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ABSTRACT 

The development of bioinformatics methods for human genetic studies utilizes the 

vast amount of data to generate new valuable information. Machine learning and statistical 

coupling analysis can be used in the study of human diseases. These diseases include 

intellectual disabilities (ID), prevalent in 1-3% of the population and caused primarily by 

genetics. Although many cases of ID are caused by mutations in protein-coding genes, the 

possible involvement of long non-coding RNAs (lncRNAs) in ID due to their role in gene 

expression regulation, has been explored. In this study, we used machine learning to 

develop a new expression-based model trained using ID genes encoded with the developing 

brain transcriptome. The model was fine-tuned using the class-balancing approach of 

synthetic over-sampling of the minority class, resulting in improved performance. We used 

the model to predict candidate ID-associated lncRNAs. Our model identified several 

candidates that overlapped with previously reported ID-associated lncRNAs, enriched with 

neurodevelopmental functions, and highly expressed in brain tissues. Machine learning 

was also used to predict protein stability changes caused by missense mutations, which can 

lead to disease conditions including ID. We tested Random Forests, Support Vector 

Machines (SVM) and Naïve Bayes to find the best-performing algorithm to develop a 

multi-class classifier. We developed an SVM model using relevant physico-chemical 

features after feature selection. Our work identified new features for predicting the effect 

of amino acid substitutions on protein stability and a well-performing multi-class classifier 

solely based on sequence information. Statistical approaches were used to analyze the 
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association between mutations and phenotypes. In this study, we used statistical coupling 

analysis (SCA) to cluster disease-causing mutations and ID phenotypes. Using SCA we 

identified groups of co-evolving residues, known as protein sectors, in ID protein families. 

Within each distinct sector, mutations associated with different phenotypic manifestations 

associated with a syndromic ID were identified. Our results suggest that protein sector 

analysis can be used to associate mutations with phenotypic manifestations in human 

diseases. The bioinformatic methods developed in this dissertation can be used in human 

genetic research to understand the role of new genes and proteins in human disease. 
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CHAPTER I – LITERATURE REVIEW 

 

1.1 Introduction to Bioinformatics 

 The term bioinformatics was coined in the 1970s by Paulien Hogewegen and Ben Hesper to define 

the use of informatic technologies in the study and understanding of biological processes [1]. This definition 

can be further expanded to state that bioinformatics is the science that looks to understand and organize, 

via computational approaches, the function, role, and information associated with biological 

macromolecules [2,3]. Although seemingly distant at first glance, at a closer look, life can be described as 

an information system. The fact that there is terminology such as genetic code, used to refer to the genetic 

material and how it is stored, and that this crucial information for survival needs to be encoded, stored, and 

eventually transferred, shows the close ties to information systems [1,2,4]. 

 Originally envisioned as an approach for sequence analysis [2,4], bioinformatics evolved into a 

more complex field due to the increasing power of computers. Previous reports [5,6] describe that the goal 

of bioinformatics is to organize and understand biological data. In its current form, it is understood that 

bioinformatics has a broader scope, including the development of methods for data analysis and knowledge 

discovery from biological datasets [7]. The wide array of tasks undertaken by a bioinformatician can be 

summarized in three main areas: 

1. Data management: This area focuses on accessing, combining, converting, manipulating, storing, 

and annotating data. Data management requires routine quality checks, automatization of existing methods, 

and summarization of large datasets. 

2. Data processing: This area requires running a variety of tools that include but are not limited to 

aligners, variant callers, RNA-Seq quantifiers, transcript analyzers, etc. During the preparation for the 

analysis, the bioinformatician must anticipate and prepare for potential pitfalls that could present 

themselves, and develop alternative solutions/analyses that fit the data. 
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3. Knowledge discovery: Knowledge discovery has a crucial function in the interpretation of the data. 

The data a bioinformatician gathers through data management and processing would remain uninformative 

without insightful interpretation. By using biological data and computational methods, knowledge 

discovery can extract insightful information from the data, providing new and valuable information. 

 Bioinformatics has three main aims. The first, which is highly associated with one of the areas, is 

organization and management of biological data. This allows the scientific community access to existing 

information as well as submit new entries in various repositories such as GenBank [8], Protein Data Bank 

[9] or UniProtKB [10]. Data management not only includes the incorporation of new data entries but also 

the process of data curation, which refers to the manual validation of the quality of the entries or the datasets 

[1–4]. The second aim is to develop tools and resources for the analysis of data that has been stored in the 

repositories. This aim is closely related to the second and third areas that are essential in bioinformatics, as 

such tools are necessary for data analysis and data interpretation. To accomplish this aim, computational 

and biological knowledge and expertise are required [2,3,7]. The third aim is the use of the tools and 

methods developed for data analysis and their implementation to extract new information from biological 

datasets to further the understanding of biological systems. It is possible to use the methods to understand 

biological systems in a single organism view, where the system is seen as an independent entity, or a multi-

organism approach where it is possible to uncover shared relationships and interactions amongst different 

biological systems [1–3,5–7,11]. 

 Currently, bioinformatics research has grown and evolved to cover the fields of structural biology, 

genomics, and evolutionary biology [4–6]. Interestingly, someone working in the field of bioinformatics 

must have analytical skills and knowledge in statistics and computer sciences, making it an interdisciplinary 

field that requires competency in various areas. The ability of bioinformatics to incorporate knowledge and 

methods, initially developed to analyze data from other fields into the biological context, has made it 

invaluable in the current research environment. 
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 Bioinformatics has been enriched by a community that continuously provides support and 

advancement of the available methods. This in turn allows the integration of the various methods for 

pipeline construction, exemplified by programming languages such as R or Python which provide multiple 

packages or libraries with supported and integrated modules that have been developed by community 

members. In most cases, these packages or modules have been published in peer-reviewed journals [12–

14]. Published materials tend to be hosted, maintained, and updated by their developers, providing the basis 

for reproducibility, provenance, and upgradability of the methods [11,15,16]. In return, a competent 

bioinformatician can use the programming language and the supporting packages/modules to develop 

methods that can generate novel information from the data. 

  The importance of this field can be seen in the increasing number of publications related to this 

area. The impact of bioinformatics as a research field was shown in a study by [17], where the number of 

publications from 1991-2010 for different fields and sub-fields in the Web of Science for the biological 

sciences were compared. Subsequently, the number of publications in the different sub-fields were 

quantified for the periods encompassing the last five and three years of the study. The results indicate that 

the growth of bioinformatics papers per annum appears to follow an exponential pattern, and that the 

amount of bioinformatics-related journal articles increased by 65% in the five-year period of the study, only 

third behind synthetic biology and systems biology. The data from this study has been adapted and 

summarized in Table 1.1. 
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Table 1.1 Growth and change of major sub-fields in biological research focused on a publication-based 

search of the Web of Science (WoS) spanning from 1991-2010. The table indicates the number of 

publications, the growth for each sub-field per year as exponential or linear based on the number of 

publications recorded, the changes observed per sub-field as percentages of publications and the 

percentage of published papers for the sub-filed in the period of 2006-2010, data from Pautasso (2012) 

[17]. 

 

Sub-field 

Publications 

in WoS 

1991-2010 

Publication 

Growth/Year 

Change in 

Number of 

Publications 

(%) 1991-

2010 

Percentage 

of 

Publications 

2006-2010 

Synthetic 

Biology 
8.50E+02 Linear 0.7 94 

Systems 

Biology* 
6.20E+03 Exponential 3.7 84 

Bioinformatics 1.70E+04 Exponential 6.8 65 

Structural 

Biology 
2.20E+03 Linear 0.6 54 

Cell Biology 1.10E+04 Exponential 1.2 50 

Ecology and 

Evolution* 
2.40E+04 Exponential 1.6 48 

Genetics 8.50E+04 Linear -7.2 40 

Molecular 

Biology 
2.20E+04 Linear -5.3 31 

Biochemistry 2.50E+04 Exponential -10.1 31 
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 In summary, the role of bioinformatics has seen a change from the sequence-analysis oriented field 

in the 1970s to a more multi-disciplinary area in the 1990s. However, the major shift in the paradigm 

appeared to come around the late 1990s or early 2000s. According to Pop and Salzberg [18] and Mardis et 

al. [19] emphatic change can be attributed to the impact that the Human Genome Project had on influx of 

data and the need of new methods to analyze it. Bioinformatics has also seen a change from a support role 

in research to a more central one. Currently, bioinformatics has become a key component in modern 

research, from candidate gene prediction to drug target discovery. In this dissertation, using bioinformatical 

approaches, such as supervised machine learning and statistical analysis of multiple sequence alignments 

for functional analysis of protein families, new knowledge has been generated for human genetic studies. 

 

1.2 Overview of Machine Learning 

 In its essence, machine learning refers to the field concerned with the development and application 

of computer algorithms that improve with knowledge or experience [20]. The learning process usually 

utilizes a set of example data to teach an algorithm in a manner that it will eventually achieve the optimal 

performance, or criterion [20,21]. This criterion can be represented as a series of measurements—for 

example, the accuracy of a model in a classification problem, or the value of a fitness function in an 

optimization problem [21]. Because of their predictive capabilities, machine learning models have become 

commonplace in different fields, from research in the sciences and engineering, such as fuel efficiency 

prediction in automobiles [22], to the business environment [23,24], with stock price prediction. In the field 

of biological sciences and more specifically in genetics and genomics research [21,25], machine learning 

has been of great importance to model problems using large datasets, which, due to their size, cannot be 

modelled using traditional statistical methods. In studies where machine learning has been used, it has 

provided valuable information from these large and complex datasets, such as the function of  open reading 

frames in yeast using mutant phenotype data, or pathway identification in plants from large transcriptomics 

sets [25–28]. Machine learning has also been used to address tasks deemed time-consuming to solve using 
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other approaches. By efficiently harnessing the potential of big data [28], machine learning approaches 

have been able to generate classifiers that have provided new insight into the possible genetic causes 

associated with human diseases such as cancer [29] and autism [30], as well as novel biomarker 

development [31] and drug target discovery [32]. 

 The machine learning process consists of transforming data into knowledge. This can be done in 

both the construction and validation stages [21,33,34]. The construction part of the process is composed of 

a sequential series of steps, starting with dataset pre-processing. In the pre-processing step, the data is 

curated, and inconsistencies are identified and resolved [20,21,33,34]. It is during data pre-processing that 

normalization strategies such as z-score standardization, or missing data handling techniques, like 

imputation, are applied to the dataset [20].The outcome of this step is a high-quality dataset defined as the 

training set. Subsequently, dimensionality reduction can be performed. This process includes feature 

extraction and feature selection. Feature selection is focused on selecting the subset of important features, 

whereas feature extraction creates new features by transforming raw data using methods such as principal 

component analysis. This is followed by training a predictive model, where machine learning methods and 

frameworks are used to model and analyze the data. The idea of training a model aims to develop a learner 

capable of extracting significant information from the data (knowledge discovery) [21,28,33–35]. The built 

models need to be validated and evaluated using performance metrics. Further interpretation from domain 

experts should be done to provide an additional layer of validation of the significance of the information 

extracted from the data, if any, that the model can provide. If inconsistencies are found at any point of 

model construction, it is possible to revert to a prior step in order to retrace and troubleshoot. However, if 

the model is deemed satisfactory, in terms of performance metrics or validity of biological information, it 

can provide new insight into the biological system [20,21,29]. 
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1.2.1 Supervised Machine Learning 
In a simple overview, a supervised machine learning problem can be a classification task that 

consists of a dataset that is divided into different classes, each with a known label. The label represents the 

relationships between the inputs (data instances) and the outputs (predictions) [33]. Supervised machine 

learning evolved from pattern recognition, and aims to identify hidden signals that are commonly shared 

within a class [24,36]. The presence of the output or response variable is what marks a clear distinction 

between supervised learning and unsupervised learning, where the instances are unlabeled [33,37]. 

In supervised learning, the algorithm analyzes the inputs in the labelled training set and generates 

a function which can predict the class label for each data instance [33,36]. These predictions are based on 

supervised learning’s pattern recognition abilities, which identify common or shared signals between data 

instances that have the same label [38,39].  

It is important to determine the generalization capabilities of a model. This is usually determined 

through validation methods, a process designed to evaluate the model’s overall quality using accuracy and 

other metrics [21,28], or to detect over-fitting. There are multiple approaches to evaluate the model. These 

include a holdout set, where the training data is separated into two splits; one is used for training and the 

other for validation [21,40]. Also in cross-validation is 10-fold or 5-fold, where the dataset is split into n= 

5 or 10 subsets of the same size, and the training set is n-1, while the remainder is used for validation. The 

leave-one-out (LOO) cross-validation is included within the leave-p-out cross-validation, where p instances 

are left-out for validation while the rest are used for training. In LOO cross-validation, p = 1, meaning that 

for each round of cross-validation, statistics are calculated for the left-out sample and the remaining samples 

are used for training [21,40–42]. 

After model construction and validation, it is a recommended practice to determine the model’s 

generalization capabilities and performance with a test set. The test set has to be independent from the 

training data, thus remaining “unseen.” Although the test set is independent from the training set, and as it 

has never been used for training purposes, both the training and test sets should have a similar probability 

distribution for the feature values. Otherwise, results would not be informative, as the differences in training 
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and test sets make prediction impossible [35,41]. If the training set would have included the test data, then 

the assumption of independence would no longer be valid. Another important aspect of this separation 

between training set and test set is that if model performance is high on the training set but significantly 

lower on the test set, poor model generalization or over-fitting can be potentially identified [33], as the 

model might be finding certain relationships that are not general but found only in the training set. 

 In supervised learning, a labelled test set is used to represent the relationship between the input 

attributes and the output  [35,39]. The labelled test set allows for the construction of the confusion matrix 

[40]. The confusion matrix is a table that describes a model’s performance providing the classes and how 

each instance in the test set was classified. This matrix allows for the calculation of measures such as true 

positive, false positive, true negative, and false negative, required to calculate the different performance 

metrics such as sensitivity, specificity, and accuracy [43]. The measurements derived from the confusion 

matrix are also used to calculate classifier metrics such as the receiver operating characteristic curve (ROC), 

which represents the diagnostic ability of a classifier. It also allows for the calculation of the area under the 

ROC curve (ROC-AUC). The ROC-AUC is defined as the probability that a randomly selected instance 

from the positive class will be ranked higher than one from the negative class, and represents the percentage 

of randomly selected instances correctly classified by a model. The ROC-AUC can be used to compare 

classifier performance for model selection [38,41,43]. Another used metric is the Matthews correlation 

coefficient (MCC) which allows the measure of quality of a binary classifier, with values ranging from -1 

(disagreement between predicted and observed) to +1 (perfect prediction), with 0 representing that 

prediction is not better than a random guess [44]. It is important to note that these various performance 

measurements of classifier performance can also be calculated during validation, using the different folds 

that were split from the training set, depending on the cross-validation method. 

