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Abstract

Energy harvesters are scalable devices that generate microwatt to milliwatt power levels by

scavenging energy from their ambient natural environment. Applications of such devices are

numerous, ranging from wireless sensing to biomedical implants. A particular type of energy

harvester is a device which converts the momentum of an incident fluid flow into electrical

output by using flow-induced instabilities such as galloping, flutter, vortex shedding and

wake galloping.

Galloping flow energy harvesters (GFEHs), which represent the core of this thesis, consist

of a prismatic tip body mounted on a long, thin cantilever beam fixed on a rigid base. When

the bluff body is placed such that its leading edge faces a moving fluid, the flow separates at

the edges of the leading face causing shear layers to develop behind the bluff face. The shear

layer interacts with the surface area of the afterbody. An asymmetric condition in the shear

layers causes a net lift which incites motion. This causes the beam to oscillate periodically

at or near the natural frequency of the system. The periodic strain developed near the base

of the oscillating beam is then transformed into electricity by attaching a piezoelectric layer

to either side of the beam surface.

This thesis focuses on characterizing the influence of the rotation of the beam tip on the

response and output power of GFEHs. Previous modeling efforts of GFEHs usually adopt two

simplifying assumptions. First, it is assumed that the tip rotation of the beam is arbitrarily

small and hence can be neglected. Second, it is assumed that the quasi-steady assumption of
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Abstract

the aerodynamic force can be adopted even in the presence of tip rotation. Although the

validity of these two assumptions becomes debatable in the presence of finite tip rotations,

which are common to occur in GFEHs, none the previous research studies have systematically

addressed the influence of finite tip rotations on the validity of the quasi-steady assumption

and the response of cantilevered flow energy harvesters.

To this end, the first objective of this thesis is to investigate the influence of the tip rotation

on the output power of energy harvesters under the quasi-steady assumption. It is shown that

neglecting the tip rotation will cause significant over-prediction of the output power even for

small tip rotations. This thesis further assesses the validity of the quasi-steady assumption

of the aerodynamic force in the presence of tip rotations using extensive experiments. It is

shown that the quasi-steady model fails to accurately predict the behavior of square and

trapezoidal prisms mounted on a cantilever beam and undergoing galloping oscillations. In

particular, it is shown that the quasi-steady model under-predicts the amplitude of oscillation

because it fails to consider the effect of body rotation. Careful analysis of the experimental

data indicates that, unlike the quasi-steady aerodynamic lift force which depends only on

the angle of attack, the effective aerodynamic curve is a function of both the angle of attack

and the upstream flow velocity when the effects of body rotation are included. Nonetheless,

although the quasi-steady assumption fails, the remarkable result is that the overall structure

of the aerodynamic model remains intact, permitting the use of aerodynamic force surfaces

to capture the influence of tip rotation.

The second objective of this thesis is to present an approach to optimize the geometry

of the bluff body to improve the performance of flow energy harvesters. It is shown that

attaching a splitter plate to the afterbody of the prism can improve the output power of the

device by as much as 60% for some cases. By increasing the reattachment angle of the shear

layer and producing additional flow recirculation bubbles, the extension of the body using

the splitter plate increases the useful range of the galloping instability for energy harvesting.
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Chapter 1

Introduction

When humans are exploring the boundaries of the visible universe and delving even further

into the structure and relationship of subatomic particles, the topic of low-power energy

harvesting does not receive much popular attention. In order to establish the relevance of

this work and the significance of the results, some background will be laid regarding the

need for energy harvesting, the operating principles of the energy harvester examined in this

study, and the unique perspective adopted by the present work.

1.1 The Need for Energy Harvesting

Electrical power has been popularized as a “clean” alternative to fossil fuels and other

combustibles. Electricity is a renewable resource which can be easily and safely stored and

transported. However, the cleanliness of electrical power is entirely dependent on two factors:

the equipment used to generate the power and the equipment used to store the power.

Currently, the primary sources of electrical power are nuclear, coal, and hydroelectric

plants. When electrical devices are connected directly to local power grids supported by

these plants, the cleanliness is only dependent on the source. In recent years, great strides

have been made to improve the levels of pollutive output from these plants. Furthermore, an
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increased drive to capture and convert ambient energy in the environment has motivated the

innovation and implementation of clean, renewable generation methods such as wind farms,

demonstrating that large-scale energy production can be free from continuous pollution or

generation of hazardous waste. Pushing beyond the large turbines in wind farms, development

continues on equipment to tap into other forces of nature as a source of electrical power,

such as the transformation of the energy in ocean waves and strong currents. Solar energy,

too, has been successfully captured in a wide variety of contexts using panels of photovoltaic

materials.

In some remote areas, access to a power grid is either unreliable or completely unavailable.

For these locations, it can be necessary to supplement or replace the dependence on the shared

grid by creating a smaller local “grid” using wind, solar, or hydroelectric generation equipment.

The choice of the appropriate type of equipment becomes a question of environmental context

and scale. While the environment is largely outside the domain of the engineer’s control, the

scale of the system presents a significant engineering consideration, especially at small scales.

For mobile or otherwise “off-the-grid” devices with small power demands, the predominate

method of supplying power is with batteries charged by a larger, external source grid [6, 7].

The unfortunate consequences of the seemingly inescapable dependence on batteries are

twofold: (1) batteries wear out, fail, and must be replaced, and (2) batteries are typically

environmentally harmful, both in production and disposal. The unending cycle of failure and

replacement is more than a matter of convenience; such a cycle only exacerbates the negative

environmental impacts of battery use. Furthermore, the separation of the generation and

storage systems compounds the opportunity for energy loss due to the numerous conversions

required to transmit energy to the final destination device.

For very small power demands, a unique alternative presents itself: each device might

generate its own “grid” using energy scavenged from the environment [8]. The advantages

of such a system are numerous, but the notable attraction is that the device could operate

2
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without depending on a costly, inconvenient, and pollutive stream of battery replacements.

The label Energy Harvesting (EH) is applied to systems which generate power on the milli-

and micro- scale from ambient natural energy (solar, fluid flow, kinetic) or wasted energy in

man-made processes (vibration).

1.2 Flow Energy Harvesters

A flow energy harvester (FEH) in particular is any device which converts the momentum

of an incident fluid flow into electrical output. The working fluid is most commonly air or

water due to their availability in nearly any environment, natural, or otherwise.

1.2.1 A problem of scale

As previously mentioned, the process of scaling energy generation systems can present a

significant challenge, especially for FEHs. Traditional wind turbines, for example, turn an

inductive generator. To demonstrate some fundamental limitations imposed on the scaling

of this sort of generation, Faraday’s law of induction can be considered, stated as

ε = −ndΦB

dt
(1.1)

where ε is the induced voltage, n is the number of turns in the coil, t denotes time, and ΦB

is the magnetic flux of the system. For a constant surface and a uniform magnetic field, the

magnetic flux through the surface can be defined as

ΦB = BA cos θ (1.2)

where the magnetic field strength B passes through the coil area A at an angle θ to the area

normal. When the characteristic radius of the coil is scaled by any factor κ, the modified

3
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area scales as A′ = κ2A. Therefore, any inductive coil scaled by a factor of κ will have its

voltage output scaled by κ2, without considering the other forms of scaling losses.

Furthermore, a second geometric constraint for FEHs in particular can be easily grasped

through a review of the power contained in a certain amount of moving fluid. Power can be

defined as a force acting with a certain velocity, or

P = F · v (1.3)

where P is power, F is a force, and v is a velocity. For a fluid flow, the force F can be

idealized using the dynamic pressure, 1
2ρV

2A, which upon substitution into Equation 1.3

gives

P =
1

2
ρv3A (1.4)

where ρ is the fluid density, v is the incident free-stream fluid velocity, and A is the cross-

sectional area of the incident airflow. It is readily apparent that for any FEH geometrically

scaled by a factor κ, the swept area (and thus the theoretical maximum available power)

is scaled by κ2. Not only is the ability of any inductive generator to convert translational

or rotational energy to electricity decreased by a factor of κ2 when the dimensions of the

device are scaled by κ, the theoretical maximum fluid energy available to the generator is

also decreased by a factor of κ2.

This simplistic analysis ignores the nonconservative effects of friction, which are far more

significant for smaller devices. It is known that drag losses are greatest at low Reynolds

numbers [9]. At the smaller scale, the volume to surface area is very low: body forces such as

lift are less effective as the surface effects of interface friction (e.g., that due to viscous drag

and machine component interaction). The combination of decreased theoretical potential

and increased physical losses results in the difficulty of producing small-scale wind energy

generation systems.
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1.2.2 Flow energy harvesting from cross-flow instabilities

Although the geometric constraints cannot be avoided, the nonconservative losses of a

generation system can be reduced. For small scale FEHs, this can be accomplished by

minimizing any relative motion between interfaces to reduce friction. This has made oscillating

FEHs a promising solution.

Oscillating FEHs employ the natural elasticity of materials to provide a means of

translation or rotation devoid of a sliding interface. Instead of relying upon a constant

aerodynamic force to produce a deflection or rotation in a certain direction, oscillating FEHs

take advantage of natural phenomena which provide periodic forcing. The three primary

types of periodic aerodynamic forcing utilized are galloping [10], flutter [11], and vortex

shedding [12].

Galloping is a self-exciting phenomena which operates on bluff bodies with a substantial

afterbody. A body is identified as “bluff” when the surrounding flow is marked by distinct

separation at the edges of the leading face. The shear layers which develop behind the bluff

face interact with the surface area of the afterbody. An asymmetric condition in the shear

layers causes a net lift which incites motion. An object is prone to galloping oscillation if

it tends to increase the amount of net lift each subsequent cycle in response to the motion

caused by the initial net lift. Oscillations occur at or near the natural frequency of the

base system. The response will increase in amplitude until structural failure occurs or no

additional energy per cycle can be drawn from the incident flow.

Flutter is similar to galloping, as both arise from similar physical mechanisms. However,

the term flutter typically focuses on two degree-of-freedom (TDOF) plunge and pitch

oscillations [13]. Furthermore, the frequency behavior diverges from that of simple one

dimensional galloping, as the interaction of the two modes can cause significant shifts in the

oscillation frequency. Traditionally considered in the case of airplane wings, flutter draws

energy from the incident flow as a result of moments created from unevenly distributed lift
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forces. Similar to single degree-of-freedom (SDOF) galloping, flutter propagates to the limits

of the supporting structure or the limits of the aerodynamic instability of the oscillating

body itself.

Vortex shedding from the trailing edges of bodies placed in incident flow can provide

periodic forcing determined by the Strouhal number of the flow. The amplitudes generated by

this phenomena tend to be smaller than the other two mechanisms; vortex street formation

does self-propagate in an unstable manner to large amplitudes. Furthermore, the amplitude

growth with respect to incident flow velocity is not a monotonically increasing function, as

is the case for galloping and flutter. Vortex-induced oscillation is resonance-based and is

therefore sensitive to a small range of incident flow velocities and Strouhal numbers. Values

outside this range, whether high or low, will not result in effective energy transfer.

Energy can be extracted from these cross-flow instabilities using a variety of physical

mechanisms. Traditionally, the flow energy is first converted into mechanical energy stored

in a vibrating elastic element. Flutter has been exploited by mounting an airfoil on a

cantilevered beam [14, 15, 16]. Additionally, when a thin “belt” is held in tension, flutter

induces vibrations in the band [17]. Akaydin et al. demonstrated the method of placing

a cantilever beam downstream of a fixed bluff body to harness vortex induced vibrations

[18]. Mehmood et al. show an example implementation where the bluff body itself is free to

oscillate on an elastic mounting [19].

Despite the successful exploitation of flutter and vortex shedding, the nature of galloping-

based energy harvesting offers unique advantages. The focus of this study will be restricted

to galloping flow energy harvesters (GFEH) consisting of a bluff body mounted on the tip of

cantilever beams.
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Figure 1.1: The fundamental operational principle of galloping is the flow asymmetry induced
by body motion.

1.3 Principles of Galloping

Of the three periodic excitation methods mentioned, galloping is the preferred method due to

the simplicity of designing a FEH which can undergo large-amplitude galloping oscillations as

well as the relative insensitivity of the galloping instability to the flow velocity. The analysis

of galloping is often traced to the pioneering observations of Den Hartog in the early 19th

century [20]. The early observations of Den Hartog related to the oscillations of electric

power transmission lines with asymmetric geometry caused by the formation of ice around

the circumference of the wire. The basic understanding illustrated that the production of

lift requires asymmetry. For a body in motion, constrained to oscillate in one dimension,

the incident flow vector has two components, as shown in Figure 1.1; the free-stream flow

velocity V and the relative motion of the body Ẏ . If the body is asymmetric along the

axis of incidence, a lift force vector will be produced. When the asymmetry is oriented

such that a component of the lift acts in the same direction as the motion of the body, and

the magnitude of that component grows as the body velocity grows, the system is prone

to galloping oscillations. The effect is a velocity-dependent force which acts as an energy

pumping mechanism, or as negative damping.

In the context of physical systems, damping is typically the component which subtracts

energy from a system and creates an amplitude decay. Negative damping adds energy to the

7
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Figure 1.2: A single DOF galloping system.

oscillating system, causing amplitude growth. The presence of the negative aerodynamic

damping in galloping does not eliminate the nonconservative realities in a physical oscillating

system. In particular, an energy harvester is designed to remove energy from the oscillating

system and convert it into electrical energy. In order to build oscillation amplitude and

allow energy production capabilities, the negative damping must be sufficient to overcome

the mechanical and electrical damping present in the harvesting system. The mathematical

criteria necessary to activate galloping oscillations will be more specifically defined in Chapter

3.

The performance of a GFEH depends on a number of other factors, including the cut-in

wind speed, the oscillation frequency, the amplitude of the resulting limit-cycle oscillations

(LCO), hysteresis due to nonlinearities in the lift force, and the amplitude growth rate.

1.3.1 Translational galloping

By far the most widely researched topic is the translational galloping of bluff structures is when

the bluff body is constrained to vibrate in translation along one axis without any rotation.

