The main issues that state DOTs face with flat slab and hollow core sections is 

their durability and load sharing abilities (Deery, 2010). The NEXT beams seeks to solve 

these durability issues a few ways. First, there are no voids in the NEXT beam bridge 

sections, which limits waters ability to infiltrate inside the precast section and corrode the 

prestressing steel. While NEXT beams limit corrosion, they are also much easier to 

Figure 15: High-Level Railroad Platform that Inspired NEXT Beam Design 

(Culmo and Seraderian, 2010) 
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inspect for girder damage and strand corrosion in comparison to hollow core and solid 

slabs (Deery, 2010) 

Additionally, NEXT beam shear keys are wider and full depth, unlike many box-

beam solid slab and hollow core section shear keys. These modified shear keys should 

allow for a stronger more durable connection that are easier to grout. Shear key failures 

can often be attributed to inadequate grouting procedures, which are made difficult by 

shear key narrowness (El-Remaily et al., 1996).  

 Lastly, solid slab sections often do not have any reinforced concrete overlay to 

assist with load sharing. All NEXT sections have reinforced concrete flanges and/or 

overlay to assist with load sharing.  

There are papers that have shown various ways to decrease reflective cracking 

some of which include using a full depth shear key and using a grout material with a high 

bond strength (Miller et al., 1999). The NEXT beams of the Hanging Rock Creek have 

implemented both of these strategies.  

 The remaining portion of the literature review aims to summarize relevant 

research completed and describe how the current study seeks to build off previous studies 

to answer the target objectives. Included in the literature review is a section on how 

transverse load distribution is accounted for by the AASHTO LRFD Bridge Design 

Specifications (2012). Another section contains background information on UHPC, how 

UHPC has been used in bridge connections by other state DOTs, and UHPC joint 

research conducted by Clemson University and Virginia Tech. The final section covers 
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research from the University of Massachusetts at Amherst on NEXT F beams, including 

their findings on transverse load distribution in NEXT beam bridges.  

2.2 Dynamic Load Allowance 
 

 No road is smooth and perfectly flat. Roads all have different degrees of 

roughness. Additionally, approach slabs may settle, creating a ramp from approach slab 

to the bridge system. Road roughness and these ramps cause vehicles to oscillate, or to 

bounce up and down on their suspension systems as a vehicle crosses a bridge. As the 

vehicles bounce, the shocks compress. This downward compression force is greater than 

the weight of the vehicle alone. The increase in the force of the truck due to the bouncing 

and compression of the shocks is called the dynamic load allowance (IM) (Barker and 

Puckett, 2007).  

 Edgar Restrepo observed this ramp like effect in his thesis work at Virginia Tech 

(Restrepo, 2002). Figures 16 and 17 are the hypothetical versus actual bridge approach 

slab elevation views for the Route 601 Bridge. The actual approach slab has a slope due 

to poor soil compaction under the approach slab. For his thesis work, Restrepo performed 

two bridge tests, one in the fall of 2001 and one in the summer of 2002. During the fall 

2001 test, the approach slabs were in poor condition as shown in figure 18. During the 

summer 2002 test, the approach slabs had been repaired as shown in figure 19. A 

comparison of IM factors from both bridge tests and AASHTO standards is shown in 

figure 20.  
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Figure 18: Elevation View of the Route 601 Bridge with Planned Approach Slabs 

(Restrepo, 2002) 

Figure 17: Elevation View of the Route 601 Bridge with Sloped Approach Slabs 

Due to Soil Settlement (Restrepo, 2002) 

Figure 16: Approach Conditions of the Route 601 Fall 2001 Live Load Test 

(Restrepo, 2002) 
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From the data shown in figure 20, it was concluded that the dynamic load 

allowance was affected by the settlement of the approaches. In this case, the approach 

slab improvements actually amplified the dynamic effects of the trucks. In the Fall 2001 

Figure 19: Route 601 IM Factor Comparison with AASHTO (Restrepo, 2002) 

Figure 20: Improved Approaches of the Route 601 Summer 2002 Live Load Test 

(Restrepo, 2002) 
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test, the ramped approaches allowed for the truck to go slightly airborne during the live 

load test, resulting in smaller bridge responses and a lower IM factor. The repair of the 

bridge approaches did not allow the truck to go airborne in the summer 2002 test, 

resulting in greater bridge responses and an increased IM factor.  

Figure 21 shows a bridge girder under static and dynamic loading for the US 

Route 15 Southbound bridge over Interstate 66. This bridge is a two span 244 ft. steel 

girder bridge. Figure 22 plots bridge displacement versus truck position since the static 

and dynamic tests operate on a different time scale. From figure 22, it is shown that the 

deflections are greater due to the dynamic response than the static response. These 

dynamic forces must be accounted for in bridge design. Factors that influence the IM 

include bridge stiffness, span length, truck weight, and road surface roughness. 

Figure 21: Static Versus Dynamic Load Effect (Collins, 2010) 
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2.2.1 AASHTO Dynamic Load Allowance 

 

 Rather than determining the IM analytically or experimentally, AASHTO has a 

table that guides engineers on how to design for the dynamic effect of a vehicular load. 

The table for the design IM of different bridge components is shown in table 1.  

 

 

 

 

Figure 22: Dynamic Response Superimposed on Static Response (Collins, 2010) 
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Table 1: AASHTO LRFD IM Factors (AASHTO LRFD 2012) 

 In the case of Hanging Rock Creek Bridge, the bridge girders were designed used 

an IM of 1.33. This is a conservative value, which is illustrated in chapter 4 of this text.  

2.2.2 Experimental Calculation of Dynamic Load Allowance 

 

 The dynamic load allowance is typically calculated using equation 1 below, where 

Ddyn is the response (bending strain or deflection) due to dynamic loading, and Dsta is the 

response due to a static loading. 

 

       Equation 1 

 

 Once the IM is calculated, the dynamic loading is determined using equation 2, 

which converts the static loading into an appropriate dynamic loading:  

 

      Equation 2 
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2.3 Transverse Load Distribution in Slab-Girder Bridges 
 

 Bridges are designed to take vehicular loads and deliver them safely to the bridge 

foundation. Bridge decks and girders are designed to distribute load transversely across 

the bridge and longitudinally to the girder bearings. Individual girders resist a portion of 

the loads on a bridge. This portion or fraction of load is primarily a function of the 

transverse load distribution of the bridge. 

 The ability for bridge girders to share vehicular load transversely between 

adjacent bridge girders is predicted using moment distribution factors (DFM). Stiffness of 

bridge components, including but not limited to the concrete deck, diaphragms, bearings, 

and bridge geometry, all play a role in how vehicular loads are transversely distributed to 

each bridge girder (Barker and Pucket, 2007). After a live load distribution factor is 

obtained, axle loads are multiplied by the distribution factors. The product is equivalent to the 

vehicular design load, which is multiplied by a dynamic load allowance and then combined 

with other loads (i.e. deck weight, barrier rails, etc.) to produce the total design load. A large 

distribution factor means that less load is shared between adjacent girder members, and 

therefore, the girder directly beneath the axle load takes more load.  

 Figure 23 illustrates the concept of fair and poor transverse load distribution. Figure 

23(a) is a picture of a slab-girder bridge and Figure 23(b) visually illustrates the load path of 

a point load distributed from the deck into the girders. As shown, the further away the girder 

is from the point load, the less load received. Figures 23(c) and (e), respectively, illustrate 

ideal load distribution, while Figure 23(d) illustrates that poor load distribution leads to 

excessive deflection in girders directly under load when compared to deflections of nearby 

girders.  
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 Transverse load distribution is an important factor in the design of bridge girders to 

resist both applied shear and moment. Transverse load distribution for moment (or flexural) 

design of NEXT D beam bridges is the primary concern of this research, therefore, the 

following literature review will not address transverse load distribution as it relates to shear 

design of bridge girders. 

 Figure 23: Illustration of Transverse Load Distribution 

(Barker and Puckett, 2007) 
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2.3.1 AASHTO LRFD Distribution Factors for Moment – NEXT Beam Bridges 

 

 Multiple factors are considered when calculating bridge girder distribution factors 

including girder spacing, length of span, girder geometry, and the modular ratio between 

girder and deck (Barker and Puckett, 2007). AASHTO LRFD presents a table of formulas 

(Table 4.6.2.2.1-1) that assists engineers in calculating distribution factors for single and 

multi-lane traffic loads for both interior and exterior girders. The empirical derivations of 

these formulas can be traced to NCHRP Project 12-26 (Zokaie and Imbsen, 1993). NEXT 

D girder bridges most closely resemble section types (i) and (k) from AASHTO LRFD 

4.6.2.2.1-1, shown in figures 24 and 25, respectively.  

 

Cross section (k) uses the following equations to calculate the DFM of an interior 

beam for single and multiple design lanes loaded: 

Figure 25: Type (i) Girder (Double T Beam Bridge Section) [AASHTO LRFD] 

 

Figure 24: Type (k) Girder (I Beam Bridge Section) [AASHTO LRFD] 
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gM1
i-  =             Equation 3 

 

 

          gM2+
i-  =                        Equation 4      

 

Where: 

Kg         = n(Ibs+Abseg
2)       

n        = EBeam/ESlab       

gM1
i-  = DFM for interior girder with one lane loaded  

gM2+
i- = DFM for interior girder with two or more lanes loaded 

Kg         = longitudinal stiffness parameter for the composite girder (in4) 

S            = respective spacing between the girders (ft) for different           

approaches 

 

L            = spand of the bridge (ft) 

ts            = thickness of deck slab (in) 

n        = modular ratio between the material of girder and material of deck  

eg           = the distance between centers of gravity of stems and flange (in) 

Abs        = cross sectional area of the stems (in2) 

Ibs           = moment of intertia of the stems (in4) 

EBeam  = modulus of elasticity of NEXT beam (ksi) 

ESlab  = modulus of elasticity of deck slab (ksi) 
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 Similar equations for type (k) to calculate exterior girder DFM for one design lane 

load are not provided by AASHTO LRFD, rather, the lever rule is applied. The lever rule 

is outlined in AASHTO LRFD Section 4.6.2.2.2. Using the lever rule method, moments 

are summed about a hinge placed at the first interior girder. The reaction at the exterior 

girder is determined and then divided by the total truck load. The ratio of the exterior 

girder reaction by the total load is the calculated DFM for the exterior girders.  

 Equations to calculate type (k) exterior beam DFM for multiple lane loads are as 

follows: 

g        = e*ginterior      

e        = 0.77+de/9.1      

de         = horizontal distance from the centerline of the exterior web of   

exterior beam at the deck level to the interior ede of curb or traffic barrier 

 

Cross section (i) uses the following equations to calculate the DFM of an interior 

beam regardless of number of loaded lanes: 

g        = S/D       

C       = K(W/L) ≤ K      

D       = 11.5-NL+1.4NL(1-0.2C)2    

when C ≤ 5 

D       = 11.5-NL when C > 5     

K
I 1 ( )

J


       

g           = distribution factor 

NL       = number of design lanes 
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W         = edge-to-edge width of bridge (ft) 

μ           = Poisson’s ratio 

J           = St. Venant torsional inertial (in4) 

Cross section (i) uses the lever rule (explained above) to calculate the DFM of an 

exterior beam regardless of number of loaded lanes. If a type (i) bridge is “sufficiently 

connected to act as a unit” (AASHTO, 2012) the bridge can calculate DFM values using 

the type (k) equations. 

2.3.2 AASHTO LRFD Distribution Factors for Moment – Adjacent Box Beam 

Bridges 

 

Adjacent box beam bridges most closely resemble section type (g) from 

AASHTO LRFD 4.6.2.2.1-1, shown in figure 26.  

  

 

Cross section (g) uses the following equations to calculate the DFM of an interior 

beam for a single and side-by-side truck load: 

 

gM1
i-  =     Equation 5 

  

 

 

 

 

 

Figure 26: Type (g) Adjacent Box Beam Section [AASHTO LRFD] 
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             gM2+
i-  =                            Equation 6 

     

 

Where: 

k             =       

Nb      = Number of beams, stringers or girders     

gM1
i- = DFM for interior girder with one lane loaded  

gM2+
i- = DFM for interior girder with two or more lanes loaded         

J             = St. Venant torsional inertial (in4)                                                                                        

L           = spand of the bridge (ft) 

b        =  width of beam (in) 

I        = moment of intertia about axis under consideration (in.4) 

Cross section (f) uses the following equations to calculate the DFM of an exterior beam 

for a single design lane loaded: 

                 g =     Equation 7 

Where:  

                        e         =  

           de             = horizontal distance from the centerline of the exterior web of      

exterior beam at the deck level to the interior ede of curb or traffic barrier 

  

                      ginterior   = distribution factor of interior beam 

Cross section (g) uses same equations to calculate the DFM of an exterior beam for 

multiple design lanes loaded except for one change: 
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            e         =  

2.3.3 Experimental Calculation of Distribution Factors for Moment 

 

 The NEXT D bridge girder does not neatly fall into one of the AASHTO LRFD 

DFM categories, however, as previously stated, treating the section as type (k) may lead 

to higher, and therefore, more conservative calculated DFM’s. Experimental DFM values 

can be calculated and can inform engineers how load is shared transversely between 

bridge girders. Through the use of a live load test, bridge girders can be instrumented to 

record the strain of the bridge girder. The maximum strain that a bridge girder 

experiences is used to calculate the DFM. Load may be applied to a bridge through the 

use of a slow driving truck. Using equation 8, bridge girder DFM values may be 

experimentally determined (Fu et al., 1996). 

  

         Equation 8  

 

Where gi is the distribution factor for girder “i”, εi is the strain in girder “i”, and εj is the 

strain in all of the other bridge girders taken at the same time that the maximum strain in 

girder “i” was measured. 

 An alternative equation (equation 9) has been proposed to experimentally 

calculate DFM values. This equation accounts for increased stiffness that is given by the 

barrier rails. The equation is as follows (Barnes et al., 2003): 
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          Equation 9 

 

Where gi is the distribution factor for girder “i”, Ri is the response in girder “i”, and Rj is 

the response in all of the other bridge girders taken at the same time that the maximum 

response in girder “i” was measured. Response (R) can be taken as either strain (ε) or 

displacement (Δ). Wi and Wj are the section moduli of girders i and j, respectively.  

Figure 27 from Collins (2010), is a graphical displays the results of a live load 

test. The tested bridge contained 6 girders with equal spacing and stiffness. The results 

shown are for side-by-side truck crossing, which was meant to cause maximum load in 

girder 3. Two sets of data are displayed on the graph. The service strain is the greatest 

response experienced by each bridge girder, while the distribution strain is each girders 

response at the time when the greatest girder response is experienced by the maximally 

loaded girder, which in this case is girder 3.  Girder strain is the highest in girders directly 

below wheel loads and dissipates as the girders get further away from the load. DFM 

values would be calculated by using the distribution data set in conjunction with Equation 

9.  
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2.4 Ultra-High Performance Concrete for Bridge Connections 
 

 Ultra-high performance concrete (UHPC) has been commercially available since 

about 2000 and is characterized by displaying compressive strengths of over 21.7 ksi and 

cracking tensile strengths above 0.72 ksi (Graybeal and Russell, 2013). Ingredients of 

UHPC include cement, fine sand, steel fibers, water, and other additives. The steel fibers 

in the mix are what gives UHPC its high tensile strength. UHPC is vastly more expensive 

than standard concrete (sometimes greater than 10 times as much) (Ultra-High 

Performance Concrete: Homeland Security), but is also more durable and needs less 

maintenance. Additionally, UHPC bonds well to cast-in-place (CIP) concrete and is 

resistant to fatigue cracking. Due to its durability and bond strength, UHPC is an 

Figure 27: Live Load Distribution Factor for Moment Example (Collins, 2010) 
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attractive option to use for connections between precast elements in bridges. Figure 28 is 

a generic stress-strain curve of UHPC. The figure illustrates UHPC’s remarkable tensile 

strength and ductility, which is what makes it a viable material for bridge connections. 