 In supervised machine learning, one potential issue is model over-fitting. The effects of model over-

fitting are generally observed when comparing the performance of the model with the training set and the 

test set. An over-fitted model performs well on the training set but poorly on the test set [34]. In other 
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words, the model has learned the training data well, but when presented with an unseen test set, its 

performance will be below expected [33,34,36]. Thus, the difference in model performance between 

training and test sets can be used to identify over-fitting. If significantly higher performance is observed in 

the training set than in the test set, it is possible that the model might be over-fitted [40]. Model over-fitting 

can be caused by background or noisy data during model construction [41]. Another possible source is the 

absence of data points which can result in the model attempting to classify instances by using uninformative 

features. These possible causes of over-fitting can be handled using methods such as feature selection 

[45,46]  and class-balancing approaches which have been reported to address the drawback of model over-

fitting and thus improve classifier performance [47,48]. 

  

1.2.2 Feature Selection in Machine Learning 
Feature selection for classifier construction is the process by which attributes used to encode data 

instances are selected to generate an optimal feature subset [27]. This process is undertaken in the following 

manner: given a dataset with A features, the goal is to generate a new set B, where B⊂A, meaning that B is 

a subset of A [45]. The idea of feature selection is based on the concept of dimensionality reduction. 

Dimensionality reduction removes irrelevant features and reduces the feature set. A reduced feature set can 

lead to reduced computational time for classifier construction, reduction in computational cost for the 

calculation of the function between the input attributes and the class [49], and possible improvement of 

classifier performance [35,50]. 

In a dataset with a large number of attributes, it is possible that certain attributes are uninformative. 

This can lead to over-fitting [35,51]. By selecting the attributes that provide valuable information and 

discarding those that are background noise [45,52], it is possible to increase model performance [46] and 

prevent over-fitting, as irrelevant features could lead to spurious conclusions [50,51]. The incorporation of 

irrelevant features may create irrelevant relationships between features and response variables, leading to 

models that have reduced generalization. 
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Feature selection can be used to extract important information from the dataset, providing 

significant insights into the data [53]. This is of special interest in knowledge discovery where identification 

of significant features within a dataset can also be useful to further the understanding of what attributes 

could be of importance in the association, causality, or development of a biological process; for example, 

it can identify important developmental stages associated with diseases such as autism, or identify risk 

factors associated with cancer [30,35,54,55]. 

 Feature selection methods can also be used in knowledge discovery to extract new and valuable 

information from biological datasets. By applying feature selection methods, it is possible to use the 

variables selected as a source of new biological knowledge [53]. For example, Cogill and Wang [30] used 

feature selection to identify spatiotemporal expression features from the developing brain associated with 

autism spectrum disorder (ASD), providing new insight into critical stages of development for ASD. It is 

also possible to compare feature selection methods to identify overlapping or commonly identified features. 

The overlapping variables identified by different methods can provide important insight regarding the 

dataset, such as association with a disease. For example, Liu et al. [56] used the overlapping features from 

proteomic data in an ovarian cancer association study. 

 

1.2.3 Handling Class Imbalance in Machine Learning Problems 
Imbalanced datasets are common for machine learning, and more often occur in biological cases 

[20,57]. The presence of class-imbalanced datasets in the biological context can be found in target gene 

prediction, disease gene discovery, binding site prediction, and pre-miRNA prediction [47,57], where the 

targets are generally an underrepresented class. To address this potential problem, several possible solutions 

have been proposed at the data-level as well as at the algorithm level [33,58,59]. The sampling techniques 

used to address the class imbalance problem or the class distribution problem in a dataset involve artificial 

re-sampling of the dataset. This can be achieved in two ways: under-sampling of the majority class, or over-
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sampling of the minority class [33,58–60]. It is also possible to combine both the re-sampling approaches 

to pre-process the data to handle class imbalance in the dataset. 

 Algorithmic approaches include parameter modifications, such as the class weight adjustment to 

counter class imbalance, decision threshold adjustment, and recognition-based learning instead of 

discrimination-based learning [58,60]. Algorithmic approaches can be used in combination with data-based 

approaches. The combination of algorithmic and data-level class-balancing methods is known as mixture-

of-experts. Mixture-of-experts approaches combine the results from multiple classifiers using over-

sampling, under-sampling, or fine-tuning of the class weights. We will next briefly discuss those methods 

at the data level used in handling imbalanced datasets [33,58–60]. 

 

1.2.3.1 Under-sampling Techniques	

Under-sampling methods randomly select instances from the majority class to balance the dataset. 

By reducing the instances in the majority class, random under-sampling improves classifier performance, 

reducing the classification bias introduced when a class is over-represented [33,58]. It has been reported 

[57] that the use of under-sampling techniques with multiple machine learning algorithms has been 

successful in pattern recognition and classification tasks. However, one potential problem associated with 

random under-sampling techniques is the loss of significant data instances, which can lead to loss of 

information. To address this potential issue, more advanced under-sampling methods have been developed, 

including Tomek links [33,58–60]. 

The under-sampling technique consisting of forming Tomek links between pairs of data instances 

identifies the minimally distanced nearest neighboring instances from different classes. The majority class 

instances are subsequently removed to balance the classes. The definition of a Tomek link is given by 

[33,61]: two data instances, Ei and Ej, each belonging to a different class, have a distance defined by d(Ei,Ej). 

The pair of data instances (Ei,Ej) will be identified as a Tomek link pair unless, another instance, El, changes 

d(Ei,Ej). If d(Ei,El) < d(Ei,Ej) or d(Ej,El) < d(Ei,Ej), then Ej and Ei will no longer be considered Tomek links. 
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For class balancing, the data instance from the majority class forming a Tomek link pair is removed from 

the balanced dataset. This strategy can be effective in addressing the over-representation of the majority 

class, and has been reported to handle the issue of loss of informative data instances associated with random 

under-sampling [57,61]. However, previous studies report that Tomek links as with other under-sampling 

strategies are more effective when combined with over-sampling approaches, and their model performance 

improvement capabilities have been observed when combined with synthetic over-sampling of the 

minority-class technique (SMOTE) [33,61]. 

  

1.2.3.2 Over-sampling Techniques	

Over-sampling methods randomly create new instances from the minority class [33,58,59,62]. 

Over-sampling may lead to model over-fitting due to over-representation of data instances. Over-

representation refers to creation of new data instances from a single data instance [57,62]. The new data 

instances will have the same attributes as the data from which they were generated. Although the data set 

is balanced, it does not represent the distribution of the attributes of the minority class. The use of over-

sampling can result in model over-fitting [57,62]. To prevent over-fitting, over-sampling should not be used 

on the validation split, and should only be used in the training set. The use of over-sampling methods can 

be considered a data pre-processing step, which, depending on the size and dimensionality of the dataset, 

could prove a computationally exhaustive task [33,62]. However, over-sampling does have its advantages 

over under-sampling methods. Contrary to under-sampling, over-sampling does not reduce the majority 

class, ensuring no loss of informative instances [47,48,63]. Over-sampling methods can also generate new 

samples not only from existing data instances but also from the lines joining multiple data instances in the 

dataset. This can be used to handle the over-representation issue that can lead to over-fitting. This is 

implemented in the over-sampling technique, Synthetic Minority Over-Sampling Technique (SMOTE). 

The SMOTE  technique balances a dataset by selecting a data instance or point and creates synthetic or new 

minority class data though interpolation between an instance and its neighbors [48]. 
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SMOTE over-sampling occurs when new instances are generated from the line segments that 

connect a selected data instance to k elements of the minority class [47,48,63], where k is the number of 

neighboring elements used to interpolate the new synthetic samples. Figure 1.1 illustrates the process of 

generating synthetic samples, where xi is the selected data instance and xi1 to xi4 are the nearest neighbors. 

In the figure, r1 to r4 are the randomly generated synthetic data points created from interpolation. SMOTE 

handles possible over-fitting by generating new samples from the line between the data point xi and 

randomly selected nearest neighbors, thus avoiding over-representation. 

In over-sampling, the creation of exact replicates from data instances lead to the decision boundary 

to tighten, which can result in over-fitting. Tightening refers to the boundary being close to the minority 

class. Thus, the decision boundary is far from the ideal boundary expected for class separation. In contrast, 

the synthetic data instances generated from SMOTE are not exact copies of any existing instance; this leads 

to a softer decision boundary. In this case, the decision boundary is closer to the ideal boundary for class 

separation. This reduces the effects of over-fitting [48,61,63]. In this dissertation, SMOTE was used on a 

dataset comprising intellectual disability (ID) genes and non-ID disease genes. The use of this method 

improved model performance.  
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Figure 1.1 Illustration of how SMOTE creates new synthetic instances. The initial selected data point xi 

has a set of neighbors defined as xi1-xi4. The algorithm creates lines that join the initial data point with the 

neighbors and within these segments the new synthetic samples are interpolated. The image was used from 

Lopez et al. (2009) [63] with permission. 

 

1.3 Intellectual Disabilities and Long Non-coding RNAs 

1.3.1 The Etiology of Intellectual Disabilities 
 Intellectual Disability (ID), formerly known as Mental Retardation (MR), refers to a large 

heterogenous group of disorders that have the impairment in intellectual abilities as a common trait. ID has 

a prevalence in the population of 1-3% [64,65], with severely affected individuals representing 0.3%, and 

approximately 85% classified as mild ID patients. Individuals with ID are usually diagnosed prior to the 

age of 18 years with an intellectual quotient (IQ) of below 70 [65,66], and limited adaptive behaviors such 

as self-care, communication, and social skills [65,67]. ID can be classified using the level of impairment 

on the IQ: profound (IQ<20), severe (IQ 20–34), moderate (IQ 35–49) and mild (IQ 50–69). A more 

simplified classification scale can be used, where severe ID includes all IQ values below 50 and mild ID 
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refers to all IQ values between 50 and 70 [65]. Although ID represents a lifelong impairment, there have 

been studies reporting the use of cognitive training in individuals with mild ID [67], stimulated their 

working memory and attention, improving their abilities in tasks such as self-care or speech. However, the 

challenges for individuals afflicted with severe ID remains, as they will require constant care for the rest of 

their lives. 

ID disorders can also be classified as syndromic or non-syndromic [66]. This distinction is based 

on the presence of other manifestations associated with ID. In syndromic ID, individuals diagnosed with 

ID commonly present dysmorphic traits or metabolic disorders. In non-syndromic ID, the intellectual 

impairment is the only manifestation [64–66]. It is possible for a non-syndromic ID to be re-classified as 

syndromic; for example, OPHN1, a non-syndromic ID gene located on the X-chromosome (XLID), was 

later identified to be associated with cerebellar hypoplasia through magnetic resonance imaging, causing it 

to be re-classified as a syndromic ID gene due to the presence of an associated malformation [65]. Both 

syndromic and non-syndromic ID can be caused by genetic and exogenous factors. Exogenous or external 

elements have an impact on the development of ID, with some factors like fetal alcohol syndrome, pre- and 

postnatal infections and peri- and postnatal asphyxia, amongst others, causing approximately 25-50% of 

reported mild ID [64,65]. However, for moderate to severe ID, approximately 65% of ID cases have a 

genetic etiology [65,68]. In cases where genetics is the main cause of ID, the genomic abnormalities leading 

to ID are chromosome aneuploidy as in Down syndrome, or structural abnormalities, such as chromosomal 

deletions in cri du chat syndrome, or monogenic (single-gene) ID, as in fragile X syndrome [65]. 

Previous studies have identified structural variations as a cause of ID [69]. These structural 

variations refer to chromosomal regions larger than 1 kilobase (kb) that include inversions, translocations, 

and copy number variants (CNVs) [65,66]. Chromosomal translocations are exemplified by the 

Robertsonian translocation, associated with chromosomes 14 and 21, where the chromosomes break at the 

centromeres and the q (long) arms of both chromosomes fuse to form a larger chromosome. Individuals 

with this kind of unbalanced translocation carry a trisomy at chromosome 21, that leads to Down syndrome. 
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CNVs are defined as insertions or deletions in a stretch of DNA that are >1 kb, and up to several megabases 

(Mb) in length [66]. It has been reported that for ID, the association of CNVs with ID causality is estimated 

to be ~14%, with some of these CNVs being >400 kb [69]; however, as more de novo CNVs are identified 

this number could change. CNVs have been associated with both syndromic and non-syndromic ID, and 

have been identified through whole genome sequencing in multiple chromosomes, including chromosomes 

4, 15, 17, and X [70]. 

Monogenic ID have been mapped across the human genome in both autosomal and the X 

chromosome [65]. Notably, X-linked ID (XLID) genes have been identified to represent 10-15% of known 

protein-coding ID genes in the genome [68]. There are ~100 known XLID genes, representing 

approximately 10% of the known protein-coding genes (800) for the X chromosome. Overall, the number 

of ID genes in the genome represents ~4% of all protein-coding genes, based on the estimate that there are 

~19,000 protein-coding genes in the human genome [68,71]. Currently, the number of known protein-

coding ID genes is 818, including genes that overlap with other cognitive disorders [65] . 

Previous studies have reported that ~40% of individuals affected by an ID are also affected by 

another cognitive disorder or intellectual impairment [65,66]. The report by van Bokhoven [65] suggests 

that there is evidence of comorbidity between ID and cognitive disorders such as autism spectrum disorder 

(ASD). However, not all ID genes overlap with cognitive disorders; ~450 genes have been identified to 

uniquely manifest ID. The importance of monogenic ID was identified to be the second cause of ID after 

Down syndrome in a study of 4,730 children affected by intellectual and cognitive impairments [72]. 