These structures can be built on linear slides or using 4-bar mechanisms. Fundamental works

by Parkinson [10, 21] set the groundwork for many investigations, followed by Nakamura

[22, 23], and too many others to cite.
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However, for energy harvesting, the stipulation of pure translation is difficult to meet,

prompting many to approximate pure translation by using the small deflections of a long

cantilever beam or the small rotations of a long radius arm, both scenarios that include small

amounts of tip rotation. While these approximations have been used with some success with

published aerodynamic models [24, 25], the application of a translational model to a flow

field around a rotating body is tenuous.

1.3.2 Translational-torsional galloping

Many authors have examined both torsional galloping and coupled translational-torsional

galloping: Blevins [26, 27], Nakamura [28], and Matsumoto [29] have all thoroughly treated

the torsional/coupled translational-torsional galloping of square and rectangular prisms and

all have found the translation-based aerodynamic model to be insufficient.

1.4 Thesis Objectives

The first objective of this work aims to identify the physical mechanisms at work when a

galloping body is exposed to finite tip rotation. As a beam-mounted bluff body oscillates

with medium to large amplitude, the tip rotation is not negligible. To the author’s knowledge,

no model has yet been formulated to capture the behavior of a galloping beam-mounted

body with non-negligible tip rotation. Detailed analysis of the underlying physics lays the

groundwork for future work developing a new, more robust aerodynamic model.

The second objective seeks to optimize the power output of GFEH using geometric

modifications inspired by an understanding of the underlying physics. The steady-state

behavior of traditional geometry is well documented: the history of the study of galloping

has its roots in civil engineering interests, so the body of literature as it developed and grew

over time focused on simple prisms and profiles commonly found on engineered structures.

9
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However, the geometry most suitable for a GFEH may not fall into one of the above categories.

It is therefore advantageous to identify the geometries which provide the greatest instability

toward galloping and maximize the flow asymmetry to generate the most lift.

1.5 Thesis Outline

First, a review of bluff body aerodynamics identifies some known fluid mechanisms which

operate on rotating bodies. Second, the traditional linearized beam model is compared with a

large-displacement formulation to test the limits of the small angle assumption for modeling

tip rotation. Third, experimental trials are presented to demonstrate the effects of body

rotation on the aerodynamic forces. Fourth, the ideas presented in the preceding chapters

come together to optimize the tip body geometry for maximum power. Finally, the major

conclusions are discussed to open doors to the next steps in GFEH modeling.

10



Chapter 2

Bluff Body Aerodynamics

Fluid-structure interactions operate as highly complex, coupled systems. Fully simulating the

behavior of a GFEH requires simultaneous solutions of the fluid and solid domains at each

time step. While such systems can be solved with numerical packages, the computational

cost often outweighs the benefits of the extreme precision. In order to construct a more

accessible model for GFEH behavior, the flow around the tip body must be first understood

and appropriately simplified.

It is assumed that all incident flow uniformly approaches the harvester parallel to the

undeformed axis of the beam. While such a scenario is not commonly found in real-world

environments, it sets a reasonable scope for harvester comparisons. The flow is also assumed

to be smooth. Although galloping can be modeled under turbulent flow (for an example see

Nakamura [22]), the present work is restricted to laminar flow conditions.

2.1 The Quasi-Steady Assumption

The analysis can be further simplified by the quasi-steady assumption. Under this assumption,

the flow around a body in motion can be predicted using the known flow around a fixed body,

provided two main criteria are met: a minimum velocity threshold and a similarity principle.
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Loosely speaking, if the fluid velocity is fast with respect to the body motion, the flow

impacting the body will not be influenced by its own wake at any point in its oscillation,

removing any feedback from the body motion. Some debate has been held over the best

threshold value of wind velocity V to give quasi-steady flow, labeled here Vqs. Païdoussis

[30] documents the development of an approximate threshold, with Fung in 1955 giving a

threshold Vqs = 10fnD, where fn is the frequency of body oscillation in Hertz and D is the

characteristic body width in meters [31]. Blevins agreed, for different reasons, in 1977 [26],

but as a result of further work later increased the threshold value to Vqs = 20fnD in a 1990

revision [13]. Furthermore, a more involved estimation of

Vqs =
4fnD

St
. (2.1)

was suggested by Bearman et al. [32], taking into consideration the Strouhal number of the

body, defined

St =
fsD

V
(2.2)

where fs is the vortex shedding frequency for the geometry in question. This threshold

appropriately aims to move the incident velocity far from a region where the vortex shedding

would interact with the galloping behavior.

Beyond a simple threshold relationship between wind and body velocity, the second

requirement is that the shape of the flow be fundamentally similar to that of the stationary

case. When bluff bodies gallop in pure translation, one can simply select the body as a

fixed reference frame and it is apparent that, provided the first criterion is met, the flow is

indistinguishable from a steady scenario. The fluid impacts the “fixed” body with the both

the velocity of the free-stream flow, V , and the body motion, Ẏ , at an angle α demonstrated

12
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V

Figure 2.1: The induced angle of attack on a body in crossflow translation.

in Figure 2.1.

α = tan−1

(
Ẏ

V

)
(2.3)

Therefore, the force experienced by a body galloping in pure crossflow translation is

traditionally approximated by using the steady-state force equation

FN (α) =
1

2
ρV 2ACN (α) (2.4)

where ρ is the density of the fluid, A is the frontal area of the body (A = DH), and CN is a

dimensionless force coefficient defined as

CN = Clift cosα− Cdrag sinα (2.5)

where the subscripted N indicates the force normal to the top face of the body in the crossflow

direction. Forces aligned with the flow are neglected because the body is fixed in that axis.

The similarity condition for quasi-steady flow is not so easily met in the present investi-

gation, because the tip-mounted bluff body undergoes slight rotation as the beam deflects.

Reviewing the means of lift force production in steady conditions lays the groundwork for

understanding the influence of rotation.
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Figure 2.2: Variation of CN with α for four bluff profiles with frontal width D facing the
flow: a square (�), a trapezoid with a 0.75D rear face (♦), a trapezoid with a 0.5D rear face
(◦), and a 63◦-27◦-63◦ triangle (B). Data from [1].

2.2 Transverse Force in Steady Conditions

A thorough review and explanation of the mechanism of lift on bluff bodies in crossflow was

conducted by Luo et al. [1]. However, a brief summary is pertinent to set up the context for

analyzing the flow around beam-mounted GFEH. Under steady conditions, the evolution

of lift can be discussed in terms of the time-averaged behavior, neglecting the influence of

rapidly shedding vortices. A bluff body causes flow separation from the leading edges of the

side faces, as is sketched in the simple schematic in Figure 2.1. When α = 0, the flow is, on

average, symmetric. As the angle of attack increases, the upper shear layer draws closer to

the upper face of the body, increasing the entrainment of fluid above the upper face. This

leads to a net suction upward, producing lift.

As the angle of attack grows, the interaction with the side faces of the body influences

trends in the lift production. Luo et al. notes that square bodies exhibit an inflection point

in the lift curve caused by cycles of weak reattachment onto the upper face at some angles of

attack [33]. This detail is observed between 5–10◦ for the square in Figure 2.2. A similar
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Figure 2.3: Flowlines are drawn around a square body at various angles of attack to
demonstrate (a) weak suction when the shear layer is far from the side face, (b) strong
suction from the large recirculation bubble, and (c) weak suction from the small recirculation
bubble.

feature appears in the lift curve of the triangle and is likely due to a similar effect. At higher

angles, the phenomena disappears and the lift resumes its upward trajectory.

Eventually an angle of attack is reached at which the upper shear layer has strong periodic

reattachment to the trailing edge of the upper face. When the shear layer firmly connects to

the trailing edge, maximum lift is achieved: the angle of reattachment offers the greatest

shear layer curvature with the largest region of entrained fluid, as demonstrated in Figure

2.3.

The use of trapped vortices as lift-generating devices is well known in the case of delta

wing aircraft [34]. The velocity of the trapped flow reduces the pressure exerted on the

body. In the case of the bluff body, the faces of the body opposite to the trapped vortex are

surrounded by the disturbed wake, a region of high pressure, driving the net lift. As the angle

of attack increases beyond the reattachment angle, the point at which the flow reattaches

shifts further toward the leading edge, shrinking the size of the recirculation bubble and

decreasing the net lift. As the angle progresses further, the net force becomes negative.

Therein lies the self-limiting nature of galloping: a vibrating body experiences a positive

net force below the reattachment angle of attack and negative net force significantly beyond

that angle. Therefore, amplitude growth that reaches high angles of attack does not further

15



Bluff Body Aerodynamics

 
CN

α

PumpingDamping Damping

+

— +

—

Figure 2.4: The aerodynamic effect on the dynamic system divided into regions of α.

pump up the oscillating system and is subdued.

When the lift is combined with the drag experienced by the body, the normal force

coefficient curves can be plotted as in Figure 2.2. The shape of these curves can be interpreted

as shown in Figure 2.4. The greater the area under the curve, the greater the effect of the

“pumping” action. The zero crossing of the curve indicates the self-limiting tendency of

galloping.

The evolution of the normal force can be correlated with geometric features of the bluff

body. The square has the greatest width behind the front face, or the widest afterbody,

and it experiences the most suction at lower angles of attack because its side faces start

out very close to the separated shear layers. However, the same closeness which boosts

flow interaction at low angles of attack also forces reattachment earlier: the square’s CN

curve has its peak at the lowest angle. As the width of the afterbody shrinks, the lift at

low angles of attack decreases due to weaker shear layer interaction while the angle of peak

lift increases due to delayed reattachment. This trend is apparent in the shift of the curve

for profiles with successively narrower afterbodies. Conversely, reattachment can be forced

earlier than on the square if the afterbody is extended in the streamwise direction, as is the

case with a rectangular bluff body. Kazakevich and Vasilenko report lift curves for a number

of rectangular aspect ratios and the reattachment angle of attack monotonically decreases as
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Figure 2.5: Variation of CN with α for the square profile (square marker) and an equilateral
triangle (triangle marker). Square data from Norberg and triangle data from Alonso [2, 3].

the streamwise length of the body increases [35].

According to Equation 2.5, at high angles of attack, the drag on the body becomes the

dominant force contribution. The consequence can be observed in Figure 2.5, as the tapered

triangular afterbody experiences less drag and, accordingly, a much broader range of angles

which produce a net positive force.

In order to port empirical measurements into a mathematical model, an interpolating

or fitted function is required. For numerical simulation, the complexity of the interpolating

function is not critical, so high-accuracy methods such as Fourier Series or cubic spline

interpolation may be used. However, in the interest of simplifying the model to the eventual

end of deriving an approximate analytical solution, it is convenient to use an interpolating

polynomial of the form

CN =
m∑
j=1

Aj |α|j sgn(α) (2.6)

where CN is the normal force coefficient and Aj indicates the coefficient of the jth-order

term. The sign function provides the required symmetry for negative angles of attack.
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Figure 2.6: Fitted polynomials for the square data. Dashed line indicates odd 7th-order
polynomial. Solid line indicates 11th-order polynomial.

Traditionally, odd 7th-order polynomials are used to capture the forcing data. However,

higher-order polynomials can be fitted if more detail is required from the model. To evaluate

the usefulness of standard 7th-order models, consider the data first presented in Figure 2.5

for the square profile.

Figure 2.6 demonstrates an 11th order fit and a 7th-order odd polynomial fit. The

7th-order as provided by Parkinson captures very good detail until about α = 14◦ at which

point it directly abandons the true path of the data. Conversely, the higher order polynomial

smooths over some detail at low angles while providing good fit even until α = 90◦. The

appropriate fitted model must be selected based upon the demands of the context.

2.3 Unsteady Effects of Body Rotation

The rotation of the faces into the wind induces a circulation not encountered by a stationary

body in uniform flow and not captured by a single angle of attack. Torsional galloping

cases do not reflect quasi-steady behavior due to this circulation. Nakamura examined the

effectiveness of standard galloping models for torsional vibration and noted that quasi-steady
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Figure 2.7: Schematic demonstrating how increasing the radius of rotation straightens the
path traveled by a vibrating body around its equilibrium position.

models were only applicable if the radius of rotation extended far beyond the body; the effects

of the circulation decrease as the trajectory of the body straightens [36] The straightening of

the path traveled by the body is demonstrated in Figure 2.7.

B.W. van Oudheusden explored the effects of rotation on a galloping square body in a

series of papers examining a body mounted on the tip of a rigid, rotating beam [37, 38, 39].

He found that quasi-steady theory tends to underpredict the amount of force experienced

by a body undergoing simultaneous translation and rotation. Kluger et. al also observed

a similar departure from quasi-steady theory with a cantilevered system (with significant

tip rotation) [40]. The error shrinks when the rotation of body is slow with respect to the

free-stream velocity. This trend should be expected, as pure translation (for which the

quasi-steady assumption holds) could be viewed as the limit case of infinitely slow rotation.

The failure of quasi-steady theory for rotating bluff structures is not a new problem,

and several researchers have used a transient model in limited contexts. Scanlan is widely

referenced for his work developing the unsteady airfoil lift functions of Wagner and Theodorsen

for applications to bluff structures [41]. Whereas Wagner noted that lift production on a

suddenly rotated airfoil slowly ramped up to its steady state value, Scanlan found that bluff

structures (i.e. a bridge deck) experienced an initial overshoot of the steady-state lift that

slowly decreased to the steady value. While Scanlan’s functions are limited to small angles
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(A) (B)

Figure 2.8: Comparison of typical early stall behavior for (a) static and (b) rotating cases
(clockwise rotation). Figure from [4]. Document in public domain.

of attack, his observations provide a strong basis for deeper investigation.

The underlying mechanism responsible for the lift overshoot might be explained through a

look at another branch of unsteady airfoil theory. It is well known that an airfoil in constant

pitching rotation can experience dramatic increases in maximum lift production due to a

phenomenon known as dynamic stall. For airfoils in static conditions, stall occurs at an angle

of attack where flow over the wing separates and the airfoil experiences a condition of high

drag and low lift. A dynamic stall, on the other hand, is a highly complex, time-dependent

process. Figure 2.8 compares the onset of stall in the static case and the dynamic case.

