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Abstract—Many commercial cloud providers and tools are
available that researchers could utilize to advance computational
science research. However, adoption by the research community
has been slow. In this paper we describe the automated Pro-
visioning And Workflow (PAW) management tool for parallel
scientific applications in the cloud. PAW is a comprehensive
resource provisioning and workflow tool that automates the steps
of dynamically provisioning a large scale cluster environment in
the cloud, executing a set of jobs or a custom workflow and, after
the jobs have completed, de-provisioning the cluster environment
in a single operation. A key characteristic of PAW is that it
separates the provisioning of cluster resources in the cloud from
the management of scientific workflow on these resources, which
enables fine-grained decisions about performance and cost trade-
offs in a commercial cloud environment. This paper describes
our initial AWS implementation of PAW for executing a large
parameter sweep workflow. We demonstrate this using an MPI-
based topic modeling application. PAW provides a standardized,
simplified, and pluggable interface that can easily be expanded
to support a variety of underlying cloud or cluster hardware
environments, user-facing scheduling systems, workflows, and
scientific applications.

Index Terms—HPC cluster, cloud computing, parallel scientific
applications, dynamic resource provisioning, workflow

I. INTRODUCTION

The availability of computing, data, and analytics services
through commercial cloud providers such as Amazon Web
Services (AWS), Microsoft Azure, and Google Cloud Platform
(GCP) is growing rapidly. According to Gartner, infrastructure
cloud services are projected to grow at a rate of more than
36% in 2017 [1]. However, the adoption of commercial
clouds for parallel scientific computation has been slow for
a number of reasons [2]. For example, many researchers do
not have the time or access to the proper resources to learn
how best to use commercial cloud resources for scientific
applications. Managing funding and billing for cloud resources
is challenging. Researchers may hesitate to use cloud resources
because optimizing runtime configurations is complex with
many resource options. Domain scientists seek a familiar
interface and computing environment, with minimal setup and
training, when considering use of the commercial cloud.

Fig. 1. Simplified View of PAW Operational Stages of Execution

The automated cluster Provisioning And Workflow (PAW)
management tool described in this paper enables dynamic
provisioning of a cluster environment in the cloud and supports
management of complex scientific workflows in a familiar
scientific environment. PAW allows researchers with minimal
commercial cloud knowledge to submit and run custom work-
flows on the cloud with minimal modifications of existing job
scripts/workflows, allowing researchers to focus on research
rather than learning a new tool. PAW can build a familiar
cluster resource for parallel applications and dynamically pro-
vision it using common, default settings for cloud resources.
PAW can also provision resources for experienced users by
allowing detailed specifications for computing and storage
resources, depending on the scientific application and needs.

PAW begins to address billing challenges as described in
[2]. While there is attraction to the cloud model of paying
for resources only while they are being used, one of the
risks in utilizing the commercial cloud is that resources left
running longer than they are actually needed can increase
costs unnecessarily. The automated de-provisioning of cluster
environments provided by PAW helps to alleviate that risk.

PAW’s key innovation is separating the provisioning of clus-
ter resources in the cloud from the management of scientific
workflow on these resources. Fig. 1 illustrates a simplified
view of the PAW operational stages of Control, Environment,
and Workflow. The separation of operational stages enables
more fine-grained control over performance and cost tradeoffs
in a commercial cloud environment than is otherwise possible.



PAW execution begins with the creation of control resources
on the specified cloud platform (e.g., AWS), as shown on the
left in Fig. 1. The role of the PAW control resources is to
manage the automated provisioning of various cluster environ-
ments. More than one cluster environment can be provisioned,
and these do not have to be the same as each other. PAW
creates and provisions fully functional cluster environments
using the specified cloud resources. Each configurable cluster
environment includes typical resources such as login node,
scheduler, parallel file system, and support for MPI applica-
tions. The cluster environment is accessible to the user via ssh
for debugging, just as a campus cluster is accessible to a user
via ssh to the login node. Upon the successful provisioning
of the cluster environment, PAW can automatically submit the
specified workflows and jobs to the provisioned environment.
When the workflows and jobs complete, PAW automatically
de-provisions and deletes the cluster environment and control
resources. These resources can also optionally be left running
for further application workflow submissions.