 

2.4.1 Adjacent Box Beam Bridge Shear Key Connections   
 

It has been well documented that adjacent box beam bridges (ABBB) have 

durability issues, particularly in the shear key. In Kedar Halbe’s dissertation from the 

Virginia Tech (Halbe, 2014), he proposed new connection details to improve shear key 

performance, reduce reflective cracking, and consequently, improve bridge durability. 

Specifically, six different connection details between box beams were assembled and 

tested. The research proposed two new connection details. The first proposed connection 

made no change to an existing partial or full depth shear key, rather it added a Kevlar 

sheet to reinforce the connection. The Kevlar sheet not only added strength to the 

Figure 28: Generic UHPC Stress-Strain Graph (Picture courtesy of the 

FHWA) 
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connection, but waterproofing as well. The detail for this connection is shown in figure 

29. 

 

 

  

 

 

 

 

 

The second proposed connection detail is more complicated. Cracking in the 

ABBB shear keys was caused by the grout debonding from the concrete. The second 

connection, added a structural connection to improve the bond. This connection was a 

splice bar connecting the two adjacent beams at the top of the flange. UHPC or very high 

performance concrete (VHPC) replaced the shear key grout to keep the splice length of 

the bar short. UHPC and VHPC have a greater bond strength to rebar allowing for shorter 

development lengths. The detail for this connection is shown in figure 30. 

Figure 29: Typical Detail of Kevlar and Epoxy Connection (Halbe, 2014) 
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 Two FE models of the specimens were created in ABAQUS to quantify responses 

of adjacent box bridges subject to truck loads. The first model used material properties 

shown in table 2, below, while the second model used the material properties measured 

from laboratory tests. 

Figure 30: Top Flange Spliced Connection with UHPC (Halbe, 2014) 
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Table 2: Material Properties used in FE Model 

 Of particular interest in the modeling was the horizontal opening of the joint, as 

shown in Figure 31. Joint displacement values for the sub-assembalge (SA) models and 

full scale bridge (FSB) models were recorded and measured as 0.0038 in and 0.00387 in., 

respectively. These predicted displacements serve as an order of magnitude value that the 

researchers can compare to to when performing a live load test on the solid slab section.   

 

 

Figure 31: Joint Opening in the FE sub-assemblage Model (Halbe, 2014) 
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 In addition to FE modeling, SA specimens using the two new proposed 

connection details were constructed and tested. The SA specimens were instrumented and 

recorded responses caused by fatigue and static strength tests. Relative gap displacements 

were measured by LVDTs to capture the joint behavior. The location of the instrumented 

LVDTs can be found in figure 32. Table 3 presents the concrete properties of the precast 

specimens. 

 

 

 

 

 

 

 

 

 

Figure 32: Test Setup for sub-assemblage Tests (Halbe, 2014) 
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Table 3: Concrete Properties in Precast Beam Specimens 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Interface openings typically occurred before any cracks showed in the UHPC or 

VHPC pockets. Once the interface was completely opened, cracks either propagated 

diagonally below the grout pocket into the precast concrete, or, the interface would 

continue to delaminate along the bottom of the shear pocket. These failure forms are 

illustrated in figure 33.  
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The interface measurements were plotted versus the applied load and can be seen 

in figures 34 and 35, respectively. Figure 34 shows displacements for all specimens with 

No. 4 reinforcing bars extending into the joint, while figure 35 has No. 6 bars. Interface 

displacements are significantly smaller in the No. 6 bar joint compared to No. 4 bar joint. 

For all test specimens, displacements are very similar up until debonding at the interface 

occurs, after which, displacements increase at different rates. The design capacity of the 

No. 4 bar specimens was 12.5 kips, and cracks began to occur at approximately 15 kips. 

The design capacity of the No. 6 bar specimens was approximately 27.5 kips, and cracks 

began to occur at approximately 30 kips. These figures and numbers allowed the 

researchers to learn about UHPC behavior under loading, and approximate values of 

when UHPC is expected to crack and move from the linear to the non-linear zone.  

 

 

 

Figure 33: Crack Illustration in the Precast Joint Element (Halbe, 2014) 
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Figure 34: Load vs. North Interface Displacement for Specimens with No. 4 Bar 

(Halbe, 2014) 

 

Figure 35: Load vs. South Interface Displacement for Specimens with No 6 Bar 

(Halbe, 2014) 

 



 

 40 

 

2.4.2 Ultra-High Performance Concrete Compressive Strength 

 

Table 4 contains UHPC tensile strength results from 3 different Virginia Tech 

researchers [(D’Alessandro, 2013), (Halbe, 2014), (Field, 2015), (Joyce, 2014)]. All of 

the Virginia Tech researcher’s test results show that UHPC’s compressive strength is 

significantly greater than compressive strength of conventional concrete.  

 

Table 4: Virginia Tech UHPC Compressive Strength Test Results 

Researcher Specimen ID Specimen Age 
Average Compressive 

Stress (ksi) 

Number of 
Specimens 

Tested 

Halbe 
1 

13 Days 

17.6 3 

2 17.2 3 

Field 
3 7 Days 16.0 3 

4 28 Days 19.9 3 

Joyce 

5 7 Days 11.3 2 

6 11 Days 15.5 2 

7 7 Days 11.6 2 

8 11 Days 14.3 2 

D'Alessandro 

9 4 Days 14.5 3 

10 7 Days 18.7 3 

11 14 Days 19.5 3 

12 21 Days 20.3 3 

13 28 Days 20.8 3 

14 104 Days 24.9 3 

 

2.4.3 Ultra-High Performance Concrete Tensile Strength 

 

Table 5 contains UHPC tensile strength results from 3 different Virginia Tech 

researchers [(D’Alessandro, 2013), (Halbe, 2014), (Field, 2015)]. Fields concluded that 

the due to the steel fibers, UHPC exhibited strong splitting tensile strength and post 
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cracking behavior. Additionally, the UHPC was much more durable (scaling surface 

tests), making it a good option for shear keys where durability is key.  

Table 5: Virginia Tech UHPC Tensile Strength Test Results 

Researcher Specimen ID Specimen Age 
Average Tensile 

Strength (ksi) 
Number of 

Specimens Tested 

Halbe 
1 13 Days 2.04 3 

2 13 Days 2.20 3 

Field 
3 7 Days 1.81 2 

4 28 Days 2.40 2 

D'Alessandro 

5 7 Days 2.35 3 

6 14 Days 2.79 3 

7 196 Days 3.44 2 

 

2.4.4 Ultra-High Performance Concrete Bond Strength 

 

In 2014, Graybeal submitted a report and guidance on how field-cast UHPC 

connections should be constructed to provide a stronger and more durable connection 

between precast girders. Since the bond strength between UHPC and the precast concrete 

is much stronger than conventional grout, shorter rebar development lengths are allowed 

(Graybeal, 2014). Figure 36 from (Joyce, 2014) illustrates the bond strength of UHPC, 

very high performance concrete (VHPC), and conventional grout to precast concrete, 

respectively. The UHPC was named Ductal and produced by Lafarge. The VHPC mix 

was developed at Virginia Tech. It is similar to UHPC, but has less strength. 

 Bond strength was measured via the pull-off test. In addition to UHPC, a mix 

labeled “VHPC Large” was used in the research. VHPC-Large takes the original mix 

design of VHPC and substitutes the small aggregate for large aggregate. VHPC-Large 

mix design is shown in Table 6. Figure 37 shows UHPC and VHPC-Large’s significant 
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bond strength compared to conventional grout, making it a useful substitute for grout in 

bridge joints.  

 

 

 

 

 

 

 

 

 

 

 

Table 6: VHPC-Large Mix Design (Joyce, 2014) 

 

 

 

 

 

 

 

 

Figure 36: Bond Strength to Precast Concrete (Joyce, 2014) 
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Table 7 from Halbe (2014) illustrates the bond strength of UHPC, very high 

performance concrete (VHPC), and conventional grout to precast concrete, respectively. 

A schedule of the specimen types can be found in table 8. Mix designs for the UHPC and 

VHPC are shown in Table 9.  

Table 7: Bond Strength to Precast Concrete (Halbe, 2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: Specimen Test Schedule (Halbe, 2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specimen Type 
Bond Strength (psi) 

Age 
(Days) Test 

Start 
Test End 

1 Grout N/A N/A 76 

2 UHPC 195 204 96 

3 UHPC 79 93 128 

4 Grout 68 74 170 

5 VHPC 35 86 187 

6 VHPC 97 93 211 
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Table 9: UHPC and VHPC Mix Proportions (Halbe, 2014) 

2.4.5 Ultra-High Performance Concrete in Joint Connections 

 

In a study funded by the FHWA, UHPC deck connections between six different 

precast deck panels were tested under cyclic and static loadings (Graybeal, 2010). UHPC 

was used in both transverse and longitudinal connections between precast members.  

The specimens were first loaded to an amount below cracking strength for 2 million 

cycles, then 5 million cycles to a load larger than cracking strength. Finally, the 

specimens were statically loaded until failure. 

Two of the six specimen tests were loaded in order to test the longitudinal joint. 

Figures 37 and 38 below, show the joint reinforcement details for the two longitudinal 

joint specimens. The average compressive strength of UHPC in the joint was 31.8 ksi. 

The concrete panels were fabricated using a high performance concrete (HPC) with 28-

day compressive strength of 6.5 ksi.  
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Figure 37: Layout and Rebar plan for Concrete Panel 6H 

(Graybeal, 2010) 
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Figure 38: Layout and Rebar plan for Concrete Panel 6B 

(Graybeal, 2010) 
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The deck panels were designed and fabricated in a way to simulate a longitudinal 

joint connection between the top flanges of adjacent bridge girders. The test specimens 

were loaded in three-point bending to induce flexural stresses in the longitudinal joint, as 

shown in Figure 39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Test setup for Cyclic Loading (Graybeal, 2010) 
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The panel specimens were instrumented with both strain gauges and LVDTs, as 

shown in Figure 40. The LVDT was instrumented in such a way to capture any opening 

at the UHPC joint. Figure 41 shows a graph of the joint opening data as the test specimen 

went through the cyclic load test. 10,154,101 cycles were performed at a load range 

between 3 and 21.5 kips. 1,118,000 amount of cycles were performed between 3 and 32 

kips. Minimal joint deflection was detected during the first two cyclic load phases as 

shown in figure 41. The final cyclic phase loaded the test specimen from 3 to 40 kips for 

343,399 cycles, at which point the specimen failed along the joint interface. In the final 

loading phase, a joint opening of approximately 0.28 in. was detected before failure of 

the specimen. This data will be used as a reference to compare with the Hanging Rock 

Bridge LVDT test data measuring relative horizontal displacement at the joints.  

Figure 40: Concrete Panel with UHPC Joint Instrumentation 

Setup (Graybeal, 2010) 
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Figure 42 is a picture of Graybeal’s recommended UHPC detail for adjacent box 

beams. This structural connection allows the transfer of shear, moment, and axial forces 

across the joint. Additionally, no transverse post-tensioning or concrete overlay is 

needed. Graybeal (2014) states that this connection can easily be applied to the flange 

tips of NEXT beams. The connection is very similar to Kedar Halbe’s flange spliced 

connection from his Virginia Tech dissertation mentioned in Literature Review section 

2.3.1.  It is important to research and observe how different connection details can 

positively influence the bond between precast concrete elements. These same tactics 

could later be applied to help NEXT D connection design.  

Figure 41: Graph of Load vs. Joint Opening for test specimen 6B 

(Graybeal, 2010) 



50 

Figure 43 from a PCI bridge technical committee displays several different 

options for NEXT D beam joint detailing. There are options for both UHPC and non-

shrink grout shear keys. Vermont Agency of Transportation (VAOT) has built several 

bridges with the non-shrink grout and hooked bars and has not noted any issues with the 

joints (Culmo Email September 22, 2016). 

Figure 42: UHPC Adjacent Box Beam Connection (Graybeal, 2014) 
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Researchers at Clemson University tested a joint very similar to the hooked bar 

detail from figure 43. The purpose was to evaluate the performance of the proposed shear 

key configuration that SCDOT was hoping to use for NEXT D beam joints. Figure 44, 

shows the shear key detail of the 11 specimens tested. 

Figure 43: NEXT D Joint Details for Non-shrink Grout and UHPC 

(Culmo Email September 22, 2016) 

Figure 44: Hooked Bar Shear Key Detail (Sheng et al., 2013) 
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Three different materials were used for the shear key: Grout with polyvinyl 

alcohol (PVA) fiber, UHPC with steel fiber, and UHPC with PVA fiber. Two precast 

panels were connected via joint and then instrumented with gauges. After 

instrumentation, specimens were loaded both statically and cyclically. Instrumentation 

layout can be seen in figure 45. Table 10 shows different specimens and their respective 

shear key mixtures. 

Table 10: Test Matrix for Static Tests (Sheng et al., 2013) 

Figure 45: Strain Gauge and LVDT Layout for Shear Key Test (Sheng et 

al., 2013) 
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 During the static tests, bond interface cracks were recorded as 121 kip-in., 277 

kip-in., 183 kip-in., 247 kip-in., 285 kip-in., and 285 kip-in. for specimens STA-01 

to STA-06, respectively. These values were determined from the moment-curvature 

curves taken from LVDT readings. The max moment capacities for these specimens were 

763.5 kip-in, 742.5 kip-in, 736.6 kip-in, 738 kip-in, 650 kip-in, and 634.1 kip-in, 

respectively. Fatigue/service load capacities for specimens FAT-01 through FAT-04 were 

5.3 kip (110 kip-in of internal moment), 8.7 kip, 4.9 kip, and 8.1 kip respectively. No 

relative horizontal displacements were included in the report. A main conclusion from the 

report was that UHPC was the recommended NEXT D shear key material since it was 

adequately strong, ductile, and stiff.  

2.5 Field Test of Adjacent Beam Bridges 

2.5.1 Suck Creek Bridge 

 

Researchers at Clemson University performed a live load test at the Suck Creek 

Bridge in South Carolina in order to understand the bridge’s load-sharing abilities and 

behaviors (Sheng et al., 2013). Specifically, the goal of the testing was to analyze the data 

and explain why reflective cracking was forming on the wearing surface of the bridge. 

Figure 46, shows a cross section of the bridge deck.  
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 LVDTs and strain gauges were used in bridge instrumentation. LVDTs captured 

the global displacements of the bridge and local displacements across the shear key. The 

LVDT instrumentation setup is shown in figures 47 and 48. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 46: Cross Section of Suck Creek Bridge (Sheng et al., 2013) 

Figure 47: LVDT Mounting Schematic (Sheng et al., 2013) 
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A weighted dump truck was driven over the bridge (figure 49) and data was 

recorded. Joint displacement can be seen in table 11. The relative deflections were fairly 

large, and it was determined that these relative vertical and angular displacements were 

causing reflective cracking. The relative deflections have been included to compare with 

deflections measured from the solid slab span live load test of the Hanging Rock Creek 

Bridge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: LVDT Locations for First Test (Sheng et al., 2013) 

Figure 49: Truck Position for First Live Load Test (Sheng et al., 2013) 



 

 56 

Table 11: Displacement Values from First Bridge Test (Sheng et al., 2013) 

 

2.5.2 Arden Road Bridge 

Researchers at Virginia tech performed a live load test at the Arden Road Bridge 

in Nokesville, VA to understand the bridge’s load-sharing abilities and behaviors (Halbe, 

2014). Specifically, the goal of the testing was to analyze the data and analyze the 

bridge’s load sharing capabilities. Figure 50, shows a cross section of the bridge deck.  
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 LVDTs and strain gauges were used in bridge instrumentation. LVDTs captured 

the global displacements of the bridge and local displacements across the shear key. The 

bridge instrumentation is shown in figure 51. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 50: Cross Section of Arden Road Bridge (Halbe, 2014) 
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A weighted dump truck was driven over the bridge and data was recorded. Joint 

displacement can be seen in figure 52. The relative deflections have been included to 

compare with deflections measured from the solid slab span live load test of the Hanging 

Rock Creek Bridge. It should be noted that lots of reflective cracks were present in the 

bridge’s wearing surface.  