In Figure 2.8.(a), the typical static stall case is characterized by a broad wake and a thick

area of reversed flow. A stark contrast is observed in Figure 2.8.(b), where the boundary

layer follows the profile of the airfoil closely, maintaining a very narrow wake region. In a

static stall, the wide wake and reversed flow region allow for significant pressure recovery

which dramatically cuts the upward suction leading to lift. The dynamic stall scenario visibly

maintains a flow pattern mimicking pre-stall flow curvature, yet to an advanced degree which

allows lift production to continue beyond angles allowed in a static case. It is important

to note that the direction of pitching rotation is critical: pitching into the separated flow

(clockwise for airfoils) causes the behavior pictured in Figure 2.8, while pitching away from

the separated flow causes an opposite effect: increasing the flow separation and decreasing

the lift force.
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Figure 2.9: Development of dynamic stall on a NACA 0012 airfoil in sinusoidal motion
α = 15◦ + 10◦ sinωt. Dashed lines in plots represent steady case values. Figure from [4].
Document in public domain.
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Figure 2.10: Effect of rotation on instantaneous lift production of a NACA 0012 airfoil.
Dashed line indicates clockwise rotation, dotted line indicates counterclockwise rotation.
Data from [5].

As the airfoil progresses further beyond the angle of static stall, the behavior enters the

“deep stall” regime. The development of deep stall is broken down in Figure 2.9. Up until

the angle of static stall (a), the lift behavior does not significantly deviate from the static

case. As previously demonstrated, the early dynamic stall behavior continues on the same

trajectory as pre-stall lift production until point (e), at which a leading edge vortex (LEV)

begins to form as the airfoil reaches its peak angle of attack and slows down. The formation

of an LEV continues to grow and impart suction on the upper face, causing the spike in lift

coefficient. Because the LEV develops over time, its growth and eventual shedding operates

with a delay behind the airfoil motion [42]. This lag causes the later stages of dynamic stall

to be weakly dependent on the instantaneous position and rotation and strongly dependent

on the reduced pitching frequency (oscillation frequency normalized by the chord length and

free-stream velocity) and pitching amplitude [42, 43].

Figure 2.10 demonstrates the effect of varying the reduced pitching frequency k = ωc/V

where ω is the oscillation frequency, c is the chord length, and V is the free stream flow

velocity. In general, an increase in k tends to increase the maximum lift produced due to
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the increasing strength of the LEV and the exaggerated curvature of the shear layers over

the separated region. However, k has little effect on the behavior at angles far from the

peak. Kramer identified a linear relationship between pitch rate and maximum lift for several

airfoils in 1932, but McCroskey observed that there may exist a pitching frequency after

which the strength of the LEV stabilizes [42, 44].

Although the above discussion directly pertains to airfoils, the mechanism at work in

dynamic stall appears to explain the error in applying the quasi-steady assumption to a

galloping oscillator with tip rotation. Of course, flow around bluff bodies has little resemblance

to that around airfoils. However, McCroskey notes that airfoils with sharp leading edges

(and the accompanying sharply separated flow) tend to experience more dramatic unsteady

effects [42].

Another indication that bluff bodies may undergo dynamic stall effects comes from

Oudheusden’s observations that the quasi-steady assumption was least valid at conditions

of low reduced wind speeds and high amplitude—in the present context, such conditions

demonstrate high k and high pitching speed, the conditions optimal for dynamic stall. As

the reduced wind speed grew (shrinking k) or the amplitude was reduced with damping (low

pitching velocity), the quasi-steady assumption became more accurate.

Previously, it was noted that the direction of rotation has significant effects on the

behavior of a body in dynamic stall: rotation away from the lifting surface can hinder

performance. Airfoils are designed so that the upper surface experiences the suction of

lift, so it’s simple to state the direction of rotation that benefits lift performance. Bluff

bodies experience lift on alternating faces when enduring galloping oscillation, so maximizing

the effect of dynamic stall requires that the rotation of the body be synchronized with the

alternation of lifting surfaces. Galloping requires lift production on the face leading into the

incident flow. Therefore, the change of angle of attack must be in phase with the angular

velocity of the body. The exact relationships for angular deflection of a cantilevered tip
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Figure 2.11: Dye injection photograph of flow around square cylinder at 13◦ incidence.
Re = 4900.

body will be discussed later, but at present it is sufficient to say that when the tip of the

beam faces into the incident flow, the rotation is always at least partially in-phase. Some

corroboration is given by Koide et al., who compared three different mounting mechanisms

for a galloping square body: one with zero body rotation, one with in-phase body rotation,

and one with out-of-phase body rotation. He found that the in-phase configuration had

vastly greater galloping output than the zero rotation case and both had greater response

than the anti-phase case [45].

Flow visualization confirms some of the flow features expected from unsteady airfoil

theory. A square prism was placed in a water tunnel at Re ≈ 4900. Figure 2.11 displays the

flow over the lifting surface at α = 13◦ in a steady flow scenario. Dye was injected under the

boundary layer to highlight the width of the recirculation region.

As seen in Figures 2.12a and 2.12b, the effect of rotation is to severely compress the width

of the separated flow region, an effect expected from a review of dynamic stall. Although not

pictured, the opposite effect was observed on the lower face of the square: rotation tended to

widen the wake, also in keeping with the decrease of lift observed on airfoils rotating away

from the lifting surface (dotted lines in Figure 2.10). Furthermore, the “LEV” for the bluff

body is seen to form on the rear face; instead of increasing lift, the vortex will decrease

pressure on the rear face and increase the drag. However, the effect of rotation is highly

sensitive to the exact time history of α [42]. Therefore, the flow visualization presented
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(a) Dye injected under the boundary layer.

(b) Dye injected above the boundary layer.

Figure 2.12: Dye injection photograph of flow around square cylinder at 13◦ incidence.
Re = 4900. CCW rotation at ω = 2 rad/s (k = 0.8).

here should count only as a qualitative demonstration of the dramatic breakdown of the

quasi-steady assumption in the presence of body rotation.

In areas such as helicopter dynamics where design considerations must include dynamic

stall effects, it is traditional to empirically determine correction factors to augment quasi-

static models [46]. To the author’s knowledge, no standardized model yet exists for treating

correction factors, as a number of research and design organizations each use proprietary

approaches. Researchers in other fields have developed augmented quasi-steady models to

accommodate rotation: Dickinson and Sane have successfully used their model to describe

insect wing aerodynamics, but the trends bear little resemblance to bluff body flow [47, 48,

49, 50]. Therefore, it is of interest to identify trends present in the response of cantilevered

galloping flow energy harvesters with non-negligible tip rotation. To this end, a model will be

developed using quasi-steady aerodynamics and the feasibility of applying correction factors

will be assessed by experimental evaluation.
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Chapter 3

Including Beam Kinematics in the

Harvester Model

The physical system is composed of a prismatic tip body mounted on a long, thin cantilever

beam fixed on a rigid base. Geometric additions to the bluff body can be added, as in the

case of the tail fin pictured in Figure 3.1. The transduction method employed in this system

uses a Macro Fiber Composite (MFC) piezoelectric patch designed for energy harvesting

applications. The patch is laminated to one (or both) sides of the beam and thin leads are

connected to the desired load.

Traditionally, galloping has been modeled using a SDOF in the crossflow direction with

linear restoring forces and simple viscous damping elements, and this approach has been

validated repeatedly for pure translation (and small angle approximations of it) [25, 51, 52].

Bibo derived a model for the beam-mounted harvester without the presumption of small

deflections, but the full order model was not applied in his study [15].

When the angle of tip rotation is not suppressed to be arbitrarily “small,” the validity of the

small angle assumptions previously used in harvester models is dubious. The aerodynamics

of galloping are described primarily by the angle of attack with which the flow impacts the
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tip body. The angle of attack is a combination of a relative velocity component and the tip

rotation of the beam. Therefore, the accuracy with which the model predicts the tip rotation

directly impacts the accuracy of the harvester model.

This chapter quantifies the error introduced by the traditional simplifications and proposes

an analytical approximation to include the kinematic effects of tip rotation in Bibo’s model.

MFC STRIP

BASE

WIND DIRECTION

BLUFF BODY

TAIL

Figure 3.1: A sketch of the typical beam-mounted harvester implementation.

3.1 Deflection of Slender Beams

The beams employed by typical GFEHs are thin with respect to the length of the beam L, as

pictured in Figure 3.2, to allow for large amplitude oscillation without incurring significant

stress and fatigue at the base. Furthermore, it is helpful to keep the in-to-plane height of the

beam narrow with respect to its width, so that the cantilever truly behaves as beam and not

as a plate. To this end, the length should be at least 10 times the height. As the beam is

only constrained at one end, it can be accurately treated as inextensible. The cross section

and material properties of the beam can be considered constant along the length, as any

laminated elements are small and thin and do not significantly affect the deflection shape of

the beam.

The preceding assumptions allow the Euler-Bernoulli beam model to be used with good

accuracy. The equation of motion in time t and arc-length s for a cantilever Euler-Bernoulli
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Figure 3.2: Beam coordinates.

beam including up to cubic nonlinearities is [15]

ηbŸ + EIY ′′′′ = −EI(Y ′(Y ′Y ′′)′)′ − ηb
(
Y ′

∂2

∂t2

[∫ s

L

∫ s

0
(Y ′)2 dsds

])′
(3.1)

where primes denote spatial derivatives and overdots denote time derivatives. The right-hand

side of the equation collects the nonlinear terms. The physical parameters are provided as

follows: ηb is the mass per length of the beam, E is the Young’s Modulus of the beam, and I

is the area moment of inertia of the beam’s cross section.

The tip mass on the harvester creates the linear boundary conditions

[
EIY ′′ + ItŸ

′
]
s=L

= 0,
[
EIY ′′′ −MtŸ

]
s=L

= 0 (3.2)

where Mt is the mass of the tip body and It is the mass moment of inertia of the tip body.

3.1.1 Linear Analysis

Erturk and Inman provide the derivations of the modal discretization for the linearized

equation of motion for a beam with a connected tip mass [53]. Without repeating the work
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here, the displacement can be expressed as a discretized function as

Y (s, t) =
∞∑
n=1

Φn(s)qn(t) (3.3)

where qn(t) are the unknown temporal functions,

Φn = An

[
cos
(
λn

s

L

)
− cosh

(
λn

s

L

)
+ Ξ

(
sin
(
λn

s

L

)
− sinh

(
λn

s

L

))]
(3.4)

are the linear mode shapes of a cantilever beam, and

Ξ =
sin (λn)− sinh

(
λn

s
L

)
+ λn

Mt
ηbL

(
cos (λn)− cosh

(
λn

s
L

))
cos (λn) + cosh

(
λn

s
L

)
− λn Mt

ηbL

(
sin (λn)− sinh

(
λn

s
L

)) (3.5)

An is the modal constant resolved by mass normalization using Equation 3.6,

ηb

∫ L

0
Φ2
n ds+Mt (Φn(L))2 + It

(
Φ′n(L)

)2
= 1 (3.6)

and λn is the nth root of the following characteristic equation:

1 + cosλ coshλ+ λ
Mt

ηbL
(cosλ sinhλ− sinλ coshλ)

−λ3 It
ηbL3

(coshλ sinλ+ sinhλ cosλ)

+λ4
MtIt
η2bL

4
(1− cosλ coshλ) = 0

(3.7)

In the absence of damping, the temporal function qn(t) can be expressed as

qn(t) = Bn cos(ωnt+ βn) (3.8)

where Bn is a constant amplitude determined by initial conditions, βn is a constant phase
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shift fixed by initial conditions, and ωn is found by

ωn =
λ2n
L2

√
EI

m
(3.9)

3.1.2 Nonlinear analysis

Just as in linear analysis, a nonlinear “mode” defines a shape function to describe the beam

deflection. Treating the nonlinear terms in a weakly nonlinear system can use a variety of

approaches, including perturbation methods [54, 55, 56] and invariant manifold construction

[57]. The present work will adopt Nayfeh’s treatment based on the method of multiple scales

[54].

In linear analysis, each mode has a unique frequency of vibration. However, the beam

nonlinearities introduce crosstalk between the modes such that the “normal mode” at one

linear frequency can be expressed as some linear combination of all the beam’s mode shapes.

Therefore, the nonlinear response can be approximated by examining nonlinear interaction

between the linear modes presented in the preceding section.

The first step is nondimensionalizing the equation of motion, Equation 3.1, with the

following relations

y =
Y

L
, t̂ = t

1

L2

√
EI

ηb
, ŝ =

s

L

to get

ÿ + y′′′′ = −(y′(y′y′′)′)′ −
(
y′
∫ ŝ

1

∫ ŝ

0
ẏ′2 + y′ÿ′ dŝ dŝ

)′
(3.10)

At this point, the discretization can be substituted into the equation of motion. Performing

the substitution, multiplying by a mode shape function Φj , and integrating over the length

of the beam forms the jth modal equation of motion

∞∑
k=1

q̈k

∫ 1

0
ΦjΦk dŝ+

∞∑
k=1

qk

∫ 1

0
ΦjΦ

′′′′
k dŝ = −

∞∑
k=1

q3kg1,jk −
∞∑
k=1

(qkq̇
2
k − ω2

kq
3
k)g2,jk (3.11)
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where

g1,jk =

∫ 1

0

[
Φj

(
Φ′k
(
Φ′kΦ

′′
k

)′)′]
ds (3.12)

g2,jk =

∫ 1

0

[
Φj

(
Φ′k

∫ s

1

∫ s

0
Φ′2k ds ds

)′]
ds (3.13)

Applying the orthogonality conditions, the influence of the tip mass can be observed on

the equation of motion [53]

∞∑
k=1

q̈k
(
δjk −MΦj(1)Φk(1)− IΦ′j(1)Φ′k(1)

)
+
∞∑
k=1

ω2
kqk
(
δjk −MΦj(1)Φk(1)− IΦ′j(1)Φ′k(1)

)
= −

∞∑
k=1

q3kg1,jk −
∞∑
k=1

(qkq̇
2
k − ω2

kq
3
k)g2,jk

(3.14)

where

M =
Mt

ηbL
, I =

It
ηbL3

, (3.15)

and δjk is the Kronecker Delta function comparing j and k.