This paper describes our initial implementation of PAW
using AWS and a case study of the use of PAW for an
integrated large scale parameter sweep workflow. Our exper-
iments demonstrate PAW on an MPI-based topic modeling
application. Our results show how PAW provisions a large
scale cluster environment on AWS, submits the application
workflow and, upon completion of the workflow, de-provisions
the cluster environment with no user interaction. We also
describe how PAW can be applied to other commercial clouds
and local on-premise clusters.

The remainder of this paper is organized as follows. Section
II describes related work. Section III describes the supporting
environment and tools utilized to build PAW. Section IV
describes the three main architectural components of PAW:
Initial Setup and Configuration, Workflow/Job Submission and
Monitoring, and De-provisioning. In Section V we report
PAW’s scalability performance and our case study results. In
Section VI we summarize our results and future work.

II. RELATED WORK

Tools that implement the full operational steps of PAW,
including the dynamic provisioning of a cluster environment,
submission and execution of workflows, and the deletion of the
cluster environment, include AWS Batch, Galaxy CloudMan,
elasticHPC, and HTCondor. In general, these tools provide
resource provisioning along with workflow management for
applications in a particular field of science and may require
extra configuration or knowledge to use.

AWS Batch is an AWS managed service that enables
users to run batch computing workloads in AWS [9]. A user
packages the code for the jobs, specifies the dependencies, and
submits the package to AWS Batch. AWS Batch automatically
provisions compute resources and optimizes the workload
distribution for the user. However, the user must set up an
MPI programming environment and also the scheduler, if that
is desired. To use AWS Batch a user has to rewrite the job
scripts to run on AWS Batch. AWS Batch is based on Docker

Containers and AWS’s Elastic Container Service (ECS), which
requires a pre-configured Docker image to utilize the service.
Unlike PAW, AWS Batch does not allow login access to the
instances for debugging or other troubleshooting, which can
make finding and fixing bugs time consuming since the entire
environment must be relaunched for every test run.

Galaxy’s CloudMan tool provides some features similar
to PAW but it is heavily customized for use by researchers
in biology and genetics. CloudMan enables the provisioning
of Galaxy, a web-based platform focusing on biomedical
research, on a CloudMan cluster within an AWS, OpenStack,
or OpenNebula cloud. The provisioned cluster can optionally
be pre-configured with the Galaxy software suite. One version
comes with the Slurm HPC scheduler, NFS storage, and
interactive access [10]. However, in this mode, CloudMan
does not manage submission of custom workflows. CloudMan
works well for Galaxy workflows but is not a general-purpose
workflow manager, so the audience is limited primarily to
biology and genetic scientists.

Another similar tool is elasticHPC [11], which is designed
for use in bioinformatics. It creates a cluster environment with
an HPC scheduler, NFS shared storage, and pre-configured
bioinformatics software. It has an interface to work with jobs
but the process is not automated. The project does not seem
to have been updated since 2012.

HTCondor is a software system that creates a high-
throughput computing environment by utilizing the computing
power of workstations that communicate over the network
[12]. However, there are some limitations to the types of
workflows that can be executed. HTCondor workflows are not
able to do interactive input and output, the jobs must not be
multi-process, and the jobs are not able to have interprocess
communication. HTCondor provides an annex that allows it
to interact with different cloud providers, however this is
not packaged for the user and is meant for use by system
administrators instead of end users.

There are also a variety of tools that have been developed for
managing workflows that unlike PAW do not also manage or
provision resources. Examples include Tigres [3], FireWorks
[4], QDO [5], SWIFT [6], Pegasus [7], and DAGman [8].
Since these only provide part of the capability of PAW, we
describe a couple of examples only. Tigres is a template library
that allows researchers to quickly develop, test, and deploy
analysis workflows through the use of templates [3]. Similar
to other workflow management tools, Tigres does not provision
any resources and assumes that all the resources required to
run the workflow are already created. FireWorks is similar
in that it does not provision resources but instead works like
an HPC scheduler to manage different “FireTasks” that are
assigned to different “FireWorkers” [4]. FireWorkers can be
a local machine or resources managed by an existing HPC
scheduler, but resources have to exist before FireWorks can
be utilized.

PAW is not meant to replace workflow management tools,
but to complement them and make them more usable in the
commercial cloud. For example, a custom PAW workflow



could include the use of SWIFT to manage the computational
workflow while PAW performs the resource management
tasks. This is the power and flexibility behind the custom
workflow interface within PAW. Existing tools can be inte-
grated as custom workflows, which will allow PAW to become
be used across a range of cloud workflows. Implementing and
integrating custom PAW workflows using different standard
workflow management tools is a topic of future work.