 

 

 

 

 

 

 

 

 

Figure 51: Arden Road Bridge Layout and Instrumentation (Halbe, 2014) 
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2.6 NEXT Beam Case Studies and Investigations 
 

 NEXT Beam bridges have successfully been used for bridge construction by 

many state DOTs across the country. Additionally, live load testing and finite element 

modeling has been performed on the NEXT F beam section in order to evaluate live load 

distribution factors for both moment and shear. 

2.6.1 New Bridge Case Study 
 

 NEXT beam bridges are being used across the United States by many state 

DOT’s. States that have accepted the use of NEXT beams include Massachusetts, 

Vermont, Maine, Rhode Island, New Hampshire, New York, New Jersey, Delaware, 

Pennsylvania, and Virginia (Seraderian, 2016). 

Figure 52: Typical Horizontal joint displacement (Halbe, 2014) 
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 The New Bridge, located in York, Maine, was the first NEXT beam bridge 

designed and constructed in the United States (figure 53) (Gardner and Hodgdon, 2013). 

It is seven-span concrete bridge that takes Route 103, 500 feet across the York River. The 

original bridge was a steel girder system built in 1957. It was quite narrow (24 feet 

roadway width) and also in poor condition due to the coastal climate. Additionally, the 

original bridge had to be closed during construction, thus detouring traffic. As a result, 

accelerated bridge construction (ABC) was a must in addition to an increased roadway 

width.   

Contractors bidding on the bridge were presented with two bridge designs 

including one utilizing the New England Bulb Tee (NEBT) and one utilizing the NEXT 

36 (36 inch depth) beam. The NEBT beam was an attractive option since contractors are 

very familiar with it, and the price was driven down due to the presence of multiple 

manufactures. However, of the five contractors that bid, four decided to bid on the NEXT 

beam design option. The NEXT beam and NEBT superstructures were roughly the same 

cost in materials. The contractors discovered that the NEXT beams could be erected more 

quickly leading to project savings. Each span consisted of four NEXT beams and no deck 

formwork was required. It was estimated that the NEXT beam system saved the project 

seven weeks of construction time in comparison to the NEBT beam system.  
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2.6.2 NEXT F: AASHTO Equations, FE Modeling, and Live Load Testing 

 

Researchers at the University of Massachusetts at Amherst calculated NEXT F DFM 

values using AASHTO LRFD equations, FE modeling, and live load testing. Research 

was conducted in a three phase project as follows: 

1. Phase one occurred in 2012 and was a parametric study of how changing span 

length and skew angle affected DFM values of NEXT F bridges using type (i) and 

type (k) AASHTO LRFD equations. Additionally, these results were compared to 

those of the FE model 

2. Phase two occurred in 2014 when a live load test was conducted on the NEXT F 

Brimfield Bridge. DFM values were determined and compared to the AASHTO 

Figure 53: The New Bridge in York, ME (Gardner and Hodgdon, 2013) 
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LRFD DFM values. DFM values from the live load test were then used to 

recalibrate the FE model from phase one.  

3. Phase three was a final report where conclusions and recommendations were 

made.  

In phase one, researchers at the University of Massachusetts at Amherst 

calculated NEXT F DFM values using two different stem spacings and bridge categories 

(Singh, 2012). The first method, called the double stem approach (DST/Type (i)), took 

the stem spacing as the spacing between NEXT F beams, as shown by the value S2 in 

figure 50. The second method, called the single stem approach (SST/Type (k)), calculated 

the stem spacing as the average stem spacing of two adjacent NEXT F beams, displayed 

as the value S* in figure 54. S* is the DFM for a single web, and was thus multiplied by 

two to reach a DFM for the entire NEXT F unit. The SST approach was applied to type 

(k) bridges, while the DST approach was applied to type (i) bridges. Research concluded 

that either spacing method could be safely used to calculate the NEXT F DFM (Ericson 

et al.), but the SST (type k) approach was more conservative (Singh, 2012). 
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A parametric study was performed using the AASHTO type (i) and type (k) 

equations and a finite element model in order to see how different parameters affected the 

DFM values. Specifically, skew angle and span length were varied. By changing the span 

length and skew angles, different DFM values for interior and exterior girders were 

generated from AASHTO equations. The results are found in tables 12 13 below (Singh, 

2012). Results show that the single stem method (type k) from AASHTO is the most 

conservative in calculating DFM values for interior girders, while double stem method 

(type i) is more conservative in calculating DFM values for exterior girders. The finite 

element model produced the least conservative DFM values.  

Figure 54: Differential Stem Spacing of the NEXT F Beam (Singh, 2012) 
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Table 12: DFM Values with Differing Span Lengths - (Skew Angle = 0⁰) [Singh, 2012]  

 

Table 13: DFM Values with Differing Skew Angles - (Span = 66.7 ft) [Sing, 2012] 

In a second follow up study performed at the University of Massachusetts at 

Amherst, DFM values were calculated from a live load test and compared with DFM 

values calculated from AASHTO LRFD equations (Bahjat et al., 2014). The live load test 

occurred at the Brimfield Bridge of Brimfield, MA. The bridge was a single span bridge 

constructed to replace the aging bridge that was located over Mill Brook. The 

superstructure of the bridge consisted of six NEXT 32-F beams (figure 55) with an 8 in. 

CIP deck. The bridge was 66.7 ft. and had a 30 ° skew.  
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Figure 56: Weighted Trucks and their Respective Positions. (a) Truck 

Dimensions and axle weights; (b) Truck Configurations used in Load Test 

(Bahjat et al., 2014) 

Figure 55: NEXT 32-F Dimensions and Bridge Cross Section (Bahjat et al., 2014) 
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Single and multiple lane load configurations were used and are shown in figure 56 

and 57. The moments experienced by each bridge girder for each of the 10 different truck 

configurations are shown in table 14. DFM values were calculated from this table. From 

the single lane loaded live load test, the DFM was calculated to be much lower than the 

moment DFM when using AASHTO LRFD (0.53 versus 0.61) (Bahjat et al., 2014). 

When multiple lanes were loaded, the live load test had a calculated DFM of 0.75 and the 

AASHTO LRFD calculated value was 0.78. 

 

 

Figure 57: Strain Distribution for Multiple Live-Load Loading Conditions 

(Bahjat et al., 2014) 
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Table 14: Maximum Moments Experienced During Load Test (Bahjat et al., 2014) 

 

A final report drew conclusions and made recommendations from the two studies 

performed at the University of Massachusetts at Amherst (Ericson et al.). Conclusions 

drawn were that the live load test DFM values were more conservative that than those 

calculated in the original FE model (from phase one), but less conservative than 

AASHTO LRFD equation DFM values.  

2.6.3 Clemson University NEXT D Beam FE Modeling and AASHTO Equation 

Parametric Study 

 

 Using AASHTO LRFD equations and FE modeling, researchers at Clemson 

University performed a parametric study on the NEXT-6 D beam (a NEXT D beam with 

6’ wide flange), specifically on how span length and lanes loaded affected the DFM 

values (Sheng et al., 2013). For AASHTO LRFD equations, the NEXT-6 D beam was 
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analyzed as a type (i) cross section. Results from the FE model were much less 

conservative than the AASHTO equations. A table of the calculated DFM values is 

shown in table 15. The Hanging Rock Creek NEXT D span is very similar to the NEXT-

6 D. Results between the two studies will be compared. 

 

Table 15: Load Distribution Factors for NEXT-6 D Beam (Sheng et al., 2013) 
.  

 

2.7 Accelerated Bridge Construction 
 

 America’s bridges are in need of repairs and replacements. Many bridges have 

been rated structurally deficient and many are reaching their design life of 50 years. 

There is a great need for these bridges to be constructed in both a safe manner and at a 

faster rate. Construction activity creates traffic congestion, which impedes the nation’s 
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productivity and safety (Chen, 2014). Accelerated bridge construction (ABC) is a method 

of construction that can accelerate the rate at which bridges in the United States are built 

and repaired. ABC utilizes prefabricated bridge element systems (PBES), which can 

allow contractors to erect bridges in a manner of hours compared to months. PBES parts 

fit together like an erector set and need only to be bonded together. 

 Traditional simple bridges can take months to construct. The foundation, pier 

columns and caps, and superstructure all must be formed and poured. ABC bridges are 

built at a very high quality. Conventional concrete decks have a life span of 25 years. 

Using high performance concrete (HPC), the life span of the bridge deck is projected to 

be up to 75-100 years. Thus, using HPC in ABC, the product is potentially a higher 

quality more durable bridge constructed at an accelerated rate. Additionally, there are 

fewer traffic delays and the work zone is safer to both workers and motorists.  

 Box beams have certain limitations that hinder their ability to be built according 

to an ABC schedule. If a reinforced concrete overlay is needed much time and money is 

spent for and on the formwork. Additionally, shear key grouting is slow due to the 

limited workspace. While the box beam falls shorts in these two cases, the NEXT beams 

thrive. NEXT F beams are built with a 4 inch flange that acts as a concrete overlay form. 

NEXT D beams are built with an 8 inch flange and only require an optional asphalt 

overlay. Also, NEXT beam shear keys are much wider, which allows for a quicker and 

higher quality shear key grouting (The NEXT Beam, High Bridge Team Powerpoint). 

Finally, NEXT sections are wider than solid slab and hollow core slabs. Fewer bridge 

girders can be used to provide traffic lanes, which saves construction time.  
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2.8 Nondestructive Load Testing (Definition and Objectives) 

 The manual from the 1998 USA Transportation Research Board defined 

nondestructive load testing as the following: 

“Non-destructive load testing is the observation and measurement of the response of a 

bridge subjected to controlled and predetermined loadings without causing changes in 

the elastic response of the structure. The principle of load testing is simply the 

comparison of the field response of the bridge under test loads with its theoretical 

performance as predicted by analysis. Basically, two types of non-destructive load tests 

are available: diagnostic and proof.” (Casas et al., 2009) 

 “When determining a safe and accurate load-carrying capacity for a bridge, the 

best model of the structure is to use the bridge itself” (Chajes et al., 2000). Testing 

performed on bridges over the years has shown that sometimes bridges resist loads in 

ways that are not always considered in design or in modern engineering codes (Hiens and 

Galambos, 1972). Additionally, theoretical models are not always able to predict bridge 

behavior either due difficult to find parameters or because of difficulties modeling soil-

structure interaction.  It is, therefore, very beneficial to conduct nondestructive load 

testing on certain bridges to gain insight into bridge behavior. Some main objectives of 

load testing are the refinement of structural modelling, looking for possible bridge 

damage and bridge deterioration, determination of the bridge load carrying capacity, and 

to verify bridge behavior of non-standard structural types that do not neatly fall into a 

typical bridge category. Useful information that can be obtained from nondestructive load 
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tests includes experimental influence lines, load distribution, and dynamic amplification 

factors.  

2.8.1 Types of Nondestructive Load Testing 

 The three types of nondestructive bridge loading include soft load testing, 

diagnostic load testing, and proof load testing (Casas et al., 2009). Soft load testing uses 

bridge weigh-in-motion (WIM) instruments to weigh live traffic as it crosses the bridge. 

Simultaneously, the WIM system measures important structural parameters including 

influence lines, load distribution, and impact factors. Soft load testing is advantageous 

because no road closures or pre-weighed vehicles are needed.  

 Diagnostic load test objectives are similar to those of the soft load test. They serve 

to verify and adjust analytical models if needed. Trucks of known weights are used in the 

diagnostic load tests. The trucks are heavier than live traffic used in soft load testing, but 

not as heavy as those used in proof load testing. Roads are closed as the trucks cross the 

bridge at varying speeds and configurations. Properties determined from this test include 

live-load distribution, support restrain, and the effect of impact (Chajes et al., 2000).  

Proof testing uses the largest loads of the three nondestructive tests and seeks to 

calculate the bridge capacity from a large loading that keeps the bridge within the linear 

elastic zone.  

2.8.2 Diagnostic Testing Candidates 

Diagnostic load tests can be relatively expensive and are only recommended when 

the benefits of the gathered data are higher the costs of performing the load test. Good 

bridge candidates for this type of testing include bridges that have unique geometries and 
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whose analytical models are in needed of verification and possible modification. Other 

candidates include bridges that lack as-built documentation or unknown material 

properties. The cost of diagnostic testing can be of great value; diagnostic testing may 

provide information that keeps an existing bridge in service, thus saving the cost of 

replacement.  

2.8.3 Diagnostic Testing Instrumentation and Procedure 

Before live load testing can commence, one must orchestrate proper bridge 

instrumentation in order to gather useful data from the bridge responses. Bridge 

responses that are tested frequently include midspan girder deflection, girder strain, 

bearing rotation, and girder relative displacement. Maximum deflection and strain values 

are extremely useful because of their direct use in the calculation of dynamic load 

allowance and distribution factors. 

Strain values can be recorded using various types of strain gauges and attachment 

methods. In the Hanging Rock Creek experiment, BDI stain gauges were attached with 

epoxy to concrete on the underside of the bridge girder. Girder deflections were measured 

with differing instruments, depending on whether absolute or relative displacement is 

being sought. For example, linear variable differential transformers (LVDTs) are 

mounted on the underside of adjacent girders to measure relative horizontal displacement. 

String pots are used to measure absolute displacement. String pots stay stationary and are 

attached to the underside of bridge girders at any desired point along the length of the 

girder. All of these bridge instruments are connected to a wireless data acquisition system 

where recorded data is saved (Cai and Shahawy, 2017). The sampling rate of this system 
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can be adjusted for tests that require many data points in a short time frame, such as 

dynamic test where trucks cross bridges at highway speeds. 

Once a bridge has been properly instrumented it is ready for live load testing. 

Trucks of known weights are driven across the bridge and follow the paths of clearly 

marked lanes (Neely et al., 2004). These trucks can be filled to weight up to the 72 kip 

range, equivalent with that of the AASHTO HL-93 design truck (Sartor et al., 1999). If 

multiple trucks are present, different arrangements can be used, such as trucks side by 

side, to produce maximal bridge responses (Chajes et al., 2000). Speeds of the trucks may 

also be varied, from a crawling speed all the way to a highway speed to produce dynamic 

loading effects.  

2.9 Literature Review Summary 

  A literature review of each of the above topics was combined for the purposes of 

this project. The knowledge gained from NEXT beam research helped the author to 

understand the shortcomings of precast solid slab and hollow core girders and the 

problems that NEXT beams aim to fix. Research on AASHTO transverse load 

distribution helped the author understand how these values are calculated depending of 

bridge geometry and how the values are used in bridge design. Research on ultra-high 

performance concrete helped the author understand how it differed from normal concrete 

and how it could be applied to enhance the performance of modern bridges, particularly 

in the shear key. Research on accelerated bridge construction helped the author 

understand the country’s current need of bridge repairs and a safe effective way to solve 

this issue. Research on NEXT beam testing familiarized the author with research that has 
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been already done to further understand the behavior of NEXT beam and how this project 

differed from research previously conducted. Finally, research on nondestructive load 

testing helped the author understand the purpose, goal, and process of the nondestructive 

live load test. The goal of the research on the Hanging Rock Creek Bridge is to combine 

the information gained from author’s nondestructive load test, UHPC materials tests, and 

literature review, and combine them to display a clear depiction of NEXT D beam 

behavior and in service performance.  
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Chapter 3:   UHPC Tests and Nondestructive Live Load Test 

The project’s goals were to investigate the behavior of NEXT D bridge girder and 

solid slab spans with a UHPC shear key. To accomplish these goals a live load test of the 

Hanging Rock Creek Bridge was conducted. Specifically, the UHPC material properties 

were determined through material testing and the bridge transverse load distribution 

behavior and joint movement was measured during a live load test. This chapter details 

the procedures for the tests performed for this project. The first section lays out UHPC 

material tests executed. The second section illustrates the live load test conducted at 

Hanging Rock Creek Bridge.  