 

1.3.2 The Study of Intellectual Disability-Causing Mutations and Phenotypes 
The identification of disease-causing mutations is the result of genotype-phenotype  association 

studies, where the effect of a mutation on the clinical manifestation is analyzed [65]. These studies are 

focused on analyzing individuals affected by a disease, such as a syndromic or non-syndromic ID, to 

discover the mutation that caused the development of the phenotype being characterized. Mutations at 
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different positions in a gene can result in very similar phenotypic manifestations; for example, in Snyder-

Robinson Syndrome (MRXSSR), an XLID caused by mutations in the spermine synthase (SMS) gene, where 

two identified mutations (V132G and Y328C) led to mild forms of ID with similar phenotypic 

manifestations [73,74]. In other cases, mutations in the same position can generate different phenotypes, 

such as in Alpha Thalassemia Mental Retardation X-Syndrome (ATRX), where the R246C amino acid 

change, which represents 36% of all ATRX mutations, causes the development of diverse phenotypes 

including various degrees of ID (moderate to severe) and urogenital defects [75]. The examples of MRXSSR 

and ATRX demonstrate how it is possible to associate mutations in ID genes with clinical manifestations of 

a disorder. However, these examples show that it is also possible for other factors, including the 

environment, to affect the phenotypic manifestations of ID. 

The identification of the mutations associated with the phenotype include familial studies that focus 

on the individual’s relatives as well as other affected families. Other analyses are histochemical and 

biochemical assays on the tissues, which are followed by molecular genetics analyses. Familial studies are 

used to identify the possible mode of inheritance of a disease, but also to study multiple affected families 

to determine possible environmental effects on disease manifestation. The importance of familial studies 

can be exemplified in the identification of ATRX where 80 unrelated families with affected children were 

studied to identify the mutations associated with the disorder [76].  

The use of histochemical, biochemical, and molecular genetics assays can identify the presence of 

ID-causing mutations. Each approach generates different information about the mutation, which when 

combined can provide a better understanding of the cause of the ID phenotype. For example, histochemical 

reactions have shown that phenotype-associated mutations were identified in mitochondria and not the 

nucleus. Subsequently, molecular genetics was used to identify the mutation as an insertion within in the 

mitochondrial gene COX3 [77]. More recently, techniques such as whole genome sequencing, which have 

become more accessible, have been used in the identification of CNVs and their association with ID 
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phenotypes [70]. This approach has made it possible to identify disease-causing mutations previously 

undetected by other methods. 

Computational methods can be used to facilitate the identification of ID-causing mutations. 

Statistical coupling analysis (SCA) is a method based on multivariate statistics, and can be used to find 

amino acid positions in a protein that are associated with ID phenotypes [78]. SCA identifies groups of 

residues within a multiple sequence alignment that share an underlying relationship [79,80]. This 

relationship is defined as co-evolution, and has been described as coordinated changes in pairs or groups of 

residue positions [80]. The groups identified by SCA are denominated sectors and represent clusters of 

amino acids that are functionally important, and if mutations occur within sector residues, protein identity, 

such as activity, substrate affinity, or stability, may be affected [79]. Protein sectors differ from functional 

units such as domains, as protein sectors are not necessarily found in sequential amino acid positions, or in 

continuous blocks of residues [78]. Although residues in a sector might not be continuous, when a protein 

folds, the seemingly distant positions may interact with each other [79].These interactions in the protein 

structure support that co-evolution between residues is necessary to maintain protein function. 

The effect of mutations in sector residues was reported by Halabi et al. [79]. The authors analyzed 

the results of site-directed mutagenesis on sectors associated with catalytic activity and thermal stability. 

These experiments resulted in reduced enzymatic activity and thermal stability. The study also reported that 

each sector was functionally independent, meaning that mutations in residue positions of one sector caused 

one phenotype, and mutations on another sector caused a different phenotype [79]. Protein sectors can 

identify new sites of functional importance on the protein. Previous studies [79,81,82] have reported that 

residues in a sector represent functional positions, with characterized phenotypes when mutated. Further 

insight can be obtained by analyzing the uncharacterized residues within a sector. These positions, when 

mutated, are expected to have similar effects on protein function. This characteristic of SCA can provide 

valuable information into the study of mutations and phenotypes in ID and other diseases. SCA can be used 

to identify new functionally important sites in a sector associated with distinct ID phenotypes. These sites 
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are expected to have similar phenotypic manifestations as the known sites clustered within the sector. The 

use of SCA to cluster disease-causing mutations in an ID protein [83] has shown that it is possible to 

associate different phenotypic manifestations in syndromic ID with different protein sectors.  

 

1.3.3 Intellectual Disability-Causing Genes 
Previous studies have suggested that there may be ~800 protein-coding ID genes [71]. Of those 

genes, it was reported that ~450 were ID-causing genes with no overlap with other intellectual or cognitive 

impairments, with 400 being associated with syndromic disorders and ~50 causal of non-syndromic ID 

[65]. More recently, the Intellectual Disability Gene Database 

(http://gfuncpathdb.ucdenver.edu/iddrc/home.php) annotated 484 ID-causing genes. Notably, 95 of the 

protein-coding genes, representing ~19% of the list, were located on the X chromosome, a percentage 

similar to the number of known XLID (~15% of all protein-coding ID genes) [68]. 

The entries in the ID Gene Database have been curated to provide functional information about the 

observed manifestations that have been described through association studies and various mutations 

reported for the phenotypes. The effect of mutations on phenotypes can be accessed through the provided 

Online Mendelian Inheritance in Man (OMIM) entry number [84]. For example, SMS has the OMIM entry 

300105 in the ID Gene Database, which can be used to access OMIM to retrieve information about 

mutations and the phenotypes causing Snyder-Robinson syndrome, as well as other valuable information 

such as literature and molecular genetics of the disease.  

In the last decade, the regulatory functions of non-coding RNA genes in gene expression have been 

analyzed in many studies [85–87], expanding our knowledge on the importance of what was previously 

described as “junk DNA”, due to our lack of understanding of its role and potential functions [88]. Previous 

studies have described the importance of non-coding RNAs, especially long non-coding RNAs (lncRNAs) 

by reporting their regulatory roles [89], tissue specificity [87], and evolutionary importance in mammalians, 

as well as their potential involvement in ID [90]. The works by Loohuis et al. [91] and  van de Vondervoort 
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et al. [90] also have been of importance in understanding how lncRNAs are potential ID candidates. In their 

studies, the authors report that a significant number of lncRNAs are found in the brain, although for the 

exception of a few examples (UBE3A in Angelman syndrome, BC1 in fragile X syndrome amongst others), 

the functions of most lncRNAs remain to be elucidated. A recent study by Chiurazzi and Perozzi [71] 

emphasized the importance of lncRNAs and other non-coding elements as ID candidates [92]. In this 

section, we have described ID-causing genes and focused on the role of protein-coding genes in ID 

causality. In section 1.3.6, we will discuss the potential involvement of lncRNAs in ID pathogenesis. 

 

1.3.4 Overview of Long Non-Coding RNAs 
Long non-coding RNAs (lncRNAs) are non-coding transcripts, >200 nucleotides, with relatively 

low conservation [85,86,92]. Previous studies [85,86,93,94] reported the structural similarities that 

lncRNAs share with messenger RNAs, with most of these non-coding transcripts having a 5’ cap, being 

polyadenylated, and spliced. However, lncRNAs do not have open reading frames with protein coding 

potential [85,87,95,96]. Another interesting aspect of lncRNAs is their low abundance, high tissue 

specificity, and low evolutionary conservation when compared to protein-coding mRNAs. Because of their  

lower overall expression, it is more difficult to identify and quantify lncRNAs than protein-coding mRNAs 

[87,97,98]. 

The annotation of genomic elements has been a task endeavored by the GENCODE project [99]. 

This has included the identification of lncRNAs. Although lncRNAs, as with other non-coding elements, 

were initially part of what was considered “junk DNA” or termed the “dark matter” of the genome due to 

lack of knowledge associated to its function [97], it was later revealed that lncRNAs as well as other non-

coding elements are essential to the regulation of developmental processes in complex organisms 

[68,87,89]. The annotation of lncRNAs in GENCODE 7 (2010), manually curated using the HAVANA 

manual curation protocol, identified 9,640 lncRNAs within the human genome. However, it was estimated 

that this number would only increase as more lncRNAs were expected to be discovered in subsequent 
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releases of GENCODE. For the 2011 release of GENCODE, identified as GENCODEv10, the number of 

lncRNAs was 10,840, corroborating their initial assessment that the number of such elements was only to 

become greater with each subsequent release. The current version of GENCODEv21 (2014) reports 15,877 

lncRNAs (http://www.gencodegenes.org/stats.html). The increase in the number of lncRNAs demonstrates 

that the actual number of lncRNAs in the human genome could surpass the number of protein coding genes. 

When GENCODEv7 was released, lncRNAs were classified as belonging to a specific biotype. 

This classification was based on the lncRNAs’ positions with respect to protein-coding genes on the genome 

[99]. These biotypes were defined as antisense RNAs, lincRNAs, sense overlapping, sense intronic, and 

processed transcripts [99,100]. Antisense lncRNAs refer to transcripts that intersect either introns or exons 

of protein-coding genes or have evidence of antisense regulation of a coding gene. LincRNAs are defined 

as long intervening non-coding RNAs, with an evolutionarily conserved genomic architecture in vertebrates 

that consists of 2-3 exons that are slightly longer than protein-coding genes, with most of them 

polyadenylated. Sense intronic RNAs are defined as transcripts within introns of a coding gene found not 

overlapping any known exons. Another biotype of lncRNAs is the processed transcripts, which according 

to the GENCODE biotype definition [99] do not contain an open reading frame and cannot be placed in 

any other biotypes. The biotypes have continuously been expanded to include more lncRNAs as they are 

identified [100]. Amongst the new lncRNA biotypes are: macro lncRNAs, which are mostly unspliced 

transcripts that are >10 kb in length, and bidirectional promoter lncRNAs, referring to those originating 

within the promoter region of a protein-coding gene. These biotype definitions were used in this dissertation 

to generate a list of lncRNAs to identify candidate intellectual disability-associated long non-coding RNAs 

using an expression-based machine learning classifier [99,100].  

 

1.3.5 Mechanisms of LncRNA Function 
The functional characterization of lncRNAs is still a major challenge. However, based on those 

whose function has been elucidated, it has been suggested that they can interact with DNA, RNA, and 
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proteins (Figure 1.2). Previous studies [95,96,101] have identified that the regulatory interactions of 

lncRNAs occur through base-pairing with short stretches of RNA, structural domains in the chromosome, 

in the case of chromatin remodeling, and also by acting as an allosteric regulator in regulation of 

transcription factor binding to DNA [86]. The possible mechanisms of action of lncRNAs include molecular 

scaffolds, which bring two or more proteins into a complex or physical proximity. These protein complexes 

can have trans regulatory effects on the DNA, which can lead to chromatin remodeling. These chromatin 

remodeling complexes can have important effects on gene activation or silencing, modifying the expression 

landscape, especially during developmental stages [86]. LncRNAs can act at the transcriptional level as 

RNA decoys, which act as target mimics, diminishing the ability of transcription factors to bind to their 

DNA-binding sites; for instance, it has been noted that splicing events can be regulated by the action of 

lncRNAs [86,96]. Also, lncRNAs can regulate mRNA translation. A previous study [102] reported that 

lincRNA-p21 is involved in translational regulation of mRNAs JUNB and CTNNB1 by associating with 

translational machineries [102]. LncRNAs can also have an effect on the levels of microRNAs (miRNA), 

as miRNA sponges. The miRNA sponge acts as a decoy for miRNA target sites, reducing the effects of the 

miRNA complexes on their target mRNA [86,103,104]. The effect of miRNA sponges on miRNA 

complexes is known as titration away, or a reduction of the miRNA complexes that can degrade the mRNA, 

resulting in an upregulation of the levels of mRNA [86,104]. This titration effect seems to be not only 

limited to miRNA, but can affect other targets such as transcription factors, as reported by Gaiti et al. [104]. 

LncRNAs have been shown to act in both cis and trans regulatory mechanisms, making them an important 

part in developmental processes as well as transcription and translation [103,104]. 

 



23 
 

 

 

Figure 1.2 Schematic overview of LncRNA regulatory mechanisms. LncRNAs regulate gene expression 

through various mechanisms that include: (1) RNA decoys, by directly binding to the transcription factors. 

(2) LncRNAs can also act as microRNA sponges, to titrate away microRNA complexes from their mRNA 

targets. (3) LncRNAs can act as scaffolds, within ribonucleoprotein complexes or by binding to specific 

proteins. (4) LncRNAs can also recruit chromatin-modifying complexes. Other regulatory processes 

include: translational regulation of mRNA (5), splicing (6), and degradation of mRNA (7). The figure was 

adapted from Hu et al. (2012) [86]. 

 

1.3.6 Possible Involvement of LncRNAs in Intellectual Disabilities 
It has been proposed that there is a correlation between the diversity of non-coding elements and 

the evolutionary divergence and complexity of organisms [87,90]. Evolutionary studies have identified that 

lncRNAs have low conservation at the sequence level. However, studies indicate that for higher animals 

(metazoans), lncRNAs have been important in the development of cognitive complexity, especially in the 
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mammalian and primate brains [87,89,90]. In fact, it has been reported that spatiotemporal expression 

patterns of lincRNAs in the prefrontal cortex of the brains of macaques and humans in comparative studies 

showed to be as conserved as those of protein-coding genes [89]. This has suggested that lncRNAs could 

be playing an important role in neurodevelopmental processes, and perhaps in cognitive development. 

Previous studies [65,89] have identified that lncRNAs could be associated with neuronal diversification as 

well as specification of individual neuronal subtypes. It is also possible that lncRNAs could be associated 

with disease in the human brain due to their role in gene regulation [89], and neurodevelopmental disorders, 

which could include intellectual disabilities amongst such diseases.  

This possible association was explored in previous studies [90,91], which analyzed the effect that 

non-coding genes, such as lncRNAs, had on the deregulation of transcription and translation and their 

impact on ID gene expression and phenotype manifestations. Deregulation of non-coding transcripts in 

neurodevelopmental disorders was supported by the observation in Loohuis et al. [91], where miRNA were 

identified to regulate the expression of mRNAs in axosomal and the synaptodendritic compartments. The 

possible association between deregulation of miRNA and lncRNAs can be established due to the role of 

lncRNAs as miRNA sponges, titrating away the miRNA complexes that regulate mRNA translation. A 

study by van de Vondervoort et al. [90] reported that a major portion of the non-coding transcripts in the 

brain are lncRNAs, with a large fraction of brain-specific non-coding genes having altered levels in ID 

brain tissues. Deregulation of lncRNA expression can impact ID-risk gene expression. According to the 

study by van de Vondervoort et al. [90] as well as other authors [65,91], deregulation of lncRNAs can lead 

to abnormal transcription and translation of ID-risk genes, potentially resulting in various 

neurodevelopmental disroders, including fragile X syndrome, Down syndrome, and Angelman syndrome. 