III. SUPPORTING ENVIRONMENT AND TOOLS

PAW has been developed with as few external libraries
and dependencies as possible to simplify the installation and
configuration process. The initial implementation uses AWS
services and CloudyCluster, as described in this section.

A. Amazon Web Services (AWS)

AWS is the largest commercial cloud computing
provider [13]. AWS provides access to certified solutions
architects and cloud credits for research [14]. AWS services
utilized by PAW include: EC2, DynamoDB, Simple Storage
Service (S3), Elastic Filesystem (EFS), Identity and Access
Management (IAM), Autoscaling, and CloudFormation.
EC2 allows users to create a variety of virtual machines
(VMs). DynamoDB is a NoSQL database. IAM is AWS’s
permission and security mechanism for managing the access
that users have to services within an AWS account. The
implementation uses Python 2.7 and two external libraries,
Boto3 and Botocore, both of which are required for access
to AWS Services. The only information required from the
user for initial configuration is the user’s AWS credentials for
creating and deleting the required resources.

B. CloudyCluster

A core component of PAW is CloudyCluster, which sup-
ports the dynamic provisioning and de-provisioning of cluster
environments within commercial clouds [15], [16]. The provi-
sioned cluster can include shared filesystems, NAT instance,
compute nodes, parallel filesystem, login node, and schedulers.

PAW accesses most AWS services through CloudyCluster
APIs, and utilizes these APIs to perform many administrative
tasks. CloudyCluster provides several configuration options,
such as the choice of scheduler and shared home directories.
All environment customization within PAW is accomplished
through templates. PAW comes pre-packaged with a Cloudy-
Cluster template generator and several standard CloudyCluster
environment templates. The template generator allows users
to create, share, and modify their own CloudyCluster environ-
ment templates.

After the user chooses a template, CloudyCluster executes
the required AWS API calls to dynamically provision and
configure the requested environment resources. CloudyCluster
also pre-configures the selected scheduler (e.g., Torque or
Slurm), creates users on the nodes, and mounts the requested
filesystems on every node.

CloudyCluster provides a meta-scheduler called Cloudy
Cluster Queue (CCQ) that provides job-driven autoscaling via

either special directives within the job script or through parsing
certain information from supported HPC scheduler directives
[16]. The integration with CCQ and the job level autoscaling
provided by CCQ are key features that make PAW different
from the other utilities that provision cluster environments.
Utilizing CCQ, PAW can submit a job and dynamically create
the exact resources that the workflow and job require, and
release the job to the HPC scheduler only when the resources
have been successfully created. All of the job submission and
communication that PAW performs with CCQ is done through
the web based APIs.

CCQ enables cost management. After the workflow or job
has completed and the resources are no longer performing
useful work, CCQ analyzes how far into the current billing
period the instance is. If the instance is close to the end of the
billing period (e.g., one hour), the instance will be terminated
since it is not being utilized. However, if the instance has
not reached the end of its billing period, the instance will
continue to run until it reaches the end of its billing period.
This optimizes the amount of time that the instance is available
for new workflows/jobs. However, if a new workflow/job is
submitted and starts using an instance near the end of its billing
period, the instance will not be killed and instead will continue
to execute until the new workflow/job has been completed.
This architecture helps to minimize the costs and the time
required to start new workflows/jobs.

PAW is able to use AWS Spot pricing since both Cloudy-
Cluster and CCQ are able to utilize the AWS Spot market.
The Spot market allows users to bid for unused capacity on
AWS. Use of Spot can decrease costs, as the average spot
prices for different instances types is up to 90% less than the
on-demand price for the same instance type. PAW accesses
the Spot market via a few simple directives that are added to
existing job scripts. PAW also exposes this feature of CCQ and
CloudyCluster through its configuration file, discussed later.

IV. TECHNICAL DETAILS OF PAW

In this section we provide technical details about the archi-
tectural components and the operational stages of PAW.