If the tip mass and inertia ratios are small, the equation in q retains only weak modal

coupling terms on the right hand side of Equation 3.16.

q̈j + ω2
j qj = −

∑
k=1

q3kg1,jk −
∑
k=1

(qkq̇
2
k − ω2

kq
3
k)g2,jk (3.16)

Without repeating the derivations previously published in Nayfeh’s papers [54, 55], the

modal time function can be approximated by

qk(t) = ak cos (ωN,kt+ βk) +
g1,kk − 2ω2

kg2,kk
32ω2

k

a3k cos (3ωN,kt+ 3βk) (3.17)
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where βk is a constant phase shift, ak is the modal amplitude parameter, and

ωN,k = ωk +
1

8ωk

(
3g1,kk − 2ω2

kg2,kk
)
a2k (3.18)

to give a total displacement

yk(s, t) = Φkqk +
∞∑
j 6=k

[
Φj

(
Γ1,jkq

3
k + Γ2,jkqkq̇

2
k

)]
(3.19)

where

Γ1,jk =
1

∆jk

[(
7ω2

k − ω2
j

)
g1,jk −

(
5ω2

k − ω2
j

)
ω2
kg2,jk

]
(3.20)

Γ1,jk =
1

∆jk

[
6g1,jk −

(
3ω2

k + ω2
j

)
ω2
kg2,jk

]
(3.21)

∆jk =
(
ω2
k − ω2

j

) (
9ω2

k − ω2
j

)
(3.22)

The kth nonlinear “mode” shape is time varying; however, the shape at maximum deflection

can be retrieved by maximizing qk in time.

As seen in Equation 3.19, for large displacements, a cubic interaction arises between the

mode of interest Φk and the remaining modes Φj . The nonlinear displacement reduces to

the linear solution as the nonlinear terms g1,jk and g2,jk go to zero.

3.1.3 Error in Linearization

It is convenient to describe the beam tip rotation θ as a function of the dimensionless tip

displacement y.

θ = ξy (3.23)

The variation of ξ as predicted by the linear and nonlinear models is presented in Figure

3.3 for a variety of tip mass ratios M . It can be seen that in the presence of any tip mass,

when the inertial load is concentrated on the tip of the beam, the value of ξ remains close
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Figure 3.3: Variation of ξ with tip amplitude y.

to a constant 1.5 for a broad range of y (0 . y . 0.3). The nonlinear prediction actually

demonstrates that the constant value approximation is more valid than initially expected

from a linear analysis.

Figure 3.3 only represents a relative comparison. To evaluate accuracy, the linear and

nonlinear analysis using the first bending mode will be evaluated against a fully nonlinear

numerical simulation of a slender cantilever beam excited at its first natural frequency using

ANSYS APDL. A fully nonlinear transient solution employed 30 nonlinear elements in the

beam and a “dummy” element to simulate a variable tip mass. Arbitrary system parameters

were selected to observe the deviation of the nonlinear simulation from the approximation.

Although there were negligible differences in the results when tip inertias where modulated

within the range normally seen in harvesters, all trials were normalized for tip inertia to

reduce the degrees of freedom in the data. The code used is given in Appendix B. The results

are presented in Figure 3.4.

It can be seen that the linear and nonlinear estimations coincide at low amplitudes. The

increased error at lower M values is likely due to the error of a single-mode approximation:
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Figure 3.4: Maximum percent error in the angle of tip rotation as compared to the numerical
simulation.

as the mass ratio increases, the inertia of the concentrated tip mass interacts with the first

mode directly and the influence of higher-order harmonics decreases.

As could be expected, the nonlinear approximation provides a very good estimate of the

tip rotation. However, the linear approximation is quite sufficient for a broad amplitude

range, even beyond the point at which the small angle approximations would be expected to

fail. Furthermore, the error is especially small for systems with a concentrated tip mass on

the order of the beam mass. Therefore, the linearized approximation ξ = 1.5 can be used

confidently even for medium-amplitude vibrations. The linear mode shapes can also be used

to describe the kinematics and strains of the vibrating beam.

3.1.4 Beam Damping

Any realistic model of a vibrating beam must account for the energy lost through damping.

The mechanisms of damping can vary from thermal dissipation to imperfect mounting

fixtures to air resistance. Damping is most accurately identified through experimental means

by observing the free response decay of a system in which damping is the only unknown
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parameter.

In the present system, the identification of damping is not straightforward, as the damping

in the system can be decomposed into structural (or material) damping and the damping due

to still air. While it may seem reasonable to neglect the influence of air damping, Sugino’s

experiments with a vibratory energy harvester in variable atmospheric pressure suggest

otherwise [58]. While it is tempting to roughly approximate the total damping as linear, the

error introduced by a miscalculation of the damping ratio can be astronomical, as discussed

in Appendix C.

Unfortunately, the influence of air cannot be accommodated by lumping all energy-

draining effects into a single damping function. Woolam reviewed prior work on the still air

damping of oscillating 2D flat plates and noted a consensus that unsteady vortex shedding

is likely the primary mechanism at work [59]. Vortices shedding over the top and bottom

of the plate create a large pressure differential, and no time is allowed for the recovery of

base pressure as in a fully formed, steady wake. This phenomenon is easily seen in the

photographs provided by Keulegan and Carpenter [60]. Because of the minimum flow velocity

criterion for quasi-steady flow, where any wake disturbances due to system motion are swept

downstream before they can significantly influence the system dynamics, the damping of

vibrating cantilever beams in still air should not appear in the model when the incident flow

is nonzero.

This requirement poses a significant experimental challenge: each system would need to

undergo tests both in normal atmospheric pressure conditions as well as in a vacuum chamber

to identify the damping influence of still air. However, approximations can be made using

insight from the work of Baker et al., who studied the free response of cantilever beams as

the ambient air pressure was varied [61]. Using the traditional linear viscous damping model,

where damping forces are proportional to velocity, it was found that the material damping of

slender metallic cantilever beams was a very weak function of oscillation amplitude and a
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Figure 3.5: Schematic of linearized harvester model.

strong function of frequency. The aerodynamic damping, on the other hand, was strongly

influenced by oscillation amplitude and Baker observed the traditional form of aerodynamic

force calculations where the force is proportional to the square of the velocity. Therefore,

the effect of material damping can be approximately isolated by neglecting the quadratic

damping components observed in the free response decay.

Typically, the velocity in question would be the Y direction beam velocity. However, large

deflections have non-negligible X direction motion, and any damping quantity should reflect

this extension. Therefore, the present beam model will employ an experimentally-determined

structural damping parameter Bm as

Fmaterial damping = BmẎ . (3.24)

For completeness, an aerodynamic damping parameter Ba can be included to model the

free response as

Faero damping =

 BaẎ
∣∣∣Ẏ ∣∣∣ , V = 0

0 , V 6= 0

(3.25)
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3.2 Equations of Motion

Employing the linearized single degree of freedom harvester model leads to the dimensional

equations of motion in Y

MeŸ +BmẎ +KY =
1

2
ρaDHV

2CN (α) (3.26)

where the effective mass is

Me =

(
Mt +

33

140
ηbL

)
(3.27)

and V is the incident wind velocity, K is the linear beam stiffness, ρa is the density of air, D

is the characteristic width of the tip body, and H is the into-page length of the body. The

aerodynamic force is given as a polynomial of the angle of attack α, defined as

CN =

m∑
j=1

Aj |α|j sgn(α) (3.28)

where the angle of attack is

α =
Ẏ

V
− ξ Y

L
(3.29)

The attached harvesting circuit is governed by

Cpv̇ +
1

Rl
v + ΓẎ = 0 (3.30)

where v is the voltage across the load, Γ is the linear displacement-current coupling coefficient,

Rl is the load resistance, and Cp is the piezoelectric patch capacitance.

The equations can be nondimensionalized as

y′′ + 2ζmy
′ + y − κχ = 2µU2CN (α), α =

y′

U
− D

L
ξy

χ′ + τcχ+ y′ = 0

(3.31)
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with the definitions for dimensionless groups (note that y is scaled by D, not L)

( )′ =
d

dτ
[ ], y =

Y

D
, χ =

vCp
Γ
, τ = ωt, κ =

Γ2

KCp
,

ζm =
Bm

2Meω
, µ =

ρaD
2H

4Me
, U =

V

ωD
, τc =

1

RlCpω

(3.32)

where t represents time and ω =
√
K/Me is the natural frequency of the oscillator at short

circuit.

3.2.1 Approximate analytical solution

The approximate solution to Equation 3.31 is obtained using the method of multiple scales,

an operation applicable to weakly nonlinear systems containing mechanisms which act on

distinct time scales. A weak nonlinearity occurs when any nonlinear terms are scaled much

smaller than the linear terms in an ODE. In the case of a galloping body, a “true” time scale

describes the instantaneous position of the body while a slow time scale tracks the weakly

nonlinear evolution of oscillation amplitude.

The scaling is accomplished using an arbitrarily small bookkeeping parameter ε such that

“true” time is T0 = τ and “slow” time is T1 = ετ . For the present problem, higher orders of ε

(even slower time scales) can be neglected. The derivative operator is adapted such that

d

dτ
= D0 + εD1 +O(ε2),

d2

dτ2
= D2

0 + 2εD0D1 +O(ε2). (3.33)

where

D0 =
d

dT0
, D1 =

d

dT1
. (3.34)
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Additionally, two time scales admit zeroth and first order solutions for y and χ.

y(τ) = y0(T0, T1) + εy1(T0, T1) +O(ε2)

χ(τ) = χ0(T0, T1) + εχ1(T0, T1) +O(ε2)

(3.35)

It can be reasoned that the mechanism of amplitude growth occurs slowly because the

energy input to the system is on the order of the energy dissipated—in the context of

underdamped vibrations, energy dissipation must be small (controlled by ζm and κ), so a

small net energy input requires small input flow energy (controlled by µ). Therefore, the

appropriate parameters are scaled by ε.

µ = εµ, ζm = εζm, κ = εκ (3.36)

When Equations 3.33, 3.35, and 3.36 are substituted in to Equation 3.31, the resulting

system can be divided by collecting the zeroth and first power of ε.

For ε0:

The zeroth order system

D2
0y0 + y0 = 0

D0χ0 + τcχ0 = −D0y0

(3.37)

admits a zeroth order solution

y0 = a(T1) cos(T0 + β(T1))

χ0 =
a(T1)√
1 + τ2c

sin

(
T0 + β(T1)− sin−1

(
1√

1 + τ2c

)) (3.38)

where a is the amplitude of oscillation and β is a phase shift function.

For ε1:

Because both a and β are present in the expression for y0, the solution can be determined
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without consideration of higher-order equations in χ. The first order terms for y are as

follows:

D2
1y1 + y1 = −2D0D1y0 − 2ζmD0y0 + κχ0 + 2µU2CN (α0) (3.39)

Let φ = T0 +β, γ = 1/
√

1 + τ2c , and ψ = sin−1 γ. Substituting the zeroth order solutions,

as well as the expression for CN from Equation 2.6:

D2
1y1 + y1 =2D1a sinφ+ 2aD1β cosφ+ 2ζma sinφ

+ aκγ sin (φ− ψ)

+ 2µU2
n∑
j=1
odd

Aj (α0)
j + 2µU2

n∑
j=1
even

Aj |α0|j sgn(α0)

(3.40)

Because the physical system does not have oscillations which grow to infinity, the “forcing”

terms on the right hand side of Equation 3.40 must not resonate with y1. This condition is

enforced by ensuring the right hand side is orthogonal to both sinφ and cosφ throughout

one cycle.

Before attempting integration of the right hand side of Equation 3.40, it is necessary

to properly handle the sgn(α0) function. If the points at which α0 changes sign are known,

then the integral from 0 to 2π may be integrated across a number of smaller intervals within

which the sign of α0 does not change.

Rewriting Equation 3.29 using the above expressions for y,

α0 = − a
U

√(
D

L
ξ

)2

+ 1 sin

(
φ+ tan−1

(
D

L
Uξ

))
(3.41)

it becomes clear that α0 changes sign at

φ = kπ − tan−1
(
D

L
Uξ

)
, k ∈ Z (3.42)
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Therefore, the integration of the even-order terms will change sign at φ = kπ −

tan−1
(
D
LUξ

)
where k is an integer.

For orthogonality with cosφ,

0 =

∫ 2π

0
[2D1a sinφ+ 2aD1β cosφ− 2ζma sinφ] cosφ dφ

−
∫ 2π

0
aκγ sin

(
φ− sin−1 (γ)

)
cosφ dφ

+ 2µU2
n∑
j=1

Aj

 a

U

√(
D

L
ξU

)2

+ 1

j

×

{
−
∫ π−tan−1((D/L)ξU)

0

[
sin

(
φ+ tan−1

(
D

L
ξU

))]j
cosφ dφ

+ (−1)j
∫ 2π−tan−1((D/L)ξU)

π−tan−1((D/L)ξU)

[
sin

(
φ+ tan−1

(
D

L
ξU

))]j
cosφ dφ

−
∫ 2π

2π−tan−1((D/L)ξU)

[
sin

(
φ+ tan−1

(
D

L
ξU

))]j
cosφ dφ

}

(3.43)

gives a polynomial expression for D1β as

a
dβ

dτ
=
ζe
τc
a− 2µU2

n∑
j=1

Aj

( a
U

)j√(D
L
ξU

)2

+ 1

j−1

Cj (3.44)

where ζe is electrical energy dissipation due to the harvesting circuit, defined as

ζe =
τcκ

2(1 + τ2c )
(3.45)

and the coefficients can be expressed as a series function (derived by Bibo).

Cj =
1− (−1)j

2j+2

(
(j + 1)!((

1
2(j + 1)

)
!
)2
)

+
1 + (−1)j

2jπ

j/2∑
k=0

(j + 1)! (−1)
1
2
j−k

(j + 1− k)! k! (j + 1− 2k)
(3.46)
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The amplitude equation proceeds from orthogonality with sinφ.