3.1. NEXT D and Solid Slab Span Material Properties 
 

 Table 16 displays the NEXT D and Solid Slab Span’s specified material 

properties. SCDOT personel performed material testing on the precast concrete, cement, 

aggregate, prestressing steel, and steel reinforcement. SCDOT performed the concrete 

compressive testing according to ASTM C-39/C-1231 and SC 701 standards. Tables 17, 

18, 19, and 20 give the results for the class 6500 (concrete with specified strength of 6.5 

ksi used in NEXT D and solid slab spans) cylinder compressive test, class 8000 (concrete 

with specified strength of 8 ksi used in cored slab spans 2 and 3) cylinder compressive 

strength, reinforcing steel tests, and prestressing steel tests, respectively. Class 8000 

concrete was not directly involved in this research project, but will be relevant in 

subsequent research projects. Class 8000 concrete was used in the cored slab spans (spans 
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2 and 3) not with the NEXT D span or solid slab span. Specifications for Class 6500 and 

8000 concrete can be found in the SCDOT 2007 structural concrete table 701.2.12.2.  

 

Table 16: Specified NEXT D and Solid Slab Span Material Properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material Specified Properties 

Class 6500 Concrete f`c = 6.5 ksi 

Class 8000 Concrete f`c = 8.0 ksi 

Prestressing Steel with 0.5" Diameter 

Low Relaxation Strands 

Area = 0.153 in2 

fpu = 270 ksi 

Prestressing Steel with 0.6" Diameter 

Low Relaxation Strands 

Area = 0.217 in2 

fpu = 270 ksi 

Reinforcing Steel fy = 60 ksi 



 

 77 

Table 17: Class 6500 Concrete Cylinder Compressive Test Results at 28 Days 

Specimen Strength (ksi) 

1 10.4 

2 11.2 

3 12.5 

4 12.7 

5 11.3 

6 11.9 

7 10.1 

8 11.7 

9 10.9 

10 11.3 

11 12.4 

12 11.9 

13 10.3 

14 10.4 

15 10.0 

16 10.1 

17 9.6 

18 9.4 

19 9.8 

20 9.7 

Average Compressive Strength = 10.9 ksi 

 

 

 

 

 

 

 

 

 



78 

Table 18: Class 8000 Concrete Cylinder Compressive Test Results at 28 Days 

Table 19: Grade 270 Prestressing Test Results for 0.5” and 0.6” Diameter Strands 

Prestressing Cable Breaking Strength Testing 

Specimen 
(Diameter) Breaking Stress (ksi) 

1 (0.5”) 298 

2 (0.5”) 286 

3 (0.6”) 283 

4 (0.6”) 293 

5 (0.6”) 285 

6 (0.6”) 288 

Average Tensile Strength = 289 ksi 

Class 8000 Compressive Cylinder Test 

Specimen Strength (ksi) 

1 11.5 

2 11.5 

3 11.7 

4 11.1 

5 11.8 

6 11.2 

7 11.2 

8 11.3 

9 11.3 

10 11.7 

11 11.3 

12 11.0 

13 11.9 

14 11.5 

15 11.1 

16 10.7 

17 11.0 

18 11.5 

19 11.3 

20 11.6 

Average = 11.3 ksi 
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Table 20: Grade 60 Steel Reinforcement Test Results 

Specimen Specimen Size Yield Strength (ksi) Tensile Strength (ksi) 

1 #4 Rebar 85.0 109 

2 #4 Rebar 74.5 99.0 

3 #4 Rebar 69.5 101 

4 #4 Rebar 64.5 97.5 

5 #5 Rebar 64.0 96.0 

6 #5 Rebar 65.0 98.0 

Average Yield Strength #4 = 76.3 ksi 
Average Yield Strength #5 = 64.5 ksi 

To conclude this section, all SCDOT tested materials met the given specifications. 

The average concrete class 6500 compressive strength was 10.9 ksi and met the specified 

strength of 6.5 ksi. The average breaking stress of the grade 270 low-relaxation 

prestressing steel strands was 292.0 ksi met the specified strength of 270 psi. The grade 

60 reinforcing steel’s average yield strength of 70.1 ksi met the specified strength of 60 

ksi. 

3.2 UHPC Materials Tests 

A summary of the materials tests conducted by Clemson University researchers is 

provided in Table 21. Procedures for the tests are described in the subsequent subsection. 
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Table 21: Material Test Summary 

3.2.1 UHPC Mix Design 

The UHPC mix design was created by Ductal. It contains Ductal ready mix 

(cement, silica fume, and sand), high range water reducer, and steel fibers. A common 

Ductal UHPC mix design can be found below in table 22. The mixing of the UHPC was 

handled by Lafarge employees. 

Table 22: Typical Ductal UHPC Mix Design 

3.2.2 Compressive Strength 

Compressive strength tests were performed with 2 in. x 2 in. cubes in accordance 

with ASTM C109.  The cubes were tested in groups of five at ages of 28 days, 90 days, 

and 6 months, respectively. Figure 58 shows a cube that is about to be tested.  

Test Specimen 
ASTM 

Standard 
Reference 

Compressive 
Strength 

2 in. Cubes C109 
ASTM 
(2013) 

Splitting Tensile 
Strength 

3. in. x 6 in.
Cylinders

C496 
ASTM 
(2011) 

Pull-off Test 
2 in x 2.5 in 
Cylinders 

C1583 
ASTM 
(2013) 

Constituent lb/yd3 

Ductal Premix 3700 

Water 219 

Premia 150 (Superplasticizer) 51 

1/2 in. Steel Fibers (2%) 263 

w/cm 0.06 
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3.2.3 Split Tensile Strength 

Split tensile strength tests were performed with 3 in. x 6 in. cylinders in 

accordance with ASTM C496.  The cylinders were tested in groups of five at ages of 28 

days, 90 days and 6 months, respectively. Figure 59 shows a schematic drawing of a split 

tensile test. Cylinders were placed in between thin wooden strips to assist with loading 

alignment.  

Figure 58: 2” x 2” Cube Compressive Strength Test 



82 

3.2.4 Bond with Concrete 

Bond strength of the UHPC to the precast concrete was measured by performing 

pull-off test in accordance with ASTM C1583. Figure 60 is a picture of the test specimen. 

The test specimen was prepared at the precast yard. To prepare the specimen, a form was 

built at the precast concrete yard. Then 6” of the concrete with the concrete mixed used to 

make the precast bridge girders was poured into the form. The specimen cured for 28 

days before being transported to the bridge site. At the bridge site, 1.5” of UHPC topping 

was poured on top of the 6” specimen. That same day, the Clemson Bridge team picked 

Figure 59: Schematic Drawing of Split Tensile Test (Courtesy of Roohollah Bagherzadeh) 

https://www.researchgate.net/profile/Roohollah_Bagherzadeh
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up the specimen. Figures 61 and 62 show the top and section views of the test specimen, 

respectively.  

Figure 60: 2' x 2' UHPC to Precast Test Specimen 

Figure 61: Schematic Top View of Pull Off Test Specimen 
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Multiple 2 in. x 2 in. core holes were drilled in the test specimen, as shown in 

figure 63. The holes were drilled 2” deep to meet the ASTM specification that the core 

must be drilled at least a ½” below the transition between concrete layers. 

Figure 63: Test specimen with cored holes 

Figure 62: Schematic Side View of Pull Off Test Specimen 
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Using a high strength epoxy and the Proceq DYNA pull-off tester, pull-off tests 

were conducted when the 1.5” UHPC overlay was 6 months old. Figure 64 shows a 

schematic drawing of the pull-off test, and figure 65 shows a specimen after a failure 

between the UHPC and precast concrete connection.  

Figure 64: Schematic Drawing of Pulloff Test (Courtesy of ASTM C1583) 
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By providing torque to the hand crank, the steel cylinders, which were fastened to 

the concrete with epoxy, were pulled until one of four failures occurred: a) Failure in the 

substrate (precast concrete) b) Bond Failure at the precast concrete to UHPC connection 

c) Failure in the UHPC d) Failure at the epoxy bond. These four failure modes are

illustrated in figure 66 below. 

Figure 65: Failure of Test Specimen at the UHPC to Precast Interface 
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3.3 Live Load Test 

The purpose of the live load tests was to determine transverse load distribution of 

the NEXT D and solid slab spans, and to investigate the performance of the longitudinal 

joints between girders under service loads. To accomplish these goals, concrete surface 

strains and joint movements under load was measured.  

The live load test of the Hanging Rock Creek Bridge took place over two days in 

July of 2017. The first test day, July 26, consisted of attaching the instruments to the 

NEXT D span of the bridge, setting up the data acquisition system, and conducting live 

load testing. The bridge instruments were removed that evening. On the second day of the 

Figure 66: Schematic Drawing of Pulloff Test Failure Modes (Courtesy of ASTM C 1583) 
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test, July 27, the solid span of the bridge was instrumented and tested in the same fashion 

as the NEXT D span.  

3.3.1 Data Collected 

A live load test was performed to measure many different bridge responses and 

behaviors. Only a few bridge responses were required to be measured at the Hanging 

Rock Creek Bridge, however. The main objectives of the live load test were to determine 

the transverse load distribution of both the NEXT D and solid spans, respectively, and the 

UHPC shear key bond and durability. The bridge responses measured to determine 

transverse load distribution included strain in the girders, while relative girder 

displacements were measured to assess the health of the UHPC shear key.  

3.3.2 Bridge Instrumentation 

Based on the data needed, it was concluded that strain transducers would measure 

the precast concrete surface strain, and linear variable differential transformers (LVDTs) 

would measure girder relative horizontal displacements. 

3.3.3 Data Acquisition 

BDI provided the data acquisition (DA) system in addition to the bridge 

instrumentation. The DA system’s role is to collect, record, and save all data from the 

live load test. Strain transducers and LVDTs were connected to a 4-channel DA device 

called a node. The node had 4 channels, which meant that 4 different instruments 

potentially could be connected to the node. The node receivers are wirelessly connected 
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to a central base station. The base station data receives data wirelessly from all node 

receivers. Data was then saved to a laptop running STS software.  

3.3.4 Truck Descriptions 

SCDOT provided two three-axle dump trucks that were used for the Hanging 

Rock Creek Bridge field test. The trucks were filled with gravel and then had their front 

and rear wheel tandem axles weighed separately at the quarry.  They had total weights of 

43.8 kips and 47.7 kips, respectively.  

The trucks’ dimensions were measured at the bridge site. Figures 67 through 70 

show the trucks’ respective axle weights and dimensions.  

Figure 67: Truck #1 Weight 

11.0 kips 32.8 kips 
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Figure 68: Truck #2 Weight 

11.6 kips 36.1 kips 

Figure 69: Truck #1 

Dimensions

6’-11” 

12’-2” 

6’-11” 

4’-7” 
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3.3.5 NEXT D Span 

3.3.5.1 Strain Transducers 

Twelve strain transducers manufactured by Bridge Diagnostics Incorporated 

(BDI) measured concrete surface strain on the NEXT D span. Strain transducer 

calibrations were provided by BDI. Strain transducers measured longitudinal bending 

strain of the bottom flanges at the mid-span of the bridge girders. Figure 71 shows where 

the strain transducers were physically attached to girders. Strain transducers were 

mounted at mid-span because this location is close to the section of maximum moment 

and bending strain. Figure 72 below shows 3 strain transducers attached to a NEXT D 

girder. Figure 73 is a close-up of a strain gauge mounted to the NEXT D span.  

Figure 70: Truck #2 

Dimensions

6’-11” 6’-11” 

12’-1” 4’-5” 
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Figure 72: BDI Strain Gauges on NEXT D Span 

Figure 71: Strain Transducer attachment to NEXT D Girder 
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Strain transducers were mounted to the concrete by first attaching the metal feet 

to the strain transducer and locking them down with nuts. These metal feet were then 

covered with adhesive and then sprayed with accelerant. After the accelerant was 

sprayed, the metal feet were quickly pressed and held on the concrete face for five 

seconds before a strong bond was formed. Figures 74 and 75 show the adhesive and 

accelerant used.  

Figure 73: Close-up of NEXT D BDI Strain Gauge 



94 

Figure 74: Loctite Adhesive (Picture courtesy of Robert Gunter) 

Figure 75: Loctite Accelerant (Picture courtesy of Robert Gunter) 
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3.3.5.2 Linear Variable Differential Transformers 

Six LVDTs and their calibrations were provided by BDI for this project. LVDTs 

were recalibrated by the author. Four LVDTs were instrumented on the NEXT D span. 

LVDTs measured the girder relative horizontal displacement by recording the movement 

of the arm relative to the body of the transformer. Six custom made cases were created to 

hold and attach the LVDTs to the girders. A LVDT in its case rigged to a NEXT D girder 

can be seen in figure 76. 

Figure 76: LVDT Rigged to measure Relative Horizontal Displacement on NEXT 

D Girder 

NEXT D Web/Stem 

NEXT D Joint 
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The relative horizontal displacements between bridge girders was a point of 

interest in this project since displacement is an indication of the health of the shear key. 

Horizontal deflections indicate an opening at the longitudinal girder joint (Gunter, 2016). 

Additionally, these displacements help researchers determine if transverse post-

tensioning rods are assisting with transverse load distribution. Excessive movements at 

the joints can cause reflective cracking in the asphalt roadway surface. LVDTs were able 

to capture displacement at the joints. The first live load test was conducted when the 

bridge was healthy and brand new. These relative displacements will be the baseline. If 

these horizontal displacements increase for future tests, this is a strong indication of a 

damaged shear key. 

To measure the horizontal displacement, the LVDT was placed in the custom case 

and glued to the bottom of the concrete girder. The custom case allowed the LVDT to be 

easily attached to the underside of the bridge. The arm of the LVDT was pointed 

perpendicular to the flow of traffic. Across the joint, a wooden block was glued to the 

bottom of the concrete girder as well. The wooden block provided a point of contact for 

the LVDT arm. 

3.3.5.3 Instrumentation Plans 

The NEXT D bridge instrumentation plans for strain gauges and LVDTs can be 

seen in figures 77 and 78. Figure 77 shows the layout of the strain gauges and figure 78 

shows the layout for the LVDTs. Table 23 lists each strain gauge and LVDT with its 

corresponding BDI gauge number. This table is included to help read graphs found in the 

appendix. The numbers on both layouts are the sensors’ respective BDI identification 
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numbers. The layout utilizes 12 strain transducers and 4 LVDTs across the entire width 

of the span. The goal of this setup was to analyze the transverse load distribution of the 

NEXT D section and detect horizontal joint movements. 
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Table 23: NEXT D BDI Gauge List 

3.3.5.4 Loading Configurations 

Eight different load scenarios were used during the field test on the NEXT D 

span. Certain loading configurations used one truck, while others used two trucks. 

Scenarios 1-7 were pseudo-static tests, meaning the trucks travelled across the bridge at 

less than 5 mph. The trucks travelled slowly across the bridge to eliminate bouncing and 

dynamic effects. Scenario 8 was a dynamic test, meaning trucks drove across the bridge 

at approximately the posted speed limit. The purpose of the dynamic test was to see if a 

truck traveling at highway speeds caused greater bridge bending strains. Table 24 

provides a loading summary for the solid slab live load test. Figures 79-85 illustrate the 

truck alignment for each load scenario. 