A. Architectural Components

The architecture of PAW is implemented in a way that
allows for easy expansion and integration of components with
other resources and services. A human readable ini formatted
configuration file is central to the architecture of PAW. The ini
format enables utilization of Python’s built-in ConfigParser to
read and process the configuration file. Other components of
PAW’s architecture are Resources, Environments and Environ-
ment Templates, Schedulers, and Workflow Templates. Each
of these is described in this section.

1) Configuration File: PAW is driven by a ini style
configuration file that defines the parameters required
by PAW to execute. The configuration file has six
different sections: UserInfo, General, Cloud Type
Settings, Environment Settings, Computation,
and Environment Templates. Of these six sections both



[UserInfo]
userName: bposey
password: Passw0rd2017

[General]
environmentName: topicModelingTest
cloudType: aws

[CloudyClusterAws]
keyName: bposey-key
instanceType: c3.8xlarge
networkCidr: 0.0.0.0/0
vpc: vpc-13a3f474
publicSubnet: subnet-12e8645b
capabilities: CAPABILITY_IAM
region: us-east-1

[CloudyClusterEnvironment]
templateName: noSharedFilesystem
keyName: myKeyFile
region: us-east-1
az: us-east-1a

[Computation]
workflow1: {"name": "myWorkflow", "type": "topicModelingPipeline",

"schedulerType": "Slurm", "options": {"configFilePath":
"CS_abstracts.py", "spotPrice": "1.57",
"s3BucketName": "mys3bucket", "useCCQ": "true",
"requestedInstanceTypes": "x1.16xlarge"}}

# Environment Template definition
[noSharedFilesystem]
description: Creates a CloudyCluster Environment that contains a
single Slurm Scheduler, a Login, and a NAT instance. It does not
contain any shared filesystems.
vpcCidr: 10.0.0.0/16
scheduler1: {"type": "Slurm", "ccq": "true",

"instanceType": "t2.small", "name": "mySlurm"}
login1: {"name": "Login", "instanceType": "t2.small"}
nat1: {"volumeType": "SSD", "instanceType": "t2.micro",

"accessFrom": "0.0.0.0/0"}

Fig. 2. Sample PAW configuration file, including an integrated workflow and
CloudyCluster environment template.

the Computation and Environment Templates sec-
tions are optional. A sample configuration file that illustrates
each of these sections is shown in Fig. 2.

The UserInfo section contains the information about
the users that will run the jobs/workflows specified in the
configuration file. In the case of the CloudyCluster implemen-
tation, the specified users are created within CloudyCluster
and provisioned to the created environment. The General
section contains parameters about PAW’s configuration such
as the cloud type and the environment name.

The Cloud Type Settings section is named dynam-
ically and the name is based on the environment and cloud
type being used. This section contains the information relevant
to the desired environment and cloud types. For example, in
this implementation of PAW the only EnvironmentType imple-
mented is CloudyCluster and the only CloudType implemented
is AWS, so the section header is titled CloudyClusterAws,
as shown in Fig. 2. This section contains the information
required to set up CloudyCluster on AWS, such as the region,
keypair, VPC, and subnet. Much of this information is already
pre-defined for the user. However, there are some parameters,
such as the VPC ID and Subnet ID, that are unique to each
user and do not have default values.

The Environment Settings section is also
dynamically named, and contains parameters that pertain
specifically to the type of environment being created.
The sample configuration file section header shows
CloudyClusterEnvironment. The environment

key pair, region, and cluster configuration required by
CloudyCluster are defined in this section.

The Computation section is an optional section of the
configuration file. This section allows users to define job
scripts or user-defined workflows that they want to execute on
the newly created environment. These user-defined workflows,
such as the topic modeling workflow used for our experiments,
can be created by the user and integrated into PAW directly,
which minimizes the configuration required. When extended
to multiple environments, PAW allows users to define a single
workflow that can be submitted to multiple newly created
environments with a single click. Any job script, local or
remote, that the user wants to run on a cluster environment
can also be defined in this section. PAW submits the specified
script to the environment and executes it using the scheduler
defined by the environment.

The Environment Templates section is also optional
and dynamically named. This section of the configuration file
is utilized by the CloudyCluster Environment template gen-
erator to generate CloudyCluster Environment templates that
can then be referenced in the Environment Settings
section to reduce the length of future configuration files. In
the sample configuration file shown in Fig. 2, we define the
noSharedFilesystem template. The parameters in this
section define the CloudyCluster environment configuration
that will be put into the template. PAW comes with a number
of pre-generated templates for researchers to use and extend
as customized environment templates. The template generator
supports the full range of customization options provided by
CloudyCluster which allows researchers to fine tune their
environments to better suit the requirements of their research.