In chapter II of this dissertation, we developed an expression-based machine learning classifier that 

used ID and non-ID disease genes to identify novel ID-associated lncRNAs using the developing brain 

transcriptome data. Our goal was to identify novel candidates that could be used in human genetics research. 

In Chapter III, a three-state SVM model was developed for predicting the effect of amino acid substitutions 

on protein stability. We show the effect of feature selection on model performance. In Chapter IV of this 
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dissertation, we demonstrated the use of statistical coupling analysis to cluster amino acid residues in 

protein sectors and determine the effect of mutations in these groups in the development of phenotypic 

manifestations in ID. In Appendix A, we show our efforts in a collaborative study that focused on the use 

of mutual information to understand the functional divergence of the UDG protein family.  
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Abstract 

 

Background: Intellectual disabilities (ID) are neurodevelopmental disorders with an estimated prevalence 

in the population of 1-3%. These disorders have a complex genetic etiology, with possible involvement of 

not only protein-coding genes but also non-coding elements, including long non-coding RNAs (lncRNAs). 

However, the role of lncRNAs in ID is still unclear although evidence supports possible associations of 

lncRNAs with disease causality and development. To identify candidate lncRNAs associated with ID, 

predictive methods need to be based on gene expression patterns. 

Results: We have developed an expression-based classification model using Support Vector Machines. The 

model was trained using a developmental brain transcriptome dataset, with known ID-causing genes as the 

positive instances and non-ID disease genes as the negatives. We used Random Forest-based methods for 



40 
 

feature selection, however, this did not significantly improve model performance when compared with the 

full feature set. To address the class imbalance problem, we used synthetic oversampling of the minority 

class, which resulted in the best-performing model with the overall accuracy of 80.22% (76.34% sensitivity 

and 83.95% specificity) in tenfold cross-validations. This model was then used to predict ~760 candidate 

lncRNAs associated with ID. These candidate lncRNAs were analyzed for co-enrichment with known ID 

genes in co-expression modules. We identified the co-enrichment in modules related to neurodevelopmental 

and synaptic processes. 

Conclusions: A new gene expression-based classifier has been constructed and used to identify candidate 

lncRNAs associated with ID. The results from our analyses suggest a potential role of these candidate 

lncRNAs in development and etiology of ID. 

 

2.1 Background  

 Intellectual disabilities (ID) are neurodevelopmental disorders, which are estimated to be prevalent 

in 1-3% of the general population [1], and are commonly diagnosed prior to 18 years of age [2]. ID patients 

are associated with intelligence quotient (IQ) sores <70 and diminished cognitive abilities [1,2]. ID can be 

syndromic, meaning that there are also morphological abnormalities or metabolic disorders, or can be non-

syndromic, in which the intellectual impairment is the only clinical manifestation [3]. It is also possible for 

ID to be associated with other conditions such as autism spectrum disorders (ASD) [2]. This complexity of 

ID is also represented in the possible causes. Although exogenous factors can influence ID causality, genetic 

factors remain the major cause of ID [1–4]. To further our understanding of ID, we need to expand the 

knowledge of ID-causing genes. Currently, almost all of the known ID-causing genes are protein-coding, 

whereas the numerous long non-coding RNAs (lncRNAs) have not been thoroughly examined for their 

possible roles in the etiology of ID [1,2,4]. 
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 The importance of non-coding transcripts and their roles in gene expression regulation have been 

expanded since their discovery, with special interest in lncRNAs and their tissue-specific expression [5,6]. 

These transcripts, which are more than 200 nucleotides long and are a heterogeneous group, are involved 

in a variety of biological processes [7–10]. In recent years, more and more lncRNAs have been identified 

and studied becoming interesting candidates that could potentially be inovlved in diseases such as 

neurodevelopmental disorders or cancer. Additionally, lncRNAs have known functions such as X-

chromosome inactivation in mammals [8] or interacting with chromatin remnodelling complexes [5]. A 

recent study used an integrative approach to link lncRNAs with neurodevelopmental functions, and to 

examine their possible associations with ID [2]. However, the extent and number of lncRNAs associated 

with ID remains to be discovered, and methods capable of identifying and providing new insights into the 

possible roles and number of genes involved in the causality and development of ID are necessary to further 

our understanding of disease etiolog 

 By harnessing information from known ID-causing genes it is possible to use machine learning 

algorithms to discover novel ID-associated lncRNAs. For a classification task such as this, Support Vector 

Machines (SVMs) can provide accurate model building and efficient computational cost [11]. Besides the 

success in predicting DNA/RNA binding residues [12] and splice sites [11,13], recent research has reported 

a number of efficient and accurate SVM classifiers using gene expression data [14–16]. Moreover, SVMs 

have the advantage of combining parameter optimization and feature selection methods [17, 18], and using 

approaches to deal with class imbalance such as oversampling and under-sampling [19, 20]. In this study, 

we developed a new SVM classifier based on developmental brain gene expression patterns to identify 

candidate lncRNAs associated with ID. The idea behind this was due to the non-coding nature of lncRNAs 

and thus to avoid using protein sequence-based features. We also performed gene co-expression network 

analysis to further understand the possible function of these candidate lncRNAs. 
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2.2 Methods 

Data preparation 
 The developmental brain gene expression dataset was obtained from the BrainSpan website at the 

Allen Institute [21]. From this dataset, the expression profiles of ID-causing genes (IDGs) and non-ID 

disease genes (NIDGs) were extracted and used for classifier construction. The filtering was done based on 

their known identity as either ID-causing or disease genes that are not causal of IDs. Classification of ID 

genes was based on previous studies [22–24], which provided functional annotation and association of these 

genes with ID. We also used the information available from the ID Gene Database Project 

(http://gfuncpathdb.ucdenver.edu/iddrc/iddrc/home.php), which compiled a comprehensive list of known 

ID genes. The training dataset consisted of 423 IDGs and 1830 NIDGs. A second set of expression profiles 

was also extracted for brain-expressed lncRNAs. This second set was used by the classifier to identify new 

candidate lncRNA associated with ID. For each dataset, the gene expression values were log2-transformed 

to make the variation magnitudes amongst individual gene expression profiles similar.  

 

Classifier training and testing 
 Prediction of ID-associated lncRNAs can be regarded as a binary classification problem, for which 

a classifier is constructed to discriminate the belonging of an object to one of two classes – positive or 

negative [11, 25]. In this case, genes are classified into either of two classes (ID or non-ID disease causing). 

We used Support Vector Machines (SVMs) to develop the classifier. SVMs use two key ideas, a separation 

margin and a kernel function, to solve the classification task [11, 25]. The use of SVMs in this study was 

based on the reported success of SVMs in developing expression-based classification models. Previous 

studies developed high-performing SVM models capable of predicting gene associations with cancer, ASD, 

and neurodegenerative diseases [14, 16, 26–28]. In addition, we also tested two other machine learning 

algorithms, Random Forests and naïve Bayes, for classifier construction. 

 In this study, the SVM classifier was developed using the radial basis function kernel. The 

misclassification cost (C) and gamma parameters were optimized for classifier training. We used a two-
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step grid search to find the optimal C and gamma combination. The preliminary search tested the possible 

combinations of C values ranging from 0.5 to 10 with different gamma values from 1e-6 to 1. Once this 

step was completed, a refining grid search was done to determine the best-performing combination of C 

and gamma values. The SVM classifier was trained using the package e1071 [29] for R version 3.3.3 [30]. 

 Model performance was evaluated initially with fivefold cross-validation and subsequently with 

tenfold cross-validation. The following performance metrics were used to evaluate the models: 

 

Accuracy =  "#$"%
"#$"%$&#$&%

     (1) 

Sensitivity =  "#
"#$&%

      (2) 

Specificity =   "%
"%$&#

      (3) 

F-Measure = 2× )*+,-.-/0	×	*+,233
)*+,-.-/0$*+,233

 = 456
(456	8	96	8	9:) (4) 

MCC = "#×"%-&#×&%
"#$&# ("#$&%)("%$&#)("%$&%)

   (5) 

 

 In the above equations, TP = true positive, TN = true negative, FP = false positive, and FN = false 

negative. The F-measure, also referred as the F1 score, is often used to evaluate models constructed from 

an imbalanced dataset, and has the range from 0 (worst) to 1 (best). In this study, the overall accuracy, 

sensitivity, specificity and F-measure were calculated using the performanceEstimation package [31]. 

Model selection was based on the Matthews Correlation Coefficient (MCC) and the area under the receiver 

operating characteristic (ROC) curve or ROC-AUC. The ROC was plotted using the ROCR package [32]. 
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Feature selection 
 The reduction of redundant and noisy features to improve classifier performance were done using 

two feature selection algorithms: Random Forests with the Boruta R package [33, 34] and recursive feature 

elimination with the caret package [18, 35]. Each method generated a list of selected features, and the effect 

of reducing the feature space on model performance was determined. For each selected feature subset, the 

classifier was re-trained and tested using tenfold cross-validation to determine the performance metrics, 

including sensitivity, specificity, MCC, and ROC-AUC. 

 

Minority class oversampling 
 In this study, the training dataset is imbalanced, with many more NIDGs than IDGs. When models 

are trained using an imbalanced dataset, there are strategies to counter the difference between the under- 

and over-represented classes and thus increase the model’s ability to discriminate between the classes. 

These strategies include the adjustment of class weights, under-sampling of the majority class, and over-

sampling of the minority class. Although under-sampling was shown to be effective [20], this could reduce 

the information for model construction. The reduction of the majority class (NIDGs) could mitigate the 

model’s ability to recognize the hidden patterns that differentiate between IDGs and NIDGs. To maximize 

the amount of information for classifier construction, we used synthetic minority over-sampling technique 

(SMOTE) [19, 36]. The approach computes synthetic examples of the minority class by interpolation of the 

k nearest neighbors [36]. With the over-sampling percentage set to 325 and the k nearest neighbors to 5, 

this operation resulted in 1835 positive instances (470 IDGs and 1365 synthetic samples) and 1825 NIDGs 

in the balanced dataset for model training. The synthetic over-sampling was done with the DMwR package 

[37]. 

 

Prediction of ID-associated lncRNAs 
 Once the model was trained, it was used to predict candidate lncRNAs associated with ID. The list 

of brain-expressed lncRNAs was composed of ~9500 transcripts (SI Table 1), of potential association with 
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ID. The expression dataset was log2-transformed in R. The list of lncRNA biotype definitions was obtained 

using the biomaRt package in R [38] and matched to the BrainSpan gencode v10 release [39]. The lncRNAs 

were identified using the Ensembl IDs [40, 41] in the further analysis. 

 

Gene co-enrichment analysis 
 The co-enrichment analysis utilized a human brain gene co-expression network, which was 

generated in a previous study [24] with the WGCNA package [42]. Using the module information, we 

analyzed for co-enrichment of candidate lncRNAs with known ID-causing genes. For the enriched modules, 

gene over-representation values were calculated using Fisher’s exact test. The resulting P-values were 

adjusted to calculate the false discovery rate. To be considered as statistically significant enrichment of a 

gene list, the adjusted P-value should be <0.05 and the odds ratio (calculated with Fisher’s exact test) >1. 

We also compared the ID-associated lncRNAs identified in this study with a set of prioritized candidate 

lncRNAs from the previous study [24]. The resulting matches were tested for statistical significance by 

constructing a contingency table and using Fisher’s exact test (true odds ratio >1 and P-value <0.05). 

 

Gene expression pattern analysis 
 The analysis of lncRNA expression in different tissue types was performed to determine if the 

candidates were specifically expressed in the brain. We used the Genotype-Tissue Expression (GTEx) 

dataset with 53 human tissue types [43]. Heatmaps were generated to compare the expression of candidate 

lncRNAs in the brain and other tissues. 

 

2.3 Results and discussion 

Development of an expression-based classifier for ID gene prediction 
 Since the performance of machine learning algorithms may be influenced by the type of problem, 

we used three algorithms, Support Vector Machine (SVM), naïve Bayes and Random Forest, to develop a 
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model to discriminate between ID-causing genes and non-ID disease genes using the BrainSpan expression 

data [21]. The performance metrics shown in Table 2.1 suggested that the model trained with SVM was 

better suited for further optimization given that MCC and ROC-AUC were significantly higher for the 

SVM. The other metrics such as the F-measure, commonly used for imbalanced datasets, as well as the 

sensitivity and specificity (Table 2.1) also supported our conclusion regarding the SVM’s ability to predict 

ID genes based on developmental brain gene expression profiles. 

 Feature selection was previously shown to improve model performance by reducing redundancy 

and background noise [17, 33]. We thus compared the performance of classifiers constructed using the full 

feature set and feature subsets selected by Random Forests. However, for the prediction of ID-causing genes 

using expression profiles, feature selection did not significantly improve the predictive power (Table2.2 

and Figure 2.1). When comparing the full feature set model (SVM_Full) and the selected feature model 

(SVM_176), they had similar MCC and ROC-AUC, whereas the measurements for accuracy, sensitivity 

and F-measure were better for the full feature set model (Table 2.2). The results suggest that developing an 

accurate model for ID gene prediction may need the full feature set with 524 features representing gene 

expression at various developmental stages and brain regions. This is consistent with ID as complex genetic 

disorders and that ID diagnosis can occur until 18 years of age [1, 2]. 