0 =

∫ 2π

0
[2D1a sinφ+ 2aD1β cosφ− 2ζma sinφ] sinφ dφ

−
∫ 2π

0
aκγ sin

(
φ− sin−1 (γ)

)
sinφ dφ

+ 2µU2
n∑
j=1

Aj

 a

U

√(
D

L
ξU

)2

+ 1

j

×

{
−
∫ π−tan−1((D/L)ξU)

0

[
sin

(
φ+ tan−1

(
D

L
ξU

))]j
sinφ dφ

+ (−1)j
∫ 2π−tan−1((D/L)ξU)

π−tan−1((D/L)ξU)

[
sin

(
φ+ tan−1

(
D

L
ξU

))]j
sinφ dφ

−
∫ 2π

2π−tan−1((D/L)ξU)

[
sin

(
φ+ tan−1

(
D

L
ξU

))]j
sinφ dφ

}

(3.47)

giving

da

dτ
= −(ζe + ζm)a+ 2µU2

n∑
j=1

Aj

( a
U

)j√(D
L
ξU

)2

+ 1

j−1

Cj . (3.48)

At steady state, dβ
dτ = da

dτ = 0. Root-solving algorithms can then be used to solve

Equations 3.44 and 3.48 and determine the steady phase shift and amplitude, respectively.

Output power

Once a solution for a has been obtained, the magnitude of the output power can be obtained

using via the following electric power relationship:

Power = Voltage× Current

Ohm’s Law can be used to rewrite the power relationship as

P =
v2

Rl
. (3.49)
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The load resistance can be moved to the left-hand side and the voltage v can be expressed

in its dimensionless form to give:

PRl = χ2

(
Γ

Cp

)2

. (3.50)

After moving the parenthetical group to the left, both sides of the equation are dimen-

sionless.

PRl

(
Cp
Γ

)2

= χ2 (3.51)

An expression for dimensionless power could be obtained from either side of the equation

as written above, but further simplification is possible. Because χ is a periodic waveform

possessing a phase and an amplitude, the instantaneous power can be described with the

same characteristics. Furthermore, it is often useful to simply express the amplitude of the

power in terms of the physical displacement. Substituting the amplitude of χ into the above

expression, let the definition for dimensionless power P ∗ follow as

P ∗ = |P |Rl
(
Cp
Γ

)2

=
a2

1 +

(
1

RlCpω

)2 (3.52)

For a given harvester system, the dimensionless output power rises with the square of the

amplitude a. As shown in Equation 3.48 and the derivation thereof, a is dependent on Rl, Cp,

and ω (among other parameters). These parameters can be optimized to maximize P ∗. Both

Bibo and Barrero et al. identify some optimum parameters for the linear system for small

oscillation amplitudes, using very simple expressions for the aerodynamic coefficient CN

[51, 62]. For medium to large oscillation amplitudes, proper expression of CN requires higher-

order polynomials which do not permit analytical resolution of a. Therefore, optimizing P ∗

in such scenarios requires numerical routines.

While a numerical optimization is necessary for optimizing the mechanical and electrical
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parameters, another parameter set remains to be optimized: aerodynamic parameters. If

the magnitude of a is increased by modifying the geometry of the bluff body, and all other

system parameters remain constant, then the dimensionless power will increase by necessity.

3.2.2 Universal approximation

Assuming the behavior of the body aerodynamics follow the quasi-steady assumption, the

“universal” curve as developed by Novak [63] and extended by Bibo [51] can be adapted

for the present system. The universal curve provides a framework for comparing harvester

performance between implementations that use different bluff bodies, providing a reference

performance criterion as a function of a reduced wind speed parameter. The curve is

“universal” in the sense that the given performance criterion is independent of any mechanical

or electrical parameters; the performance can be described purely in terms of its aerodynamic

behavior, i.e. a solution universal for all systems with the same bluff body.

To establish a universal curve for the current system which accounts for the rotation of

the bluff body, define α̂ such that

α̂ =
a

U

√(
D

L
ξU

)2

+ 1 (3.53)

where α̂ is the magnitude of the apparent angle of attack.

Using α̂ as the aforementioned performance criterion, Equation 3.48 can be rewritten

using α̂ to give
1

U∗
dα̂

dτ∗
= − 1

U∗
α̂+ 2

n∑
j=1

Ajα̂
jCj . (3.54)

where

U∗ =
Uµ

ζm + ζe
, τ∗ = (ζm + ζe)τ . (3.55)

When ξ = 0, as in the case of pure translation, the equation of the universal curve reduces to
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that used by Bibo.

Framing the problem in terms of α̂ reduces the modulation equation to dependence on

only two independent variables: U∗ and τ∗. For steady-state problems, dα̂
dτ∗ = 0. The roots

of α̂ are only dependent on U∗, a twice-reduced wind speed parameter, and the CN curve for

the body. Therefore, any system employing the same bluff body will share the same curve of

α̂ vs. U∗. As such, the universal formulation is a powerful tool for directly comparing the

relative power production capability of different GFEH bluff body configurations.

As previously discussed, the accuracy of low-order aerodynamic polynomials is question-

able but might be sufficient in scenarios where accuracy is only needed over a small angle

range (such as high damping designs). If the aerodynamic data can be accurately captured

by a 9th-order odd polynomial, the steady-state equation can be written as

0 = − 1

2U∗
α̂+A1C1α̂+A3C3α̂

3 +A5C5α̂
5 +A7C7α̂

7 +A9C9α̂
9 .

When the trivial root is eliminated, the expression can be expanded in terms of Z = α̂2 to

give

0 = − 1

2U∗
+A1C1 +A3C3Z +A5C5Z

2 +A7C7Z
3 +A9C9Z

4 .

As a 4th-order polynomial, the solutions for Z can be resolved analytically (See [64] for

solution procedure).

The transient equations are also analytically solvable when the aerodynamics are captured

by a 7th-order odd polynomial. The formulas will be listed here for convenience. First,

expand the modulation equation in terms of Z = α̂2 and rearrange.

1
35
32A7U∗

dZ

dτ∗
= Z

[
Z3 +

5
4A5

35
32A7

Z2 +
3
2A3

35
32A7

Z +
2
(
A1 − 1

U∗

)
35
32A7

]
(3.56)
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To abbreviate the notation, the following parameter groups will be used:

C3 =
35

32
A7U

∗, C0 =
2
(
A1 − 1

U∗

)
35
32A7

, C1 =
3
2A3

35
32A7

, C2 =
5
4A5

35
32A7

(3.57)

The cubic solution procedure depends on three groups of the new coefficients.

∆0 = C2
2 − 3C1, ∆1 = 2C3

2 − 9C2C1 + 27C0, S =

[
1

2

(
∆1 +

√
∆2

1 − 4∆3
0

)]1/3
(3.58)

The three non-trivial roots of Z are given for k = 1, 2, 3.

Zk = −1

3

C2 +

(
−1

2
+

√
3

2
i

)k
S +

∆0(
−1

2 +
√
3
2 i
)k
S

 (3.59)

Rearranging into integral form,

C3

∫
dτ∗ =

∫
dZ

Z(Z − Z1)(Z − Z2)(Z − Z3)
(3.60)

Carrying out the integration from some initial condition Zi > 0, the dimensionless time

τ∗ to reach a given Z can be determined.

C3τ
∗ =

ln
(
Z−Z1
Zi−Z1

)
Z1(Z1 − Z2)(Z1 − Z3)

+
ln
(
Z−Z2
Zi−Z2

)
Z2(Z2 − Z1)(Z2 − Z3)

+
ln
(
Z−Z3
Zi−Z3

)
Z3(Z3 − Z1)(Z3 − Z2)

+
ln
(
Zi
Z

)
Z1Z2Z3

(3.61)

The universal transient solution can be visualized as a surface in U∗ × τ∗ × Z space.

When a 7th-order odd polynomial is sufficient to model the aerodynamics of a GFEH, the

universal curve permits comparison of transient as well as steady-state performance.
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3.3 Model Stability

The beauty of the method of multiple scales lies in the modulation equations. Both the value

and the stability of the amplitude of oscillation can be directly drawn from the modulation

equations. The stability is determined through a linear analysis of the fixed points of α̂. To

this end, the Jacobian of the modulation equations can be written as

J =
∂

∂α̂

[
1

U∗
dα̂

dτ∗

]
fp

= − 1

U∗
+A1 + 2

n∑
j=2

jAjα̂
j−1
fp Cj (3.62)

where α̂fp is a fixed point of the modulation equations. For α̂fp to be stable, the eigenvalues

of the associated Jacobian matrix must all have negative real parts.

The immediately obvious result deduced from Equation 3.62 is that the trivial fixed point

α̂fp = 0 loses stability when

U∗ >
1

A1
(3.63)

which marks the cut-in wind speed at which the system begins self-excited oscillations.

When the remaining fixed points are evaluated, a bifurcation diagram such as that in

Figure 3.6 can be produced. At the cut-in wind speed, a supercritical Hopf bifurcation

(SHB) splits the trivial fixed point into an unstable zero fixed point and a branch of stable

oscillations whose magnitude increases rapidly with U∗. A cyclic fold bifurcation (CFB)

leads to a brief interlude of instability after which the stable branch resumes through another

CFB.

The unstable region is evidence of a body with hysteretic behavior and has a direct

physical link to the aerodynamics of the bluff body: it is present if there is an inflection point

in the polynomial representation of CN [33, 65, 66]. Figure 3.7 is an example bifurcation

diagram. Imagine that the diagram is a stationary surface pierced by a vertical column

uniquely located on the horizontal plane by U∗ and the instantaneous α̂ of the system is
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Figure 3.6: The bifurcation diagram for the square body.

represented by an ant crawling on the column (the starting point of the ant is the initial

condition of the system). If the column only intersects the surface in one point, then the

ant will always crawl toward the value of α̂ at the intersection point; whether the ant starts

above or below the surface is immaterial. If the column intersects the surface within the

unstable region, there are three points of intersection: an unstable intersection with stable

intersections above and below it. If the ant starts crawling from the bottom or the top of

the column, he will stop at the first stable intersection he encounters. However, if the ant

starts somewhere in between a stable intersection and an unstable intersection, the ant will

crawl toward the stable intersection.

The nonzero fixed points can be estimated using some physical intuition of the dynamical

system. In highly-damped systems, a steady state is reached when the damping balances out

the energy pumped into the system by the galloping phenomenon each cycle. However, lightly-

damped systems tend to be self-limited by the aerodynamic force. As was demonstrated

in Figure 2.4, the first nonzero root of the CN curve, α0, flips the sign of the force on the

tip body and the fluid itself begins to remove energy from the system. The steady-state

will be obtained when the fluid removes the energy it adds each cycle. Therefore, as a first
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Figure 3.7: An example bifurcation diagram to demonstrate hysteretic behavior.

approximation, the steady state value of α̂fp will tend to be near α0 for high enough U∗. For

comparison with Figure 3.6, α0 for the square body is approximately 18◦.

3.4 Influence of ξ

The model developed and applied by Bibo et al. on the present system is not fundamentally

changed by the inclusion of a linear rotation parameter ξ. The natural question arises: does

ξ substantially influence the models developed for energy harvesters?

First, consider the error introduced into α by setting ξ = 0. It is not uncommon to have

deflections up to Y
L ≈ 0.3 at which point the tip has already rotated 25◦! Failing to include

the tip rotation causes severe misjudgments of the aerodynamic force experienced by the

body.

Second, consider that the universal model predicts that any given body geometry will

lead to a single equation for α̂. Although a given body geometry will produce a solution for
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α̂ independent of ξ, the value of a depends on U , D, L, and ξ:

a =
α̂U√

1 +
(
D
LUξ

)2
Substituting the above expression for a into Equation 3.52, the dependence of the dimension-

less output power on ξ becomes plain.

P ∗ =
(α̂U)2(

1 +

(
D

L
Uξ

)2
)(

1 +

(
1

RlCpω

)2
)

Compare the percent error in the power predicted for a given α̂ without ξ (P ∗ξ=0) to that

found when using ξ (P ∗). Let the percent error be defined as

% Error =
P ∗ξ=0 − P ∗

P ∗
=
P ∗ξ=0

P ∗
− 1 . (3.64)

Both P ∗ξ=0 and P ∗ contain the following group of parameters:

(α̂U)2(
1 +

(
1

RlCpω

)2
)

After canceling the above group of parameters from both terms, the percent error simplifies

to

% Error =

(
D

L
Uξ

)2

=

(
V

ωL
ξ

)2

(3.65)

It is clear that failure to include ξ will always over-predict the output power. To highlight

the significance of the error, the percent error was plotted over a range of length-reduced

wind speed in Figure 3.8.
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Figure 3.8: The percent error introduced in the dimensionless power output when ξ is
neglected.

3.5 Summary

Analytical nonlinear analysis and nonlinear solutions were used to establish that the tip

rotation of an Euler-Bernoulli beam can be predicted with good accuracy using a constant

ξ = 1.5 for small to moderate deformations, despite the traditional limitations of small angle

assumptions. Therefore, the weakly nonlinear system was adopted for the present work. The

method of multiple scales was applied to Equation 3.31 to produce an approximate analytical

solution accounting for the kinematic effects of tip rotation, Equation 3.48. The approximate

solution was used to calculate the cut-in wind speed required to incite vibrations from rest

in Equation 3.63.

The significance of including ξ in the model was highlighted by examining its effect on

the calculation of the output power. The error introduced by neglecting ξ is significant even

at low values of reduced wind speed; how then has the standard model been used with good

convergence in previous studies? Why have the models not all dramatically over-predicted

the output power? It may be that failing to consider the tip rotation has been “canceled

out” by also neglecting the aerodynamic effects of tip rotation, which will be examined
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experimentally in the next chapter.
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Chapter 4

Model Evaluation

The quasi-steady model proposed in Chapter 3 was evaluated using experimental trials

conducted in a laboratory environment. After discussing the experimental methodology, this

chapter expands the results of the procedures into two sections: one for the square body and

one for the trapezoidal body. Finally, the chapter closes with the main conclusions of the

present experimental work.

4.1 Experimental Setup and Procedure

4.1.1 Setup

All test systems were placed in an Aerolab Educational Wind Tunnel, which has a 12 in or

305 mm square test chamber cross section, as shown in Figure 4.1. An Omega vane-type

anemometer was used to calibrate the tunnel’s wind speed control to within ±0.05 m/s.