2) Resources: Within PAW, the Resource classes interface
directly with the underlying cloud or architecture provisioner.
PAW’s Resource base class defines three methods: create-
ControlResources, monitorControlResources, and deleteCon-
trolResources. Adding a new underlying cloud or architec-
ture involves adding a class that implements these methods.
These methods are utilized by PAW to create the Control
Resources that are required for interfacing with the cluster
environment creation tools. For the initial implementation of
PAW, the AWS Resource class has been defined to create the
Control Resources required to utilize CloudyCluster within
AWS. However, some clouds or architectures may not require
the creation of any Control Resources, in which case this
component is optional.

In PAW, the createControlResources method performs the
actions required to create the resources needed to launch
a new environment. The monitorControlResources function
allows PAW to detect when the creation of the new resources
created by the createControlResources method have completed
successfully. deleteControlResources provides the commands
to delete the resources previously created by the createCon-
trolResources method from the underlying cloud.

3) Environments and Environment Templates: The Envi-
ronment classes interface with the chosen environment cre-
ation tool to create, monitor, and delete environments of that



particular type. A cluster environment defined within PAW
contains all of the computational resources required to execute
the workflows or jobs specified by the user. An environment
consists of a combination of a scheduler, a shared filesystem,
a NAT instance, login and compute nodes (i.e., instances), and
a parallel filesystem. The components within an environment
can be customized to fit the user’s needs through the use of
the included environment template generator.

The current environment template generator is built to
generate templates for CloudyCluster environments, although
support for other environment types can be added in the future.
To create a template, the user defines a section in a configura-
tion file with the required configuration and runs the template
generator script with the configuration file. The environment
template generator also includes the ability to manage and
list the templates that have already been created. There are
a number of pre-generated templates and configuration files
included with PAW. The environment parameters utilized by
the template generator are specified in human readable terms
that do not require extensive knowledge of CloudyCluster.

4) Schedulers: The Scheduler classes within PAW allow it
to interact with the different HPC schedulers within the created
environments. Each of these classes provides an interface into
a scheduler that allows PAW to submit, monitor, delete, and
modify jobs within the scheduler. Adding a new scheduler is
done by adding a new scheduler class that implements the
Scheduler base class. For the current iteration of PAW, the
CCQ scheduler is the only scheduler that is fully implemented.
By utilizing CCQ, PAW is able to communicate using CCQ’s
web based APIs instead of having to make command line
requests directly to the schedulers, which makes obtaining
information from the scheduler easier and more efficient. CCQ
already supports both the Torque and Slurm HPC sched-
ulers, allowing PAW to communicate with these schedulers
from a single interface. Supporting more schedulers such as
OpenLava, Condor, and SGE is a topic of future work.

5) Workflow Templates: Workflow templates are a powerful
feature of PAW that allow for easy customization of the system
to specific domains and tasks. A workflow template in PAW
is defined as a custom set of tasks or actions that are defined
by the user that can then be submitted to an HPC scheduler
to perform work. These workflow templates allow users to
create and share their own workflows with other PAW users
by simply sharing their custom Workflow classes.

A custom Workflow class must implement two methods,
run and monitor. Code to generate or read a batch script file
is added to the run method and any special monitoring code
required for monitoring the completion of the workflow is
put in the monitor function. For example, the monitor could
include monitoring a specific storage location for an output file
or monitoring the number of jobs. Users can also implement a
custom workflow that utilizes another workflow manager such
as SWIFT or QDO to execute the workflow. In these types
of workflows PAW can be utilized to dynamically create the
resources required by the workflow management tool.

We have implemented a Topic Modeling Pipeline Workflow

class that reads in a configuration file, obtains the experi-
ment parameters, performs a number of pre-processing tasks,
and then submits a very large number of MPI jobs to the
environment automatically. Since this workflow is integrated
into PAW, we can run it by adding an extra line to the
Computation section of the PAW configuration file as
shown in Fig. 2

B. PAW Operational Stages

There are five different operational stages within PAW:
Create Control, Create Environment, Run Jobs/Workflows,
Delete Environment, and Delete Control. These stages can
be run together or separately, depending on the user’s needs.
When run together, PAW provides a “push button, get science”
type of interface, as the user does not need to enter any
information other than what is defined in the configuration
file. All of the created resource IDs and required parameters
are automatically passed from stage to stage. However, if the
stages are not run consecutively or are run in chunks, the user
will have to specify some parameters manually. Each stage is
described in more detail in this section.