 

Balancing the dataset by synthetic oversampling of the minority class improves model performance 
 Imbalanced datasets are commonplace for machine learning problems in biology [11, 44]. The 

effect of having differentially represented classes on model performance is well known [44]. Because of 

this, various strategies have been developed to counter the bias of an over-represented class in the dataset 

during model construction. Initially, we used the adjustment of the class weight parameter for training SVM 

models based on the ratio between IDGs and NIDGs (~1:4), assigning more weight to the under-represented 

class. We expected this to improve model performance. However, that was a rather simple technique, and 

we explored the possibility of applying a more advanced method to our imbalanced dataset. 
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 We selected the synthetic minority oversampling technique (SMOTE) [19, 36] to balance the 

training dataset in this study. By using the available instances of the under-represented class, IDGs in this 

case, SMOTE could derive synthetic samples from the existing IDGs. This approach was deemed 

appropriate as there was no loss of information about either class, and we expected that new ID genes could 

have similar expression patterns as the synthetic samples. The ability of SMOTE to maximize the use of 

class information was a critical factor in balancing method selection when comparing it to other approaches, 

especially with under-sampling, where selection of a subset of NIDGs would have allowed to balance the 

dataset with the possible outcome of losing some information about the hidden pattern in the NIDGs. 

 The model constructed using the SMOTE-balanced dataset with the full feature set performed better 

than the classifier built through the class weight adjustment (Table 2.2 and Figure 2.1). The performance 

metrics such as MCC and ROC-AUC indicate that class balancing provided the better approach for 

constructing an accurate model. Implementation of SMOTE was also found to be more effective for model 

performance improvement than feature selection in this study. However, the use of oversampling alone did 

not ensure high model performance, as observed when comparing the full and reduced feature sets with 

balanced classes (Table 2.2 and Figure 2.1). Therefore, the model constructed using the balanced dataset 

with all 524 spatiotemporal expression features achieved the best performance, and was used to predict new 

candidate lncRNAs associated with ID. 

 

Identification of new candidate lncRNAs associated with ID 
 The fine-tuned SVM model was used to predict 767 possible ID-associated lncRNAs from a list of 

~9500 lncRNAs within the BrainSpan dataset [21]. These candidate lncRNAs were subsequently analyzed 

for co-enrichment with known ID genes based on the results from a previous study [24], in which a brain 

gene co-expression network was created to identify the ID gene-enriched modules. We examined whether 

the possible ID-associated lncRNAs were co-enriched in any of these modules that were associated with 

neurodevelopmental functions. The analysis revealed statistically significant co-enrichment in two 
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modules, the purple module and the greenyellow module (Figure 2.2). These two modules were enriched 

for Gene Ontology [45, 46] terms associated with biological processes including neuron differentiation and 

synapse organization (Table 2.3). We also compared the list of candidate lncRNAs predicted in this study 

with the list of ID-associated lncRNAs previously published by Gudenas et. al. [24], identified using co-

expression networks to determine if there was a significant overlap between the two lists. We identified 55 

common ID-associated lncRNAs (SI Table 2) across multiple modules, including the purple module and 

the greenyellow module. Representative overlapping lncRNAs from the co-enriched modules are shown in 

Table 2.3. Although gene co-expression analysis has been used to predict the possible lncRNA 

functions/roles, it is important to note that co-expression is not synonymous to causality [47]. There are 

some caveats with the guilty-by-association approach; however, it may provide some insights about the 

candidate lncRNAs and pathways associated with ID. 

 Next, we utilized the GTEx dataset [43] to examine the expression patterns of the candidate 

lncRNAs. Notably, the possible ID-associated lncRNAs overlapped with those from the previous study [24] 

were expressed in various brain regions (Figure 2.3). We also observed a higher expression of lncRNAs in 

testes, which is not unexpected, as it has been reported that testes followed by neural tissues, and in some 

species the ovary, are where the largest amount of lncRNAs are expressed [48]. We also identified 

expression of lncRNAs in the pituitary gland, which is expected as these genes have a regulatory role in the 

endocrine system [49]. Primate brain studies have discovered significant numbers of lncRNAs expressed 

in different developmental stages in brain regions like the prefrontal cortex. The degree of specificity in the 

expression patterns appears similar to those of protein coding genes [50]. The relatively high expression of 

the ID-associated lncRNAs in brain regions (Figure 2.3) is in accordance with their possible function in 

neurodevelopmental processes. 
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2.4 Conclusions  

 We have developed a new machine learning model for genome-wide identification of candidate 

ID-associated lncRNAs using brain gene expression profiles. Three different learning algorithms were 

examined for model construction. Using a training dataset of ID genes and non-ID disease genes encoded 

with spatiotemporal expression features, we developed and compared the performance of these models. The 

SVM model was selected due to its high performance, and then used for fine-tuning to further improve its 

accuracy. Next, feature selection and class balancing methods were implemented to improve model 

performance. For ID gene prediction using expression data, synthetic oversampling of the minority class to 

address class imbalance, but not feature selection, was found to significantly improve model performance. 

Finally, the best-performing SVM model was used to predict 767 possible ID-associated lncRNAs, which 

were then analyzed for co-enrichment with known ID genes in co-expression modules. We identified 55 

candidate lncRNAs that were co-expressed with known ID genes and showed relatively high expression in 

various brain regions. These lncRNAs could serve as high-priority targets for experimental investigation 

into the roles of lncRNAs in brain development and ID pathogenesis. 
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Tables 

 

Table 2.1 Performance of the SVM, Naïve Bayes, and Random Forest models based on tenfold cross-

validation. The models were constructed using the full feature set composed of 524 spatiotemporal 

expression features. 

 

 Accuracy Sensitivity Specificity F-Measure MCC AUC 

SVM 70.61% 70.48% 70.65% 0.8046 0.3562 0.7630 

Naïve 

Bayes 
64.98% 64.62% 65.12% 0.4286 0.2582 0.6573 

Random 

Forest 
79.34% 10.88% 96.93% 0.1756 0.1376 0.5414 
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Table 2.2 Performance of the SVM models after feature selection and synthetic oversampling of the 

minority class (SMOTE). The models were constructed using the full set of 524 features or the reduced 

set of 176 features as indicated. 

 

 Accuracy Sensitivity Specificity F-Measure MCC AUC 

SVM_Full 71.66% 73.42% 64.64% 0.8046 0.3562 0.7630 

SVM_Full_ 

SMOTE 
80.22% 76.34% 83.95% 0.7902 0.6466 0.8747 

SVM_176 70.61% 70.48% 70.65% 0.4947 0.3630 0.7651 

SVM_176_ 

SMOTE 
75.62% 82.74% 68.21% 0.7765 0.5662 0.8362 
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Table 2.3 List of selected candidate lncRNAs from this study. These ID-associated lncRNAs were also 

identified in a previous study [24], and co-enriched with ID genes in brain co-expression modules. 

Additional information from [24] includes the type of copy number variant (CNV), the highest 

correlated ID gene, and the enriched GO term. 

 

Ensembl ID 
lncRNA Gene 

Symbol 

Type of 

CNV 
Module 

Highest 

Correlated 

ID Gene 

GO Enrichment 

Term 

ENSG00000245864 
CTC-

467M3.1 
de Novo purple MEF2C 

cell part 

morphogenesis; 

synapse 

organization; 

axonogenesis 

ENSG00000246477 
AF131216.

6 
Decipher purple PAK3 

cell part 

morphogenesis; 

synapse 

organization; 

axonogenesis 

ENSG00000224855 OPA1-AS1 Decipher purple BRAF 

cell part 

morphogenesis; 

synapse 

organization;  

axonogenesis 

ENSG00000236850 
LL22NC03

-80A10.6 
Decipher purple RPGRIP1L 

cell part 

morphogenesis; 
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synapse 

organization;  

axonogenesis 

ENSG00000183308 
AC005037.

3 
Decipher purple PAK3 

cell part 

morphogenesis; 

synapse 

organization;  

axonogenesis 

ENSG00000257769 
CTB-

193M12.1 
Decipher purple USP9X 

cell part 

morphogenesis; 

synapse 

organization; 

axonogenesis 

 

ENSG00000228794 
RP11-

206L10.11 
de Novo greenyellow MBD5 

neuron projection 

development; 

neuron 

differentiation; 

neuron 

development 

ENSG00000093100 
XXbac-

B461K10.4 
Decipher greenyellow RALGDS 

neuron projection 

development; 

neuron 

differentiation; 

neuron 

development 
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ENSG00000233058 
AC046143.

7 
Decipher greenyellow MBD5 

neuron projection 

development; 

neuron 

differentiation; 

neuron 

development 

ENSG00000254635 
RP11-

164A7.1 
de Novo greenyellow CEP290 

neuron projection 

development; 

neuron 

differentiation; 

neuron 

development 

ENSG00000188242 
CTD-

2228K2.5 
Decipher greenyellow PPOX 

neuron projection 

development; 

neuron 

differentiation; 

neuron 

development 
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Figures 

 

 

 

Figure 2.1 ROC curves of the SVM models constructed using the full and reduced feature sets in 

combination with the SMOTE method to overcome class imbalance. 
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Figure 2.2 Co-enrichment of lncRNAs and ID genes in brain co-expression modules. The modules were 

obtained from a previous study [24], and the co-enrichment was identified for two modules, purple and 

greenyellow. IDG stands for the possible ID-associated lncRNAs, ID for the known ID genes, and NIDG 

for non-ID disease genes. The numbers in the boxes represent the odds-ratio from Fisher’s exact test. 
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Figure 2.3 Expression patterns of the ID-associated candidate lncRNAs. The lncRNA candidates  were co-

enriched with ID genes in brain co-expression modules from a previous study [24]. The GTEx dataset [43] 

was used to examine lncRNA expression in different tissues, including brain (highlighted in blue). 
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Abstract 

 

 Amino acid substitutions can have significant and deleterious effects on proteins. Prediction of the 

effects of substitutions on protein stability has been explored, but many studies make use of structure-based 

features, which are not available for all proteins. In this study, we have developed a sequence-based SVM 

model for three-state protein stability prediction. This model used features extracted from the primary 

sequence, and feature selection identified the most informative feature set for model construction. We 

evaluated this model with an independent test dataset, and obtained the accuracy of 70.52% with 61.20% 

sensitivity and 79.84% specificity. Our results suggest that sequence features contain sufficient information 

for accurate prediction of three-state protein stability changes caused by amino acid substitutions. 
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3.1 Introduction 

  Disease-causing sequence changes have been identified for many human genes [1–3]. The type of 

changes varies in nature, affecting multiple mechanisms from RNA processing to post-translational 

modifications. However, it has been identified that the most common effect of these changes is on protein 

stability [1–3]. An analysis of human single nucleotide polymorphisms (SNPs) revealed that ~80% of 

disease-causing amino acid substitutions affect protein stability [3]. In humans, ~60% of single nucleotide 

missense mutations in coding regions account for monogenic diseases based on the Human Gene Mutation 

Database [4]. Thus, understanding the effects of sequence variations on proteins is an important task. 

 Variations in the amino acid sequence can impact the physicochemical characteristics of a 

polypeptide. These sequence changes may alter the biochemical properties of the protein, resulting in 

modified structural characteristics with deleterious effects. The notion of predicting the effect of amino acid 

substitutions on protein stability has been previously explored [5,6]. However, our approach, similar to [7] 

and more recently [8], proposes to focus on sequence-based features and avoid using any features based on 

the protein structure. 

 The development of a three-state protein stability predictor was previously reported [9]. However, 

the approach made use of structural features which require a known protein structure. This can be a limiting 

factor as not all proteins have structural information available. Although computational methods are 

available for protein structure prediction [10], they are not as accurate in resolution as the experimental 

determination of a protein structure. The limitation of previous works in the use of structural features may 

be circumvented by encoding the instances with features derived completely from amino acid sequence. 



66 
 

 In this study, we have developed a new three-state protein stability predictor based on sequence 

features. The importance of the sequence features in model performance was examined using two feature 

selection methods capable of reducing and ranking variables, random forests and recursive feature 

elimination. Our three-state protein stability predictor based on Support Vector Machines (SVMs) showed 

performance comparable to the currently available methods using structural information. The results 

suggest that sequence features can provide useful information for predicting the effect of amino acid 

substitutions on protein stability. 

3.2 Methods 

Data acquisition 
 The protein dataset was derived from that used by Capriotti et al [9] and later modified by Folkman 

et al [11]. We modified this dataset to contain 68 unique protein entries whose sequences were obtained in 

FASTA format from the Protein Data Bank (PDB) [12]. The sequences were subsequently subjected to 

redundancy reduction with a threshold of 85% sequence similarity using BlastClust. This assured the 

uniqueness of each sequence and eliminated the presence of multiple chains for a single entry. This process 

also resulted in the condensation of small sequences into larger clusters. The resulting dataset contained 

1,332 non-redundant instances (henceforth s1332) with information about the PDB identifier, the wild-type 

position, the mutated amino acid, the substituted position, and the free energy change (ΔΔG), which was 

used to determine the class label of the instance. In this study, we had three classes or states: decreased 

stability (DS), increased stability (IS), and no significant change (NC). The ΔΔG thresholds used in this 

study were as follows: DS if the effect of an amino acid substitution on the protein stability change ΔΔG ≤ 

-0.5 kcal/mol, IS if ΔΔG ≥ 0.5 kcal/mol, or NC if -0.5 kcal/mol ≤ ΔΔG ≤ 0.5 kcal/mol. For building an 

independent test dataset, we selected the s238 sequence set, and subjected it to the same process as the 

s1332 dataset. This test dataset contained unique entries that were not included in the training dataset s1332, 

and consisted of variants representing the three different states.  
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Sequence-based features 
 The instances in the s1332 dataset were encoded with a total of 31 sequence features using the R 

package “Peptides” [13]. This study used various physicochemical and biochemical features as defined by 

ExPASy in ProtParam (http://web.expasy.org/protparam/protparam-doc.html). These features include 

molecular mass, amino acid composition, charge, and aliphatic index, defined as the relative volume 

occupied by aliphatic side chains (Alanine, Valine, Isoleucine, and Leucine). Other features include: the 

Kidera factors, which comprise 10 features derived from 188 physical properties; three different 

hydrophobicity indices, obtained with three different scales (Fasman, Bull, Chothia); instability index, 

based on dipeptide composition; and the Boman index, which indicates the potential of a peptide to bind to 

the membrane or other proteins. 

 

Model construction 
 In this study, the multiclass protein stability model was constructed using Support Vector Machines 

(SVMs) with sequence-based features. SVMs were shown to produce well-performing models for protein 

stability prediction in previous studies [7,8]. In its essence, an SVM model defines a separation hyperplane 

that divides the space into two distinct halves. Based on the sign given by the f(x), a point will be assigned 

to a given side of the hyperplane. If f(x)>0, a point will be assigned to the positive side of the hyperplane. 