Instrument 
Layout Identifier 

Sensor Type 
BDI Gauge 
Number 

1L Strain Gauge 5334 

1R Strain Gauge 5332 

2L Strain Gauge 5325 

2R Strain Gauge 5338 

3L Strain Gauge 5329 

3R Strain Gauge 5337 

4L Strain Gauge 5333 

4R Strain Gauge 5336 

5L Strain Gauge 5326 

5R Strain Gauge 5328 

6L Strain Gauge 5335 

6R Strain Gauge 5323 

J1-2 LVDT 1030 

J3-4 LVDT 1028 

J4-5 LVDT 1029 

J5-6 LVDT 1770 
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Table 24: NEXT D Load Configuration Summary 

Loading 
Scenario 

Trucks Used Trials 
Truck 
Speed 
(mph) 

Primary Purpose 

1  Truck 2 4  < 5 Maximum load in exterior girder 

2  Truck 2 3  < 5 
Maximum load interior girder adjacent 

to exterior girder 

3 Both Trucks (Truck 2 on outside) 3  < 5 
Maximum load in exterior girder with 

side by side trucks 

4 Both Trucks (Truck 2 on outside) 3  < 5 
Maximum load in interior girder with 

side by side trucks 

5  Truck 2 3  < 5 
Wheel line over joint to cause maximum 

horizontal displacement  

6  Truck 2 3  < 5 
Maximum load in exterior girder 

(symmetric with loading 1) 

7  Truck 2 3  < 5 
Maximum load outside in interior girder 

(symmetric with loading 2) 

8  Truck 2 7 ≈ 45 Dynamic Load Allowance 

1’ 

Figure 79: Load Configuration 1 (Exterior Girder Single Truck) 
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Figure 80: Load Configuration 2 (Single Truck on Interior Girder) 

Figure 81: Load Configuration 3 (Two Trucks Max Loading Exterior Girder) 

5’ – 8” 

1’ 

4’ 
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Figure 82: Load Configuration 4 (Two Trucks Max Loading Interior Girder – One 

wheel line directly over Joint) 

Figure 83: Load Configuration 5 (Single Truck on Interior Girder – Wheel Line 

over Middle Joint) 

4’ 

5’ – 8” 

12’ – 5” 
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Figure 84: Load Configuration 6 (Single Truck on Exterior Girder – Symmetry with Scenario 1) 

Figure 85: Load Configuration 7 (Single Truck on Interior Girder – Symmetry with Scenario 2) 

1’ 

5’ – 8” 
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3.3.6 Solid Slab Span  

3.3.6.1 Strain Transducers 

Sixteen strain gauges were used to measure concrete surface strain on the solid 

slab span. Figure 86 shows 6 strain transducers attached to solid slab girders 13 and 14, 

respectively.  

Strain transducers were mounted in the same fashion as those mounted to the 

NEXT D span. Figure 87 shows how the strain transducers were mounted to girders 1 

Figure 86: Strain Transducers and LVDT Rigged on Solid Slab Span 

12’ – 5” 
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through 12. Figure 88 shows how girders 13 and 14 each had 3 strain transducers 

mounted. 

Figure 87: Schematic Drawing of Strain Gauge Mount Position on Solid Slab 

Girders 1 through 12 

Figure 88: Schematic Drawing of Strain Gauge Mount Position on Solid Slab 

Girders 13 and 14 
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3.3.6.2 Linear Variable Differential Transformers 

Six LVDTs were instrumented and used to take horizontal joint displacements on 

the solid slab span. Figure 89 shows an LVDT mounted to a solid slab girder.  

3.3.6.3 Instrumentation plans 

The solid slab instrumentation plans for the BDI strain gauges and LVDT’s can 

be seen in figures 90 and 91, respectively. Table 25 lists each strain gauge and LVDT 

with its corresponding BDI gauge number. In total, 16 strain gauges and 6 LVDT’s were 

mounted to the solid slab span.  

Figure 89: LVDT Mounted to Solid Slab 
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5
’ 

Figure 91: Solid Span LVDT Sensor Layout 

2
0
’ 
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Table 25: Solid Span BDI Gauge List 

3.3.6.4 Loading Configurations 

Figures 92 through 101 show the loading scenarios on the solid span. Table 26 

has a summary of the loading scenarios and their respective purposes. 

Instrument Layout 
Identifier 

Sensor Type 
BDI Gauge 
Number 

1 Strain Gauge 5327 

2 Strain Gauge 5326 

3 Strain Gauge 5337 

5 Strain Gauge 5323 

7 Strain Gauge 5331 

8 Strain Gauge 5332 

9 Strain Gauge 5334 

10 Strain Gauge 5324 

11 Strain Gauge 5328 

12 Strain Gauge 5336 

13L Strain Gauge 5335 

13M Strain Gauge 5338 

13R Strain Gauge 5330 

14L Strain Gauge 5329 

14M Strain Gauge 5333 

14R Strain Gauge 5325 

J10-11M LVDT 1029 

J11-12M LVDT 1027 

J12-13M LVDT 1771 

J13-14M LVDT 1028 

J12-13N LVDT 1770 

J13-14N LVDT 1030 
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Table 26: Solid Slab Span Loading Configuration Summary 

Loading 

Scenario 
Trucks Used Trials 

Truck 

Speed 

(mph) 

Primary Purpose 

1 Truck 2 3  < 5 
Max load exterior girder and cause max response in horizontal 

joint displacement  

2 Truck 2 3  < 5 
Max load exterior girder and cause max response in horizontal 

joint displacement  

3 Truck 2 3  < 5 Max load outermost interior girder 

4 Both Trucks (Truck 2 on outside) 4  < 5 Cause max horizontal joint displacement with two trucks 

5 Both Trucks (Truck 2 on outside) 3  < 5 Max load exterior girder with two trucks 

6 Both Trucks (Truck 2 on outside) 3  < 5 Max load interior girder with two trucks 

7 Truck 2 3  < 5 
Max load exterior girder and cause max response in horizontal 

joint displacement (symmetry with loading 1) 

8 Truck 2 3  < 5 
Max load exterior girder and cause max response in horizontal 

joint displacement (symmetry with loading 2) 

9 Truck 2 3  < 5 Max load middle interior girders 

10 Truck 2 3 45 Dynamic Load Allowance 
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2.5’ 

1’ 

Figure 92: Load Configuration 1 (Single Truck on Exterior Girder/Joint) 

Figure 93: Load Configuration 2 (Single Truck Straddling Two Interior 

Joints) 
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4’ 

1’ 

4’ 

Figure 94: Load Configuration 3 (Single Truck Over Two Interior Joints) 

Figure 95: Load Configuration 4 (Two Trucks, each with Wheel Line Over Joint - 

Exterior Girder) 
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4’ 

4’ 

2.5’ 

Figure 96: Load Configuration 5 (Two Trucks, offset from Joints – Interior Girders) 

Figure 97: Load Configuration 6 (Two Trucks, each with Wheel Line Over Joint – Interior 

Girders) 

4’ 
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2.5’ 

1’ 

Figure 98: Load Configuration 7 (Single Truck on Exterior Girder/Joint - Symmetry with Scenario 1) 

Figure 99: Load Configuration 8 ((Single Truck Straddling Two Joints – Symmetry with Scenario 2) 
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Figure 100: Load Configuration 9 (Single Truck over Middle Joint) 

Figure 101: Load Configuration 10 (Single Truck over Middle Joint – Dynamic Case) 

18’ – 2” 

18’ – 2” 



117 

Chapter 4:   Results and Discussion 

The project’s goals were to investigate the transverse load sharing behavior of 

NEXT D solid slab span members, the UHPC shear key performance, and the UHPC 

material properties. To accomplish these goals a live load test of the Hanging Rock Creek 

Bridge was conducted in addition to UHPC materials testing. Specifically, the UHPC 

material properties were determined through material testing and the bridge transverse 

load distribution behavior through recorded bending strains and joint movement 

measured during a live load test. Results of the tests are presented in the following 

sections. 

4.1 Material Tests Results 

Results from the material tests described in chapter 3 are presented here. 

Materials tests were conducted to ensure that the UHPC was met the specifications 

established by the engineer and that the UHPC compressive, tensile, and bond strengths 

were typical when compared to other researchers’ data sets.  

4.1.1 Compressive Strength Test 

Results of the Clemson UHPC compressive strength tests performed at 28 days, 

90 days, and 6 months with UHPC batched on 3/20/2017 (NEXT D shear keys) are 

shown in table 27. No cube specimens were provided from the UHPC batched on 

3/21/2017 (solid slab shear key). Table 28 contains UHPC compressive strength test 

results from 4 different Virginia Tech researchers [(D’Alessandro, 2013), (Halbe, 2014), 
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(Joyce, 2014), (Field, 2015)]. Figure 102 shows the strength gain of the UHPC over a 

period of 6 months. 

Table 27: Clemson University UHPC Compressive Strength Test Results 

Specimen 
Number 

Specimen Age Compressive Stress (ksi) Average (ksi) 
Coefficient of 

Variation  

1 

28 Days 

25.8 

20.8 23.3% 

2 20.3 

3 24.6 

4 13.5 

5 19.8 

6 

90 Days 

21.8 

17.4 21.4% 
7 13.3 

8 15.5 

9 19.1 

10 

6 Months 

21.1 

22.5 6.7% 

11 21.0 

12 23.8 

13 24.3 

14 22.3 
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Table 28: Virginia Tech UHPC Compressive Strength Test Results 

Researcher Specimen ID Specimen Age 
Average Compressive 

Stress (ksi) 

Number of 
Specimens 

Tested 

Halbe 
1 

13 Days 

17.6 3 

2 17.2 3 

Field 
3 7 Days 16.0 3 

4 28 Days 19.9 3 

Joyce 

5 7 Days 11.3 2 

6 11 Days 15.5 2 

7 7 Days 11.6 2 

8 11 Days 14.3 2 

D'Alessandro 

9 4 Days 14.5 3 

10 7 Days 18.7 3 

11 14 Days 19.5 3 

12 21 Days 20.3 3 

13 28 Days 20.8 3 

14 104 Days 24.9 3 
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Benjamin Graybeal states that for a concrete to be considered UHPC, it must 

display compressive strengths greater than or equal to 21.7 ksi (Graybeal and Russell, 

2013). By the 6 month tests, three of four Clemson specimens exceeded this compressive 

strength.  

Clemson University specimens that were tested at 28 days had high variability 

relative to each other, but the average compressive strength was near Graybeal’s criteria. 

At 90 days, the specimens had high variability and for an unknown reason the average 

compressive decreased significantly from the 28 day compressive strength. At 6 months, 

the average compressive strength exceeded Graybeal’s compressive strength criteria by 

Figure 102: UHPC Compressive Strength Gain 
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3.5%, and the coefficient of variation was much lower. It is believed that the low 90 day 

compressive strength was a fluke in the data due to small sample size of only 4 cubes. 

In the Virginia Tech compressive strength tests, Halbe’s, Field’s, and Joyce’s 

average compressive strengths were all significantly lower than Graybeal’s specified 

compressive strength value of 21.7 ksi. However, D’Alessandro’s average compressive 

strength values met Graybeal’s specified compressive strength criteria by day 104.  

The Clemson compressive strength test results show that the UHPC used in the 

Hanging Rock Creek Bridge does possess adequate compressive strength, especially 

when compared to typical concrete. Additionally, from the data it appears that it takes at 

least 28 days for UHPC to achieve its full compressive strength capabilities.  

4.1.2 Splitting Tensile Test 

Results of the Clemson UHPC splitting tensile strength tests performed at 28 

days, 90 days, and 6 months with UHPC batched on 3/20/17 (NEXT D shear keys) and 

3/21/17 (solid slab shear keys) are shown in tables 29 and 30 respectively. Table 31 

contains UHPC tensile strength results from 3 different Virginia Tech researchers. 

[(D’Alessandro, 2013), (Halbe, 2014), (Field, 2015)]. Figure 103 illustrates the ability for 

UHPC to increase tensile strength over time. 
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Table 29: Clemson University UHPC Tensile Strength Test Results – Batched on 3/20/17 

Table 30: Clemson University UHPC Tensile Strength Test Results – Batched on 3/21/17 

Specimen Number Specimen Age Breaking Stress (ksi) 

Average Tensile 
Strength (ksi) 

Coefficient of 
Variation  

1 

28 Days 

3.28 

3.06 7.98% 

2 3.07 

3 2.70 

4 2.96 

5 3.29 

6 

90 Days 

2.84 

2.76 4.41% 

7 2.79 

8 2.57 

9 2.73 

10 2.88 

11 

6 Months 

3.63 

3.73 11.1% 

12 3.27 

13 3.89 

14 3.49 

15 4.35 

Specimen Number Specimen Age Tensile Strength (ksi) 
Average Tensile 

Strength (ksi) 
Coefficient of 

Variation  

1 

28 Days 

3.61 

3.56 5.84% 

2 3.32 

3 3.72 

4 3.37 

5 3.79 

6 

90 Days 

3.56 

3.24 13.1% 

7 3.70 

8 3.11 

9 3.12 

10 2.64 

11 

6 Months 

3.47 

3.29 7.59% 

12 3.05 

13 3.58 

14 3.32 

15 3.02 
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Table 31: Virginia Tech UHPC Tensile Strength Test Results 

Researcher Specimen ID Specimen Age 
Average Tensile 

Strength (ksi) 
Number of 

Specimens Tested 

Halbe 
1 13 Days 2.04 3 

2 13 Days 2.20 3 

Field 
3 7 Days 1.81 2 

4 28 Days 2.40 2 

D'Alessandro 

5 7 Days 2.35 3 

6 14 Days 2.79 3 

7 196 Days 3.44 2 

Figure 103: UHPC Tensile Strength Gain 
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Benjamin Graybeal states that for a concrete to be considered UHPC, it must 

display tensile strengths greater than or equal to 0.72 ksi (Graybeal and Russell, 2013). 

Every Clemson University and Virginia Tech average tensile strength exceeded this 

criteria. UHPC is able to achieve this high level of tensile strength due to the steel fibers 

in the mix. The average tensile strength of the 3/20 and 3/21 batches were 3.36 ksi and 

2.18 ksi, respectively. In both batches, average tensile strength decreased from the 28 day 

to 90 day test, but then increased at the 6 month test. It is believed that this scatter is due 

to the small sample size. Additionally, because the average tensile strength did not 

increase much or at all with time, it is believed that the UHPC reached its maximum 

tensile strength before it was 28 days old.  

4.1.3 Pull Off Test 

Results of the pull-off test at the specimen age of 6 months are shown in table 32. 

Tests were not conducted earlier due to a technical issue with the pull-off tester, causing a 

multiple month delay. Of the 8 specimens, 3 had failures at the UHPC to concrete 

interface while the remaining 5 had failures at the steel disc to epoxy interface. Results 

were very inconsistent. Failures in the UHPC to precast interface had a range from 120 

psi to 235 psi, while failures in the steel disc epoxy interface had a range from 200 to 300 

psi. The results could illustrate one or more of the following; First it is possible that that 

test specimen was not prepared uniformly. By roughing up the precast surface, the UHPC 

layer theoretically would have a stronger bond. It is possible that the surface was not 

uniformly rough, which would contribute to certain sections of the specimen having 

greater bond strength than others. Secondly, some of the specimens were tested near the 
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perimeter of the specimen while others were tested towards the center. It is possible that 

those specimens in the center of the specimen, which are surrounded by more concrete 

and UHPC, could have had a stronger bond strength that those at the perimeter. The 

minimum average bond strength independent of the failure mode was 232 psi, which is 

quite strong. The bond is said to be the minimum bond because it is the lower bound of 

the potential bond strength. This strong bond strength in addition to the UHPC tensile 

strength should provide a shear key that performs and remains durable for many years. 

Although the pull off test results were not consistent, they are close to results that 

other researchers testing UHPC’s bond strength have seen. Table 33 contains UHPC 

bond strength results from 2 different Virginia Tech researchers. 

 Table 32: Clemson University 6 Month UHPC Pull-Off Test Results 

Specimen # 
Failure 

Stress (psi) 
Failure Mode 

Bond 
Strength 

(psi) 

Minimum 
Average Bond 
Strength (psi) 

Coefficient 
of 

Variation 

1 362 Epoxy Interface > 362

232 31.8% 

2 120 UHPC to Concrete Interface = 120 

3 235 UHPC to Concrete Interface = 235 

4 177 UHPC to Concrete Interface = 177 

5 300 Epoxy Interface > 300

6 231 Epoxy Interface > 231

7 200 Epoxy Interface > 200

8 230 Epoxy Interface > 230
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Table 33: Virginia Tech UHPC Pull-Off Test Results 

Researcher Specimen ID (Type) Specimen Age 
Failure Stress 

(psi) 

Number of 
Specimens 

Tested 

Halbe 
1 (UHPC) 13 Days 204 6 

2 (UHPC) 13 Days 93 6 

Joyce 

3 (UHPC) 7 Days 180 2 

4 (UHPC) 12 Days 240 2 

5 (UHPC) 15 Days 260 2 

Average UHPC Failure Stress = 195 psi 

6 (Grout) 7 Days 25 2 

7 (Grout) 15 Days 20 2 

Average Grout Failure Stress = 22.5 psi 

4.1.3 Summary of UHPC Tests Results 

The Ductal UHPC used in the NEXT D and solid slab shear keys met or exceeded 

the specifications and requirements set by Benjamin Graybeal and those measured by 

Virginia Tech researches. After 6 months, the UHPC average compressive strength was 

22.5 ksi, which exceeded Graybeal’s criteria of 21. 7 ksi. After 6 months, the UHPC 

average splitting tensile strength in the NEXT D and Solid Slab shear keys was measured 

at 3.29 ksi and 3.73 ksi, respectively. Both values exceeded Graybeal’s criteria of 0.72 

ksi. Finally, the average bond strength of the UHPC to precast concrete was found to be 

at least 232 psi. This value was approximately what the Virginia Tech researchers 

reported for UHPC bond strength. In comparison to conventional grout’s bond strength 

(table 32), the UHPC bond strength is far superior and in theory should facilitate a more 

durable shear key. 
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4.2 Live Load Test Results 

This section of chapter 4 will focus on the results from the live load test of 

Hanging Rock Creek Bridge. Additionally, a comparison of experimental and theoretical 

values for bridge and girder characteristics is presented.  