1) Create Control Resources: The first stage of PAW is the
creation of the Control Resources. In this implementation of
PAW, this stage creates the CloudyCluster Control Instance
within AWS. In the context of a different environment type,
the Control Resources stage can be defined as any resources
required in order to allow PAW to interact with the chosen
resource provisioning tools.

When using the CloudyCluster environment, PAW takes
a CloudFormation template and launches a CloudyCluster
Control Instance utilizing that CloudFormation template. It
deploys and monitors the CloudFormation stack until the
required resources have been launched successfully in AWS
before continuing.

After the resources are ready, PAW performs the setup
operations that are required to utilize CloudyCluster and
CCQ. It creates a new CloudyCluster user, generates a new
CloudyCluster App key, sets the Database capacity, obtains
an authenticated web session with the CloudyCluster Control
Instance, and makes sure the DNS name associated with the
new Control Instance has propagated successfully. Once these
tasks have completed, PAW moves to the Create Environment
stage.

2) Create Environment: In the Create Environment stage,
the cluster environment is created from the environment tem-
plate specified in the PAW configuration file. The environment
template contains the components of the environment and
informs the Control Resources what it needs to create. PAW
reads the template, transforms the template into the proper
format required by the Control Resources and sends it to the
Control Resources to begin the creation process. The environ-
ment creation can take a few minutes in AWS, depending on
the size and scale of the environment specified. Once all of
the resources specified in the environment template have been
created successfully, PAW moves to the next stage, running
the specified workflows and jobs.



3) Run Workflow and Jobs: During this stage of PAW the
jobs are submitted to the HPC scheduler and any workflows
that are specified in the configuration file are executed. This
is done through utilizing the Scheduler classes previously
described. For the initial PAW implementation, the submission
of jobs and workflows to the HPC scheduler is performed by
CCQ. CCQ is a meta-scheduler that adds the ability for job
based autoscaling, submission, and monitoring to supported
HPC schedulers without any code modifications. PAW utilizes
CCQ’s web based APIs in order to securely communicate
with the CloudyCluster environment and perform the requested
actions. If the job/workflow does not require all of the com-
pute resources to be provisioned before executing, CCQ also
provides the capability to allow the HPC scheduler to begin
running the job/workflow before all of the compute resources
have been launched.

For a singular job script there is no extra configuration
needed. In this case, the user specifies within the configuration
file the path to the job script, if the job script should be
uploaded, and what remote directory they want the job to run
in. CCQ uploads the job script if required, and then submits
the job to the HPC scheduler. This allows researchers with
extremely minimal experience with the commercial cloud to
run batch job scripts on the commercial cloud with no extra
configuration.

For a user-implemented workflow, PAW runs the code in the
run method. Upon completion, PAW sends the job script to
the scheduler, which executes the job script. After submission,
the code in the monitoring section is executed, which allows
PAW to determine when the workflow/job has completed so
that the de-provisioning of the resources can begin.

In the initial version of PAW, when a job script or workflow
is submitted to the CCQ scheduler the compute resources
required for the operation of the workflow/job are dynamically
created utilizing CCQ. This means that the user does not have
to specify the resources required for computation ahead of
time, or need to pay for these resources when they are not
needed. Instead, PAW allows for the dynamic provisioning
of the compute resources at workflow/job runtime, giving
researchers more control over their costs and more flexibility
in choosing the types of resources to utilize. By provisioning
compute resources in this fashion, PAW allows researchers
to provision specific resources for specific workflows/jobs
quickly and efficiently. This eliminates the need for researchers
to utilize the same instance type for every job/workflow and
allows them to change the resources they execute the workflow
on to meet different execution needs.

The handling of incomplete tasks and failed jobs is left
to the user. PAW will notify the user if any of the work-
flows/jobs fail to complete, but will not re-submit the failed
workflows/jobs. The reason for this decision is twofold. First,
it may be the case that failed jobs may be able to be ignored, as
is the case with many Monte Carlo type simulations. Secondly,
PAW allows for the use of different workflow tools to be
integrated into the custom workflows, and many of these tools
have their own error handling and job re-submission routines.