The soft margin can increase the performance of the classifier when compared to hard margins, and this is 

achieved by allowing misclassification of some points [15]. The use of soft margins in SVMs comes as a 

response to the fact that not all data is linearly separable, which is especially true with biological data [15]. 

The third component refers to kernels, which can be used to make the calculation process more efficient, 

especially in feature spaces of high dimensionality. The radial basis function (RBF) kernel was used to 

construct the SVM model in this study. RBF is one of the most widely used kernel functions in model 

development and often performs well on biological data [15]. 

 The caret and e1071 packages [16,17] available in R were used to construct the SVM model. We 

examined multiple options for model construction, including multiclass SVM models, kernel functions, and 
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performance metrics. The Receiver Operating Characteristic (ROC) curve, specifically the area under the 

curve (ROC-AUC), was calculated using the package pROC [18]. The SVM model was also compared with 

two different Random Forest (RF) classifiers, a single RF and an ensemble of RFs. The RF learning 

algorithm was previously shown to perform well for protein stability prediction [19]. 

 

Feature selection 
 Feature or variable selection for a classification problem can have two main objectives: (1) to 

identify highly important variables that are related to the response variable, and (2) to reduce the feature 

space to improve the prediction of the class label [20]. An efficient feature selection method can not only 

achieve these objectives, but may also combine important components such as determining importance 

thresholds, variable ranking and stepwise introduction of variables into the feature set [20,21]. In this study, 

we implemented a Random Forest (RF) based feature ranking method [21]. RFs are built upon decision 

trees, with every node being a condition on a variable. We also tested the recursive feature elimination 

method [22], in which the lowest 20% features were eliminated in each round to determine the most 

important sequence-based features. 

 

Model performance evaluation 
 Model performance was evaluated using the R package performanceEstimation [23]. We used the 

tenfold cross-validation method. Briefly, this method consists of partitioning the data into different folds 

where one-fold is used for testing and the remaining folds are used for training. We also used the 

independent test dataset s238 to evaluate model performance. The following metrics were used in this study 

to measure model performance: 
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Accuracy =  "#$"%
"#$"%$&#$&%

     (1) 

Sensitivity = "#
"#$&%

      (2) 

Specificity = "%
"%$&#

      (3) 

MCC = "#×"%-&#×&%
"#$&# ("#$&%)("%$&#)("%$&%)

    (4) 

 

 The accuracy provides the information regarding the true positives (TP) and true negatives (TN) in 

the total of the dataset, which also includes the identified false positives (FP) and false negatives (FN). 

Sensitivity or true positive rate refers to the proportion of positive instances that were properly identified 

in each class, whereas specificity or true negative rate is the number of negative instances identified as such. 

The Matthews Correlation Coefficient (MCC) was also used in this study to measure the performance of 

multi-class models. For a model with three classes (A, B and C), the values for TP, TN, FP and FN can be 

calculated as described previously [23]: 

TP = TPA + TPB + TPC     (5) 

TN = TNA + TNB + TNC     (6) 

FP = FPA + FPB + FPC     (7) 

FN = FNA + FNB + FNC     (8) 

3.3 Results 

Prediction of three-state protein stability changes 
 To develop an accurate model for three-state protein stability prediction, we tested two widely used 

machine learning algorithms, Support Vector Machine (SVM) and Random Forest (RF). The SVM and RF 

models were constructed using 31 sequence features. As shown in Table 3.1, the SVM method 

outperformed the RF learning algorithm for predicting protein stability changes. The SVM model that was 
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fine-tuned with the training parameters (C = 15, gamma = 0.40) achieved higher performance measures 

than the RF models in the tenfold cross-validation. In this study, we constructed two RF models: a single 

RF model and an ensemble comprising of three RFs (RF-E). It was previously shown that an ensemble 

could result in improved model performance [24]. However, the RF ensemble achieved similar performance 

measures as the single RF model for protein stability prediction (Table 3.1). We thus selected the SVM 

model for further analyses. 

Selection of relevant sequence features for model construction 
 Feature selection was conducted to determine the impact of sequence features in the model’s ability 

to discriminate the three protein stability states, and to potentially enhance the model performance. The first 

feature selection method ranked the importance of the variables (sequence features) using the Gini index 

[22,26]. The approach based on Boruta [25] sets the variable selection threshold based on the value of 

shadow attributes, which are shuffled copies of all attributes to create randomness, culminated in the 

reduction of the feature set from 31 to 12 features. The second method, recursive feature elimination, 

identified a set of 7 features. Interestingly, the two feature selection methods identified several common 

features, including the hydrophobicity indices of Fasman and Chothia, some of the Kidera factors, and the 

aliphatic index. The first method also identified additional features associated with the putative overall 

effect of amino acid substitutions on the peptide, such as the isoelectric point. 

 However, the SVM models constructed with the selected features did not show improved 

performance in the tenfold cross-validation (Table 3.2). The SVM model using all the 31 sequence features 

(SVM_Full) achieved higher accuracy, ROC-AUC and MCC than the two models after feature selection 

(SVM_12 and SVM_7). One possibility was that the model SVM_Full might be slightly overfitted. To 

examine this possibility, we further compared the model performance using an independent test dataset. 
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Model performance evaluation using an independent test dataset 
 When compared using an independent test dataset (s238), the SVM models constructed with the 

selected features appeared to give slightly better performance measures than the model with the full feature 

set (Table 3.3). In particular, the SVM model using the 12 selected features (SVM_12) achieved slightly 

better ROC-AUC and MCC than the other two models (SVM_Full and SVM_7). The results suggest that 

the 12-feature set might be optimal for predicting three-state protein stability changes. Using the full set of 

31 sequence features could cause model overfitting, whereas the 7-feature set might not provide sufficient 

information for prediction. 

 

3.4 Conclusions 

 In this study, we have developed a new model for three-state prediction of protein stability changes 

caused by amino acid substitutions. The SVM model was built with sequence-based features. Feature 

selection identified 12 features for accurate protein stability prediction. We further validated the predictive 

performance of the model using an independent test dataset. Our results suggest that sequence features can 

provide sufficient information for predicting the effect of amino acid substitutions on protein stability. 
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Tables 

 

Table 3.1 Performance of the SVM and RF models based on tenfold cross-validation. The models were 

constructed using 31 sequence features. 

 

Model AUC MCC Accuracy Sensitivity Specificity 

SVM 0.8972 0.7038 0.8659 0.8411 0.8907 

RF 0.7654 0.5360 0.7938 0.6907 0.8453 

RF-E 0.7666 0.5163 0.7826 0.6814 0.8348 
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Table 3.2 Performance of the SVM models after feature selection based on tenfold cross-validation. 

SVM_Full was constructed using all the 31 sequence features; SVM_12 was constructed with 12 

selected features; and SVM_7 was constructed with 7 selected features. 

 

Model AUC MCC Accuracy Sensitivity Specificity 

SVM_Full 0.8972 0.7038 0.8659 0.8411 0.8907 

SVM_12 0.8827 0.6115 0.8204 0.7830 0.8578 

SVM_7 0.8439 0.5529 0.7902 0.7445 0.8360 
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Table 3.3 Predictive performance of the SVM models on an independent test dataset. SVM_Full was 

constructed using all the 31 sequence features; SVM_12 was constructed with 12 selected features; and 

SVM_7 used 7 selected features. 

 

Model AUC MCC Accuracy Sensitivity Specificity 

SVM_Full 0.7423 0.3682 0.6647 0.5731 0.7563 

SVM_12 0.7477 0.4555 0.7052 0.6120 0.7984 

SVM_7 0.7367 0.4452 0.7092 0.6235 0.7950 
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Abstract 

	

Background: The importance of mutations in disease phenotype has been studied, with information 

available in databases such as OMIM. However, it remains a research challenge for the possibility 

of clustering amino acid residues based on an underlying interaction, such as co-evolution, to 

understand how mutations in these related sites can lead to different disease phenotypes.	

Results: This paper presents an integrative approach to identify groups of co-evolving residues, 

known as protein sectors. By studying a protein family using multiple sequence alignments and 

statistical coupling analysis, we attempted to determine if it is possible that these groups of residues 
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could be related to disease phenotypes. After the protein sectors were identified, disease-associated 

residues within these groups of amino acids were mapped to a structure representing the protein 

family. In this study, we used the proposed pipeline to analyze two test cases of spermine synthase 

and Rab GDP dissociation inhibitor.	

Conclusions: The results suggest that there is a possible link between certain groups of co-evolving 

residues and different disease phenotypes. The pipeline described in this work could also be used 

to study other protein families associated with human diseases.	

Keywords: Co-evolving residues, statistical coupling analysis, protein sectors, disease phenotype. 

 

4.1 Background 

 The role of mutations in disease phenotypes is an important focus for human genetics [1-

3]. The identification of mutations and their link to a disease has generated numerous data entries 

which should optimally be accessible for ongoing research efforts. This has resulted in the 

establishment of databases such as the Online Mendelian Inheritance in Man (OMIM) [4], where 

it is possible to access data regarding a gene or gene product and browse through the information 

of how different mutations are associated with reported phenotypes. Even though this represents a 

valuable resource for clinical and molecular studies, the challenge of determining if differences in 

the phenotypes (severity, expansion of symptoms) within a syndrome can be associated with 

changes in specific groups of residues remains to be fully resolved. However, recent approaches in 

the study of proteins and their evolution have opened a door to analyze proteins from a different 

view [5-9] and attempt to associate reported clinical phenotypes to groups of correlated residues. 

 The techniques such as statistical coupling analysis (SCA) and direct coupling analysis 

(DCA) amongst others [5-7, 10] have approached the study of proteins by focusing on the idea of 



80 
 

residue co-evolution within the protein super-family [6, 8, 11]. These residues, whose interaction 

is not hindered by their spatial distribution, are organized within groups that have a seemingly 

underlying evolutionary relationship amongst them. Such groups of residues have been termed 

protein sectors and have been identified in protein super-families that comprise various lineages [6, 

10]. These protein sectors have been characterized as important to the protein by either contributing 

to its biological identity or its function [5, 9].  

 The statistical coupling analysis requires the use of a large number of sequences as well as 

structural models for a representative member of the protein family to be analyzed [6, 7]. Although 

some protein structures are still not available, the advancement in crystallography accessibility as 

well as sequencing technologies coupled with increasing computational power and protein 

modeling accuracy and efficiency, has made it possible to obtain large sets of data in order to 

explore these approaches in multiple protein families, including those of clinical significance in 

humans [12-14]. 

 Previous studies have focused on identifying co-evolving residues, and therefore 

understanding how these correlated amino acid units, and the mutations within these regions, could 

affect the protein. The most common approaches consist of biochemical assays that provide 

experimental support to the link between correlated residue units and measureable characteristics 

such as stability or catalytic activity [6, 11]. However, it is important to note that most of these 

studies have focused primarily on the analysis of regions with an associated function, such as 

domains, thus concentrating only on a segment of the totality of residues that comprise the proteins.  

 Although the study of specific regions provides valuable information to further understand 

how changes in amino acids can affect the overall function of the protein, the exclusion of residues 

outside the defined region could however lead to a possible loss of valuable information regarding 
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residue distribution in functional sectors. This is of special importance in human genetic disorders, 

where diseases have multiple phenotypes ranging in severity, which can be associated with the 

location of a mutation within the protein. 

 We propose an integrative approach that consists of analyzing full-length sequence 

alignments from proteins and the subsequent identification of protein sectors using statistical 

coupling analysis [6]. The identified sectors and known mutation data from OMIM as well as other 

information resources were then used to determine a possible link between the location of an amino 

acid residue change and disease phenotype. Our results based on test case proteins known to be 

associated with X-linked intellectual disabilities revealed that it might be possible to associate 

disease variants to protein sectors. 

4.2 Methods 

 As shown in Figure 4.1, the pipeline used in our work consisted of three different stages: 

(1) dataset acquisition, multiple sequence alignment and curation; (2) identification of protein 

sectors and mapping of disease-causing mutations; and (3) association between protein sectors and 

disease phenotypes. 

Dataset acquisition 
 The first step was to obtain a reference protein sequence. Selection of the sequence and its 

organism is determined based on the type of dataset to be analyzed. The retrieval of homologous 

sequences belonging to the protein family to be analyzed was done using one iteration of PSI-

BLAST with a maximum number of target sequences set to 1000. This allowed us to obtain multiple 

sequences representing diverse evolutionary lineages. The motivation behind this was to enrich 

sequence diversity, thus allowing for the possible identification of groups of conserved co-evolving 

residues. Another reason to attempt to identify various sequences was to diminish the possible bias 

towards an organism that has overrepresentation of entries in the database. The approach of protein 
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sector analysis may not be applied to disease genes with few homologous sequences in the database. 

However, this is not supposed to be a common situation with more and more genomes being 

sequenced. 

 BlastClust [15] was subsequently used to reduce sequence redundancy within the dataset. 

The parameters used were: similarity threshold of 85% and 100% coverage. This helped diminish 

the over-representation of highly similar proteins with different entry numbers. Clustering of 

sequences further reduces the number of partial sequences that could cause alignment discordances 

due to their limited size. Further manual curation of the sequences was done in order to generate a 

high-quality sequence dataset for the alignment. In our pipeline, we implemented conditions to 

maintain dataset quality which primarily consisted of elimination of low quality predicted proteins 

and discarding of partial sequences. 

 

Protein structure retrieval 
 Protein structure files for the reference sequences used in the test cases were obtained from 

the Protein Data Bank [16]. The entry numbers were obtained by running a BLAST search with the 

reference sequence and setting the PDB as the search database. Highest scoring matches were then 

selected and downloaded from the PDB website. The PDB file was used to map the multiple 

sequence alignment to the residue positions defined in the structure file. This information was 

required for analyzing each site to identify residue co-evolution. 

 An alternative for proteins without a 3D structure is the use of homology modeling. We 

generated such homology structure files for our test sets by using the freely available software such 

as CPHmodels 3.2 [17] or the Swiss-Model server [18]. The resulting PDB files could be used in 
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the pipeline. This alternative requires the use of a separate numbering file for the residues, which 

can be included in the pipeline. 

 

Multiple sequence alignment 
 Each of the working datasets was subsequently aligned using ClustalW [19] incorporated 

in MEGA5 [20]. The parameters were set as default for gap penalties and the substitution matrix 

selected was BLOSUM62 [21]. After alignment, manual adjustments were undertaken to further 

curate the alignment file. These modifications included the elimination of high gap-creating 

sequences and trimming of large sequences (based on comparison of starting and ending residues 

of the reference or “seed” sequence). After this was accomplished, gaps were eliminated and 

sequences were realigned using the same algorithm and parameters. The final alignment files varied 

in the number of sequences, but for each test case there were more than 250 amino acid sequences 

in each file. 