Data was recorded for live load testing of spans 1 and 4 of Hanging Rock Creek 

Bridge. For the NEXT D span (span 1), bridge instrumentation was attached at midspan. 

For the solid slab, bridge instrumentation was primarily attached at midspan with 2 

additional LVDTs attached 5 feet north of midspan. Instrumentation plans can be seen in 

figures 77-78 and 90-91.  

All deflection values have been recorded as positive for LVDT plunger extension 

and negative for a LVDT plunger contraction. Tensile strain is displayed as positive for 

tensile strain and negative for compressive strain. Recorded strains and horizontal 

deflections are a result of the applied live load; dead load effects are not considered in the 

strain and deflection data.  

4.2.1 Discarded Data and Strain Gauge Noise 

Each truck configuration was repeated at least 3 times to ensure a consistent data 

set and spot check data outliers.  

For all NEXT D tests, relative horizontal data from LVDT J5-6 has been 

discarded. Although data was recorded, the LVDT displayed zero joint movement for 

every truck crossing. Figure 104 shows LVDT joint displacement data from J5-6 for load 

scenario 1 trial 3. The truck was directly above of LVDT J5-6, but there is no discernable 

joint movement.  
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Figure 104: Load Configuration 1 Trial 3 J5-6 Data 
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Additionally, on both NEXT D and solid span tests, some strain data sets 

displayed a noticeable electronic noise as shown below in figure 105. The researchers 

investigated the reason for this noise, but could not determine the root cause. This noise 

occurred during random trials, in random strain gauges, at random times during the data 

recording, during single or double truck crossings and on interior and exterior girders. 

Since the noise was only +/- 1 microstrain and the results of the strains from tests with 

noise versus those without the noise was extremely consistent, all of the strain data was 

kept and used for the calculation of DFM values.   

Figure 105: Strain data from Scenario 6 Trial 3 on Solid Slab – “Noise” near Peak Strain 
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4.2.2 NEXT D Live Load Test  

4.2.2.1 Overview of Test Results 

Single and side-by-side truck crossings with eight different transverse truck 

locations were performed on the NEXT D span of the Hanging Rock Creek Bridge. 

Strain data was gathered from 12 strain transducers on each truck crossing, and relative 

horizontal displacement data was gathered from 4 LVDTs. Bending strain in a NEXT D 

girder was predicted to be approximately 188 microstrain (based on a transverse load 

distribution 0.50 and as a simple beam-line model). Bending strains measured by the BDI 

system were far lower than this predicted value. It is thought that since the bridge in the 

plan is shaped like a square (40’ long x 42’ wide) and is additionally stiffened by guard 

rails, the bridge acts like a plate allowing for greater transverse moment distribution. This 

increase in transverse load distribution is consistent with the over-estimation of bending 

strains seen in the simple model. The bending strain calculations can be found in the 

appendix.  

Figure 106 shows maximum girder strain data for load configuration 7 trial 3. 

This figure is typical of all load configurations and crossings with the largest girder strain 

occurring at or near the truck axles. Figure 107 shows the girder strain versus time for 

load configuration 7 trial 3. The girder strain rises as the front axle approaches midspan, 

and then peaks when the rear axle approaches midspan. The graph also illustrates that 

girders close to the load source receive more load, and experience greater amounts of 

bending strain. In the case below, the truck is almost entirely on bridge girder 2, causing 

strain transducers on girders 2 and 3 to register the highest bending strains.  
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Figure 106: Cross-Section View and Strain Gauge Data for Load Configuration 7 Trial 3 
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  Figure 108 shows the LVDT data from load configuration 7 trial 3. LVDTs that 

were closer to the load source experienced greater horizontal deflections, which in this 

instance was J1-2. Additionally, the plateau around 15 seconds shows when the front axle 

crosses over the LVDT and the peak hump at 17 seconds shows when the rear axle 

crosses the LVDT. Relative LVDT horizontal displacements were small in comparison to 

those found by Kedar Halbe (0.007 in.)(Halbe, 2014) and Sheng (0.008 in.)(Sheng et al., 

2013).   

Figure 107: Strain Gauge Data from Trial 3 of Load Configuration 7 on NEXT D Span 
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 Using the strain gauge and LVDT data, DFMs, IM factors, and joint health were 

all evaluated and conclusions were made. 

4.2.2.2 Strain Gauge Data and DFM Calculation 

Eight different load configurations and a total of 31 separate truck crossings were 

performed on the NEXT D span of the Hanging Rock Creek Bridge. Strain gauge data 

was gathered from 12 gauges on each truck crossing. Using this strain gauge data, three 

different experimental distributed moment factors (DFMs) for each girder were 

determined per truck crossing. The methodology for determining these DFMs is 

Figure 108: LVDT Data from Trial 3 of Load Configuration 7 on NEXT D Span 
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explained in the following sub-sections. After all DFMs were calculated, the maximum 

experimental values were found for the interior and exterior girders respectively. These 

values were then compared to AASHTO type i and k factors, and two separate FE model 

DFM values.  

4.2.2.2.1 Time Independent Method 

Every NEXT D girder was instrumented with two strain gauges (one per stem). 

To calculate the individual bridge girder DFM, a DFM was calculated for each individual 

stem, and then the stem values for each bridge girder were added to each other to obtain 

the entire bridge girder DFM value. The DFMs per stem was calculated by taking the 

maximum bending strain experienced by the stem and dividing it by the sum of every 

other bridge stems maximum bending strain value. This method is labeled as the time 

independent approach since not every bridge girder experienced its maximum bending 

strain at the same time. 

4.2.2.2.2 Time Dependent Methods (a) and (b) 

Each stem DFM was calculated by taking the maximum strain experienced by the 

stem and dividing it by the sum of the every stem’s strain experienced at the time of the 

stem of interest experienced maximum strain, not the maximum strains experienced by 

all the other stems. To get the girder DFM, both stem DFMs were added to each other. 

Since each girder had two sensors, and each sensor experienced the maximum strain at a 

different time, two DFM values were determined per bridge girder. The DFM values 
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calculated by the time dependent approach tended to be slightly more conservative (i.e. 

larger values) than the time independent values.  

4.2.2.2.3 AASHTO Type i 

DFMs for the AASHTO type i method were calculated in accordance with the 

type i equations of AASHTO. These bridge sections are shaped like a double tee. The 

physical description of this bridge is the closest match to the NEXT D span. Calculations 

for this method can be found in the appendix. 

4.2.2.2.4 AASHTO Type k 

DFMs for the AASHTO type k method were calculated in accordance with the 

type k equations of AASHTO. These bridge sections are shaped like a bulb tee, which is 

similar to, but not the same as the NEXT D cross-section. Calculations for this method 

can be found in the appendix. 

4.2.2.2.5 NEXT-6 FE Model 

DFMs for this method were taken from a Clemson University report (Sheng et al., 

2013) that modeled the NEXT beam with a 6’ wide flange. 

4.2.2.2.7 NEXT-8 FE Model 

DFMs for this method were taken from a Clemson University report (Sheng, et 

al., 2013) that modeled the NEXT beam with an 8’ wide flange. 
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4.2.2.3 Sample DFM Calculation 

This section will explain the process of calculating the DFMs for load 

configuration 7 trial 3. The DFMs for all other truck configurations and crossings were 

calculated in a similar fashion.  

Figure 104 above is a graph showing the strain gauge data from load 

configuration 7 trial 3.  Table 34 displays the maximum bending strain in each web of 

each girder during load scenario 7 trial 3. Using equation 9 from the literature review, 

each web DFM was calculated and displayed in table 34. Since each bridge girder has 

two webs and was therefore rigged with two strain gauges, the summation of the two 

DFMs per stem on a girder was performed to calculate the individual girder DFM. The 

data show that girder 2 has the greatest bending strain, followed by adjacent bridge 

girders 1 and 3, respectively. 

 Table 34: Time Independent Maximum Bending Strain Values in Strain 

Transducers for Load Configuration 7 Trial 3 

Sensor ID 
Maximum Bending Strain 

(μƐ) 

1L 32.6 

1R 38.5 

2L 37.7 

2R 46.9 

3L 41.8 

3R 32.4 

4L 23.0 

4R 13.1 

5L 10.7 

5R 5.63 

6L 3.68 

6R 1.77 
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Table 35: Time Independent Individual Web and Girder Calculated DFMs 

 As stated earlier in the section, for every bridge crossing, each bridge girder 

received three separate DFM values, each calculated in a different fashion for 

comparison. Table 35 displays the time independent DFMs per girder while table 36 has 

the time dependent [(a) and (b)] DFMs. 

Table 36: Experimental DFM Values Calculated by Time Dependent Method (a) 

and (b) 

Sensor ID Girder # Web DFM 
Girder 
DFM 

1L 
1 

0.113 
0.247 

1R 0.134 

2L 
2 

0.131 
0.294 

2R 0.163 

3L 
3 

0.145 
0.258 

3R 0.113 

4L 
4 

0.08 
0.126 

4R 0.046 

5L 
5 

0.037 
0.057 

5R 0.02 

6L 
6 

0.013 
0.019 

6R 0.006 

Girder # 
Time Dependent 

(a) DFM
Time Dependent 

(b) DFM

1 0.250 0.250 

2 0.298 0.301 

3 0.259 0.259 

4 0.126 0.126 

5 0.058 0.059 

6 0.021 0.019 
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For the load configuration 7 and trial 3, the three sets of DFM values calculated 

were all extremely close. This trend was present in the other load configurations and 

crossings as well.  

For load configurations with two trucks present (load configurations 3 and 4), a 

similar process was used to calculated the bridge girder DFM values. There was one 

change, however. The DFM equation can be seen below: 

𝑔 = 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑀𝑟𝑒𝑓𝑖𝑛𝑒𝑑

𝑛∗𝑀𝑏𝑒𝑎𝑚
  Equation 10

Mrefined is the moment due to one truck that is carried by a single bridge girder. 

Mbeam is the total moment due to one truck and n is the number of trucks present on the 

bridge. When two trucks are present, there is a “2” in the denominator of this equation. 

The researchers are intersted in using the experimental data with two trucks present to 

determine the DFM in terms of lanes/girder. To obtain the in terms of lanes/girder, the 

experimentally observed distribution factor must be multiplied by the numbers of trucks 

present, which is two in the case of truck configurations 3 and 4.  

With 20 static bridge crossings, and 3 DFM values calculated per crossing, 60 

total DFM values were experimentally calculated per bridge girder. All 60 of these values 

were sorted and the maximum value per girder was determined.  

AASHTO LRFD calculates DFM values for both single and multiple truck lane 

loads. To compare experimentally determined values with AASHTO LRFD values, 

separate DFM values were deteremined for single and side-by-side truck crossings. The 

maximum DFM values experimentally determined for single and side-by-side truck loads 

are shown below in table 37. 



139 

Table 37: Maximum Experimentally Determined DFM Values 

It should be noted that a longitudional reinforcement bar was left out during the 

construction of the NEXT D joint J5-6. From the data, it does not appear that the absence 

of the bar significantly affected the transverese moment distribution between the girders. 

The maximum experimentally derived DFM is much greater in girder 6 than in 

girder 1 for the side-by-side truck loading. This is because the west half of the bridge 

receieved the majority of the different load configurations. Through bridge symmetry, it 

can be safely assumed that girder 1 would behave similarly to girder 6 if it experienced 

symmetric loadings.   

In bridge engineering, typically there are two designs for bridge girders: a typical 

interior and typical exterior girder. As a result, a maximum DFM value was determined 

for the interior girder (girders 2 through 5) and for the exterior girder (girders 1 and 6) for 

both single truck and side-by-side truck cases. These values were then compared side by 

side to DFMs determined from AASHTO LRFD type i and k equations (calculations 

shown in appendix), respectively, as well as DFMs from NEXT-6 (flange 6’ wide) and 

NEXT-8 (flange 8’ wide) finite element models (Sheng et al., 2013), respectively. The 

Girder # 
Experimental 

DFM: Single Truck 

Experimental 

DFM: Side-by-

Side Truck 

1(exterior) 0.42 0.11 

2 0.30 0.23 

3 0.26 0.48 

4 0.31 0.53 

5 0.34 0.56 

6(exterior) 0.36 0.40 
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head-to-head comparisons for single and double truck cases can be seen in figures 109 

and 110, respectively, as well as table 38. 
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Figure 109: DFM Comparison for Single Truck Load 
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Figure 110: DFM Comparison for Side-by-Side Truck Load 
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Table 38: DFM Comparison for Single Truck and Side-by-Side Trucks 

 

 For both single truck and side-by-side truck exterior girder cases, the AASHTO 

DFMs were substantially larger than the experimentally determined values. Additionally, 

both finite element models’ DFMs were less than the experimental determined DFMs, 

with the NEXT-8 being more conservative (ie. larger) than the NEXT-6.  

 For both single truck and side-by-side interior girder cases, the AASHTO type k 

DFM was greater than the experimentally derived DFM value. For the single truck load, 

type i was also greater than the experimental DFM, but not as conservative as type k. 

This confirms what the original PCI technical committee had suggested. Specifically, that 

type k is appropriate for NEXT bridge members (Culmo and Seraderian, 2010) . For the 

side-by-side truck case, AASHTO type i DFM and the experimental DFM were 

equivalent to each other. For both single truck and side-by-side truck interior girder 

cases, the NEXT-6 FE model was smaller than the experimental DFM and the NEXT-8 

FE model DFM was larger.  

 In conclusion, both AASHTO type i and k method DFMs are equal to (in one 

case) or greater than the experimentally derived DFMs. Type i is less conservative than 

type k. The author recommends that engineers continue to design NEXT beam girders in 

 Single Truck Side-by-Side Truck 

DFM Method Exterior Girder Interior Girder Exterior Girder Interior Girder 

AASHTO type k  0.62 0.55 0.62 0.67 

AASHTO type i  0.62 0.43 0.62 0.56 

NEXT-6 FE Model 0.25 0.29 0.27 0.44 

NEXT-8 FE Model 0.37 0.41 0.37 0.59 

Experimental DFM  0.42 0.34 0.40 0.56 
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the type k fashion because it is the most conservative. Slightly concerning is the fact that 

the interior girder double truck case experimental DFM is equivalent to the type i DFM.  

The bridge tested is essentially brand new and no joint cracking was observed or 

expected. However, as a bridge ages and receives greater load cycles, shear keys tend to 

crack and degrade. Degraded shear keys allow less load to be transferred between girders, 

thus the author would expect the experimental DFM for the interior girder double truck to 

actually increase and become greater than the DFM calculated by the AASHTO type i 

method. Designing NEXT beam bridges in the AASHTO type i method could lead to a 

potential under-design and bridge failure.  

4.2.2.4 LVDT Data 

 

LVDT data was gathered from 4 sensors on each truck crossing. As previously 

discussed, one instrument (J5-6) was not working properly and its data was discarded. 

Relative horizontal displacement of the joints was used to observe joint behavior and see 

if a joint had degraded or opened up in any way. All relative horizontal displacements 

were averaged for each load configuration and are presented later in this section. 