A Micro-Epsilon optoNCDT 1302 laser vibrometer was used to measure the amplitude and

frequency of the tip displacement. Parallax error was addressed as documented in Appendix

A. Because the model evaluation procedure requires a large number of trials in different

configurations, non-contact displacement measurement was selected as the best comparative
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Free stream
wind

Laser vibrometer

Tip body
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Wind tunnel test section
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12 in

Figure 4.1: Schematic of the experimental system layout.

Beam No. Lb (m) Wb (m) tb (m) Material ηb
(
kg/m

)
Eb (GPa)

1 0.254 0.0317 0.0025 Aluminum 0.17 30.8
2 0.254 0.0158 0.0025 Aluminum 0.078 30.8
3 0.343 0.0317 0.0025 Aluminum 0.17 30.8
4 0.432 0.0317 0.0025 Aluminum 0.17 30.8
5 0.245 0.03 0.0008 Mild steel 0.15 200
6 0.245 0.03 0.0008 Stainless steel 0.18 200
7 0.285 0.03 0.0008 Stainless steel 0.18 200

Table 4.1: Beam configurations for experimental trials. Beam 5 was laminated with a
piezoelectric strip at its base.

criterion, as Bibo has already validated the linear electrical damping contribution ζe of the

harvesting circuit and established the displacement-power relationship given in Equation

3.52 [15]. Working in terms of displacement avoids the cost and repeatability challenges

of supplying and positioning new piezoelectric patches for each beam configuration. The

collection of beams and the numbered configurations are documented in Table 4.1.

The bluff bodies used in all trials are based around a square profile or a trapezoidal

profile with the proportions shown in Figure 4.2 and the dimensions provided in Table 4.2.

The bluff bodies were mounted on the beam such that the tip of the beam was embedded

into the center of the bluff body.
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D 0.75D

D

Figure 4.2: The proportions of the square (left) and the trapezoidal (right) bluff bodies.

Body Square Trapezoid
Mass (kg) 0.0451 0.0370
D (m) 0.0254 0.0254
H (m) 5.75D 5.75D

Table 4.2: Dimensions of bluff bodies.

4.1.2 Procedure

The experimental trials were started from rest, with no initial movement of the oscillator.

The wind tunnel was rapidly ramped up to the desired wind velocity and the displacement

response was measured at the tip of the beam. The time history data was passed through a

Butterworth filter to smooth out noise and produce a waveform with time-varying amplitude

as shown in Figure 4.3.

The amplitude of the waveform in Figure 4.3 can be scaled by D to determine a, which

can then be used to find α̂ from Equation 3.53 or to find the output power using Equation

3.52.

The determination of the damping coefficient is critical to the analysis of the experimental

data. This was accomplished by recording a time history of the free decay of the system

from an initial condition similar in magnitude to the steady state oscillation of the system.

If a quadratic air damping term ζa|ẏ|ẏ is passed through the method of multiple scales,

the modulation equation for the amplitude of free decay becomes

da

dτ
= −ζma−

4

3π
ζaa

2. (4.1)
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t

Figure 4.3: An example time history as measured by the vibrometer.

Figure 4.4: An example quadratic fitment used to find the damping coefficients.

The values of a and da
dτ were extracted from the data and a quadratic curve fit was

used to find ζm and ζa as shown in Figure 4.4. As discussed in Section 3.1.4, the quadratic

damping components are neglected: the vortex shedding responsible for the aerodynamic

viscous damping only occurs in still air.

“Steady state” data is taken once the system response has reached a plateau, as seen after

50 seconds in Figure 4.3. “Transient” data encompasses the amplitude growth period from

0–50 seconds in this example. It is important to make the distinction that “transient” refers

to the amplitude growth of the body and not the wind condition, as the wind condition is
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considered steady.

4.2 Square Body

4.2.1 Steady State Amplitude

The first step in evaluating the model is to pick a single bluff body and examine whether the

analytical approximation for amplitude can predict the steady-state oscillation amplitude

of the system. The square body is selected as the initial test case due to its ubiquity in

literature, possessing the following quasi-steady aerodynamic coefficients:

A1 = 3

A2 = −39.861

A3 = 626.7

A4 = −4299.43

A5 = 14545.766

A6 = −28379.839

A7 = 34312.317

A8 = −26226.065

A9 = 12369.416

A10 = −3292.734

A11 = 378.995

(4.2)

The results for the steady state angle of attack are presented in Figure 4.5. Note that the

true cut-in wind speed is notoriously hard to determine for systems with very low damping

coefficients, so the initial U∗ of each data set should not be interpreted as such [10]. Loosely

speaking, however, it can be observed that the data sets might tend to target a cut-in in the

area of 0.3–0.6, similar to the quasi-steady prediction.

The “universal” solution provided in Equation 3.54 would predict that all data points

would coincide with the solid blue line. Clearly, however, the model is insufficient to describe

the performance of the physical system, and α̂ is dependent on more model parameters than

simply U∗ due to the affect of body rotation. The missing parameter will be investigated

using analysis of the transient growth of the amplitude.
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Figure 4.5: Steady state amplitude results for the square body. The error bars on the data
for Beam 2 indicate the spread of data when repeated 10 times.

4.2.2 Growth Analysis

Based on the existing knowledge of bluff body aerodynamics, it can be expected that the

square body would be strongly influenced by flow curvature due to the closeness of the

afterbody to the shear layers in the surrounding flow. As discussed in Section 2.3, the effects

of flow curvature are often categorized as a function of a parameter k, the inverse of U . If

curvature effects change the aerodynamic forces on the body as a function of U , then there is

no single set of aerodynamic coefficients that can generate a universal solution and Equation

3.54 breaks down.

Unsteady aerodynamics typically involve explicit time dependent terms to consider forces

which decay into steady-state values. Even steady-state vortex shedding is a time-dependent

phenomena. Attempting to model the exact time-dependent influence of the rotation of the

bluff body would require numerical fluid-structure interaction simulation. To the author’s

knowledge, there is not yet a useful closed-form approximation of such a phenomenon.

However, the phenomenon of galloping is not time-explicit, as it acts as a function of
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the body motion. Similarly, the phenomenon of dynamic stall can be described in terms

of the motion of the airfoil without explicit time scales. As the body periodically rotates

through its path, the curvature affects must also fall into a pattern such that the net force

experienced by the body can be stated as a function of position (or angle of attack) rather

than time. In this way the influence of curvature might be interpreted through its average

effect. The experimental results showed little to no influence of any explicit time-dependent

influence, strengthening the idea that the curvature can be expressed through a new “effective”

aerodynamic force curve

CN (α,U) =

n∑
j=1

Aj(U) · |α|j · sgn(α) (4.3)

where the coefficients Aj are functions of U .

Whereas the steady-state data gives one indicator of system response over a range of U or

U∗, the build-up of oscillation amplitude provides insight into the system dynamics at a single

U . The modulation equation derived from the method of multiple scales (Equation 3.48)

provides a trajectory for the oscillation amplitude in terms of the aerodynamic coefficients

Aj . Therefore, if the time history of the oscillation amplitude is known, then the modulation

equation can be used “in reverse” to provide insight into the aerodynamic coefficients.

Two approaches will be used in the transient growth analysis: Slice-by-Slice and Aggregate

methods.

Slice-by-Slice

When the aerodynamic coefficients are taken as functions of U , the growth rate of a can be

viewed as a function of two variables: U and a. Each experimental trial at a constant U is

treated as one “slice” of a larger cloud of data in the U × a × da
dτ space. This slice can be

fitted with a polynomial function of a matching the form of Equation 3.48. The transient
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Figure 4.6: An example 9th-order fitment used to find the effective aerodynamic coefficients.
The thin line is the polynomial fit.

growth of the amplitude always followed some sort of polynomial trajectory, validating the

presumption of an effective or averaged aerodynamic force curve.

When the procedure was applied to all of the tested data, the slices could be combined

into a single 3D plot. A clear evolution in aerodynamic behavior emerged, as shown in

Figure 4.7, a 3D plot of Equation 4.3. The slope at α = 0, A1, varies little with U , so the

cut-in U∗ is expected to remain roughly the same, as hinted at during the initial inspection

of the steady-state results. Although there is a strong peak in CN at low values of U , the

aerodynamic curves begin to decay into the quasi-steady curve as U increases. The effect

of the flow curvature does not completely disappear in the present data set, though, as the

rotation results in galloping over a much broader range of α0.

The features of the surface in Figure 4.7 can be broken into the zero crossings in Figure

4.8 and the peak CN values in Figure 4.10. Figure 4.8 shows that α0 is initially below the

quasi-steady value for low U and increases with U . It is known that increasing the Reynolds

number tends to increase the angles of flow reattachment and shifts the force polynomial to

higher α [2], but the scatter in Figure 4.9 suggests that the effect is not primarily due to the

changing Reynolds number.
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Figure 4.7: A LOWESS surface interpolation of the effective aerodynamic polynomials for
each growth time history recorded. R2 = 0.93.

Figure 4.8: The roots of the aerodynamic polynomial α0 as a function of U .
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Figure 4.9: The roots of the aerodynamic polynomial α0 as a function of the Reynolds
number.

Recalling the expression of CN as

CN = CL cosα− CD sinα

it becomes apparent that at higher α, the drag component has increasing influence. As

shown in Figure 2.12, rotation of the body induces roll-up of a vortex behind the body,

decreasing the base pressure and increasing the drag force. The likely physical explanation

for the dip below the quasi-steady α0 is that the strong curvature at low U creates a large

drag component that takes over at smaller α and forces CN to zero.

Recall that the universal solution indicates that as ζm → 0, U∗ →∞, and α̂ eventually

reaches a plateau slightly beyond α0. In other words, ζm can be manipulated so that the

system can achieve the same α̂ for any U . The significance of Figure 4.8 is that U can influence

the potential steady-state amplitude of the system independently from ζm. Therefore, U

becomes a design parameter of interest.

The variation of the peak CN with U is presented in Figure 4.10. There is a loosely

grouped hump at low U followed by a steady decline to the quasi-steady peak value. Figure

4.10 displays the interplay between the lift and drag forces. At the lowest U , the strong drag
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Figure 4.10: The peak lift coefficient.

reduces CN greatly and CN does not develop fully. Beyond the peak at which CL and CD

are optimally balanced, the decreasing curvature causes a reduction in suction, lowering the

peak CN .

A precise model for capturing the U dependence of the aerodynamics has not yet been

established, to the author’s knowledge. However, a surface fit of the CN data could potentially

provide an improvement over the quasi-steady model as it stands.

The Slice-by-Slice method offers fast convergence on the fitments of the individual trials

and provides a quick overview of general trends in the data. However, the discrete treatment

of each experimental trial does not lend itself to generating a single useful function to

supplement the quasi-steady data. Therefore, the Aggregate method will be applied.

Aggregate

The Slice-by-Slice method provided enough insight to suggest that, for a given body, CN

could be described by a single surface in α and U . It is of interest to identify such a “best-fit”

surface using all the experimental data in one calculation. To this end, the universal equation

can be rearranged to separate the aerodynamic parameters on the right-hand side and the
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remaining harvester parameters on the left-hand side.

1

U∗

[
dα̂

dτ∗
+ α̂

]
= 2

n∑
j=1

Aj(U)α̂jCj (4.4)

Let Aj take the assumed form

Aj = c1je
−c2jU + c3je

−c4jU + c5je
−c6jU +Aj,qs (4.5)

where Aj,qs is the quasi-steady aerodynamic coefficient value and c2j , c4j , and c6j are positive.

Because the experimental data provides a value for 1
U∗

dα̂
dτ∗ and α̂

U∗ at every τ∗ and U , the

remaining free parameters, the c values, can be fitted using global optimization algorithms.

An objective function Fobj over all N collected data points can be stated

Fobj =

N∑
k=1

(
1

U∗k

[
dα̂

dτ∗

∣∣∣∣
k

+ α̂k

]
− 2

n∑
j=1

(
c1je

−c2jUk + c3je
−c4jUk + c5je

−c6jUk +Aj,qs
)
α̂jkCj

)2

(4.6)

Differential evolution was adopted as an optimization algorithm to minimize the objective

function using the freely available MATLAB code deopt.m [67]. Due to the intensive

calculations required, the optimization was computed on the Palmetto Cluster. The resulting

CN surface after 20 000 iterations is given in Figure 4.11.

The “dip” in the top of the surface is not physically relevant and is the result of insufficient

iterations of the optimization algorithm. However, the surface does provide significantly

better prediction of the steady-state amplitude of the galloping system, as shown in Figure

4.12.

While refined optimization methods would improve the physical accuracy of this CN

surface, the potential usefulness of a CN surface is apparent even with rudimentary fitting.
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Figure 4.11: CN surface found by minimizing Equation 4.6.

Figure 4.12: Steady state amplitude results for the square body. The error bars on the data
for Beam 2 indicate the spread of data when repeated 10 times. Predictions made with CN
surface found by minimizing Equation 4.6 (shown in Figure 4.11).
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Figure 4.13: Steady state amplitude results for the trapezoidal body. The trials were
conducted on Beam 1.

4.3 Trapezoidal Body

Just as the sensitivity of the square body to flow curvature might be expected due to its

afterbody, it might also be expected that the trapezoidal profile would be less sensitive to

curvature due to the taper in its afterbody. To briefly examine the validity of this expectation,

steady state data was collected for the trapezoidal body on Beam 1. Beyond significant

amplification at low U∗, the quasi-steady model very accurately predicts the response of the

body with coefficients extrapolated from data from Luo (all even coefficients zero) [1]:

A1 = 0.6, A3 = −6, A5 = 237, A7 = −1300 (4.7)

To further investigate the amplification at low U∗, the amplitude growth histories were

analyzed using the Slice-by-Slice method and presented as an interpolation surface in Figure

4.14. As can be seen, the slope at α = 0 is strongly amplified by the curvature of the flow,

explaining how the beam-mounted model began galloping before the quasi-steady model

predicted. Although the trapezoid was expected to be less sensitive to curvature than the
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Figure 4.14: A LOWESS surface interpolation of the effective aerodynamic polynomials for
each growth time history recorded for the trapezoid. R2 = 0.98.

square, its tapered side faces may allow it to capitalize on strong vortices rolled up behind

the body; on the square, the rolled up vortex is trapped by the rear face and contributes

exclusively to drag, whereas the trapezoid might feel the vortex on its side face with both

lift and drag components. Finally, because quasi-steady theory places the side faces very far

from the shear layers, any curvature will offer large relative gains in suction because there

was little at the start.