 

Protein sector identification 
 The statistical coupling analysis was undertaken to identify the groups of coevolving 

residues. The SCA toolbox for MATLAB was obtained from the Rama Ranganathan laboratory at 

the Green Center for Systems Biology, UT Southwestern Medical Center. The MATLAB script 

was modified and adapted to analyze the test cases. 

 The identification of protein sectors was accomplished using the methodology previously 

described [6, 11]. This consists of the calculation of the degree of conservation for each amino acid 

position. Subsequently, the statistical coupling analysis generates a positional correlation and a 

sequence correlation matrix. This was followed by a spectral decomposition and analysis of the 

statistically significant eigenvalues, and an independent component analysis, which further defines 
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the identified protein sectors. Finally, the protein sectors are mapped onto the primary structure of 

the protein based on their position in the structure file. This information can also be used to generate 

a 3D structure with different protein sectors (For further information refer to Halabi et al [6]). 

 

Mapping of mutations within protein sectors 
 The information associated with mutations in a protein family can be obtained from 

databases such as OMIM as well as publications related to the protein family, their clinical 

importance and reported phenotypes known to be associated with the mutations. The clustering or 

grouping of mutations can be based on their location, within one of the major regions: N-terminal, 

central/other, and C-terminal. This allows for the preliminary classification of the mutations as well 

as the latter characterization of the residues identified within the protein sectors. 

 The labeling and numbering of residues and their corresponding sectors was done using a 

PDB file obtained by BLAST search using the reference sequence for each family as a query. The 

full-length sequence was used to maximize the number of possible residues belonging to protein 

sectors. By increasing the length and coverage of the alignment, it is possible to identify co-

evolving residues outside the main protein domain, which could be associated with a disease 

phenotype. 

 

Visualization of sectors in the protein 3D structure 
 The program Jmol (http://jmol.sourceforge.net/) was used to visualize the 3D structures in 

PDB files. Protein domains were subsequently identified and colored using the information 

available from PDB. Each domain was assigned an arbitrary color, based on visualization purposes 

(not functional association). For the visualization of protein sectors, the residues identified were 
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assigned the color that corresponded to the group of residues to which they belonged based on the 

SCA analysis. 

4.3 Results and discussion 

Identification of protein sectors 
 The selection of spermine synthase (SMS) and the Rab GDP dissociation inhibitor 1 

(GDI1) as test cases was based on the available information for both proteins. SMS has been widely 

studied, with multiple mutations and the associated phenotypes comprehensively described as well 

as a vast amount of information on the importance of this molecule in brain development [22-25]. 

These characteristics as well as the fully resolved crystal structure (PDB: 3C6K) made SMS a good 

candidate as a test case.  

 GDI1 has been associated with non-specific X-linked intellectual disability, with different 

mutations being reported [26, 27]. This represents an interesting study case to determine if co-

evolving residues could possibly be associated with disorders that appear to have clinical and 

genetic heterogeneity [26]. This protein also has an available crystal structure (PDB: 1LV0), which 

made it a suitable test case to analyze with the proposed approach. 

 The test cases of SMS and GDI1 were analyzed using full-length sequences and their 

corresponding structures. The results reported in this paper were obtained using a personal 

computer (Intel Core i7 Q720 at 1.60 GHz, 4.00 GB RAM) installed with the MATLAB 2012a and 

SCA packages. The analysis covered 90% of the residues represented in the crystal structures of 

SMS [28] and GDI1 [29]. This allowed for further identification of sector-grouped residues, located 

across the covered area of the protein. A possible issue is the need of protein structural data for the 

analysis. Such data may not be always available. However, this can be addressed using methods 

such as homology or ab initio modeling. Since the analysis of residue co-evolution is based on the 

multiple sequence alignment, the accuracy of homology modeling does not represent an issue to 
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the approach. The structure model is only used to map the positions of the multiple sequence 

alignment to the primary structure of the protein. Thus, the modeled structure file can be used in 

the pipeline in the same manner as the files obtained from the Protein Data Bank. 

 The protein sector analysis of both SMS and GDI1 revealed the distribution of groups of 

co-evolving residues (Figure 2a and 2b) that present a degree of spatial separation which differs 

from that found in protein domains (Figure 3a and 3b). When analyzing the sectors of SMS, we 

were able to identify three groups classified as the red, blue and green sector. Our results indicated 

that the red and blue sectors appear to be in the N-terminal region and to some extent the long loop 

and the beta strand domain (Figure 2a). However, the presence of residues of the red sector appears 

to be limited to these three regions, whereas the blue and green sectors span the C-terminal region, 

with no red sector residues identified in this region.  

 For GDI1, our analysis identified three distinct sectors, red, blue and green. The 

FAD/NAD(P) binding domain, located in the N-terminal region of GDI1, had amino acid residues 

classified within the blue and green sector (Figure 2b), with only three positions (82, 125 and 283) 

identified as belonging to the red sector. When analyzing the FAD-linked reductase and the 

FAD/NAD(P) binding domain located in the central and C-terminal regions of the protein, the 

residues in both are mostly classified as being part of the red sector (Figure 2b), with reduced 

presence of residues classified into the green and blue sectors. Although sector distribution of 

residues appears to follow a pattern where one group of residues is predominant over the others in 

a specific region, our analysis revealed that even within these regions, residues belonging to 

different sectors were identified (Figure 2a and 2b). This finding supports a degree of differentiation 

between protein sectors and domains. 
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 Our results indicate that although protein sectors may be distributed across the proteins, 

there is a concentration of these co-evolving residues in certain areas of the proteins (Figure 2a and 

2b), with stretches of residues that were not identified to be part of any sector. This observation 

could be attributed to the presence of conserved catalytic centers or active sites, necessary for 

protein function. One example was residue 276 in SMS (Table 1), which is a known active site that 

was not assigned to any sector. For GDI1, residue 92 (Table 1) has been reported to be necessary 

for the binding and recycling of RAB3 [27], and mutations in this site could lead to a reduction in 

its activity. This residue was also not classified in any of the three identified sectors. Because such 

important residues tend to be highly conserved, it is possible that these sites are not prone to 

undergo the co-evolutionary process 

. 

Disease-associated residues in protein sectors 
 The protein sector analysis of our test cases revealed a possible link between different 

disease phenotypes and the locations of the mutations within groups of co-evolving residues. We 

were able to identify multiple residues, in which disease-causing mutations have been identified 

(Table 1). As stated in Halabi et al. [6], groups of co-evolving residues seem to be associated with 

specific functions. In SMS, we identified the presence of a sector within the N-terminal region, 

which is necessary for protein dimerization. It has been reported that the ability to form dimers is 

necessary for full protein functionality. In our analysis, we found that the most severe phenotypes 

for the Snyder-Robinson Syndrome were predominantly found in the red sector, with residues 

mapped not only to the N-terminal region but also in the long loop and beta-strand domains (Figure 

2a and 3a). 

 The results suggest that protein sectors, when compared to domains, allow for the 

clustering of mutations based on the underlying process of residue co-evolution instead of grouping 
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them by sequential or spatial locations. The protein sector analysis of SMS has shown that the 

known Snyder-Robinson syndrome phenotypes, including expanded phenotypes [30], are mainly 

related to the red sector (Table 1), which comprises the N-terminal region as well as the long loop 

and beta strand domain. Thus, a protein sector can be associated with diverse functions as 

previously reported [6]. It appears that the red sector in SMS comprises regions associated with 

both dimerization and protein stability (Table 1), and these spatially distant regions may have 

undergone the co-evolutionary process because of their roles in the function of the protein. 

Interestingly, another mutation in SMS has been mapped to the green sector. This residue at 

position 328 (Table 1) has been associated with a milder form of the Snyder-Robinson syndrome 

[31]. It is possible that the green sector in the C-terminal region comprises residues associated with 

the enzyme’s substrate recognition [28]. This may lead to a decrease in enzymatic activity, thus 

possibly accounting for the milder form of the syndrome [28]. 

 The analysis of GDI1 identified two known mutations located in the green and blue sectors 

(Table 1). These amino acid positions (70 and 423) are associated with non-specific X-linked 

intellectual disability [26, 27]. The two residues are located in spatially separated regions, with the 

residue at position 70 in the N-terminal FAD/NAD(P)-binding domain and the residue at position 

423 in the C-terminal region (Figure 2b). It is still unknown whether these two mutations, 

distributed in different sectors, may cause any difference in disease phenotypes. Further studies are 

needed to explain our findings and expand the knowledge about this protein, including the possible 

role of the co-evolving resides in disease. The third residue at position 92 has been proposed as an 

important substrate binding site [26, 27], and appears not to be undergoing co-evolution, probably 

owing to its significance in stabilizing the Rab-binding region or recognition of the C-terminal 

prenyl group in substrate recycling [27]. This may explain why our analysis did not identify it in 

any of the three sectors. 
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 Our results from the protein sector analysis of SMS suggest a possible link between groups 

of co-evolving residues and disease severity. However, to fully understand the role of protein 

sectors, the use of mutagenic analysis can provide further information. Experimental validation of 

our results would present further evidence to support the approach of clustering disease-associated 

residues with their corresponding clinical manifestation. In addition, although we have presented a 

pipeline useful for clustering mutations, it is possible that other factors, such as the type of amino 

acid substitutions, could be the underlying cause of the differences in disease severity. 

Nevertheless, by clustering residues into different sectors, our approach can be used as a valuable 

aid in further characterizing the possible causes of disease such as intellectual disability. Protein 

sector analysis may also provide useful information for understanding the effect of mutations at 

spatially distant positions on disease phenotypes. 

 

4.4 Conclusions 

 We have proposed an integrative approach that makes use of the statistical coupling 

analysis method for the study of disease-causing mutations in proteins. Our test cases provided 

information regarding the role of protein sectors and how they could be associated to disease 

variants. We were also able to identify the effect of mutations in distinct sectors with variations in 

the clinical signs of a disease. These findings support the possible role of the protein sectors in 

specific functions that when affected could lead to variable phenotypes associated with a complex 

syndrome.  
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Figures 

 

	

 

Figure 4.1 Proposed pipeline for analyzing co-evolving residues from protein families associated 

with human diseases. The flow chart includes the alternative of using homology modeling or other 

protein modeling methods if the 3D structure is not available. The association of disease 

information with protein sectors is in a grey shaded box because it is the end result of the analysis. 
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Figure 4.2 Identification of protein sectors in the primary structure of SMS and GDI1. A) 

Distribution of the protein sectors within the different regions of human spermine synthase. The 

analyzed residues correspond from position 28 to 365 based on the structure (PDB: 3C6K). The 

pattern observed appears to correspond to a stratification of sectors where the N-terminal region 

associated with dimerization appears to dominate the red sector, whereas the C-terminal region, 

ranging from residues 173 to 366, is composed of the blue and green sectors.  B) Distribution of 

the protein sectors in Rab GDP dissociation inhibitor. The analyzed residues correspond from 

positions 1 to 447 based on the PDB structure file (1LV0). The N-terminal FAD/NAD(P) binding 

domain appears to be predominantly composed of residues belonging to the green and blue sectors. 

The FAD-linked reductase and the C-terminal FAD/NAD(P) binding domains appear to have a 

majority of residues classified within the red sector with a small presence of amino acids belonging 

to the blue and green sectors.  
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Figure 4.3 Representation of protein domains and identified sectors in the 3D structure of spermine 

synthase (PDB: 3C6K).  A) Protein domains were colored in one of the chains of the homodimer. 

Red corresponds to the N-terminal domain, the long loop is in purple, the beta strand domain is in 

yellow, and the C-terminal region is in blue, with the catalytic center shown in light blue.  B) 

Identified protein sectors in spermine synthase. Each sector is represented with a different color, 

and appears to have a distribution that is not limited to the described domains.  
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Table 

 

Table 4.1 List of the residues associated with diseases in spermine synthase and Rab GDP 

dissociation inhibitor.  The disease-associated sites were obtained from OMIM and 

publications, and the list is organized according to the residue location in the protein domains. 

 

 Residue Sector Domain/Region Effect/Associated Phenotype 

Spermine 

Synthase 

G56A Red N-terminal 
Snyder-Robinson syndrome. Expanded 

phenotype of disease reported in [23] 

G67A Red N-terminal 

New Snyder-Robinson syndrome 

phenotype. Expanded phenotype of 

disease reported in [30]  

 V132A Red N-terminal/long loop 
Snyder-Robinson syndrome. Expanded 

phenotype of disease reported in [24] 

I150A Red Central (beta-strand) 
Decrease the stability of the C-terminal 

region, Snyder-Robinson syndrome 

Y328A Green C-terminal/catalytic  
Mild mental retardation, Snyder-

Robinson syndrome 

GDI1 L92P - 
FAD/NAD(P) binding 

domain 
Non-specific mental retardation 
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R70TER Green 
FAD/NAD(P) binding 

domain 
Non-specific mental retardation 

R423P Blue 
FAD/NAD(P) binding 

domain 
Non-specific mental retardation 
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CHAPTER V – CONCLUSIONS 

 

In this dissertation, we have presented several computational approaches, to analyze both 

genes and proteins associated with intellectual disability (ID). We have utilized various datasets, 

ranging from multiple sequence alignments to the developmental transcriptome of the brain to 

generate new knowledge that can be used in human genetics research.  

We developed an expression-based machine learning classifier for prediction of ID-

associated long non-coding RNAs (lncRNAs). By using the developing brain transcriptome to 

encode a list of ID-causing and non-ID disease genes, we developed a model using Support Vector 

Machines. The binary classifier performed well at discriminating between the two classes of genes 

and identified possible ID-associated lncRNAs. The use of feature selection did not improved 

model performance or provide new insight about ID development. Instead, use of a class-balancing 

strategy improved classifier performance. The identified lncRNAs were found to be expressed in 

modules co-enriched with known ID genes and associated with neurodevelopmental processes. 

These lncRNAs were also found to be expressed in brain tissues. These findings support the roles 

of the candidate lncRNAs in ID pathogenesis. 