 Figure 111 below is a graph showing the LVDT data from load configuration 7 

trial 3. The graph illustrates that joints closer to the load source receive more load and 

experience greater amounts of relative horizontal displacement. This is attributed to the 

additional load going through joints closest to the trucks. In the case below, the truck is 

almost entirely on bridge girder 2. The joint under the left wheel load experiences 

significantly greater amounts of relative horizontal displacement than joints 3-4 and 4-5. 

Additionally, the relative horizontal displacement of joint 1-2 is positive, meaning that 
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the LVDT arm plunger is extending and that the joint is opening up slightly. The negative 

displacements in joints 3-4 and 4-5 mean that those joints are closing up.  

Figure 111: LVDT Data from Trial 3 of Load Configuration 7 on NEXT D Span 
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Table 39 displays the average LVDT horizontal displacements for each load 

configuration. The maximum horizontal displacements were quite small. For joints 1-2, 

3-4, and 4-5, the maximum relative horizontal displacements were 0.001 in, 0.0008 in,

and 0.0009 in, respectively. With such small displacements, it is believed that the UHPC 

joints currently have a strong bond with the precast NEXT D bridge girders and that the 

joints have not cracked or degraded yet. Additionally, no reflective cracks on the bridge 

were observed and there were no abrupt changes in the data indicating a crack initiation. 

One of UHPCs advantages is its bond strength, and that is illustrated by the performance 

of the joints during testing. In future bridge tests, it will be important to observe whether 

these relative horizontal displacements increase. An increase in relative horizontal 

displacement could be an indication that the UHPC shear key has debonded from the 

precast bridge girder. This would be problematic and could lead to shear key cracking, 

reduced transverse load distribution, and degradation of the prestressing strands via 

corrosive agents entering the bridge section through the wearing surface cracks.  
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Table 39: NEXT D Average LVDT Horizontal Displacements 

4.2.2.5 Dynamic Load Allowance 

To calculate the experimental IM, bending strain values were used from all truck 

crossings in load configurations 5 and 8 crossings, respectively. The following equation, 

which was discussed in the literature review (2.2), was used to calculate the experimental 

IM. 

𝐼𝑀 =
𝐷𝑑𝑦𝑛

𝐷𝑠𝑡𝑎
Equation 11 

Each girder was rigged with two strain gauges. The maximum strains in each 

gauge were averaged to get a total girder strain. Each maximum average girder strain for 

the 3 truck crossings for load configuration 5, and 7 truck crossings for load 

configuration 8, were then averaged. Then the IM for each girder was calculated using 

static (configuration 5) and dynamic (configuration 8) responses in equation 11 above. Of 

the calculated data set, the maximum IM was then taken as the maximum of the 

experimentally determined IM. Table 40 displays the IM for three of the NEXT D bridge 

girders. Only girders experiencing the majority of the bending response had IM values 

determined. The greatest IM is 1.07, which is significantly less than AASHTOs 1.33.  

Load Configuration 

#1 #2 #3 #4 #5 #6 #7 #8 

LVDT 

J4-5 0.00017 0.00090 0.00088 0.00092 0.00069 -0.000063 -0.00012 0.00078 

J3-4 -0.0001 3.31E-05 0.00068 0.00063 0.00082 -0.00010 -0.00006 0.00076 

J1-2 -0.000024 1.16E-05 -0.00015 -0.00019 -0.00013 0.00079 0.001 -0.00017



147 

Table 40: Maximum Experimentally Derived IM Values 

Girder # 
Load Configuration 5 

Average Bending Strain 
(με) 

Load Configuration 8 
Average Bending Strain 

(με) 
IM 

3 39.0 39.6 1.02 

4 51.7 51.8 1.00 

5 36.8 39.4 1.07 

Figure 112 is a plot of both the static and dynamic responses of strain gauge 4R. It 

can be seen that the dynamic crossing produces greater bending strain than the static 

crossing. This dynamic effect is captured in the IM factor and helps engineers design 

bridge components accordingly. 

Figure 112: Dynamic vs. Static Responses in Strain Gauge 4R on NEXT D Span 
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The Hanging Rock Creek Bridge is newly constructed. The road surface is not 

rough and the approach slabs have not seen enough load to settle and create a “ramp.” In 

future live load tests, it will be important to observe whether the IM values increase or 

remain constant, or decrease.  

4.2.3 Solid Slab Live Load Test 

4.2.3.1 Overview of Test Results 

Single and side-by-side truck crossings with ten different transverse truck 

locations were performed on the solid slab span of the Hanging Rock Creek Bridge. 

Strain data was gathered from 16 strain transducers and relative horizontal displacement 

data was gathered from 4 LVDTs on each truck crossing. The predicted bending strain in 

a solid slab girder was calculated to be approximately 194 microstrain based on a 

transverse load factor of 0.50. In the model, the bridge was modeled as a simple span 

bridge, which is not how a bridge really behaves like. Bending strains measured by the 

BDI system were far lower than this predicted value. It is thought that since the bridge is 

shaped like a square (40’ long x 42’ wide) and is additionally stiffened by guard rails and 

UHPC shear keys, the bridge acts like a plate allowing for greater moment distribution 

both transversely and longitudinally. This increase in load distribution is thought to be 

culpable in the lower observed bending strain. The bending strain calculations can be 

found in the appendix.  

Figure 113 shows maximum girder strain data for load configuration 3 trial 1. 

This figure is typical of all load configurations and crossings with the largest girder strain 

occurring at or near the truck axles. Figure 114 shows the girder strain versus time for 
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load configuration 3 trial 1. The girder strain rises as the front axle approaches midspan, 

and then peaks when the rear axle approaches midspan. The graph also illustrates that 

girders close to the load source receive more load, as evidenced by the greater amounts of 

bending strain. In the case below, the trucks’ wheels are on the joints J10-11 and J12-13, 

respectively, causing strain transducers on girders 11 and 12 (inside of the wheel loads) 

to register the highest bending strains.  

Figure 113: Cross-Section View and Strain Gauge Data for Load Configuration 3 Trial 1 

Member Number 
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Figure 115 shows the LVDT data from load configuration 3 trial 1. LVDTs that 

were closer to the load source experienced greater horizontal deflections, which in this 

instance was J10-11 and J13-14, respectively. Relative LVDT horizontal displacements 

were much greater in solid slab spans then the NEXT D spans. These higher 

displacements indicate greater joint rotation and a greater potential for joint cracking and 

delamination of the UHPC joint to the precast concrete. One possible explanation for 

these greater displacements is that the solid slab members have partial depth shear keys 

as opposed to the full depth shear keys of the NEXT D beam sections. Partial depth shear 

Figure 114: Strain Gauge Data from Load Configuration 3 Trial 1 
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keys allow for less bond between precast members and thus greater relative horizontal 

displacements. A second explanation of the greater displacements is that solid slab 

member joints are much deeper (1’-9”) when compared to the NEXT D joints (8”). A 

similar joint rotation angle would allow for a greater relative horizontal displacement due 

to the deeper section.  

4.2.3.2 Strain Gauge Data and DFM Calculation 

Ten different load configurations and a total of 31 separate truck crossings were 

performed on the solid slab span of the Hanging Rock Creek Bridge. Strain gauge data 

was gathered from 16 gauges on each truck crossing. Using this strain gauge data, two 

Figure 115: LVDT Data from Load Configuration 3 Trial 1 on Solid Slab Span 
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different distributed moment factors (DFMs) for each girder were determined per truck 

crossing. The methodology for determining these DFMs is explained in the following 

sub-sections. After all DFMs were calculated, the maximum experimental values were 

found for the interior and exterior girders, respectively. These values were then compared 

to AASHTO type g equation factors. 

4.2.3.2.1 Time Independent Method 

 

Girders 1-3, 5, and 7-12 each were rigged with a single strain gauge. Girders 4 

and 6 were not rigged with strain gauge, while girders 13 and 14 were each rigged with 3 

strain gauges.  Using equation 9 from the literature review, each web DFM was for the 

independent method calculated. When calculating the girder DFMs, maximum strains 

independent of the time taken were used. This method is labeled as the time independent 

approach since not every bridge girder experienced its maximum strain at the same time. 

To account for members that were not instrumented such as girder 4, this DFM was 

calculated by taking average DFM of girder 3 and 5, while girder 6 DFM was taken as 

the average of girder 5 and 7 DFM. Girders 13 and 14 had their DFMs calculated by 

taking the average bending strain of the given member (13 or 14) divided by the sum of 

the total microstrain experienced in girders 1 through 14. 

4.2.3.2.2 Time Dependent Method 

 

 The time dependent method calculated the DFMs in a similar approach to the time 

independent method, except the maximum bending strain of a girder was divided by the 

sum of the all the girders at the time of the maximum bending strain rather than the sum 
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of the maximum bending strains. As a result, the DFM values calculated by the time 

dependent approach tended to be slightly more conservative (i.e. larger values). 

4.2.3.2.3 AASHTO Type g  

 

DFMs for the AASHTO type g method were calculated in accordance with the 

type g equations of AASHTO. These bridge sections are shaped like a solid slab unit. 

Calculations for this method can be found in the appendix. 

4.2.3.3 Sample DFM Calculation 

 

 This section will walk the reader through the process of calculating the DFMs for 

load configuration 3 trial 1 of the solid slab span. The DFMs for all other load 

configurations and trials were calculated in a similar fashion.  

 Figure 114 above is a graph showing the strain gauge data from load 

configuration 3 trial 1. The data shows that girders 11 and 12 experienced the greatest 

bending strain, followed closely by adjacent girders 10 and 13. Table 41 displays each 

strain gauges maximum bending strain during the truck crossing. For members without 

strain gauges, the strain in the table was determined by interpolating strains in adjacent 

members. Using equation 9 from the literature review, each web DFM was calculated. 

Girder 4 DFM was calculated by taking average of Girder 3 and 5 DFM, while girder 6 

DFM was taken as the average of girder 5 and 7 DFM. Since members 13 and 14 had 

multiple gauges, their DFMs were calculated by taking the average bending strain of their 

gauges divided by the sum of the total microstrain experienced in girders 1 through 14. 

Maximum solid slab member strains can be seen in table 41. The time independent DFMs 

can be seen in table 42 and time dependent DFMs in table 43. 
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Table 41: Time Independent Maximum Bending Strain Values in Strain 

Transducers for Load Configuration 3 Trial 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensor ID 
Maximum Bending 

Strain (μƐ) 

1 1.59 

2 1.22 

3 2.28 

5 4.23 

7 8.55 

8 9.13 

9 19.9 

10 23.4 

11 29.6 

12 29.4 

13L 25.6 

13M 25.2 

13R 23.2 

14L 11.8 

14M 14.8 

14R 17.1 
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Table 42: Experimental DFM Values Calculated by Time Independent Method 

(Method 1) 
 

 

 

 

 

 

 

 
 

 

 

 

 

Table 43: Experimental DFM Values Calculated by Time Dependent Method 

(Method 2) 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Girder # DFM 

1 0.009 

2 0.007 

3 0.013 

4 0.018 

5 0.024 

6 0.036 

7 0.048 

8 0.051 

9 0.112 

10 0.131 

11 0.166 

12 0.165 

13 0.139 

14 0.082 

Girder # DFM 

1 0.010 

2 0.008 

3 0.015 

4 0.021 

5 0.028 

6 0.038 

7 0.049 

8 0.060 

9 0.115 

10 0.133 

11 0.169 

12 0.167 

13 0.145 

14 0.084 
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 For load configuration 3 trial 1, the two sets of calculated DFMs were extremely 

close. This trend was present in other load scenarios and trials as well. 

 For load configurations with two trucks present (load scenarios 4, 5, and 6) a 

similar process was used to calculate the bridge girder DFM values. However, as 

explained before in section 4.2.2.2, the experimentally determined DFMs were multiplied 

by 2 to calculate the distribution value in cases when two trucks were present.    

 With 28 static bridge crossings and 2 DFM values calculated per crossing, 56 total 

DFM values were experimentally calculated per bridge girder. All 56 of these DFM 

values were sorted and the maximum value per girder was determined. To compare 

experimentally determined values with AASHTO LRFD values, separate DFM values 

were determined for single and side-by-side truck loads. The maximum DFM values 

experimentally calculated for single trucks and side-by-side trucks are shown in table 44 

below.  
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Table 44: Maximum Experimentally Derived DFM Values 
 

 

 

 

 

 

 

 

 

 The maximum experimentally derived DFM was much greater in girder 14 than 

girder 1. This is because the west half of the bridge received the majority of the different 

load configurations. Through bridge symmetry, it can be safely assumed that girder 1 

would behave similarly to girder 14 if it experienced the same load configurations.  

In bridge engineering, typically there are two designs for bridge girders: a typical 

interior and typical exterior girder. As a result, a maximum DFM value was determined 

for the interior girder (girders 2 through 13) and for the exterior girder (girders 1 and 14) 

for both single truck and side-by-side truck crossing cases. These values were then 

compared side by side to DFMs determined from AASHTO LRFD type g equations. The 

head to head comparisons for single and double truck cases can be seen in figures 116 

Girder # 
Experimental 
DFM: Single 

Truck 
Experimental DFM: 
Side-by-Side Truck 

1(exterior) 0.16 0.03 

2 0.16 0.03 

3 0.17 0.06 

4 0.14 0.09 

5 0.14 0.11 

6 0.13 0.15 

7 0.12 0.19 

8 0.11 0.20 

9 0.12 0.25 

10 0.13 0.24 

11 0.18 0.27 

12 0.20 0.24 

13 0.20 0.21 

14(exterior) 0.14 0.20 
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and 117, respectively, in addition to table 45. Calculations for the AASHTO LRFD DFM 

can be found in the appendix of this report.  

 

 

 

 

 

Figure 116: DFM Comparison for Solid Slab Single Truck Load 
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Table 45: DFM Comparison for Solid Slab Span Single and Side-by-Side Trucks 
 

 

  

 Single Truck Side-by-Side Truck 

DFM Method Exterior Girder Interior Girder Exterior Girder Interior Girder 

AASHTO - type g  0.27 0.21 0.25 0.24 

Experimental DFM  0.16 0.20 0.20 0.27 
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Figure 117: DFM Comparison for Solid Slab Side-by-Side Truck Load 
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For both single truck and side-by-side exterior girder DFMs, the AASHTO DFMs 

were significantly larger than experimentally derived values. For the single truck load 

interior girder case, the AASHTO and experimentally derived DFMs were nearly 

equivalent.  

 In 3 of the 4 comparisons, the AASHTO type g DFM is greater than, and 

therefore more conservative, than the experimentally derived value, with the 2 exterior 

girders comparisons being largely more conservative. Unexpectedly, in the side-by-side 

truck load, the experimentally derived DFM is greater than the AASHTO value. This is 

concerning because the code could allow for a bridge girder to be under-designed, thus 

leading to a structural failure. Experimental of verification must occur in subsequent live 

load tests. 

4.2.3.3 LVDT Data 

 

LVDT data was gathered from 6 sensors on each truck crossing. Relative 

horizontal displacement of the joints was used to observe joint behavior and see if a joint 

had degraded or opened up in any way.  All relative horizontal displacements were 

averaged for each truck configuration and are presented later in this section. 

 Figure 118 below is a graph showing the LVDT data from load scenario 3 trial 1. 

The graph illustrates that joints closer to the load source experience greater amounts of 

relative horizontal displacement. In the case below, the truck is mostly on girders 10 and 

13, respectively. The joints directly under the wheel line loads (J13-14N, J13-14M, and 

J10-11M) experience significantly greater amounts of relative horizontal displacement 

than joints 11-12 and 12-13. Additionally, all of the relative horizontal displacements of 
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the joints are positive, meaning that the LVDT arm plunger is extending and that the joint 

is opening up. 

  

 

Table 46 displays the average LVDT horizontal displacements for each truck 

configuration. The maximum horizontal displacements were quite small. For joints 10-

11, 11-12, 12-13, and 13-14 the maximum relative horizontal displacements were 0.0051 

in, 0.006 in, 0.0018 in, and 0.012 in respectively. The maximum displacement (0.012 in) 

was slightly greater than the displacements in comparison to those found by Kedar Halbe 

(0.007 in.)(Halbe, 2014) and Sheng (0.008 in.)(Sheng et al., 2013).   