Just as in the square case, there is a boost in the peak CN at low U . However, as U grows,

the aerodynamic curves for the trapezoid do tend toward the quasi-steady case with much

better convergence than the square body. In this sense, the trapezoid might be considered

“less sensitive” to curvature.
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4.4 Summary

The quasi-steady model fails to accurately predict the behavior of the square and trapezoidal

bodies in galloping oscillation when mounted to a cantilever beam. The quasi-steady model

under-predicts the amplitude of oscillation because it fails to consider the effect of body

rotation. If the effects of body rotation are averaged into an effective aerodynamic curve,

careful analysis of the data indicates that such a curve would be a function of two parameters,

α and U .

Two methods were used to analyze experimental data for the square body, providing

insight into the evolution of the effective aerodynamic curve with respect to U . Both methods

demonstrate the usefulness of employing a surface in α × U × CN space instead of the

traditional 2D curve in α× CN space.

The trapezoidal body was also considered as an example of geometry less sensitive to

curvature effects. It can be seen that the true behavior approaches quasi-steady behavior at

high U . Therefore, the model is conditionally validated.

Although the quasi-steady assumption fails, the remarkable result is that the overall

structure of the aerodynamic model remains intact, permitting the use of aerodynamic force

curves, or even surfaces. Considering aerodynamic surfaces opens the door for new methods

of optimization. In addition to optimizing the parameters in the harvesting circuit, the

natural frequency of the oscillator now presents a method of tuning U for a given V in an

environment.
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Chapter 5

Geometric Optimization

5.1 Identification of Key Parameters

Due to the experimental complexity of analyzing new bluff geometries, it is useful to assess

potential areas of improvement before dedicating significant experimental resources in the

investigation of a particular geometry.

To evaluate how the response depends on the aerodynamic coefficients, we can examine

a large number of possible system outputs generated by the universal model in Equation

3.54. These outputs were formed using a number of 7th-order, odd aerodynamic polynomials

grouped by (i) a constant zero-crossing angle α0 and (ii) a constant U∗A1. Recall that the nth-

order polynomial coefficient is given by An. These collections reduce the nondimensionalized

power output to a function of two variables, plotted as a surface in Figure 5.1 for α0 = 15.7◦

(matching the classical Parkinson data [68]) and in Figure 5.2 for α0 = 20.7◦.

While Figures 5.1 and 5.2 only capture a section of the surface, the visible portion is

representative of the trend. It is apparent that, for a fixed α0 and U∗A1, there exists an

output plateau beyond which no aerodynamic polynomial can improve the response. However,

by comparing Figures 5.1 and 5.2, it is apparent that when α0 is increased and U∗A1 remains
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Figure 5.1: Universal response surface for αre = 15.7◦ and U∗A1 = 2. White streak bounds
a fold in the surface.

fixed, there is a significant jump in the plateau magnitude.

The white streak found within the surfaces in Figures 5.1 and 5.2 is representative of

a cyclic fold bifurcation (CFB) and bounds an unstable solution region for P ∗/(U∗)2. A

similar result in the α̂ × U∗ space arises in Figure 3.6, wherein a region of instability is

bounded by two CFBs. As an example, the Parkinson model oscillator is in this region for

1.25 < U∗A1 < 1.84.

Since all the polynomials are scaled by A1, it is necessary to examine how the output

varies with A1 while α0 and U∗ are fixed. This is most easily accomplished by examining

a slice of the P ∗/(U∗)2 surface. For convenience, consider the slice containing the set of

coefficients corresponding to Parkinson’s model, shown in Figure 5.3, where several curves

are plotted for multiples of the value provided by Parkinson, i.e. A1 = 0.5 ·2.69, A1 = 1 ·2.69,

and A1 = 2 · 2.69. The observable trend is that significant changes of A1 have very little

effect on the potential power output, especially for a body such as the square, which is seen

to already be near its own plateau; the maximum value of P ∗/(U∗)2 only increases by less
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Figure 5.2: Universal response surface for αre = 20.7◦ and U∗A1 = 2. White streak bounds
a fold in the surface.

Figure 5.3: A slice of the universal response surface on the plane containing the Parkinson
model for the square (black dot). α0 = 15.7◦ and U∗ = 1.
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than 1% when A1 is increased from A1 = 0.5 · 2.69 to A1 = 4 · 2.69. Therefore, we can

conclude that the most effective way to increase power output is to focus efforts on increasing

α0. Since α0 is closely preceded by αre, an increase in the reattachment angle should be

accompanied by an increase in the potential output.

5.2 Adjusting the Reattachment Angle

The most straightforward way to increase the reattachment angle is to pull the side faces

away from the shear layer, requiring more rotation to bring the side faces into close enough

proximity with the shear layers to reattach. The effectiveness of this method is shown in the

work of Luo et al. [1], who measured the CN curves for square, trapezoidal, and triangular

prisms with the bluff face of width D leading. As the rear face width ranged across D

(square), 0.75D (trapezoid 1), 0.5D (trapezoid 2), and 0 (triangle), the reattachment angles

increased from αre = 12◦, to 20◦, to 24◦, and to 32◦, respectively, as was shown in Figure 2.2.

The disadvantage of tapering the afterbody is that the large distance between the side

faces and the shear layers around α = 0 inhibits significant interaction between the body

and the flow. This is observed in the very small or even negative instability around α = 0.

Recall that U∗A1 = 1 is a requirement for galloping from rest, and U∗ is always positive.

Therefore, we see that a body that is unstable over a greater range of α will produce more

power only if sufficient stimulus is received. Although the triangular body clearly possesses

the greatest potential output, it acts as a “hard” oscillator, and will not begin to self-excite

unless provided a sufficient initial condition. Even the trapezoid 1, with a positive A1, would

require a very high cut-in speed of U∗ = 1.7 (consider the square, which requires U∗ = 0.33).

An ideal oscillator would combine the at-rest instability of the square profile with the

high-amplitude performance of a more tapered geometry. This goal requires side faces

both (1) near the flow to promote at-rest instability and (2) far from the flow to allow for
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D

w   D<<

Figure 5.4: Placement of the splitter plate on the body. The width of the plate is small
with respect to D.

reattachment at high angles of attack. One feature comes at the cost of the other.

To alleviate the compromise, consider introducing a secondary side surface by extending a

splitter plate from the trailing face of the bluff profile, as shown in Figure 5.4. The placement

of a streamwise-oriented plate behind the bluff body is not original to this work. Assi [69]

found that the addition of a short (< D) splitter plate fixed to a circular cylinder amplified

galloping response. Although the circular cylinder is not usually prone to gallop due to the

lack of asymmetry in its afterbody, the plate extended into the flow field and provided a

point of reattachment for the shear layers, allowing the galloping mechanism to be exploited.

To understand how the plate might affect the flow around a square body, consider

Bearman’s work [70] in which he examined the flow behind a stationary bluff cylinder with

splitter plates of varying lengths and observed an increase in shear layer curvature, an

influence most pronounced at plate lengths < 1.5D. Furthermore, Bearman showed that the

addition of a splitter plate behind the body provides for two new interacting shear layers

coming off the trailing edges of the square body. The cavity formed between the rear face and

the plate traps a secondary recirculation bubble which can aid in lift production. In addition

to potentially affecting the lift, the splitter plate was accompanied by a sharp increase in

base pressure, reducing drag. Although Bearman did not examine the effect of inducing an

angle of attack, the relation between Cdrag and Ca demonstrates that a reduction in drag at

any α will increase the force experienced by the harvester at that angle.
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(a) (b)

Figure 5.5: Trapezoid (a) without and (b) with a 4 cm tail at 10◦ rotation in 2.5 m s−1 wind.

5.3 The Addition of a Tail Fin

Fog-based flow visualization tests were run for several profiles in a low-speed wind tunnel

environment to note the difference in flow patterns caused by the tail. The clarity of the

flow visualization photographs is an area of improvement for future work. Specifically, fog

consistency and streamline definition demand attention. However, a few interesting notes

can be made. Figure 5.5 allows a side-by-side comparison of a single trapezoidal profile under

equivalent conditions with and without a tail fin. Comparing Figures 5.5 (a) and 5.5 (b)

shows that the boundary layer over the upper face of the body hugs more closely to the face

on the body with a tail. Furthermore, one can observe the increased curvature of the shear

layer around the end of the tail in Figure 5.5 (b). This curvature seems to indicate a lower

pressure on the upper face of the body, potentially due to a lowered base pressure on the

downwind face of the body. These observations would tend to confirm that adding the tail

fin permits a higher net lift at the same angle of attack.

The results of increasing the angle of attack to 15◦ are shown in Figure 5.6. Although
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(a) (b)

Figure 5.6: Trapezoid (a) without and (b) with a 4 cm tail at 15◦ rotation in 2.5 m s−1 wind.

both the separated regions in Figure 5.6 are smaller than those in Figure 5.5, the body with

the tail has a thinner boundary region, indicating greater suction on the upper face. The

shape of the upper shear layer also gives a hint as to the flow around the bodies. The shear

layer over the body without a tail, as seen in Figure 5.6 (a), has several large ripples or

undulations as it extends from the trailing edge of the top face to the leftmost edge of the

photograph. These ripples would tend to indicate strong disturbances in the wake, a typical

feature of bluff body wakes. However, Figure 5.6 shows a smooth shear layer extending

from the leading edge of the body to the very tip of the tail. This continuity would tend to

indicate that the flow above the tail is trapped and does not disturb the shear layer in the

same way as a wake would. As a trapped recirculation bubble is a region of low pressure,

the tail appears to increase the suction on the upper faces of the body.
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5.4 Experimental Investigation

The steady-state amplitude was recorded for a variety of plate lengths affixed to the square and

trapezoidal bodies mounted on Beam 1. Small fluctuations in tip mass did not significantly

vary the natural frequency; each system was exposed to approximately the same range of U

to keep rotational effects consistent. The results for the square body are presented in Figure

5.7.

The results for a body without a tail and a body with a tail of length 0.25D are very

similar. As the tail length increases to 0.5D, however, the steady state α̂ value further

increases for higher values of U∗. The maximum value of α̂ is achieved by the body with a

1D length tail.

Perhaps more interesting than the maximum α̂ value is the monotonic decrease in

performance at lower values of U∗ as tail length increased. At first glance, this decrease may

be due to the effects of body rotation on the galloping mechanism. Further work may repeat

the analysis of Section 4.2 for bodies with various tail lengths to evaluate the effect of body

rotation as it pertains to tail length.

A similar trend is observed in the results for the trapezoidal body, shown in Figure 5.8.

The maximum α̂ increases with tail length up to a certain point, in this case 0.4D tail length,

after which the maximum α̂ decreases with increasing tail length.

Also similar is the monotonic decrease in performance at lower U∗ with increasing tail

length. As discussed previously, the trapezoid is naturally less sensitive than the square to

flow curvature. Therefore, the similarity between the square and trapezoidal results may

tend to indicate an underlying phenomena independent from body rotation.

For most design implementations, the system parameters may be selected so that the

harvester will generally operate in a target range of U∗. Therefore, an “optimum” length

may be selected for the desired target range.
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Figure 5.7: Steady state amplitude for the square body.

Figure 5.8: Steady state amplitude for the trapezoidal body.
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Although there is some trade-off in the maximum amplitude, the “optimum” plate length

for the square appears to be the 0.75D plate length. The dramatic decrease in performance

between 1D and 1.5D tail lengths is in good agreement with Bearman’s observation that the

continuous shear layer that provides suction over the top of the body breaks down when the

tail length > 1D.

The results for the trapezoid in Figure 5.8 show a preference for shorter plate lengths.

Furthermore, the boost in amplitude is not as large as for the square, owing to the already

advantageous profile of the tapered afterbody. Depending on the target environment, it

appears as if the “optimum” plate length is about 0.4D.

Further experimental trials were run to explore the effects of the plate on output power.

The following experiments were conducted using different bodies and beams than previously

used. Three bluff profiles were examined: a square, trapezoid (0.75D trailing face), and a

triangle (bluff face to vertex length: D, similar to Luo’s experiments). all with characteristic

cross-stream width D = 5 cm and height 10 cm. Each body was mounted on a mild steel

beam with length 21.5 cm, width 3 cm, and thickness 0.635 mm. Each profile was tested with

no plate, a 2 cm plate, and a 4 cm plate. The plate was fixed to the base of the bluff body at

the point of attachment to the beam. The plates were notched to avoid interference or any

stiffening effects between the beam and the plate. The natural frequency of all systems were

equalized before each trial.

A Smart Materials M8528 P2 Macro Fiber Composite strip was glued to the side of the

beam to serve as a voltage generator, and a R = 593 kΩ load resistance was connected. The

voltage output was divided and measured by a National Instruments MyDAQ ported through

a MATLAB Butterworth filter.

The results are presented in Figure 5.9. Two tail lengths for both bodies are included to

establish corroboration with the results from the previously discussed experiment. At first

look, the agreement is remarkable: (1) the top performer is the trapezoid with a 0.4D tail,
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Figure 5.9: The nondimensional output power generated experimentally.

(2) the best performing square combination uses the 0.8D tail, and (3) the square with a

0.4D tail performed worse than that with a 0.8D tail but better than the square with no tail.

However, some results were unexpected. The measured response of the trapezoid with the

0.8D tail is in disagreement with the results shown in Figure 5.8. Furthermore, the triangle,

being a hard oscillator, did not gallop from rest without a tail and did not demonstrate

steady-state galloping with the 0.4D tail, but with the 0.8D tail, the body had enough

instability to gallop from rest.