4) Delete Environment: Even when the workflows/jobs
complete, users still pay for the resources that have been
created until they are deleted. PAW offers the ability to
automatically delete and terminate all the created resources
after the job/workflow has completed. This is an optional step
and may not be desired in all cases. If specified, PAW will
begin to terminate all of the created resources once it has
determined that the workflows/jobs are done. This includes the
shared filesystems and any information that was stored within
the environment. If this stage is utilized, it is important that
the workflows/jobs upload their results to a persistent storage
location, such as S3 or another cloud storage service, so that
data produced by the jobs/workflows is still available after the
environment has been deleted.

If there is no environment to be deleted, such as when PAW
is running on a local cluster environment, then this stage can
be safely skipped and is not required to run PAW. Once the
environment has been deleted successfully, PAW moves to the
next stage, deleting the control resources.

5) Delete Control Resources: If the environment being
utilized requires the creation of Control Resources, PAW can
automatically delete them after the environment has been suc-
cessfully deleted. Deleting the Control Resources means that
any logs that may have been generated about the environment
creation/deletion will be deleted and any access to the previous
environment or Control Resources will be removed. These
logs can be manually copied to a persistent storage location
if desired. This is the final cleanup stage of PAW. Once
the Control Resources have been deleted, there will be no
resources created by PAW running within the resource provider
chosen, and there will be no further costs to the user other
than the costs of output and log files that remain in persistent
storage.

V. CASE STUDY

To demonstrate and validate the scalability and flexibility
of PAW we utilize an integrated topic modeling workflow that
performs high throughput parameter sweeps. Topic modeling
is a common text analysis technique in machine learning
[17], [18]. In our experiment we run Parallel Latent Dirichlet
Allocation (PLDA) [19] and vary numerous experimental pa-
rameters (e.g., the number of topics) to better understand how
they affect the output models. We also run each experimental
parameter combination many times in order to capture its
tolerance to random seeds.

Fig. 3. Sample PLDA experiment descriptor file.



To set up this workflow, a user writes a human readable
experiment descriptor file, such as the one in Figure 3. This
file contains basic information required by the workflow, such
as the number of compute nodes (i.e., instances) required, as
well as method specific information such as which dataset to
use and what experimental parameters to test. Once PAW has
created the necessary resources, it submits an initial batch job
that retrieves the required dependencies and executes a Python
script. This script expands the experiment descriptor file into
its component jobs, which are then submitted directly to the
HPC scheduler. PAW monitors the progress of these jobs,
and deletes the compute nodes once the jobs have completed.
Each of these jobs runs PLDA on a particular experimental
parameter combination on the specified dataset.

We conducted our scalability experiments on two datasets:
the full text NIPS conference proceedings [20], and a set of
abstracts from computer science publications provided to us by
Elsevier. These experiments ranged in size from 278 compute
instances up to 5,000 compute instances. Figure 4 shows the
results of these experiments. Graphs A, B, C, and D show
results from the CS abstracts experiment. These graphs are
truncated on the right for space reasons. Graphs E and F
show the results from the NIPS experiment, and contain the
complete execution of PAW workflow resources.

For each of the experiments, all of the compute instances
were created dynamically by PAW as specified by the pa-
rameters in the workflow configuration. Graph A shows a
timeline of the number of each AWS instance type that was
created. For this experiment we chose to utilize two different
instance types, c4.2xlarge and c4.xlarge, because they fit the
requirements for our workflow and are not too expensive.
When submitted through PAW, we were able to provision
2,778 c4.xlarge instances and 2,222 c4.2xlarge instances in
about 25 minutes. Graph B shows a timeline of the total
vCPUs that were provisioned during the experiment. A vCPU
is defined as a hyperthread of an Intel Xeon core [21].
As graph B shows, during the CS abstract experiment our
5,000 instances had a total of 28,832 vCPUs available for
computation.