Figure 118: LVDT Data from Load Configuration 3 Trial 1 on Solid Slab Span 
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With small displacements in addition to no visible cracking or abrupt in LVDT 

data, it is believed that the UHPC joints currently have a strong bond with the precast 

solid slab bridge girders and that the joints have not cracked or degraded yet. One of 

UHPCs advantages is its bond strength, and that is illustrated by the desirable 

performance of the joints during the bridge testing.  

Relative horizontal displacements in the solid slab were significantly greater than 

those recorded in the NEXT D span. It is believed, that due to this fact, if joints were to 

start to crack on the Hanging Rock Creek Bridge spans, they would occur on the solid 

slab span before the NEXT D span. Under identical loadings NEXT D spans undergo less 

horizontal joint movements in comparison to the Solid slab spans, thus it is believed that 

these spans will experience less reflective cracking and be more durable. 

 In future bridge tests, it will be important to observe whether these relative 

horizontal displacements increase. If the relative horizontal displacement increases in the 

future this could be an indication that the UHPC shear key has debonded from the precast 

bridge girder. This would be problematic and could lead to shear key cracking, reduced 

transverse load distribution, and degradation of the prestressing strands via corrosive 

agents entering the bridge section through the wearing surface cracks.  

It should be also noted that J13-14M and J13-14N have equivalent relative 

horizontal displacements even though J13-14N was positioned along the beam where 

transverse post-tensioned rod was. One would expect the relative displacement to be less 

at the location of the post-tensioned rod, but it was not, thus indicating that the post-

tensioned rod may not be limiting joint displacement and rotation. 
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Table 46: Solid Slab Average LVDT Horizontal Displacements 

 

4.2.3.4 Dynamic Load Allowance 

To calculate the experimental IM, bending strain values were used from all truck 

trials in load configurations 9 and 10, respectively. Equation 9 discussed in the literature 

review section 2.2, was used to calculate the experimental IM. 

Maximum girder strains from the 3 trials for load scenarios 9 and 10 were 

averaged and used to calculate the IM factor. Then the IM for each girders 5, 6, and 7 

(these were the loaded girders) were calculated using static (configuration 9) and 

dynamic (configuration 10) responses in equation 9 discussed above. The maximum IM 

between girders 5, 6, and 7 was then determined to be the experimental IM. Table 47 

displays the IM for each Solid Slab bridge girder. The greatest IM is 0.80, which is much 

less than AASHTOs design IM of 1.33.  

The data is believed to be erroneous. All of the girders have a calculated IM 

below 1.0. It is believed that there may have been some truck alignment variability as it 

crossed the solid slab span at highway speeds. This variability overloaded certain girders 

and under-loaded others, resulting in the IM factors shown in table 47. Additionally, the 

  Load Scenario 

  #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

LVDT 

J10-11M -0.00063 0.0023 0.0051 0.00054 0.0017 0.0045 -0.00011 -0.00014 -0.00036 -0.00055 

J11-12M 0.0060 0.0046 0.0027 0.0056 0.0039 0.0018 -0.00015 -0.00016 -0.00042 -0.00055 

J12-13M 0 0.00083 0.0017 0 0.00092 0.0018 0 -0.00001 -0.00005 -5.5E-05 

J12-13N 0 0.00082 0.0015 0 0.00092 0.0017 0 0 -2.3E-05 -3.5E-05 

J13-14M 0.012 0.0086 0.0053 0.012 0.0097 0.0064 -2.3E-05 -0.00003 -0.00048 -0.00055 

J13-14N 0.012 0.0085 0.0053 0.011 0.0095 0.0064 0 0 -0.00038 -0.00039 
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ramping effect (Restrepo, 2002) may have affected the IM values by leading them to less 

than 1.0. 

Table 47: Maximum Experimentally Derived IM Values on Solid Slab Span 

Girder 
# 

Load Configuration 9 
Average Bending Strain 

(μƐ) 

Load Configuration 10 
Average Bending Strain 

(μƐ) 
IM 

5 28.3 22.8 0.80 

6 26.2 20.8 0.79 

7 21.3 15.8 0.74 

The Hanging Rock Creek Bridge is newly constructed. The road surface is not 

rough and the approach slabs have not seen enough load to settle and create a “ramp.” In 

future live load tests, it will be important to observe whether the IM values increase or 

remain constant. 
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Chapter 5:   Conclusions and Recommendations 

Several bridge behaviors and UHPC properties were tested in the field live load 

test and material tests, respectively. A summary of these results in addition to the 

conclusions of the project and recommendations for the SCDOT are shown below. 

5.1 Summary of Results 

 After 6 months, the UHPC’s average compressive, tensile, and minimum bond

strength were 22.5 ksi, 3.29 ksi, and 232 psi, respectively.

 A longitudinal reinforcement bar was left out during the construction of the -

NEXT D shear key J5-6. It does not appear that the absence of the bar affected the

transverse moment distribution between the NEXT D girders.

 On all NEXT D live load tests, relative horizontal displacement data from LVDT

J5-6 was discarded because on all load configurations and trials the joint

experienced zero movement when all other LVDTs were recording some relative

horizontal displacement.

 Unexplained electronic noise occurred in some strain data sets of both the NEXT

D and solid slab span tests. The noise was only approximately +/- 1 microstrain,

and the results of trials experiencing the noise versus not experiencing the noise

were extremely consistent, therefore, none of the strain data was discarded.

 The largest bending strain recorded in the NEXT D live load test was 81 με found

in girder 4 of load configuration 4.
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 In the NEXT D span the exterior girders maximum DFM was less than the 

interior girder’s maximum DFM. This suggests that the guard rails stiffened the 

exterior NEXT D bridge girders resulting in a lower bending strain and DFM. 

 Lever rule was used to determine the NEXT D exterior girder DFM. AASHTO 

LRFD equations for type i and k bridge sections were used to determine the 

interior girders.  

 For the NEXT D girder single truck load case, both type i and k equations were 

found to produce more conservative DFMs than those experimentally calculated. 

In the exterior girder case, type i and k DFMs were equivalent, while in the 

interior girder case, type k was more conservative than i.  

 For the NEXT D girder side-by-side load case, both type k equations were found 

to produce more conservative DFMs than those experimentally calculated, while 

type i was not. In the exterior girder case, type i and k DFMs were equivalent, and 

more conservative than those experimentally calculated. In the the interior girder 

case, type k was more conservative than type i, and the experimentally calculated 

DFM was calculated to be equivalent with type i, but more conservative than type 

k.  

 In the NEXT D span, a maximum average relative horizontal joint displacement 

of 0.001 in was measured in J1-2 of load scenario 7.  

 In the NEXT D span, the AASHTO impact factor of 1.33 is more conservative 

than those experimentally calculated.  
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 The largest average bending strain recorded in the solid slab live load test was 44

με found in girder 9 of load configuration 9.

 In the solid slab span, the exterior girders maximum DFM was roughly equivalent

to the interior girder’s maximum DFM. This suggests that the guard rails did not

significantly stiffen the solid slab exterior girders.

 Lever rule could not be used to determine the solid slab span exterior girder DFM.

Type g AASHTO equations were used for all solid slab span girders.

 For the solid slab girder single truck load case, type g AASHTO equations were

found to produce more conservative DFMs than those experimentally calculated

in both exterior and interior girders.

 For the solid slab girder side-by-side load case, AASHTO type g equations were

found to be more conservative than the experimentally determined DFM for the

exterior girder. However, in the interior girder case the experimentally calculated

DFM was found to be greater than the AASHTO type g equation DFM.

 In the solid slab span, a maximum average relative horizontal joint displacement

of 0.012 in was measured in J13-14M of load configuration 4. Solid slab

displacements were greater than NEXT D span, thus cracking is more likely to

occur in the solid slab joints than NEXT D joints.

 There were minimal differences in relative horizontal deflections of joints located

at positions along the solid slab member where a post-tensioned rod was present

versus a location where it was not present, indicating that the post-tensioned rod

may not be limiting joint displacement and rotation.
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 In the solid slab span, the AASHTO impact factor of 1.33 was found to be more

conservative than the maximum calculated impact factor of 0.80. It is believed a

truck misalignment caused erroneous data.

5.2 Conclusions 

 The UHPC used in the NEXT D and solid slab span shear keys met and often

exceeded the UHPC compressive, tensile, and bond strength criteria set by

Benjamin Graybeal and those measured by other researchers.

 For the NEXT D span, the AASHTO type k DFM was found to be more

conservative than the AASHTO type i DFM. In all cases, the type k DFM was

found to be more conservative than the experimentally calculated DFM. In one

case, the type i DFM was found to be equivalent with the experimentally

calculated DFM.

 From visual inspection and LVDT data, it is believed that none of the NEXT D

UHPC joints have cracked or delaminated at this point in time.

 In the NEXT D span, the maximum experimentally determined IM factor of 1.09

was less than the AASHTO design value of 1.33.

 For the solid slab span, the AASHTO type g DFM was found to be less

conservative than the experimentally calculated DFM in the side-by-side truck

load case of an interior girder.

 From visual inspection and LVDT data, it is believed that none of the solid span

UHPC joints have cracked or delaminated at this point in time. However, the solid

slab UHPC joints are experiencing significantly more (12 times more when



169 

comparing each spans respective maximum joint movements) relative horizontal 

displacement in comparison to the NEXT D joints. 

 Based on solid slab member LVDT data, post-tensioned rod may not be limiting

joint displacement and rotation.

 In the solid slab span, the maximum experimentally determined IM factor of 0.80

was less than the AASHTO design value of 1.33. It is believed that a truck

misalignment caused erroneous data.

5.3 Recommendations 

 SCDOT should consider designing future bridge shear keys with UHPC. UHPC

exhibits high levels of tensile strength, bond strength, and durability. Both of

these qualities will limit joint cracking and reflective cracking in bridges.

 The Hanging Rock Creek Bridge is newly constructed. In the future, it is possible

that joints will crack and affect the transverse load distribution capabilities. When

designing NEXT D girder bridges, AASHTO type k equations should be used to

calculate the design DFM since they produce more conservative results than

AASHTO type i equations.

 When designing NEXT D and solid slab girder bridges, SCDOT should continue

to design bridge components with a 1.33 IM factor. This factor was found to be

conservative.

 Experimentally calculated DFMs for the solid span were found to be slightly

greater than the AASHTO type g DFMs. The solid slab span did not exhibit as
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much transverse load distribution behavior as previously thought. This conclusion 

should be verified in upcoming tests. 

 Relative horizontal displacement was significantly greater in the solid slab span

than the NEXT D span. This could be due to the wide and full depth shear key.

Special attention to the displacements of both spans should be taken. If

displacements significantly increase, that could be a sign of joint cracking.

 In upcoming tests, place strain gauge on both NEXT D and solid span joints to

detect cracking.

 Visual inspections and documentation should be conducted during each live load

test for each UHPC bridge joint. Pictures should be taken both below the bridge

deck and of the wearing surface (reflective cracks).
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Appendices 
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Appendix A:  Calculations of AASHTO DFMs 

This Appendix shows the calculations and processes used to evaluate the DFMs 

for the NEXT D beam and solid slab cross sections according to AASHTO LRFD 

Specifications (2012). The NEXT D beam was evaluated using both type (i) (double 

stem) and type (k) (single stem) cross sections, while the solid slab was evaluated as type 

(g). Both approaches were analyzed in order to verify the recommended procedure given 

by the PCI Bridge technical committee. The PCI Bridge technical committee 

recommends evaluating all NEXT beams as a type k bridge in order to calculate a more 

conservative (ie. larger) DFM value.  

DFM values were calculated for both interior and exterior girders. In both cases, 

single and multiple lane loads were analyzed. The critical DFM value was taken as the 

greater of the two load cases. Section 2.2 of the literature review contains all of the 

equations used for calculating the DFM values for (i), (k), and (g) bridges.  

A.1 NEXT D Super Structure at Hanging Rock Creek Bridge

Span 1 of the Hanging Rock Creek Bridge consists of six 40 ft. long NEXT D 

beams as shown in figure 118. The bridge has guard rails on the east and west sides, 

respectively, each with a width of 1.5 ft. The spacing between beams is 6.8 ft. and the 

total width of the bridge is 42 ft. 
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A.2 Single Stem Approach (SST – type k)

When evaluating a NEXT D beam as a type (k) cross section, each stem is 

considered as an independent girder. The calculation of the DFM takes into account the 

differential spacing between stems. For type (k), the spacing is taken as the average 

([S1+S3]/2) of the spacing between stems in the same NEXT D beam (S1 = 3ft) and the 

spacing between NEXT D beams that are adjacent (S3 = 3.802 ft). These spacings are 

shown in figure 120. The DFM calculated using the average spacing, is then doubled to 

find a DFM for an entire interior NEXT D beam unit. The design interior DFM is the 

maximum value found from the four interior girders, while the design DFM for the 

exterior girder is taken as the greater of the two exterior girder calculated DFMs. Stems 

B2 through B11 represent interior girders, while B1 and B12 represent exterior girders. 

Figure 119: NEXT D Cross-Section from Hanging Rock Bridge 
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A.3 Double Stem Approach (DST – type i)

When evaluating a NEXT D beam as a type (i) cross section, each beam 

(consisting of two stems) is considered as a single unit. The spacing used to evaluate the 

DFM is taken as the distance (S2) between the centerlines of two adjacent NEXT D 

beams. Beams B2 through B5 are considered interior beams, while B1 and B6 are 

exterior beams (Figure 120). The design interior DFM is the maximum value found from 

the four interior girders, while the design DFM for the exterior girder is taken as the 

greater of the two exterior girder calculated DFMs.  

Figure 120: NEXT Beam Type k Stem Labeling Scheme 
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A.4 Exterior and Interior Girder DFM Calculations

A.4.1 Exterior DFM Calculation – Type (i) and (k) Approach

The width of the guard rail was taken into consideration when applying the wheel 

load of the HL-93 truck on the exterior bridge girder. The width of the guard rail is 1.5 ft. 

and the first wheel load was position 2 ft. away from the edge of the guard rail, as shown 

in figure 122. The second wheel load is applied to the interior beam. In order to apply 

lever rule, a hinge was placed at the center of the adjacent interior beam. The reaction in 

the exterior NEXT beam is examined at the center of the exterior unit. 

Figure 121: NEXT Beam Type i Stem Labeling Scheme 
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Figure 122: Type (i) and (k) Lever Rule 
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One Lane Loading 

By summing the moments about point x, the exterior girder DFM is calculated. 

gM1
e- = 0.62 

A.4.2 Interior DFM Calculation – Type (k) Approach
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A.4.3 Interior DFM Calculation – Type (i) Approach

A.5 Solid Slab Super Structure at Hanging Rock Creek Bridge

Span 4 of the Hanging Rock Creek Bridge consists of 14 40 ft. long solid slab 

bridge girders as shown in figure 123. The bridge has guard rails on the east and west 

sides, respectively, each with a width of 1.5 ft. The solid slab girder is 3’ wide and 1’9” 

deep. The total width of the bridge is 42 ft. 
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A.5.1 Interior DFM Calculation – Type (g) Approach

*# of beams 

* k must ≥  1.5

 

 *Width of girder

 *Span length

can be simplified using AASHTO Table 4.6.2.2.1-2 

 *depth of girder

x = I/J 

*Single Truck

*Double Truck

Interior DFM = 0.24 
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Figure 123: Solid Slab Cross-Section from Hanging Rock Bridge 
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A.5.2 Exterior DFM Calculation – Type (g) Approach

Works Cited 

*Single Lane Load

*horizontal distance from the centerline of the exterior web to
exterior beam at deck level to the interior edge of curb or traffic barrier (ft)

* must ≥  1.0

*Double Lane Load
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Appendix B: Predicted NEXT D Bending Strain 

Using the moving load function on SAP the max moment was found to be... 

 *Assume half of truck moment goes into girder
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Appendix C: Predicted Solid Slab Bending Strain 

Estimated Bending Strain in Solid Slab Girders 

Using the moving load function on SAP the max moment was found to be... 

 *Assume half of truck moment goes into girder
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