For both the square and the trapezoid, the addition of the tail fin allowed a significant

optimization of the output power. The trapezoid with 0.4D and 0.8D tails, respectively,

experienced a maximum 28% and 24% improvement in output power, while the square with

the same tails experienced a maximum 27% and 60% improvement, respectively. The straight

sides of the square body are relatively limiting with respect to the reattachment angle, so it

is reasonable that it experiences the greatest percent improvement.
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Chapter 6

Conclusions and Future Work

The first objective of this work was to identify the physical mechanisms at work when

a galloping body is exposed to finite tip rotation. To this end, a review of bluff body

aerodynamics identified some known fluid mechanisms which operate on rotating bodies. It

was shown in Chapter 2 that the quasi-steady theory, which has traditionally been applied

to model galloping behavior, is insufficient to describe the aerodynamics around a galloping

body in the presence of finite tip rotation. The flow curvature induced by the rotating body

has profound effects on the lift and drag experienced by the body.

To help understand how a GFEH with tip rotation deviates from behavior predicted by

the quasi-steady theory, the traditional dynamical model was adapted in Chapter 3 to include

the kinematic effects of tip rotation. After the traditional linearized Euler-Bernoulli beam

model was compared with a large-displacement formulation to test the limits of the small

angle assumption, it was found that a linear displacement-to-rotation ratio can accurately

predict the rotation of the tip of a cantilever beam over a useful range of displacement

amplitude. This linear relationship was employed to develop a closed-form approximate

analytical solution to the GFEH response. After developing the solution, it was shown that

neglecting the tip rotation will always over-predict the output power of a GFEH, highlighting
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the importance of its inclusion in future work.

The approximate analytical solution was employed to infer the effect of tip rotation on

the effective aerodynamic forces on the GFEH system based on a number of experimental

trials in Chapter 4. Although the quasi-steady assumption fails, the remarkable result is that

the overall structure of the aerodynamic model remains intact. The analysis suggests the

existence of a unifying theory sufficient to modify existing aerodynamic force descriptions to

be functions of some tip rotation factor. The aerodynamic model adopted by the present

work to account for tip rotation demonstrated potential improvement over the quasi-steady

model but further work is required to refine the necessary optimization algorithms.

The second objective sought to optimize the power output of GFEH using geometric

modifications inspired by an understanding of the underlying physics. The quasi-steady

model employed for GFEH design indicated that the critical limiting factor for steady-state

power production is the angle of attack at which flow reattaches to the bluff body. Relevant

literature on bluff body aerodynamics suggested that a splitter plate extending from the

trailing face of the bluff body can be used to alter the flow over the body. Therefore, a

GFEH was proposed in Chapter 5 that employs a splitter plate as a tail fin to adjust the

reattachment angle of attack.

The performance enhancement was clear in experimental trials. Furthermore, using a

tail fin on some bluff profiles, such as the triangle, can increase the useful range of galloping

instability for energy harvesting. Initial experimental trials indicate that an optimized

oscillator benefits from both a tapered main body and an attached splitter plate, as the best

performer was an augmented trapezoid. Significant work remains to ascertain the optimum

configuration and how the “optimum” may vary for different environmental considerations.
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Appendix A

Parallax Correction

Let ∆m denote the measured value from the vibrometer as shown in Figure A.1. For square

bodies, w = 1
2D. For trapezoidal bodies, w = tan−1

(
1−r
2

)
where r is the ratio of front to

back face width (i.e., for r = 0.75 the rear face is 0.75D). The true ∆Y can be calculated as

∆Y = ∆m− w + w cos θ − (∆X − w sin θ) tan (θ − φ) . (A.1)

w{

{

{measured
distance

ΔY
θ

from vibrometer

{

ΔX

ϕ

Figure A.1: Diagram for the method of parallax correction.
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Appendix B

ANSYS APDL Code for Beam

Simulation

1 /PREP7

2 *SET,WIDTH,0.0025

3 *SET,HEIGHT,0.015

4 *SET,LENGTH,0.3

5 *SET,TIPMASS,0.15

6 *SET,TIPINERTIA,5e-6

7 *SET,TIPWIDTH,SQRT((TIPINERTIA - TIPMASS*0.005**2)/(1/12*TIPMASS) - 0.005**2)

8 *SET,FORCING,4*9.81

9 *SET,NODENUM,32 ! MAKE SURE OUTPUT FILE FORMAT MATCHES

10 *SET,EVALTIME,10

11

12 /UNITS,MKS

13

14 !*** SET MATERIAL PROPERTIES

15 ! FOR THE BEAM

16 MPTEMP,1,0

17 MPDATA,EX,1,,70e9

18 MPDATA,PRXY,1,,.3

19 MPDATA,DENS,1,,2700

20 ! FOR THE TIP BODY
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ANSYS APDL Code for Beam Simulation

21 MPDATA,EX,2,,200e9

22 MPDATA,PRXY,2,,.3

23 MPDATA,DENS,2,,TIPMASS/(0.005*TIPWIDTH*HEIGHT)

24

25 !*** SET BEAM GEOMETRY

26 SECTYPE, 1, BEAM, RECT, , 0

27 SECOFFSET, CENT

28 SECDATA,WIDTH,HEIGHT,0,0,0,0,0,0,0,0,0,0

29 SECTYPE, 2, BEAM, RECT, , 0

30 SECOFFSET, CENT

31 SECDATA,TIPWIDTH,HEIGHT,0,0,0,0,0,0,0,0,0,0

32

33 !*** DEFINE MESH

34 ! DEFINE NODES

35 N,1,0,0,0

36 N,NODENUM-1,LENGTH,0,0

37 FILL,1,NODENUM-1

38 N,NODENUM,LENGTH+0.005,0,0

39 ! FIX ONE END

40 D,ALL,UZ,0,,,,ROTX,ROTY

41 D,1,ALL

42 ! DEFINE ELEMENT TYPE

43 ET,1,BEAM188

44 ! DEFINE ELEMENTS FOR BEAM

45 TYPE,1

46 MAT,1

47 REAL,

48 ESYS,0

49 SECNUM,1

50 TSHAP,LINE

51 E,1,2

52 EGEN,NODENUM-2,1,-1

53 ! DEFINE ELEMENT FOR TIP BODY

54 TYPE,1

55 MAT,2

56 REAL,

57 ESYS,0
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ANSYS APDL Code for Beam Simulation

58 SECNUM,2

59 TSHAP,LINE

60 E,NODENUM-1,NODENUM

61

62 !*** SOLVE FOR FIRST MODAL FREQUENCY

63 /SOL

64 ANTYPE,2

65 MODOPT,SUBSP,5

66 MXPAND,5, , ,0

67 LUMPM,0

68 PSTRES,0

69 MODOPT,SUBSP,5,0,0, ,OFF

70 RIGID,

71 SUBOPT,STRMCHK,0

72 SUBOPT,MEMORY,AUTO

73 SOLVE

74 FINISH

75 /POST1

76 ! SET FORCING FREQUENCY TO NATURAL FREQUENCY

77 *GET,FORCING_FREQ,MODE,1,FREQ

78

79 ! ENTER SOLUTION MODE

80 /SOL

81

82 ! DEFINE ACCELERATION INPUT

83 *DEL,_FNCNAME

84 *DEL,_FNCMTID

85 *DEL,_FNC_C1

86 *DEL,_FNC_C2

87 *DEL,_FNCCSYS

88 *SET,_FNCNAME,’shaker’

89 *DIM,_FNC_C1,,1

90 *DIM,_FNC_C2,,1

91 *SET,_FNC_C1(1),FORCING

92 *SET,_FNC_C2(1),FORCING_FREQ

93 *SET,_FNCCSYS,0

94 *DIM,%_FNCNAME%,TABLE,6,4,1,,,,%_FNCCSYS%
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ANSYS APDL Code for Beam Simulation

95 ! Begin of equation: FORCING*sin(FORCING_FREQ*{TIME})

96 *SET,%_FNCNAME%(0,0,1), 0.0, -999

97 *SET,%_FNCNAME%(2,0,1), 0.0

98 *SET,%_FNCNAME%(3,0,1), %_FNC_C1(1)%

99 *SET,%_FNCNAME%(4,0,1), %_FNC_C2(1)%

100 *SET,%_FNCNAME%(5,0,1), 0.0

101 *SET,%_FNCNAME%(6,0,1), 0.0

102 *SET,%_FNCNAME%(0,1,1), 1.0, -1, 0, 1, 18, 3, 1

103 *SET,%_FNCNAME%(0,2,1), 0.0, -1, 9, 1, -1, 0, 0

104 *SET,%_FNCNAME%(0,3,1), 0, -2, 0, 1, 17, 3, -1

105 *SET,%_FNCNAME%(0,4,1), 0.0, 99, 0, 1, -2, 0, 0

106 ! End of equation: FORCING*sin(FORCING_FREQ*{TIME})

107 ACEL,,%shaker%,

108

109 ! SET UP NONLINEAR TRANSIENT SIMULATION

110 ANTYPE,4

111 TRNOPT,FULL

112 LUMPM,0

113 NLGEOM,1

114 DELTIM,0.00075,0.000001,0.001

115 OUTRES,ERASE

116 OUTRES,NSOL,ALL

117 BETAD,0.001

118 TIME,EVALTIME

119 SOLVE

120

121 !*** SAVE DATA IN .TXT FILE

122 /POST26

123 ! ALLOCATE VARIABLE STORAGE

124 NUMVAR,200

125 ! SET VARIABLE NAMES FOR ALL NODAL DISPLACEMENT SOLUTIONS

126 *DO,loop_counter,2,NODENUM,1

127 NSOL,loop_counter,loop_counter,U,Y

128 NSOL,loop_counter+NODENUM,loop_counter,U,X

129 *ENDDO

130 ! STORE VARIABLES

131 STORE,MERGE
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ANSYS APDL Code for Beam Simulation

132 ! DETERMINE SIZE OF SOLUTION ARRAYS

133 *GET,size,VARI,,NSETS

134 ! ALLOCATE ARRAYS

135 *dim,UYMAT,array,size,NODENUM

136 *dim,UXMAT,array,size,NODENUM

137 ! FILL FIRST COLUMN WITH TIME VECTOR

138 VGET,UYMAT(1,1),1

139 VGET,UXMAT(1,1),1

140 ! FILL SUBSEQUENT COLUMNS OF UYMAT WITH DISPLACEMENT IN Y

141 *DO,loop_counter,2,NODENUM,1

142 VGET,UYMAT(1,loop_counter),loop_counter

143 *ENDDO

144 ! FILL SUBSEQUENT COLUMNS OF UXMAT WITH DISPLACEMENT IN X

145 *DO,loop_counter,2,NODENUM,1

146 VGET,UXMAT(1,loop_counter),loop_counter+NODENUM

147 *ENDDO

148 ! WRITE TO FILE

149 *MWRITE,UYMAT(1,1),displacement_y,txt,,,NODENUM,NSETS,1

150 (31((f)’,’)(f))

151 *MWRITE,UXMAT(1,1),displacement_x,txt,,,NODENUM,NSETS,1

152 (31((f)’,’)(f))

153

154 /EOF
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Appendix C

Uncertainty in U∗

The experimental results rely heavily on the correct identification of the mechanical damping

ratio ζm. If overestimated, the results will suggest that the system experiences a large

aerodynamic force to overcome an artificially inflated mechanical dissipative element. If

underestimated, the results will similarly underpredict the amount of work input by the fluid

flow.

To appreciate the sensitivity of the experimental interpretation, consider an uncertainty

propagation analysis of U∗, a critical parameter in the approximate analytical solution

(Equation 3.54). The total uncertainty is equal to the root-sum-of-squares of the zeroth order

uncertainty contributions of all the component measurements: D,H,V ,ρa, ζm, ω, and Meff .

U∗ =
ρaV DH

4ζmωMeff
(C.1)

uU∗ =

[(
∂U∗

∂D
uD

)2

+

(
∂U∗

∂H
uH

)2

+

(
∂U∗

∂V
uV

)2

+

(
∂U∗

∂ρa
uρa

)2

+

(
∂U∗

∂ζm
uζm

)2

+

(
∂U∗

∂ω
uω

)2

+

(
∂U∗

∂Meff
uMeff

)2
]0.5 (C.2)

The length scales were measured with uD = uH = 0.001 m. The anemometer allowed

97



Uncertainty in U∗

uV = 0.05 m/s. The density of air is given an uncertainty of uρa = 0.05ρa to accommodate

fluctuation in humidity and temperature. Because the measurement of frequency is subject

predominantly to the sampling rate at 1000 Hz, uω ≈ 0.

By far the most volatile component is ζm. If the purely linear mechanical damping

interpretation employed by this study is accurate, the only uncertainty in ζm can be found by

expanding the linear regression equations to give the uncertainty in terms of the displacement

measurements and the corresponding uncertainty of uy = 40µm as

uζm =

√√√√ N∑
j=1

(
∂ζm
∂y′j

uy

)2

+

N∑
j=1

(
∂ζm
∂yj

uy

)2

(C.3)

where
∂ζm
∂y′j

=

∑N
k=1 y

3
ky

2
j −

∑N
k=1 y

4
kyj∑N

k=1 y
2
k

∑N
k=1 y

4
k −

(∑N
k=1 y

3
k

)2 (C.4)

and
∂ζm
∂yj

=

∑N
k=1 y

3
ky

2
j −

∑N
k=1 y

4
kyj∑N

k=1 y
2
k

∑N
k=1 y

4
k −

(∑N
k=1 y

3
k

)2 (C.5)

With high sampling rates over an extended period of time (high N), the uncertainty

introduced by the linear regression is negligible. However, the preceding uncertainty analysis

for ζm only evaluates the uncertainty introduced by the regression and not the uncertainty

introduced by presuming purely linear mechanical damping. To visualize how a small error

in discerning the true value of the mechanical damping propagates into uncertainty in U∗,

Figure C.1 presents the total uncertainty in U∗ as a function of both the true value of ζm

and the uncertainty of that value. It is apparent that even a slight misinterpretation of the

damping model drastically disrupts the uncertainty of U∗. Given the critical role of the

parameter U∗, properly determining the mechanical damping ratio is paramount to accurate

interpretation of the experimental results.

98



Uncertainty in U∗

Figure C.1: The uncertainty in U∗ as it relates to the true value of ζm and any uncertainty
thereof.
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