Graph C shows a timeline of the number of instances
provisioned and the number of batch jobs submitted by the
topic modeling workflow. As mentioned, in the topic modeling
workflow the first batch job that is submitted generates and
submits the rest of the batch jobs for the experiment. This
job is submitted and begins running within 5 minutes of the
submission of the workflow to PAW. The initial job finishes
generating the experiments and submitting them to the HPC
scheduler about 8 minutes after submission. As shown in graph
C, the number of pending jobs within the environment rises
quickly to almost 2,000 and the number of running jobs starts
to increase. As more instances start to register with the HPC
scheduler, more jobs start to run until all jobs are running. The
timeline of the relationship between the number of running
instances and the number of instances registered with the
HPC scheduler is shown in Graph D. Graph D illustrates
how quickly the instances go from the initial provision step to

fully running and ready to be assigned computation. The first
instance registers with the HPC scheduler within 5 minutes of
the submission of the workflow to PAW and that 95% of the
instances register within 20 minutes.

Graphs E and F show the results of the NIPS experiment.
This experiment illustrates PAW’s ability to not only create the
computational resources but also to delete the computational
resources after the workflow has completed. Graph E shows a
timeline of the total number of instances provisioned during
this experiment. Graph F shows a timeline of the number of
running instances along with the total pending and running
jobs in the environment. Graph F shows that first job is
submitted about 5 minutes after the workflow was submitted
to PAW and that the 3,000 jobs were generated and submitted
within 10 minutes. The 278 instances provisioned by PAW
completed 3,210 jobs in about 30 minutes. Then, as shown
on the right side of graph F, PAW detected that the workflow
had completed and, within two minutes, terminated all of the
provisioned instances. This quick detection of job completion
and deletion of resources is critical for managing costs when
running on commercial cloud environments.

An issue to consider when running an HPC workflow within
a commercial cloud is cost, especially for researchers with
access to traditional resources. The cost varies with the type
of instances and other cloud resources, and the execution
time of the workflow. For our experiments we utilized the
AWS Spot Market so as to obtain the lowest cost possible.
The estimated cost to operate the 5,000 instance cluster
environment using our maximum Spot bid price with more
than 28,000 vCPUs in AWS is $777.80 per hour, or about
$0.028 per vCPU hour. However, depending on Spot Market
variations the costs can often be less. Whether this cost is
justified is a business decision, and depends on the possible
reduced time to solution when running in the commercial
cloud, performance characteristics of the workload, and the
availability or scheduling contention of traditional resources.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an automated, dynamic cluster Provi-
sioning And Workflow (PAW) management tool for parallel
scientific applications in the cloud. This paper has described
the core architecture concepts of PAW, the modularity of PAW,
and the steps for adding a user defined workflow to PAW. We
have described the initial implementation of PAW utilizing
CloudyCluster on AWS as well as the different stages of PAW
and the execution of the example topic modeling workflow.

By utilizing PAW, researchers are able to run custom defined
parallel scientific workflows within AWS just as they would
on an HPC cluster, and without any knowledge of how AWS
works. Researchers have exclusive access to the environment
and the HPC scheduler, which allows them to use computing
resources without competition with other researchers.

The integrated topic modeling pipeline workflow demon-
strates the scalability of PAW. With the current implementation
using CloudyCluster and AWS, PAW provisioned a workflow
utilizing 5,000 instances and more than 28,000 cores in 25



Fig. 4. Experimental runs of the topic modeling workflow utilizing PAW. A) A timeline of the number of each instance type launched during the CS Abstracts
experiment. B) A timeline of the total number of vCPUs provisioned across all instance types for the CS Abstracts experiment. C) A timeline of the total
number of instances, pending and running jobs during the CS Abstracts experiment. D) A timeline of the running instances and the number of instances
registered with the HPC scheduler during the CS Abstracts experiment. E) A timeline of the total number of instances running during the NIPS experiment.
F) A timeline of the number of running instances, pending jobs, and running jobs during the NIPS experiment.

minutes. The first job of the workflow started less than 10
minutes after the initial launch of the workflow to PAW. The
other jobs were submitted and began executing as the resources
registered with the scheduler and became available.

There are many features that we would like to add to
PAW. A key goal is to extend PAW to different cluster
environments and cloud providers. PAW has the flexibility to
provision resources and manage workflows for multiple types
of environments both static and dynamic. In this way, PAW
can enable workflows to run on multiple environments without
any refactoring. Complementary goals are to refine the process
of creating and implementing custom workflows within PAW,
and to improve the process of creating, implementing, and
sharing workflows among researchers. The PAW source code
is available for download at https://www.cs.clemson.edu/dice/.
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