We constructed a three-state protein stability classifier using sequence-based features. By 

encoding each sequence in the training set with relevant physico-chemical features, a model was 

built using SVM. Through feature selection, we identified informative variables, important to 

discriminate between the three states (increase, decrease and no significant change in stability). 

Although the model was well-performing based on an independent test set, approaches such as 

semi-supervised learning might further improve the protein stability prediction, given the large 

number of unlabeled instances currently available. 



100 
 

We also used statistical coupling analysis (SCA) in the study of ID-causing mutations and 

their effect on disease phenotypes. By using the sequences from known ID proteins, we built a 

multiple sequence alignment that was used to identify groups of co-evolving residues denominated 

protein sectors. Protein sectors are functionally important, and when mutated, protein function can 

be affected. Using SCA we identified different mutations in distinct sectors, each associated with 

a different phenotypic manifestation for a syndromic ID. The sectors clustered mutations into mild 

and severe ID. Our results suggest that SCA can be used to identify functionally important sites 

and determine the impact of mutations in the clinical manifestations of disease. 

The bioinformatics methods presented in this dissertation can be further improved in the 

future. The expression-based classifier used to identify candidate ID-associated lncRNAs can be 

improved with the incorporation of target prioritization approach, which would rank the candidate 

lncRNAs based on their possible importance to ID pathogenesis. For the protein stability classifier, 

the potential use of semi-supervised learning could provide model development with an 

improvement in classifier performance by using the numerous unlabeled data instances that are 

currently available. Our work on mutations and their effect on disease phenotypes using SCA can 

be expanded to study other diseases besides ID. The results from the ID test case suggest SCA can 

be used in the study of disease-causing proteins, as well as for studying functionally important sites 

in other protein families. 
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APPENDIX A – MUTUAL INFORMATION TO IDENTIFY CORRELATED SITES IN 

URACIL DNA GLYCOSYLASE SUPERFAMILY 

 

A.1 Introduction 

 

When analyzing a multiple sequence alignment of a protein family to identify co-evolving 

residues, it is always reasonable to find three kinds of residues: highly or completely conserved, 

partially conserved, and non-conserved. Conserved residues are important because they tend to be 

associated with structural interactions. These interactions are usually necessary for structural 

integrity, as demonstrated by mutagenesis studies, where substitutions in these amino acid positions 

affect the interactions associated with protein folding or stability. However, partially conserved 

residues are  also of special interest because of the potential information they can provide about the 

protein [1,2]. These positions are the result of divergence amongst species. This process leads to 

emergence of new sequences or amino acid sites with functional differentiation. Partially conserved 

residues appear conserved within a protein sub-family, which gives the residues new functions , 

such as substrate affinity or a specific catalytic action, characteristics that separate each sub-family 

from each other [1]. The identification of partially conserved residues is a challenge as their 

identification is necessary in evolutionary and functional studies. Currently, the task of identifying 

partially conserved residues requires the use of computational and experimental approaches in 

order to experimentally corroborate the sites predicted using computational methods [1,2]. 

Although approaches are available for the identification of partially conserved residues, it 

is important to select a method capable of properly identifying the coevolutionary signals that these 

residues share. The presence of functional association between amino acid pairs, the potential 

structural interactions or the phylogenetic signals in the multiple sequence alignment (MSA) can 
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affect the mutual information score [3,4]. This is of special importance because of the proper 

determination of partially conserved residues, these must share a coevolutionary signal based on a 

functional interaction, and not one defined by their phylogenetic or structural interactions. To 

address this, matter information theory, and more specifically mutual information (MI), has been 

used to analyze multiple sequence alignments (MSA) of different uracil DNA glycosylase (UDG) 

families.  

The use of this approach allowed us to analyze the multiple sequence alignment (MSA) 

and identify two partially conserved co-evolving residues that appeared to have a significant level 

of conservation within each sub-family based on the MSA and the mutual information analysis. 

These residues were also analyzed for potential association with a function, an important trait of 

partially conserved residues. These amino acid positions, identified as pairs 41E-42G in family 4 

and 63Q-64D in family 1, were confirmed to be functionally important through mutational and 

biochemical analysis. These results suggest that MI can provide valuable information in the 

functional studies of protein families and evolution [5]. 

 

A.2 Methods 

Mutual information analysis 
Residue co-evolution was determined using a mutual information-based tool, MISTIC (Mutual 

Information Server to Infer Co-evolution). This approach uses mutual information to determine the 

evolutionary relationship between two residue positions in a multiple sequence alignment. Prior to 

the MI analysis, dataset acquisition and construction, and multiple sequence alignment were 

performed as described in the following steps. The calculation of the MI co-evolution values on the 

MISTIC server was carried out as described [3]. This consisted of calculating the frequency of 

amino acid pairs by means of weighting and low count correction. The calculated frequency is then 
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compared with the expected frequency. MISTIC also assumes that mutations between amino acids 

are uncorrelated [3]. Afterwards, the MI scores for the protein family alignment were calculated. 

These scores were obtained by calculating a weighted sum of the log ratios of the expected and the 

observed frequencies from the amino acid pairs [3]. Mutual information background signal noise 

was corrected by implementing the Average Correction Product [3,6]. Subsequently, a z-score 

normalization was applied to the MI values. A threshold of 6.5 was used to report co-evolving 

residues identified by MI. This value has been reported to have significant values in specificity and 

sensitivity [3]. Identification and visualization of co-evolving residues were performed as described 

in Supplementary Information. 

 

Dataset acquisition and construction for mutual information analysis 
The first step was to obtain the available uracil DNA glycosylase (UDG) sequences. These 

were acquired from UniProtKB. A general search was done in order to find significant hits that 

could be used to generate a raw dataset, composed of representatives of all the UDG families. 

Subsequently, the raw dataset was sorted using a Perl script designed to separate sequences based 

on the presence of the distinct UDG family 4 and 1 motifs (GE[A/G][V/P]G and GQDPY, 

respectively), as reported in [7]. The output of the script was two distinct files, each containing 

approximately 1000 family 4 UDGa and family 1 UNG protein sequences.  

The resulting sequences were then subjected to clustering analysis using BlastClust to 

reduce redundancy [8,9]. This is of special importance, as it reduces sequence redundancy as well 

as the bias effect that overrepresented sequences might have later on the residue co-evolution 

analysis [10,11]. The parameters used were: sequence similarity threshold of 75% and coverage 

percentage value of 85%. The selection of these parameters reduced the amount of highly similar 

sequences with different accession entries from each dataset. This resulted in a significant reduction 
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of sequence entries, with each data file containing approximately 200 sequence representatives for 

each family. 

 

Multiple sequence alignment 
The sequences in the dataset were then aligned using the ClustalW alignment tool 

incorporated in MEGA6 [12–14]. Preliminary alignments were performed using the default 

parameters followed by manual curation of the alignment. The process eliminated noise from 

outlier with no evolutionary, biological and functional relationship to family 4 UDGa and family 1 

UNG. By manually examining the alignment, it was possible to eliminate these sequences to obtain 

and procure a high quality alignment dataset. 

After the first alignment was completed, all gaps were removed from the datasets and a 

new alignment was performed, using MEGA6’s implementation of ClustalW. The parameters were 

the following: the substitution matrix was BLOSUM62 [15,16], with gap opening penalty of 20 

and gap extension penalty of 5. These stringent parameters were selected in order to reduce the 

number of gaps within the alignment. The resulting alignment was then subjected to a second round 

of manual curation, where any remaining outliers were eliminated. Subsequently, gaps were 

removed and sequences were re-aligned. The ClustalW alignment output was then subjected to a 

final manual inspection. Afterwards, a refining alignment was done using MUSCLE [17]. 

 

Identification and visualization of co-evolving residues 
The curated sequence alignment files were uploaded into the MISTIC web server, and a 

reference sequence for each family was selected. The selection was based on two criteria: being the 

representative of the largest luster and second, having a similarity of more than 25% with the 
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family’s canonic structure. This allows for the reference to be a significant representative of each 

of the UDG families studied.  

After alignment file uploaded and reference sequence selected, the next step was 

modification of the default web server parameters. The protein structure file was left blank, as our 

analysis was intended to identify co-evolving relationships using only protein sequences. Within 

the advanced options the maximum fraction of gaps per column allowed in the calculations was set 

from 0.5 (default value) to 0.3. This number was selected in previous co-evolution analysis, and 

has yielded good results [11]. Finally, the file was submitted to the web server for analysis. 

 After the analysis was completed, results were visualized using the tools incorporated 

within the MISTIC web server. A sequential circular representation of the multiple sequence 

alignment, known as the Circos diagram, maps the amino acid positions to the reference sequence. 

In this diagram, there are three major components represented with a color scale. The first is the 

square boxes under each amino acid position, these boxes represent the conservation of the residue. 

The colors of these boxes range from red (highly conserved) to blue (less conserved). The second 

is the histograms associated with each position representing the cumulative mutual information, 

which illustrates the correlation a given residue has with other positions. The higher the histogram, 

the more residues that position is correlated with.  Finally, the edges or lines connecting the co-

evolving residues describe the relationship between positions in the multiple sequence alignment 

based on their mutual information. Red lines represent the top 5%; black lines refer to the MI 

relationships between 95% and 70%; and the gray lines denote the remaining MI relationships [3].  

 The MI analysis was also represented as a network, which was generated by Cytoscape 

[18]. Within the network representation, each node was an amino acid positions within the multiple 

sequence alignment, mapped to the reference sequence for each family. Residue conservations, 
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similarly to the Circos diagram, were represented by a color scale, where red represented highly 

conserved residues and blue less conserved ones. The lines or edges of the network represented 

significant MI values (those higher than the 6.5 threshold) [3]. 

 

A.4 Results and Discussion 

 Mutual Information (MI) was used to analyze a multiple sequence alignment from sub-

families 1 and 4 UDGs to identify a doublet of partially coevolving residues. The positions 

identified in this doublet were considered specificity-determining sites (SDPs), identified as 

residues of importance to protein function [19]. The reason for defining the amino acids in the 

doublet as SDPs was their functional activity as part of motif 1 and their high conservation within 

the family (Figure A-1). These residues were confirmed as functionally important through 

mutational and biochemical analysis. MI also revealed that these residues are partially conserved 

sites. These positions presented high conservation in the multiple sequence alignment for residues 

41E-42G in family 4 and 63Q-64D in family 1. 

 The use of MI is based on its ability to identify underlying relationships such as co-

evolution between pairs of residues [19]. The two residues can be either in close distance 

(neighboring) or separated by large blocks of amino acids. In the case of the identified pairs 41E-

42G in family 4 and 63Q-64D in family 1 (Figure A-1), these doublets are subjected to what 

MISTIC identifies as structural and functional linkage as both are coevolving residues that are 

neighboring positions [3]. The presence of structural and functional linkage results in the doublets 

41E-42G in family 4 and 63Q-64D having a significant cumulative MI value (Figure A-1), 

represented as the outward bar in the Circos graphs. A closer inspection of the figure revealed that 

these neighboring sites have multiple correlations with other sites. Some of these interactions are 

ranked in the top 5% (red-colored lines) based on the MI score. Most of the correlations are within 
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the range of 95-70%. It is possible to trace some of these correlations to positions in motif 2. It 

appears that, based on Figure A-1, residues on motif 2 could be partially conserved as their amino 

acid identities, which change from family to family but appear highly conserved within each family. 

The correlation between the doublets 41E-42G in family 4 and 63Q-64D in family 1 and positions 

in motif 2 could be the result of potential structural and functional linkage. These could account for 

the observed formation of a pocket between motifs 1 and 2 that interacts with its substrate. The 

ability of MI to uncover this kind of associations is considered a robust approach to study co-

evolution [4]. An advantage of MI over other approaches that identify coevolutionary interactions 

is the correction for phylogenetic bias in multiple sequence alignments, especially implemented in 

MISTIC [3,4]. The doubts 41E-42G in family 4 and 63Q-64D in family 1 were also correlated to 

non-conserved sites. Previous studies have proposed that the non-conserved sites could be positions 

where balancing mutations have taken place. It has been speculated that neutral sites could have 

developed correlations with functionally important sites to mitigate the effects of deleterious 

mutations [1,2].  

 

A.5 Conclusions 

We have demonstrated that mutual information (MI) can be used to uncover coevolution 

between residues in a multiple sequence alignment. In the study of the UDG superfamily, we 

focused on two families, 1 and 4, and initially identified two residue positions that had partial 

conservation. These were conserved within each sub-family but variable in the super-family. In the 

study, it was confirmed with biochemical assays that these sites were functionally important for the 

sub-families. These assays validated our results and supported the significance of MI in the 

identification and functional study of proteins. 
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In this research, we identified correlation in terms of possible coevolution between residues 

of different motifs (1 and 2) that have been identified to be of functional importance in the UDG 

family. The use of MI also revealed a possible role of non-conserved residues as possible sites 

where balancing mutations can occur. These non-specific sites would serve to minimize the effect 

of deleterious mutations that would disrupt protein function or structural stability. This could 

account for pairwise correlations between functionally important sites and positions with a 

seemingly randomly distributed across the protein with neither conservation or function. In a recent 

work, MI was also used to  study UDG family 3 (SMUG1) and supported the functional 

characterization of the SMUG-1 glycosylase representative isolated from Listeria innocua [20]. 

 

Note 

The MI analysis of UDG superfamily has been incorporated in two peer-reviewed publications: 

Xia, B., Liu, Y., Guevara, J., Li, J., Jilich, C., Yang, Y., Wang, L., Dominy, B.N. and Cao, W., 

2017. Correlated Mutation in the Evolution of Catalysis in Uracil DNA Glycosylase 

Superfamily. Scientific Reports, 7.  

Li J, Yang Y, Guevara J, Wang L, Cao W. Identification of a prototypical single-stranded uracil 

DNA glycosylase from Listeria innocua. DNA Repair (Amst). Elsevier; 2017;57:107–15.  
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Figures 

 

 

Figure A-1 Circos graph of the Mutual Information analysis of families 1 and 4. The graph 

represents the positions in the reference sequence for (A) family 1 and (B) family 4 of UDG. The 

lines represent the number of significant correlations, with the red lines representing the top 5%. 

The outward bars for each position are the cumulative mutual information, based on the MI score 

of each position and its neighbor residue. The external layer ranging from red to blue is the residue 

conservation, from highly conserved (deep red) to low conservation (blue) Adapted from Xia et al. 

2017 [5].  
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